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1. Basic Issues in Predicting Crashes

There are many reasons to be concerned with estimating the frequency and social
costs of highway accidents, but most reasons are motivated by a desire to minimize
these costs to the extent feasible. Competition for scarce resources is a practical
necessity, and society seeks to apply those resources where they will do the most
good. With highway crashes, given the high costs of mis-prediction in fatalities and
injuries, sound information for prioritizing projects with limited funds is essential.

Causes of Highway Accidents

The Highway Economic Requirements System (HERS) model applies crash predic-
tion equations in the context of deciding which kinds of highway improvements are
justified for which sections of highway. Thus, it is concerned with the effects of geo-
metric attributes on expected highway accidents. 

Driver behavior and vehicle characteristics are also important in determining the
cause of accidents (discussed below); HERS modelling does not discount these fac-
tors but seeks to identify the causal geometric attributes. The roll of geometric attri-
butes, moreover, is of interest to others besides those choosing among alternative
highway investments. Engineers designing highways, communities wanting to reduce
the hazard they encounter, and policy makers directing research funding can draw
upon knowledge of the contribution of geometric attributes to accidents. Even public
programs concerned with reducing driver error and manufacturers trying to build
safer vehicles can benefit from being able to diagnose the effects—independent as
well as interactive—of geometric properties.

Relationship 
Between Highway 
Attributes and 
Crashes

In the HERS model, only the attributes of the highway sections are used in the deter-
mination of the expected safety costs; however, highway attributes are only one cate-
gory of factors that can combine to produce circumstances that lead to a motor vehicle
crash. Crash causes are generally divided into three categories: driver factors, road-
way factors, and vehicle factors.1

Driver factors involve the actions taken by or the condition of the driver of the motor
vehicle, including speeding, violating traffic laws, driving under the influence of alco-
hol or drugs, inattention, decision errors, and age. Roadway factors that contribute to,
or are associated with, crashes include roadway design attributes (e.g., number of
lanes, lane width, median width, shoulder width, presence of curves/grades/intersec-
tions), roadside hazards (e.g., poles, trees, animals, or embankments adjacent to the
road), and roadway conditions (e.g., weather conditions, lighting conditions). Vehicle
factors include any vehicle-related failures that may exist in the automobile or design
of the vehicle.

1. GAO (2003), Sabey and Staughton (1975), Treat (1977).
HERS Safety Model Assessment and Two-Lane Urban Crash Model 1
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Distribution Among 
Causes

An obvious question raised in the previous section is, what percentage of crashes
result from each of these categories? The body of research specifically focused on the
overlapping impacts of vehicle, driver, and highway causal factors is largely com-
posed of two studies completed in the 1970’s. Recent research has focused on analyz-
ing the effect of a specific factor(s) (i.e., speeding, alcohol, access control, etc.) in
crashes. 

According to the 2003 Government Accountability Office report on traffic crash cau-
sation:

One of the most significant studies to date on the factors that contribute to motor
vehicle crashes was the Tri-Level Study of the Causes of Traffic Accidents, con-
ducted in the 1970s by the Indiana University at Bloomington Institute for
Research in Public Safety. According to NHTSA officials, the Tri-Level study
has been the only study in the past 30 years to collect large amounts of on-scene
crash causation data. To provide researchers with insight into the factors that con-
tribute to traffic crashes, collision data were collected on three levels, each pro-
viding an increasing level of detail, including 13,568 police reported crashes;
2,258 crashes investigated by on-scene technicians; and 420 crashes investigated
in depth by a multidisciplinary team. The study assessed causal factors as either
definite, probable, or possible. The study found that crashes were caused by
human (or driver-based) factors, environmental (roadway or weather-related)
factors, or vehicle-related factors.

As shown in Figure 1, driver factors are the primary cause of the largest percentage of
motor vehicle crashes, followed by roadway and then vehicle factors.

Figure 1. Crash Causes Found by Tri-Level Study
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Figure 2 provides a different view of the data from the Tri-Level study.2 It clearly
defines the percentage of crashes due solely to roadway, driver, and vehicle-related
factors as well as the percentage of crashes resulting from a combination of these fac-
tors. Another similar study was also performed by Sabey & Staughton in Great Brit-
ain in the 1970’s, and the results (also shown in Figure 2) are very similar to those of
the Tri-Level study. 

The most pertinent result from each of these studies is the role that roadway factors
play in motor vehicle crashes. In most cases when a crash occurs, a roadway design
feature is not the single, definite cause of the crash. Instead, it is generally the behav-
ior of the driver that leads to a crash; however, roadway attributes often play a con-
tributing role in crashes. In fact, in approximately 27-34% of the time roadway factors
played at least a partial role leading to the crash.

More recent studies such as the Large Truck Crash Causation Study and the One Hun-
dred-Car Naturalistic Driving Study confirm these general results whereby most
crashes are directly attributable to driver behavior, but often in combination with geo-
metric and vehicular factors.3 Even in instances where the geometry was not the
direct cause, identifying where the crashes are most likely to happen would be of
great use to highway planners.

2. Treat (1977).

Tri-Level Study Great Britain Study

Figure 2. Crash Causation Factors

3. Federal Motor Carrier Safety Administration (2006), Neale et al.
HERS Safety Model Assessment and Two-Lane Urban Crash Model 3
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Crash Modeling Strategies

Assessing the impact of changes in roadway geometric characteristics is a common
problem faced by virtually all federal, state, and local agencies responsible for high-
way transportation. At this time there are two main approaches that are used to esti-
mate the effects on crashes of making changes to roadway sections.

Effectiveness Rates Effectiveness rates, a multiplier or a range of multipliers applied to existing crash
counts, are a common strategy for predicting the results of roadway improvements
and countermeasures. These rates, often calculated from before-and-after studies, can
be extremely specific in that they may depend on what the configuration of the road-
way was before the improvement as well as the final configuration of the roadway
after the improvement.

Given an effectiveness rate, determining the safety cost savings from an improvement
is a fairly straightforward task. First, an average number of crashes needs to be deter-
mined for the roadway section being modified. Second, the effectiveness rate is multi-
plied by this average to determine the number of crashes prevented by the
improvement. Once the number of crashes is estimated, crash severity averages are
used in order to predict the number of fatalities and injuries resulting from those
crashes. With the expected number of fatalities and injuries, average costs can be
applied which yield the total costs of crashes occurring on a particular section.

Count Models Count models use regression analysis to directly estimate the number of crashes that
are expected on a particular section of the roadway based on the geometric and traffic
characteristics of that section. These models are typically developed using large
amounts of crash and roadway inventory data, and, unlike effectiveness rates, easily
allow multiple changes to a segment’s geometry. The most common functional forms
for these regression models are Poisson or Negative Binomial, depending on the dis-
persion of the data. Once the number of crashes is predicted, crash severity averages
are used in order to estimate the number of fatalities and injuries resulting from those
crashes. With the expected number of fatalities and injuries, average costs can be
applied which yield the total costs of crashes occurring on a particular section.

One of the problems with both approaches is that typically the crash prediction and
severity calculation are broken up into separate steps. Typically the crash prediction is
performed by the regression model, and the severity calculation uses national aver-
ages to apportion the crashes into the categories of fatal, injury, and property damage
only. From this point, more national averages are used to estimate the actual number
of fatalities and injuries. While the national fatality averages are good estimators,
national injury averages are no longer published by the Federal Highway Administra-
tion in their annual report covering highway usage statistics. Additionally some
researchers question the division between crash prediction and severity. While fatality
crashes are far too rare to estimate by themselves, some work has been done to esti-
mate property damage only crashes separately from fatality and injury crashes. Multi-
4 HERS Safety Model Assessment and Two-Lane Urban Crash Model
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level regressions, which seek to simultaneously predict crashes by severity are also
gaining traction.

Interaction EffectsA second concern with this approach is in the actual development of the regression
models. The process generally involves identifying a set of variables that are to be
evaluated for their statistical significance in explaining the variation in the dependent
variable. In general, thorough exploratory data analysis of the independent variables
is missing from previous studies.

Overall, there has been very little consideration given to the interaction between inde-
pendent geometry variables. More specifically, cross-product terms are virtually non-
existent in most crash prediction models. This is surprising since virtually all research
into the causes of crashes generally indicates that multiple factors are associated with
the occurrence of a crash. Furthermore, this recommendation was made in a separate
report by the FHWA in the early 1990’s.4

Vehicle MixAnother example of the lack of preliminary data analysis involves the use of aggre-
gate variables when disaggregate data are available. For example, every crash predic-
tion model has some exposure variable, typically Average Annual Daily Traffic
(AADT). While exposure is a necessary variable in any model, not enough consider-
ation is given to more disaggregate exposure variables, such as commercial vehicle
AADT and passenger vehicle AADT. Exposure variables are discussed in more detail
in the Methodology section below. This approach is also supported by what is known
regarding the impact of vehicle mix on crash rates.

Relationships 
Among Frequency, 
Severity, and Cost

“Frequency” is the rate at which crashes occur, generally in terms of number per 100-
thousand vehicle miles of travel; “severity” is the level of damage with respect to
fatalities, injuries, and property damage per incident, while “cost” is the value of the
resources used to correct or compensate for the damage.

The expected crash severity (and cost) is not fixed across all crashes. A number of
crash factors can affect both crash frequency and crash severity. For example, an
increase in volume for a given capacity forces vehicles into closer proximity than at
lower volumes, and more crashes occur; higher volume also decreases speed, how-
ever, resulting in lower severity and fewer fatalities.

The simplification of modeling crash occurrence and applying a fixed number of
fatalities per crash, then, is clearly only an approximation if it is assumed that the two
rates are independent. One strategy is to model frequency and severity separately,
using the most appropriate variables (such as speed) in each model, with some vari-
ables appearing in both the crash frequency and crash severity model. An alternative
approach is to model frequency and severity simultaneously.

4. Cirillo (1992).
HERS Safety Model Assessment and Two-Lane Urban Crash Model 5
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Summary of Prediction Issues

Various studies over the last 30 years have sought to determine the relationship
between driver, vehicle, and roadway causes of vehicle crashes. While roadway
geometry is often not the primary cause of a given crash, some road segments experi-
ence much higher rates of crash occurrence. As a result, count models to predict
crashes provide a tractable option for understanding where crashes happen and the
geometric characteristics that can affect crash frequencies. By developing a count
model for road segments, highway engineers and planners can reduce the likelihood
of a given segment experiencing crashes. These models need to take into account the
interactions between geometric characteristics as well as the mix of vehicles on the
road. Once a basic model is developed, refinements to that model can include crash
severity and cost as well. 
6 HERS Safety Model Assessment and Two-Lane Urban Crash Model
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2. HERS Crash Estimation Models

HERS is an engineering/economics model designed to estimate investment require-
ments for the nation’s highways. The model uses an extensive set of data on a sample
of highways throughout the nation (Highway Performance Monitoring System
(HPMS) Sample data) to conduct project-level benefit-cost analyses of alternative
improvements. The model evaluates potential improvements on each sample highway
section by comparing construction costs with the benefits accruing to highway users
and agencies (i.e., reductions in travel times, vehicle operating costs, safety, etc.) to
determine whether an improvement is warranted.5

How HERS Estimates Crash Reduction Benefits

To estimate the highway user benefits associated with a particular highway improve-
ment, HERS makes extensive use of statistical prediction models. These models cal-
culate benefits by using highway geometric design (e.g., number of lanes, median
width, presence of curves/grades/intersection) and traffic attributes of the highway
section as input to the statistical models, with the output being crashes, travel time,
and operating costs. As improvement alternatives are “implemented” in the model,
the design attributes of a highway section (i.e., widening a road, adding a lane, etc.)
change and the highway user costs change as well.6

HERS uses a three-step process to calculate the total safety costs for a particular
improvement alternative. The three steps are discussed in further detail in the subse-
quent sections. Prior to discussing the models, it is necessary to review the two meth-
ods of classifying highway sections that are used by these models.

Facility Type and 
Functional Class

The most common method of classifying highway sections is to group them accord-
ing to the type of service or function they provide. This method assigns each highway
section to one of the following general categories, which are known as functional
classes. 

• Principal Arterials carry long-distance traffic to/from significant traffic
generators

• Minor Arterials carry shorter distance traffic to/from lesser traffic gen-
erators

• Collectors (Major & Minor) carry traffic to/from residential or rural
areas to higher functional classes

• Locals carry traffic to/from adjacent properties and to higher functional
classes

5. Camus (2000).
6. GAO (2000).
HERS Safety Model Assessment and Two-Lane Urban Crash Model 7
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The functional class attribute indicates whether the highway section is located in a
rural or urban area as well. Figure 3 shows the hierarchy of functional class values,
shaded classes are found in HPMS.

The second method HERS uses to classify highway sections is based on the design
attributes of the highway. This method assigns each highway section to one of the fol-
lowing general categories, which are known as facility types.

• Freeways includes all divided sections with full access control and two
or more lanes per direction

• Multilane sections includes all sections with two or more lanes per
direction that do not meet the criteria for a freeway

• Two-lane sections includes all sections with two or fewer total lanes

Severity Distribution Once the expected crash rate is computed using the crash estimation models, this rate
can be converted to the expected number of crashes by multiplying by the number of
vehicle miles traveled. At this point it is necessary to estimate the expected number of
fatalities and injuries for the section of highway being analyzed. HERS uses fatality

Figure 3. Functional Class Hierarchy
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and injury rates (fatalities per crash and injuries per crash), which are different for
each functional class, to estimate the number of fatalities and injuries for a given
highway section. These rates were developed by using national level crash, fatality,
and injury data.

Unit Costs by Sever-
ity

Finally, the expected number of fatalities and injuries for the highway section in ques-
tion are converted to costs. Again HERS uses fixed unit costs (cost/fatality, cost/
injury, property damage/crash) to convert the number of fatalities and injuries to an
overall safety cost for the particular highway section.

Impacts of Highway 
Improvements on 
Crash Rates

While it is important to have safety models that accurately capture the relationships
between roadway attributes and crashes, it is also necessary to understand how road-
way attributes are affected by the various improvement projects modeled by HERS.
Table 1 shows which section attributes can be modified as a part of an improvement
project. These represent the potential "knobs" that can be turned within HERS and
does not necessarily conform to the list of attributes that will make up the safety
model. In the event the prediction model contains attributes not on this list, it might be
desirable to modify other component models of HERS and the HPMS data in order to
take advantage of this discovery.

Table 1. Section attributes potentially affected by an improvement

Section Attribute Possible Changes
Number of Lanes increase or no change
Lane Width meet design standard or no change
Shoulder Type existing or minimum tolerable condition, or no change
Right Shoulder Width meet design standard or no change
Pavement Condition recalculate
Pavement Thickness recalculate
SN or D increase or no change
Surface Type meet design standard
Peak Capacity recalculate or no change
Median Width meet design standard or feasible
Median Type unprotected, none, or no change
Access Control full or partial
Grades meet design standard
Curves meet design standard
Passing Sight Distance improve to average or no change
Weighted Design Speed recalculate
Widening Feasibility lower code or no change
HERS Safety Model Assessment and Two-Lane Urban Crash Model 9
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Summary of the HERS Crash Frequency Models

HERS Crash Estima-
tion Models

Six different equations are used by HERS for calculating the expected number
crashes per 100 Million Vehicle Miles Traveled (100 MVMT). These different mod-
els are based on the facility type and whether the section is in a rural or urban area. A
brief overview of each model is provided below.

• Rural Two-Lane Roads This method has four composite models (four
legged signalized intersections, four- and three-legged intersections
with stop control on the minor approach, and non-intersections) that cal-
culate the expected crash rate by decomposing the highway section into
sub-sections based on their proximity to an intersection. The output
from each of the component models is combined to create the expected
crash rate for the complete section. This model, which incorporates over
15 different geometric attributes, was developed for the FHWA using
negative binomial regression analyses of crash data from four states.

• Rural Multilane Roads This model was also developed using General-
ized Linear Model (GLM) regression, and it incorporates 9 geometric
attributes.

• Rural Freeways This exponential model estimates the crash rate using
AADT and lane width as the only input variables.

• Urban Freeways This fifth-order polynomial model also uses only
AADT and lane width to estimate the crash rate.

• Urban Multilane Surface Streets This exponential model uses AADT
and the number of signals per mile to estimate the crash rate

• Urban Two-Lane Streets This model is log-linear in AADT as was
developed by ordinary least squares. This is the least developed of all
the HERS crash estimation models.

Table 2 provides a summary of the HERS crash prediction models. The columns in
the table describe the original research used to develop the model, the data used to
develop the model and the characteristics of the model.
10 HERS Safety Model Assessment and Two-Lane Urban Crash Model
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Although the crash frequency prediction models used in HERS were developed ten or
more years ago, not much research has occurred since then that would warrant replac-
ing the existing equations with improved versions. Nonetheless, the HERS equations
are weak in several respects in light of current ideas on crash modeling:

• Geometric properties are missing from many equations that probably
should include geometric attributes as explanatory variables, notably the
2-lane 2-way urban streets model that has no geometric attributes at all.

• Data used to fit some of the equations are thin and perhaps unrepresen-
tative; models may have been fitted to data from a single state, without
testing the model against other data.

• Changes in crash rates caused by an improvement on a section some-
times are the result of a change in facility type (e.g., adding lanes or
changing access control), leading to a different crash estimation equa-
tion. There has been no coordination among the equations, however, to
ensure that the differences in the resulting crash rates are a reflection of
real safety improvements rather than artifacts of the equations.

• For some of the models, the methodology and theory used to design and
fit the equations is below current standards for generating crash predic-
tion equations, such that some equations could be improved (at least in
the statistical sense) by refitting the equations to the same data.

The six crash models currently employed in HERS create reasonably accurate crash
predictions. There remains much room for improvement, however, particularly in the
models that do not take into account geometric traits.
12 HERS Safety Model Assessment and Two-Lane Urban Crash Model
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3. Highway and Crash Data Sources

In contrast to the limited amount of empirical research on highway crash models that
has been reported recently, the amount and quality of data available for crash model-
ing has been steadily improving. A limited number of such data sets exist at the
national and state level, and these are described below.

Highway Attributes

Normally, databases with highway section attributes do not include crashes, and crash
databases neither include all sections nor all section attributes. Thus, it becomes nec-
essary to link section and crash databases to be able to use geometric attributes to
explain some share of crashes.

Highway Perfor-
mance Monitoring 
System (HPMS)

Once every two years, the FHWA is required by Congress to publish a status report on
the national surface transportation system, known as the "Conditions and Perfor-
mance" (C&P) report. This biennial report describes the current status and future
needs of the road systems in the United States. These reports provide Congress with
the information necessary to appropriate funds to individual states for highway main-
tenance and construction. Originally, these reports were generated through extremely
labor intensive special studies, which gathered data from each state, analyzed the
highway systems, and then created the reports. In 1978 the FHWA streamlined the
process with the creation of the HPMS, standardized the data items required to be col-
lected by each State about its highways (e.g., pavement condition, performance,
travel, geometry, etc.), and stored the data for all states in a central repository. This
system requires states to report data annually so that the information is kept up-to-
date.7

Two types of data are submitted to the HPMS: Universe data and Sample data. The
Universe data contain basic highway information (e.g., AADT, Functional Class,
Number of Lanes, Pavement Roughness, etc.), which states are required to report for
all sections. The Sample is composed of a statistically chosen sample of 10% of all
roadways, weighted toward higher functional classes, and omitting local roads (urban
and rural) and rural minor collectors. For each highway section in the Sample, an
additional set of highway information (48 additional attributes) is collected. These
additional data include geometric attributes such as access control, median/shoulder/
lane width, curves, grades, and traffic attributes such as speed limit, capacity, K-fac-
tor, and percent trucks. Table 3 provides a comparison of the centerline miles and
number of sections in the HPMS Universe and Sample aggregated by functional
class.8

7. FHWA (2000).
8. FHWA (2003).
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The HPMS Sample data are used as the base data for HERS, which provides input to
the C&P report. The HPMS data are also used throughout the transportation planning
community for research and planning purposes.

While the Sample provides geometric data for input into the HERS crash models,
these data cannot be used for assessing the accuracy of the models because neither the
Universe nor the Sample HPMS data record the number of crashes occurring on a
highway section. Model evaluation and construction depend on matching crash
records to geometric attributes of the section. HPMS data might be used for extracting
geometric properties not included in an unrelated accident database. To be useful, the
crash model must be tied to HPMS data items. In the future revisions to the HPMS
database, consideration should be given to adding historical accident data in some
way.

Accident Data

Highway Safety 
Information System 
(HSIS)

The HSIS, operated by the University of North Carolina Highway Safety Research
Center (HSRC) and LENDIS Corporation, under contract with FHWA, is a multistate
database that contains crash, roadway inventory, and traffic volume data for a select
group of States. The participating States — California, Illinois, Maine, Michigan,
Minnesota, North Carolina, Utah and Washington — were selected based on the qual-
ity of their data, the range of data available, and their ability to merge data from the
various files.9

Table 3. Comparison of Sample and Universe Data (2003)

Functional Class Sample 
Miles

Universe 
Miles

Sample 
Sections

Universe 
Sections

Rural Interstate 17,005 32,078 7,333 20,216
Rural Other Principal Arterial 26,076 97,087 10,366 83,201
Rural Minor Arterial 15,269 135,664 5,759 108,923
Rural Major Collector 18,736 424,667 7,340 264,170
Rural Minor Collector 0 267,793 0 5,755
Rural Local 0 2,079,000 0 10,635
Urban Interstate 8,494 14,691 9,159 23,221
Urban Other Freeway and 
Expressway 4,857 9,930 5,391 16,409
Urban Other Principal Arterials 12,833 57,256 22,283 144,283
Urban Minor Arterial 13,822 94,769 24,340 212,489
Urban Collector 11,687 98,323 21,272 215,811
Urban Local 678,589 6,918
Totals 128,779 3,989,847 113,243 1,112,031
14 HERS Safety Model Assessment and Two-Lane Urban Crash Model
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Due to contractual obligations with the States, the data in their entirety cannot be dis-
tributed; however, subsets of the data are available upon request. Therefore, after
reviewing the attributes available for each of the participating States, the data in Table
4 were requested.

Data from the other HSIS States were not requested because of the lack of attribute
data to support the evaluation of the existing crash estimation model (e.g., no curve
data implies the two-lane rural model cannot be evaluated). The subset of attribute
data requested was chosen to allow the existing models to be applied to the data, and
also to allow some exploratory analysis of the correlation between various geometric
attributes and crashes.

Fatality Analysis 
Reporting System

The Fatality Analysis Reporting System (FARS) was conceived, designed, and devel-
oped by the National Center for Statistics and Analysis (NCSA) of the National High-
way Traffic Safety Administration (NHTSA) in 1975 with the following goals:

9. HSIS (2007).

Source: Highway Safety Information System Web Site

Figure 4. HSIS Participating States

Table 4. Requested HSIS Data

State Years
Ohio 1997 - 1999, 2002-2004
Minnesota 1996 - 1997
California 1996 - 2000
North Carolina 1996 - 1999
Washington 1996, 1999 - 2005
Michigan 1996 - 1997
HERS Safety Model Assessment and Two-Lane Urban Crash Model 15
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• to provide an overall measure of highway safety, 

• to help identify traffic safety problems, to suggest solutions, and 

• to help provide an objective basis to evaluate the effectiveness of motor
vehicle safety standards and highway safety programs.

FARS contains data derived from a census of fatal traffic crashes within the 50 States,
the District of Columbia, and Puerto Rico. To be included in FARS, a crash must
involve a motor vehicle traveling on a roadway customarily open to the public and
result in the death of a person (occupant of a vehicle or a non-motorist) within 30 days
of the crash.10

Currently, the FARS data are not incorporated into this analysis for two major rea-
sons. First, as its name implies, FARS only records crash data where at least one fatal-
ity occurs. All injuries and fatalities associated with a fatal crash are recorded in
FARS; however, these data are only sufficient to build models predicting fatal crashes
since injury crashes are not recorded in this data source. The second issue limiting the
usefulness is the lack of roadway geometric attributes. Only a very limited number of
geometric attributes are recorded in the FARS data. To address this issue, in 2000,
FARS incorporated Geographic Information System (GIS) technology into the data
collection system. While this allows the crash data to be linked to other GIS-based
data sources (e.g., NHPN/HPMS and state highway inventory database), there is still
a significant amount of work required to acquire these data sources and to link the
crash data with the roadway inventory data. For these reasons, FARS will not be used
to develop statistical crash prediction models. At this point, the only potential use for
this data is updating aggregate statistics on the expected number of fatalities by func-
tional class.

General Estimating 
System

Developed in 1998 by NHTSA, the National Automotive Sampling System General
Estimates provides annual national level estimates of motor vehicle crashes and the
factors that contribute to those crashes. These estimates are developed from a random
sample of about 50,000 police accident reports collected from 400 police jurisdictions
in 60 areas. The areas and police jurisdictions are chosen so that they properly reflect
geography, roadway mileage, population, and traffic density, and so that the police
accident reports can be used to estimate national results. The national level estimates
as well as the sample are available for analysis from the National Center for Statistics
and Analysis (NCSA).

Crash Outcome Data 
Evaluation System

Originally conceptualized by NHTSA to report to Congress the benefits of safety
belts and motorcycle helmets, the Crash Outcome Data Evaluation System (CODES)
is a comprehensive system linking police reported crash data with hospital recorded
injury data. Currently, NHTSA has at least partially funded development of these sys-
tems in thirty states.

10. FARS Overview (2004).
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Police reports alone do not provide enough information regarding the types and sever-
ity of injuries sustained as a result of a motor vehicle crash. By linking police reports
to additional data sources (shown in Figure 5), this system provides a wealth of addi-
tional outcome data such as:

• specific type of injury head, neck, back, lower extremities, etc.

• severity of injury requires hospitalization, intensive care, etc.

• cost of injury hospital cost of treating injury

• medical system response EMS response time, transfer time, hospitaliza-
tion time, etc.

At this point, just over half of the states have developed CODES, and there is no stan-
dardized data model or national level data that can be used for analysis.

Figure 5. Possible Data Sources for CODES
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Summary of Data Sources

A limited number of data sources can be tapped for highway crash analysis, but the
HSIS data developed from state accident sources has developed to the point that rich
data sets are available from a handful of states that offer the potential for major
improvements in empirical crash estimation models. To the extent that new models
reveal relationships among accident characteristics, additional geometric attributes
and historical crash data might be added to the HPMS sample sections.
18 HERS Safety Model Assessment and Two-Lane Urban Crash Model
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4. Recent Research on Geometric Effects

The primary goal of this review effort is to assess the HERS crash prediction models
and develop recommendations for improving these models. In order to assess the
existing models it is necessary to understand how the HERS models differ from those
being developed through current research efforts elsewhere. It is possible that recent
research has developed crash prediction models that are more accurate than those cur-
rently utilized by HERS. This field of research has a significant body of previous
work as well as a number of recent efforts. This section describes some of the major
safety projects currently under development as well as some previous efforts to
develop crash prediction models for specific entities.

Previous Research

AASHTO ToolsThe American Association of State Highway Transportation Officials (AASHTO) has
developed two different tools for state officials in the area of crash prediction models.

User Benefit Analysis for Highways. This manual provides users with guidance
for estimating the benefits that accrue to roadway users as the result of roadway
improvement projects. One of the sections is devoted to estimating the safety benefits
that may result from a highway improvement. This section provides a brief overview
of crash prediction methodology and other resources available to a transportation offi-
cial, including Highway Safety Manual (HSM), Interactive Highway Safety Design
Model (IHSDM), SafetyAnalyst, and others. One of the resources discussed in depth
is the Roadside Safety Analysis Program (RSAP) that is a companion analytic tool to
their Roadside Design Guide.

Roadside Design Guide. First published in 1999, this guide provides users with a
synthesis of current information and operating practices related to safety treatments
that minimize the likelihood of fatality or serious injury when a driver runs off the
road. Developed under NCHRP project 22-9, RSAP allows users to compare the cost-
effectiveness of implementing multiple alternative roadside safety improvements.
This program estimates accident costs based on roadway and roadside design fea-
tures.

To estimate the safety impact of roadside improvement projects, RSAP first estimates
the number of occurrences of a vehicle departing from the roadway (called encroach-
ments). The second step in the model is to estimate the number of crashes, which are
occurrences of a vehicle striking another vehicle or object. The attributes of the road-
way (design speed, curves, grades, etc.) are the major inputs to the encroachment and
accident models. The accident model also uses the number of encroachments as an
input variable. Once the number of accidents is determined, the severities of the acci-
dents are determined through averages and units costs per fatality and injury.
HERS Safety Model Assessment and Two-Lane Urban Crash Model 19
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Safety Effective-
ness of Highway 
Design Features

Completed in 1992 this compendium, which was prepared for the FHWA, reports the
most probable safety effects of improvements to key highway design features, includ-
ing:

• Volume I - Access Control

• Volume II - Alignment

• Volume III - Cross Sections

• Volume IV - Intersections

• Volume V - Interchanges

• Volume VI - Pedestrians and Bicyclists.11

This compendium was developed as a result of the FHWA implementing one of the
23 recommendations contained in Transportation Research Board Special Report 214,
“Designing Safer Roads: Practices for Resurfacing, Restoration, and Rehabilita-
tion.”12 These seven reports are comparable in structure and type of information that
will be contained in the HSM (see “Highway Safety Manual” on page 23) chapter on
Knowledge, although the HSM will have more recent results.

Current Research

Interactive Highway 
Safety Design Model

The IHSDM is being developed by the Turner-Fairbank Highway Research Center,
which is home to FHWA's Office of Research, Development, and Technology.
IHSDM is a suite of decision-support modules (Crash Prediction, Design Consis-
tency, Intersection Review, Policy Review, and Traffic Analysis) for evaluating safety
and operational effects of geometric design decisions in the highway design pro-
cess.13 It compares existing or proposed highway designs against relevant design pol-
icy standards and estimates the expected safety and operational performance of the
design.

Crash Prediction Module. The crash prediction module in the IHSDM performs a
similar function to that of the HERS crash prediction models. Like the HERS models,
the IHSDM crash algorithm estimates the baseline expected crash rate for a highway
section based on its geometric design and traffic attributes. In fact, they both use the
same statistical model developed by Vogt and Bared in 1998.14 The generalized
IHSDM algorithm, however, augments the statistical base models with a number of
additional inputs that are intended to adapt the base estimates according to local
safety conditions. The additional steps in the algorithm, which can be applied to any
type of crash prediction model, are shown in Figure 6 and are discussed below.

11. Cirillo (1992), Zeeger, Twomey, Heckman, and Hayward (1992), Zeeger and Council (1992), Twomey
and Heckman (1992), Kuciemba and Cirillo (1992), Zeeger, Stutts, and Hunter (1992).

12. "Designing Safer Roads: Practices for Resurfacing, Restoration, and Rehabilitation," (1987).
13. IHDSM Manual (2004).
14. Vogt and Bared (1998).
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Since states differ markedly in climate, animal population, driver populations, crash
reporting threshold, and crash reporting practices, these variations may result in some
states experiencing substantially more reported traffic crashes on rural two-lane high-
ways than others. Once the base statistical models are applied to the highway section
data, the results can be calibrated (increased or decreased by a multiplicative factor)
by state or local agencies.

The Accident Modification Factors (AMF) (shown in Table 5) adjust the calibrated
base model estimates for individual geometric design elements and for traffic control
features. The factors are the result of an expert panel review of related research find-
ings and consensus on the best available estimates of quantitative safety effects of
each design and traffic control feature.

The final step in the algorithm applies an empirical bayes procedure for weighted
averaging of the algorithm estimate with project-specific crash history data. The
weights used for the predicted and actual crashes are calculated from the overdisper-
sion parameter of the base statistical model used to estimate the predicted number of
crashes.

Figure 6. IHSDM Generalized Crash Prediction Algorithm

Apply base
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SafetyAnalyst SafetyAnalyst is also a decision-support application being developed through a coop-
erative effort of the FHWA and thirteen state highway agencies. Unlike the IHSDM,
which is applied at the project level, this application is intended to support a system-
wide program of site-specific highway safety improvements.15 SafetyAnalyst is com-
posed of four modules:

• Network screening This module will identify highway sites (spot loca-
tions as well as highway sections of varying length) that exhibit higher-
than-expected crash frequencies, high crash severities, and high propor-
tions of specific crash types.

• Diagnosis and countermeasure selection This module will use collision
diagrams and crash statistics at a particular site to identify specific
safety issues and a set of countermeasures that could mitigate those
issues.

• Economic appraisal and priority ranking This module will use default
and user provided cost data along with crash prediction estimates and
countermeasure-specific AMFs to estimate the benefits of a counter-
measure for a specific site. These data will be used in the priority rank-
ing algorithm for prioritizing safety improvements at multiple sites
throughout the network.

• Evaluation of implemented improvements This module will use the
Empirical Bayes statistical approach on actual crash and traffic volume
data to assess the actual impact of implemented improvements.

Safety Performance Functions. The network screening, economic appraisal and
evaluation modules in SafetyAnalyst will use safety performance functions (SPF; also
called crash estimation models) to estimate the expected number of crashes at a spe-

Table 5. Accident Modification Factors

Roadway Segments At Grade Intersections
Lane Width Skew angle
Shoulder Width and Type Traffic control
Grades Exclusive left-turn lanes
Driveway Density Exclusive right-turn lanes
Two-way left-turn lanes Intersection sight distance
Passing lanes/short four-lane sections
Roadside design
Horizontal Curves

• length
• radius
• presence or absence of spiral transitions
• superelevation

15. SafetyAnalyst (2004).
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cific site.16 This estimate, which is adjusted for recent crash history with the Empiri-
cal Bayes approach, will be used in the following applications:

• The network screening module will compare the observed and expected
crash frequencies to identify sites with higher-than-expected crash fre-
quencies.

• The economic appraisal module will apply AMFs (i.e., effectiveness
rates) for alternative countermeasures to the expected crash frequencies
in order to estimate the safety benefits.

• The evaluation module will compare the observed crash frequency after
the improvement to the observed crash frequency before the improve-
ment in order to assess the actual impact of the improvement.

While the user of SafetyAnalyst will have the option of providing SPFs, a standard set
of functions are being developed for this application. An interim version of the Safe-
tyAnalyst application was released in 2006 in order to collect feedback for the final
version release in 2008. The interim will contain a complete set of interim SPFs; how-
ever, these functions were developed to predict crash frequency using AADT as the
only explicit explanatory variable. Different crash prediction models were developed
for numerous categories of highway sites, as shown in Table 6.

Neither the categories nor the SPFs are intended to be the final versions, and SPFs
with additional explanatory variables will be developed and incorporated into the
final version of SafetyAnalyst.

Highway Safety 
Manual

The HSM is a Transportation Research Board initiative to provide the best factual
information and tools in a useful and widely accessible form and to facilitate roadway
design and operational decisions based upon explicit consideration of their safety
consequences.17 This manual would greatly strengthen the role of safety in road plan-
ning, design, maintenance, construction, and operations decision making. The HSM
is organized into five parts:

• Introduction and Fundamentals Outlines the purpose and uses of the
HSM in addition to discussing the fundamental concepts in safety analy-
sis (e.g., crash counts, SPFs, crash modification factors, etc.)

• Knowledge This section outlines the known relationships between
safety and highway attributes, including:

– specific highway design elements (e.g., shoulders, curbs, medians,
alignment, and guardrails), 

– operational elements (e.g., speed, rumble strips, signs, lighting,
weather, etc.), 

– intersections and interchanges, and 
– special facilities (i.e., grade crossings, work zones, bridges, tunnels,

etc.).

16. Harwood et al., (2004).
17. Hughes et al., (2004).
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• Predictive Methods This section develops crash prediction models for
the following types of roadways:

– Rural, Two-lane Roads,
– Rural, Multilane Highways, and
– Urban and Suburban Arterial Highways.

• Safety Management of a Roadway System This section discusses
approaches for prioritizing and selecting improvement projects. This
follows the same methodology as the SafetyAnalyst application.

• Safety Evaluation This section discusses how to measure the actual
effectiveness of an implemented improvement.

The first edition of the HSM is scheduled to be completed in 2009; however, a draft
chapter on rural, two-lane roads is currently available. The content of the draft chapter

Table 6. Interim SafetyAnalyst SPF Categories

Roadway Sections Intersections Ramps

Rural two-lane
Rural three-leg intersections with 
minor-road STOP control Rural diamond off-ramps

Rural multilane divided
Rural three-leg intersections with sig-
nal control Rural diamond on-ramps

Rural multilane undivided
Rural four-leg intersections with minor-
road STOP control Rural parclo loop off-ramps

Rural freeway - 4 lanes
Rural four-leg intersections with all-
way STOP control Rural parclo loop on-ramps

Rural freeway - 6+ lanes
Rural four-leg intersections with signal 
control Rural free-flow loop off-ramps

Rural freeway within an interchange - 
4 lanes

Urban three-leg intersections with 
minor-road STOP control Rural free-flow loop on-ramps

Rural freeway within an interchange - 
6+ lanes

Urban three-leg intersections with sig-
nal control

Rural direct or semidirect connection 
ramps

Urban two-lane arterials
Urban four-leg intersections with 
minor-road STOP control Urban diamond off-ramps

Urban multilane divided
Urban four-leg intersections with all-
way STOP control Urban diamond on-ramps

Urban multilane undivided
Urban four-leg intersections with signal 
control Urban parclo loop off-ramps

Urban one-way arterials Urban parclo loop on-ramps
Urban freeway - 4 lanes Urban free-flow loop off-ramps
Urban freeway - 6 lanes Urban free-flow loop on-ramps

Urban freeway - 8+ lanes
Urban direct or semidirect connection 
ramps

Urban freeway within an interchange 
- 4 lanes
Urban freeway within an interchange 
- 6 lanes
Urban freeway within an interchange 
- 8+ lanes
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has not been fully approved by the project sponsor and is subject to change before the
final version is released.

A more recent series of guidebooks to assist state and local agencies in reducing inju-
ries and fatalities in target areas are currently being develop under NCHRP Project
17-18(3). Each guidebook corresponds to one of the 22 key emphasis areas (shown in
Table 7) that are outlined in AASHTO’s Strategic Highway Safety Plan. Each guide-
book contains a general discussion of the problem as well as strategies and counter-
measures to address the problem.

Future Research

This section covers some of the in-progress work that will provide results for some of
the major safety projects discussed in the previous section.

Crash Reduction 
Factors

NCHRP Project 17-25: “Crash Reduction Factors for Traffic Engineering and ITS
Improvements”

The objective of this project is to develop reliable crash reduction factors (CRFs) for
traffic engineering, operations, and ITS improvements. CRFs (also known as accident
reduction factors or AMFs) provide a computationally simple and quick way of esti-
mating crash reductions. Many states have a set of CRFs that are used for estimating
the safety impacts of various types of engineering improvements, encompassing the
areas of signing, alignment, channelization, and other traffic engineering treatments.

Table 7. Elements of AASHTO Strategic Highway Safety Plan

Instituting Graduated Licensing for 
Younger Drivers Making Truck Travel Safer
Ensuring Drivers are Fully Licensed and 
Competent

Increasing Safety Enhancements in Vehi-
cles

Sustaining Proficiency in Older Drivers Reducing Vehicle-Train Crashes
Curbing Aggressive Driving Keeping Vehicles on the Roadway

Reducing Impaired Driving
Minimizing the Consequences of Leaving 
the Road

Keeping Drivers Alert
Improving Design and Operation of High-
way Intersections

Increasing Driver Safety Awareness
Reducing Head-on and Across Median 
Crashes

Increasing Seat Belt Usage and Improv-
ing Airbag Awareness Designing Safer Workzones
Making Walking and Street Crossing 
Safer

Enhancing Emergency Medical Capabili-
ties to Increase Survivability

Ensuring Safer Bicycle Travel
Improving Information and Strategic Sup-
port Systems

Improving Motorcycle Safety and Increas-
ing Motorcycle Awareness

Creating More Effective Processes and 
Safety Management Systems
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Typically, these factors are computed using before-and-after comparisons, although
later research has suggested the use of cross-sectional comparisons. The estimated
completion date of this effort is February 29, 2008, and the researching agency is the
University of North Carolina - Chapel Hill.

Urban Arterials NCHRP Project 17-26: “Methodology to Predict the Safety Performance of Urban
and Suburban Arterials”

The objective of this project is to develop a methodology that predicts the safety per-
formance of non-limited-access urban and suburban arterials and to prepare a chapter
on urban and suburban arterials for inclusion in the HSM. This project will analyze
the various elements (e.g., lane width, shoulder width, use of curbs) considered in
planning, design, and operation of non-limited-access urban and suburban arterials.
The estimated completion date of this effort is January 31, 2008, and the researching
agency is the Midwest Research Institute.

Rural Multilane 
Highways

NCHRP Project 17-29: “Methodology to Predict the Safety Performance of Rural
Multilane Highways”

The objectives of this research are to develop a methodology to predict the safety per-
formance of rural multilane highways and to prepare a chapter on rural multilane
highways for inclusion in the HSM. The methodology will apply to both highway
segments and at-grade intersections but does not include full access-control high-
ways. The estimated completion date of this effort is January 31, 2008, and the
researching agency is the Texas A&M Research Foundation.

Summary of Recent Research

It should be noted that this section does not include all work relating to highway
safety, as this is a large area of research; however, this section is intended to commu-
nicate the major direction of the work in this field of research. Based on the informa-
tion presented here, highway safety research is focused in two major areas:
development of improved regression models, and development of improved data
regarding countermeasures and their effectiveness.

While there are efforts underway to develop crash prediction models designed for
specific geographic areas, facility types, or functional classes, the general direction of
the field is toward a more comprehensive process surrounding the estimation of
crashes and the effectiveness of any countermeasures. These more comprehensive
processes build on base statistical models by incorporating adjustments for recent
crash history, state to local level model calibration, and general crash modification
factors.

A more comprehensive process for predicting crashes definitely improves the predic-
tive power of the models at the local level; however, it does not add a lot of value for
the HERS model. One reason is the lack of national level data required for the addi-
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tional steps in the crash prediction process. For instance, the HPMS does not require
states to submit the actual number of crashes on roadway segments; therefore, empir-
ical-bayes steps cannot be implemented. Furthermore, some steps in the process are
not really intended for use at the national level, such as the calibration of the model to
local conditions.

Little in the current body of research can be directly integrated in to the HERS mod-
els. The crash prediction models developed by SafetyAnalyst are functions of only a
single variable, AADT, and the research on crash prediction models is a year or more
away from completion. In addition, very little effort is focused on the urban two-lane
and urban multi-lane road facility types. This is unfortunate given the fact that the
HERS crash prediction functions for these facility types are more in need of updating
than the other facility types which are receiving more attention. It is for these reasons
that it was deemed necessary to acquire and analyze state inventory and crash data for
the purpose of upgrading the urban two-lane crash prediction function currently uti-
lized in the HERS model.

In order to ensure that the needs of the HERS model for crash cost estimation are met,
it is essential that the HERS team participate actively in the development of suitable
models.
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5. Urban Two-Lane Streets

Currently, HERS predicts annual urban two-lane crash rates as a polynomial function
of the section’s daily traffic, a model form which appears overly simplistic in light of
the poor quality of the predictions as well as the purpose of HERS as a safety cost/
benefit model for roadway improvements. Yet, a review of published urban two-lane
crash prediction studies suggests that crash prediction models for urban two-lane
streets have not received a great deal of research. (As one example, a technical mem-
orandum for FHWA's SafetyAnalyst application describes its urban two-lane crash
model, also defined strictly in terms of vehicle AADT, as flawed and a necessary
research subject.18) Thus, an improvement to the quality and usefulness of the HERS
urban two-lane street model would also advance the general body of knowledge on
geometric effects.

The data explorations and estimation model described in this section suggest that
impressive gains in roadway section-level crash prediction accuracy can be realized
by considering the combined effects of the roadway’s geometric features and traffic
levels. The first volume in the Safety Effectiveness of Highway Design Features
series (Cirillo 1992) paraphrases the results of a series of studies: 

Of importance in the [Cribbins, et al] work was the consistent finding that combi-
nations of geometric and traffic characteristics had a more significant impact on 
accidents than any single variable and Cribbins et al recommend against further 
research into the effects of single variables.19

Combinations of traffic and roadway geometry are generally absent from published
crash models. Capturing these interaction effects does not necessarily require novel or
complex statistical methods, though additional complexity is brought in to achieve
even better predictions. The model proposed in this section is an example of the GLM
technique, in particular the Poisson and negative binomial regressions, the method
adopted by Vogt and Bared (1998) for rural two-lane roads. Subject to further valida-
tion, this approach could be applied to the entire suite of HERS crash models.

The Current HERS Crash Model

The Crash EquationHERS estimates a two-lane urban section’s crash rate (annual crashes per 100
MVMT, called CRASH below) as a quadratic function, fit using ordinary least
squares regression and then calibrated with a multiplier. The natural log of AADT
serves as the lone predictor variable:20

18 Harwood et al., (2004).
19 Cirillo (1992).
20 Camus (2000).
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[1]

A literature review uncovered very little in the way of data exploration or other stud-
ies that motivated this model. The HERS documentation only alludes to the data used
to fit the model, four mean-value data points from noisy data, and provides no refer-
ence documenting the development of this model. 

Accuracy of the 
Existing Model 

To establish the performance of Equation [1], the current urban two-lane model, the
HERS equation was applied to three years (2002-2004) of HSIS Ohio urban two-lane
data. (Recall, the Ohio HPMS Sample data does not include crashes.) The HSIS data
comprises most of Ohio’s urban two-lane section inventory, and includes annual
AADT. Consequently, Equation [1] accuracy can be assessed over 17,180 data points,
representing over 73,000 accidents. The curve in Figure 7 plots the estimated annual
crash rate via Equation [1] against AADT, illustrating the poor fit of the model. The
scatterplot offers weak evidence of higher crash rates as AADT increases, a pattern
presumed by Equation [1].21 If anything, the relationship appears negative for the first
part of the graph,22 though this is an artifact of short sections and will be discussed in
greater detail in “Effect of Section Length” on page 33.

The poor fit translates into overestimates of Ohio urban two-lane crashes rates (Table
8), and more importantly, mis-characterizes which segments are dangerous. The
HERS model predicts 6% more urban two-lane crashes than actually occurred. Figure
8 highlights an obvious flaw in the existing model. The left-hand graph depicts
ln(AADT), while the right-hand one graphs that same function in terms of untrans-
formed AADT. Both Equation [1] terms translate near-zero daily traffic flows into
impossibly high annual crashes rates. This effect becomes more pronounced as
AADT approaches zero.23 Also, the predicted annual crash rate is negative for certain
low AADT between 1 and 12 vehicles daily (to be precise,

 vehicles per day).

Most critically, the existing equation makes no provision for road attributes and does
not allow for a change in the number of crashes that would result from a geometric
change. Moreover, a model reflecting particular roadway features in combination
might more accurately capture traffic and crash patterns than the existing model.
Before describing such a model, the next section discusses how Ohio and Washington
HSIS data were analyzed and aggregated in order to provide better insights into the
relationship between crashes and roadway geometric attributes.

CRASH 0.8743 19.6– AADTln⋅ 7.93 AADTln( )2⋅+[ ]⋅=

21 This same exercise was repeated with Washington HSIS data, and the resulting scatterplot is very simi-
lar. The graph is omitted for clarity. 

22 Careful observers may note what appear to be smooth convex curves in the data. These artifacts are due
to AADT appearing as a component of both axes.

23 In the HSIS sample used for the model, below, this problem does not have a large effect. Only 67 seg-
ments have AADT less than 1,000 and 1 segment below 100. Regardless, these features are, ceteris
paribus, undesirable.

1 AADT 19.6 7.93÷( )exp 11.8≈< <
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Preparing and Cleansing HSIS Data

In any given year, an HSIS state supplies detailed geometry of roadway sections as
well as specifics about crashes (exceeding a property damage threshold). A section's
geometry is recorded in several data files; typically, there is a data file for the state's
entire roadway inventory, another for the location and geometry of intersections, and
others describing curves and grades. Files detailing drivers and vehicles involved in
each crash are also provided but are not included in this analysis as HPMS does not

Figure 7. Ohio Two-Lane Road Actual Crash Data

Table 8. HERS Urban two-lane prediction errors (Ohio)
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contain comparable information. It is unclear if including such information would
change results significantly, especially considering the highly variable quality of the
driver and vehicle data and the considerable gains over the existing model possible
with a geometry-only specification.

Location of Crashes 
and Geometric Attri-
butes

Each HSIS roadway section is identified by its county, route number, and beginning
and ending mileposts. Every intersection, curve, grade, and crash is identified by its
beginning and ending (or spot) mileposts. It is therefore necessary to match curves,
grades, intersections, and crashes to the relevant roadway sections. Crashes and inter-
sections, identified by only a single milepost, are simply matched to the road segment
containing that milepost. In the event it occurs at the border between segments, the
crash or intersection has been assigned to the lower milepost segment. Curves and
grades are matched to segments by using the curve or grade’s endpoint, again with
endpoints on the segment border being assigned to the earlier segment. For each seg-
ment, information on curves, grades, intersections, and accidents are aggregated.
Details on each variable are outlined in the next section; in general, however, the
aggregation consists of the number of curves (grades, intersections, crashes), mean
length, and degree of curvature, and mean length and percent grade. 

While some models use separate equations for intersection and non-intersection
crashes, this method is neither practical nor preferred for two-lane urban roads. First,
milepost locations for crashes and intersections may not be recorded in enough detail

Figure 8. The existing crash equation for urban two-lane streets.
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to properly assign them. Even if such precision was possible, separating the equations
would not allow the model to take into account the effects multiple intersections over
a short stretch nor the possibilities of the layout of an intersection causing a crash in
the area just before or after it.

Computation of 
Non-Inventory Attri-
butes

Each HSIS state has some latitude in how it submits data. For example, the method of
reporting shoulder widths varies from state to state. In Ohio, total shoulder widths are
included in the data so these are simply averaged between the two sides of the road.
For Washington, shoulder widths are reported for both inner and outer shoulders by
direction. As this model focuses on two-lane, non-medianed roads with no inner
shoulder, the outer shoulder is again averaged between the two directions.

Lane widths are not reported in the data from Ohio or Washington. As a result, they
must be imputed from other information. The total width of the drivable surface is
reported for each segment. This may, however, contain on-street parking, bike lanes,
or turn lanes.24 As a result, adjustments have been made, outlined in Table 9, that
assume that any segment that would have room for such additional pavement types
must also have lanes at least 12 feet wide.

The presence of parking is something that would be desirable to include in the model.
However, the parking data are frequently unreported (both across and within states)
and unreliable when present. Some of these issues have been resolved in more recent
years and future evaluations with data collected after 2004 may allow for the inclu-
sion of this important variable.

Effect of Section 
Length

Sections are defined by the state DOTs for a variety of purposes and with a variety of
methods. While segments are “homogeneous” for certain, but not all, traits, they are
sometimes further subdivided for reasons suiting the state DOT purposes (e.g., edges
of municipal jurisdictions, improvement locations, etc.). Consequently, in Ohio, about
1/3 of the segments in the two-lane urban set are less than or equal to 0.10 miles (n =
5,781) and just over 60% are less than or equal to 0.25 miles (n = 10,766). In Wash-
ington, segments often begin at each intersection and so there are many more seg-

24 Merely dividing surface width by two would result in implausibly large lanes as surface widths get as
large as 82 feet.

Table 9. Lane Width Adjustment

Surface Width 
(feet)

Adjusted Lane 
Width (feet)

20 10

21 10.5

22 11

23 11.5

24 and above 12
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ments. The set contains 18,241 two-lane urban segments, of which 75% are 0.10 mile
or less (n = 13,640) and 92% are less than or equal to a quarter mile (n = 16,790)
These small segments have two effects, one conceptual and the other empirical.

From a conceptual standpoint, when sections are alike in all geometrical respects, this
artifact of section length is undesirable; a priori, section length is not a geometric fea-
ture that influences crash risk. In fact, with the smallest sections (they are reported as
small as 52 ft.), there is a valid argument to be made that in many (non-intersection)
cases, the geometric causes of the crash would necessarily be in the segment before
the crash. Examining segments this small could lead to fallacious results akin to
observing medical patients only in an emergency waiting room and concluding the
waiting room itself that lead to the injury.

Overdispersion and 
Modeling

Empirically, as crash counts are the tallied result of multiple Bernoulli events (i.e.
crash vs. no crash), the data are expected to follow a Poisson (or count) distribution.
Count data do not exhibit the characteristics of the normal distribution; the dependent
variable takes on only integer values, and cannot be less than zero.

The Poisson distribution, however, assumes that mean number of crashes equals the
variance. When the variance is greater than the mean, the data are called “overdis-
persed” and the Poisson distribution no longer is an accurate description of the data.
A large number of small segments, oh which, a high proportion exhibit no crashes,
can lead to overdispersion. Researchers then seek alternatives to the Poisson distribu-
tion, including the Negative Binomial (NB) and “zero inflated” models.

Zero Inflated. Zero inflated models (which can be either Poisson or NB) are two-
step processes. In the first step, a logistic regression is run to determine if the segment
will have the possibility of crashes. Then, for segments with the possibility of a crash,
the number of crashes is estimated. In short, the first step identifies the “inherently
safe” segments that represent many of the zeros, while the second stop focuses only
on those “inherently dangerous” segments.

However, recent research by Lord, Washington, and Ivan25 demonstrates that overdis-
persion can be an artifact of low exposure (particularly in situations with high risk),
that is, short segment length in the current example. Lord et al. conduct a simulation
where overdispersion is reduced merely by combining shorter segments into longer
ones, indicating the overdispersion is a result of low exposure, not the presence of
“inherently safe” or “inherently unsafe” segments. This also conforms better to the
intuition as crashes are highly stochastic events affected by factors other than road
layout.26 In their words:

25 Lord, Washington, and Ivan (2004).
26 For example, no segment of road is immune to the possibility of a driver having a sudden medical prob-

lem that causes the vehicle to run off the road.
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[T]he fairly common observance of excess zeros is more a consequence of low 
exposure and inappropriate time/space scales than an underlying dual state pro-
cess.27

Negative Binomial. The NB model is closely linked to the Poisson model but
allows for the variance to be greater than the mean. Specifically, the variance is esti-
mated to be μ + αμ2 where α is the overdispersion factor.28 It is then easy to see that
the Poisson is a special case of the NB model, where α = 0. Estimates of α are com-
monly included in NB regression output.

The overdispersion factor can be calculated by running a constant-only negative bino-
mial model. In Ohio, the overdispersion factor is 2.56 and in Washington it is 2.20. As
the overdispersion in the HSIS data do not represent any behavioral phenomenon, two
methods to mitigate the effects have been employed. First, similar consecutive seg-
ments are combined. Second, the NB model (not zero-inflated) is used when perform-
ing regressions.

Consolidation of 
Segments

Consecutive roadway sections are combined if each shares traffic levels (both truck
and total AADT), lane width, shoulder width, and total surface width. Due to gaps in
the data, however, as well as non-homogeneity, many of the small segments could not
be combined.

Overall, the process reduced the total number of segments in Ohio by 4,646 (new n=
12,534) with those 0.25 miles or under now making up under 50% (n= 6,141) of the
total. The number of segments under 0.10 miles has been reduced to 21% of segments
(n= 2,633). The mean number of crashes is now 5.83, and the overdispersion factor
has been reduced from 2.56 to 1.94, a 24.2% improvement.

For Washington, the process reduced the total number of segments by 8,591 (new n =
9,055). Now, 56% of segments are a tenth of a mile or less (n = 5,108) and 79% are
0.25 miles or less (n = 7,150). While there is still a large number of short segments, it
is significantly less than before. The mean number of crashes increased to 1.77,
reducing the overdispersion factor from 2.20 to 1.81, an improvement of 17.7%.

Since this approach is successful in reducing the artifact of segment length, it will be
adopted in future analyses for other states and possibly other roadway functional
classes. Adding other explanatory variables to the model will further reduce the over-
dispersion factor. Many studies in the literature (e.g., Vogt and Bared, 1998) merely
discard segments less than 0.1 mile long.

27 Lord, Washington, and Ivan (2004), p. 2.
28 This particular functional form is sometimes called NEGBIN2 due to the second-order term. Other vari-

ations of the negative binomial exist, particularly ones to deal with underdisperson, however the
NEGBIN2 form is the most common variant and is usually the model intended when the specific nega-
tive binomial function is not specified.
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Description of the Data

This section contains information on the structure and distribution of the data. Sum-
mary statistics appear in Table 10, and the correlation coefficients between the vari-
ables appear in Table 11.29 The following sections discuss these results in more detail.

Dependent Variable The model seeks to explain and predict the number of accidents on a given segment of
highway. As a count, it is bounded by zero from below and takes on only integer val-
ues. Moreover, a large number of sections exhibit zero crashes in any given year.
Consequently, the normal distribution should neither be expected in either the number
of crashes nor in the error structure predicting such crashes. As seen in Figure 9, there
are many segments with zero crashes and progressively fewer as the number of
crashes increases, with the maximum at 191 crashes. Also evident is that the distribu-
tion is not quite Poisson (it is overdispersed, as discussed above), and so NB methods
will be used instead.30  

Independent Vari-
ables

Million Vehicle Miles Travelled (MVMT). In order to adjust for the difference in
exposure (section length and traffic volume) each segment has to accidents, MVMT is
included in the model.31 MVMT is computed as seen in Equation [2] and then the nat-
ural log was taken. Unsurprisingly, MVMT has a positive correlation with crashes

29 These summary data are tabulated by state in “Appendix 2: State-level Statistics” on page 81.

Table 10. Mean, Standard Deviation, and Distribution information about the Data in Both States

mean sd min 25th median 75th max
# Crashes 4.321 8.403 0.000 0.000 2.000 5.000 191.000
# Curves 0.259 0.930 0.000 0.000 0.000 0.000 28.000
Avg Curve Length in 1/10th miles 0.094 0.351 0.000 0.000 0.000 0.000 9.100
Avg Curve Degree 1.539 7.478 0.000 0.000 0.000 0.000 96.000
# Grades 0.597 1.676 0.000 0.000 0.000 1.000 31.000
Avg Grade Length in 1/10th miles 0.332 1.382 0.000 0.000 0.000 0.100 66.300
Avg Grade Percent 0.641 1.666 0.000 0.000 0.000 0.025 18.000
# Intersections 2.332 3.227 0.000 0.000 1.000 3.000 37.000
Lane Width 11.669 0.633 10.000 12.000 12.000 12.000 12.000
Shoulder Width 3.442 3.195 0.000 0.000 3.000 6.000 20.000
Surface Width 28.736 9.032 16.000 23.000 24.000 34.000 82.000
Speed Limit 39.821 9.413 20.000 35.000 35.000 45.000 60.000
%age Truck Traffic 5.674 4.890 0.000 2.650 4.560 7.670 50.110
Million Vehicle Miles Travelled 1.185 1.799 0.000 0.231 0.550 1.366 22.884

30 See “Modeling Methodology” on page 48.
31 Mathematically, there is no difference between including AADT and segment length as separate vari-

ables or combined into one. In either case, the variables represent the exposure to crashes, rather than a
geometric characteristic, and need to be included only to “mop up” the explanatory value due to them
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Table 11. Correlations between the Dependent and Independent Variables in B

# Crash # 
Curves

Avg 
Curve 
Length

Avg 
Curve 
Degree

# 
Grades

Avg 
Grade 
Length

Avg % 
Grade

# I-sect Lane 
Width

S
W

# Crashes 1.000
# Curves 0.037 1.000
Avg Curve Length -0.035 0.370 1.000
Avg Curve Degree -0.005 0.339 0.152 1.000
# Grades 0.022 0.358 0.165 0.073 1.000
Avg Grade Length -0.029 0.151 0.158 0.028 0.187 1.000
Avg % Grade 0.030 0.245 0.132 0.129 0.355 0.277 1.000
# Intersections 0.478 0.113 -0.021 0.056 0.076 -0.031 0.129 1.000
Lane Width 0.050 -0.125 -0.032 -0.065 -0.071 -0.022 -0.096 -0.023 1.000
Shoulder Width -0.100 0.054 0.127 -0.027 0.075 0.083 0.023 -0.089 -0.152 1
Surface Width 0.054 -0.137 -0.094 -0.047 -0.087 -0.065 -0.111 -0.053 0.453 -0
Speed Limit -0.077 0.101 0.119 -0.009 0.081 0.082 0.069 -0.034 -0.167 0
%age Truck Traffic -0.084 -0.037 0.008 -0.043 0.001 0.026 -0.049 -0.066 0.057 0
ln MVMT 0.644 0.170 0.072 0.002 0.229 0.041 0.114 0.540 -0.022 0



US DOT/RITA/Volpe Center
5.Urban Two-Lane Streets October 2008
(Ohio r2 = 0.66, Washington r2 = 0.52). MVMT ranges from 0.0004 to 22.8841 in
Ohio and 0.0028 to 20.2584 in Washington. The Ohio mean is 1.41 with 60% of
observations occurring below 1.0 and 98% below 10.0; in Washington, the mean is
0.83 with 77% of observations below 1.0, 97.8% below 5.0, and 99.7% below 10.0. 

While MVMT does not represent specific geometry, it is included as a type of expo-
sure variable to “mop up” the explanatory value due to the increased ability for a lon-
ger (or more heavily used) segment to contain crashes. While the coefficient on
MVMT will not be constrained to 1.0, the concept will be imitated by taking the natu-
ral log of MVMT. 32 Doing this also allows practitioners to interpret the eventual
model coefficients as an elasticity. The distribution of ln(MVMT) is shown in Figure
10.

[2]

Number of Grades. The mean number of grades seen across Ohio observations is
0.23 with over 87% of segments having no grade at all.33 A “new” grade is recorded
any time the direction or degree of grade changes. When considering only segments
that have one or more grades (n = 1,544), the mean is 1.84 and more than 60% of

Figure 9. Number of Crashes Per Segment in Ohio and Washington
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32 There is no reason to believe, a priori, that crashes increase at the same rate as MVMT increases. That
is, the traditional exposure procedure constrains the elasticity to 1.0, while this model will not constrain
the relationship to unit elasticity.

33 In Ohio, grades only enter the data set when greater than 3%.

MVMT AADT 365 Segment Length××
1 000 000, ,

------------------------------------------------------------------------------=
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these segments have only one grade. The maximum number of grades is 15, seen in 3
segments. In Washington, the mean number of grades is 1.16 but of the 4,298 seg-
ments with a grade, the mean is 2.45 and more than 50% of these segments have only
one grade. The maximum number of grades is 31, seen in 5 segments. 

Crashes are expected to increase with the number of grades in a segment. This is sup-
ported by the boxplots in Figure 11 and the (small) positive computed correlation
(Ohio r2 = 0.10, Washington r2 = 0.31) between the number of grades and crashes.
Note that the small dots are outliers (beyond 1.5 times the Inter-Quartile Range) and
the plus sign represents the median.

Number of Curves. Characterization of the number of curves is similar to the num-
ber of grades, though with even fewer cases. The number of curves range from 0
(>90%) to 19 in Ohio34 and from 0 (>75%) to 28 in Washington. The mean within
Ohio segments is 0.19 curves per segment and 1.89 in segments that possess one or
more curves (n = 1,250). In Washington, the mean is 0.35 curves per segment and
1.49 in segments that possess one or more curves (n = 2,125). 

Like grades, crashes are expected to increase with number of curves, though the pos-
sibility that drivers are more careful on curviest roads should be considered. The cor-
relation coefficient is weak at 0.05 (Ohio) and 0.14 (Washington). Figure 12 shows
this relationship.

Figure 10. Natural Log of MVMT
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34 Again, curves of less than 3 degrees do not appear to be fully included in the file.
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Figure 11. Crashes by Number of Grades

Figure 12. Crashes by Number of Curves
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Number of Intersections. Like curves and grades, intersections are expected to be
correlated with more crashes. Over 80% of Ohio segments contain at least one inter-
section with a mean value of 3.16 for all segments and 3.82 among segments with at
least one intersection (n = 10,380). Two segments contain 37 intersections, though, as
seen in Figure 13, 90% of segments have seven intersections or less. Unlike Ohio,

only 53% of Washington segments contain at least one intersection (see Figure 13).
The mean is 0.94 for all segments and 1.78 among segments with at least one inter-
section (n = 4,762). Eight segments contain 20 intersections but the overwhelming
majority (>95%) of segments have three intersections or less. Unsurprisingly, the
number of intersections is positively correlated with accidents (Ohio r2 = 0.44, Wash-
ington r2 = 0.49), which shows in the figures.

There is a moderate correlation between the number of curves, grades, and intersec-
tions (0.19 - 0.38 for each pair in both states) which could imply that segments may
be defined in such a way as to put multiple pieces of augmenting geometry into the
same segment.

Speed Limit. While there is expected to be a link between higher speeds and more
crashes (due to reduced reaction time), that link may not necessarily hold when the
measure is speed limit rather than actual speed. In fact, accidents are likely correlated

Figure 13. Intersections per Segment (Left) and Crashes by Number of Intersections (Right)
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with the number of people who exceed the posted speed limits, particularly on curvy
roads or those with limited visibility. Moreover, the speeds travelled at intersections
may be significantly lower than posted speeds due to the presence of stop lights or
signs. As such, the expected link with crashes is small, and is verified by the data,
where r2 = -0.07. Speed limits range from 20 - 55 mph in Ohio and 25 - 60 mph in
Washington with a mean of 39.8 mph in both states.

Lane width. Narrow lane width can be expected to be positively correlated with
crashes as narrow lanes would increase the possibility of contact with vehicles travel-
ling in the opposite direction or with stationary objects on the side of the road, though
again, drivers may be more attentive when driving in particularly narrow lanes. How-
ever, 78% and 72% of Ohio and Washington segments, respectively, have lane widths
of 12 feet, as seen in Figure 15.35 The lack of variation in the data could lead to diffi-
culty in finding useful or significant results with this variable. The correlation with
crash counts is quite low (r2 = 0.08 in Ohio and r2 = -0.07 in Washington).

Shoulder Width. Shoulder width can affect crash rates through their ability to serve
as a breakdown lane (or not, and thus lead to obstacles in the road), by providing
room to swerve from a danger in the road, and by providing a buffer from roadside
obstacles. Particularly in urban environments, however, shoulders may serve as
street-side parking and thus increase the possibility for crashes with vehicles entering
and leaving the through lanes. Shoulder widths range from 0 feet (36% of segments)
to 15 feet (2 segments) with a mean of 3.06 feet in Ohio. In Washington, shoulder

Figure 14. Speed Limits (mph)
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35 See discussion above on the determination of lane widths.
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widths range from 0 feet (29% of segments) to 20 feet (3 segments) with a mean of
4.08 feet. As seen in Figure 16, shoulder widths are clustered at 0, 2-4, 6, and 8 feet.
Shoulder width has no correlation with crashes (Ohio r2 = -0.10, Washington r2 =
0.02). It also has a relatively high correlation with speed limits (r2 = 0.43 in Ohio, r2=
0.52 in Washington), a positive correlation with truck traffic levels, and the length of
curves, but very weak correlations with other information about curves. In Washing-
ton, correlations with grade length and percent are moderate as well.

Truck Percentage. The volume of traffic on a given road segment has, of course, a
strong possibility of affecting the number of crashes on the segment (at the least, it
provides an upper bound). While total traffic is represented in the model as the
ln(MVMT) variable, it is plausible that truck traffic fundamentally differs in the num-
ber and types of crashes a segment sees.36 In practice, however, truck percentage has
a negative, but weak (Ohio r2 = -0.09, Washington r2 = -0.06), correlation with acci-
dent counts. Truck traffic is fairly low with mean segments having 5%-6% of traffic
in trucks pass through each day and a maximum value of just over 50% in Ohio and
40% in Washington. The distribution of truck percentage can be seen in Figure 17.

Figure 15. Lane Widths (ft)
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36 Moreover, there could be variation in types of trucks (local delivery vs. heavy goods vs. drayage trucks,
etc.); the HSIS data, however, do not contain enough information to determine the truck mix.
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Figure 16. Shoulder Widths (ft)

Figure 17. Percentage of Truck Traffic
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Average Curve Length. In Ohio, the average curve length is 0.005 miles (26 feet).
This number is heavily weighted by the fact that over 90% of segments have zero
curves. Among segments with a curve, the average length is 0.05 miles (260 feet),
with a range of 0.003 miles (16 feet) to 0.35 miles. In Washington, the average length
is 0.017 miles (90 feet) but when excluding the 75% of segments with no curves, the
average length is 0.07 miles (37 feet), with a range of 0.002 to 0.91 miles (11 to 4800
feet). The correlation between curve length and crashes is essentially non-existent in
both states, but for segments with at least one curve, it is -0.04 in Ohio and -0.13 in
Washington, indicating a possible break point. The distribution of curve lengths (for
segments with more than one curve) is shown in Figure 18.37

Average Curve Degree. The average degree of curvature across Ohio segments is
1.67 degrees, but of the 1,250 segments with at least one curve, the average is 16.74
with a range of 0.29 to 96 degrees. In Washington, the overall average is 1.32 degrees,
but ranges from 0.06 to 80 degrees. In the 1,813 segments with at least one curve, the
mean is 5.38 degrees. The correlation between curve degree and crash counts is low
in both states with r2 = -0.01 (Ohio) and r2 = 0.01 (Washington) but among segments
with a curve, the correlations are r2 = -0.11 (Ohio) and r2 = -0.08 (Washington). A
histogram of (non-zero) curve degrees is in Figure 19.

Average Grade Length. Across Ohio segments, the mean length of a grade is
0.014 miles (74 feet). Of the 12% of segments with a grade, the mean length is 0.111
miles (586 feet). The shortest average grade is 0.005 miles (26 feet) while the longest

37 Grade and Curve length are represented in graphs and the model equations in 1/10th miles. 

Figure 18. Average Curve Length (0.10 miles)
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is 1.83 miles.38 In Washington, the average is 0.066 miles (350 feet) across all seg-
ments and 0.137 miles (720 feet) in the 49% of segments with a grade, ranging from
0.003 (16 feet) to 6.63 miles. A histogram of grade lengths greater than zero appears
in Figure 20.39 The correlation between grade length and crash counts, however, is
small at r2 = 0.03 and r2 = 0.02 in Ohio and Washington, respectively, and stays small
when considering only segments possessing grades.

Average Percent Grade. The mean percent grade is 0.633 across Ohio segments
and 5.135 percent for the segments with at least one grade. In Washington, the overall
mean is 0.655 percent and 1.36 percent in segments with grades. They range from
0.286 to 18 percent in Ohio and 0.003 to 10 percent in Washington, as shown in Fig-
ure 21. The correlation with crashes is also very small for all segments and for seg-
ments with at least one grade.

Figure 19. Average Curve Degree
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38 Recall that the variable is the average length of the grade aggregated across all grades that end in the
segment.

39 Grade and Curve length are represented in graphs and the model equations in 1/10th miles.
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Figure 20. Average Grade Length (0.10 miles)

Figure 21. Average Percent Grade
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Modeling Methodology

Count data presents two problems to the researcher trying to use standard linear
regression techniques: (1) the dependent variable is discrete, taking on only whole
number values, and (2) the dependent variable is truncated; that is, no observation can
take on a value less than 0. These violations of normality assumptions become even
more acute when the data present a very low mean, close to the truncation point.

The Poisson and 
Negative Binomial 
GLM Methods

The Poisson distribution can be used to describe count data, though it too requires
assumptions about the distribution of the data. Most notably, the Poisson distribution
assumes the mean is equal to the variance, both represented by μ. In cases where the
data are known to be overdispersed (i.e., the variance is greater than the mean), the
NB distribution is often thought to better characterize the data. Moreover, in this situ-
ation, the inferences derived from a Poisson regression will systematically mis-repre-
sent the significance of the independent variables as the standard errors are incorrect
compared to the true values estimated by NB methods.40 When considered in a
regression context, both the Poisson and NB regressions are part of the GLM family,
and are estimated via maximum likelihood methods.

The models seek to estimate crashes, μ, as a function of a series of characteristics, x,
and the magnitudes of each of the characteristics’ effect, β. In this context, μ repre-
sents the weighted average of the probability that a segment will have a given number
of crashes, and thus, implicitly, the predicted number of crashes on that segment. That
is:

μ = 0 * P(0 crashes) + 1 * P(1 crash) + 2 * P(2 crashes) + ... + n * P(n crashes).

GLM models are not, however, inherently linear. Thus, a “link function” must be
specified to “linearize” the equation so that it resembles ordinary least squares. To
clarify, the model equation is shown in [3]. The most common link function, and the
one considered “canonical” for the Poisson and NB regression is the log link, which is
adopted here. By taking the natural log of both sides, the model appears as in [4]
where the dependent variable is in terms of the natural log, and the independent vari-
ables are now linear:

[3]

. [4]

The log link also allows for useful interpretations of the estimated coefficients,
whereby the coefficient can be considered to be a rough estimate of the percentage

40 Land, McCall, and Nagin (1996).
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change in the dependant variable with a one-unit increase in the independent variable,
when coefficient values are close to zero.41

The overdispersion problem is an important one, but is also prone to over-emphasis.
To restate, Poisson coefficients are themselves consistent estimators even with over-
dispersion but have inaccurate standard errors. The effects of overdispersion have
been reduced via the combining of segments to handle the low-exposure problem and
by defining a comprehensive model to address issues of heterogeneity. Despite these
corrections, the data still appear over-dispersed and so the NB regression model is uti-
lized. The NB model makes more accurate predictions than the Poisson model, with-
out making the severely flawed assumptions of the zero-inflated variations.42

Exposure and Crash 
Rates

The exposure variable methodology allows a few convenient interpretations. First, by
using the natural log of the exposure variable, the estimated coefficient can be read as
an elasticity. Secondly, it implicitly turns the dependant variable into a rate, illustrated
in Equation [5] where the exposure variable is labeled z:

[5]

In many settings βk is fixed at 1.0. In this case, however, there is no reason to assume
the response of crashes to MVMT is unit elastic, so this model neither fixes the coef-
ficient to 1.0 nor constrains it to a first order variable. 

Once applied to HERS, it will be necessary to convert the counts back to crash rates
to feed its other modules. This can be simply done after the estimation step.

41 The exact equation for finding the percentage change, regardless of the value, is:

42 Regressions were run using the -poisson- and -nbreg- (negative binomial) commands built into Stata. In
all cases, the -robust- option was appended to the commands to utilize robust (also known as White or
Sandwich) standard errors. Marginal effects and goodness of fit statistics were computed with the com-
mands in the Spost add-on package created by Long and Freese.
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Estimating Crash Counts

Comparing Models In order to capture the complexity of the geometric effects leading to vehicle crashes,
several models were estimated and compared. In general, there were first- and sec-
ond-order models using both Poisson and NB techniques. The model was also simpli-
fied to remove a few variables that presented difficulty in establishing a causal
connection to crashes.43 The simplest is a first order model containing each of the
variables described above. This is then followed by a model that includes second
order effects by way of including squared terms for each of the variables and interac-
tions between the number of curves, intersections, grades, and traffic levels.

As expected, the coefficient values are similar between the Poisson and NB models,
seen in Table 12 with the NB model often having lower standard errors. Goodness-of-
fit statistics appear in Table 13, and also show generally better fit for the higher order
models and for the NB over the Poisson, notably in the AIC and BIC criteria, which
are considered two of the more important and easily comparable fit statistics for
GLM. The overdispersion factor, alpha, has been further reduced by including the
explanatory variables to 0.83, but still fails a likelihood ration test that alpha = 0,44

further supporting the NB model 

An even better idea, however, of how well a model “fits” will come from its predic-
tive ability. Table 14 lists the residuals for 0 to 9 crashes. Both the standard (differ-
ence) and Pearson residuals are listed with the smaller residual indicated in italics. In
the standard residuals, both the Poisson and NB have essentially the same total differ-
ence (in the “Sum” row) but the NB is more accurate in 9 of the 10 cases. When com-
paring Pearson residuals (standard residuals weighted and transformed to only
positive numbers, thus penalizing a model for being equally “wrong” in opposite
directions), the NB also is more accurate in 9 of the 10 cases and far more accurate
overall. The standard residual relationship is shown graphically in Figure 22. The
squares representing the NB model are consistently closer to the x-axis (where the
residual is zero) than the circles representing the Poisson model.  

For a final comparison, Figure 23 displays the error in predicting the proportion of
segments with 0 to 9 crashes in both the NB and the old, AADT-only model. It is
readily apparent that the NB model is more accurate.

43 The initial model includes lanewidth, speed limits, and surface widths. Lane widths are dropped due to
the lack of variation in the data and the resulting lack of predictive ability. Speed limits were dropped
due to the lack of a plausible causal connection with crashes (see the data description section for
details). Surface width was dropped because the various causal relationships are impossible to distin-
guish given the variety of causes for large surface length (e.g., parking, turning lanes, etc.) and the lack
of comparable variables in HPMS for eventual use in HERS. The initial model also included more sec-
ond-order variables (both squared terms and interactions) but were removed for lack of predictive abil-
ity. Information on the process and results from the original runs are in  Appendix 1: The Draft 2nd-
Order Model

44 LR test of alpha = 0, chibar2(01) = 31000, p < .001.
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Estimating the 
Model and Refine-
ments

Having chosen the second order NB model, the effects of geometric properties on
crashes can be analyzed. The coefficients from above are reproduced in Table 15
along with the Incidence Rate Ratios (IRR), which is the (exact) exponentiated form
of the coefficient for determining percent change in the dependent variable.

Each of the coefficients (or IRRs) reflects a proportionate change in crash counts and
cannot be interpreted as a marginal value. Marginal values depend on the existing
value of the independent variable for any given segment. For example, ignoring sec-
ond order and interaction effects, a segment with an average grade length of 0.30
miles and 2.5 predicted crashes would have its predicted number of crashes decrease
to 86.6% of the total (2.17 crashes) if the average grade length increased to 0.40
miles. Thus, the marginal effect (0.33 crashes) varies based on the starting value. In
reality, the true marginal effect would be the sum of the changes brought about by

Table 12. Comparison of 1st and 2nd Order Poisson and Negative Binomial Regressions

coef se coef se coef se coef se
# Curves 0.000 0.010 -0.002 0.009 -0.015 0.017 -0.031 0.019
Avg Curve Length (0.10 miles) -0.386*** 0.038 -0.358*** 0.031 -0.365*** 0.051 -0.357*** 0.047
Avg Curge Degree 0.001 0.001 0.003** 0.001 0.002* 0.001 0.003** 0.001
# Grades -0.046*** 0.005 -0.041*** 0.005 -0.097*** 0.010 -0.087*** 0.010
Avg Grade Length (0.10 miles) -0.078*** 0.015 -0.051*** 0.014 -0.114*** 0.018 -0.104*** 0.015
% Grade -0.002 0.005 -0.011* 0.006 -0.003 0.006 -0.007 0.007
# Intersections 0.024*** 0.003 0.060*** 0.003 0.064*** 0.005 0.101*** 0.005
%age Truck Traffic -0.016*** 0.002 -0.010*** 0.002 -0.007 0.004 0.003 0.004
Shoulder Width -0.091*** 0.004 -0.076*** 0.003 -0.191*** 0.009 -0.181*** 0.009
ln(MVMT) 0.808*** 0.013 0.700*** 0.011 0.818*** 0.015 0.852*** 0.014
Avg Curve Length (0.10 miles)^2 0.034*** 0.011 0.025** 0.010
# Grades^2 0.001** 0.000 0.001** 0.001
Avg Grade Length (0.10 miles)^2 0.001*** 0.000 0.001*** 0.000
# Intersections^2 -0.001*** 0.000 -0.001*** 0.000
%age Truck Traffic^2 -0.000** 0.000 -0.001*** 0.000
Shoulder Width^2 0.013*** 0.001 0.013*** 0.001
ln(MVMT)^2 0.073*** 0.007 0.074*** 0.006
Avg Grade Len * Avg % Grade 0.014*** 0.003 0.015*** 0.003
# Grades * # Intersections 0.002*** 0.001 0.002** 0.001
# Curves * # Grades 0.007*** 0.002 0.012*** 0.003
ln(MVMT) * # Curves -0.005 0.010 -0.008 0.010
ln(MVMT) * # Grades 0.010* 0.005 0.003 0.006
ln(MVMT) * # Intersections -0.016*** 0.003 -0.040*** 0.003
Constant 1.801*** 0.022 1.597*** 0.020 1.676*** 0.027 1.515*** 0.026
ln(alpha) -0.128*** 0.020 -0.188*** 0.020

Poisson (1st) NegBin (1st) Poisson NegBin
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Average Grade Length, Average Grade Length squared, and Average Grade Length *
Average Grade Degree. 

The final column is the exponentiated form representing a standard deviation change
in the variable (rather than a one-unit change, in the second column). Standard devia-
tions of the independent variables are shown in Table 10 on page 36.

Table 13. Goodness of Fit Statistics

Poisson    
(1st Degree)

NegBin      
(1st Degree)

Poisson NegBin

N 19942 19942 19942 19942
Log-Lik Intercept Only -107,877.012 -48,926.354 -107,877.012 -48,926.354
Log-Lik Full Model -59,599.222 -43,033.800 -57,943.056 -42,655.946
Deviation 119,198.445 86,067.600 115,886.111 85,311.892
df(Deviation) 19931 19930 19918 19917
LR 96,555.578 11,785.107 99,867.912 12,540.815
df(LR) 10 10 23 23
Prob > LR 0.000 0.000 0.000 0.000
McFadden's R2 0.448 0.120 0.463 0.128
McFadden's Adj R2 0.447 0.120 0.463 0.128
ML(Cox-Snell) R2 0.992 0.446 0.993 0.467
Cragg-Uhler(Nagelkerke) R2 0.992 0.450 0.993 0.470
AIC 5.978 4.317 5.814 4.281
AIC*n 119,220.445 86,091.600 115,934.111 85,361.892
BIC -78,130.082 -111,251.026 -81,313.708 -111,878.026
BIC*n -96,456.573 -11,686.101 -99,640.199 -12,313.101

Table 14. Residuals Based on Predicted Crashes

Poisson 
Difference

Poisson 
Pearson

NegBin 
Difference

NegBin 
Pearson

0 0.149 2,466.923 0.023 34.264
1 -0.033 111.273 -0.023 58.213
2 -0.047 289.024 -0.012 25.817
3 -0.034 210.567 -0.005 6.086
4 -0.022 125.232 -0.002 1.902
5 -0.009 28.259 0.004 6.579
6 -0.005 12.371 0.003 5.995
7 -0.004 12.383 0.001 1.060
8 -0.003 5.293 0.001 2.189
9 0.000 0.003 0.003 12.027
Sum -0.008 3,261.327 -0.008 154.132
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Figure 22. Predicted and Observed Frequencies of Crashes by Poisson and NegBin Models

Figure 23. Difference in Observed - Predicted Proportion of Segments by Number of Crashes
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Table 15. Coefficients and Incident Rates in the Negative Binomial Regression

coef se IRR IRR for a 
std dev of 

x
# Curves -0.031 0.019 0.970 0.972
Avg Curve Length (0.10 miles) -0.357*** 0.047 0.700*** 0.882
Avg Curve Length (0.10 miles)̂ 2 0.025** 0.010 1.025** 1.032
Avg Curge Degree 0.003** 0.001 1.003** 1.021
# Grades -0.087*** 0.010 0.916*** 0.864
# Grades^2 0.001** 0.001 1.001** 1.033
Avg Grade Length (0.10 miles) -0.104*** 0.015 0.901*** 0.866
Avg Grade Length (0.10 miles)^2 0.001*** 0.000 1.001*** 1.069
% Grade -0.007 0.007 0.993 0.988
# Intersections 0.101*** 0.005 1.107*** 1.387
# Intersections^2 -0.001*** 0.000 0.999*** 0.956
%age Truck Traffic 0.003 0.004 1.003 1.016
%age Truck Traffic^2 -0.001*** 0.000 0.999*** 0.925
Shoulder Width -0.181*** 0.009 0.834*** 0.561
Shoulder Width^2 0.013*** 0.001 1.013*** 1.459
ln(MVMT) 0.852*** 0.014 2.344*** 3.064
ln(MVMT)^2 0.074*** 0.006 1.077*** 1.256
Avg Grade Length * Avg % Grade 0.015*** 0.003 1.015*** 1.066
# Grades * # Intersections 0.002** 0.001 1.002** 1.025
# Curves * # Grades 0.012*** 0.003 1.012*** 1.068
ln(MVMT) * # Curves -0.008 0.010 0.992 0.990
ln(MVMT) * # Grades 0.003 0.006 1.003 1.007
ln(MVMT) * # Intersections -0.040*** 0.003 0.961*** 0.797
Constant 1.515*** 0.026 4.551***
ln(alpha) -0.188*** 0.020 0.828***

Negative Binomial Regression

significance stars: * 10%, ** 5%, *** 1% 
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Sensitivity Analysis. Marginal effects in a GLM context are less immediately
obvious than in an ordinary least squares model. As the reported coefficients repre-
sent percentage changes, the marginal effect depends heavily on the current value of
the variable. This complication is compounded with second order effects. To help
visualize these changes, Figure 24 shows how crash counts change with changes in
explanatory variables. It is important to note that each line assumes that all other vari-
ables are held constant at the mean. This remains true even for other variables placed
on the same graph. For example, the upper left graph shows that there will be a bit
under 3 crashes when there are zero intersections while all other first order variables
are held at their respective means. Second order variables are computed based on
these first order values.45 When there are ten intersections, there will be over 6
crashes, assuming that all other first-order variables are held at their means.46

Curves. The effect of the number of curves is indeterminate as the standard errors on
the estimate are quite high relative to the very small estimated effect. The degree of
curvature, while statistically significant has essentially no significance on policy; that
is, the actual effect on the number of crashes is imperceptible.47 While this seems
counter-intuitive on the face, it is possible that more attentive or slower driving makes
up for the risks posed by more and sharper curves. Curve length, however, is highly
significant; longer curves reduce the number of crashes by about 30% for each tenth
mile of the curve, though that rate decreases as the length increases.

Grades. Unlike curves, the presence and type of grades appear to have both statisti-
cal and policy significance on crashes. Each grade reduces crashes by a bit less than
10% though the rate of decrease itself decreases as seen in the squared term. Much
like with curves, this result requires consideration of driver behavior; drivers are
likely already using their brakes when on a negative grade and may also slow due to
reduced visibility near the top of a positive grade. Additional length to grades exhibits
similar effects. The additional length likely gives drivers more time to adapt to the
given driving conditions and requires fewer transitions over a given distance. The
degree of sharpness to a grade does not have a statistically significant effect on
crashes. The interaction term between length and degree is positive and significant,
indicating that the combined effect of longer, steeper grades increases the likelihood
of a crash more so than merely the effects of each attribute independently, though this
combined effect is quite small.

45 In this case, intersections squared is also held at zero. (Curves * Intersections) is computed at the mean
number of curves 0.259) times zero intersections, for a total of zero. 

46 In this case, intersections squared is considered to be 100. (Curves * Intersections) is computed at the
mean number of curves times 10 intersections, for a total of 2.590.

47 “Policy significance” is an adaptation of the concept of “economic significance.” An example of the lat-
ter would be a situation where one can predict with 99% certainty that some variable’s affect on a coun-
try’s GDP is non-zero, but the estimated change is only $3.00. 
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Intersections. Unsuprisingly, intersections have a significant and large effect on the
number of crashes seen on the roads. Each intersection added increases crashes by
about 10%, though the size of the effect decreases slowly as intersections are added.

Percentage of Truck Traffic. Trucks have a significant effect on the number of
crashes on road segments. The direction and magnitude of the effect, however, varies
considerably based on the current value. Additional truck traffic increase crashes, but
at a decreasing rate at low percentages. The second order effect overtakes the first as
the percentage of trucks further increases, leading to an overall decrease in crashes.
This is likely due to an increase in driver vigilance due to the high proportion of
trucks, the lower MVMT on segments with greater truck volume, and that truck driv-
ers are often more skilled and experience fewer crashes.

Shoulder Width. Increased shoulder widths are associated with fewer crashes.
Each additional foot decreases crashes by over 16%, though this decrease is itself at a
decreasing rate, such that segments with particularly wide shoulders may see an
increase in crashes. These results are both significant at the 1% level and generally in
line with expectations. The squared term’s positive value may reflect the increased
risk that comes from vehicles entering and leaving the roadway, and that particularly
wide shoulders may encourage increased use.

Million Vehicle Miles Traveled. The fact that more vehicles traveling further is
associated with significantly more crashes should come as a surprise to no one. This
variable and its second order term,48 however, play an important role in accurately
predicting crash counts. Moreover, the use of MVMT rather than AADT, as used in
the previous model, allows the current model to account for the occurrence of more
crashes on longer segments simply because of the greater length. Despite the triviality
of the sign on the coefficient, its value can help researchers understand the relation-
ship between traffic volume and crashes. Because the variable in question is the natu-
ral log of MVMT, the coefficient can be interpreted as a pure elasticity. It is then
apparent that crash counts are very elastic to changes in traffic levels.

Interactions. Interactions allow the model to include the effect of geometric align-
ment that is “more than the sum of its parts.” The interactions between curves, grades,
and intersections are small in magnitude, though both the grades and curves interac-
tion and the grades and intersections interaction are significant at the 5% level. The
effect may be small, but in both cases, the combined effect of higher frequencies of
the geometric features lead to more crashes, and therefore are an important part of the
model. The interaction between MVMT and grades is insignificant, though positive.
The combination of curves and increased traffic leads to an insignificant decrease in
crashes while the interaction between traffic and intersections is negative and highly
significant. This latter effect is potentially due to the reduced possibility for crashes
when there is less movement on the road in the first place.

48 Note that the second order term is the square of the natural log of MVMT, not the natural log of MVMT
squared.
HERS Safety Model Assessment and Two-Lane Urban Crash Model 57



US DOT/RITA/Volpe Center
5.Urban Two-Lane Streets October 2008
Accuracy in Wash-
ington and Ohio

As a quick and simple robustness check, the model was re-run for both Washington
and Ohio individually. While it does not guarantee the model will be perfectly appli-
cable to other states, it at least helps narrow down the possibility that model accuracy
is due to a particular state-specific effect that overwhelms the other state’s data. Fig-
ure 25 contains the predicted residuals in proportion of segments with between 0 and
9 crashes. When comparing to Figure 23, be sure to note the different scale on the ver-
tical axis. The model is seen to be quite accurate for both states, though, particularly
at low crash counts, the accuracy is a bit better in Ohio than Washington. This is
likely due to the larger quantity of road segment data obtained from Ohio.

Figure 25. Difference in Observed - Predicted Proportion of Crashes in Ohio and Washington
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Translating Between HSIS and HPMS Variables

The data used to generate the estimates in the previous section came from the FHWA
HSIS database. However, the HERS model is populated with information from
HPMS.49 The basic road information contained in each database is broadly similar
but the coding details for each field can vary between the two. This section describes
how to turn HPMS data into the variables used in generating this model. 

Truck Percentage, Lane Width. Truck percentage and lane widths are fields that
exist in HPMS that do not require any translation to include in the model.

Intersections. HPMS contains three entries relating to intersections: those with sig-
nals, stop signs, and other. To prepare data for the crash model, simply sum these
three variables.

Shoulder Width. HPMS keeps separate fields for shoulder widths on each side of
the street. As not all states maintain this level of detail in HSIS, it is necessary to aver-
age the two values for use in the model. That is, the input should be as shown in Equa-
tion [6].

[6]

MVMT. MVMT is not in HPMS but is easily calculated from existing information.
The formula is noted above in Equation [2] on page 38.

Curves and Grades. HPMS considers curves and grades in classes rather than re-
cording exact degrees of curvature as is done with HSIS data. A compromise, then,
must be found between the HPMS classifications and the more detailed analysis pos-
sible with HSIS data. The next sections discuss HPMS and newly created variables,
comparisons to the original model variables, and the development of a modified crash
model using these new variables. 

New Variables and 
Comparisons

The model used so far includes three variables relating to grades or curves. They
count the number present, the average percent grade or curve degree, and the average
length of the grades or curves over the segment. As HPMS only provides aggregate
information by grade or degree class, the exact number of grades or degrees, as well
as any average values, are unknown. Three new variables are used instead: 1) the
number of grade or curve classes present on a segment, 2) the total length of all
grades or curves over the segment, and 3) a weighted value of the percent grade or
degree of curvature. Comparative summary statistics appear in  Table 16.

49 HSIS data were used for the development of the model because HPMS does not contain crash informa-
tion.

Shoulder Width Left Shoulder Width Right Shoulder Width+
2-------------------------------------------------------------------------------------------------------------=
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Class Counts. The grade or curve class count should broadly resemble, but is con-
strained to being less than or equal to, the total number of grades or curves. That is,
only one grade or curve of each class type will be counted in the new variable
whereas multiples could exist before. While the bias introduced here could theoreti-
cally be large, the evidence from Ohio and Washington imply it will be minimal. For
example, 85% of segments contain no curves, while another 12% contain only 1
curve. Thus, it is assured that the number of curve classes will equal the number of
total curves in at least 97% of all observations. Similarly, 74% of segments contain no
grades and 14% of segments contain only one, resulting in at least an 88% match
between the two. The relationship between curve or grade counts and crashes is simi-
lar to the relationship between crashes and the number of grade or curve classes. This
can be seen in Figure 26 and Figure 27. Recall that 90% of segments appear in the
leftmost two boxes for each graph, causing the greater variation in box appearance for
larger counts. Moreover, as Ohio’s HSIS sample contained no very small grades, it is
impossible for there to be any segments with all 5 grade classes.

Total Lengths. HPMS contains information on the total length of the grades or
curves that make up each class. This variable is merely the sum of the length associ-
ated with each grade or curve class. Total length has the advantage of not being
dependent on the number of curves or grades in the segment, as the number is not
available in HPMS. Histograms of average and total grade and curve length (by state)
can been seen in Figure 28 and Figure 29. Note these graphs are only for segments
which have at least one grade or curve. 74% of segments have a total grade length of
0 and 85% of segments have a total curve length of 0 as well.

Table 16. Summary Statistics for Newly Created Variables to Apply to HPMS Data and the HSIS Variables 
they are Replacing

mean sd min p25 p50 p75 max
# Curves 0.259 0.930 0.000 0.000 0.000 0.000 28.000
# Curve Classes 0.199 0.530 0.000 0.000 0.000 0.000 5.000
# Grades 0.597 1.676 0.000 0.000 0.000 1.000 31.000
# Grade Classes 0.363 0.704 0.000 0.000 0.000 1.000 5.000
Avg Curve Length in 1/10th miles 0.094 0.351 0.000 0.000 0.000 0.000 9.100
Total Curve Length (miles) 0.021 0.072 0.000 0.000 0.000 0.000 1.200
Avg Grade Length in 1/10th miles 0.331 1.382 0.000 0.000 0.000 0.100 66.300
Total Grade Length (miles) 0.081 0.282 0.000 0.000 0.000 0.020 7.510
Avg Curve Degree 1.539 7.478 0.000 0.000 0.000 0.000 96.000
Weighted Curve Degree 1.907 8.240 0.000 0.000 0.000 0.000 96.000
Avg Grade Percent 0.591 1.630 0.000 0.000 0.000 0.005 18.000
Weighted Percent Grade 0.517 1.706 0.000 0.000 0.000 0.000 18.000
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Figure 26. Crash Count by Number of Grades (above) and Number of Grade 
Classes (below)

Figure 27. Crash Count by Number of Curves (above) and Number of Curve 
Classes (below)
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Weighted Percent/Degree. This variable is constructed from the HPMS fields on
the grade/curve classes present and their total length. The formulas to create these
variables from the original HSIS data are shown in Equations [7] and [8]. 

Figure 28. Average Grade Length (above) and Total Grade Length (below)

Figure 29. Average Curve Length (above) and Total Curve Length (below)
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[7]

[8]

Though not a measure of average degree, it shares characteristics with average degree
as it is a score that is based on the magnitude of the grade or curve controlled for the
total length of grades or curves on the segment. Figure 30 and Figure 31 are histo-
grams of the average percent grade and degree, as well as the weighted percent grade
and degree. While the histograms broadly track one another, it is important to remem-
ber that grades under 3% are not reported in Ohio’s HSIS sample leading to the “miss-
ing” left side on the graph. 

Because this measure is not dependent on the total number of grades or curves present
on a segment, these variables do not risk exacerbating any bias of using the curve and
grade class counts.

These variables can be computed with HPMS data solely from the information on the
total length of grades or curves by class and a lookup table of equating each grade or
curve class to a particular percent grade or curvature degree. To arrive at this particu-

Figure 30. Average Percent Grade (above) and Weighted Percent Grade (below)
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lar crosswalk, a multi-step process was undertaken. First, a kernel density plot was
generated. This plot represents an estimated probability distribution function based on
the actual observed data, and can be interpreted like a smoothed histogram. The next
step was to identify the points where the density plot intersects the changes in grade
or degree class and to connect them linearly. For Class F, the slope over the area near
the division was extrapolated down to the y-axis, cutting off the long tail extending to
the right. As an example, the plot for percent grade can be seen in Figure 32. To find
the appropriate percent grade/degree value to apply to each class, the x-coordinate for
the center of mass for each class type was calculated using equation [9] where m and
b represent the slope between the two points and the computed y-intercept, respec-
tively.

[9]

See Table 17 and Table 18 for the percent grade and curve degree to assign, respec-
tively, by class. The equations to calculate the weighted percent grade and curve
degree from HPMS are shown in Equations [10] and [11].

[10]

Figure 31. Average Curve Degree (above) and Weighted Curve Degree (below)
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[11]

Figure 32. Density Plot Used for Grade Class Conversions
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Table 17. Assigned Percent Grades for HPMS Grade Classes

Grade 
Class

Percent 
Grades in 

Class

Assigned 
Percent 
Grade

A 0.0-0.4 0.2
B 0.5-2.4 1.4

C 2.5-4.4 3.4
D 4.5-6.4 5.4
E 6.5-8.4 7.3
F 8.5+ 9.4

Segment Weighted
Curve Degree HPMS

Curve Lengthi Assigned Curve Degreei⋅( )
i A=

F

∑

Curve Lengthi
i A=

F

∑
-----------------------------------------------------------------------------------------------------------------=
HERS Safety Model Assessment and Two-Lane Urban Crash Model 65



US DOT/RITA/Volpe Center
5.Urban Two-Lane Streets October 2008
The Revised 
Regression

Using the variables generated as above, the regression was re-run to check for consis-
tency in results; the results are displayed in Table 19. For variables that did not change
between the two models, the coefficients and significance levels are virtually identi-
cal. The sign on the coefficient for all previously significant variables remains the
same and only in one case (grade classes squared) does a previously significant vari-
able fail to again pass that threshold. Variables relating to the number of curve classes
(including interactions) and weighted percent grade now are statistically significant at
conventional levels. 

This can be seen graphically in Figure 33, which replicates the sensitivity analysis in
Figure 24 on page 56. The shapes of the curves are highly similar to the original
model. The upper limit on grade and class counts truncates the lines earlier, and the
magnitude of the dip in curve length graph has been reduced, but both graphs retain
the same general shape as in the HSIS model. The predicted proportion of segments
experiencing particular crash counts varies nearly imperceptibly between the two
models, as seen in Figure 34.

These results confirm that the application of the new variables to translate between
HSIS and HPMS data do a sufficient job of maintaining the crash model developed
above while also being practicable within HERS. 

HERS has been designed to output crash results in terms of the crash rate per AADT.
The final step is to convert the predicted crash count returned by the model into this
rate by dividing the crash count by AADT, shown in Equation [12]. 

[12]

In the following section, the final (HPMS) model is summarized for inclusion within
HERS.

Table 18. Assigned Curve Degrees for HPMS Curve Classes

Curve 
Class

Curve 
Degrees 
in Class

Assigned 
Curve 

Degree

A 00.0-03.4 2.0
B 03.5-05.4 4.4
C 05.5-08.4 6.9
D 08.5-13.9 10.9
E 14.0-27.9 19.3
F 28+ 29.0

Crash Rate Crash Count
AADT------------------------------=
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Table 19. Comparison of Negative Binomial Regressions on HPMS and HSIS Variables

coef se coef se
# Curve Classes -0.142*** 0.034
# Curves -0.030 0.019
Total Curve Length -1.206*** 0.307
Total Curve Length^2 0.747* 0.439
Avg Curve Length (0.10 miles) -0.365*** 0.048
Avg Curve Length (0.10 miles)̂ 2 0.026*** 0.010
Weighted Curve Degree 0.003** 0.001
Avg Curve Degree 0.003** 0.001
# Grade Classes -0.151*** 0.057
# Grade Classes^2 0.006 0.017
# Grades -0.087*** 0.009
# Grades^2 0.001** 0.001
Total Grade Length -0.497*** 0.102
Total Grade Length^2 0.071*** 0.016
Avg Grade Length (0.10 miles) -0.097*** 0.016
Avg Grade Length (0.10 miles)^2 0.001*** 0.000
Weighted Grade Percent -0.022** 0.009
Avg Grade Percent -0.009 0.007
# Intersections 0.100*** 0.005 0.102*** 0.005
# Intersections^2 -0.001** 0.000 -0.001*** 0.000
%age Truck Traffic 0.003 0.004 0.003 0.004
%age Truck Traffic^2 -0.001*** 0.000 -0.001*** 0.000
Shoulder Width -0.177*** 0.009 -0.181*** 0.009
Shoulder Width^2 0.013*** 0.001 0.013*** 0.001
ln(MVMT) 0.869*** 0.015 0.852*** 0.014
ln(MVMT)^2 0.077*** 0.006 0.074*** 0.006
Total Grade Length * Weighted Percent Grade 0.111*** 0.020
Avg Grade Length * Avg Percent Grade 0.015*** 0.003
# Grade Classes * # Intersections 0.010*** 0.003
# Grades * # Intersections 0.002** 0.001
# Curve Classes * # Grade Classes 0.072*** 0.014
# Curves * # Grades 0.012*** 0.003
ln(MVMT) * # Curve Classes 0.034** 0.016
ln(MVMT) * # Curves -0.008 0.010
ln(MVMT) * # Grade Classes -0.030** 0.015
ln(MVMT) * # Grades 0.003 0.006
ln(MVMT) * # Intersections -0.042*** 0.003 -0.040*** 0.003
Constant 1.521*** 0.026 1.515*** 0.026
/lnalpha -0.189*** 0.020 -0.188*** 0.020

Negative Binomial Regression
HPMS HSIS

significance stars: * 10%, ** 5%, *** 1%
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Figure 33. Predicted Crash Rates vs. Values of Explanatory Variables with all Other Variables Held at Mean 
for HPMS model
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Figure 34. Difference in Observed - Predicted Proportion of Segments by Number of Crashes for HPMS and 
HSIS models
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The Implemented Crash Model

This section contains all of the necessary information to implement the new, two-lane
urban crash model within HERS. The model is composed of a crash prediction equa-
tion (expressed as a rate) and formulas to generate the independent variables not
already in HPMS.

The Crash Predic-
tion Equation

[13]

Formulas for Inde-
pendent Variables

[14]

[15]

[16]

Crash Rate = 1.52083 0.14158Curve Class Count –
1.20624Total Curve Length– 0.74739TotalCurveLength2–
0.00339Weighted Curve Degree 0.15068Grade Class Count–
0.00584Grade Class Count2 0.49689Total Grade Length –
0.07123Total Grade Length2 0.02238Weighted Grade Percent–
0.10050Intersection Count 0.00072Intersection Count2–
0.00333Truck Percentage 0.00066Truck Percentage2–
0.17693Shoulder Width– 0.01252Shoulder Width2

0.86854 MVMT( )ln 0.07741 MVMT( )ln( )2

0.11092 Total Grade Length Weighted Grade Percent⋅( )
0.00998 Grade Class Count Intersection Count⋅( )
0.07244 Curve Class Count Grade Class Count⋅( )
0.03361 MVMT( )ln Curve Class Count⋅( )

0.02976 MVMT( )ln Grade Class Count⋅( )–
0.04234 MVMT( )ln Intersection Count⋅( )–

+
+
+
+
+

+
+ +
+
+
+
+

(

) AADT⁄

Curve
Class
Count

0  Length of Curve Class A 0=,
1 Length of Curve Class A 0>,⎩

⎨
⎧ 0  Length of Curve Class B 0=,

1 Length of Curve Class B 0>,⎩
⎨
⎧

0  Length of Curve Class C 0=,
1 Length of Curve Class C 0>,⎩

⎨
⎧ 0  Length of Curve Class D 0=,

1 Length of Curve Class D 0>,⎩
⎨
⎧

0  Length of Curve Class E 0=,
1 Length of Curve Class E 0>,⎩

⎨
⎧ 0  Length of Curve Class F 0=,

1 Length of Curve Class F 0>,⎩
⎨
⎧

+

+ +

+ +

=

Total Curve Length
Length of Curve Class A Length of Curve Class B+

+ Length of Curve Class C Length of Curve Class D+
+ Length of Curve Class E Length of Curve Class F+

=

Weighted
Curve

Degree

Length of Curve Class A 2.0 Length of Curve Class B 4.4⋅+⋅
+ Length of Curve Class C 6.9 Length of Curve Class D 10.9⋅+⋅
+ Length of Curve Class E 19.3 Length of Curve Class F 29.0⋅+⋅⎝ ⎠

⎜ ⎟
⎛ ⎞

Length of Curve Class A Length of Curve Class B+
+ Length of Curve Class C Length of Curve Class D+
+ Length of Curve Class E Length of Curve Class F+⎝ ⎠

⎜ ⎟
⎛ ⎞

---------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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[17]

[18]

[19]

[20]

[21]

[22]

Grade
Class
Count

0  Length of Grade Class A 0=,
1 Length of Grade Class A 0>,⎩

⎨
⎧ 0  Length of Grade Class B 0=,

1 Length of Grade Class B 0>,⎩
⎨
⎧

0  Length of Grade Class C 0=,
1 Length of Grade Class C 0>,⎩

⎨
⎧ 0  Length of Grade Class D 0=,

1 Length of Grade Class D 0>,⎩
⎨
⎧

0  Length of Grade Class E 0=,
1 Length of Grade Class E 0>,⎩

⎨
⎧ 0  Length of Grade Class F 0=,

1 Length of Grade Class F 0>,⎩
⎨
⎧

+

+ +

+ +

=

Total Grade Length
Length of Grade Class A Length of Grade Class B+

+ Length of Grade Class C Length of Grade Class D+
+ Length of Grade Class E Length of Grade Class F+

=

Weighted
Grade

Percent

Length of Grade Class A 0.2 Length of Grade Class B 1.4⋅+⋅
+ Length of Grade Class C 3.4 Length of Grade Class D 5.4⋅+⋅
+ Length of Grade Class E 7.3 Length of Grade Class F 9.4⋅+⋅⎝ ⎠

⎛ ⎞

Length of Grade Class A Length of Grade Class B+
+ Length of Grade Class C Length of Grade Class D+
+ Length of Grade Class E Length of Grade Class F+⎝ ⎠

⎛ ⎞
----------------------------------------------------------------------------------------------------------------------------------------------------------------=

Intersection Count Number of Signal Intersections Number of Stop Sign Intersections+
+ Number of Other Intersections

=

Shoulder Width Left Shoulder Width Right Shoulder Width+
2

-------------------------------------------------------------------------------------------------------------=

MVMT AADT 365 Segment Length××
1 000 000, ,

------------------------------------------------------------------------------=
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Further Research

Adjustments to the HERS crash model fit into three broad categories: expanding
across functional classes, incorporating data from additional states to refine coeffi-
cients, and in the longer term, utilizing more advanced modeling techniques. Notably
in this latter category would be attempts to include predictions of crash severity in the
model as well as the use of multi-year data that can take into account the history of a
particular segment. 

In all of these cases, there must be further improvements in data development. Even
within HSIS data, there are sometimes wide swaths of data unavailable or unreliable,
reducing the potential sample.50 As data recording has improved, standards and defi-
nitions in the data have changed, making year-to-year comparisons difficult. While
these developments are welcome, stability in data gathering techniques as well as in
section endpoints will allow for richer uses of the data. 

Facility Types. This exercise has been limited to urban two-lane roads but the
methodology can be utilized across other facility types. While none of the other facil-
ity types have a current model in as much need of upgrade as two-lane urban streets,
nearly all of the other facility type models do not utilize all of the available and appli-
cable inventory elements contained within HMPS. Moreover, as mentioned earlier,
changes to the roadway that cause the segment to change facility types may lead to a
implausibly large change in predicted crashes. Models that smooth the edges in pre-
dictions across facility types should be investigated.

Additional States. The model detailed above utilizes HSIS data gathered from
Ohio and Washington. Although HSIS remains the only way to systematically com-
bine crash and geometric information, there are more participating HSIS states.
Washington and Ohio presented the best collection of attributes and crash information
of the HSIS states on which to base estimates but the addition of other states can help
to refine the coefficients and improve accuracy. 

Severity Models. Currently, crash severity is predicted by using national averages
of severity classes to create a multiplier used against the predicted crash total. The
methodology has some significant flaws in that it cannot take into account even state-
specific factors that may affect the severity distribution much less roadway- or seg-
ment-specific factors. Critically, it also does not allow geometric changes to affect a
change in the distribution of crashes. Two categories of severity models should be
investigated, simultaneous models and two-stage models.

Simultaneous or multi-level models estimate multiple models concurrently to predict
the number of crashes causing each level of injury (fatality, injury, property damage
only). These models may, but do not necessarily, contain the same set of variables,
and attention should be paid to determining the right variables necessary to differenti-

50 For example, a large portion of urban crashes in Ohio were not included in the data set until 2002, mak-
ing data from before this time unusable.
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ate severity levels. This technique could be of great value to the HERS modeling pro-
cess but the use of simultaneous methods for count models is quite new, and given the
significant upgrade achieved with the current methods, it is prudent to let this method
develop further before applying it here. 

Another option is a multi-stage model where the results of the crash prediction model
are fed into a series of follow-up models that predict the proportion of crashes of each
severity level. In these multi-stage models, additional variables that affect crash
severity are added. The Federal Rail Administration utilizes a model of this type for
grade crossings where the proportion of fatal and casualty accidents are estimated and
then injury and property damage only accidents are computed as a function of the
estimates.51 It should be noted that these two techniques are not mutually exclusive as
one could use simultaneous methods to predict crash severity but a single model to
predict the total crash count. 

Panel Models. Panel data gathered over multiple years would allow the model to
better separate the random variation in crashes from those due to segment-specific
geometry. Additionally, a panel model can take into account changes over time in
overall driving or safety patterns. A branch of models within this area, called Empiri-
cal Bayes (EB), are of particular interest. EB models directly incorporate a previous
year’s crash count into the prediction of the current year, further improving the per-
formance of the model when it is believed there are idiosyncrasies innate to segments.

Any panel method would require more years of HSIS data gathered using techniques
that do not vary significantly from year to year, as well as stability in the identifica-
tion of segments from year to year. Neither of those requirements look likely to be
met in the near time, but it remains a possibility to investigate after the revision of
models for other functional classes.

It is recommended that further research take place in the order presented in this sec-
tion. The revision of additional functional classes will provide immediate benefits to
the HERS model while the addition of more states to modelling process will help
make medium-term adjustments to the model, allowing it to be fine-tuned, rather than
entirely reworked as in the current document. Smoothing the edges between the vari-
ous facility type models will help ensure that any geometric change (rather than
changes that keep a segment within a facility type) will lead to a reasonable change in
predicted crashes.

The adoption of even more advanced modelling techniques could potentially improve
model results but would require improvements in data collection. In all cases, revi-
sions to the method of applying costs to crashes also warrants attention, particularly
in light of recent guidance from the Secretary of Transportation adjusting the cost of a

51 Lee, Douglass B., et al., John A. Volpe National Transportation Systems Center, Department of Trans-
portation, Benefit-Cost Evaluation of a Highway-Railroad Intermodal Control System (ICS), prepared
for: Alstom, New York State Department of Transportation, Federal Highway Administration, et al.,
(June, 2004).
HERS Safety Model Assessment and Two-Lane Urban Crash Model 73



US DOT/RITA/Volpe Center
5.Urban Two-Lane Streets October 2008
human life. Regardless, there remains much work to be done in the development of
HERS crash modelling.
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Appendix 1: The Draft 2nd-Order Model

This appendix contains output from the most complex version of the model later
adopted. It contains additional variables and interaction effects left out of the recom-
mended HERS model. Extra variables include speed limits and lane widths, both of
which were dropped for a lack of firm causal relationships with crashes. Surface
widths were also dropped because the effects of on-street parking, turning lanes, and
other geometric determinants of surface length can not be disentangled. Moreover,
HPMS does not contain surface width variables and so it could not be factored into
HERS estimates. Other interaction effects were dropped from the model due to a lack
of statistical significance and predictive power.

The output tables from this series of estimates is reproduced below. As can be seen by
comparing Table 20 and Table 15, the estimates of the retained coefficients do not
change much in the fuller model, indicating that the excess variables are not corre-
lated with the retained ones. Using the sum of Pearson residuals as a measure, it
appears that the reduced model actually has improved predictive power over the full
one, though the difference is small. Similarly, other measures of goodness-of-fit do
not change much, providing more evidence that the dropped variables add little to the
model. With one exception, the graphs are virtually indistinguishable from those in
the main text and so are not shown again here. The exception is for the marginal
effects graphs, where the addition of variables containing higher order terms of grade
degree transforms the line from linear into a curve.
HERS Safety Model Assessment and Two-Lane Urban Crash Model 77



US DOT/RITA/Volpe Center
Appendix 1: The Draft 2nd-Order Model October 2008
Table 20. Comparison of 1st and 2nd Order Poisson and Negative Binomial Regressions (original second 
order)

coef se coef se coef se coef se
# Curves 0.017* 0.009 0.017** 0.009 -0.006 0.025 -0.014 0.028
Avg Curve Length (0.10 miles) -0.388*** 0.037 -0.358*** 0.031 -0.398*** 0.063 -0.394*** 0.061
Avg Curge Degree 0.002** 0.001 0.004*** 0.001 0.007* 0.004 0.003 0.005
# Grades -0.047*** 0.005 -0.041*** 0.005 -0.104*** 0.011 -0.095*** 0.010
Avg Grade Length (0.10 miles) -0.087*** 0.015 -0.058*** 0.015 -0.125*** 0.019 -0.116*** 0.017
% Grade 0.011** 0.005 0.002 0.006 0.018 0.014 0.017 0.015
# Intersections 0.023*** 0.003 0.060*** 0.003 0.065*** 0.004 0.103*** 0.005
%age Truck Traffic -0.015*** 0.002 -0.010*** 0.002 -0.004 0.004 0.006 0.004
Lane Width 0.014 0.017 0.052*** 0.015 -1.011 0.619 0.982 0.641
Surface Width 0.022*** 0.001 0.021*** 0.001 0.079*** 0.007 0.077*** 0.007
Shoulder Width -0.061*** 0.004 -0.048*** 0.004 -0.101*** 0.009 -0.080*** 0.010
ln(MVMT) 0.831*** 0.013 0.720*** 0.011 0.839*** 0.014 0.887*** 0.014
# Curves^2 0.001 0.001 0.001 0.001
Avg Curve Length (0.10 miles)̂ 2 0.039*** 0.012 0.028** 0.011
Avg Curve Degree^2 -0.000 0.000 -0.000 0.000
# Grades^2 0.001** 0.000 0.001** 0.001
Avg Grade Length (0.10 miles)^2 0.001*** 0.000 0.001*** 0.000
Avg % Grade^2 -0.002 0.002 -0.002 0.002
# Intersections^2 -0.001*** 0.000 -0.001* 0.000
%age Truck Traffic^2 -0.001*** 0.000 -0.001*** 0.000
Lane Width^2 0.042 0.028 -0.046 0.029
Surface Width^2 -0.001*** 0.000 -0.001*** 0.000
Shoulder Width^2 0.006*** 0.001 0.005*** 0.001
Avg Grade Length * Avg % Grade 0.016*** 0.003 0.015*** 0.003
Avg Curve Length * Avg Curve Degree 0.002 0.004 0.008 0.007
# Curves * # Intersections 0.000 0.001 0.001 0.002
# Grades * # Intersections 0.002*** 0.001 0.003** 0.001
# Curves * # Grades 0.006*** 0.002 0.009*** 0.003
ln(MVMT) * # Curves -0.013 0.010 -0.020 0.013
ln(MVMT) * # Grades 0.016*** 0.006 0.008 0.006
ln(MVMT) * # Intersections -0.020*** 0.003 -0.046*** 0.003
ln(MVMT)^2 0.074*** 0.006 0.082*** 0.006
Constant 0.903*** 0.194 0.287* 0.164 5.966* 3.434 -5.419 3.534
ln(alpha) -0.169*** 0.020 -0.230*** 0.019
significance stars: * 10%, ** 5%, *** 1% 

Poisson (1st) NegBin (1st) Poisson NegBin
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Table 21. Residuals Based on Predicted Crashes (original 2nd order)

Poisson 
Difference

Poisson 
Pearson

NegBin 
Difference

NegBin 
Pearson

0 0.145 2,278.581 0.023 36.026
1 -0.033 108.179 -0.024 61.129
2 -0.046 278.665 -0.013 26.914
3 -0.033 204.888 -0.005 6.274
4 -0.021 121.875 -0.002 1.868
5 -0.008 26.128 0.004 6.846
6 -0.005 10.361 0.003 6.378
7 -0.004 9.911 0.001 1.251
8 -0.002 3.620 0.002 2.480
9 0.000 0.180 0.003 12.727
Sum -0.008 3,042.387 -0.008 161.894

Table 22. Goodness-of-Fit Statistics (original 2nd Order)

Poisson    
(1st Degree)

NegBin      
(1st Degree)

Poisson NegBin

N 19942 19942 19942 19942
Log-Lik Intercept Only -107,877.012 -48,926.354 -107,877.012 -48,926.354
Log-Lik Full Model -58,444.722 -42,814.423 -56,872.380 -42,418.226
Deviation 116,889.443 85,628.845 113,744.759 84,836.452
df(Deviation) 19929 19928 19909 19908
LR 98,864.580 12,223.862 102,009.264 13,016.255
df(LR) 12 12 32 32
Prob > LR 0.000 0.000 0.000 0.000
McFadden's R2 0.458 0.125 0.473 0.133
McFadden's Adj R2 0.458 0.125 0.472 0.132
ML(Cox-Snell) R2 0.993 0.458 0.994 0.479
Cragg-Uhler(Nagelkerke) R2 0.993 0.462 0.994 0.483
AIC 5.863 4.295 5.707 4.258
AIC*n 116,915.443 85,656.845 113,810.759 84,904.452
BIC -80,419.282 -111,669.980 -83,365.955 -112,264.361
BIC*n -98,745.773 -12,105.055 -101,692.446 -12,699.437
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Figure 35. Predicted Crash Rates vs. Values of Explanatory Variables with all Other Variables Held at Mean 
(original 2nd order)
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Appendix 2: State-level Statistics

This appendix contains summary statistics and correlation information for both Ohio
and Washington individually. They are reproduced in Table 23 to Table 26.  

Table 23. Ohio Summary Statistics

Table 24. Washington Summary Statistics

mean sd min 25th median 75th max
# Crashes 5.827 10.080 0.000 0.000 2.000 7.000 191.000
# Curves 0.189 0.817 0.000 0.000 0.000 0.000 19.000
Avg Curve Length in 1/10th miles 0.049 0.206 0.000 0.000 0.000 0.000 3.500
Avg Curve Degree 1.669 8.789 0.000 0.000 0.000 0.000 96.000
# Grades 0.227 0.830 0.000 0.000 0.000 0.000 15.000
Avg Grade Length in 1/10th miles 0.137 0.542 0.000 0.000 0.000 0.000 18.300
Avg Percent Grade 0.633 1.871 0.000 0.000 0.000 0.000 18.000
# Intersections 3.159 3.680 0.000 1.000 2.000 4.000 37.000
Lane Width 11.653 0.699 10.000 12.000 12.000 12.000 12.000
Shoulder Width 3.064 3.068 0.000 0.000 3.000 5.000 15.000
Surface Width 27.874 7.809 16.000 24.000 24.000 33.000 77.000
Speed Limit 39.813 9.461 20.000 35.000 35.000 45.000 55.000
%age Truck Traffic 5.416 4.183 0.690 2.960 4.325 6.510 50.110
Million Vehicle Miles Travelled 1.417 2.012 0.000 0.302 0.705 1.681 22.884

mean sd min 25th median 75th max
# Crashes 1.772 2.799 0.000 0.000 1.000 2.000 31.000
# Curves 0.377 1.085 0.000 0.000 0.000 0.000 28.000
Avg Curve Length in 1/10th miles 0.170 0.501 0.000 0.000 0.000 0.000 9.100
Avg Curve Degree 1.317 4.446 0.000 0.000 0.000 0.000 79.580
# Grades 1.223 2.402 0.000 0.000 0.000 1.000 31.000
Avg Grade Length in 1/10th miles 0.661 2.115 0.000 0.000 0.000 0.750 66.300
Avg Percent Grade 0.522 1.106 0.000 0.000 0.000 0.491 10.000
# Intersections 0.931 1.416 0.000 0.000 1.000 1.000 17.000
Lane Width 11.695 0.502 10.000 11.000 12.000 12.000 12.000
Shoulder Width 4.083 3.301 0.000 0.000 4.000 7.000 20.000
Surface Width 30.196 10.632 20.000 22.000 24.000 36.000 82.000
Speed Limit 39.835 9.331 25.000 35.000 40.000 50.000 60.000
%age Truck Traffic 6.110 5.871 0.000 0.000 6.000 10.000 40.000
Million Vehicle Miles Travelled 0.794 1.272 0.003 0.154 0.366 0.891 20.258
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.000
.448 1.000
.426 -0.353 1.000
.142 -0.023 0.188 1.000
.094 -0.070 0.085 -0.049 1.000
Table 25. Ohio Correlations

# Crash # 
Curves

Avg 
Curve 
Length

Avg 
Curve 
Degree

# 
Grades

Avg 
Grade 
Length

Avg % 
Grade

# I-sect Lane 
Width

S
W

# Crashes 1.000
# Curves 0.054 1.000
Avg Curve Length 0.010 0.485 1.000
Avg Curve Degree -0.013 0.362 0.200 1.000
# Grades 0.101 0.388 0.192 0.108 1.000
Avg Grade Length 0.034 0.285 0.194 0.101 0.453 1.000
Avg % Grade 0.032 0.314 0.202 0.130 0.696 0.705 1.000
# Intersections 0.441 0.194 0.096 0.055 0.252 0.115 0.161 1.000
Lane Width 0.080 -0.147 -0.063 -0.065 -0.113 -0.048 -0.111 -0.009 1.000
Shoulder Width -0.101 0.034 0.106 -0.020 0.039 0.037 0.032 -0.039 -0.125 1
Surface Width 0.139 -0.150 -0.122 -0.051 -0.140 -0.091 -0.139 -0.018 0.470 -0
Speed Limit -0.108 0.144 0.169 0.021 0.137 0.112 0.112 -0.014 -0.160 0
%age Truck Traffic -0.093 -0.050 -0.032 -0.025 -0.051 -0.034 -0.060 -0.069 0.071 0
ln MVMT 0.662 0.146 0.100 -0.003 0.233 0.108 0.126 0.558 0.021 0
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.000
.543 1.000
.481 -0.382 1.000
.099 -0.056 0.180 1.000
.201 -0.239 0.257 -0.018 1.000
Table 26. Washington Correlations

# Crash # 
Curves

Avg 
Curve 
Length

Avg 
Curve 
Degree

# 
Grades

Avg 
Grade 
Length

Avg % 
Grade

# I-sect Lane 
Width

S
W

# Crashes 1.000
# Curves 0.166 1.000
Avg Curve Length -0.004 0.317 1.000
Avg Curve Degree 0.012 0.413 0.219 1.000
# Grades 0.286 0.361 0.107 0.125 1.000
Avg Grade Length 0.018 0.108 0.122 0.010 0.097 1.000
Avg % Grade 0.042 0.152 0.120 0.129 0.274 0.189 1.000
# Intersections 0.392 0.127 -0.024 0.022 0.353 -0.011 0.008 1.000
Lane Width -0.096 -0.112 -0.029 -0.065 -0.100 -0.032 -0.043 -0.039 1.000
Shoulder Width 0.070 0.047 0.115 -0.041 0.034 0.079 -0.000 -0.062 -0.242 1
Surface Width -0.054 -0.152 -0.123 -0.042 -0.136 -0.102 -0.083 -0.003 0.483 -0
Speed Limit 0.045 0.048 0.107 -0.115 0.072 0.097 -0.036 -0.144 -0.190 0
%age Truck Traffic -0.051 -0.040 0.011 -0.096 -0.008 0.030 -0.040 -0.005 0.034 0
ln MVMT 0.535 0.314 0.156 0.007 0.519 0.105 0.080 0.319 -0.155 0
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