

# Challenges to Global Foodborne Disease Surveillance

Ewen C. D. Todd Food Safety Policy Center Michigan State University East Lansing, Michigan

Denver, September 2006



### **Outline**

- Surveillance and surveillance systems
- Surveillance in selected countries including those that are developed and developing
- Problems and issues identified in outbreak investigations and reporting
  - Under-reporting and unknown etiology
  - Priority setting
- Conclusions and recommendations

### Foodborne Disease Surveillance Systems - Purpose

- Alert of illnesses or potential illness to prevent further spread of disease
- Reporting of notifiable diseases and reports of laboratory isolations of enteric pathogens
- Investigation of incidents of foodborne illness and reporting of results on a regular basis
- Use of special epidemiological studies to determine a more realistic level of morbidity of a foodborne disease, and for more specific information on how illnesses occur
- Estimation of health and economic impacts and setting directions for control programs

### Reasons for Better Surveillance and Control

- Trade issues with WTO and SPS
- Major changes through new food standards agencies or authorities because of "food scares", e.g., BSE, dioxins in animal feed, *E. coli* O157 infections
- Bioterrorism/biosecurity
- Public expectations for improvements in the overall systems for foodborne disease detection and control at governmental levels in some countries

### Relations Between Surveillance Systems, Determining Burden of Illness and Prevention Strategies (WHO, 2003)

| Action                                                                                               | Surveillance<br>Systems             | Burden of Disease                                                 |
|------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------|
| Identification of risk-based mitigation strategies at some points on the food chain                  | Integrated<br>Surveillance          | Burden of pathogen specific disease according to food commodities |
| Identification of food at risk – prioritization of pathogen specific disease among foodborne disease | Laboratory<br>based<br>surveillance | Burden of pathogen specific disease                               |
| Prioritization of diarrhea among other diseases                                                      | Syndromic<br>Surveillance           | Burden of diarrhea                                                |
| Limited strategy options                                                                             | None                                | Unknown                                                           |

### Surveillance Approaches (Davies et al.)

| Traditional Surveillance                                                       | Syndromic Surveillance                                                                                                |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Rely on confirmed diagnoses                                                    | Rely on syndromes, before a diagnosis is available                                                                    |
| Traditional function of public health                                          | Emerging function of public health                                                                                    |
| Use data from death records, reportable cases, and confirming diagnostic tests | Use data from non-<br>traditional sources<br>911 calls,<br>nurse-line calls,<br>OTC drug sales<br>ED chief complaints |

### GI Syndromes in Walkerton-Resident Children seen in any Grey Bruce Area, Ontario, Emergency Room (Davies et al.)

| 46 days prior to Boil Water<br>Advisory |     | Alert<br>threshold<br>(Mean + 3 SD) | Observed frequency on 4 days before advisory given on May 21, 2000* |      |           |           |           |           |
|-----------------------------------------|-----|-------------------------------------|---------------------------------------------------------------------|------|-----------|-----------|-----------|-----------|
| Min                                     | Max | Mean                                | SD                                                                  |      | May<br>17 | May<br>18 | May<br>19 | May<br>20 |
| 0                                       | 3   | 0.24                                | 0.51                                                                | 1.77 | 0         | 5         | 2         | 9         |

#### \*Sunday, May 21

- -Outbreak number assigned, Outbreak Management Team formed, boil water advisory
- -E. coli confirmed, presumptive water samples, cultures obtained

### **UK Food Standards Agency**

- Advice and information to the public and Government
  - food safety from farm to fork, nutrition and diet
  - protects consumers through effective food enforcement and monitoring
- Devolved administrations in Scotland, Wales and Northern Ireland
- Aim to reduce foodborne illness by 20% between 2001 and 2006

## Northern Europe (Hatakka and Pakkala, 2003)

- Denmark had three waves of salmonellosis: chicken in the late 1980s, pork in the mid 1990s, and eggs in the mid to late 1990s
- Campylobacter infections increased significantly in Denmark, Finland, Iceland, Norway, and Sweden from 1985 till 1999: raw milk, poultry and pork
- Salmonellosis decreased in Sweden and increased in Denmark
- Salmonellosis decreased in Finland from 1990 till 1993 because fewer traveled abroad

### Foodborne Disease in Japan

- 1960s: 1,700 cases (2.0 per 100,000)
- 1990s: 700 cases (0.6 per 100,000) (except 1996)
  - Vibrio and Salmonella most important
- 1996: 16 outbreaks (11,826 cases, 12 deaths) of E.coli O157:H7
  - Catered food mainly in schools and hospitals
  - 200 different PFGE patterns indicate that outbreaks and sporadic cases of *E. coli* O157:H7 were not due to single clone

### Foodborne Disease in Japan

- 1997: Large foodservice ops save portions for 2 weeks
- 2001: BSE incident causing economic loss
- 2003: New Food Sanitation Law, information on foodborne illnesses is gathered nationally
- July 2003: Food Safety Council responsible for evaluating the safety of food products



Incidence of Bacterial and Viral Foodborne Disease Outbreaks in Japan (1990-2003)



Foods Implicated in Foodborne Disease Outbreaks in Japan (1990-2003)

### **US Passive Surveillance**

- Outbreak passive system:
  - 489 in 1993
  - 653 in 1994
  - 628 in 1995
  - 477 in 1996
  - 504 in 1997
- Bacterial pathogens caused 75% of outbreaks and 86% of cases
- Salmonella Enteritidis associated with eggs
- 60 and 69 outbreaks of ciguatera poisoning and scombroid poisoning, respectively (502 cases total)

### **US Active Surveillance**

- FoodNet population-based, active surveillance: estimated 76 million cases, 325,000 hospitalizations and 5,000 deaths annually
  - only 14 of 76 million cases of known etiology Salmonella, Listeria, and Toxoplasma, are responsible for 1,500 deaths each year
- Norwalk-like viruses accounted for > 67% of all cases, 33% of hospitalizations, and 7% of deaths
  - assumptions underlying the Norwalk-like viruses figures are most difficult to verify
- No estimate for acute toxin illnesses
- Successful in monitoring, tracking trends, and defining risk factors for causes of illnesses

### 2001-05 Incidence per 100,000 Compared with 2010 50% Reduction Objective

| Agent               | 1997  | 2001 | 2004 | 2005 | 2010 |
|---------------------|-------|------|------|------|------|
| Salmonella          | 13.70 | 15.1 | 14.7 | 14.6 | 6.8  |
| Campylobacter       | 24.60 | 13.8 | 12.9 | 12.7 | 12.3 |
| Shigella            | NA    | 6.4  | 5.1  | 4.7  | NA   |
| <i>E. coli</i> 0157 | 2.10  | 1.6  | 0.9  | 1.1  | 1.0  |
| Cryptosporidium     | NA    | 1.5  | 1.32 | 3.0  | NA   |
| Listeria            | 0.5   | 0.3  | 0.27 | 0.3  | 0.25 |
| Vibrio              | NA    | 0.2  | 0.28 | 0.3  | NA   |
| Cyclospora          | NA    | 0.1  | 0.03 | 0.2  | NA   |

# Surveillance Weaknesses in Developing Countries

- Outdated food laws, standards and regulations
- No centralized approach or coordination among departments and agencies to food control
- Lack of adequately trained personnel
- Limited capacity for food control laboratories
- Food industry is familiar with terms like GMPs, GHPs and HACCP systems but lacks ability or will to do these

### Surveillance Weaknesses in Developing Countries

- Countries cannot compete effectively in the export market to be in compliance with the SPS agreement
- Conflict between public health objectives and facilitation of trade and tourism
- Limited opportunities for appropriate scientific inputs in decision-making processes

### Utility of Outbreak Data (WHO)

- Outbreak investigations allow collection of data to add to the knowledge of different pathogens, the vehicles of illness, and the common or novel errors or factors that contribute to outbreaks
- Fundamental source of information to design food safety policies, e.g.,
  - · Clostridium botulinum: baked potatoes, garlic in oil
  - E. coli: sprouts, apple juice
  - Salmonella: pepper, chocolate, tomatoes, melons
  - Hepatitis A: green onions, strawberries, raspberries
  - Listeria monocytogenes in deli meats, soft cheese, smoked salmon

### Multiplication Factors for Cases with Pathogens in US, UK, France and Canada

| Agent                    | US    | UK             |                       |
|--------------------------|-------|----------------|-----------------------|
| Campylobacter spp.       | 38    | 7.6/10.3       |                       |
| Clostridium perfringens  | 38    | 342            |                       |
| Listeria monocytogenes   | 2     | 2              | 1.1France             |
| Salmonella non-typhoidal | 38    | 3.2/3.9        |                       |
| Shigella                 | 20    | 3.4            |                       |
| Staphylococcus aureus    | 38    | 237            |                       |
| VTEC/STEC                | 20015 | <sup>7</sup> 2 | 4-8 <sup>Canada</sup> |
| Yersinia enterocolitica  | 38    | 1,254.3        |                       |
| Cryptosporidium parvum   | 38    | 26.9           |                       |
| Norovirus                | 1,562 | 275.5          |                       |
| Hepatitis A virus        | 3     | -              |                       |

### Limits to Effective Surveillance

- Increased burden on the health system without adequate resources
- Passive systems depend on input from many local sources
- Private and consulting labs being used more but not contributing results to databases
- Industry information on contaminants not available
- 3<sup>rd</sup> party certification for imported products replacing government testing

### Reasons for Limited or Inaccurate Data on Outbreaks

It is often difficult for investigators to obtain accurate information during an outbreak investigation because:

- (1) the person(s) involved are no longer accessible for interview
- (2) poor communication during the interview because of language difficulties
- (3) poor questioning by investigators to elicit the appropriate information
- (4) workers will give false information so as not to incriminate themselves or
- (5) interval too long between start of outbreak and the beginning of investigation

### Reasons for Outbreak Underreporting

- · Less commonly identified agents implicated, e.g., Coxiella
- Illnesses with longer incubation periods, e.g., Hepatitis A
- Pathogens usually causing mild illness, e.g., *B. cereus*, gastrointestinal *L. monocytogenes*, *S. aureus*
- Late notification of illnesses to health units
- Unavailability of clinical specimens and/or food samples
- Unsuitability of laboratories or methods to detect and identify the pathogen
- Insufficient resources and trained staff to conduct investigations
- Lack of cooperation between the different disciplines/agencies
- Failure of investigators to write the final report and submit data to higher authorities

### Cases of Unknown Etiology

- If the data are available, these are determined by:
  - [total number of acute GI illnesses number of cases accounted for known foodborne pathogens] x [estimated percentages of foodborne transmission]

#### US

- 78-81% of foodborne illnesses (183,000,000 cases annually)
- 50% hospitalizations
- 64% of deaths
- UK
  - 74% of illnesses

### Cases of Unknown Etiology

- Reasons
  - appropriate specimen for testing was not collected
  - specimen negative for all pathogens tested for in the laboratory because
    - many pathogens are not routinely tested for
    - an unknown pathogen causative agent
- UK study (1994-1995) (Tompkins et al., 1999)
  - 2,264 stools samples were tested for 18 bacteria,
    2 protozoa and 6 viruses
  - No pathogens detected in 45% of samples

# On-going Issues for Priority Setting

- Magnitude of sequelae
  - GBS (Campylobacter), HUS (E. coli O157), RA (Campylobacter, Salmonella, Shigella, Yersinia)
  - Possible IBS (Salmonella, Shigella, Campylobacter),
  - Possible lactose intolerance (rotavirus)
  - Possible diabetes mellitus (enteric viruses)
- Determining impact of foodborne disease on deaths
- Economic and/or social burden
  - HALYs, Cost-of-illness estimates, industry losses, deaths
- Food attribution
  - No agreement on methodology
  - Outbreak data plus case-control studies

### Use of Surveillance For Better Food Control

- Surveillance is a key component to show a link between government policy and reduction of illness, and:
  - Shows which problems have or have not been solved
  - Contributes to risk analysis to develop policy strategies
  - Directs required research and surveys
  - Leads to multidisciplinary research conducted by academia, government and industry to determine solutions
  - Since it is people that allow the situations to occur that result in illnesses, the social sciences need to be brought in as to why errors are made

### Recommendations

- Consolidate databases to generate one set of national data for each agent (e.g., notifiable diseases vs. lab isolations)
- Focus more on active surveillance
  - population-based studies to capture sporadic cases
  - identify risk factors for each type of foodborne illness
  - incorporate data into risk analysis framework
  - intervention strategies for prevention and control
  - assist in educational programs
- Cooperation among government agencies for investigation, control and policy, and promotion of targeted research

#### Recommendations

- Integration of food safety and food sanitation related laws (from farm to fork) including HACCP, GMP and SSOP in each phase of food production
- Integrate bioterrorism/biosecurity into surveillance
- Set public health goals for countries and monitor progress with surveillance data
- Have resources to interpret the data for trends and discrepancies
- Develop more global surveillance systems, e.g., Enter-net, Pulsenet, Global-Salm Surv

