FINAL 2007 AQMP APPENDIX V

MODELING AND ATTAINMENT DEMONSTRATIONS

JUNE, 2007

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT GOVERNING BOARD

C1 '	
Chairman:	
Unan man.	

WILLIAM A. BURKE, Ed.D. Speaker of the Assembly Appointee

Vice Chairman:

S. ROY WILSON, Ed.D. Supervisor, Fourth District Riverside County Representative

MEMBERS:

MICHAEL D. ANTONOVICH Supervisor, Fifth District Los Angeles County Representative

BILL CAMPBELL Supervisor, Third District Orange County Representative

JANE W. CARNEY Senate Rules Committee Appointee

RONALD O. LOVERIDGE Mayor, City of Riverside Cities Representative, Riverside County

GARY OVITT Supervisor, Fourth District San Bernardino County Representative

JAN PERRY Councilmember, City of Los Angeles Cities Representative, Los Angeles County, Western Region

MIGUEL A. PULIDO Mayor, City of Santa Ana Cities Representative, Orange County

TONIA REYES URANGA Councilmember, City of Long Beach Cities Representative, Los Angeles County, Eastern Region

VACANT Governor's Appointee

DENNIS YATES Mayor, City of Chino Cities Representative, San Bernardino County

EXECUTIVE OFFICER:

BARRY R. WALLERSTEIN, D.Env.

CONTRIBUTORS

Elaine Chang, DrPH Deputy Executive Officer Planning, Rule Development and Area Sources

Laki Tisopulos, Ph.D., P.E. Assistant Deputy Executive Officer Planning, Rule Development and Area Sources

Joseph Cassmassi Planning & Rules Manager Planning, Rule Development and Area Sources

Kevin Durkee Mark Bassett Kathy Hsiao Bong-Mann Kim Satoru Mitsutomi Chris Nelson Zorik Pirveysian Jill Whynot Susan Yan Zhang, Xinqiu

<u>Production</u> Faye Thomas Donna Vernon

CALIFORNIA AIR RESOURCES BOARD

Linda Murchison Division Chief Technical Support Division

John DaMassa Branch Chief Kurt Karperos Branch Chief

Bruce Jackson LucilleVan Ommering Sylvia Oey

Table of Contents

CHAPTER 1 Modeling Overview

V-1-1
V-1-1
V-1-2
V-1-4
V-1-4
V-1-6
V-1-7
V-1-8
V-1-9
V-1-10
V-1-10
V-1-12
V-1-12
V-1-13
V-1-13
V-1-13
V-1-13
V-1-14
V-1-14
V-1-14
V-1-15

CHAPTER 2 The Federal PM2.5 Attainment Demonstration Plan

Introduction	V-2-1
PM2.5 Data: MATES-III and FRM	V-2-2
MATES-III Monitoring	V-2-2
MATES-III Speciated Data	V-2-3
FRM PM2.5	V-2-10
Sandwich and Speciated Monitored Attainment (SMAT)	V-2-12
Sandwich	V-2-12
SMAT	V-2-15
CAMx and MM5 Overview	V-2-15
Modeling Domain	V-2-15
Boundary, Top Conditions	V-2-16

MM5 Simulations	V-2-18
Emissions Inventory	V-2-19
Paved Road Dust Emissions Uncertainties	V-2-22
PM2.5 Split Profiles and Ammonia Inventory Adjustments	V-2-23
Base-Year Annual Simulations	V-2-24
PM2.5 Component Species Performance Evaluation for the	
MATES-III Sites	V-2-25
Annual Average SSI Mass Performance Evaluation	V-2-47
Base Year Model Performance Stress Test Evaluation	V-2-47
Future Air Quality	V-2-48
SMAT Annual PM2.5 Attainment Demonstration	V-2-52
2015 CAMx Grid-Cell Evaluation	V-2-54
SMAT 24-Hour PM2.5 Attainment Demonstration	V-2-54
Weight of Evidence	V-2-59
Air Quality Trends	V-2-59
Emissions Trends	V-2-60
Mobile Source Emissions and VMT	V-2-62

CHAPTER 3 The Federal 24-Hour PM10 Attainment Demonstration Plan and Visibility Assessment

Introduction	V-3-1
Modeling Methodology	V-3-1
Future Year Air QUality	V-3-2
PM10 24-hour Attainment Demonstration	V-3-2
PM10 Annual Analysis	V-3-2
Visibility	V-3-4
Background	V-3-4
Visibility Modeling	V-3-4
Prior Visibility Modeling Results	V-3-5
Predicted Future Air Quality	V-3-6
Future Visibility Projections	V-3-6
Future Light Extinction Budgets at Riverside	V-3-8

CHAPTER 4 Revision to the 2003 Ozone Attainment Demonstration Plan

Introduction	
Model Selection	V-4-2
Modeling Approach	V-4-3
Federal 8-Hour Ozone Standard Requirements	V-4-4
California Requirements and Population Exposure	V-4-6
Emissions Summary	
Introduction	
Historical Baseline Emissions	V-4-9
Future Controlled Emissions	V-4-10
Episode Selection	V-4-11
Conceptual Model of an 8-Hour Ozone Episode	V-4-12
Statistical Episode Characterization and Ranking	
Model Input Preparation	
Boundary and Top Air Quality Concentrations	
Future Boundary, Top and Initial Air Quality Conditions	
Meteorological Models	V-4-19
Base-Year Perfomance Evaluation	V-4-24
Statistical Evaluation	V-4-25
Graphical Evaluation	V-4-32
Effect of Emissions Uncertainties	
Ozone Air Quality Projections	V-4-45
Graphical Distribution	
Projection of 2018 Air Quality in the Coachella Valley	
Sensitivity Studies: Model Performance and CEQA	
Weight of Evidence	
C	

CHAPTER 5 Summary and Conclusions

Comparison to State and Federal StandardsV	-5-1
Basin Emissions Carrying Capacity (Emissions Budget)V	-5-1

REFERENCES

CHAPTER 1 MODELING OVERVIEW

Introduction Modeling Methodology Uncertainties Associated with the Technical Analysis Document Organization

INTRODUCTION

This appendix to the Final 2007 AQMP provides the details of the modeling attainment demonstrations presented in Chapter V of the main document. The federal Clean Air Act (CAA) sets forth specific criteria to use air quality simulation modeling techniques to estimate future air quality in areas that do not meet the air quality standards. This Final 2007 AQMP provides future year attainment demonstrations for two new pollutants: 8-hour average ozone and both annual and 24-hour average PM2.5.

The South Coast Air Basin (Basin) is currently designated nonattainment for PM2.5, ozone (8-hours), PM10 (24-hours) and carbon monoxide. On February 24, 2006, CARB forwarded the District's request to U.S. EPA to redesignate the Basin attainment for carbon monoxide. Air quality monitoring data measured from 2001 through 2005 indicated that the standard had been achieved and currently continues to be met. Future year projections of CO provided in the 2003 AQMP and projections from CARB's EMFAC2002 emissions model were used to support the redesignation request and provide the basis for a CO maintenance plan for the Basin. EPA's final approval of the redesignation request is currently pending.

Similarly, on October 17, 2006, the Federal Register codified EPA's decision revoking the annual PM10 standard. The action left the 24-hour average PM10 standard in place. The Basin has not experienced any violations of 24-hour average PM10 standard except during a few special events. The District has yet to seek redesignation to attainment for PM10 however it will pursue such a request in the near future. Regardless, the Final 2007 AQMP will provide an updated attainment demonstration for 24-hour average PM10 to serve as the basis for a future maintenance plan.

The 2003 modeling attainment demonstrations served as an update of the 1997 AQMP ozone, PM10 and carbon monoxide plans for the South Coast Air Basin and other portions of the Southeast Desert Modified Nonattainment Area that are under the District's jurisdiction and were submitted as part of the California SIP. The Final 2007 AQMP provides attainment demonstrations for 8-hour ozone and PM2.5 and provides similar linkage to the 2003 1-hour ozone and PM10 attainment demonstrations. This plan reflects the updated emissions baseline and future year estimates, new technical information and enhanced air quality modeling techniques and episodes.

Attainment Designation and Control Strategy

The Basin is currently designated nonattainment for PM2.5, and severe-17 nonattainment for ozone. The District will request that U.S. EPA accept a voluntary reclassification for the Basin from "Severe-17" to "Extreme" nonattainmnet through the Governing Board's adoption of this Final AQMP and resolution. This action will enable

the use of long-term measures in the control strategy and extend the attainment date to June 15, 2024. In addition, the District will request that U.S. EPA accept a voluntary reclassification for the Coachella Valley portion of the Salton Sea Air Basin from "Serious" to "Severe-15" nonattainment to extend the attainment date to June 15, 2018.

PM2.5 and ozone, are linked to common precursor emissions. The District's goal is to develop an integrated control strategy which: 1) ensures that ambient air quality standards for all criteria pollutants are met by the established deadlines in the federal Clean Air Act (CAA); and 2) achieves an expeditious rate of reduction towards the state air quality standards. The overall control strategy is designed so that efforts to achieve the standard for one criteria pollutant do not cause unnecessary deterioration of another. A two-step modeling process has been conducted for the 2007 AQMP. First, future year annual and 24-hour average PM2.5 is simulated to demonstrate attainment by 2015. The future year 8-hour average ozone emissions control strategy then builds upon the PM2.5 strategy to demonstrate attainment of the federal standard in the downwind Coachella Valley by 2018 and the Basin by 2024. This two-step approach is described in Chapter 4 of the main document and the control measures are extensively discussed in Appendices IVA, IVB and IVC. The two-step approach is also consistent with the approach used in the 2003 AQMP to first demonstrate attainment in 2006 of the PM10 standard and subsequent attainment of the 1-hour average ozone standard in 2010.

Model Selection

During the development of the 2003 Plan, the District convened a panel of seven experts to independently review the regional air quality modeling conducted for ozone and PM_{10} . The focus of the panel's review was to provide guidance in the selection of an appropriate meteorological-air quality dispersion platform for the attainment analysis. At that time, District and CARB modeling staff were evaluating three potential models for application using SAPRC99 chemistry: California Photochemical Grid Model (CALGRID) [Yamartino, et. Al, 1989], the Comprehensive Air Quality Model with Extensions (CAMx) [Environ, 2002], and the Urban Airshed Model (UAM) [EPA, 1990]. The performance of the three models varied with only UAM displaying the capacity to closely recreate the peak 1-hour average ozone concentrations observed for the August 5, 1997 meteorological episode. The performance of the CAMx and CALGRID simulations was similar and although they under-predicted peak concentrations, model output provided a better characterization of the spatial distribution of ozone in the Basin.

In general, the recommendations of the panel members supported the use of the UAM modeling platform for the 2003 attainment demonstrations, primarily based upon the District staff's familiarity with the model and that goal of recreating the regional peak ozone concentrations was critical. They also recommended that a relative reduction

approach be applied to the performance of CAMx and CALGRID to see if future year emissions reductions would be consistent with the UAM projected rates of reduction. Most important, the consensus of the panel was for the District to move from UAM to the more current state-of-the-art dispersion platforms and chemistry modules. Among the recommended candidates were the Community Multiscale Air Quality Model (CMAQ) [USEPA, 1999] and CAMx both coupled with SAPRC99 chemistry and the prognostic Pennsylania State University / National Center for Atmospheric Research Mesoscale Model Version 5 (MM5) [Grell,et. al., 1994]. Both CAMx and CMAQ can simulate ozone and PM2.5 concentrations together in a "one-atmosphere" approach and in response to the expert panel recommendations, District and CARB staff has selected CAMx as the primary regional dispersion modeling platform for the attainment demonstrations.

Table V-1-1 provides a summary comparison of the modeling technology used in the 2003 and Final 2007 AQMP's.

TABLE V-1-1

Comparison of Modeling Methodologies used in the 2003 and Final 2007 AQMP

Mechanism	Ozone		P	M2.5
	2003 AQMP	Final 2007 AQMP	2003 AQMP	Final 2007 AQMP
Dispersion Platform	UAM-IV	CAMx	UAM-IV	CAMx
Chemistry	SAPRC99	SAPRC99	AERO-LT/ CB-IV	PMCAMx "One Atmosphere"
Meteorology	CALMET/ Hybrid	MM5/FDDA	Diagnostic Wind Model	MM5
Mobile Emissions	EMFAC2002	EMFAC2007	EMFAC2002	EMFAC2007
Boundary	EPA "Clean"/ SCOS97	WRAP-CAMx- GEOCHEM	Modified EPA "Clean"	WRAP-CAMx- GEOCHEM

The following sections provide a brief overview of the PM2.5, PM10 and ozone modeling methodologies. Wherever possible, the Draft Modeling Protocol will be used

as a reference document to avoid duplicating presentation material. Draft Modeling Protocol is included in this Appendix as Attachment 1.

MODELING METHODOLOGY

Design Values and Relative Response Factors (RRF)

The Final 2007 AQMP modeling approach to demonstrate attainment of the air quality standard relies heavily on the use of design values and relative response factors (RRF, previously referred as relative reduction factors) to translate regional modeling simulation output to the form of the air quality standard. Both ozone and PM2.5 have standards that require three consecutive years of monitored data, averaged by a designed form, to assess compliance. In the case of ozone, compliance to the standard is determined from a three year average of the 4th highest daily ozone 8-hour average concentration. The PM2.5 annual design value is determined from quarterly average PM2.5 concentrations, averaged by year, for a three year period. For the 24-hour average PM2.5 design value, the 98th percentile daily concentration sampled from a year is selected and then averaged for a three year period. The complexity of the design values does not lend itself to a direct attainment demonstration that relies on explicit air quality model simulation predictions of future air quality based on one or several meteorological episodes.

Design Value Selection

EPA guidance recommends the use of multiple year averages of design values, where appropriate, to dampen the effects of single year anomalies to the air quality trend due to factors such as adverse or extremely favorable meteorology or radical change in the local emissions profile. For Basin 8-hour average ozone, the trend of the design values, each calculated using 3-years of data (depited in Figure V-1-1a.) is relative unchanged between 2001 and 2005. Given this configuration, a three-year weighted average of the design values is representative of the design value centered around 2002, the preferred year for the baseline inventory development and is used in the ozone attainment demonstration.

The trend in the Basin PM2.5 design values (also calculated using 3-years of data) from 2001 through 2005 (Figure 5-1b) is significantly different from ozone, depicting a sharp reduction in concentration over the period. The design value for 2001 is $30.1 \mu g/m3$ while the 2005 design value (based on data from 2003, 2004 and 2005) is $22.6 \mu g/m3$.

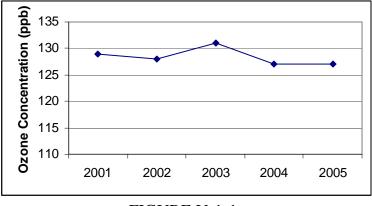


FIGURE V-1-1a

South Coast Air Basin 8-Hour Ozone Design Values (Each value represents the 3-year average of the 4th highest ozone concentration)

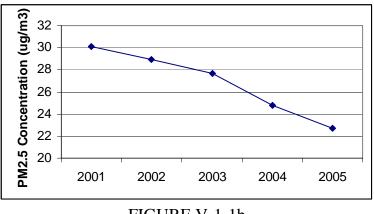


FIGURE V-1-1b

South Coast Air Basin Annual PM2.5 Design Values (Each value represents the 3-year average of the highest annual average PM2.5 concentration)

The reduction of seven and one half micrograms per cubic meter occurred for the same meteorology as the ozone design trend. Similar reductions can be observed in the component contributions of nitrate and sulfate in the PM10 FRM data over the same period. Since the trend in PM2.5 is steadily moving in the direction of air quality improvement, it is more reasonable to use a representative design value that is not locked in a multiple year average that_overly reflects data that are not consistent with the current air quality trend. The 2005 design value includes the speciated data (monitored in 2005) that is used in the attainment demonstration. Furthermore, if the preliminary 2006 PM2.5 data are included in the analysis, the 2006 PM2.5 design would value 20.7 μ g/m³. The revise weighted design value centered around 2005 (including data from 2003)

through 2006) would be 22.7 μ g/m³, essentially the same value as the 2005 design of 22.6 μ g/m³. To reflect the ambient trend of PM2.5 and preserve data consistency, the PM2.5 attainment demonstration is based on the 2005 design value.

Relative Response Factors and Future Year Design Values

To bridge the gap between air quality model output evaluation and applicability to the health based air quality standards, EPA guidance (EPA, 2006) has proposed the use of relative response factors. The RRF is simply a ratio of future year predicted air quality with the control strategy fully implemented to the simulated air quality in the base year. The attainment demonstration consists of multiplying the non-dimensional RFF to the base year design value to predict the future year design value. Thus, the simulated improvement in air quality, based on one or more meteorological episodes, is translated as a metric that directly determines compliance in the form of the standard. EquationsV-1 and V-2 summarize the calculation.

Eq. V-1.

 RRF_i = Future-Year Model Prediction_i / Base-Year Model Prediction_i

where i is the pollutant or species

Eq V-2.

Attainment Demonstration

 $= \sum RRF_i X Design Value_i \le Air Quality Standard$

The modeling analyses described above use the RRF and design value approach to demonstrate future year attainment of the standards.

PM2.5

The Final 2007 AQMP employs CAMx using the "one atmosphere" approach comprised of the CB-IV gas phased chemistry and a static two-mode particle size aerosol module as the particulate modeling platform. The analysis follows EPA's recommended speciated modeling attainment test (SMAT), whereby model simulations for the base and futureyear controlled emissions are used to generate RRFs at selected sites where monioting data is available for individual species. The site and species specific RRFs are calculated on a quarterly basis and then applied to quarterly desing values to determine attainment. The procedure is significant departure from the 2003 AQMP where a direct deterministic approach was used to directly calculate future year PM2.5 from model output.

In the 2003 AQMP the UAMAERO-LT model was used to simulate annual average Basin concentrations of PM2.5 and PM10. UAMAERO-LT model was a simplified version of the UAM-AERO model. The detailed thermodynamic routine (ISOROPIA) of the UAM-AERO model was replaced with the parameterized inorganic gas/aerosol partitioning module. The secondary organic aerosol formation scheme was replaced with a condensed version of the Carnegie Melon University (CMU) secondary organic aerosol module. The CMU module treats organic products as semi-volatile species and employs an equilibrium approach to the gas/aerosol partitioning of these species. In addition, the detailed particle-sizing scheme used in the UAM-AERO model was also replaced by an observation-based, two size (fine and coarse) particle-sizing scheme for secondary aerosols. UAMAERO-LT utilized a full Carbon Bond IV gas-phase chemical mechanism to simulate the formation of particulate nitrate, sulfate, ammonium, organic carbon, elemental carbon and other primary particles. By implementing the fine and coarse particle-sizing scheme for secondary aerosols, the 2003 AQMP was able to provide a first look at future year PM2.5 and the initial required emissions reductions that would be needed to attain the proposed federal standard.

The preliminary PM2.5 modeling approach crafted for the 2007 AQMP was to move the empirical AERO-LT chemistry from the UAM to CAMx to take advantage of the advanced dispersion platform. Parallel testing was conducted to evaluate the CAMx/AERO-LT performance against CAMx using the "one atmosphere" approach comprised of the the CB-IV chemistry and a static two-mode particle size aerosol module. The results of the analysis indicated that the two model/chemistry packages were performing similarly and that the speed of simulating an annual average using CAMx "one atmosphere" was approximately equal to that of the AERO-LT combination. As a consequence, the PM2.5 modeling approach shifted to the use of the CAMx "one atmosphere" as the primary tool.

Annual PM2.5 Modeling Approach

In the Final 2007 AQMP, CAMx annual average PM2.5 modeling simulations were generated for 2005, 2014 and 2020 baseline emissions and 2014 and 2020 controlled emsissions scenarios. The 2005 CAMx simulation was conducted using baseline monthly temperature and humidity corrected emissions, for a weekday, Saturday and Sunday activity profile. Seasonal boundary conditions were extracted from the Western Regional Air Partnership (WRAP) regional modeling simulations (initialized from global air quality model output) in support of the Regional Haze Rule demonstrations. The simulations were driven by MM5 meteorological fields; five day-simulations with a one day "ramp-up" period using NCEP model inintialzation.

CAMx simulations used the same region (5 km squared grid, 280 easting and 3650 northing, 65 by 40 grid cells) as that used for the 2003 UAMAERO-LT analyses. The vertical structure was increased to 11 layers (compared with the 5-layer analysis of UAMAERO-LT), but less than the 19 layers used for the MM5 simulations in an effort to conserve computational resources. MM5 was used to generate the meteorological profile for each day in 2005. The MM5 simulations were generated for the larger SCOS97 modeling domain employing a 5 km square grid and fit to the smaller PM2.5 grid. The MM5 simulations were initialized from NCEP analyses and run for 5-day increments without the four-dimensional-data-assimilation (FDDA) option.

Speciated PM2.5 data measured from the District's Multiple Air Toxic Evaluation Program (MATES-III) during 2005 provided the characterization for evaluation and validation of the CAMx annual and episodic demonstrations. A brief summary of the MATES-III field program and a detailed description of the data is provided in Chapter 2. Model performance was evaluated against monitored particulate PM2.5 air quality data for six species (ammonium, nitrates, sulfates, organic carbon, elemental carbon, and primary) and total particulate mass. Annual data from eight MATES-III monitoring sites, including Los Angeles, Anaheim, Wilmington, Long Beach, Compton, Burbank, Rubidoux, and Fontana, were used in the validation. The future year attainment demonstration based on a control strategy that would be fully implemented by January 1, 2015.

Future year PM2.5 air quality (2014 and 2020) was determined using site and species specific RRF's applied to 2005 PM2.5 design values per EPA guidance documents. The quarterly RRF's were calculated from the controlled 2014 simulation and the 2005 baseline simulation. The design values were determined from the federal reference method Size Selective Inlet (SSI) High-Vol PM2.5 data measured at the District's air monitoring network from 2003-2005. The SSI PM2.5 design values were calculated by quarter then apportioned by species based on the distribution observed in the MATES-III data.

Episodic 24-Hr Average PM2.5 Modeling Approach

Per PM2.5 guidance, two options are provided to determine RRFs for the future year 24hour average PM2.5 attainment demonstration. The first option uses episodic modeling with day-specific emissions for representative meteorological episodes to calculate RRFs and apply the RRF to the design value. The second approach proposed by EPA relies on an average response to implementation of emissions control for the top 25 percentile of days in each quarter of the annual model simulation.

The maximum 24-hour PM2.5 design value (based on 2003-2005 data) for the Basin (64.8 μ g/m³) meets the current federal standard. Of great interest is how will the 24-

hour PM2.5 concentration fair compared to the new standard of 35 μ g/m³ when that standard become effective in 2010. On the basis of our initial simulations and analysis, the District staff feels that the future design calculation based on the top 25 percentile day, quarterly is more conservative than the episodic modeling. AQMD recommends the use of the 25 percentile approach.

Episodic Simulations

The first approach to determine future year 24-hour maximum or 98th percentile PM2.5 impacts relied on the simulation of one or more representative peak PM2.5 epsiodes where observed concentrations exceed 65 μ g/m³. The peak PM2.5 24-hour average concentration observed in the Basin during the 2005 MATES-III monitoring program (110 μ g/m³ at Rubidoux) occurred on October 22, 2005. Episode specific emissions for the peak and preceding days were temperature and humidity corrected and MM5/FDDA simulations were generated to provide the meteorological imput.

Quarterly Top 25 Percentile

For this approach, the 2005 observational data are sorted by quarter of year and further into the top 25 percent of days in each quarter. PM2.5 RRFs are calculated on a quarterly basis from the future and base year annual simulations for only those days in the top 25 percentile per quarter. The quarterly RRFs for the "top 25 percent days" are then applied to the quarterly 24-hour average PM2.5 design values to develop quarterly future year design values which are later aggregated into an annual 24-hour future year design value to assess attainment. (The measured quarterly 24-hour average PM2.5 design values were comprised of the 98th percentile data in each quarter for the years 2003, 2004 and 2005). Several variations of the episodic and quarterly top 25 percentile future year calculations were conducted and are presented and discussed in Chapter 2.

PM10

As previously discussed, on September 21, 2006 the U.S. EPA administrator signed the final documents that eliminated the existing annual PM10 standard. The action retained 24-hour PM10 standard at its existing concentration of 150 μ g/m³. The form of the 24-hour PM10 standard allows for one violation of the standard annually. The Basin currently meets the 24-hour average federal standard however, no petition to EPA to redesignate the Basin as attainment status has been submitted. (The only days that exceed the standard are associated with high wind natural events or exceptional events due to wildfires).

For this analysis, the annual second maximum concentration is used for the attainment demonstration (given the standard allows for one violation annually). Riverside-Rubidoux has been the PM10 24-hour design site in nine of the past ten years when high

wind days have been excluded from the analysis. The 2005 design value at Rubidoux is 86 percent of the federal standard. The standard attainment demonstration is conducted to assure that the Basin will continue to be in compliance in future years.

As a conservative analysis, only emissions reductions associated with the PM2.5 portion of the 24-hour PM10 concentration are assumed to be impacted by future year emission controls. Future year predictions of maximum and second maximum 24-hour average PM10 are calculated using the site specific annual average PM2.5 RRFs applied only to the PM2.5 portion of the PM10 design concentration. The average PM2.5 RRFs calculated from the eight sites, for 2005 to 2014, are applied to the fine portion of the 24-hour PM10 distribution for sites other than the MATES-III, which do not have the PM2.5 speciation. The coarse portion of the PM10 is assumed to be held constant in this analysis. The predicted reductions to the fine portion are then added to the coarse to estimate a 2015 second maximum PM10 24-hour average concentration.

OZONE

The CAA requires that ozone nonattainment areas designated as serious and above use a photochemical grid model to demonstrate attainment. CAMx was selected as the modeling tool used in the Final 2007 AQMP ozone modeling attainment demonstration. CAMx is an urban scale, three-dimensional, grid-type, numerical simulation model. For the Final 2007 AQMP, CAMx has been coupled with SAPRC99 gaseous chemistry for the ozone attainment demonstration. Although CAMx was not used as the primary modeling tool, CAMx simulations provided supporting documentation for the 2003 AQMP ozone attainment demonstration. In addition, as prevouly discussed, CAMx is one of the modeling platforms recommended by the peer review.

Modeling Approach

CAMx simulations were conducted using a Lambert Confromal projection over the 5 km squared grid SCOS97 modeling domain. The modeling analyses were run using 16 vertical layers up to 5000 m above ground level.

CAMx simulations were generated for six meteorological episodes including one period in 2004, four periods in 2005 and one in 1997. Table V-1-2 provides a comparison for the meteorological episodes evaluated in the current and preceding attainment demonstrations. The August 1997 SCOS97 meteorological episode was retained for this analysis to provide a bridge from the 2003 AQMP attainment demonstration. The five episodes observed in 2004 and 2005 occurred during MATES-III, a period of enhanced air quality monitoring in the Basin. Supporting MATES-III, the District operated three radar wind profilers in the Basin, with radio acoustic sounding systems and also enhanced its Photochemical Assessment Monitoring Stations (PAMS) programs. Additional profiler data was obtained from operating sites in Ventura and San Diego Counties.

TABLE V-1-2

Comparison of Ozone Meteorological Epsiodes used in the 2003 and Final 2007 AQMPs

2003 AQMP	Final 2007 AQMP
August 4-7, 1997	August 4-7, 1997
	August 4-8, 2004
	May 17-24, 2005
	July 14-19, 2005
	August 2-9, 2005
	August 25-29, 2005

Selection of episodes from 2004 and 2005 was also made to avoid the fuel commingling associated with the Phase III California Fuel Reformulation where the primary oxygenate was changed from MTBE to ethanol. Commingling of ethanol and non-ethanol based fuels leads to enhanced evaporative VOC emissions and thus more ozone. Quantification of the amount of commingling taking place on a daily or episodic basis was nearly impossible. Implementation of the fuel switch from MTBE to ethanol took place in California during 2003 and was assumed to be completed by December 31, 2003. Selecting meteorological episodes post 2003 reduced the uncertainty associated with the estimation of the VOC emissions inventory due to commingling.

The meteorological fields used for the CAMx ozone simulations were generated using MM5 with the FDDA option. The meteorological fields were developed using a Lambert Conformal grid adapted for the the SCOS97 modeling domain. MM5 was simulated using 34 vertical layers and simulations were initialized using the NCEP global weather forecast model analysis. The MM5 fields were post-processed to layer-averaged winds to the levels defined for the CAMx simulations and to adjust coordinates to the UTM system.

Day-specific point, mobile and area emissions inventories were generated for each meteorological episode. Mobile source emissions were temperature corrected by grid

using a VMT weighted scheme. County-wide area source emissions were temperature corrected and gridded using the spatial emissions surrogate profiles developed for the 2003 AQMP. A more detailed description of the meteorological episode selection, meteorological modeling and validation and the episodic emissions inventory development is presented in Chapert 4.

Application of RRF's

Unlike the regional ozone modeling conducted for the 2003 AQMP that based the attainment demonstration on the direct results of a future year simulations, the procedure for determining future year attainment of the 8-hour ozone standard for the Final 2007 AQMP relies on the use of site specific RRF's determined from a series of simulations for the 2002 and 2023 controlled emissions. The basic procedure is outlined earlier in this chapter. The ozone attainment demonstration is anchored by the 2002 base-year emissions. The meteorological episodes are first validated based on model performance using day-specific emissions for each base-case (e.g. 1997, 2004 or 2005). The suites of validated episodes are then simulated using the 2023 controlled and 2002 emissions to determine a site specific average set of RRFs. The site specific RRF is applied to the 2002 design value to determine whether attainment has been satisfied.

A minimum of 5-episode days are recommended to determine the site specific RRF. The evaluation requires that the model performance for the day is within specific performance goals including observation with 25 percent of the station design value, absolute prediction accuracy within 25 percent and that a minimum observed concentration at each site 85 ppb or greater. If a site did not meet the 5-day threshold, either the average of the RRFs for all Basin sites or the calculated RRF from the 19 days simulated was applied to estimate the future design value. In this situation, the lesser reduction value (i.e., higher ratio of 2003 ozone divided by 2002 ozone) was used as the representative RRF for future year design calculation. Per EPA modeling guidance, since the CAMx regional modeling is based on a 5 km squared grid, the ozone performance evaluation and peak RRF calculation within a 15 km radius of the grid hosting the observation. (Data are evaluated for a 7 X 7 grid area).

UNCERTAINTIES ASSOCIATED WITH THE TECHNICAL ANALYSIS

As with any plan update there are uncertainties associated with the technical analysis. The following paragraphs describe the primary contributors to such uncertainties as well as some of the safeguards buildt in to the air quality planning process to manage and control such uncertainties.

Demographic and Growth Projections

Uncertainties exist in the demographic and growth projections for the future base years. As projections are made to longer periods (i.e., over ten or more years), the uncertainty of the projections become greater. Examples of activities that may contribute to these types of uncertainties include the rate and the type of new sources locating in the Basin and their geographic distribution, future year residential construction, military base reuse and their air quality impact, and economic prosperity.

Input Elements to Air Quality Models

In addition to the above, there are also uncertainties in the technical information gathered for the air quality analysis. There are three major input elements associated with any air quality modeling analysis: ambient air quality monitoring data; meteorological measurements; and emissions inventory. All three input elements have various levels of uncertainties impacting the technical analysis.

Ambient Air Quality Monitoring Data

Generally, ambient air quality measurements are within plus or minus half of a unit of measurement (e.g., for ozone usually reported in units of part-per-billion (ppb) would be accurate to within \pm 5 ppb). Due to this uncertainty, the Basin's 8-hour attainment status based on ambient monitoring data would be achieved if all ozone monitors reported ozone concentration levels less than or equal to 84 ppb. Similar uncertainty is observed in particulate data measurements and laboratory analysis. For example, PM2.5 is comprised of six primary constituents (NH4⁺, NO3, SO4⁻, OC, EC and crustal), as well as bonded water and total mass. Each of the primary species has individual uncertainty associated with the laboratory analysis procedure used to analyze concentration, the type of filter media to collect the sample and the total mass can be affected by minor changes in the volumetric flow that fall within the approved instrument calibration range. As a consequence, the sum of the total species may not add up to or may exceed the filter measured mass.

Meteorological Measurements

Air Quality models have to rely on reliable meteorological input data to accurately simulate future ambient concentration levels. There are uncertainties associated with meteorological model input parameters, such as initializations from National Weather Service global and hemispheric simulations, or satellite estimates of ground level temperature and moisture. Direct measurements of instantaneous wind speeds and directions at varying levels above ground require averaging to hourly values before they

can be assimilated into the numerical analyses. Layer averaging of model ouput reduces the sensitivity of the model to changing patterns in the vertical structure.

Emissions Inventory

As discussed in Chapter 3 of the main document, large uncertainties in the mobile source emissions inventory estimates have been observed as evident with the latest EMFAC2007 release. On-road mobile source emission estimates have increased with each new EMFAC release. On-road mobile source emissions have inherent uncertainties also with the current methodologies used to estimate vehicle activity such as vehicle miles traveled, the impacts of fuel additives such as ethanol and day-of-week diurnal profiles of traffic volume. Stationary (or point) source emission estimates have less associated uncertainties compared to area source emission estimates. Major stationary sources report emissions annually whereas area source emissions are, in general, estimated based on production or usage information. Area source emissions including paved road dust and fugitive dust have significant uncertainties in the estimation of particulate ($PM_{2.5}$) emissions due to the methodologies used for estimation, temporal loading and weather impacts.

Air Quality Models

The air quality models used for ozone and particulate air quality analysis are state-ofthe-art, complex 3-dimensional models that utilize 3-dimensional meteorological models, complex chemical mechanisms that accurately simulate ambient reactions of pollutants and sophisticated numerical methods to solve complex mathematical equations that lead to the prediction of ambient air quality concentrations. While air quality models progressively became more sophisticated in employing improved chemical reaction modules that more accurately simulate the complex ambient chemical reaction mechanisms of the various pollutants, such improved modules are still based on limited experimental data which carry associated uncertainties. In order to predict ambient air quality concentrations, air quality models rely on the application of sophisticated numerical methods to solve complex mathematical equations that govern the highly complex physical and chemical processes that also have associated uncertainties.

Are There Any Safeguards Against Uncertainties?

Yes. While completely eliminating uncertainties is an impossible task, there are a number of features and practices build-into the air quality planning process that manage and control such uncertainties and preserve the integrity of an air quality management plan.

The concerns regarding uncertainties in the technical analysis are reduced with future AQMP revisions. Each AQMP revision employs the best available technical information available. Under state law, the AQMP revision process is a dynamic process with revisions occurring every three years. The AQMP revision represents a "snapshot in time" providing the progress achieved since the previous AQMP revision and efforts still needed in order to attain air quality standards.

Under the federal Clean Air Act, a state implementation plan (SIP) is prepared for each criteria pollutant. The SIP is not updated on a routine basis under the federal Clean Air Act. However, the federal Clean Air Act recognizes that uncertainties do exist and provides a safeguard if a nonattainment area does not meet an applicable milestone or attain federal air quality standards by their applicable dates. Contingency (or backstop) measures are required in the AQMP and must be developed into regulations such that they will take effect if a nonattainment area does not meet an applicable milestone or attainment date. In addition, federal sanctions may be imposed until an area meets applicable milestone targets.

In September 2006, U.S. EPA released an updated guidance document on the use of modeled results to demonstrate attainment of the federal ozone, PM2.5 and regional haze air quality standards. The guidance document recognized that there will be uncertainties with the modeling analysis and recommends supplemental analysis or weight of evidence discussion that corroborates the modeling attainment analysis where attainment is likely despite the modeled results which may be inconclusive. Table V-1-3, is taken directly from the modeling guidance document to illustrate the value of supplemental analyses. Where possible, the U.S. EPA recommends that at least one "mid-course" review of air quality, emissions and modeled data be conducted. A second review, shortly before the attainment date, should be conducted also. Statistical trend analyses can also provide support for assessing the likelihood for future year attainment. Such actions will occur in the South Coast Air Quality Management District.

DOCUMENT ORGANIZATION

This document provides the federal attainment demonstrations for PM2.5, PM10 and ozone. Chapter 2 provides the PM2.5 attainment demonstration to meet the 2015 attainment date. The discussion includes future year (2015 and 2021) particulate impacts for both PM2.5. Chapter 3 provides an update to the 24-hour average PM10 attainment demonstration and a brief discussion on the impacts of the control strategy to regional visibility. Chapter 4 presents the ozone attainment demonstration based on the CAMx modeling analyses. The ozone analysis includes a characterization of the episodic, base-year modeling performance, and future year attainment for the control strategy. As with the particulate analyses, a series of alternative emissions simulations are presented to test the sensitivity of the proposed control strategy. Weight of evidence

discussions for ozone and PM2.5 will be incorporated in Chapters 2 and 4 respectively in the final document. Chapter 5 presents the summary comparing predicted air quality to the state and federal standards and the projected 2014<u>5</u> PM2.5 and 2024 8-hour ozone carrying capacities. Table V 1-4 lists the Attachments to this document.

TABLE V-1-3

Results of Modeled Attainment Test			Supplemental Analyses
Ozone	Annual PM2.5	24-Hour PM2.5	
Future Design Value < 82 ppb, all monitoring sites	Future Design Value < 14.5 µg/m ³ , all monitoring sites	Future Design Value < 62 µg/m ³ , all monitoring sites	Basic supplemental analyses should be completed to confirm the outcome of the modeled attainment test
Future Design Value 82 - 87 ppb, at one or more sites/grid cells	Future Design Value $14.5 - 15.5$ μ g/m ³ , at one or more sites/grid cells	Future Design Value $62 - 67$ μ g/m ³ , at one or more sites/grid cells	A weight of evidence demonstration should be conducted to determine if aggregate supplemental analyses support the modeled attainment test
Future Design Value > 87 ppb, at one or more sites/grid cells	Future Design Value > 15.5 μ g/m ³ , at one or more sites/grid cells	Future Design Value > 67 μ g/m ³ , at one or more sites/grid cells	More qualitative results are less likely to support a conclusion differing from the outcome of the modeled attainment test.

Guidelines for Weight of Evidence Determinations (U.S. EPA, 2006)

TABLE V-1-4

Attachments

Number	Description	
	References	
Attachment-1	PM2.5 Annual and 24-Hour Attainment Calculations	
Attachment-2	Model Performance Statistics	
Attachment-3	Draft Modeling Protocol	
Attachment-4	Critiques of the Expert Reviewers	
Attachment-5	CEPA Source Level Emissions Reduction Summary for 2014: Annual Average Inventory	
Attachment-6	CEPA Source Level Emissions Reduction Summary for 2017: Annual Average Inventory	
Attachment-7	CEPA Source Level Emissions Reduction Summary for 2017: Planning Inventory	
Attachment-8	CEPA Source Level Emissions Reduction Summary for 2023: Annual Average Inventory	
Attachment-9	CEPA Source Level Emissions Reduction Summary for 2023: Planning Inventory	

CHAPTER 2 THE FEDERAL PM2.5 ATTAINMENT DEMONSTRATION PLAN

Introduction PM2.5 Data: MATES-III and FRM Sandwich and Speciated Monitored Attainment (SMAT) CAMx and MM5 Overview Emissions Inventory Base-Year Annual Simulations Future Air Quality Weight of Evidence

INTRODUCTION

As outlined in Chapter 1 of this document, the CAMx "one atmosphere" gas-aerosol modeling system was used to develop the regional PM2.5 attainment demonstration for the Final 2007 AQMP. The departure from the Urban Airshed Model with Linear Chemistry (UAM/LC) [Kumar, et al, 1995] modeling system was made to take advantage of CAMx's better-more mass consistent dispersion platform, integrated gas phase (CB-IV) and aerosol chemistry (two size partitioned) and readily incorporated numerical prognostic meteorological model data.

EPA guidance on PM modeling for attainment demonstrations requires the use of a regional dispersion model in combination with relative response factors. The speciated modeling attainment test (SMAT) relies on the use of modeled performance of individual particulate species in the base year and future year controlled scenarios to produce relative response factors to be applied to design year data. The CAMx output provides comprehensive characterization of the six key segments of the PM2.5 distribution (NH4+, NO3, SO4, organic carbon (OC), elemental carbon (EC), crustal, as well as nitric acid and the standard chemical mix associated with ozone production (O3, NO, NO2, CO, aldehydes, and VOC).

Particulate data measured in 2005 as part of the Multiple Air Toxics III (MATES-III) program provided the speciation of the PM2.5 samples. The MATES-III monitoring program began in April 2004 and continued through March of 2006. The data used for the attainment demonstration was measured from January 1, 2005 through December 31, 2005, in the middle of the MATES-III program. Problems observed in data typically associated with the start-up of a field program and ensuing initial laboratory analysis were minimized over the 8-months of lead sampling prior to 2005. All MATES-III measured data was subjected to extensive quality assurance procedures following the protocol outlined by EPA criteria. A comprehensive analysis of the MATES-III sampling program is expected to be issued in the Spring of 2007.

The speciated PM2.5 sampled by the MATES-III program were a unique data set, separate from the data acquired through the standard Federal Reference Method (FRM) PM2.5 sampling network. Total mass sampled in parallel (MATES-III and FRM) using side-by-side samplers are not expected to match directly. As such, EPA's "Sandwich" methodology was used in this demonstration to fit the MATES-III data by species to the annual FRM mass. The process calculates organic carbon as the sum of the total filter mass minus the mass of the remaining species and estimations of bonded water and filter contamination ("blank"). Bonded water and filter contamination are inferred in the FRM PM2.5 data samples and their inclusion in the analysis provides for a more direct comparison to the FRM determined

regional design values. The Sandwich methodology is discussed later in conjunction with the SMAT.

The PM2.5 attainment demonstration is twofold to address the annual and 24-hour portions of the standard. The initial sections of this chapter address the MATES- III program and data, the District FRM PM2.5 sampling network, the SMAT and Sandwich data analyses, the CAMx modeling setup and briefly the modeling emissions inventory. The following sections of this chapter provide the annual PM2.5 attainment demonstration and supporting weight of evidence analyses then lastly, the episodic PM2.5 24-hour standard attainment demonstration.

PM2.5 Data: MATES-III and FRM

MATES-III Monitoring

MATES-III is the second follow up to the original MATES toxics analysis that took place in the later 1980's. MATES-II was comprised of an extensive field monitoring campaign and laboratory analysis, emissions inventory development and regional toxics modeling. The MATES-II sampling generated speciated PM10 from the TEP-2000 monitoring network using the PTEP samplers (described in the 2003 AQMP, Appendix V). A comprehensive discussion of the MATES-II program is provided in the MATES-II final report and appendices.

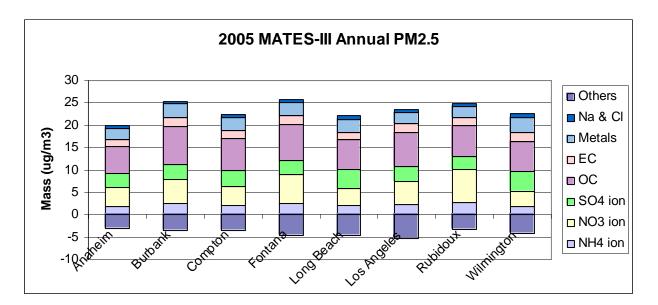
MATES-III PM2.5 samples were collected upon a 47mm quartz and Teflon filters simultaneously within the same particulate sampler for a 24-hour duration using a size selective sampler (SSI) in accordance to the method based on EPA's Federal Reference Method 40CFR50 (Draft MATES-III Protocol, 2004). Samples were taken every third day basis. Teflon filters were used for the analysis of total particulate mass, ions and metals. The PM2.5 quartz filter was used for the analysis of organic and elemental carbon using the IMPROVE or NIOSH method. The District also operates co-located speciated air sampling system (SASS) monitors for the carbon measurement at two sites (Central Los Angeles and Riverside-Rubidoux) as part of EPA's STN sampling network. Only the IMPROVE carbon data are incorporated in the attainment demonstration.

The MATES-III sampling network was comprised of eight monitoring sites at locations used in the MATES-II study. At least one site is situated in each of the four counties in the Basin with the bulk of the monitoring in Los Angeles. The locations of the monitoring stations were chosen to bridge the MATES-II and MATES-III exposure analysis but also to address environmental justice issues associated with goods movement and exposure to mobile source emissions. The sites are listed in Table V-2-1.

TABLE V-2-1

MATES-III Monitoring Network

Site	Address	County
Anaheim	1010 S. Harbor Blvd.	Orange
Burbank	228 W. Palm Ave.	Los Angeles
Compton	720 N. Bullis Ave.	Los Angeles
Fontana	14360 Arrow Highway	San Bernardino
Long Beach	3648 N. Long Beach Blvd.	Los Angeles
Los Angeles	1630 N. Main St.	Los Angeles
Rubidoux	5888 Mission Blvd	Riverside
Wilmington	900 E. Lomita Blvd	Los Angeles


MATES-III Speciated Data

Annual Data

Figure V-2-1 provides the PM2.5 mass distribution for the 2005 MATES-III data. The data reflects the unadjusted direct measurements of the key PM2.5 species at each station. A category called "Others" which is included in the data is defined as the net difference between the sum of the species mass and the total mass weighed on the filter. Field measurements and lab analyses each have uncertainty and precisions bounds. As identified by EPA, the greatest uncertainty in species mass lies with the measurement and analysis of organic carbon. The uncertainty associated with the organic carbon mass is treated through an adjustment that is discussed as part of the "Sandwich Method".

The highest PM2.5 mass is measured at Burbank, Fontana and Rubidoux and the lowest at Anaheim. Figure V-2-1 provides the speciation of the adjusted 2005 MATES-III data including ammonium, nitrates, sulfates, organic carbon (OC), elemental carbon (EC), sodium, chloride, and metals including aluminum, iron, silicon, titanium, nickel, and lead among others. Table V-2-2 provides the

concentrations of the PM2.5 species observed in the MATES-III data while Table V-2-3 provides the percentage of total mass for the major component species .

FIGURE V-2-1

MATES-III 2005 Annual Distribution of PM2.5 Species (µg/m3)

TABLE V-2-2

MATES-III 2005 Annual PM2.5 Species Concentrations (µg/m3)

Location	NH4	NO3	SO4	OC	EC	Metals	Na & Cl	Others	MASS
Anaheim	1.90	4.09	3.30	6.03	1.43	2.54	0.73	-3.04	16.97
Burbank	2.43	5.49	3.38	8.44	2.09	2.94	0.55	-3.47	21.83
Compton	2.07	4.18	3.74	6.99	1.84	2.80	0.72	-3.60	18.73
Fontana	2.52	6.43	3.15	8.01	2.14	2.88	0.55	-4.53	21.14
Long Beach	2.11	3.87	4.17	6.71	1.52	2.98	0.85	-4.59	17.61
Los Angeles	2.27	5.09	3.43	7.58	1.95	2.55	0.59	-5.42	18.04
Rubidoux	2.73	7.31	3.05	6.88	1.69	2.52	0.61	-3.38	21.41
Wilmington	1.90	3.34	4.47	6.66	2.12	3.26	0.88	-4.15	18.47

Location	NH4	NO3	SO4	00	EC	Metals	Na & Cl
Anaheim	9.5	20.4	16.5	30.1	7.1	12.7	3.6
Burbank	9.6	21.7	13.4	33.3	8.2	11.6	2.2
Compton	9.3	18.7	16.7	31.3	8.2	12.5	3.2
Fontana	9.8	25.0	12.3	31.2	8.3	11.2	2.1
Long Beach	9.5	17.4	18.8	30.2	6.8	13.4	3.8
Los Angeles	9.7	21.7	14.6	32.3	8.3	10.9	2.5
Rubidoux	11.0	29.5	12.3	27.8	6.8	10.2	2.4
Wilmington	8.4	14.8	19.8	29.4	9.3	14.4	3.9

TABLE V-2-3

MATES-III Annual Percentage 2005 PM2.5 Species Contribution

In general, the organic carbon mass accounts for approximately 30 percent of the total mass (adjusted for the negative contribution of the other category) at each station. Ammonium, sulfate and nitrates account for an approximate 45 percent of the total mass at each location. Rubidoux and Fontana are the most heavily impacted by nitrates. Sulfate is highest in the near coastal or ports of Los Angeles/Long Beach areas, particularly Wilmington and Long Beach. EC and metals measurements were highest at Wimington accounting for almost 24 percent of the mass when combined. All sites observed measurable concentrations of sodium and chloride ions reflecting the influence of the marine air as it is transported inland.

Quarterly Data

Figures V-2-2a -V-3-2h depict the 2005 MATES-III PM2.5 data by component species at each monitoring sites sorted by quarter. Table V-2-4 provides the quarterly design values for each site. PM2.5 concentrations are highest in either Quarter-3 or Quarter-4 at each site. The lowest concentrations are observed in the second quarter (with the exceptions of Rubidoux and Fontana). The contribution of the individual species varies by quarter as well. Sulfate is highest in Quarter-3 while nitrate are highest in Quarter-4 and to some extent Quarter-1. The species concentrations reflects the seasonal weather patterns where the higher values of sulfate typically occur under strong-elevated inversions and sea breeze transport inland, conditions that are prevalent in the Basin in late spring and summer. Nitrate chemistry is very dependent on the availability of water vapor and as a result Quarter-4, with the high humidity and frequent nocturnal inversions enhance regional formation. Organic carbon and elemental carbon values are also highest in Quarter-4 due to the poor dispersion from weak winds and low level inversions. Quarter-2 tends to have the lowest concentrations due to spring storms and favorable dispersion.

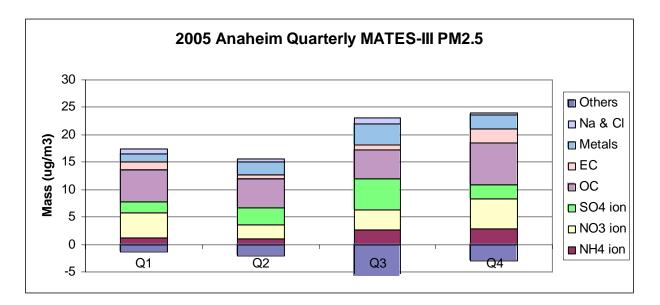
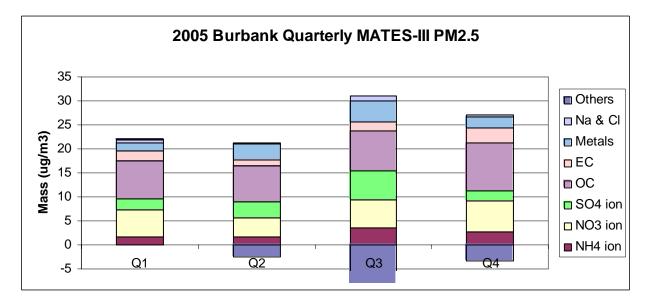



FIGURE V-2-2a

2005 Quarterly Distribution of PM2.5 Species at Anaheim (μ g/m3)

2005 Quarterly Distribution of PM2.5 Species at Burbank ($\mu g/m3$)

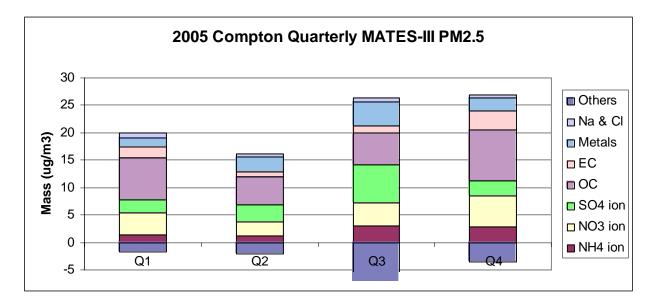


FIGURE V-2-2c

2005 Quarterly Distribution of PM2.5 Species at Compton (μ g/m3)

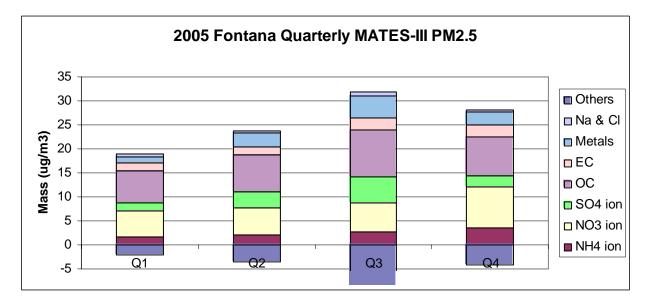


FIGURE V-2-2d

2005 Quarterly Distribution of PM2.5 Species at Fontana ($\mu g/m3$)

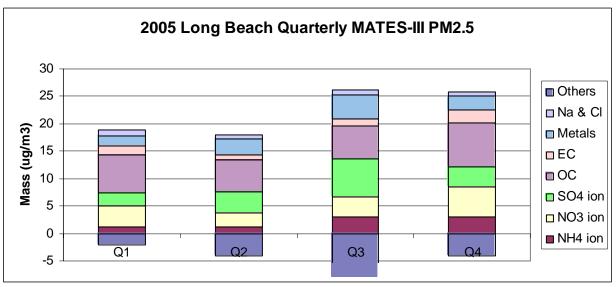


FIGURE V-2-2e

2005 Quarterly Distribution of PM2.5 Species at Long Beach (µg/m3)

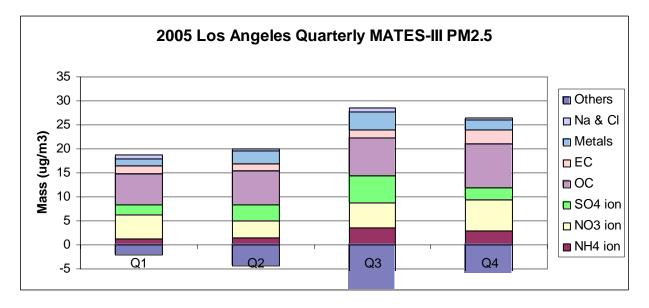


FIGURE V-2-2f

2005 Quarterly Distribution of PM2.5 Species at Los Angeles (μ g/m3)

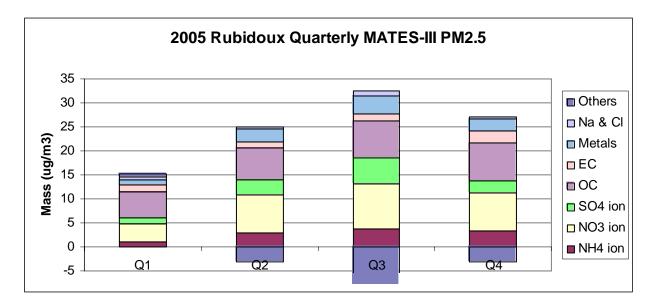


FIGURE V-2-2g

2005 Quarterly Distribution of PM2.5 Species at Rubidoux ($\mu g/m3$)

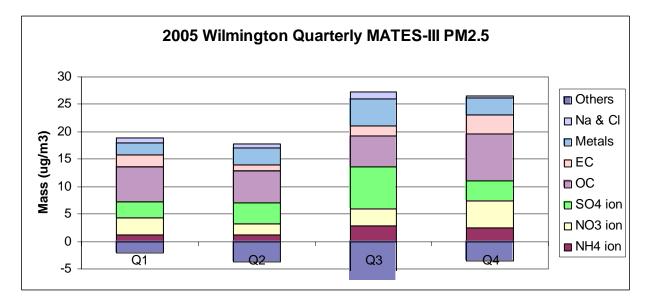


FIGURE V-2-2h

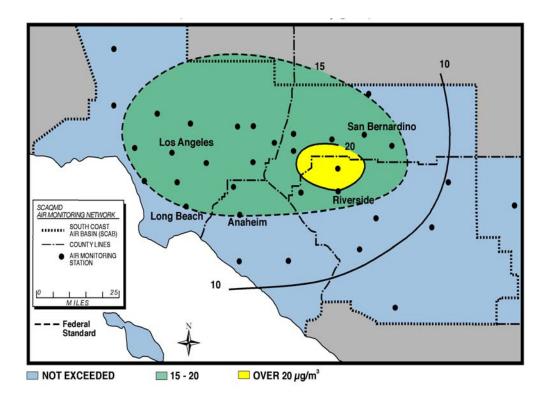
2005 Quarterly Distribution of PM2.5 Species at Wilmington (μ g/m3)

TABLE V-2-4

Location	Quarter-1	Quarter-2	Quarter-3	Quarter-4	Annual
Anaheim	17.6	12.4	15.4	20.0	16.4
Burbank	18.7	15.2	20.7	20.3	18.7
Compton	16.7	13.3	18.2	21.8	17.5
Fontana	18.7	19.2	20.2	23.2	20.3
Los Angeles	19.7	16.3	20.2	22.2	19.6
Long Beach	18.0	12.7	15.7	22.9	17.3
Rubidoux	21.2	21.9	22.6	24.9	22.7
Wilmington	12.7	10.9	15.7	19.6	14.7

FRM Annual and Quarterly PM2.5 Design Concentrations (2003-2005) at MATES-III Monitoring Sites (µg/m3)

On average, the annual MATES-III data are consistent with the annual design values. The quarterly MATES-III data compares well with the quarterly FRM data with the exceptions of Rubidoux and Fontana which exhibited higher Quarter-3 mass.


FRM PM2.5

The AQMD measures PM2.5 using the federal reference method Size Selective Inlet (SSI) High-Vol method at 16 air monitoring sites in the Basin. The FRM PM2.5 data are used in this analysis to expand the future year predictions to the entire Basin and to corroborate the attainment demonstration at the grid level. Figure V-2-3 depicts the isopleths of 2005 annual PM2.5 from the FRM sites in the Basin. Table V-2-5 provides the quarterly and annual design values for the remaining FRM sites not used as monitoring locations for MATES-III. (Note: design values for the sites used for the MATES-III networks are listed in Table V-2-4 above).

The FRM data depicted in Figure V-2-3 clearly delineates the extent of the PM2.5 problem in the Basin. PM2.5 is essentially a combustion generated pollutant and with the volume of traffic flow, numbers of sources (both point and area) located in the region, concentrations exceed the annual federal standard (15 μ g/m3) throughout the Basin. The area with the highest annual concentration includes southwest San Bernardino and Northwest Riverside Counties. These areas have design values exceeding 20 μ g/m3 and encompass both the Fontana and Rubidoux air monitoring stations. It is important to note that the areas with the highest concentrations are directly downwind of a major ammonia source area associated with dairies and poultry farming. These industries are rapidly moving from the Basin and are expected to contribute significantly less to particulate formation in future years.

Location	Quarter-1	Quarter-2	Quarter-3	Quarter-4	Annual
Azusa	16.2	15.9	21.1	19.6	18.2
Big Bear	12.8	8.0	7.7	14.7	10.8
Lynwood	19.3	14.6	18.3	22.9	18.8
Mission Viejo	12.0	10.2	12.7	12.9	11.9
Ontario	21.0	17.9	20.5	25.3	21.2
Pasadena	15.5	14.6	18.6	18.5	16.8
Reseda	14.3	13.4	15.9	17.8	15.4
Riverside Magnolia	18.9	19.8	20.6	22.5	20.5
San Bernardino	18.2	20.3	21.6	21.8	20.5

TABLE V-2-5

FRM Annual and Quarterly PM2.5 Design Concentrations (2003-2005) at the Remaining Basin PM2.5 Monitoring Sites (µg/m3)

FIGURE V-2-3

2005 South Coast Air Basin Annual PM2.5 (µg/m3)

SANDWICH AND SPECIATED MONITORED ATTAINMENT (SMAT)

Sandwich

The "sandwich" method (Frank, 2006) calculates the PM2.5 organic carbon mass from the difference between the total mass of the particulate sample and the other component species. As previously described, there is uncertainty associated with the monitoring and analytical methods used to develop the particulate profile. While nitrate filter mass loss is expected, the analytical technique to determine the concentrations of the remaining species is well established. Confidence is high in determining the concentrations of the other ions (sulfates, ammonium, sodium and chloride) and the measurements of directly emitted elemental and crustal components. Primary and secondary organic compounds express greater monitoring and analytical variability and the sandwich method proposes to minimize this uncertainty.

In the unadjusted 2005 MATES-III data, the "others" is just the difference between the measured component species mass and the total mass of the filter. In the 2003 AQMP, annual PM10 attainment demonstration the speciated particulate data used the measurements of ammonium, sulfate, nitrate, organic carbon and elemental carbon directly. The difference between the total filter mass and the sum of the five components was categorized as the "others." The others included the crustal [metals] components, sea salts and accounted for any particle bonded water, filter blank contamination and uncertainties in the data monitoring or laboratory analysis.

The sandwich method for PM2.5 (described by Equation V-2-1) accounts for the calculation of bonded water adds a filter blank contamination term and substitutes organic carbon as the "others" compontent to be estimated from the mass difference.

Eq. V-2-1.

OC = PM2.5 - (NH4 + NO3 + SO4 + EC + bonded H2O + blank + crustal [metals]).

The sandwich method estimates ammonium (if not directly measured) and uses a either a linear or polynomial empirical equation to approximate the mass of bonded water in the sample. The polynomial equation is an empirically derived approximation of the thermodynamic Aerosol Inorganic Model (AIM) (Clegg, 1998) that uses the concentrations of NH4, NO3 and SO4 to estimate bonded water. The alternate linear equation also approximates bonded water assuming that the water content bonded to ammonium nitrate is equivalent to 12 percent of the mass and that the water bonded to ammonium sulfate is approximately equal to 26 percent of that mass. Comparisons of the calculated bonded water using the two algorithms were close and for the PM2.5 attainment demonstration, the primary method used to calculate water was the polynomial approach.

The sandwich also incorporates a filter blank contamination estimation of 0.5 μ g/m3 into the calculation. AQMD procedures require the use of forceps to handle filter media to avoid mass contamination. However, some mass inevitably does impact the filter prior to exposure mostly due to the conditioned air mass in the sequential sampler as the filter is being queued for monitoring. The AQMD staff has discussed the filter bank issue with EPA and after reviewing monitoring and laboratory procedures as well as measurement of the blanks has determined that the 0.5 μ g/m³ value for the bank is an appropriate average for the Basin.

The sandwich methodology does not exclude the use of directly measured ammonium or organic carbon. Estimates of ammonium calculated using a empirical relationships (0.29 X nitrate and 0.375 X sulfate) closely matched the measured ammonium. As a consequence, the directly measured ammonium is used in the Final 2007 PM2.5 attainment demonstration analysis. Second, measurements of PM2.5 OC were analyzed using the same technique as for the previous 2003 AQMP PM10 analysis (although different filter media). The data were trend adjusted, based on emissions reductions observed over recent years and further adjusted to estimate the carbon fraction. The carbon fraction factor can range in the Basin from 1.2 to 1.8 depending upon the location of the station relative to source areas. For the 2007 AQMP a carbon factor of 1.3 was applied to the OC data measured at the eight sites.

The Sandwich methodology was applied to the MATES-III data for each station. The MATES-III data were aggregated in to quarterly averages, and the organic carbon portion was calculated directly. If a quarterly value of organic carbon was calculated to be a negative number, the average of the non-negative quarterly average concentrations at that site were substituted for the negative value. To maintain mass consistency, an adjustment to the total quarterly mass was made totaling the sum of the substituted average organic carbon concentration and the absolute value of the negative calculation of organic carbon resulting from the Sandwich methodology. Bonded water was calculated using the AIM model and a 0.5 μ g/m³ blank was added. The Sandwich modified MATES-III quarterly data were then apportioned to the quarterly design values at each (MATES-III) monitoring site (subtracting the blank before scaling then adding the blank back to the total mass) prior to the SMAT. Table V-2-6 provides the quarterly design values for each of the eight MATES-III sites with the Sandwich derived species distribution.

Quarter	NH4	NO3	SO4	OC	EC	Water	Crustal/Metals	Blank	Mass
				A	naheim				
1	1.49	4.95	2.20	3.25	1.59	2.00	1.57	0.50	17.57
2	1.04	2.63	3.16	0.75	0.65	1.95	1.72	0.50	12.40
3	1.60	2.71	4.47	1.74	0.72	1.62	2.00	0.50	15.37
4	2.64	5.34	2.45	2.69	2.39	1.80	2.19	0.50	20.00
				E	Burbank				
1	1.54	4.90	1.77	5.16	1.74	1.62	1.48	0.50	18.70
2	1.48	3.63	2.94	1.97	1.02	1.53	2.10	0.50	15.17
3	2.45	4.34	4.54	3.10	1.25	2.20	2.27	0.50	20.67
4	3.06	6.90	2.42	3.80	3.21	2.32	2.09	0.50	24.30
					ompton				
1	1.42	4.33	2.47	4.80	2.13	1.86	1.81	0.50	19.30
2	1.30	3.11	3.78	0.68	0.90	2.16	2.16	0.50	14.60
3	2.17	3.15	5.34	2.28	0.82	2.07	1.94	0.50	18.27
4	2.76	5.63	2.69	3.60	3.23	2.03	2.44	0.50	22.87
				F	ontana				
1	1.89	6.22	1.82	2.95	1.84	1.94	1.58	0.50	18.73
2	2.24	5.93	3.30	1.63	1.46	1.94	2.16	0.50	19.17
3	2.10	4.83	4.27	1.37	1.88	2.00	3.24	0.50	20.20
4	3.53	8.29	2.40	0.55	2.51	2.72	2.67	0.50	23.17
				Lo	ng Beach				
1	1.37	4.19	2.55	3.74	1.83	1.92	1.88	0.50	17.97
2	1.25	2.45	3.72	0.40	0.70	1.67	1.98	0.50	12.67
3	1.95	2.53	4.75	1.26	0.87	1.73	2.08	0.50	15.67
4	3.29	5.86	4.31	1.42	2.50	2.53	2.49	0.50	22.90
				Los	s Angeles				
1	1.78	6.25	2.44	2.54	1.98	2.55	1.69	0.50	19.73
2	1.58	4.07	3.74	0.73	1.32	2.16	2.22	0.50	16.33
3	2.95	4.52	5.11	0.98	1.45	2.47	2.22	0.50	20.20
4	3.17	7.06	2.92	0.52	3.25	2.59	2.23	0.50	22.23
				R	ubidoux				
1	1.79	6.51	1.93	4.18	2.00	2.44	1.81	0.50	21.17
2	3.00	8.25	3.18	1.39	1.18	2.23	2.15	0.50	21.87
3	2.94	7.29	4.30	1.62	1.17	2.27	2.50	0.50	22.60
4	3.47	8.44	2.65	1.53	2.61	3.04	2.64	0.50	24.87
				W	ilmington				
1	1.27	3.49	2.91	3.43	2.44	1.84	2.08	0.50	17.97
2	1.13	2.02	3.84	0.38	0.92	1.74	2.14	0.50	12.67
3	1.73	1.95	5.12	1.34	1.15	1.73	2.16	0.50	15.67
4	2.62	5.02	3.88	2.47	3.37	2.27	2.79	0.50	22.90

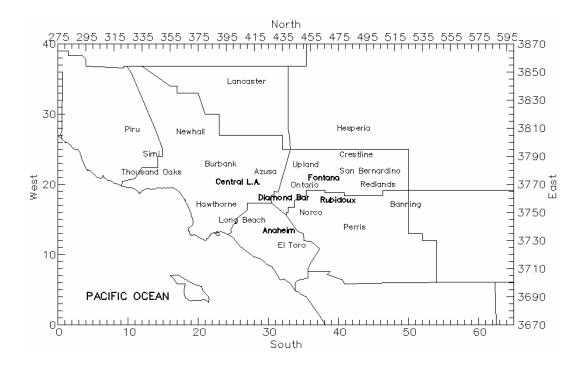
TABLE V-2-6 MATES-III/Sandwich Apportioned 2005 Quarterly Design Values

SMAT

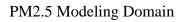
The federal guidance for developing a PM2.5 attainment test differs from past in that the attainment demonstration does not directly rely on explicit model output. The attainment test in the new guidance requires the use of the RRFs determined from the modeling, applied to the current design values to create future design values. The speciated modeling attainment test outlined in the guidance document further requires the development of species dependent RRFs from the base and future year modeling simulations. The guidance tests the model response for the major species simulated. The analysis requires that the Sandwich speciated design value data and RRFs be assessed by the quarter of the year then recompiled into an annual future year demonstration.

Note: in the SMAT, the blank is constant and the future year bonded water is calculated as a function of the predicted ammonium, nitrate, and sulfate concentrations. The net amount of future year bonded water is expected to decrease as a function of the control strategy implementation.

CAMX AND MM5 OVERVIEW


As discussed in Chapter 1, CAMx and MM5 were selected as the dispersion platform and meteorological model respectively for the PM2.5 attainment demonstration. The following sections briefly describe the modeling domain, meteorological interface and the boundary conditions applied in the analysis. The prescriptions for the MM5 domain initialization and coupling with the modeling domain are addressed in the Draft 2007 Modeling Protocol. Similar setup procedures for the CAMx simulations can be found in the Protocol document.

Modeling Domain


The CAMx modeling domain was defined by 2600 5 km squared grid cells a Universal Transverse Mercator (UTM) projection beginning at 275 easting through 3670 northing using a 65 by 40 grid cell structure. This is same grid specification that was used for the 2003 UAMAERO-LT analyses. Figure V-2-4 depicts the modeling domain.

The PM2.5 domain extends approximately 80 km offshore to the west of the middle Basin. The domain captures the international shipping routes that extend parallel to the coast (northwest and southeast) and due west from the port areas. The northern boundary of the domain extends to Santa Barbara County and Kern County while the southern boundary resides primarily in Northern San Diego County. The desert portions of Riverside, San Bernardino and Imperial counties define the eastern boundary of the modeling domain. The modeling domain is smaller than both the ozone modeling and MM5 domain.

The vertical structure for the CAMx modeling was increased to 8 layers of varying depth (compared with the 5-layer analysis of UAMAERO-LT) but less than the 19 layers used for the MM5 simulations in effort to conserve computational resources. The top of the modeling domain was set at 5,000 m.

FIGURE V-2-4

Boundary, Top Conditions

One of the more difficult tasks of the modeling analysis was to determine a method to define the boundary and top conditions for the PM2.5 simulations. Three options were considered for the analysis: (1) assume clean conditions, (2) use the ozone modeling to generate concentration files at the PM2.5 grid boundary, or (3) use hemispheric or global chemistry model output to specify the boundaries. Option-3 with minor adjustments was selected for the attainment demonstration.

The Western Regional Air Partnership (WRAP) has been simulating hemispheric particulates with a focus on the western U.S. as part of the Regional Haze Rule demonstration using CAMx on a coarse grid extending into the Pacific Ocean. Model output from the WRAP analysis for model year 2002 was extracted and converted to develop hourly boundary conditions for the PM2.5 modeling analyses. For this analysis it is assumed that little uncertainty is introduced into the modeling using the 2002 boundary data. The WRAP modeling used CB-IV gaseous chemistry as does the Final 2007 AQMP PM2.5 CAMx modeling. The WRAP modeling was conducted on a Lambert Conformal grid and therefore specification of the boundary conditions required remapping to the UTM coordinate system. Additional vertical layer averaging and remapping to the PM2.5 grid assumed that the concentration is uniform across each vertical layer.

The boundary and top concentration input files for the PM model were created on a month by month basis. The files were derived by averaging the WRAP simulation concentrations at each boundary point, vertical layer for each hour of the day over the course of a month. The values of the various boundary species were averaged over the entire top of the modeling domain for every hour in a month to create the top concentration files. The CAMx top concentration file only uses one concentration value for the top of the model for the entire simulation. Table V-2-7 provides the representative results for February and August.

Initial PM2.5 performance with the WRAP boundary conditions suggested that SOx concentrations along the western boundary in the shipping lanes were too low. A minimum concentration of 5 ppb SO₂ was set for the southern boundary extending westward from the San Diego coast to approximately 20 km offshore after which the concentration was phased to a value less than 1 ppb at the extreme southwest corner of the modeling domain. A similar adjustment was made along the north-south boundary with SO₂ being set at 5 ppb from the coast of Santa Barbara south to approximately 15 km offshore, again being reduced to less than 1 ppb at the southwest corner of the domain.

Future Boundary, Top and Initial Air Quality Conditions

For the future year scenarios, the boundary, region top and ambient air quality concentrations were adjusted to reflect projected emissions reductions from the 2005 base-year.

MM5 Simulations

MM5 was used to generate the meteorological profile for each day in 2005. The MM5 simulations were generated for the larger SCOS97 modeling domain employing a 5 km square grid and fit to the smaller PM2.5 grid. The MM5 simulations were initialized from NCEP analyses and run for 5-day increments without the option for four dimensional data assimilation (FDDA). For the annual PM2.5 modeling, the ramp-up period for the MM5 simulations was approximately one-half day. The total simulation time of 5 ½ days allowed for an overlap from run to run and provided consistency in the meteorological profile. The reader is directed to the Draft 2007 Modeling Protocol where the developments of the MM5 meteorological simulations are discussed at length.

TABLE V-2-7

Top Concentration Files for the PM Runs Derived from the WRAP simulation for February and August (ppb gaseous species, ng/m³ aerosol species).

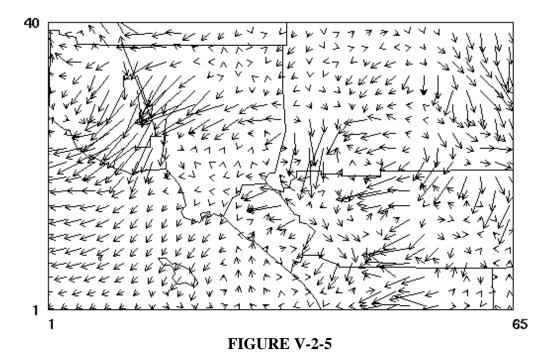
Species	February	August	Species	February	August
NO	0	0.01	SOA2F	0.53	13.32
NO2	0.02	0.03	SOA3F	0.53	13.32
O3	64.03	49.51	SOA4F	5.95	346.45
OLE	0	0.01	SOA5F	0.53	13.32
PAR	2.55	5.26	POMF	27.68	352.93
TOL	0	0.01	ECF	10.5	72.45
FORM	0.2	0.53	OTRF	4.58	175.45
ALD2	0.02	0.12	NH4C	0.03	0.17
ETH	0	0.03	NO3C	0.02	0.25
PAN	0.15	0.23	SO4C	0.12	0.25
CO	95.36	92.85	SOA1C	0	0.01
H2O2	0.92	3.07	SOA2C	0	0.01
HNO3	0.22	0.28	SOA3C	0	0.01
SO2	0.02	0.04	SOA4C	0.01	0.38
NH4F	31.77	161.54	SOA5C	0	0.01
NO3F	15.75	234.54	POMC	0.03	0.39
SO4F	109.71	237.17	ECC	0.01	0.08
SOA1F	0.53	13.32	OTRC	154.08	346.99

Only species with non-zero values are shown.

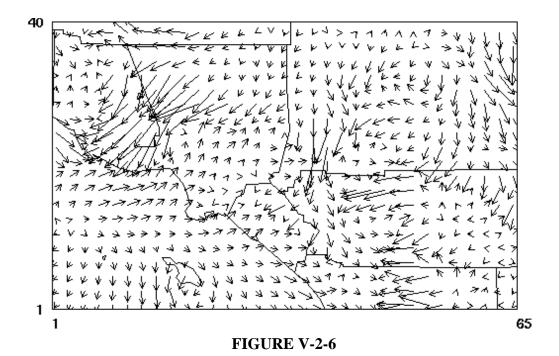
MM5 produced wind speed and direction components (u,v,w), temperature, humidity, insolation, and cloud cover data that were input to CAMx. Output from the MM5 simulations were layer averaged to the CAMx vertical structure. Vertical stability was estimated using the CMAQ-dispersion scheme option and the vertical diffusivity minimum value was set at 1.0 m²/sec. Figures V-2-5 through V-2-8

characterize the MM5 surface layer wind fields for morning (1000 PST) and afternoon (1400 PST) for January 15, 2005 and July 15, 2005.

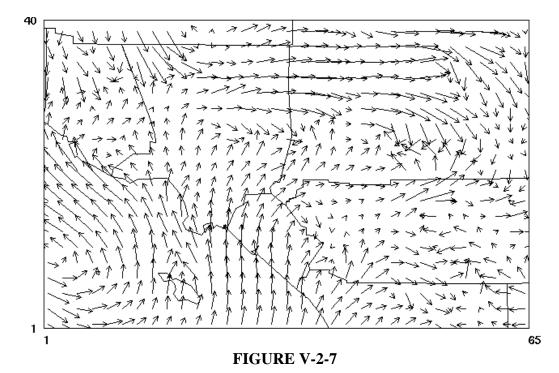
EMISSIONS INVENTORY

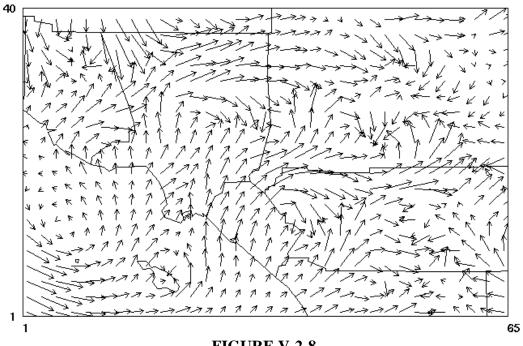

Table V-2-8 provides the baseline 2005, 2014 and 2020 and controlled 2014 and 2020 modeling emissions inventories used in the attainment demonstration. CAMx model is based on the annual average inventory, with adjustments made for weekly and monthly variations. A brief characterization of the annual day emissions used for the modeling analysis follows. An extensive discussion of the overall emissions inventory is summarized in the Final 2007 AQMP Appendix III.

Year	VOC	NO _x	SO _x	Diesel	Geol	PM2.5
(a) Baseline						
2005	740	1029	62	22	25	106
2014	528	654	43	12	27	102
2020	499	525	50	7	28	103
(b) Controlled						
2014	469	454	19	6	27	87
2020	398	293	20	3	28	87


TABLE V-2-8

Annual Average Day Emissions Inventory (tons/day)


PM2.5 modeling emissions were developed as monthly profiles corrected for temperature and humidity. For each month, where applicable, point, area and off-road mobile sources were adjusted to a day-of-week through-put profile consisting of a Monday-Friday, Saturday and Sunday schedule. On-road mobile sources were also adjusted by the same day-of-week schedule and overlaid with average diurnal profiles that represent weekday and weekend defined traffic patterns. The on-road mobile source emission data incorporate month specific ambient temperature and humidity input. Monthly biogenic emissions inventories (not listed in Table V-2-8) were developed by the CARB.


MM5 Surface Layer Winds: January 15, 2005, 1000 PST

MM5 Surface Layer Winds: January 15, 2005, 1400 PST

MM5 Surface Layer Winds: January 15, 2005, 1400 PST

FIGURE V-2-8

MM5 Surface Layer Winds: January 15, 2005, 1400 PST

Paved Road Dust Emissions Uncertainties

Uncertainties can be estimated for all sources of emission: point, mobile, and area. With regard to PM2.5 and PM10 prediction, quantification, spatial allocation and apportionment of dust sources is magnified. Paved road dust accounted for the largest percentage of the primary emissions category. The paved road dust emissions are calculated based on the number of rain days in the year, VMT and silt loading. The 2005 paved road dust estimated emissions were impacted by each of these factors.

Rain Days

Precipitation summaries were reviewed to determine the dates on which measurable rainfall (0.01 inches or more in the South Coast Drainage Division) fell in the Basin during 2005. A total of 85 days met this criterion in the Basin for 2005. Table V-2-9 lists the dates meeting this criterion. This data was used adjust monthly entrained paved road dust emissions by the rain-factor prescribed in EPA AP-42 (Fifth Edition, Volume 1) 13.2.1--Paved Roads.

TABLE V-2-9

2005 Rain Days in the Basin: Days Recording Measurable Precipitation of at least 0.01 Inches of Rain

Month	Dates
January	1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 24, 26, 27, 28
February	6, 8, 10,11,12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25
March	2, 3, 4, 6, 8, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 28
April	4, 22, 23, 24, 28
May	5, 6, 9
June	2, 3
August	15
September	3, 5, 19, 20, 21
October	11, 15, 16, 17, 18, 19, 24, 25, 27, 28, 29 30
November	9, 10, 11, 25
December	2, 3, 9, 14, 24, 26, 28, 31

VMT Capping

In addition, the paved road dust emissions are a function of VMT. In the 1997 and 2003 AQMP, paved road dust emissions were adjusted to reflect a cap on emissions

growth for high VMT road types in future years. Base year emissions were not capped at a given VMT level. The future year adjustment assumed that the silt loading would be depleted by the entrainment from the traffic volume. Increasing the traffic volume beyond a set point would not increase dust entrainment because the silt would be essentially depleted. The Final 2007 AQMP continued this adjustment of capping paved road dust on freeways in future years, allowing growth only associated with the construction of new lanes or additional miles of freeway.

Differential Silt Loading

A third adjustment was made to the paved road dust emissions to attempt to account for the differential silt loading content observed in the densely populated urban portions of Los Angeles and Orange Counties and the developing communities in the east Basin. Analysis of the preliminary modeling indicated the paved road dust may be overestimated by a factor of two in Los Angeles and Orange Counties where the traffic volume is greatest and the majority of streets have curbs, gutters and are regularly swept. A uniform silt loading factor is used in the CARB model for the entire Basin that doesn't account for differences in land use. Corresponding field studies conducted in Sacramento (2000) and Riverside (Fitz, 1998) indicated a wide range of silt loading exists to arterials, collectors and local streets that departs from the silt loading estimates provided in CARB's emissions model.

In addition, examination of the MATES-III data indicates that the crustal-metals portion of the PM2.5 distribution is essential constant across the basin. This infers that although the paved road dust emissions contribution should be uniform and that west Basin VMT contributions are offset by higher silt loading in the east Basin. An adjustment was made to the paved road dust emissions to normalize the total basin loading by county; lowering Los Angeles by 55 percent, raising Orange County by 20 percent and doubling the emissions in Riverside and San Bernardino. No net change in the Basin total paved road dust occurred. The adjustment was made for base and future years by growing the county totals and redistributing the emissions using the normalization.

PM2.5 Split Profiles and Ammonia Inventory Adjustments

Revisions to the particulate emissions split files were made to account for new processes and AQMD rule development and implementation. For the Final 2007 AQMP, a cooking PM2.5 split profile was added and the profiles for residual oil burning and distillated oil burning were updated.

Revisions were made to the spatial distribution and emissions categories defining the ammonia inventory. In general, the total ammonia in the inventory did not change significantly from the 2003 AQMP inventory with emissions nominally exceeding 100 tons per day. The contributions of the soils, on-road mobile and livestock

categories however did change significantly placing a higher contribution to mobile emissions at the expense of soils. Livestock emissions were halved as a result of the review and estimation methodology modifications. Table V-2-10 summarizes the changes made to the three main ammonia emissions categories.

Future year (2014) mobile source ammonia emissions are projected to be reduced by 45 percent from 2005 levels due to fleet turnover.

TABLE V-2-10

Comparison of Ammonia Soil, Mobile Source, and Lives Stock Emissions

Category	2003 AQMP (TPD)	Final 2007 AQMP (TPD)
Soil	34.2	1.42
On-road Mobile	9.47	36.12
Live stock	60.37	25.67

BASE-YEAR ANNUAL SIMULATIONS

CAMx was simulated for 2005 using the monthly adjusted base-year annual average day emissions and the meteorological and air quality data inputs outlined in the preceding section. EPA guidance focuses model performance to the ability to predict the PM2.5 component species and the total mass. No specific criteria thresholds of performance are recommended in EPA's modeling guidance document. This is important since the model is used in a relative response fashion compared to the ozone and PM10 analyses in previous AQMPs.

Performance is evaluated by examining key statistics and graphical presentations of differences between model predicted concentrations and observations. The statistics examine model bias and error while graphical presentations of error, model prediction as a time series and concentration scatter plots round out the prescribed methods of model performance evaluation.

A nearest cell average of predicted concentrations is typically used when comparing individual grid concentrations to station measurements, because of possible spatial misalignments of the predicted concentration fields. The CAMx modeling results are presented based on a nearest nine-grid-cell average basis. Performance evaluations at each station are based on this average concentration.

Finally, model performance is assessed using every third day predications that line up with the observations. Statistics and graphical presentations are not included where observational data is missing.

PM2.5 Component Species Performance Evaluation for the MATES-III Sites

The CAMx 2005 base-year annual average predicted PM2.5 and observations for the six component species and total mass at the MATES-III sites are presented in Table V-2-11a through V-2-11g. Also presented in the tables are estimates of bias and error for each component at each monitoring site.

Figure V-2-9 provides a "soccer goal" graphical presentation of error for model performance. Figure V-2-10a through Figure V-2-10h presents the time series of model predicted vs. observations for each component at the MATES-III monitoring sites. Figure V-2-11a through Figure V-2-11h presents the scatter-plots of prediction accuracy for each component at the MATES-III monitoring sites. Figure V-2-12 provides the CAMx predicted 2005 spatial distribution of the component species and total mass.

In general, nitrate and ammonium tend to be over predicted by an average $2 \mu g/m^3$ or less at most sites. Ammonium model performance at Rubidoux and Fontana are approximately within 35 percent of observations and within 20 percent or less for nitrate. On average, sulfate is nominally under-predicted however; OC and EC are well simulated at all stations. Model performance for the crustal-others category indicates an average over-prediction of about 1 $\mu g/m^3$ or 25 percent above observations. Overall, the prediction of total mass reflects the model performance for ammonium, nitrate and the others with a tendency for over-prediction at about an average level of 4 $\mu g/m^3$ or approximately 20 percent above observations.

TABLE V-2-11a

Locations	Mean Observed	Mean Predicted	Mean Bias	Mean Error	Normalized Mean Bias	Normalized Mean Error
All Stations	2.60	4.19	1.59	2.32	0.61	0.90
Anaheim	2.23	3.71	1.48	2.00	0.66	0.90
Burbank	2.77	3.38	0.61	1.79	0.22	0.65
Compton	2.32	4.65	2.33	2.68	1.00	1.16
Fontana	2.95	3.97	1.02	2.29	0.34	0.78
N Long Beach	2.33	4.15	1.82	2.42	0.78	1.04
Los Angeles	2.76	4.60	1.83	2.40	0.66	0.87
Rubidoux	3.20	4.74	1.54	2.34	0.48	0.73
Wilmington	2.13	3.89	1.77	2.41	0.83	1.13

CAMx 2005 Base Year Ammonium Model Predictions (µg/m³)

Locations Normalized Normalized Mean Mean Observed Predicted Mean Bias Mean Error Mean Bias Mean Error 5.35 7.67 2.31 3.98 0.43 0.74 All Stations 4.55 7.10 0.56 Anaheim 2.55 3.50 0.77 Burbank 5.85 6.49 0.64 3.44 0.11 0.59 Compton 4.46 7.93 3.47 4.12 0.78 0.92 6.76 7.65 0.90 4.38 0.13 0.65 Fontana N Long Beach 4.04 2.48 3.38 0.61 0.84 6.52 Los Angeles 5.81 3.05 4.39 0.52 0.76 8.86 Rubidoux 7.67 2.01 9.68 4.81 0.26 0.63 Wilmington 3.37 5.51 2.14 2.87 0.63 0.85

TABLE V-2-11b

CAMx 2005 Base Year Nitrate Model Predictions ($\mu g/m^3$)

TABLE V-2-11c

CAMx 2005 Base Year Sulfate Model Predictions (µg/m³)

Locations	Mean	Mean			Normalized	Normalized
	Observed	Predicted	Mean Bias	Mean Error	Mean Bias	Mean Error
All Stations	3.73	3.29	-0.44	2.03	-0.12	0.55
Anaheim	3.55	2.75	-0.80	1.77	-0.23	0.50
Burbank	3.63	2.21	-1.42	1.92	-0.39	0.53
Compton	3.96	4.09	0.13	2.53	0.03	0.64
Fontana	3.27	2.61	-0.66	1.63	-0.20	0.50
N Long Beach	4.36	4.34	-0.02	2.18	0.00	0.50
Los Angeles	3.78	3.17	-0.61	1.94	-0.16	0.51
Rubidoux	3.11	2.65	-0.46	1.59	-0.15	0.51
Wilmington	4.70	4.90	0.20	2.97	0.04	0.63

Locations	Mean Observed	Mean Predicted	Mean Bias	Mean Error	Normalized Mean Bias	Normalized Mean Error
All Stations	4.71	4.83	0.12	1.81	0.03	0.38
Anaheim	4.15	4.87	0.71	1.57	0.17	0.38
Burbank	4.73	4.10	-0.63	1.57	-0.13	0.33
Compton	4.20	5.65	1.44	1.80	0.34	0.43
Fontana	4.75	3.98	-0.77	1.71	-0.16	0.36
N Long Beach	4.19	4.88	0.69	1.81	0.17	0.43
Los Angeles	4.75	6.03	1.28	1.81	0.27	0.38
Rubidoux	3.99	4.41	0.42	1.34	0.10	0.33
Wilmington	4.35	4.38	0.03	1.55	0.01	0.36

TABLE V-2-11d

CAMx 2005 Base Year Organic Carbon Model Predictions (µg/m³)

TABLE V-2-11e

CAMx 2005 Base Year Elemental Carbon Model Predictions ($\mu g/m^3$)

Locations	Mean	Mean			Normalized	Normalized
	Observed	Predicted	Mean Bias	Mean Error	Mean Bias	Mean Error
All Stations	1.87	1.66	-0.21	0.82	-0.11	0.44
Anaheim	1.43	1.36	-0.08	0.66	-0.05	0.46
Burbank	2.08	1.25	-0.83	1.00	-0.40	0.48
Compton	1.79	2.04	0.24	0.78	0.13	0.44
Fontana	2.17	1.33	-0.84	1.02	-0.39	0.47
N Long Beach	1.44	2.22	0.78	0.91	0.54	0.63
Los Angeles	1.97	1.94	-0.02	0.68	-0.01	0.34
Rubidoux	1.71	1.17	-0.54	0.76	-0.32	0.44
Wilmington	2.07	1.93	-0.14	0.80	-0.07	0.39

Locations Mean Mean Normalized Normalized Observed Predicted Mean Bias Mean Error Mean Bias Mean Error 0.79 All Stations 3.62 4.73 1.11 2.87 0.31 3.49 4.82 1.33 2.59 0.38 0.74 Anaheim 4.79 3.12 -1.67 2.83 -0.35 0.59 Burbank 3.59 5.23 Compton 1.65 3.07 0.46 0.86 4.25 3.15 1.10 2.22 0.35 0.70 Fontana N Long Beach 3.40 5.77 2.36 0.69 0.99 3.36 3.47 0.39 Los Angeles 4.82 1.35 2.870.83 3.55 1.22 0.34 Rubidoux 4.78 2.45 0.69 Wilmington 3.72 5.46 1.75 3.73 0.47 1.00

TABLE V-2-11f

CAMx 2005 Base Year Crustal-Others Model Predictions (µg/m³)

TABLE V-2-11g

CAMx 2005 Base Year Total Mass Model Predictions (µg/m³)

Locations	Mean Observed	Mean Predicted	Mean Bias	Mean Error	Normalized Mean Bias	Normalized Mean Error
	observed	Treatered	Wedit Dius		Medil Dius	Medil Ellor
All Stations	19.62	26.14	6.52	10.49	0.33	0.53
Anaheim	17.63	24.45	6.81	8.84	0.39	0.50
Burbank	21.94	20.72	-1.22	8.76	-0.06	0.40
Compton	18.83	29.22	10.39	12.24	0.55	0.65
Fontana	21.44	23.42	1.98	9.29	0.09	0.43
N Long Beach	17.43	27.84	10.41	11.22	0.60	0.64
Los Angeles	19.15	29.38	10.23	12.47	0.53	0.65
Rubidoux	21.85	27.05	5.21	10.32	0.24	0.47
Wilmington	18.35	25.33	6.98	10.02	0.38	0.55

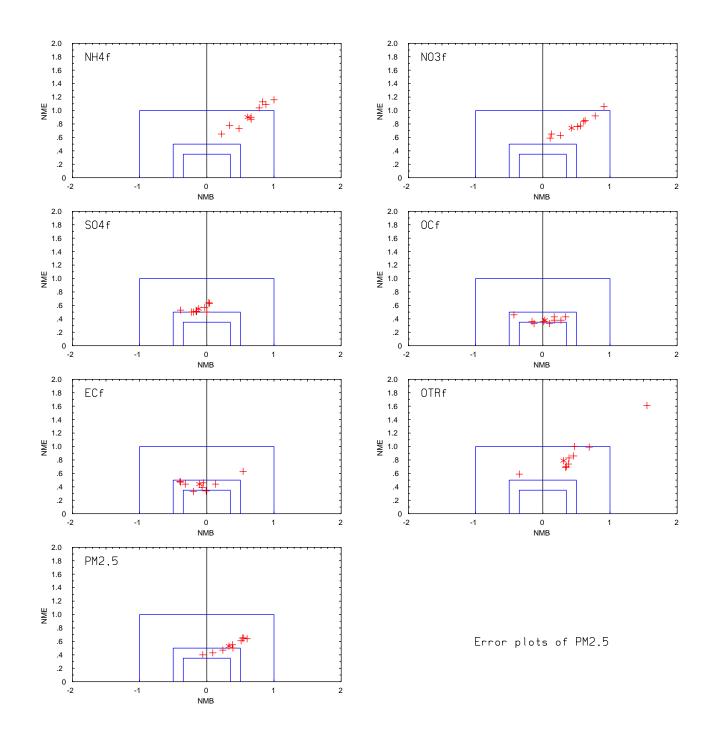


FIGURE V-2-9

CAMx 2005 Base Year Soccer Plots of Annual Average Error at the MATES-III Sites

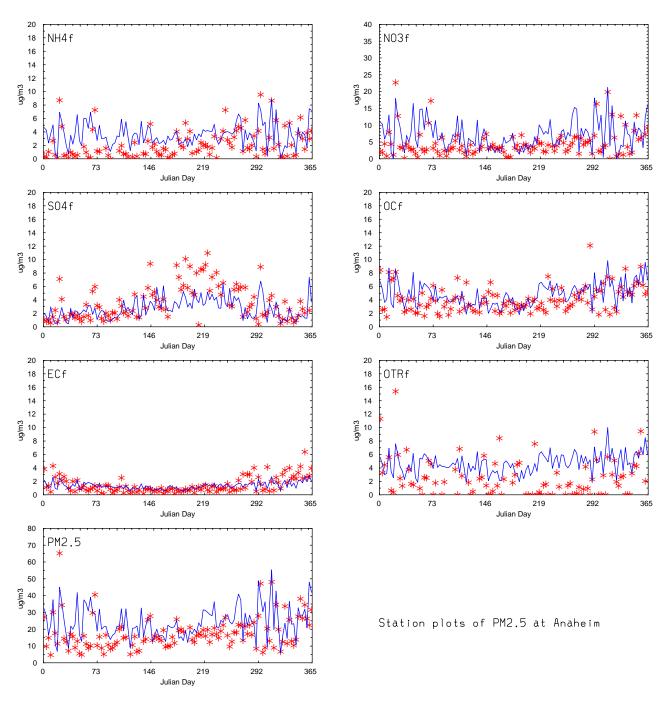


FIGURE V-2-10a

CAMx 2005 Base Year Time Series: Predicted vs. Observed at Anaheim

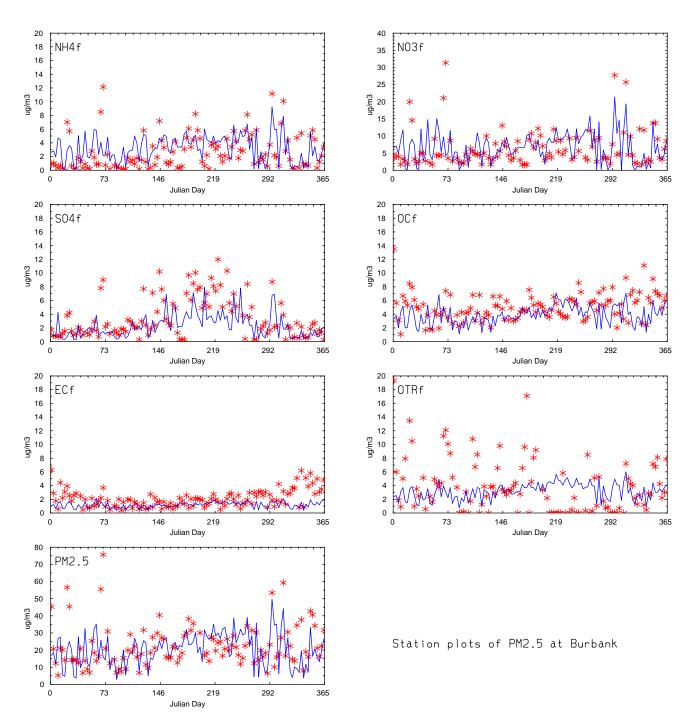


FIGURE V-2-10b

CAMx 2005 Base Year Time Series: Predicted vs. Observed at Burbank

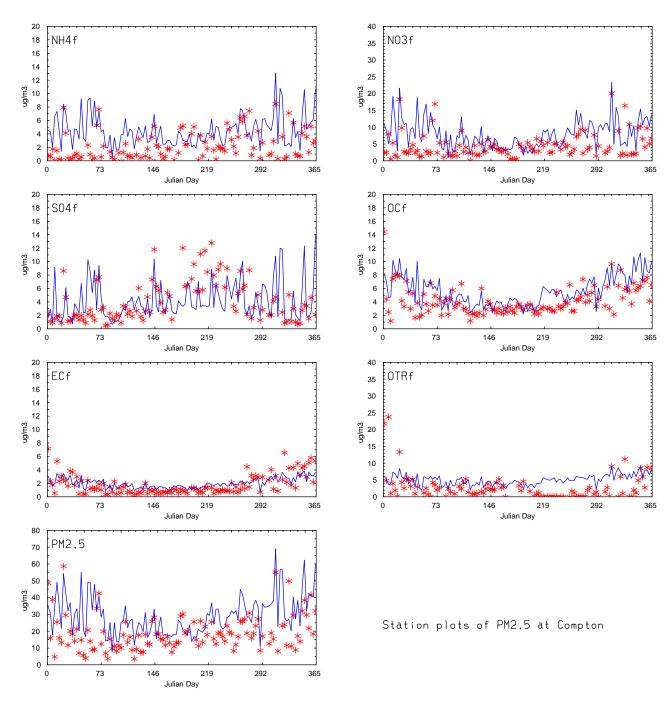
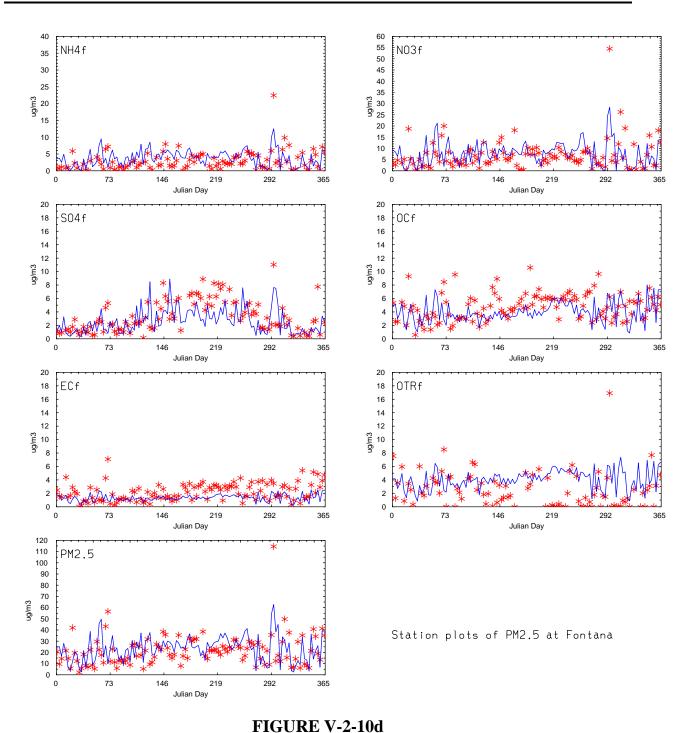



FIGURE V-2-10c

CAMx 2005 Base Year Time Series: Predicted vs. Observed at Compton

CAMx 2005 Base Year Time Series: Predicted vs. Observed at Fontana

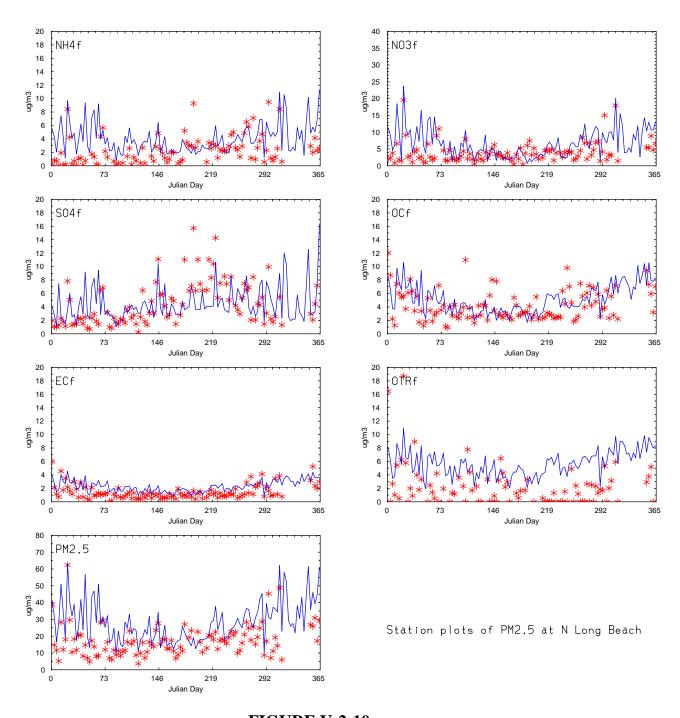
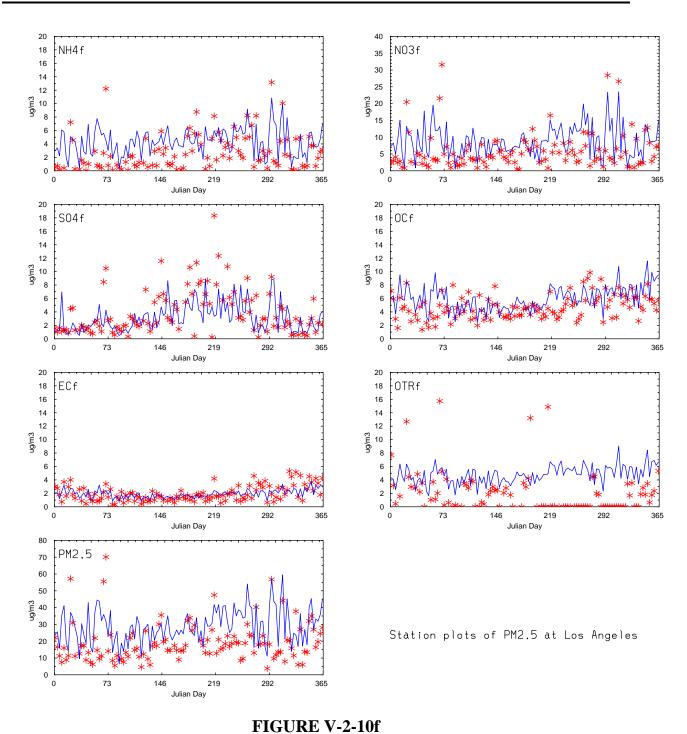
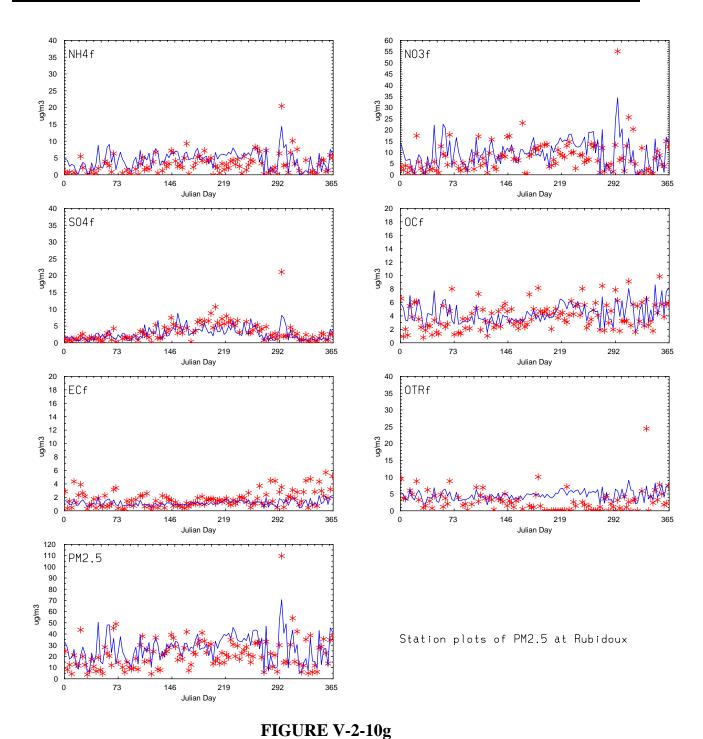
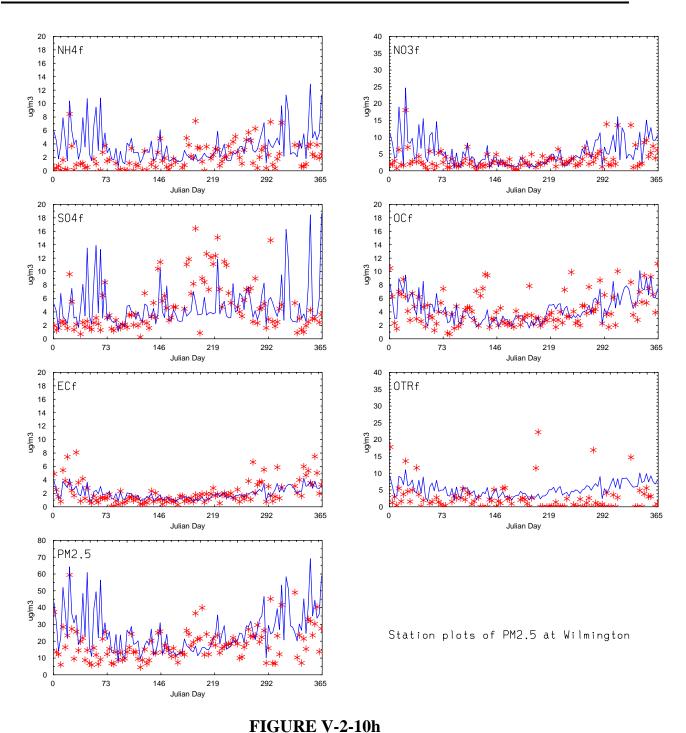
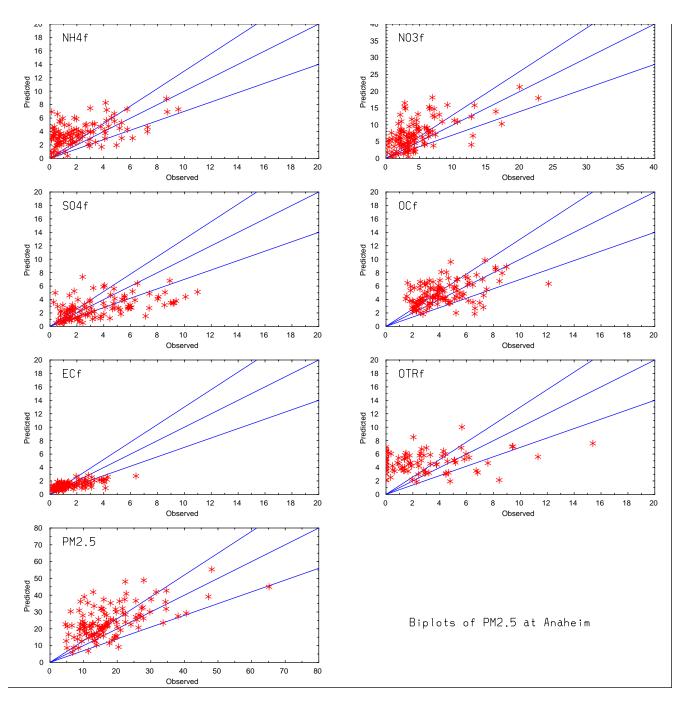
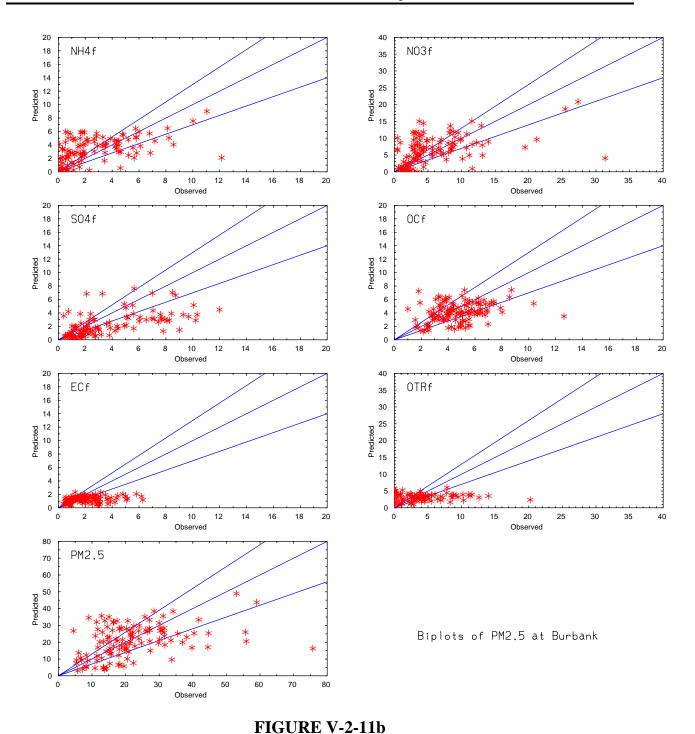




FIGURE V-2-10e


CAMx 2005 Base Year Time Series: Predicted vs. Observed at Long Beach


CAMx 2005 Base Year Time Series: Predicted vs. Observed at Los Angeles

CAMx 2005 Base Year Time Series: Predicted vs. Observed at Rubidoux



CAMx 2005 Base Year Time Series: Predicted vs. Observed at Wilmington

FIGURE V-2-11a

CAMx 2005 Base Year Bivariate Plots: Predicted vs. Observed at Anaheim

CAMx 2005 Base Year Bivariate Plots: Predicted vs. Observed at Burbank

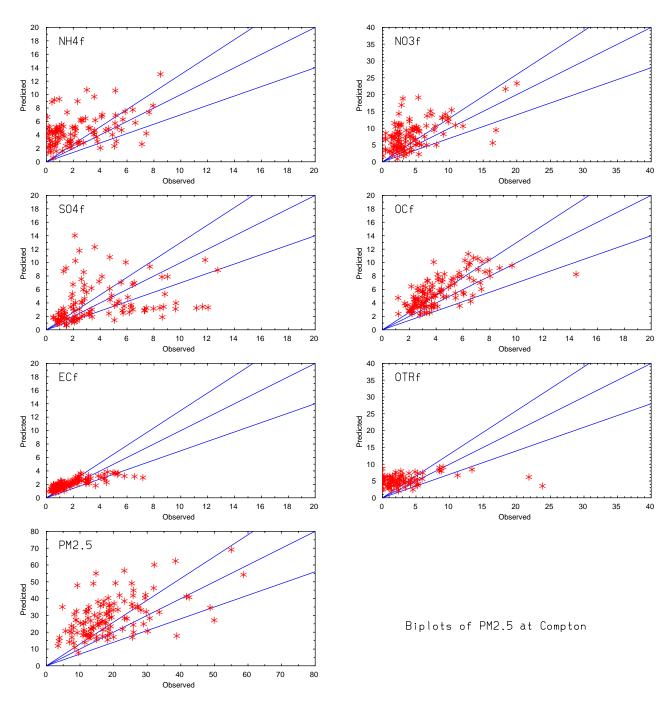


FIGURE V-2-11c

CAMx 2005 Base Year Bivariate Plots: Predicted vs. Observed at Compton

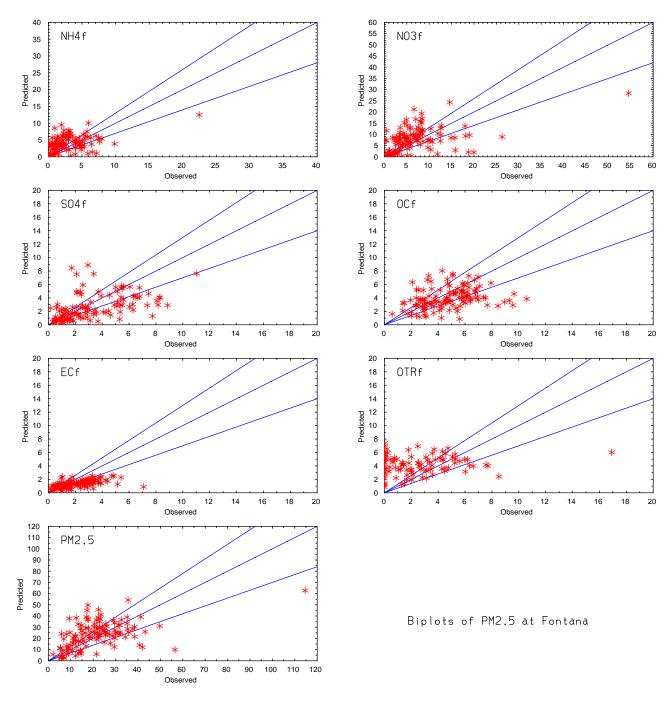


FIGURE V-2-11d

CAMx 2005 Base Year Bivariate Plots: Predicted vs. Observed at Fontana

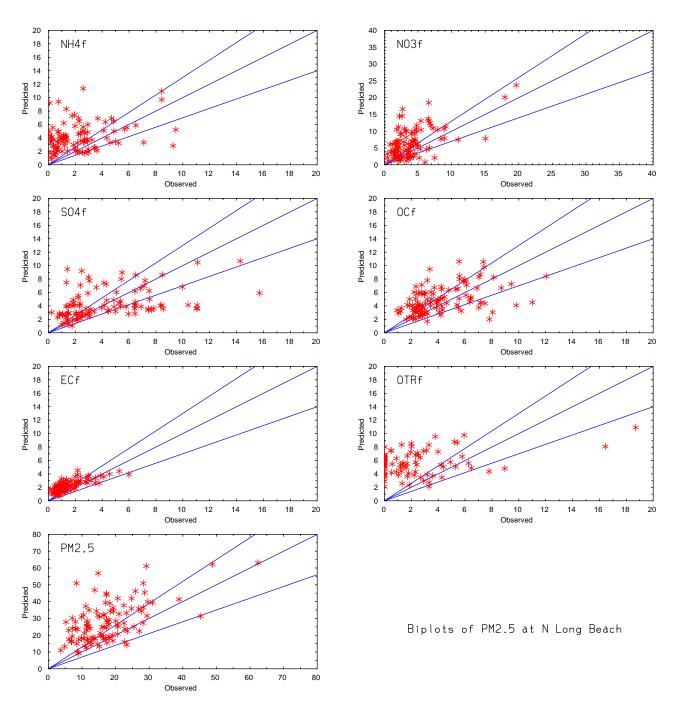
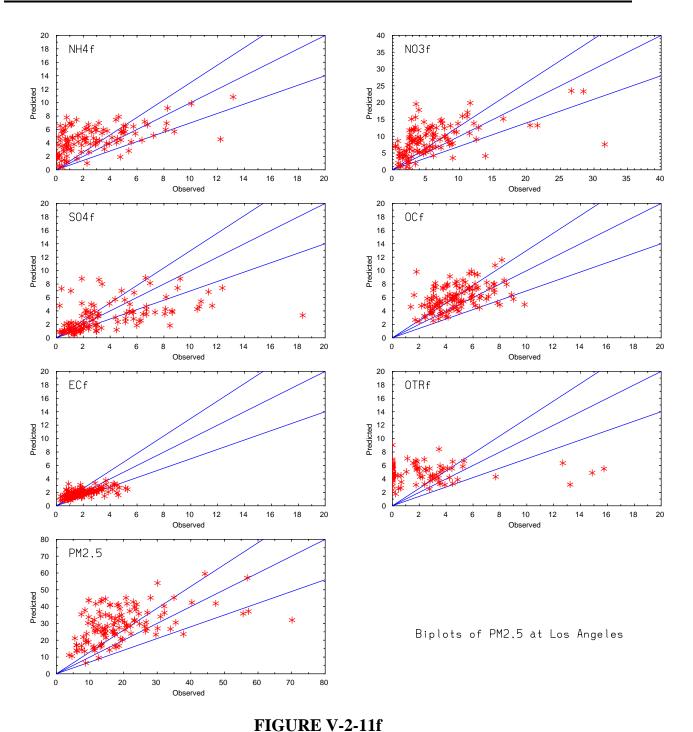



FIGURE V-2-11e

CAMx 2005 Base Year Bivariate Plots: Predicted vs. Observed at Long Beach

CAMx 2005 Base Year Bivariate Plots: Predicted vs. Observed at Los Angeles

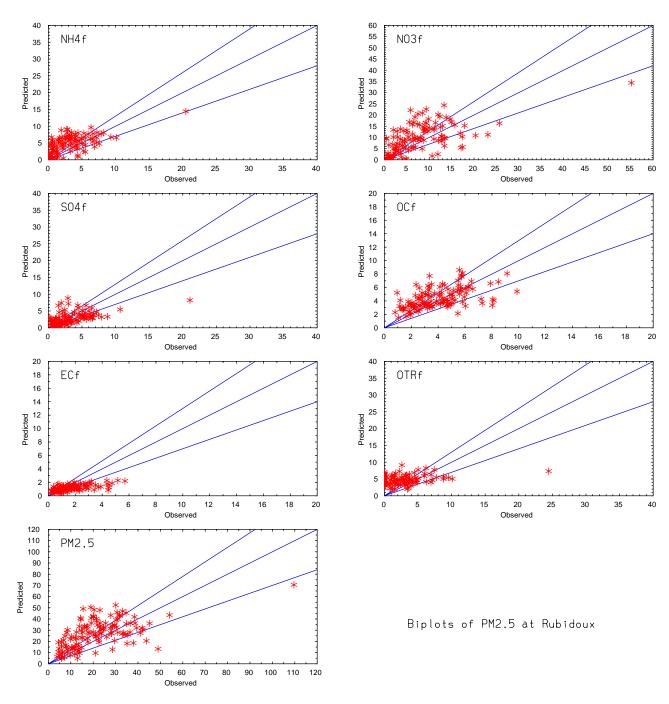
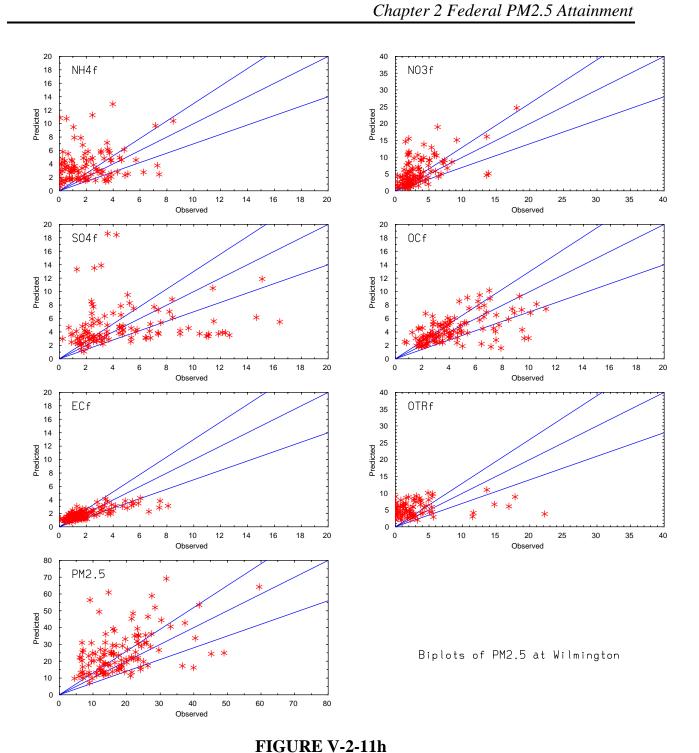
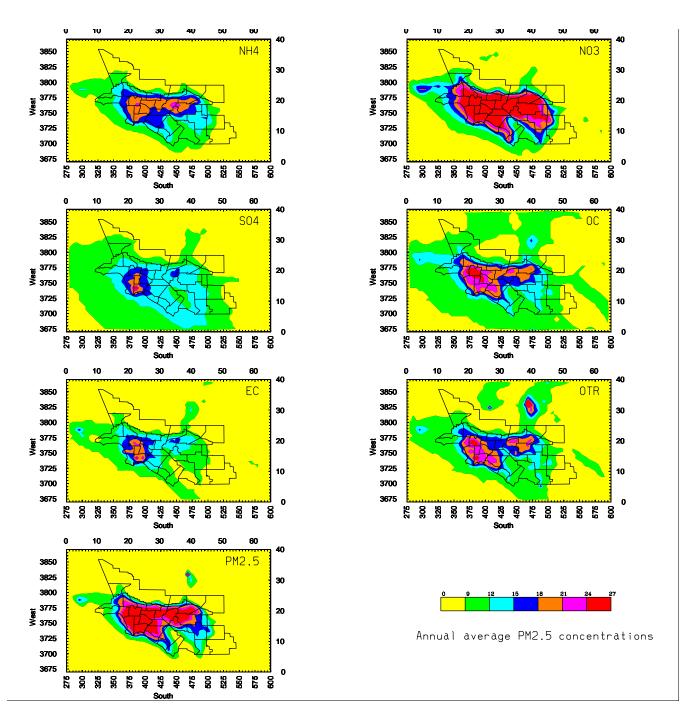




FIGURE V-2-11g

CAMx 2005 Base Year Bivariate Plots: Predicted vs. Observed at Rubidoux

CAMx 2005 Base Year Bivariate Plots: Predicted vs. Observed at Wilmington

FIGURE V-2-12

CAMx 2005 Base Year Spatial Distribution of the Predicted PM2.5 Components and Total Mass

Annual Average SSI Mass Performance Evaluation

Table V-2-12 presents the CAMx predicted annual average PM2.5 and observed annual average mass at the District's PM2.5 FRM monitoring network and at FRM sites in neighboring air basins included in the modeling domain. The goal of this analysis is to demonstrate that the model is consistent in the simulation of PM2.5 at the key sites and across the modeling domain.

In general, the 2005 base year simulations over-predict observed PM2.5 measurements by the FRM methodology. The over prediction is greatest in the western Basin, in particular metropolitan Los Angeles County. Over prediction in the San Gabriel Valley and eastern Basin is within 60 percent of observations (with the exception of Big Bear Lake which is significantly under-predicted. Southern Orange County, Ventura County and the northern desert stations are reasonably well simulated. It is important to remember that the attainment demonstration is based on a relative response factor and not direct future year simulations.

TABLE V-2-12

Location	Predicted Annual Average Concentration ($\mu g/m^3$)	Observed Annual Average Concentration (µg/m ³)	Percentage Prediction Error
Azusa	20.4	17.0	20.0
Big Bear	2.3	12.1	-81.7
Lynwood	30.4	17.5	73.7
Mission Viejo	16.8	10.7	57.0
Ontario	30.3	18.8	61.2
Pasadena	21.4	15.1	41.7
Reseda	17.2	13.9	23.7
Riverside Magnolia	26.7	18.0	48.3
San Bernardino	28.2	17.0	65.9
Lancaster-AV	6.8	8.9	-23.6
Victorville-MD	13.5	9.4	43.6
El Rio-SCCAB	12.0	10.6	13.2
Piru-SCCAB	7.1	9.3	-23.7
Simi Valley-SCCAB	8.9	11.2	-20.5
Thousand Oaks-SCCAB	11.2	10.5	6.7

CAMx Predicted and FRM Observed 2005 Base-Year Annual Average PM2.5

Base-Year Model Performance Stress Test Evaluation

EPA's modeling guidance as well as the Draft Modeling Protocol outline a series of basic stress tests that can be applied to the base case simulation to determine the level

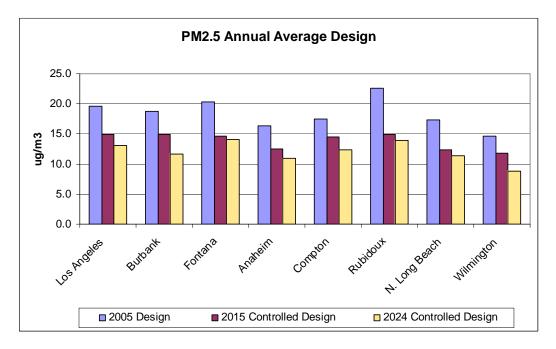
of sensitivity of model performance key parameters defining the simulations. These stress tests include modifying the boundary conditions, introducing gross changes in the meteorological and emissions profiles. The goal for these analyses is to see if any one factor is unduly biasing model performance and in doing so jeopardizing the validity of the analysis.

Table V-2-13 summarizes the suite of performance stress tests applied to the CAMx PM2.5 simulations. Gross testing of the meteorological model performance was not attempted for the PM2.5 analyses. Graphical and statistical evaluation of the MM5 simulations were reviewed for the particulate analyses and are discussed in greater detail in the Chapter 4 for the episodic the ozone modeling evaluation. In general, The PM2.5 model output responded in an expected manner to the changes in simulation and emissions profiles outline in the stress tests.

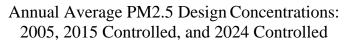
FUTURE AIR QUALITY

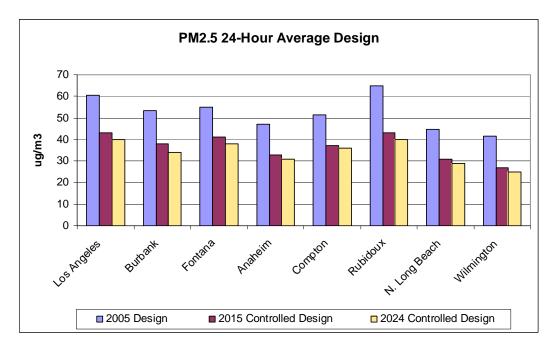
Under the federal Clean Air Act, the Basin must comply with the federal PM2.5 air quality standards by April, 2010 [Section 172(a)(2)(A)]. An extension of up-to five years could be granted if attainment cannot be demonstrated and several other conditions are satisfied. A simulation of 2010 annual average PM2.5 was conducted to substantiate the severity of the PM2.5 problem in the Basin. The simulation used the projected emissions for 2009 which included all existing and adopted control measures that will be implemented prior to 2010. The resulting 2010 future-year design value (17.9 µg/m³) failed to meet the federal standard. As a consequence and as indicated in Chapter 1, the District is formally requesting U.S. EPA to grant the five-year extension based upon the severity of the problem and the modeled attainment demonstration that clearly indicates that significant reductions in daily emissions of PM2.5, NOx, VOC and SOx are required to meet the 2015 attainment date.

Figure V-2-13 depicts future annual average PM2.5 air quality projections based on the SMAT at the eight PM2.5 monitoring sites having comprehensive particulate species characterization compared to federal and state annual PM2.5 standards, respectively. Shown in the figure are the estimated baseline conditions for 2005 along with projections for 2015, and 2021 with control measures in place. All sites will attain the federal annual standard by the year 2015. None of the sites will meet the state annual PM2.5 standard ($12 \mu g/m^3$) by 2015. Implementation of the 8-hour ozone control strategy will continue to lower annual PM2.5 concentrations.


The Basin currently meets the 24-hour PM2.5 federal standard ($65 \mu g/m^3$) although a request for re-designation has not been forwarded to EPA. The SMAT applied to episodic PM2.5 with emission controls shows that the Basin will maintain its attainment of the 24-hour average federal PM2.5 standard in 2015. However, as

shown in Figure V-2-15, the Final 2007 AQMP does not achieve the revised 24-hour PM2.5 standard (35 μ g/m³) by 2015 or 2021. Additional controls are needed. California does not have a separate 24-hour PM2.5 standard.


TABLE V-2-13


Annual PM2.5	Model Performance Stress Tests
Stress Test Methodology	Simulated Impact
Boundary conditions only: no biogenic or anthropogenic emissions	Annual average concentration range 2-5 $\mu g/m^3$
Boundary conditions and biogenic emissions: no anthropogenic emissions	Annual average concentration range 2-5 μ g/m ³
Boundary conditions and anthropogenic emissions: no biogenic emissions	Annual average concentration range 10-30 $\mu g/m^3$
No NOx emissions in LA and Orange Counties or offshore	Annual average concentration range $10-22 \ \mu g/m^3$. Westside lower 10-19 $\ \mu g/m^3$ but indicates sea breeze dispersion and transport.
No NOx emissions in San Bernardino and Riverside Counties	Annual average concentration range 10-28 μ g/m ³ . East Basin 5 μ g/m ³ lower but indicates sea breeze dispersion and transport.
Gross VOC emissions reductions 40, 60 & 80 %	Net 1-2 % reduction in PM2.5 concentration for 20% VOC emissions reduction.
Gross NOx emissions reductions 40, 60 & 80 %	Net 5-10 % reduction in PM2.5 concentration for 20% NOx emissions reduction.
Halving NO & NO2 concentrations in boundaries	Reduction of approximately about $1 \ \mu g/m^3$
EPA Clean SO2 Boundary 10 ppb to WRAP 1 ppb	Reduction of approximately 5 μ g/m ³

Annual PM2.5 Model Performance Stress Tests	5
---	---

FIGURE V-2-13

FIGURE V-2-14

Maximum 24-Hour Average PM2.5 Design Concentrations: 2005 Baseline, 2015 Controlled, and 2024 Controlled

Future-year PM2.5 air quality is projected using the procedures and assumptions previously described. Emissions for the 2005 and 2014 baseline and controlled scenarios are listed in Table V-2-8. Future year PM2.5 air quality was determined using site and species specific relative response factors applied to 2005 PM2.5 design values per EPA guidance documents.

The future year PM2.5 discussion follows the order of the previous analysis on base year model performance evaluation. Future year PM2.5 attainment is presented for: (1) the MATES-III sites, (2) the annual average for total mass at the FRM PM2.5 sites, and (3) a weight of evidence the 2015 gridded simulation "hot-spot" grid analysis.

For the purpose of the Basin attainment demonstration, analyses of predicted PM2.5 outside the District jurisdiction are not presented in this draft analysis.

Control Strategy Choices

PM2.5 has five major precursors that contribute to the development of the aerosol including ammonia, NOx, SOx, VOC, and directly emitted PM2.5. Various combinations of reductions in these pollutants could all provide a path to clean air. The attainment strategy presented in this Final 2007 AQMP relies on the maximum extent possible reductions of SOx, direct PM2.5, followed by VOC and NOx. As discussed in Chapter 4 of the Final 2007 AQMP, the proposed strategy focuses on the reductions of SOx and primary PM2.5 through cleaner marine fuels and extensive diesel trap retrofits respectively.

It is useful to weigh the value of the per ton precursor emissions to microgram reductions of PM2.5. The formation of PM2.5 is non-linear and as such individual precursors contribute differently to the overall mass. The CAMx simulations provide a relative rate of reduction per ton of emissions reduced based on complex aerosol chemistry. For PM2.5, the simulations determine that VOC emissions reductions have the lowest return in terms of micrograms reduced per ton reduction. NOx reductions are approximately three times more effective in lowering PM2.5 concentrations but not as effective as sulfate and direct PM2.5 emissions reductions. Table V-2-14 summarizes the relative importance of precursor emissions reductions to the analysis.

The District's proposed control strategy maximizes reductions of direct PM2.5 and SOx to the extent possible due to their effectiveness as well as the likelihood schedule of implementation within the next seven years. Substantial additional VOC and NOx emissions reductions are also required for attainment. However the strategy, nonetheless attempts to maximize the potential PM2.5 concentration reduction per identified ton precursor emissions reduction. The mix of the four primary precursor's emissions reductions targeted for the PM2.5 focused approach

are listed in the Controlled Emissions Projection Algorithm (CEPA) output attached at the end of this document.

SMAT Annual PM2.5 Attainment Demonstration

As previously outlined, the SMAT is conducted on a quarterly basis using the CAMx model output for the six species from the 2005 base-year and the 2014 controlled emissions. Quarterly RRFs determined from the modeling are applied to the MATES-III/Sandwich modified quarterly design value component species. Bonded water is calculated from the concentrations of ammonium, nitrate and sulfate using the AIM polynomial regression equation. Bonded water is not directly reduced by an RRF but is recalculated after applying the RRFs to the ammonium, sulfate and nitrate. Finally, the blank is added to the mass.

Tables V-2-15a through V-2-15c provide the 2014 baseline PM2.5 air quality at the eight key sites, the predicted PM2.5 based on the CARB emissions reduction plan and the estimation of the 2015 controlled annual average PM2.5 adding the District's emissions reduction overlay to the CARB plan.

Without implementing any additional controls, PM2.5 concentrations at the key sites will not meet the federal standard by 2015. Regional concentrations of PM2.5 will be lower with implementation of the CARB plan however the maximum predicted PM2.5 concentration, will continue to exceed the federal standard by approximately four (4) percent. With implementation of the District overlay to the CARB plan, all stations will meet the federal standard of 15.0 μ g/m³. The PM2.5 annual attainment demonstration calculations using the SMAT and RRFs are provided in Tables V-A-1a through V-A-1h in Attachment A.

TABLE V-2-14

Relative Contributions of Precursor Emissions Reductions to Simulated Controlled Future-Year PM2.5 Concentrations

Precursor (TPD)	PM2.5 Component (µg/m ³)	Standardized Contribution to Mass
VOC	Organic Carbon	Factor of 1
NOx	Nitrate	Factor of 3
PM2.5	Elemental Carbon & Others	Factor of 5
SOx	Sulfate	Factor of 10

TABLE V-2-15a
2014 Predicted Baseline PM2.5

Location	NH4	NO3	SO4	OC	EC	Metals/ Others	Water	Blank	PM2.5 Mass
Anaheim	1.4	3.3	2.5	2.0	1.3	2.0	1.5	0.5	14.5
Burbank	1.8	4.1	2.4	3.2	1.7	2.1	1.6	0.5	17.4
Compton	1.6	3.6	2.9	2.5	1.6	2.0	1.7	0.5	16.5
Fontana	1.9	4.8	2.5	1.6	1.9	2.6	1.7	0.5	17.6
Los Angeles	2.0	4.8	2.9	1.1	1.9	2.1	2.1	0.5	17.3
Long Beach	1.6	3.3	3.0	1.5	1.3	1.9	1.6	0.5	14.6
Rubidoux	2.1	5.6	2.4	2.1	1.7	2.2	1.9	0.5	18.5
Wilmington	1.4	2.7	3.0	1.5	1.7	1.9	1.5	0.5	14.2

TABLE V-2-15b

2014 Predicted PM2.5 with CARB Measures

Location	NH4	NO3	SO4	OC	EC	Metals/ Others	Water	Blank	PM2.5 Mass
Anaheim	1.2	2.9	2.0	1.7	1.2	1.9	1.3	0.5	12.6
Burbank	1.6	3.7	1.9	2.9	1.6	2.0	1.4	0.5	15.5
Compton	1.5	3.4	2.3	2.2	1.5	1.9	1.5	0.5	14.7
Fontana	1.6	4.0	2.0	1.4	1.8	2.5	1.4	0.5	15.2
Los Angeles	1.8	4.4	2.3	0.9	1.7	2.1	1.8	0.5	15.4
Long Beach	1.4	3.1	2.3	1.3	1.2	1.7	1.4	0.5	12.9
Rubidoux	1.7	4.5	1.9	1.9	1.6	2.1	1.5	0.5	15.7
Wilmington	1.2	2.5	2.2	1.4	1.4	1.7	1.3	0.5	12.1

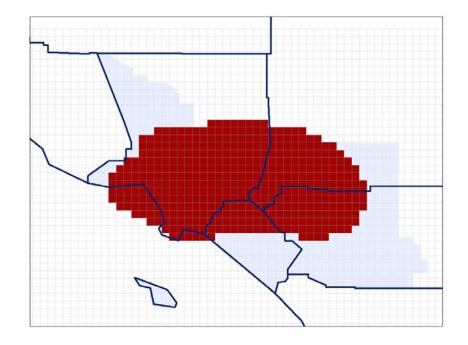
TABLE V-2-15c

2014 Predicted PM2.5 with CARB Measures and District Overlay

Location	NH4	NO3	SO4	OC	EC	Metals/ Others	Water	Blank	PM2.5 Mass
Anaheim	1.2	2.7	1.9	1.7	1.1	1.9	1.2	0.5	12.3
Burbank	1.5	3.5	1.9	2.8	1.5	2.0	1.3	0.5	14.9
Compton	1.4	3.4	2.2	2.2	1.4	1.9	1.5	0.5	14.5
Fontana	1.5	3.7	2.0	1.4	1.7	2.5	1.4	0.5	14.7
Los Angeles	1.7	4.2	2.2	0.9	1.6	2.0	1.7	0.5	14.9
Long Beach	1.4	3.0	2.3	1.3	1.2	1.7	1.4	0.5	12.7
Rubidoux	1.6	4.1	1.9	1.8	1.5	2.1	1.4	0.5	15.0
Wilmington	1.1	2.4	2.2	1.3	1.4	1.6	1.2	0.5	11.8

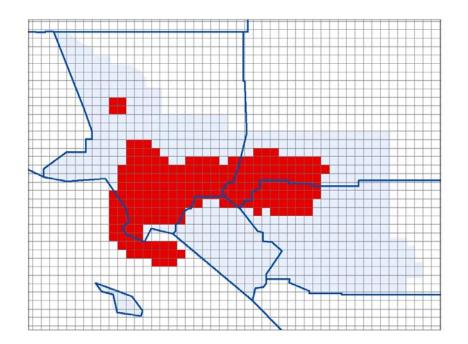
2015 CAMx Grid-Cell Evaluation

Figure V-2-15 presents the grid cell extrapolated of 2005 PM2.5 annual design values. Only grid cells over the federal standard are darkened. Extrapolation was based on distance weighted interpolation scheme using design values from sites inside and outside the Basin to enhance the spatial representation. The pattern depicted by the grid cell design display closely matches the pattern of annual average PM2.5 presented in Figure V-2-3.


Using a similar interpolation scheme, the relative percentage contributions of the six component species at the eight MATES-III sites was extrapolated to each cell in the basin. Predicted 2015 PM2.5 concentrations at the grid cell level (without using multi-cell averaging) was estimated each grid cell by multiplying the speciated RRFs from the CAMx simulations by the relative percentage concentrations of the six components contributing to the grid cell mass and the interpolated grid cell design value. Figure V-2-16 presents the 2015 baseline distribution. PM2.5 levels will be reduced regionally with implementing additional control measure however, almost 60 percent of the population of the Basin will continue to breathe air quality above the federal standard. With the Final 2007 AQMP control strategy in place no cells in the Basin will be above the federal standard.

SMAT 24-Hour PM2.5 Attainment Demonstration

As previously stated, the 2005 Basin maximum design value (64.8 μ g/m3) meets the federal 24-hour average PM2.5 standard of 65 μ g/m3. The SMAT for the 24-hour standard is presented to assure that the PM2.5 episodic levels continue to lower and that the Basin continues to meet the standard in 2015 and beyond. Six methods are applied to the Sandwich modified MATES-III quarterly design values and episodic PM2.5 data to quantify future year PM2.5 reductions. All of the tests summarized in Table V-2-15 demonstrate continued attainment of the 24-hour average PM2.5 standard in 2015.


The six versions of the 24-hour PM2.5 SMAT include:

- CAMx derived RRFs (2005-2014) for the annual average PM2.5 attainment demonstration are applied to the three-year average PM2.5 design values;
- the quarterly based SMAT prescribed in the EPA guidance document that uses the CAMx quarterly RRF's from the top 25 percentile applied to the quarterly 24-hour design values for each year in the three year period 2003-2005;

FIGURE V- 2-15

2005 Grid-Cell Extrapolated Design Values $> 15.0 \; \mu g/m^3$

2015 Baseline Grid-Cell Extrapolated Predicted Design Values ($\mu g/m^3$)

- a version of the quarterly based SMAT prescribed in the EPA guidance document that uses the CAMx quarterly RRF's from the annual average PM2.5 attainment demonstration applied to the quarterly 24-hour design values for each year in the three year period 2003-2005;
- a modified version of the second option that applies the quarterly RRFs from the top 25 percentile to the top three quarterly episodic 2005 PM2.5 measurements;
- the expected response of the peak episode PM2.5 [October 22, 2005, 110 µg/m3] to episodic specific RRFs is applied to the 3-year average Basin maximum design value, and
- the expected response of the peak episode PM2.5 to the annual average RRFs is applied to the 3-year average Basin maximum design value.

Table V-2-16 summarizes the different methods for calculating the 2015 24-hour PM2.5 design value.

The first test simply assumes that the RRFs calculated for the annual average attainment demonstration can be directly applied to the 24-hour PM2.5 design values to estimate the 2015 reduction in PM2.5 due to implementation of the control strategy. The second test is more conservative and follows the example specified in the EPA guidance document. The quarterly RRFs determined for the top 25 percent of the quarterly distributions are applied to the component based design values for the period 2003 through 2015 to recreate a design value. The third test recreates the second test but uses the quarterly RRFs derived from the annual PM2.5 analysis.

The fourth analysis focuses on the top three episodic days in each quarter of 2005 to establish both the percentage contributions of the components to the sample mass and an average quarterly top-three distribution for an episodic period. The quarterly RRFs determined for the top-25 percentile analysis are applied to the top-three quarterly measurements to determine a quarterly mass reduction percentage. The quarterly percentage reduction is then applied to the quarterly 2005 design to estimate a 2015 quarterly concentration.

The fifth and sixth analyses apply the day specific and annual average RRFs to the component species observed on October 22, 2005, the day having the highest measured PM2.5 at a majority of sites in the Basin. These two analyses, like the third, produce a percentage reduction that is applied to the 2005 design to estimate 2015 attainment

The PM2.5 24-hour attainment demonstration calculations using the SMAT and RRFs are provided in Attachment A. Table V-A-2 provides the annual average RRF applied to the 24-hour annual design value. Tables V-A-3a through V-A-3h present the EPA

recommended attainment test. Tables V-A-4a through V-A-4h presents the modified EPA test using the quarterly RRFs from the annual attainment demonstration as an alternate reduction rate. Tables V-A-5a through V-A-5h present the application of the quarterly top-25 percentile RRFs to the 2005 quarterly top-three episodic measurements. Tables V-A-6a through V-A-6h provide the applications of the episodic model derived RRFs to the peak episodes and the application of the annual RRFs to the peak episodes

TABLE V-2-16

Summary of Methodologies to Calculate 2015 24-Hour Average Design Value (μ g/m3)

Location	Annual RRF to Design	Quarterly Top 25 Percentile RRF to Quarterly Design	Quarterly RRF from Annual to Quarterly Design	Quarterly Top 25 Percentile RRF to Quarterly Top-3 Ratio to Design	Peak Day RRF to Peak Day	Annual RRF to Peak Day	Maximum of Methods
Anaheim	35.7	42.8	41.8	38.5	34.6	34.1	42.8
Burbank	40.5	47.7	46.7	44.1	43.8	39.4	47.7
Compton	39.5	56.6	46.3	54.3	37.5	40.9	56.6
Fontana	40.0	45.0	46.7	41.2	36.8	33.0	46.7
Long Beach	32.4	41.9	39.1	37.3	31.2	33.3	41.9
Los Angeles	46.1	55.1	50.7	47.8	50.3	46.4	55.1
Rubidoux	42.8	46.9	49.3	47.1	38.6	37.4	49.3
Wilmington	30.3	39.5	36.1	35.8	30.3	28.8	39.5

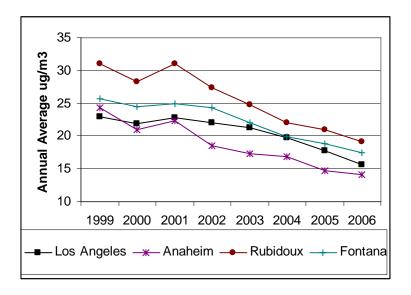

WEIGHT OF EVIDENCE

Table V-1-3 in Chapter 1 summarizes the additional information requirements needed to support the modeling attainment demonstrations based upon the projected future year concentration. Specifically, "A weight of evidence demonstration should be conducted to determine if aggregate supplemental analyses support the modeled attainment test." The "weight of evidence" supporting information for the current PM2.5 attainment demonstration includes an analyses of the PM2.5 air quality trend, trends in population exposure, emissions trends, and adjustments to the mobile source emissions VMT distributions. While the weight of evidence discussion is focused towards supporting the attainment demonstration, it is important to be unbiased and present both sides of the argument "for" and "against" acceptance of the analysis. In the case of the PM2.5, it is equally important to remember the magnitude of the problem requires an extraordinary commitment to implementation of the control strategy. Positive trend data in either air quality or emissions reductions should be viewed as encouraging but not taken solely as the remedy to the air quality problem.

Air Quality Trends

Probably the most convincing argument that the Basin will attain the Federal Standard for PM2.5 in 2015 is the ongoing trend of ambient PM2.5 concentrations. Figure V-2-17 depicts the trend of annual average PM2.5 concentrations at key monitoring stations in each of the four counties of the Basin. The trend clearly depicts a steady rate of improving PM2.5 air quality, regardless of locations in the Basin. This trend line also supports the argument for selecting 2005 as the design year to anchor the PM2.5 attainment demonstration due to the rapid change in air quality. The 4-station average PM2.5 has improved by more than 36 percent from 1999 through 2006 for an approximate 4.5 percent annual improvement rate.

It is dangerous, however, to directly extrapolate the improvement rate. For example, over the last 10 years, the first five years of data would have suggested vast improvement for the following five year period. But, the trend flattened to little to no improvement. Redistribution of population and industrial growth in the east Basin is expected to continue to increase over the next 10 years. This shift in demographics is expected to slow the east basin trend of improving air quality. Also, with the expected tripling of goods movement through the Ports of Los Angeles and Long Beach, emissions from heavy duty truck and rail traffic is expected to increase accordingly. Regardless, while the trend is encouraging, the rate of improvement will slow and possibly turn around if no further emissions reductions are made. Implementation of the control strategy proposals of the Ports, CARB through their AQMP commitment and the District's total program is expected to ensure that PM2.5 levels will continue to improve regionally.

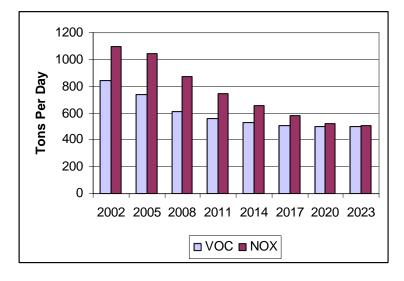


FIGURE V-2-17 Trend of Annual Average PM2.5 in the South Coast Air Basin (1999-2006)

Emissions Trends

Figures V-2-18 and V-2-19 depict the baseline trends of the PM2.5 precursor emissions from 2002 through 2023. The VOC and NOx emissions a trend lines up nicely against the PM2.5 air quality trend for the 2002 to 2005 period. Four and two percent reductions of VOC and NOx emissions respectively are consistent with improving air quality trend. However increases in directly emitted particulate and SOx suggests an offset to the other precursor emissions benefits over the 2002 - 2005 period. Introduction of a 15 ppm sulfur fuel in California in 2006 is not depicted in the 2005 bar but in reality, the region may have experienced an early phase in of the lower sulfur fuel. Clearly the baseline trend in sulfur emissions is lower over the next six year before undergoing a moderate increase in 2014.

Figure V-2-20 show the impact of the emissions control strategy. Significant additional reductions beyond baseline are demonstrated through 2020. With the control strategy implemented in 2014, the Basin will experience reductions in emissions from 2005 of: 36.6 percent for VOC, 57.5 percent for NOx, 69.4 percent for SOx, and 13.7 percent for directly emitted PM2.5. Translated over the nine seven years needed to implement annual percent reductions are expected to be consistent with those observed between 2002 and 2005. The confirms that implementations of the control strategy on top of a decreasing baseline will move the air quality trend in

the direction of improving PM2.5 concentrations and attainment of the federal standard.

FIGURE V-2-18 Trend of Baseline VOC and NOx Emissions (TPD) in the South Coast Air Basin

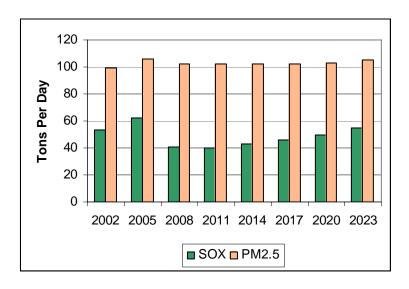
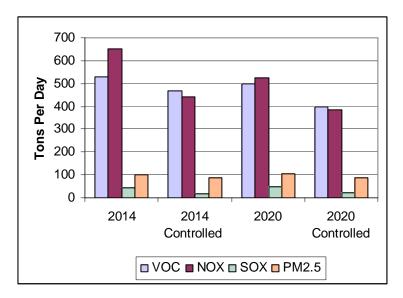



FIGURE V-2-19 Trend of Baseline SOx and PM2.5 Emissions (TPD) in the South Coast Air Basin

FIGURE V-2-20

Comparison of Baseline and Controlled Emissions (TPD) in the South Coast Air Basin

Mobile Source Emissions and VMT

The emissions inventory used for the October 2006 / Draft 2007 AQMP relied on an interim inventory and a working draft version of EMFAC 2007 that CARB provided to AQMD staff to begin the analysis for the Draft 2007 AQMP. Several major improvements to the EMFAC and off-road models were in progress at the time. CARB staff released the official EMFAC2007 and OFFROAD emissions model on November 1, 2006 and provided subsequent additional external adjustment factors to incorporate additional changes viewed necessary to the mobile source inventories.

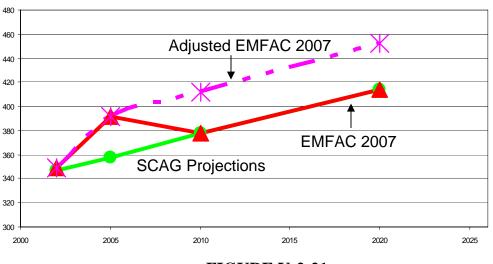
Significant changes occurred to VOC and NOx on-road mobile source emissions. A decrease in VOC emissions was made due to the modification in number of pending vehicle registrations assumed in the EMFAC model. "Pending vehicles" are those in the DMV data base that are not fully processed for administrative reasons. In prior EMFAC models, pending vehicles were not included which might have contributed to previous underestimation of VOC emissions in the inventory. In developing the working draft of EMFAC2007 for the Draft 2007 AQMP, CARB staff assumed all pending registrations were on the road, and incorporated these vehicles in the vehicle population analysis. However, with the official release of EMFAC2007, CARB staff revised its assumption based on further evaluation of the pending registration and concluded that only 25 percent of the total pending vehicles were actually being driven. The change in assumption resulted in a 95 tons/day decrease in VOCs for 2005 with minor impact on the NOx emissions. This is due to the fact that the pending vehicles have a greater impact on evaporative emissions (i.e., VOC) than

pending vehicles have a greater impact on evaporative emissions (i.e., VOC) than tailpipe exhaust emissions since total vehicle miles traveled (VMT) were presumably already captured by the EMFAC model.

The impact of the significant change in the VOC inventory is most apparent in the performance of the CAMx base year ozone simulations. VOC emissions are a critical component of the PM2.5 inventory however as depicted in Table V-2-14 the reduction of VOC emissions had a smaller impact compared with other precursors. The net change in the inventory for 2005 NOx emissions was an increase of about 10 TPD based on EMFAC2007 derived VMT profile.

Differing Estimates of VMT on Future Year PM2.5

Historically, VMT is calculated through several approaches. One approach, used by metropolitan planning organizations such as SCAG, uses complex simulation models to spatially estimate VMT based on origin-destination surveys. The approach used by CARB is based on Department of Motor Vehicle (DMV) vehicle registrations and Bureau of Automotive Repair (BAR) odometer readings collected through the Smog Check program.


Under state and federal law, transportation agencies develop VMT information for transportation planning and conformity purposes. Under federal law, the Highway Performance Monitoring System (HPMS) estimates of VMT are to be considered the primary measure of VMT "within the portion of the nonattainment area" [40 CFR 93.122(b)(3)]. In addition, "For areas with network-based travel models, a factor (or factors) may be developed to reconcile and calibrate the network-based travel model estimates of VMT in the base year of its validation to the HPMS estimates for the same period. These factors may then be applied to model estimates of future VMT. Locally developed count-based programs and other departures from these procedures are permitted subject to the interagency consultation procedures of § 93.105(c)(1)(i)."

SCAG provided VMT estimates for calendar years 2000, 2002, 2005, 2010, 2015, 2020, and 2030 to CARB and AQMD for the development of the 2007 AQMP revision. SCAG's estimates are based on information developed for the 2004 RTP. The South Coast Air Basin VMT totals are used for planning purposes and the spatially disaggregated VMT is used for air quality modeling purposes. CARB compares SCAG's VMT estimates with their VMT estimates based on the DMV and BAR registration data and attempts to reconcile with SCAG's estimates using vehicle population data and mileage accrual rate.

In the prior EMFAC models, CARB's VMT estimates generally agreed with SCAG's estimates. For the latest EMFAC 2007, CARB took DMV and BAR data from 2000 to 2005 to develop new VMT estimates for 2000, 2002, and 2005. When CARB

VMT data are in close agreement with SCAG's except for 2005. AQMD staff examination of the EMFAC VMT indicates that for 2005 the difference in CARB's VMT estimates and SCAG's is on the order of 10 percent for light- and medium-duty vehicles (or 30 million more VMT per day) and 20 percent for heavy duty vehicles (or about 5 million more VMT per day). CARB staff indicated that they believe that the differences are within the uncertainties of estimating VMT.

Figure V-2-21 illustrates the difference between the current EMFAC on-road mobile sources VMT assumption compared to SCAG's projections. The difference between the two estimation methodologies is portrayed as the 2005 "blip" in the diagram.

FIGURE V-2-21

EMFAC2007 vs. SCAG's Project of Basin On-Road VMT

The AQMD retained two technical experts in the area of transportation analysis to review the VMT estimates for 2005. The consultants reviewed CARB's assumptions and to the extent possible some of the DMV and BAR data used to produce the 2005 VMT estimates. They concluded that there is no independent evidence to support a decline in VMT between 2005 and 2010, and recommended conducting sensitivity analysis in the near-term (given the need to develop an AQMP Revision) to determine the magnitude of the differences.

Impact to Projections of Future Year PM2.5

CAMx was simulated for PM2.5 using the SCAG estimate of VMT which resulted in a reduction of 10 TPD fewer tons of 2005 base-year NOx emissions. A rough estimate of this impact was between 0.08 and 0.10 μ g/m³ less PM2.5 produced in 2005, the anchor year for the RRF calculation. (Less PM2.5 produced through the 2005 simulation affects the slope of the RRF and will require additional emissions reductions in future years). Estimation of the impact of using SCAG's VMT profile to 2015 PM2.5 is roughly place the need for about 10 additional tons of NOx reductions in 2014 or its equivalent reduction in either SOx, directly emitted PM2.5 or VOC. Using SCAG's VMT profile as the basis for 2005 mobile source NOx provided a conservative choice that confirmed the direction of tonnage of emissions reductions needed to meet the federal standard with confidence.

In light of uncertainty in VMT projections, the District staff recommended to retain the mobile source emissions estimates made from EMFAC2007 for the planning inventory. However, for modeling purposes, the gridded mobile source emissions were based on the SCAG 2005 projection of VMT.

CHAPTER 3 THE FEDERAL 24-HOUR PM10 ATTAINMENT DEMONSTRATION PLAN AND VISIBILITY ASSESSMENT

Introduction Modeling Methodology Future Year Air Quality Visibility

INTRODUCTION

As discussed, in the main document, on September 21, 2006 the U.S. EPA administrator signed the final documents that eliminated the existing annual PM10 standard. The action retained 24-hour PM10 standard at its existing concentration of 150 μ g/m³. The form of the 24-hour PM10 standard allows for one violation of the standard annually. The Basin currently meets the 24-hour average federal standard. (The only days that exceed the standard are associated with high wind natural events or exceptional events due to wildfires).

For this analysis, the annual second maximum concentration is used for the attainment demonstration (given the standard allows for one violation annually). Riverside Rubidoux has been the PM10 24-hour design site in nine of the past ten years when high wind days have been excluded from the analysis. The 2005 design value at Rubidoux is 86 percent of the federal standard. The standard attainment demonstration is conducted to assure that the Basin will continue to be in compliance in future years.

MODELING METHODOLOGY

As a conservative analysis, only emissions reductions associated with the PM2.5 portion of the 24-hour PM10 concentration are assumed to be impacted by future year emission controls. Co-located PM10 and PM2.5 measurements (monitored on the same days) were used to determine the site specific average percentage contribution of PM2.5 to the PM10 annual and second annual maximum concentrations.

Future year predictions of maximum and second maximum 24-hour average PM2.5 were determined using the site specific annual PM2.5 RRFs calculated for 2005 and 2014. The annual PM2.5 RRF encumbers total mass rather than individual component species. The site specific RRF was applied to the PM2.5 portion of the PM10. The PM10-2.5 "coarse" portion remains constant in the analysis.

The RRFs for the six of the eight MATES-III sites, calculated from the annual PM2.5 attainment demonstration, for 2005 to 2014, are applied directly to the fine portion of the 24-hour PM10 distribution measured at that location. The Compton RRF was applied to the Lynwood PM10 (since the monitoring stations are closely located). The average RRF determined from all eight MATES-III sites was used to estimated the reductions of the PM2.5 portion of the PM10 mass at the remaining PM10 sites in the Basin. The predicted reductions to the fine portion are then added to the coarse to estimate a 2015 second maximum PM10 24-hour average design concentration.

FUTURE YEAR AIR QUALITY

PM10 24-hour attainment Demonstration

Table V-3-1 summarizes the PM10 24-hour attainment demonstration. All sites meet the federal PM10 standard of 150 μ g/m³ in 2015. The predicted 2nd highest maximum concentrations for 2015 is located at Rubidoux and values approximately 74 percent of the federal standard. Only five of the sixteen locations are expected to meet the more restive state standard of 50 μ g/m³ by 2015. Rubidoux is predicted to exceed the state standard by 122 percent in 2015.

PM10 Annual Analysis

The Final 2007 AQMP does not provide an updated regional attainment demonstration to show compliance to the revoked annual PM10 standard ($50 \mu g/m^3$). At the writing of this document, it is expected that the 2006 design value for Rubidoux will continue to nominally exceed the revoked federal standard but will continue to exceed the California PM10 standard of 20 $\mu g/m^3$. Despite EPA's decision revoking the PM10 annual standard, the District will continue to work towards meeting its former attainment target in the effort to protect public health, demonstrate progress towards attaining the state PM10 annual standard and assist in compliance of the federal 24-hour PM10 standard.

As part of the 2003 AQMP, the District proposed a comprehensive program to examine the local emissions profile and potential for mitigation actions that could be taken to bring PM10 concentrations at Rubidoux within the annual standard by 2006. A survey of the local emissions was conducted and as a result two District rules (1186 and 1174) targeting emissions from aggregate operations and bag houses have been strengthened in the efforts to reduce impacts to the Rubidoux community. In addition, the District has increased compliance measures in the area and staff is working with the Riverside County Redevelopment agencies to expedite installation of paved curbs and gutters to eliminate sources of fugitive dust emissions. The Final 2007 AQMP control measure BCM-02 PM Emissions Hot Spots continues this concept of addressing localized PM impacts.

TABLE V-3-1

24-Hour Average Maximum and Average 2nd Maximum Basin PM10: 2003-2005 Baseline Design and 2015 Controlled

		Averag				Average				2015	2015
		Maximu		T (Maximu		24 11	2015	Estimated	
			Est.	Est.	Mass		Est.	Est.	24-Hour	Estimated	Average
			2.5	Coarse	$(\mu g/m^3)$		2.5	Coarse	Average	Average	2^{nd}
	Mass	PM2.5/PM10	Mass	Mass		PM2.5/PM10	Mass	Mass	PM2.5	Maximum	Maximum
Location	$(\mu g/m^3)$	Ratio	$(\mu g/m^3)$	$(\mu g/m^3)$		Ratio	$(\mu g/m^3)$	$(\mu g/m^3)$	RRF	$(\mu g/m^3)$	$(\mu g/m^3)$
Azusa	93	0.51	47.6	45.4	79	0.54	42.3	36.7	0.75	81	68
Burbank	82	0.51	42.0	40.0	73	0.69	50.2	22.8	0.79	73	62
Long Beach	96	0.73	69.8	26.2	63	0.78	48.9	14.1	0.73	77	50
Los Angeles	74	0.75	55.7	18.3	69	0.80	54.9	14.1	0.76	61	56
Santa Clarita	60	0.56	33.6	26.4	54	0.54	29.2	24.8	0.75	52	47
Hawthorne	53	0.56	29.7	23.3	61	0.54	32.9	28.1	0.75	46	53
Anaheim	78	0.50	38.8	39.2	67	0.49	33.1	33.9	0.74	68	58
Mission Viejo	51	0.69	35.4	15.6	44	0.33	14.7	29.3	0.74	42	40
Rubidoux	141	0.60	84.4	56.6	129	0.42	54.3	74.7	0.66	112	111
Perris	102	0.56	57.1	44.9	88	0.54	47.5	40.5	0.75	88	76
Banning Airport	79	0.56	44.2	34.8	55	0.54	29.7	25.3	0.75	68	48
Crestline	49	0.56	27.4	21.6	47	0.54	25.4	21.6	0.75	42	41
Fontana	105	0.29	30.6	74.4	96	0.36	34.2	61.8	0.73	97	87
San Bernardino	96	0.58	55.5	40.5	85	0.44	37.8	47.2	0.75	82	76
Redlands	80	0.56	44.8	35.2	70	0.54	37.8	32.2	0.75	69	61
Ontario	90	0.44	40.0	50.0	77	0.65	50.1	26.9	0.75	80	64

VISIBILITY

Background

In July 1999, U.S. EPA adopted the federal Regional Haze Regulations [40 CFR Part 51] to address Section 169A of the CAA which set forth a national goal for future visibility with specific focus to remedy any visibility impairments to Class I areas nationwide. States are required to provide to EPA emissions reduction strategies to improve visibility in all mandatory Class I national parks and wilderness areas. In response to the requirements of the regulations, California joined the Western Regional Air Partnership (WRAP), a multi-agency organization that is coordinating implementation of the regional haze rules. States with PM2.5 non-attainment areas are require to submit "haze plans" to EPA within 3-years following PM2.5 designation and develop future year (2018) inventories of emissions that lead to visibility reduction. The ARB has assumed the responsibility for the plan and inventory development requirements for the state.

The emissions reductions needed to attain the PM2.5 standard in the Basin will directly contribute to improved future year visibility. California continues to maintain a state standard for visibility structured to reduce aerosol particles (8-hour average) that contribute to an extinction coefficient value of 0.23 per kilometer (or 10 miles of visual range) when relative humidity is less than 70 percent. The previous form of the standard assessed the number of days when visual range was less than 10 miles for the same humidity consideration. Visibility is among the strongest indicators to air quality and its value is paramount. As such, future year visibility is used in the socioeconomic evaluation of the AQMP to estimate monetary benefits that arise from improved visual range through the implementation of the plan. Future-year visibility in the Basin is projected empirically using the results derived from a regression analysis of visibility with air quality measurements. The regression data set consisted of aerosol composition data collected during a special monitoring program conducted concurrently with visibility data collection (prevailing visibility observations from airports and visibility measurements from District monitoring stations). A full description of the visibility analysis is given in Technical Report V-C of the 1994 AQMP.

Visibility Modeling

To establish the most reasonable control strategy to meet the visibility standard in the future, a relationship between visibility and concentrations of visibility reducing particles must be established. This, in turn, requires visibility modeling techniques to identify sources of visibility reducing particles and to quantify their impacts.

The total atmospheric light extinction can be broken down into four basic components: scattering of light by particles, absorption of light by particles, absorption of light by gases, and scattering of light by gases (Rayleigh scattering). In general, total light extinction is dominated by scattering of light due to particles, with light absorption by particles being second in importance. The components other than scattering of light by particles have been well-characterized by theory or from previous studies. Therefore, light extinction by particle scattering is normally estimated either by visibility modeling or by direct measurement.

Multiple linear regression is a statistical tool commonly used for characterizing the relationship between visibility and ambient air quality of the visibility reducing particles. When atmospheric light extinction due to particle scattering is regressed on concentrations of visibility reducing particles, the regression coefficients represent the extinction efficiency due to particle scattering (extinction per unit concentration) for each air pollutant species.

Multiple linear regression was employed in the 1991 AQMP to develop empirical predictive equations. Empirical visibility model developed in the 1991 AQMP for Riverside were utilized in the current AQMP analysis to estimate future visibilities with new future-year (2015, and 2021) organic carbon concentrations, sulfate, and nitrate concentrations which were obtained from the CAMx simulations. Details of the statistical analysis used to develop the empirical predictive equations can be found in Technical Report V-G of the 1991 AQMP.

Prior Visibility Modeling Results

In the 1991 AQMP, the regression analysis resulted in several sets of extinction efficiencies for light scattering by particles for Riverside (Rubidoux station) and four additional measurement locations. (Since Rubidoux is the limiting PM2.5 station in the Basin it is considered to be the representative site for expected minimum Basin visual range estimation.) Combining extinction efficiencies for light scattering by particles with the empirical expressions for the other light extinction component produces a series of empirical predictive equations. Empirical predictive equations relate light extinction to concentrations of visibility reducing air pollutants and have the following form:

 $\mathbf{b}_{\text{ext}} = \text{Summation} (\mathbf{b}_{\text{i}} \cdot \mathbf{C}_{\text{i}}) + \mathbf{b}_{\text{RAY}}$

where	b _i	=	extinction efficiency for ith species $(10^{-4} \text{ m}^{-1}/\mu g/m^3 \text{ or } 10^{-4} \text{ m}^{-1}/\text{pphm})$
	C _i	=	mean concentration for ith species ($\mu g/m^3$ or pphm)

 b_{RAY} = extinction due to Rayleigh scattering in the Basin (10⁻⁴ m⁻¹)

Table V-3-2 is a summary of the 1991 AQMP results, showing the extinction efficiency, b_i , for Riverside. (The extinction efficiency, b_i , for the other locations analyzed in the 1994 AQMP can be found in 1994 AQMP, Technical Report V-C).

A baseline light extinction budget was determined for each empirical predictive equation using the mean measured values of the air quality components for the baseline year 2005. The light extinction budget for Riverside during the baseline emission year is summarized in Table V-3-3. These show the percent contribution to total extinction from each component for each equation. At Riverside light scattering by particles accounts for up to 86 percent of the total light extinction with secondary nitrate and carbon particles being dominant.

Predicted Future Air Quality

Future air quality levels are needed to estimate future visual air quality. The concentrations of sulfate, nitrate, organic carbon and elemental for future years 2015, and 2021 are taken from the results of the CAMx modeling analysis. Future concentrations of NO_2 are estimated from the mean annual concentrations measured using linear rollback of NO_x emissions. Natural background concentrations for each of these are assumed to be negligible for this analysis. Estimated future baseline and controlled levels for all pollutant species that affect visibility are shown in Table V-3-4.

Future Visibility Projections

Tables V-3-5 and V-3-6 compare the predicted future visibility with the current levels based on measurements. The results for the baseline emission scenario (no further emission controls) are shown in Table V-3-5 and the results for the controlled emission scenarios are shown in Table V-3-6. Each table shows the predicted annual average light extinction coefficients compared to the total light extinction coefficient derived from 1986 measurements and the mean visual range estimated from the measured and predicted extinction coefficients. Figure V-3-1 illustrates the improvement in visibility in terms of the annual visual range for both emission control scenarios.

The results of the visibility analysis for Rubidoux illustrated in Figure V-3-1 indicate that with future year reductions of PM2.5 from implementation of all proposed emission controls for 2015, the annual average visibility would improve from about 10 miles (calculated for 2005) to over 20 miles at Rubidoux. Visual range in 2021 is estimated Visibility at all other Basin sites is expected to equal or exceed the

Rubidoux visual range. Visual range is expected to double from 2005 due to reductions of secondary PM2.5 (by more than one third), direct PM2.5 emissions including diesel soot and lower nitrogen dioxide concentrations as a result of 2007 AQMP controls.

TABLE V-3-2

Riverside Extinction Efficiencies, b_i, Defining Alternate Sets of Empirical Predictive Equations for Light Extinction

Visibility-Reducing			Alter	rnate Equ	ations ¹	
Species	Units		1	2	3	4
Riverside						
SULF	$(10^{-4} \text{ m}^{-1}/\mu \text{g/m}^3)$	b_1				
NITR	$(10^{-4} \text{ m}^{-1}/\mu \text{g/m}^3)$	b_2	0.070	0.075		
IONS	$(10^{-4} \text{ m}^{-1}/\mu \text{g/m}^3)$	b ₃			0.055	0.058
OC	$(10^{-4} \text{ m}^{-1}/\mu \text{g/m}^3)$	b_4	0.104		0.089	
CRBN	$(10^{-4} \text{ m}^{-1}/\mu \text{g/m}^3)$	b ₅		0.062		0.053
EC	$(10^{-4} \text{ m}^{-1}/\mu \text{g/m}^3)$	b_6	0.119	0.119	0.119	0.119
NO_2	(10 ⁻⁴ m ⁻¹ /pphm)	b ₇	0.033	0.033	0.033	0.033
molecules	(10 ⁻⁴ m ⁻¹)	b _{RAY}	0.114	0.114	0.114	0.114

TABLE V-3-3

Current Light Extinction Budgets for Each Alternate Empirical Predictive Equation at Each Measurement Location (in percent of total light extinction)

Location	Alt Eq.	SULF	NITR	^b _{sp} IONS	OC	CRBN	b _{ap}	b _{ag}	b _{RAY}
Riverside	1	0	0	74	11	0	7	3	6
	2	0	72	0	13	0	7	3	6
	3	0	0	75	0	11	6	3	5
	4	0	73	0	0	13	6	2	5

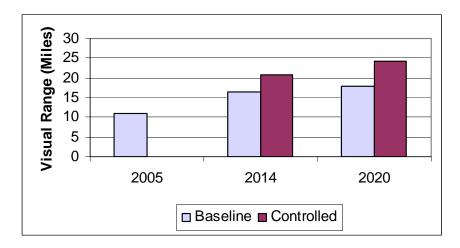
b_{sp} – backscattering from particulates

b_{ap}– absorption from particulates

b_{ag} – absorption from gases

¹ Alternate equations in the set of empirical predictive equations defined for each measurement location.

TABLE V-3-4


Riverside Air Quality Levels for the Years 2005 and 2015 Future Baseline and Controlled

Component	Units	Baseline	Controlled			
2015						
SULF	$\mu g/m^3$	3.96	3.07			
NITR ¹	$\mu g/m^3$	9.30	6.63			
IONS	$\mu g/m^3$	13.27	9.71			
OC ²	$\mu g/m^3$	0.26	0.23			
EC ²	$\mu g/m^3$	1.73	1.52			
CRBN	$\mu g/m^3$	2.07	1.82			
NO ₂ ²	pphm	1.10	0.75			
2020						
SULF ¹	$\mu g/m^3$	4.24	3.22			
NITR ¹	$\mu g/m^3$	7.77	4.74			
IONS	$\mu g/m^3$	12.01	7.96			
OC ²	$\mu g/m^3$	0.23	0.25			
EC ²	$\mu g/m^3$	1.77	1.53			
CRBN	$\mu g/m^3$	2.07	1.85			
NO_2^2	pphm	0.88	0.49			

The predicted future visibilities are consistent with the observed annual average visual range in areas influenced by marine air (with the attendant marine haze). Without significant air pollution sources, median mid-day visibilities along the California coast are generally less than 25 miles (Trijonis, 1980).

Future Light Extinction Budgets at Riverside

Table V-3-7 compares the baseline and future projected light extinction budgets determined from one of the alternate empirical equations for each location to illustrate changes in the importance of each pollutant component to overall light extinction. These changes result from alterations in the future pollutant mix and in the spatial distribution of sources.

FIGURE V-3-1

Annual Average Daytime Visibility Projections at Rubidoux in Miles

TABLE V-3-5

Projected Future Visibility, Baseline without Future Controls

Year	Alt. Eq. ¹	Total Light Extinction Coefficient (10 ⁻⁴ m ⁻¹)	Calculated Visual Range (miles)
Baseline		1.7	11.0
2014	1	1.109	16.8
	2	1.035	18.0
	3	1.235	15.1
	4	1.182	15.8
2020	1	1.035	18.0
	2	0.921	20.2
	3	1.160	16.1
	4	1.065	17.5

¹ Alternate equations in the set of predictive empirical equations defined for each measurement location.

TABLE V-3-6

Year	Alt. Eq.	Total Light Extinction Coefficient (10 ⁻⁴ m ⁻¹)	Calculated Visual Range (miles)
2014	1	0.874	21.3
	2	0.808	23.1
	3	0.979	19.0
	4	0.930	20.0
2020	1	0.772	24.1
	2	0.670	27.8
	3	0.872	21.4
	4	0.783	23.8

Projected Future Visibility, With Controls

TABLE V-3-7

Comparison of Baseline and Future Projected Light Extinction Budgets for Riverside (% contribution)

Component	Baseline			Controlled		
	2005	2014	2020	2014	2020	
NITR	66	63	59	57	50	
OC	15	3	3	3	4	
EC	9	20	23	22	27	
NO ₂	3	4	2	3	2	
RAY.	7	11	12	14	17	

The light extinction budget for Riverside changes nominally for the future baseline emission cases except for the following: (1) nitrate remains the major contributor but its contribution decreases; and (2) elemental carbon contributions increase from the base year then remain constant through 2021.

The projected light extinction budgets for the years 2015 and 2021 with the controlled emission scenarios continues to show reduced impacts of nitrates to visibility but the relative contribution due to elemental carbon increases.

CHAPTER 4 REVISION TO THE 2003 OZONE ATTAINMENT DEMONSTRATION PLAN

Introduction Modeling Approaches Emissions Summary Episode Selection Base-Year Performance Evaluation Ozone Air Quality Projections Sensitivity Studies Weight of Evidence

INTRODUCTION

The Final 2007 AQMP Ozone Attainment Demonstration Plan to meet the federal 8-hour average standard (84 ppb) is presented in this chapter. The Basin is currently designated severe-17 nonattainment for ozone. As mentioned in Chapter 1 of the main document, the submittal of the 2003 California Ozone SIP served as the 1-hour ozone attainment demonstration for the South Coast Air Basin and those portions of the Southeast Desert Modified Nonattainment Area which are under the District's jurisdiction. The attainment demonstrations provided in this Final Plan address the current 8-hour federal ozone standard and reflect the updated emissions baseline estimates, new technical information, enhanced air quality modeling techniques, and the control strategy provided in Chapter 4 of the main document and Appendices IV-A through IV-C.

The modeling Attainment Demonstration serves as a revision to the 1997 and 2003 ozone Attainment Demonstration Plans (Ozone Plan) submitted to EPA as part of the California State Implementation Plan (SIP). The ozone modeling attainment demonstration relies on the CAMx modeling system with the SAPRC99 chemical mechanism and six modeling episodes. The structure of the standard and the use of RRFs differentiate this ozone modeling attainment demonstration from past endeavors. The standard is based on the 4th highest annual 8-hour measured ozone concentration averaged over a three year period. The variability of meteorological episodes that can generate ozone concentrations equivalent to 4th highest in a three year period does not lend to a direct deterministic simulated attainment demonstration. As such, EPA's modeling guidance recommends the use of RRFs determined from several simulated ozone episodes to assess future year standard attainment. This analysis uses six meteorological episodes to draw a representative sample of days when the 8-hour ozone standard was exceeded at the set of Basin stations with design values requiring attainment demonstrations.

The meteorological episodes span three years: 2004 and 2005 when the MATES-III monitoring program was in effect and primary modeling episode used in the 2003 AQMP, August 5-6, 1997, which occurred during the 1997 Southern California Ozone Study (SCOS97). The 2004 and 2005 episodes occurring during the MATES-III sampling program integrate data from the network of radar wind and temperature profiles distributed throughout Southern California. In addition, advances in satellite data acquisition used in meteorological model initialization since SCOS97 and readily available global model output have shifted the focus of regional meteorological modeling from diagnostic/objective analysis towards 4-dimensional data assimilation in prognostic modeling. Equally important, the 2004-2005 episodes occurred in the post California Phase III reformulation period and represent the current VOC emissions profile. The 1997 episode is one of several meteorological episodes that were

intensively monitored through the SCOS97 field program and was included in the analysis to provide continuity between the Final 2007 AQMP and 2003 Ozone Plans. The base year for the ozone modeling demonstration and emissions inventory characterization is 2002.

This chapter draws heavily from the Draft Modeling Protocol and provides the background for the development of the components that contribute to the ozone modeling attainment demonstration. (Where necessary, the discussion will refer to the Draft Modeling Protocol to avoid duplication). Included are discussions of the modeling tools selected for the demonstration, federal and state air quality standard requirements, and base and future year emissions. The selection and characterization of meteorological episodes and preparation of the ozone simulation model input is provided in detail. The analysis also provides the base year model validation and supporting statistical and graphical documentation.

Ozone air quality is projected using CAMx for the following future years: 2017 (for impacts to the Coachella Valley portion of the Salton Sea Air Basin), and 2024 (to demonstrate attainment of the federal ozone standard in the South Coast Air Basin). Additional analyses provide characterization of future year air quality for alternative emissions control strategies.

Model Selection

The CAA requires that ozone nonattainment areas designated as serious and above use a photochemical grid model to demonstrate attainment. During the development of the 2003 Plan, the District convened a panel of seven experts to independently review the regional air quality modeling conducted for ozone and PM10. The consensus of the panel was for the District to move to the more current state-of-the-art dispersion platforms and chemistry modules. EPA (CRF 51, Appendix W) does not recommend a specific modeling dispersion platform or chemistry package to be used in an ozone attainment demonstration but provides guidance in the selection process. The comprehensive reviews of the panel recommendations is presented in Chapter 1 of the 2003 AQMP.

The model selected for the Final 2007 AQMP attainment demonstrations is the Comprehensive Air Quality Model with Extensions (CAMx), version 4.4 [Environ, 2006], using SAPRC99 chemistry (Carter, 2000). Moreover, this model and chemistry package is consistent with the previous advice of the outside peer reviewers. CAMx is a state-of-the-art air quality model that can simulate ozone and PM2.5 concentrations together in a "one-atmosphere" approach for the attainment demonstrations. CAMx is

designed to integrate the output from both prognostic and diagnostic meteorological models.

The meteorological modeling platform selected for the modeling attainment demonstrations is the mesoscale meteorological model MM5. MM5 is a hydrostatic model system that can be run as a prognostic meteorological model or run in a historical mode with the option for 4-dimensional data assimilation. MM5 is widely used through the country by governmental agencies (the National Weather Service NWS), EPA, the military, and numerous state and local air quality agencies) as well as most if not all universities supporting a meteorology program. The MM5 layer structure, portability for including different mixing and cloud parameterization schemes and grid specification makes the model the ideal choice to couple with CAMx. One desirable aspect of the CAMx-MM5 system is mass consistency. The Draft Modeling Protocol provides and extended discussion on MM5 and the CAMx dispersion modeling platforms.

Modeling Approach

The Final 2007 AQMP modeling approach for the 8-hour average federal standard attainment demonstration involves a series of steps which incorporate the simulations of multiple air quality episodes for three emissions scenarios to develop a set of site specific RRFs to be applied to the Basin design values. The sequence of the modeling approach first relies on determining the base-year episode simulation performance using day specific base-year emissions inventories in 2004 or 2005. Sub regional and site specific performance statistics a for the Basin (and downwind receptor sites) are evaluated to determine (1) if the simulation is reasonably recreating the sub-regional observed ozone patterns and (2) if the simulation is able to produce concentrations of ozone within an acceptable concentration range. Station and day specific simulations that meet both criterions are used to develop the RFFs. (A more detailed discussion of the criterion is presented in the model performance evaluation section of this Appendix).

The second phase of the analysis involves simulating the meteorological episodes for two additional day-specific emissions scenarios: 2002, the base year for the RRF calculation and, 2023 with emissions control measures fully implemented. (Note: For the Coachella Valley portion of the Salton Sea Air Basin (SSAB), the future year simulation is based on the controlled 2017 day-specific inventory.) Simulated concentrations for the base year and future year controlled emissions scenario are generated to establish site specific RRFs.

The final phase is the attainment demonstration where the site specific RRFs are applied to the 2002 weighted station design values to determine the future year design concentrations.

Table V-4-1 provides the weighted 2002 design values for the Basin. Table V-4-2 provides the 2002 design values for the Coachella Valley-SSAB air monitoring stations and downwind transport stations in the SCCAB and MDAB. EPA guidance recommends the use of a 5-year weighted design values to minimize the impacts of year to-year variations in weather and short term emissions trends. In Tables V-4-1 and V-4-2, the sites exceeding the 8-hour federal standard are delineated through bold lettering. These stations are the focus of the analysis.

Federal 8-Hour Ozone Standard Requirements

Air quality modeling is required by both the federal Clean Air Act (CAA) and the California Clean Air Act (CCAA). Section 182(b)(1)(A) of CAA requires that moderate and above ozone nonattainment areas must reduce volatile organic compounds (VOC) and oxides of nitrogen (NO_x) emissions sufficiently to attain the national ambient air quality standard for ozone and an attainment demonstration must be performed using photochemical grid modeling. According to Section 181(a)(1) of the CAA, ozone nonattainment areas are classified and given an attainment deadline based on their design values. Within the jurisdiction of the District are the South Coast Air Basin (Basin) and the Coachella Valley of the Salton Sea Air Basin (see Figure V-4-1). The District is seeking voluntary redesignations for the Basin and Coachella Valley. The Basin is requesting to move from a "severe-17" ozone nonattainment area to "extreme" nonattainment area to make available long term control measures and to extend the attainment date to June 15, 2024. The attainment demonstration for the Basin is the primary subject of this chapter. The Coachella valley is also seeking to be reclassified as "severe-15" nonattainment for ozone and therefore extend its attainment deadline to June 15, 2018.

The modeling domain used in the photochemical modeling analysis, also shown in Figure V-4-1, encompasses the entire Basin, Ventura County, Antelope Valley (AVAQMD), San Diego County, the Coachella Valley, and portions of the Mojave Desert Air Quality Management District (MDAQMD) and Imperial County. Ventura County, the Antelope Valley and Mojave Desert are classified as "moderate" (attainment year: 2010). These areas experience pollutant transport from the Basin, and at times are an upwind source of pollution. San Diego County is classified as "basic" with an attainment year of 2009 and Imperial County is classified as "marginal" with an attainment year of (2007).

TABLE V-4-1

8-Hour Average South Coast Air Basin Weighted Design Values

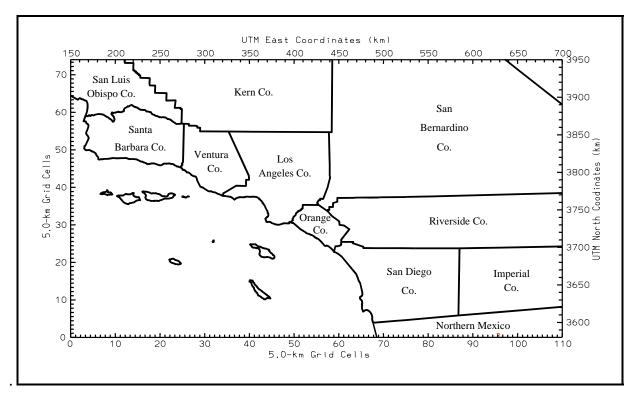
City	2002	2003	2004	Weighted
City	Design	Design	Design	Design
	Design	Design	Design	Value
				Value
Azusa	102	101	98	100
Burbank	92	91	92	91
Long Beach	62	61	64	62
Reseda	94	107	110	103
Pomona	89	96	101	95
Lynwood	51	53	57	54
Pico Rivera	80	79	78	79
Los Angeles	79	78	79	79
Pasadena	96	95	96	96
Santa Clarita	113	127	125	124
West Los Angeles	69	73	77	73
Hawthorne	68	70	63	67
Glendora	111	114	109	111
Anaheim	70	72	79	72
La Habra	76	75	75	75
Costa Mesa	67	71	73	70
Mission Viejo	79	83	87	84
Rubidioux	108	113	113	111
Perris	113	115	106	111
Lake Elsinore	104	109	106	106
Banning Airport	110	119	117	115
Upland	111	110	107	111
Crestline	129	131	128	129
Fontana	112	123	119	118
San Bernardino	115	119	113	115
Redlands	120	128	124	124

TABLE V-4-2

8-Hour Average Weighted Design Values: Salton Sea Air Basin (SSAB), Mojave Desert Air Basin (MDAB) and the South Central Coast Air Basin (SCCAB)

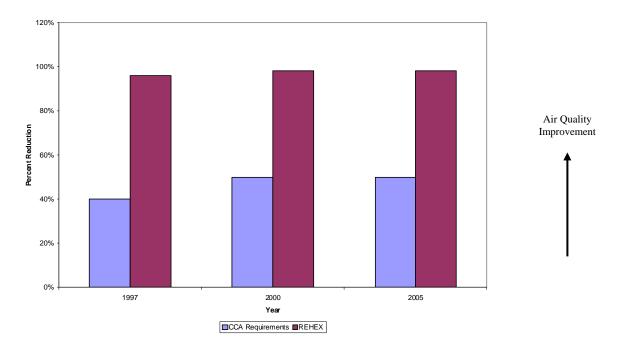
City	2002	2003	2004	Weighted
	Design	Design	Design	Design
				Value
SSAB				
Palm Springs	107	111	106	106
Indio	95	99	99	95
MDAB				
Lancaster	71	82	100	84
Phelan	103	106	105	105
Twenty-nine	88	86	86	87
Palms				
Hesperia	106	106	107	106
Joshua Tree	94	99	106	100
Barstow	87	88	87	87
Trona	80	83	86	83
Victorville	97	100	98	98
SCCAB				
Ojai	95	95	94	95
El Rio	66	66	66	66
Piru	73	90	88	84
Simi	97	95	92	95
Thousand Oaks	81	83	84	83
Emma Woods	69	71	69	70

California Requirements and Population Exposure


The CCAA requires the District to demonstrate reasonable progress towards achieving state ambient air quality standards in the Basin. To date, the Basin has not met the California 1-hour ozone standard (90 ppb). Yet, ambient ozone air quality has greatly improved. The CCAA requires per-capita exposure reductions for the years 1994, 1997, and 2000, as compared to a 1986-88 base period. Overall per-capita exposure to

ambient ozone must be reduced in accordance with the following schedule: 25 percent by 1994, 40 percent by 1997, and 50 percent by 2000.

Reductions are to be calculated based on per-capita exposure and the severity of exceedances. For the Basin, this provision is applicable to ozone [H&S Code 40920(c)]. The definition of exposure is the number of persons exposed to a specific pollutant concentration level above the state standard times the number of hours exposed. The per-capita exposure is the population exposure (units of pphm-persons-hours) divided by the total population. While this requirement has already been met in previous AQMPs (Appendix V, 2003 AQMP), the exposure demonstration is extended through 2005 in the Final 2007 AQMP for consistency.


The Regional Human Exposure (REHEX) model is used to estimate per-capita exposure reduction. It considers population mobility; time spent indoors, outdoors and in transit; exposure by age classification; and activity pattern by season and weekday/weekend.

An analysis using the REHEX model indicates that the CCAA Amendments exposure reduction targets have been achieved for ozone with a margin of safety. Figure V-4-2 summarizes the results and compares exposure reductions to the targets.

FIGURE V-4-1

Southern California Modeling Domain Used in the Ozone Attainment Demonstration

FIGURE V-4-2

CAAA Population Exposure Assessment: Percent Reductions in Annual Average Per-Capita Exposure to Ozone

EMISSIONS SUMMARY

Introduction

There are specific emission inventories developed for the photochemical modeling. The summer planning emission inventories developed for the historical years (1997, 2004 and 2005) and future planning years (baseline and controlled) are described in Appendix III. Baseline modeling inventories for the historical years (1997, 2004 and 2005) and the future years (2009, 2017, and 2023) are discussed next. Two emission projections are needed for each of the modeled future years. The first is the projected emissions assuming no further emission controls. These projections are commonly referred to as "baseline emissions" (e.g., 2023 baseline emissions), and reflect the emissions resulting from increases in population and vehicle miles traveled (VMT), as well as the implementation of all adopted rules and regulations up through 2005. The second emission projections reflect the implementation of the Final 2007 AQMP control

measures on the future baseline emissions. For a detailed description of the Final 2007 AQMP control measures, the reader is referred to the main volume and Appendix IV.

The July 2005 historical year emissions are summarized as representative ozone episodes used for attainment demonstration. This is followed by a discussion of the future-year (July 2005 episode) emission inventory, assuming implementation of proposed control measures, are presented. Appendix III contains emission summary reports by source category for the historical base year, future baseline, and future controlled scenarios used in this modeling analysis. Attachments 5, 6 and 7 of this appendix contain the Controlled Emission Projection Algorithm (CEPA) emissions summary report by source category for the future (2014, 2017 and 2023) controlled scenarios for the annual average inventory.

It should be noted that the inventories reported here may be slightly different than those reported in the Final 2007 AQMP and Appendix III, since the inventories used for modeling reflect day-specific conditions. Day specific point, mobile and area emissions inventories were generated for each meteorological episode. Mobile source emissions were temperature corrected by grid using a VMT weighted scheme. County-wide area source emissions were temperature corrected and gridded using the spatial emissions surrogate profiles developed for the 2003 AQMP.

Historical Baseline Emissions

Historical baseline emissions of oxides of nitrogen (NO_x) and volatile organic gases (VOC) and carbon monoxide (CO) are summarized in Table V-4-3 for the July 2005 meteorological episode. The day-specific July 2005 episode emissions inventory is representative of the remaining meteorological episodes. Variations in the temperature and humidity profiles among the episode days and between episodes contribute to variations in the weekday emissions totals of less than 50 tons/day or 5 percent. The summaries of biogenic, on-road mobile and total antropogenic emissions for the July 2005 are reported for the Basin and the modeling region.

Emissions for the July episode span the weekend where significant reductions in on-road NOx and increases in VOC from off road activities occur. Based on CALTRANS data, NOx emissions from heavy-duty vehicles are reduced by more than 60 percent on Saturdays with further reductions occurring on Sundays. Increases in off-road mobile source activities (e.g. pleasure craft and recreational vehicles) account for the bulk of the VOC increase on both Saturdays and Sundays.

Future Controlled Emissions

The control factors developed from CEPA were applied to the future base year emissions to calculate the controlled emission inventories. The future-year baseline emission inventories estimation reflect the emissions resulting from increases in population and vehicle miles traveled (VMT), as well as the implementation of all rules and regulations adopted as of December 31, 2005. VOC and NO_x baseline emissions decrease from the historical base year through the year 2023. This decreasing trend in emissions reflects the implementation of current state and local air quality rules and regulations.

TABLE V-4-3

Date	Emission Category	<u>2005</u>				
		CO	NOX	VOC		
Thursday 14-Jul-05	Biogenic			233		
	On-Road	2870	466	368		
	Total Anthropogenic	3911	895	825		
Friday 15-Jul-05	Biogenic			200		
	On-Road	2823	451	350		
	Total Anthropogenic	3864	880	807		
Saturday 16-Jul-05	Biogenic			209		
	On-Road	2286	314	314		
	Total Anthropogenic	4397	706	925		
Sunday 17-Jul-05	Biogenic			224		
	On-Road	2177	280	309		
	Total Anthropogenic	4286	670	895		
Monday 18-Jul-05	Biogenic			245		
	On-Road	2715	433	350		
	Total Anthropogenic	3756	862	806		
Tuesday 19-Jul-05	Biogenic			245		
-	On-Road	2905	445	372		
	Total Anthropogenic	3946	873	829		

South Coast Air Basin July 2005 Historical Episode Emissions (tons/day)

Base year 2002, 2017, and 2023 and future-year controlled emissions, estimated from the baseline emissions using the CEPA control factors for the simulations, are given in Table V-4-4.

 Year	Scenario	VOC	NOx	СО
2002	Baseline	1030	1090	5525
2017	Baseline	509	581	2368
2017	Controlled	444	380	2283
2023	Baseline	496	515	2058
2023	Controlled without Long- Term Measures	402	317	2058
2023	Controlled with Long- Term Measures	420	114	1966

TABLE V-4-4

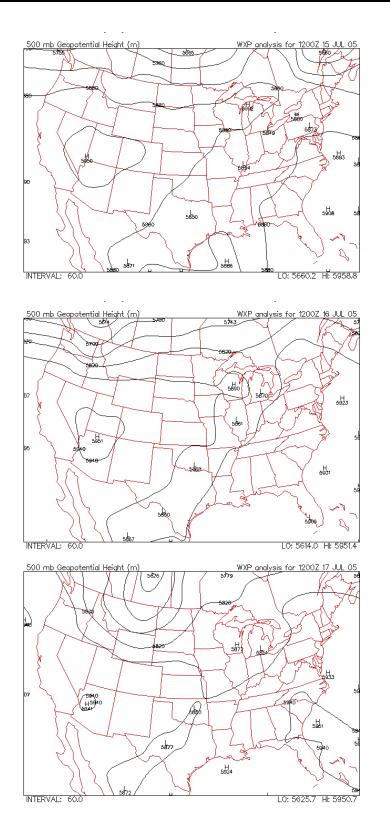
2002, 2017, 2023 Base Year and 2023 Future Year Controlled Emissions Scenarios (TPD)

EPISODE SELECTION

The 2003 AQMP benefited from the intensive monitoring conducted under the Southern California Ozone Study where the August 4-7, 1997 episode was the cornerstone of the modeling analysis. The requirements for multiple episode days at individual stations pose a different challenge for the Final 2007 AQMP.

Five additional meteorological episodes with regionally observed higher ozone concentrations were added to the 2003 AQMP modeling episode. The five episodes observed in 2004 and 2005 occurred during MATES-III, a period of enhanced air quality monitoring in the Basin. Supporting MATES-III, the District operated three radar wind profilers in the Basin, with radio acoustic sounders. Additional profiler data was obtained from operating sites in Ventura and San Diego Counties. Table V-4-5 lists the complement of meteorological episodes used in the ozone attainment demonstration.

Selection of episodes from 2004 and 2005 was also made to avoid the commingling associated with the Phase III California Fuel Reformulation where the primary oxygenate was changed from MTBE to ethanol. Commingling of ethanol and non-ethanol based fuels leads to enhanced evaporative VOC emissions and thus more ozone. Quantification of the amount of commingling taking place on a daily or episodic basis


was nearly impossible. Implementation of the fuel switch from MTBE to ethanol took place in California during 2003 and was assumed to be completed by December 31, 2003. Selecting meteorological episodes for the post 2003 emissions reduced the uncertainty associated with the estimation of the VOC emissions inventory due to commingling.

Conceptual Model of an 8-Hour Ozone Episode

Several field studies (SCAQS, [1987], and SCOS97, [1998]) and previous AQMPs have described at length the development of an ozone episode in the Basin. The focus of many of these analyses was to simulate the observed 1-hour maximum concentration in the modeling domain. Cassmassi (1998) used Classification and Regression Tree analysis (CART) to determine whether the conceptual model for a 1-hour ozone episode differed from the meteorological profile characterizing an 8-hour average ozone episode in the Basin. The results of the analysis indicated that the peak 1-hour episodes were a subset of the 8-hour episodes and the meteorological profiles contributing to both scenarios were nearly identical. As such, the development of the 8-hour conceptual model for the Basin and the methodology to select and characterize episodes relies on the basic models constructed to describe the Basin 1-hour ozone episode.

The Draft Modeling Protocol provides an extended discussion of the meteorological and air quality profile of four of the five 2004 and 2005 episodes, in addition to the August 1997 episode, selected for evaluation in the ozone attainment demonstration. The August 2-9, 2005 meteorological episode was selected as a replacement for the June 2004 episode after the release of the Draft Modeling Protocol. In general, elevated concentrations of ozone (both 1- and 8-hour average) occur under a west coast or Four Corners ridge of high pressure aloft. Typically, the 500 mb pressure surface heights above mean sea level (msl) exceed 5880 m and generate a strong low level subsidence inversion (10° C in strength or higher). The surface pressure gradient (i.e. wind forcing) typically is less than 5 mb between the coast and the desert (approximately 200 km in distance) and days often begin with a deck of morning coastal stratus that extends into the near valleys then burns off in the late morning hours. The more severe episodes tend to have neutral to slightly off shore pressure gradient forcing and clear skies.

Each of the 2004 and 2005 meteorological episodes selected for the ozone attainment demonstration fit this model. Figure V-4-3 illustrates the 500 mb upper air structure over the west coast during the July 2005 meteorological episode. Figure V-4-4 provides the 1200 UTC (4:00 am PST) temperature profile for July 16, 2005.

500 mb Upper Air Structure: July 2005 Meteorological Episode

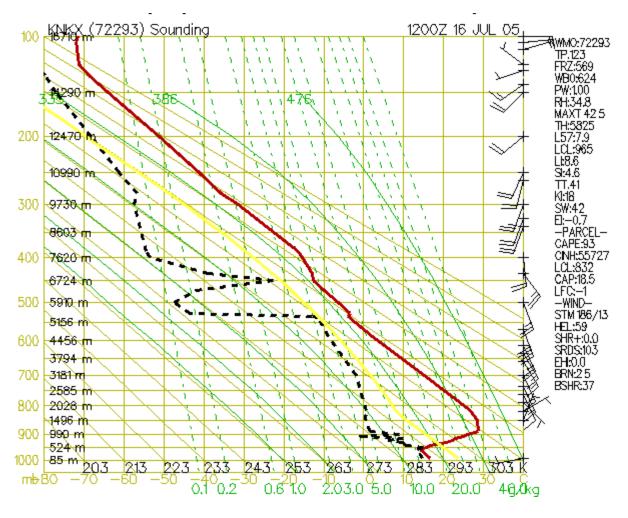


FIGURE V-4-4

1200 UTC Upper Air Sounding at Miramar MCAS (San Diego, CA) July 16, 2005

Statistical Episode Characterization and Ranking

CAMx simulations were generated for six meteorological episodes including two periods in 2004, three periods in 2005 and one in 1997. Table V-4-5 characterizes the selected episodes two ways: first by an assessment of the meteorological profile using a statistical model to rank the episodes based on meteorological stagnation potential and second by comparing observed maximum ozone concentrations to the annual design values.

The meteorological classification is based on an empirical analysis presented in the 2003 AQMP which provides both a stagnation severity rank (1 being the highest) and the percentile the meteorological episode had in a 22-year distribution. The observed maximum 8-hour average concentrations on each episode day, and the average of the 8-

hour maximum concentrations observed for each multi-day episode are also provided for comparison to the annual 4th highest 8-hour average ozone value observed in the year that the episode takes place.

Briefly, the selected episode days mostly rank in the 95th percentile or higher for meteorological stagnation potential. The episode average of the 8-hour maximum concentrations is within 5 ppb of the annual 4th highest 8-hour observed concentration for four of the six simulation periods.

Model Input Preparation

The procedures for CAMx input file preparation are presented in this section. Unlike previous AQMPs which relied on the use of UAM for the attainment demonstration, CAMX is designed to marry seamlessly with the MM5 model output. The meteorological modeling domain, NCEP initializations and vertical dispersion schemes are evaluated in the modeling are provided in the Modeling Protocol Document. Statistical meteorological model evaluation was conducted using METSTAT software package (Environ, Inc., 2005) and by Aerospace Corporation (McAtee, et al., 2006). Data evaluation compared MM5 predictions vs. observational data at selected meteorological monitoring sites from the SCAQMD, NWS, FAA, CIMIS and other air quality agencies networks. A summary of the meteorological model performance was presented at the 2006 National Air Quality Conference in San Antonio, Texas. The meteorological modeling was also presented to and critiqued by AQMP Scientific, Technical, Modeling and Peer Review (STMPR) Advisory group monthly meetings from December 2005 through September, 2006.

As previously stated, the CAMx ozone simulations were run on a 5 km squared grid using a Lambert Conformal projection of the SCOS97 modeling domain depicted in Figure V-4-1. The modeling analyses were run using 16 vertical layers up to 5000 m above ground level. The eastern extent of the domain is approximately 100 miles offshore of the Basin. The large domain was chosen to minimize uncertainties in the upwind boundary conditions.

The meteorological fields used for the CAMx ozone simulations were generated using MM5 with the FDDA option. The meteorological fields were developed using a Lambert Conformal grid that roughly overlaid the SCOS97 modeling domain. MM5 was simulated using 34 vertical layers and simulations were initialized using NCEP global weather forecast model analysis. The MM5 fields were post processed to layer averaged winds to the levels defined for the CAMx simulations and to adjust coordinates to the UTM system.

TABLE V-4-5

Ozone Meteorological Episodes Used for the Ozone Attainment Demonstration Ranking Applied to Historical 22-Year Period (1981-2002)

Episode	Stagnation Severity Rank	Percentile	8-Hour Maximum Ozone (ppb)	Episode Average 8-Hour Maximum Ozone (ppb)	Annual 4th Highest Observed 8-Hour Maximum Ozone /Station (ppb)	
8/4/1997	570	93	110			
8/5/1997	198	98	124	124	127	
8/6/1997	203	97	130	124	San Bernardino	
8/7/1997	515	95	130			
8/7/2004	331	96	127	125	116	
8/8/2004	144	98	122	123	Crestline	
5/21/2005	389	95	112	129		
5/22/2005	50	99	145	129		
7/15/2005	265	96	143			
7/16/2005	22	99	141			
7/17/2005	15	99	141	132		
7/18/2005	73	99	127		125	
7/19/2005	567	93	110		125 Crestline	
8/4/2005	270	97	108		Cresuine	
8/5/2005	399	95	110	113		
8/6/2005	288	96	119] 115		
8/7/2005	341	96	114			
8/27/2005	160	98	130	126		
8/28/2005	138	98	121	120		

Selected objective-hybrid MM5 wind fields were evaluated in the development of the modeling episodes to test transport to the northern portion of Los Angeles Country and Santa Clarita. The hybrid approach was not used in the ozone attainment demonstration.

Table V-4-6 summarizes some of the critical components of the air quality modeling system. Of the components listed, treatment of the boundary conditions is the subject of discussion in the following section.

TABLE V-4-6

Component	Source
Initial Conditions/Boundary Conditions	Extracted from WRAP Regional Haze Modeling output
Meteorological Fields	MM5/FDDA with NCEP initialization
	Eta PBL – Mellor-Yamada scheme as used in the Eta model, Janjic (1990, MWR) and Janjic (1994, MWR). It predicts TKE and has local vertical mixing.
Horizontal Advection Solver	Piecewise Parabolic Method (PPM) of Colella and Woodward (1984), high order accuracy and little numerical diffusion
Vertical Mixing/Diffusivity	MM5 CAMx Option OB70 w/Kv Patch. Minimum vertical diffusivity set at $1 \text{ m}^2/\text{sec.}$
Chemistry (SAPRC99)	CAMx Version 4.4 Beta. Version modified to treat ETOH, MTBE and MBUT explicitly (Environ, 2006)
Chemistry Solver	Chemical Mechanism Compiler (CMC), fast highly efficient solver based on an "adaptive-hybrid" approach compared to the standard chemistry solver for the CB-IV mechanism
SAPRC99 Mechanism ID=5	The fixed parameter version of the SAPRC99 mechanism (Carter, 2000). 211 reactions and 74 species (56 state gasses and 18 radicals)
Dry Deposition of Gases	Resistance model developed by Wesely (1989)

Air Quality Modeling System Configuration

Boundary and Top Air Quality Concentrations

The boundary concentrations can have a marked impact on RRFs for the South Coast Air Basin. In the Draft 2007 AQMP (released in October 2006) boundary conditions for the ozone simulations were extracted from the annual WRAP Regional Haze modeling conducted for the model year 2002 (Tonneson 2005). This modeling was conducted using CB4 chemical mechanism. There are some uncertainties on conversion from CB4 to SAPRC species. In addition, the converted SAPRC99 species profile did not reflect emissions inventory SAPRC99 species composition. The WRAP modeling results included occasional high levels of VOC and NOX that may not represent existing boundary concentrations.

For the Final 2007 AQMP, the ozone simulations were conducted using the EPA default boundary concentration profile USEPA (1991). Uncertainties identified in the episodic diurnal profiles for the ozone simulations were sufficiently large enough to warrant a return to the boundary conditions used in the 2003 AQMP ozone attainment demonstration. This profile is commonly referred to as the "EPA-Clean" boundary. The boundary conditions were adjusted to match the ROG SAPRC profile.

Table V-4-7 summarizes the boundary conditions used for all simulations. All concentrations were constant horizontally and, except for NO2, constant vertically. For each profile, the sum of VOC concentrations is approximately 22 ppbC. For each simulation, the domain top boundary concentrations were the same as the lateral boundaries, with the exception that the top ozone concentration was 60 ppb.

The initial concentrations for the all episodes were set using the air quality data from the District and neighboring district's air monitoring stations.

TABLE V-4-7

SAPRC99 Species	(ppb)	SAPRC99 Species	(ppb)
НСНО	0.930	ARO1	0.210
ССНО	0.530	ARO2	0.070
RCHO	0.250	OLE1	0.180
ISOP	0.020	OLE2	e-13
MEOH	0.100		
ЕТОН	0.050	03	40.0
ETHE	0.180	СО	200.
ALK1	2.500		
ALK2	2.300	NO	0.100
ALK3	0.930	NO2 (surf)	2.000
ALK4	e-13	NO2 (aloft)	0.100
ALK5	e-13		

Boundary Profile Concentrations (ppb) for the SCOS Modeling Domain.

Future Boundary, Top and Initial Air Quality Conditions

For the future year scenarios, the boundary, region top and ambient air quality concentrations were rolled back based on the percentage reduction in emissions from 2002 base year to the projected emissions levels for future year of the simulation (2017, or 2023).

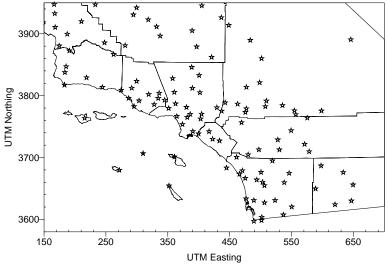
The future year the top ozone concentrations were reduced to 45 ppb. The lateral boundary concentrations were not rolled back since the boundary concentrations used base year is considered to be clean.

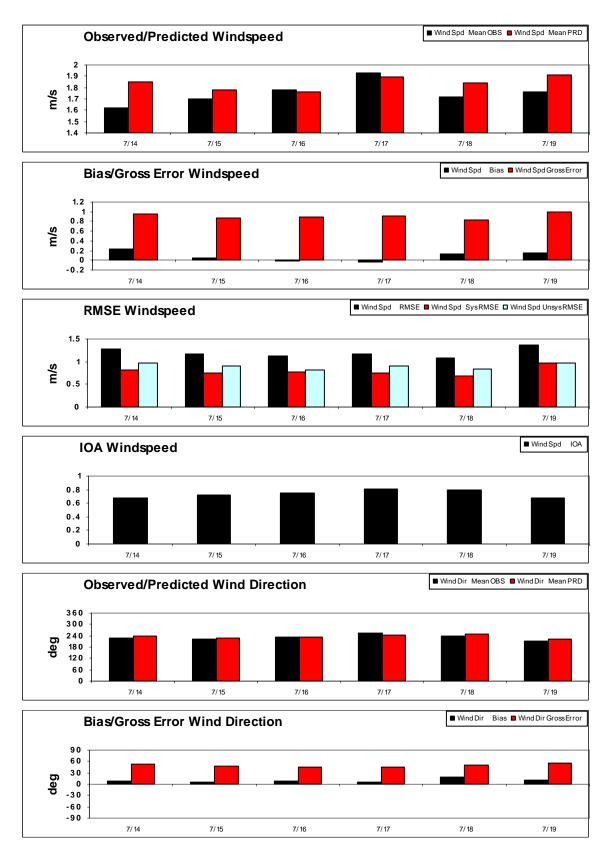
Meteorological Models

The MM5 meteorological model using 4-dimensional data assimilation (4DDA) was the primary tool used to develop the meteorological fields. The Modeling Protocol provides characterization of the nested MM5 modeling domains, the layer structure and initialization assumptions. Three-dimensional wind, temperature and mixing height fields were extracted from the MM5 simulations and post processed using CALMET to layer average variables to the CAMx structure. Vertical mixing was calculated using the ETA planetary boundary layer (PBL) scheme and a minimum value of vertical diffusivity was set at $1.0 \text{ m}^2/\text{sec}$.

The MM5 data fields were extensively analyzed using the METSAT software. Figure V-4-5 illustrates the extent of surface meteorological measurements in southern California, and the data used in the meteorological model evaluation were derived from a subset of the total archive. The summary performance statistics for the July 2005 episode are presented in Table V-4-8 and Figures V-5-6 through V-4-8. (The performance of MM5 for the July 2005 episode was characteristic of that of the remaining five episodes).

As previously stated, an assessment of the meteorological model performance was presented at EPA's 2006 National Air Quality Conference and periodically during the development of the ozone modeling episodes at the STMPR Advisory group. The data has also been provided to the independent Peer Reviewers, and their evaluation is pending.

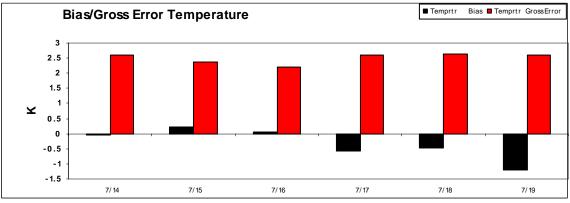


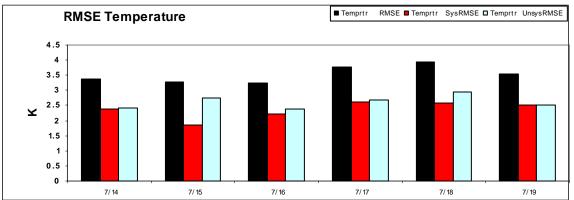

FIGURE V-4-5

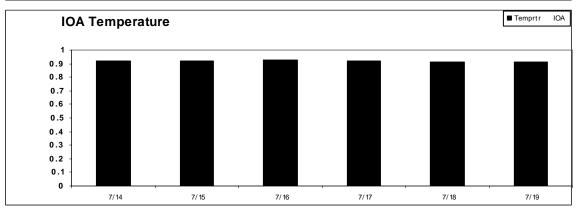
Locations of Surface Monitoring Used in Preparation of Meteorological Fields

TABLE V-4-8

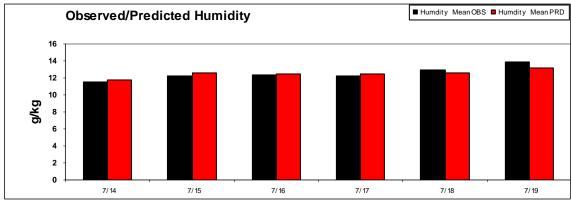
METSTAT Statistical Evaluation of MM5-4DDA for the July 2005 Episode: AQMD Air Monitoring Stations

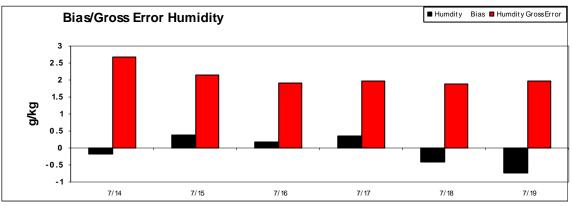

Variable	Statistric	Units	7/14	7/15	7/16	7/17	7/18	7/19
Wind Speed	Mean OBS	(m/s)	1.62	1.7	1.78	1.93	1.72	1.76
Wind Speed	Mean PRD	(m/s)	1.85	1.78	1.76	1.89	1.84	1.91
Wind Speed	Bias	(m/s)	0.23	0.04	-0.01	-0.03	0.13	0.15
Wind Speed	Gross Error	(m/s)	0.96	0.88	0.89	0.91	0.83	1
Wind Speed	RMSE	(m/s)	1.27	1.18	1.12	1.17	1.08	1.37
Wind Speed	Sys RMSE	(m/s)	0.82	0.75	0.78	0.75	0.69	0.96
Wind Speed	Unsys RMSE	(m/s)	0.96	0.91	0.81	0.9	0.83	0.97
Wind Speed	IOA		0.68	0.72	0.75	0.81	0.79	0.68
Wind Direction	Mean OBS	(deg)	227.83	220.61	235.33	252.18	237.75	209.55
Wind Direction	Mean PRD	(deg)	240.19	226.58	232.84	241.36	247.27	221.05
Wind Direction	Bias	(deg)	8.76	4.48	7.5	4.85	17.25	11.71
Wind Direction	Gross Error	(deg)	53.93	48.06	45.51	46.29	50.39	56.66
Temperature	Mean OBS	(K)	300.38	298.73	298.88	299.53	300.25	301.27
Temperature	Mean PRD	(K)	299.98	298.66	298.53	298.63	299.4	299.75
Temperature	Bias	(K)	-0.06	0.23	0.06	-0.58	-0.46	-1.21
Temperature	Gross Error	(K)	2.59	2.37	2.22	2.59	2.62	2.6
Temperature	RMSE	(K)	3.37	3.29	3.25	3.76	3.93	3.55
Temperature	Sys RMSE	(K)	2.37	1.84	2.21	2.63	2.58	2.5
Temperature	Unsys RMSE	(K)	2.4	2.73	2.39	2.68	2.96	2.51
Temperature	IOA		0.92	0.92	0.93	0.92	0.91	0.91
Humdity	Mean OBS	(g/kg)	11.5	12.2	12.31	12.19	12.92	13.91
Humdity	Mean PRD	(g/kg)	11.74	12.55	12.48	12.47	12.53	13.2
Humdity	Bias	(g/kg)	-0.17	0.39	0.19	0.34	-0.42	-0.74
Humdity	Gross Error	(g/kg)	2.69	2.14	1.91	1.97	1.87	1.96
Humdity	RMSE	(g/kg)	3.57	3.04	2.72	2.85	2.64	2.83
Humdity	Sys RMSE	(g/kg)	2.05	2.42	1.99	2.57	1.63	1.98
Humdity	Unsys RMSE	(g/kg)	2.93	1.83	1.85	1.24	2.07	2.03
Humdity	IOA		0.58	0.5	0.56	0.45	0.52	0.52

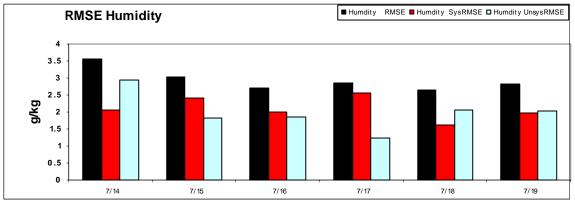


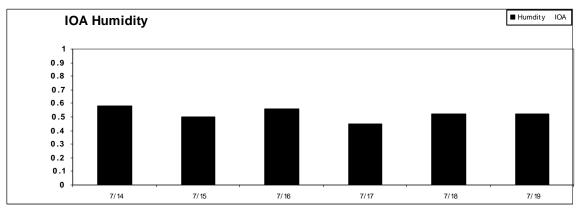


METSAT Evaluation of MM5 Winds vs. AQMD Station Data: July 2005 Episode

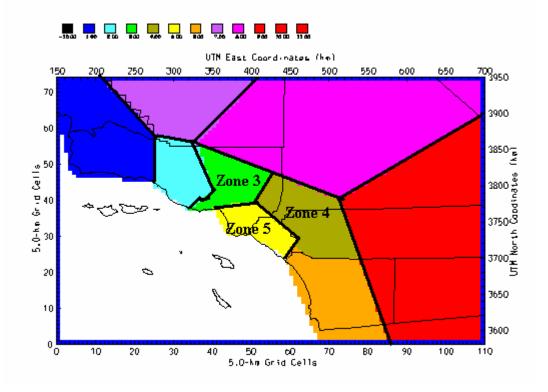








METSAT Evaluation of MM5 Temperature vs. AQMD Station Data: July 2005 Episode



METSAT Evaluation of MM5 Winds vs. AQMD Station Data: July 2005 Episode

BASE-YEAR PERFOMANCE EVALUATION

For the CAMx performance evaluation the modeling domain is separated into nine subregions or zones. Figure V-4-9 depicts the sub-regional zones used for base-year simulation performance. The different zones present unique air quality profiles. In previous ozone modeling attainment demonstrations using a smaller modeling domain, the number and size of the zones was different. Seven zones represented the Basin and portions of Ventura County, the Mojave Desert and the Coachella Valley.

For the current analysis the Basin is represented by three of the zones: Zone 3 – the San Fernando Valley, Zone 4 – the Eastern San Gabriel, Riverside and San Bernardino Valleys, and Zone 5 – the Los Angeles and Orange County emissions source areas. Of the four areas, Zone 4 represents the Basin maximum ozone concentrations and the primary downwind impact zone. As such, the priority in evaluating model performance is focus on Zone 4.

FIGURE V-4-9

Performance Evaluation Zones

Statistical Evaluation

The statistics used to evaluate 1-hour average CAMx ozone performance do not change from previous AQMPs and include the following:

Statistic for O ₃	Criteria (%)	Comparison Basis
Normalized Gross Bias Normalized Gross Error	$\leq \pm 15 \\ \leq 35$	Paired in space and time Paired in space (+2 grid cells) and time
Peak Prediction Accuracy	$\leq \pm 20$	Unpaired in space and time

The same statistics are applied to the 8-hour average ozone.

The base-year 1- and 8-hour average regional model performance for the August 2004, May 2005, July 2005, August 2005 (2-episodes) and August 1997 episodes for Zones 3, 4, and 5 are presented in Tables V-4-9 to V-4-14. Base-year performance statistics for Zones 2, 8 and 9 for the downwind areas are provided in the Attachment B performance summary evaluation tables. Performance statistics are presented for observed concentrations of 60 ppb or greater. Data for 1 and 8-hour average ozone concentrations for the sub regional peak concentrations are provide in the tables. Base-year statistics for all of the ozone episodes are presented in Attachment B.

Performance statistics for the ozone precursors, nitrogen dioxide, nitric oxide and carbon monoxide will be provided separately.

The CAMx ozone simulations generally met the 1-hour average unpaired peak model performance goal in all three zones on most days. Nearly all stations in zone 4 met the unpaired peak and normalized error goals with performance in zones 3 and 5 lagging, particularly for the May 2005 episode. In general, the bias tends to be negative indicating that model performance tended to under predict ozone concentrations. Overall, the 8-hour average evaluation was slightly better.

Ozone Threshold (60 PPB)	Augus	st 2004	May	2005			July 2005			
Date	8/7	8/8	5/21	5/22	7/15	7/16	7/17	7/18	7/19	
Julian Date	220	221	141	142	196	197	198	199	200	
Ratio of Predicted Sub-Regional Peak to Peak Observed	1.15	1.09	0.97	0.68	1.40	0.85	0.95	0.70	1.08	
Ratio of Unpaired Station Peaks	0.84	0.80	0.67	0.54	1.24	0.72	0.74	0.50	0.91	
Normalized Systematic Bias (%)	-20	-12	-32	-46	9	-3	-16	-36	-11	
Normalized Gross Error (%)	23	17	32	46	14	17	23	36	16	
Ozone Threshold (60 PPB)		August 2005				August 2005 August 1997				
Date	8/4	8/5	8/6	8/7	8/27	8/28	8/4	8/5	8/6	8/7
Julian Date	216	217	218	219	239	240	216	217	218	219
Ratio of Predicted Sub-Regional Peak to Peak Observed	0.80	0.92	0.92	0.94	0.87	0.84	1.04	0.91	1.02	0.96
Ratio of Unpaired Station Peaks	0.72	0.89	0.91	0.91	0.74	0.67	0.86	0.78	0.77	0.71
Normalized Systematic Bias (%)	-5	-2	4	9	-26	-42	-11	-12	-12	-16
Normalized Gross Error (%)	16	17	21	23	32	42	17	30	25	21

TABLE V-4-9CAMx Sub-Region-3 1-Hour Average Ozone Performance Statistics

Ozone Threshold (60 PPB)	Augus	st 2004	May	2005			July 2005						
Date	8/7	8/8	5/21	5/22	7/15	7/16	7/17	7/18	7/19				
Julian Date	220	221	141	142	196	197	198	199	200				
Ratio of Predicted Sub-Regional Peak to Peak Observed	0.85	1.12	0.90	0.94	0.98	0.94	0.96	1.06	1.30				
Ratio of Unpaired Station Peaks	0.82	1.07	0.80	0.92	0.88	0.85	0.92	0.97	1.18				
Normalized Systematic Bias (%)	-13	3	-16	-25	7	-3	2	-8	15				
Normalized Gross Error (%)	15	16	21	29	20	20	16	18	223				
Ozone Threshold (60 PPB)		August 2005				st 2005		Augu	st 1997				
Date	8/4	8/5	8/6	8/7	8/27	8/28	8/4	8/5	8/6	8/7			
Julian Date	216	217	218	219	239	240	216	217	218	219			
Ratio of Predicted Sub-Regional Peak to Peak Observed	1.02	1.01	1.04	1.04	0.56	0.74	1.04	0.79	0.98	0.88			
Ratio of Unpaired Station Peaks	0.98	1.00	1.00	1.04	0.58	0.69	0.99	0.74	0.97	0.84			
Normalized Systematic Bias (%)	5	3	-9	-4	-29	-28	-6	-4	13	-17			
Normalized Gross Error (%)	17	24	20	20	34	33	19	17	23	23			

TABLE V-4-10CAMx Sub-Region-4 1-Hour Average Ozone Performance Statistics

Ozone Threshold (60 PPB)	Augus	st 2004	May 2005							
Date	8/7	8/8	5/21	5/22	7/15	7/16	7/17	7/18	7/19	
Julian Date	220	221	141	142	196	197	198	199	200	
Ratio of Predicted Sub-Regional Peak to Peak Observed	1.14	1.43	0.94	0.96	1.68	2.01	1.41			
Ratio of Unpaired Station Peaks	1.02	1.21	0.87	0.80	0.78	1.20	1.12			
Normalized Systematic Bias (%)	-10	-8	-32	-33	-33	15	17			
Normalized Gross Error (%)	15	16	36	34	33	15	21			
Ozone Threshold (60 PPB)	August 2005			August 2005 August 1997						
Date	8/4	8/5	8/6	8/7	8/27	8/28	8/4	8/5	8/6	8/7
Julian Date	216	217	218	219	239	240	216	217	218	219
Ratio of Predicted Sub-Regional Peak to Peak Observed	138	1.72	1.66	1.64	1.06	0.83	1.12	1.16	1.58	1.46
Ratio of Unpaired Station Peaks	1.55	1.48	1.59	1.28	0.83	0.71	0.81	0.84	1.19	0.84
Normalized Systematic Bias (%)	-2	48	56	35	-21	-24	-20	-20	-43	-16
Normalized Gross Error (%)	17	48	59	35	23	26	22	27	63	16

TABLE V-4-11CAMx Sub-Region-5 1-Hour Average Ozone Performance Statistics

TABLE V-4-12
CAMx Sub-Region-3 8-Hour Average Ozone Performance Statistics

Ozone Threshold (60 PPB)	Augus	st 2004	May	2005			July 2005						
Date	8/7	8/8	5/21	5/22	7/15	7/16	7/17	7/18	7/19				
Julian Date	220	221	141	142	196	197	198	199	200				
Ratio of Predicted Sub-Regional Peak to Peak Observed	1.11	1.04	0.95	0.76	1.35	0.88	0.87	0.82	0.97				
Ratio of Unpaired Station Peaks	0.79	0.76	0.66	0.57	1.15	0.75	0.66	0.58	0.85				
Normalized Systematic Bias (%)	-12	-9	-30	-43	11	0	-7	-27	-12				
Normalized Gross Error (%)	13	11	30	43	11	12	18	27	12				
Ozone Threshold (60 PPB)		August 2005				st 2005		Augu	st 1997	7			
Date	8/4	8/5	8/6	8/7	8/27	8/28	8/4	8/5	8/6	8/7			
Julian Date	216	217	218	219	239	240	216	217	218	219			
Ratio of Predicted Sub-Regional Peak to Peak Observed	0.93	0.91	0.91	1.02	1.01	0.74	1.07	1.15	1.05	1.23			
Ratio of Unpaired Station Peaks	0.77	0.83	0.86	0.96	0.92	0.65	0.96	1.07	0.85	0.87			
Normalized Systematic Bias (%)	-9	-7	8	15	-17	-36	2	11	5	-9			
Normalized Gross Error (%)	13	10	21	27	17	36	5	21	20	9			

Ozone Threshold (60 PPB)	Augus	st 2004	May 2005		July 2005					
Date	8/7	8/8	5/21	5/22	7/15	7/16	7/17	7/18	7/19	
Julian Date	220	221	141	142	196	197	198	199	200	
Ratio of Predicted Sub-Regional Peak to Peak Observed	0.89	1.10	0.84	0.80	0.90	0.97	1.03	1.10	1.20	
Ratio of Unpaired Station Peaks	0.84	1.06	0.77	0.77	0.79	0.88	0.99	0.97	1.14	
Normalized Systematic Bias (%)	-10	7	-13	-18	13	-2	2	-4	21	
Normalized Gross Error (%)	10	8	19	22	20	14	8	7	21	
Ozone Threshold (60 PPB)	August 2005				Augus	st 2005	August 1997			
Date	8/4	8/5	8/6	8/7	8/27	8/28	8/4	8/5	8/6	8/7
Julian Date	216	217	218	219	239	240	216	217	218	219
Ratio of Predicted Sub-Regional Peak to Peak Observed	0.99	1.02	0.95	0.96	0.70	0.77	1.10	1.09	1.09	0.84
Ratio of Unpaired Station Peaks	0.94	1.00	0.91	0.96	0.63	0.76	1.03	1.00	1.07	0.79
Normalized Systematic Bias (%)	10	8	-2	-2	-27	-22	4	2	26	-7
Normalized Gross Error (%)	16	17	13	13	31	29	11	6	28	22

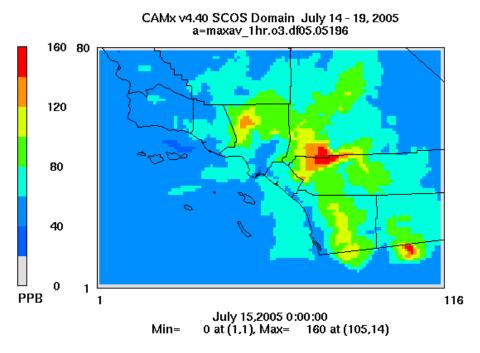
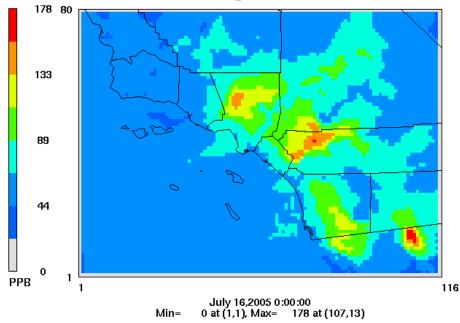

TABLE V-4-13CAMx Sub-Region-4 8-Hour Average Ozone Performance Statistics

TABLE V-4-14									
CAMx Sub-Region-5 8-Hour Average Ozone Performance Statistics									

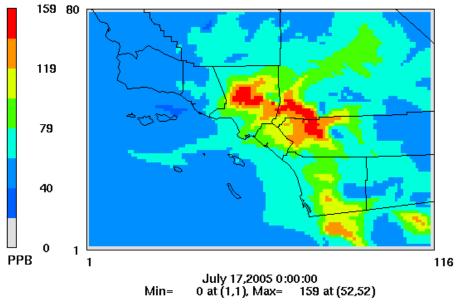
Ozone Threshold (60 PPB)	August 2004		May 2005		July 2005					
Date	8/7	8/8	5/21	5/22	7/15	7/16	7/17	7/18	7/19	
Julian Date	220	221	141	142	196	197	198	199	200	
Ratio of Predicted Sub-Regional Peak to Peak Observed	1.21	1.43	1.05	0.99	1.61		1.49			
Ratio of Unpaired Station Peaks	0.93	1.06	0.88	0.71	0.83		1.18			
Normalized Systematic Bias (%)	-10	-4	-22	-31	-17		22			
Normalized Gross Error (%)	13	11	24	31	17		22			
Ozone Threshold (60 PPB)	August 2005				Augus	st 2005	August 1997			
Date	8/4	8/5	8/6	8/7	8/27	8/28	8/4	8/5	8/6	8/7
Julian Date	216	217	218	219	239	240	216	217	218	219
Ratio of Predicted Sub-Regional Peak to Peak Observed	1.45		1.61	1.56	1.30	1.01	1.46	1.29	1.62	
Ratio of Unpaired Station Peaks	0.90		1.56	1.33	0.79	0.78	1.01	.86	1.01	
Normalized Systematic Bias (%)	-15		44	29	-25	-29	-12	-2	1	
Normalized Gross Error (%)	15		44	29	25	29	12	9	1	


Graphical Evaluation

Figures V-4-10 through V-4-14 show the tile plots of predicted maximum ozone for the each day of the July 15-19, 2005 ozone simulations. Figure V-4-15 provides the cumulative scatter plot of CAMx predicted vs. observed 1-hour average ozone for the July 14-18 subset of the 2005 episode. Figures V-4-16a through V-4-16h show the station diurnal plots of predicted and observed ozone. Similar tile plots of predicted maximum ozone, diurnal plots and scatter plots of performance for the remaining episodes are provided as attachments to this appendix.

FIGURE V-4-10

CAMx Simulated Maximum 1-Hour Average Ozone, July 15, 2005



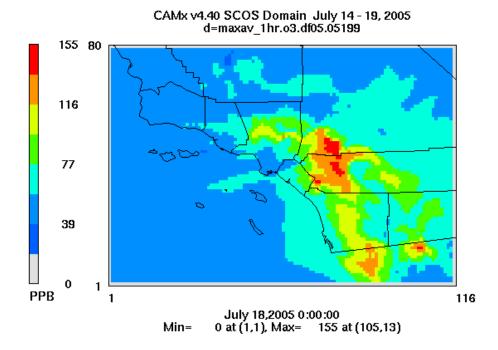
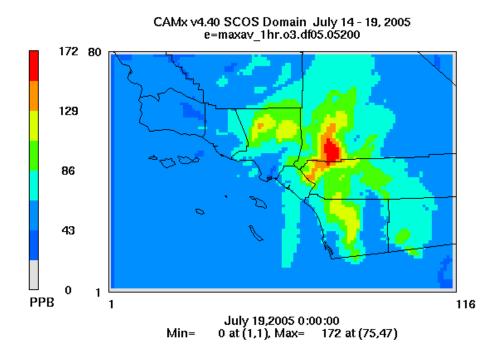
CAMx v4.40 SCOS Domain July 14 - 19, 2005 b=maxav_1hr.o3.df05.05197

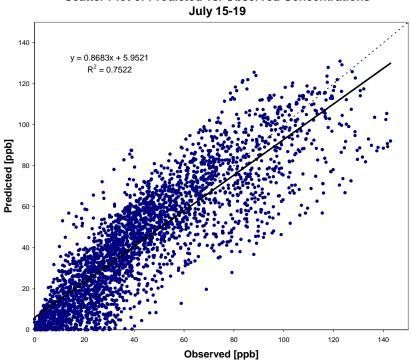
FIGURE V-4-11

CAMx Simulated Maximum 1-Hour Average Ozone, July 16, 2005

FIGURE V-4-12

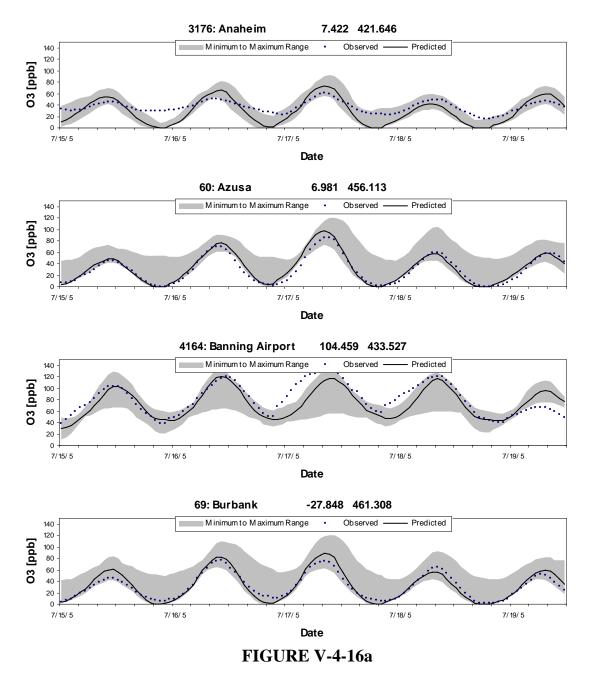
CAMx Simulated Maximum 1-Hour Average Ozone, July 17, 2005


FIGURE V-4-13

CAMx Simulated Maximum 1-Hour Average Ozone, July 18, 2005

FIGURE V-4-14


CAMx Simulated Maximum 1-Hour Average Ozone, July 19, 2005

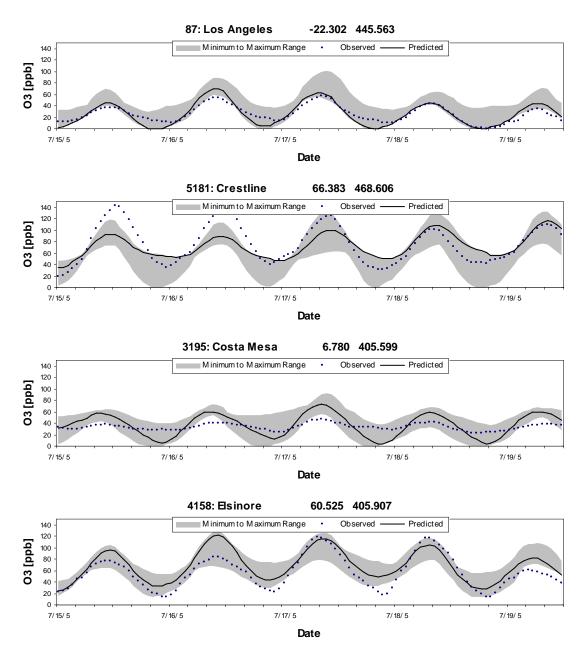
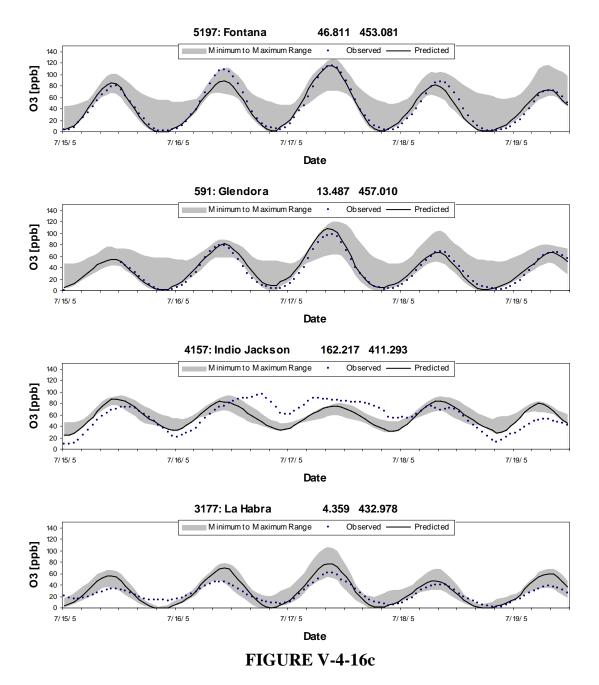

Scatter Plot of Predicted vs. Observed Concentrations

FIGURE V-4-15

CAMx Predicted vs. Observed 8-Hour Average Ozone Concentrations: July 14-18, 2005



CAMx Simulated 8-Hour Average Ozone (Solid Line) Vs. Observed (Squares): July, 2005 Ozone Meteorological Episode

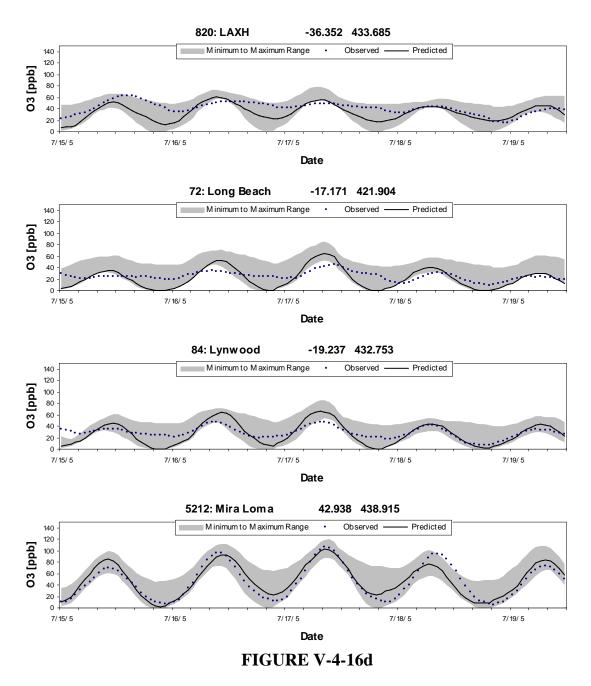
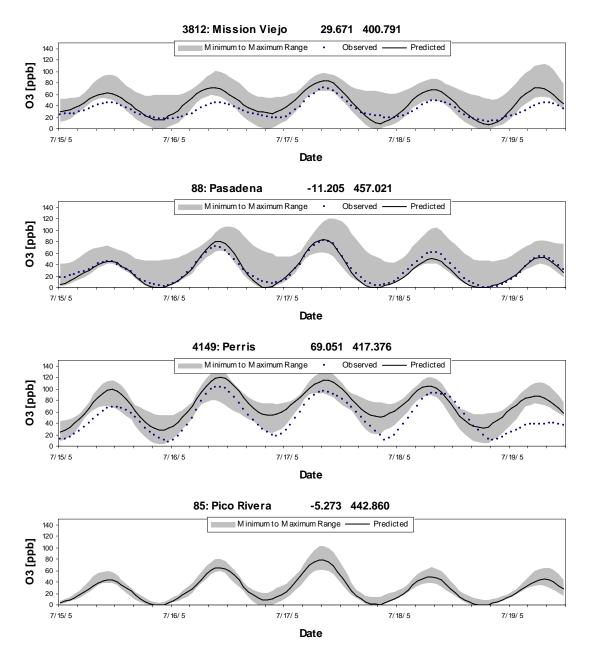
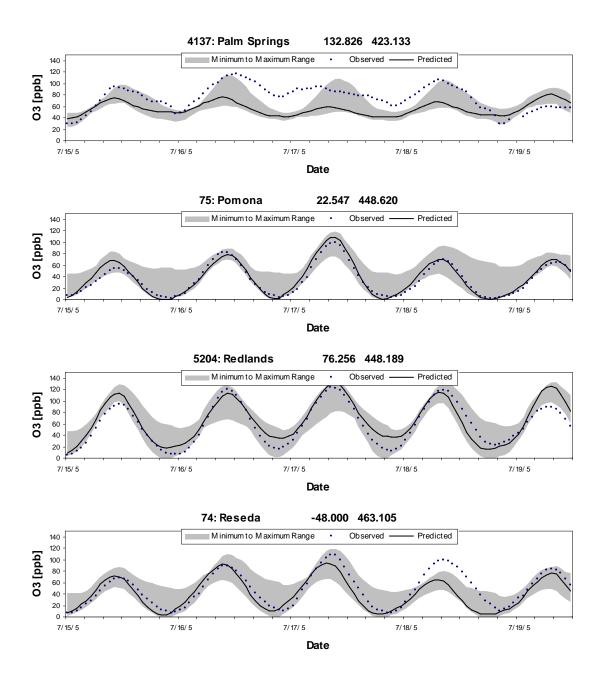


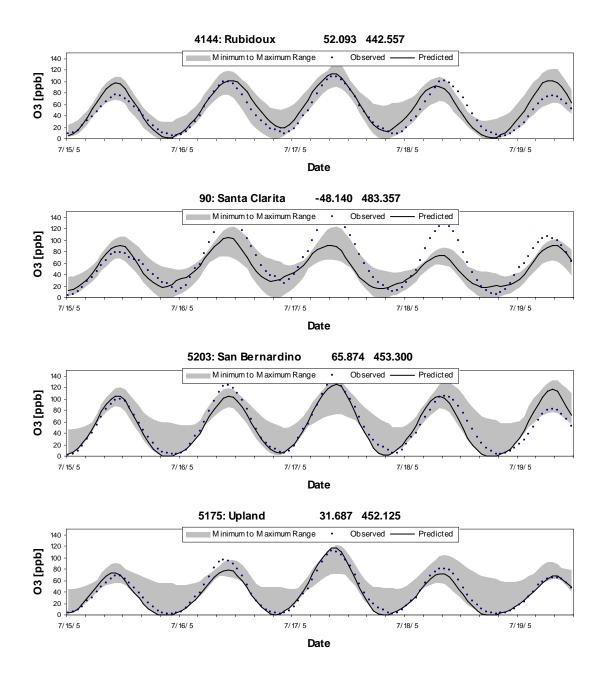
FIGURE V-4-16b


CAMx Simulated 8-Hour Average Ozone (Solid Line) Vs. Observed (Squares): July, 2005 Ozone Meteorological Episode

CAMx Simulated 8-Hour Average Ozone (Solid Line) Vs. Observed (Squares): July, 2005 Ozone Meteorological Episode



CAMx Simulated 8-Hour Average Ozone (Solid Line) Vs. Observed (Squares): July, 2005 Ozone Meteorological Episode


FIGURE V-4-16e

CAMx Simulated 8-Hour Average Ozone (Solid Line) Vs. Observed (Squares): July, 2005 Ozone Meteorological Episode

FIGURE V-4-16f

CAMx Simulated 8-Hour Average Ozone (Solid Line) Vs. Observed (Squares): July, 2005 Ozone Meteorological Episode

FIGURE V-4-16g

CAMx Simulated 8-Hour Average Ozone (Solid Line) Vs. Observed (Squares): July, 2005 Ozone Meteorological Episode

FIGURE V-4-16h

CAMx Simulated 8-Hour Average Ozone (Solid Line) Vs. Observed (Squares): July, 2005 Ozone Meteorological Episode

The diurnal plots illustrate a range of model predictions based on a 7 X 7 grid analysis. In the diagram, and in the later attainment demonstration, the peak prediction in the 49 grid cell array is compared to the station observation.

The July episode spans a weekend (July 16th and 17th) over the course of the 5 day meteorological episode. Weekend inventories have become increasingly more reliable but have not yet reached the level of certainty of the weekday emissions profiles. Overall, heavy duty truck traffic decreases by about 60 percent in the Basin on Saturday, compared to Friday, and an additional 10-15 percent on Sundays. NOx emissions are greatly reduced along the primary transportation corridors. Unfortunately, at this time, there is no weekend trip model is available to accurately simulate the reduced usage of trucks on weekends and the residual impact on the movement and speeds of passenger cars and light duty vehicles. Hence, the simulation uncertainty is most pronounced during the weekends. Weekday simulations provide a more accurate characterization of the observed ozone trends.

On July 16th and 17th, the peaks are nominally under predicted and tend to lag the observed concentrations in the San Bernardino Valley and mountain areas. Performance in the Riverside area is split, where Rubidoux is generally under predicted but Lake Elsinore and Perris are well simulated. The simulation tends to under predicted observations in the eastern San Gabriel Valley but is reasonable in the coastal-metropolitan areas. The San Fernando Valley sites of Burbank and Reseda are well simulated with a tendency for over prediction. Santa Clarita however is significantly under predicted on these days.

Effect of Emissions Uncertainties

The Final 2007 AQMP emissions inventory built upon the effort undertaken in the 2003 AQMP to provide updates to the mobile and day specific point and biogenic inventories used in the modeling attainment demonstrations. Aircraft and airport operations were thoroughly reviewed and inventoried. Shipping transits into the Ports of Los Angeles and Long Beach were carefully logged and shipping lane transits up and down the coast were logged for the major vessels. The episode specific biogenic emissions inventory under went significant modification. The areas source emissions distribution continued to rely on the emissions surrogates used in the 2003 AQMP to distribute emissions.

As previously discussed in Chapter 2 the revisions to ARB's on-road emissions program EMFAC2007 and the update of the Off-Road companion model had a significant impact of the emissions inventory and resulting model simulations. The net impact of EMFAC2007 was to raise the absolute tonnage of NOx and VOC in the mobile source emissions inventory over the 2003 AQMP projected 2002 inventory. The Basin 2002 base-year mobile source inventory totals for VOC and NOx increased from 559 and 968 TPD in the 2003 AQMP to 710 and 1001 TPD for the current effort. While VOC emissions rose 27 percent, NOx emissions only rose by a 3 percent margin. Many of the comments regarding the episode development in simulating previous episodes was that there existed significantly more NOx relative to the amount of VOC in the domain. The enhancement to the inventories have led to more accurate inventory estimates, however, the ratio of VOC to NOx remains in favor of ozone titration in the coastal emissions region.

Several additional factors resulting from the use of the EMFAC2007 and Direct Transportation Impact Model (DTIM4) to generate grid level mobile source emissions may have altered the VOC to NOx ratio in the Basin. First, there exist differences between the two models in the numbers of trips and lengths of trips inferred by the regional transportation model output. More numerous starts and stops lead to greater VOC emissions from vehicle use and standing evaporative loss. Similarly, speed impacts NOx emissions, especially from heavy-duty vehicles. Differences exist between the emissions models in how the heavy-duty vehicle speed factors are assigned. Significant movement was made to resolve differences in the projections of truck travel, most notably the redistribution of a percentage of the fleet to the eastern Basin and second, out of the Basin to the northern and eastern air Basins. The redistribution of truck travel is one of the contributing factor to the nominal increase in NOx as opposed to previous inventory updates.

The impact of ethanol as an additive in the fuel has lead to increased VOC emissions due to increase vapor permeation in the fuel and exhaust of passenger vehicles. While progress has been made to capture the impact of the VOC evaporative emissions, there continues to exist uncertainty to the total daily tonnage and in particular the response on exceedingly hot days when evaporation can become an exponential function of temperature. VOC emissions on hot days, which are synonymous with higher ozone days may be under represented and the net impact to model performance would be for under prediction of the total amount of ozone formed in the Basin.

Comments on the episode selection were directed at the exclusion of 2003 as a source for potential simulations days. The summer of 2003 was exceptionally hot with numerous days exceeding the 100°F temperature in the inland valleys. Given the uncertainty associated with vapor permeation, coupled with fuel commingling, it was decided to avoid selecting days on which significant uncertainty in the emissions occurred.

Other areas of the inventory uncertainty may have impacted model performance including the assignment of surrogates used to distribute emissions through the Basin, and the sub-county distribution of vehicles by age. Several sensitivity simulations were conducted using emissions factors generated by EMFAC2002 during the 2003 AQMP and were regenerated for this analysis using a grid level characterization of the passenger vehicle age with each county. The analysis was designed to attempt to place older, high emitting vehicles in the general areas where they operate. There are drawbacks to this assumption in that the average trip distance in the Basin exceeds one grid length and can easily transverse a county line. The sensitivity analyses were encouraging and preliminary results improved the ozone simulation model performance in some critical areas (most notably, Santa Clarita).

Similar types of sensitivity analyses were conducted to test the extent of reduced truck travel (lower NOx) in the Basin on weekends and the movement, storage and usage of pleasure craft on weekends and weekdays. The impacts of these prospective inventory modifications varied by hour of day and location in the Basin.

The biogenic inventory is also subject to uncertainties due to the critical roll daily temperature and humidity has in the estimation of the emissions. This is clearly evident in the day-to-day variation in total emissions over the five multi-day episodes, and in the difference in the estimated emissions between spring and mid summer. Added to the diurnal and seasonal variation has been the rapid die off of the forests in the East Basin due to an infestation of the Bark Beetle. Estimates of tree death by acre continue to increase creating a moving target for emissions estimation. Finally, the several episodes take place in August and it is difficult to assess cumulative stress on the biomass as the season progresses and what impact did the stress have on daily emissions.

OZONE AIR QUALITY PROJECTIONS

CAMx simulations were conducted for the year base emission scenarios (2017 and 2023), and future year controlled scenarios (2017, and 2023). As discussed earlier, the

ozone attainment demonstration relies on the use of site specific RRFs being applied to the 2002 weighted design values. The RRFs are determined from the future year controlled and the 2002 base year simulations.

Future year 8-hour ozone attainment demonstrations are required for those sites with design values that exceed 84 ppb. As such, the current demonstrations are focused on 16 locations in the Basin. The initial screening for station days to be included in the attainment demonstration included the following criteria: (1) having an observed concentration equaling or exceeding 85 ppb and (2) a simulation predicted base year (1997, 2004 or 2005) concentration over 60 ppb. Additional criteria were added to the selection process as the simulations were evaluated.

A minimum of 5-episode days are recommended to determine the site specific RRF. The evaluation requires that the model performance for the day is within specific performance goals. The final criteria used to select an episode station day for the RRF calculation included: (1) the base-year observed concentration lie with 25 percent of the station design value, (2) the absolute prediction accuracy (predicted minus observed in the base- year) is within 25 percent and (3) that a minimum base-year observed concentration at each site used in the analysis 85 ppb or greater. A maximum of 19 episode days were evaluated for inclusion in the RRF calculation. If a site did not meet the 5-episode day threshold, the smaller reduction determined from either the average of the RRFs for all Basin sites or the 19 day average RRF from that site, regardless of model performance, was applied to estimate the future design value at that station.

Since the CAMx simulations are run on a 5 km grid, the maximum 8-hour average concentration from the 49 grid cells representing the monitoring site are used to generate the simulated concentration at the monitor.

The results of the attainment demonstration for 2023 are presented in Table V-4-15. Table V-16 provides the CAMx 2023 future year day specific model simulation results. The analysis indicates that the federal 8-hour ozone standard would be attained in 2024 at the key stations with the controlled emissions implemented to the 2023 inventory. The controlled carrying capacity (420 TPD of VOC and 114 TPD of NOx) consists of both short-term and long-term control measures. The CEPA output summarizing the control strategy implementation and emissions reductions is provided as Attachment 7.

With controls in place, it is expected that all stations in the Basin will meet the federal 8hour ozone standard. The east Basin stations of Crestline and Fontana are projected to have the highest 8-hour controlled design values. Both sites are downwind receptors along the primary wind transport route that moves precursor emissions and developing ozone eastward during by the daily sea breeze. Future year projections of ozone along the northerly transport route through the San Fernando Valley indicate that the ozone design value in the Santa Clarita Valley will be approximately 13 percent below the standard.

It is important to reiterate that the form of the ozone standard allows for at least 3-days to have 8-hour average concentrations that exceed 80 ppb in any year. So, although the demonstration satisfies the criteria for attainment, areas of the Basin are likely to experience occasional higher ozone days (greater than 80 ppb) under severe meteorological conditions.

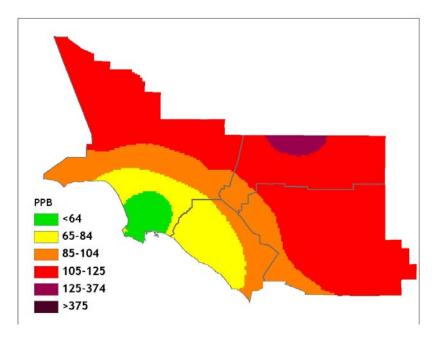
Equally important, is the rate of progress specified by the timing of the new standard. The 2003 AQMP 1-hour ozone demonstration set a 2010 attainment carrying capacity of 330 TPD of VOC and 540 TPD of NOx. Sensitivity simulations were conducted to assess progress towards attaining the revoked 1-hour ozone standard for a current 2010 baseline emissions estimate. The results indicated that the currently predicted 1-hour average ozone concentrations for 2010 are expected to be approximately 20 percent above the revoked 1-hour federal standard assuming full implementation of all available control measures.

Graphical Distribution

The spatial distribution of ozone design values for the 2002 base year is shown in Figure V-4-17. The distribution was generated using GIS mapping of the station based ozone design values overlaid onto the modeling grid while applying a distance weighted interpolation scheme to expand the prediction. Future year ozone air quality projections for 2024 with and without implementation of all control measures are presented in Figures V-4-18 and V-4-19. The predicted ozone concentration will be significantly reduced in the future years in all parts of the Basin with the implementation of proposed control measures in the South Coast Air Basin.

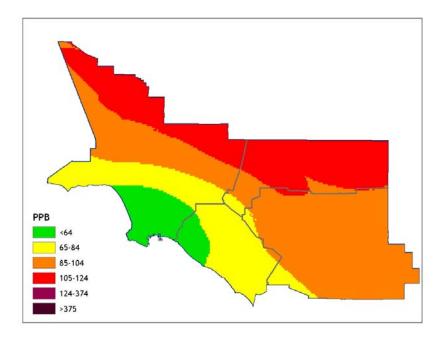
TABLE V-4-15

Site	2002	2002	2023	No.		2024
	Weighted	Baseline	Controlled	Valid		Controlled
	Design	Simulation	Average			Design
	(PPB)	(PPB)	(PPB)	Days	RRF	(PPB)
(a) Criteria						
Azusa	101.0	108.1	66.3	< 5	0.661	69
Banning						
Airport	115.0	119.0	69.4	11	0.588	68
Burbank	92.0	103.8	77.0	< 5	0.661	63
Crestline	128.7	123.0	78.5	8	0.644	83
Elsinore	107.0	110.5	63.3	9	0.575	62
Fontana	117.7	108.1	73.6	11	0.685	81
Glendora	112.0	106.6	73.8	5	0.706	79
Pasadena	96.0	99.0	73.4	< 5	0.661	73
Perris	112.0	107.3	75.4	< 5	0.661	79*
Pomona	96.0	101.7	77.9	8	0.779	75
Redlands	125.0	116.5	75.2	13	0.649	81
Reseda	104.0	105.3	66.2	7	0.632	66
Rubidoux	111.0	111.4	76.0	12	0.688	76
Santa Clarita	122.0	109.8	66.4	10	0.610	74
San Bernardino	116.0	115.0	75.6	14	0.660	77
Upland	110.0	107.3	75.8	8	0.713	78
Avg. \geq 5 Days					0.661	
(b) All Days						
Azusa	101.0	96.6	71.6	19	0.788	80*
Burbank	92.0	97.5	73.8	19	0.756	70*
Pasadena	96.0	97.8	75.7	19	0.774	74*
Perris	112.0	111.7	66.2	15	0.592	66

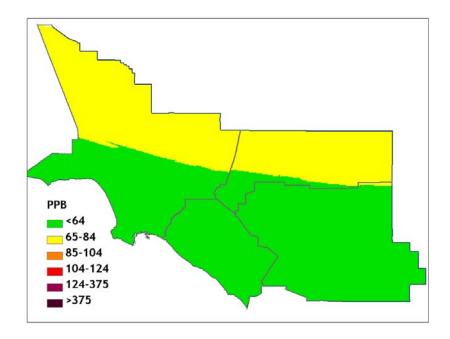

2024 Projected Basin 8-Hour Ozone Design Values

* The higher future year design value determined from either the average RRF from the criteria (0.661) or from the RRF calculated from all simulation days (only 15 were evaluated for Perris).

TABLE V-4-16


CAMx 2023 Controlled Simulation

Station							CAN	Ax 202	3 Cont	rolled S	Simulati	ion					
	200)4		2005								199	97				
	220	221	142	196	197	198	199	200	216	217	218	219	240	216	217	218	219
Azusa											66.3						
Banning	78.6	78.4	70.8	69.8	73.5	76.8	75.8		58.2			52.8		70.7			58.2
Burbank															77		
Crestline	88		82.4	79.9	84	82.9		82.6				58				70.2	
Elsinore	70	71.3	70.1			67.9	66.8		56.2		59.7	53.4				54	
Fontana	85.2		80.2		78.9	81.3	84		65.6	62.6	61.3	61.7	73		76.2		
Glendora					87.6	80.3			68.9		65.6	66.8					
Indio	59				51.5		52.9										
Pasadena			77.9								68.9						
Perris	75.4																
Palm Springs	62.5	64.9	58.9	50.1	58.4	59.7	56.5							65.7			55.2
Pomona	83.7	77.8	82.5		87.4	83.9					67	66.5	74				
Redlands	88	83.1	82.4		84	82.9	84.8		64.2	63.5		56.9	73	74.9	73.4		66.5
Reseda	63.7				72.3	64.3		65.1	59.4	74.2	64.5						
Rubidoux	88	82.7	82.4		83.2	82.9	84.8			63.5	61.5	60.7	73	73.4	76.2		
Santa Clarita	63.7	63.8			72.3	64.3		65.1	59.4	74.2	60.5	58.1				82.5	
San Bernardino	88	83.1	82.4	79.9	84	82.9	84.8		64.2	63.5	61.3	58.7	73	74.9	75.3		
Upland	83.5	77.6	78.5		82.7	80.9					61.9	64.5			76.2		


FIGURE V-4-17

2002 Baseline 8-Hour Ozone Design Concentrations (ppb)

FIGURE V-4-18

Model-Predicted 2024 Baseline 8-Hour Ozone Design Concentrations (ppb)

Model-Predicted 2024 Controlled 8-Hour Ozone Design Concentrations (ppb)

Projection of 2018 Air Quality in the Coachella Valley

One major component of the Final 2007 AQMP modeling attainment demonstration addresses the issue of transport of ozone and precursor pollutants into the Coachella Valley. The Coachella Valley has a 2013 attainment date. After the initial simulations using the 2012 controlled emissions inventory, it was determined that additional time would be required to meet the standard, despite implementation of the upwind control strategy. (The projected 2013 ozone design value for the Coachella Valley using the 2012 controlled emissions inventory was 88 ppb). As a consequence, the District is seeking a voluntary redesignation of the Coachella valley's ozone attainment status from "serious" to "severe-15." This action will provide additional time, out to 2018, to attain the federal 8-hour standard.

CAMx simulations were also generated for the suite of episode days using the 2017 baseline and controlled inventories. Emission reductions through 2017 are expected to take place through exiting established control measures and reductions in mobile source emissions as projected by EMFAC2007 and through the CARB control strategy with the District overlay.

Table V-4-17 provides the 2017 ozone attainment demonstration for the Coachella Valley. Again, RRFs are determined from CAMx simulations using the 2002 baseline and 2017 controlled emissions. Each site used at least 5 simulation days to generate the RRFs. The attainment demonstration shows that both Indio and Palm Springs will meet the federal standard.

TABLE	V-4-17
-------	--------

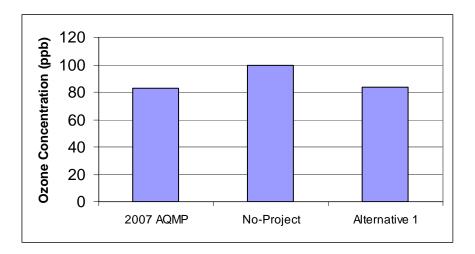
Site	2002	2002	2017			2024
	Weighted	Baseline	Controlled			Controlled
				No.		
	Design	Simulation	Average	Valid		Design
	(PPB)	(PPB)	(PPB)	Days	RRF	(PPB)
Palm Springs	105.7	99.9	75.9	9	0.767	81.1
Indio Jackson	95.0	84.0	66.2	5	0.791	75.2

2017 Projected Coachella Valley 8-Hour Ozone Design Values

TABLE V-4-18

CAMx 2017 Coachella Valley Controlled 8-Hour Average Ozone Simulation (PPB)

Station		CAMx 2017 Simulation Days									
	20	2004 2005 1									
	220	221	142	142 196 197 198 199 239							
Palm Springs	80.2	82.6	76.5	73.6	84.6	82.3	79.7	67.6	56.2		
Indio Jackson	73.2		66.3		71.7	63		56.8			


SENSITIVITY STUDIES: MODEL PERFORMANCE AND CEQA

A set of CAMx sensitivity simulations were generated to test, model performance and evaluate alternate emissions scenarios for CEQA determination. The stress tests conducted for the PM2.5 modeling analysis were also applied to the ozone simulations where emissions motor vehicle emissions were doubled, the model was run solely with biogenic emissions and the top ozone boundary condition was modified. The results of the simulations suggested a better fit of the data when VOC emissions were increase throughout the Basin bringing them in line with the ambient VOC/NOx ratio measured through the PAMS network. Reducing the top concentration (top boundary of the model simulation) resulted in a reduction of surface ozone ranging several ppb, but with no specific trend in time of day.

Table V-4-19 lists the emissions for the 2023 baseline, plan and CEQA alternative ozone simulations conducted. Three CEQA ozone simulations were conducted: (Alt-1) Heavy VOC and heavy NOx, (Alt-2) Extensive VOC reductions and little NOx, and the 2003 AQMP (No-Project). The results of the simulations indicated that only the first scenario could result in attainment of the ozone standard. (See Figure V-4-20). The Heavy VOC scenario does not demonstrate attainment because of the influence of biogenic emissions. The No-plan scenario did not meet the standard because of the lack of emissions reductions.

C	zone-202	23	
	VOC	NOX	CO
Baseline	496	506	2142
Plan	420	117	2049
Alt-1	200	160	1965
Alt-2	100	250	1965
No-Project	283	373	2100

TABLE V-4-19CEQA Simulations Modeling Emissions

FIGURE V-4-20

CEQA 2023 Ozone Simulation Results

WEIGHT OF EVIDENCE

The 2007 AQMP will rely on the use of long term measures to ensure attainment of the federal 8-hour ozone standard. Several sensitivity runs were conducted to address questions pertaining the mobile source emissions inventory, and VMT.

With the revisions to the mobile source inventory (from an earlier version of EMFAC2007), the ozone model performance decreased slightly, although it was still within the acceptable criteria. However, lower base year emissions (i.e., 2002 emissions) and a significant alteration in the VOC-to-NOx ratio (due to pending vehicle adjustments described earlier) lead to a lower carrying capacity for ozone attainment. This means greater reductions are needed to meet the 8-hour ozone standard by 2023.

AQMD staff has retained outside consultants to perform peer review on AQMD's modeling work. Their initial feedback suggested that VOC emissions in 2002 might have been underestimated. In light of the earlier discussion on VMT projections and peer review comments on the VOC inventory, a series of sensitivity analyses were performed to test potential policy implications. The VMT sensitivity modeling runs included: 1) adjusting CARB VMT estimates for 2005 to match with SCAG's; 2) readjusting CARB's VMT estimates for 2002, 2014, and 2020 anchoring off its 2005 VMT in accordance with the growth rates provided by SCAG. The results indicate that the 2005 VMT "blip" helps reduce the need for additional NOx reductions by 10 tpd by 2014. However, should CARB's 2005 VMT be accurate 30 TPD of additional NOx reductions would be required for 8-hour ozone attainment.

Several additional simulations were conducted by adjusting the VOC emissions in 2002 to attempt to equilibrate with the ambient VOC/NOx ratio. The net results of these analyses were to generate more ozone in 2002 and as a consequence increase the slope of the RRF's. Regardless, all of the adjustments to the 2002 inventory did not negate the need for long term measures and additional NOx controls.

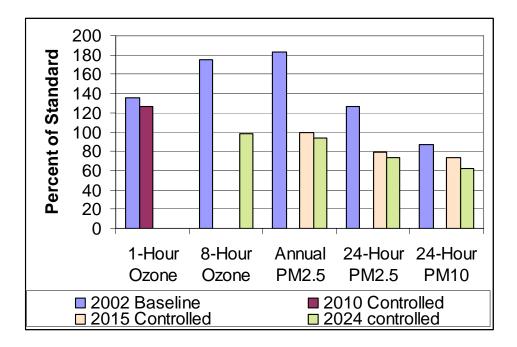
In conclusion with the uncertainties that have been previously discussed in the inventory, the attainment demonstration for 2024 projects a maximum future year design value of 83 ppb which provides an additional measure of confidence that the strategy, as designed will meet the federal ozone standard.

CHAPTER 5 SUMMARY AND CONCLUSIONS

Comparison to State and Federal Standards Basin Emissions Carrying Capacity (Emissions Budget)

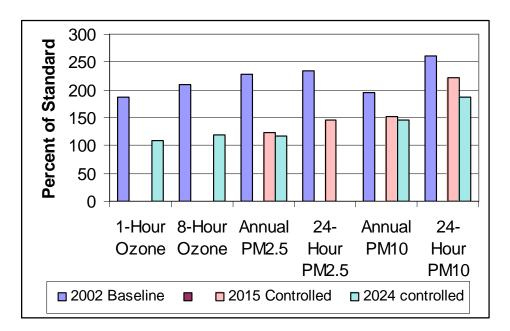
COMPARISON TO STATE AND FEDERAL STANDARDS

Figure V-5-1 shows the 2002 observed and model-predicted regional peak concentrations for the three nonattainment criteria pollutants, as percentages of the most stringent federal standard, for the years 2010, 2015, and 2024 (with and without further emission controls). Figure V-5-2 shows similar information related to the most stringent California state standards. Note: the revoked federal 1-hour standard comparison has been included for reference. The 2010 baseline 1-hour average ozone concentrations are projected to exceed the revoked standard.


Table V-5-1 summarizes the expected year for attainment of the various federal and state standards for the four pollutants analyzed. As shown, the Basin will be in compliance with federal standards by the year 2024. The Basin will require additional time beyond 2024 to meet the state ozone, PM2.5 and PM10 standards.

BASIN EMISSIONS CARRYING CAPACITY (EMISSIONS BUDGET)

The District is required to separately identify the emission reductions and corresponding type and degree of implementation measures required to meet federal and state ambient air quality standards. Section 40463(b) of the California State Health and Safety Code specifies that, with the active participation of the Southern California Association of Governments, a South Coast Air Basin emission carrying capacity for each state and federal ambient air quality standard shall be established by the South Coast District Board for each formal review of the Plan and shall be updated to reflect new data and modeling results.


A carrying capacity is defined as the maximum level of emissions that enable the attainment and maintenance of an ambient air quality standard for a pollutant. Emission carrying capacity for state standards shall not be a part of the State Implementation Plan requirements of the Clean Air Act for the South Coast Air Basin. Emission carrying capacity as defined in the Health and Safety Code is an overly simplistic measure of the Basin-wide allowable emission levels for specific ambient air quality standards. It is highly dependent on the spatial and temporal pattern of the emissions. Because of the multi-component nature of PM2.5, the carrying capacity for the contributing emissions can vary significantly and like ozone it is a non-linear function among their precursors.

The federal Clean Air Act requires that plans contain an emissions budget that represents the remaining emissions levels that achieve the applicable attainment deadline. Based on the modeling results, a set of carrying capacities can be defined corresponding to federal and state ambient air quality standards for annual PM2.5 and 8-hour ozone. VOC and oxides of nitrogen are used for ozone. PM2.5 additionally requires reductions of sulfur oxides and directly emitted PM2.5. Table V-5-2 shows the emissions carrying capacities for the Basin to meet federal air quality standards. These estimates are based on emission patterns estimated for each of the federal attainment years: 2015 for PM2.5 and 2021 for ozone.

FIGURE V-5-1

Projection of Future Air Quality in the Basin in Comparison with the Most Stringent Federal Standards.

FIGURE V-5-2

Projection of Future Air Quality in the Basin in Comparison with Most Stringent California State Standards

TABLE V-5-1

		Concentration	Expected
Pollutant	Standard	Level	Compliance Year
Ozone	NAAQS 8-hours	84 ppb	2024
	CAAQS 1-hour	90 ppb	beyond 2024
	CAAQS 8-hours	70 ppb	beyond 2024
PM _{2.5}	NAAQS Annual	15 ug/m^3	2015
	NAAQS 24-hours	65 ug/m^3	2005
	NAAQS 24-hours*	35 ug/m^3	2005
	CAAQS Annual	12 ug/m^3	beyond 2024
PM ₁₀	NAAQS 24-hours	150 ug/m^3	2000
	CAAQS 24-hours	50 ug/m^3	beyond 2024
	CAAQS Annual	20 ug/m^3	beyond 2024
CO**	NAAQS 1-hour	35 ppm	1990
	NAAQS 8-hours	9 ppm	2002
	CAAQS 8-hours	9 ppm	2002
NO2	NAAOS Annual	0.0524 mm	1005
NO2	NAAQS Annual	0.0534 ppm	1995
	CAAQS Annual	0.030 ppm	Beyond 2005
	CAAQS 24-hours	18 ppm	2003

Expected Year of Compliance with State and Federal Standards for the Four Criteria Pollutants

* EPA adopted the new 24-Hour PM2.5 standard in September 2006. The current SIP requirements address the 65 ug/m³ standard in place in 2005 when national area attainment designations were adopted.

** On May 11, 2007, U.S. EPA redesignated the South Coast Air Basin as attainment for Carbon Monoxide

TABLE V-5-2

Emissions Carrying Capacity Estimations for the South Coast Air Basin (tons/day) based on the Planning Inventory

a)	PM2.5 Attainment	Strategy to n	neet NAAQS (2	2015)
VOC	NOx		SOx	PM2.5
469	454		19	87
b)	Ozone Attainment	Strategy to m	neet NAAQS (2	2024)
	VOC	NOx		СО
	420	114		2039

References

California Air Resources Board. 1997a. The 1997 Southern California Ozone Study-NARSTO: Preparation of the 1997 Gridded Emission Inventory. A&WMA June 1998 Presentation

California Air Resources Board and the SCOS97-NARSTO Technical Committee. 1998. SCOS97-NARSTO 1997 Southern California Ozone Study and Aerosol Study, Volume III: Summary of Field Operations. April 1998.

Carter W, 2000, Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Final Report to California Air Resources Board Contract No. 92-329, and 95-308.

Cassmassi, J., 1998, Comparison of Meteorological Criteria Characterizing 1-Hour and 8-Hour Average Ozone Episodes in the South Coast Air Basin, A&WMA Annual Meeting, No. 98-814.

Clegg S. L., and E. O. Edney. "Aerosol Inorganics and Organics Model (Aiom) With User Defined Properties for Organic Compounds." U.S. Environmental Protection Agency, Washington, DC, EPA/600/C-04/105.

ENVIRON, Inc., 2006. CAMx User's Guide Version 4.4. ENVIRON. Novato, CA 94945.

ENVIRON, Inc, 2005. "METSAT," ENVIRON International Corp, Novato, CA

<u>D.R. Fitz</u> (1998). "<u>Evaluation of Street Sweeping as a PM10 Control Method</u>." Final Report to the South Coast Air Quality Management District under Contract 96018, 98-AP-RT4H-005-FR.

Frank, N.H., 2006, "Retained Nitrate, Hydrated Sulfates, and Carbonaceous Mass in Federal Reference Method Fine Particulate Matter for Six Eastern U.S. Cities," <u>A&WMA</u> 56, 500-511.

Grell, G.A., Dudhia, J., Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). National Center for Atmospheric Research: Boulder, CO, 1994; NCAR Technical Note, NCAR/TN-398+STR.

Kumar, N.; F. Lurmann, and W.P.L. Carter. 1995. Development of the Flexible Chemical Mechanism Version of the Urban Airshed Model. Final Report STI-94470-1508-FR. PTSD, California Air Resources Board. Sacramento, CA 95814. August 30, 1995.

McAtee, et al. 2006. Performance of a Meteorological and Air Quality Prediction System for Two-High Ozone Episodes in the Los Angeles Basin, Presented at U.S. EPA's 2006 National Air Quality Conferences, February 5-8, 2006, in San Antonio, Texas.

U Spuckler, D, et. al., (2000), "Technical Memorandum, California Road Dust Scoping Report," UC-Davis Report prepared for the California Department of Transportation, Davis CA.

Trijonis, J. "Visibility in California," Technology Service Corporation. Report to CARB, A7-181-30.

U.S. EPA. 1990. User's Guide for the Urban Airshed Model. Volume 1: User's Manual for UAM (CB-IV). OAQPS, USEPA Research Triangle Park, NC. 2771. June 1990.

.S. EPA 1991. Guideline For Regulatory Application of the Urban Airshed Model. EPA Publication No. EPA-450/4-91-013. U.S. Environmental Protection Agency, Research Triangle Park, NC.

U.S. EPA. 1995. User's Guide for the CALMET Meteorological Model. EPA-454/B-95-002. Emissions, Monitoring, and Analysis Division. USEPA. Research Triangle Park, NC. 27711. March, 1995.

U.S. EPA. 1995. A User's Guide for the CALMET Meteorological Model, EPA-454/B-95-002, U.S. EPA, OAQPS, Research Triangle Park, NC.

U.S. EPA 1998b. Use of Models and Other Analyses in Attainment Demonstrations for the 8-Hour Ozone NAAQS (Draft). October 1998.

U.S. EPA, 1999, "EPA Third Generation Air Quality Modeling System, Models-3 Volume 9b Users Manual. EPA/600/R-98/069(b).

U.S. EPA, 2005," Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-hour Ozone NAAQS," EPA-454/R-05-002, U.S. EPA OAQPS, Research Triangle Park, N.C.

U.S. EPA, 2006," Guidance on Use of Modeled and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM_{2.5} and Regional Haze NAAQS," U.S. EPA, Officeof Air Quality Planning and Standards, Emissions, Monitoring, and Analysis Divistion, Air Quality Modeling Group, Research Triangle Park, North Carolina, September,.

Yamartino, R. J.; J. Scier; S. R. Hana; G. R. Carmichael, and Y. S. Chang. 1989. CALGRID: A Mesoscale Photochemical Grid Model. Volume I: Model Formulation Document Sigma Research Report No. A6-215-74. PTSD, California Air Resources Board, Sacramento, CA 94814. September 1989.

Attachment-1

PM2.5 Annual and 24-Hour Attainment Calculations

TABLE V-A-1a

Predicted 2015 PM2.5 at Anaheim Using the Speciated Modeling Attainment Test

RRF (CAN	/lx 2015/CA	Mx 2005)							
	NH4	NO3	SO4	OC	EC	OTR			
Q1	0.70	0.70	0.71	0.80	0.86	1.03			
Q2	0.61	0.59	0.62	0.85	0.86	1.02			
Q3	0.63	0.65	0.58	0.82	0.85	1.00			
Q4	0.73	0.75	0.67	0.80	0.86	1.02			
2005 Desi	gn Modified	by MATE	S-III with S	andwich					
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Filter
					-	-			Mass
Q1	1.49	4.95	2.20	3.25	1.59	1.57	2.00	0.50	17.5
Q2	1.04	2.63	3.16	0.75	0.65	1.72	1.95	0.50	12.4
Q3	1.60	2.71	4.47	1.74	0.72	2.00	1.62	0.50	15.3
Q4	2.64	5.34	2.45	2.69	2.39	2.19	1.80	0.50	20.0
Annual	1.69	3.91	3.07	2.11	1.34	1.87	1.84	0.50	16.3
2015 Cont	trolled PM2.	5							
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Subtota
Q1	1.04	3.47	1.56	2.60	1.37	1.62	1.43	0.50	13.5
Q2	0.63	1.55	1.96	0.64	0.56	1.75	1.19	0.50	8.7
Q3	1.01	1.76	2.59	1.43	0.61	2.00	0.95	0.50	10.8
Q4	1.93	4.01	1.64	2.15	2.06	2.23	2.01	0.50	16.5
Annual	1.15	2.70	1.94	1.70	1.15	1.90	1.40	0.50	12.4

TABLE V- A-1b

Predicted 2015 PM2.5 at Burbank Using the Speciated Modeling Attainment Test

RRF (CAN	/Ix 2015/CA	,							
	NH4	NO3	SO4	OC	EC	OTR			
Q1	0.70	0.69	0.72	0.80	0.85	1.01			
Q2	0.63	0.62	0.62	0.83	0.83	1.00			
Q3	0.64	0.65	0.60	0.81	0.83	0.97			
Q4	0.76	0.77	0.71	0.81	0.84	1.01			
2005 Desi	gn Modified	by MATE	S-III with S	andwich					
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Filter
									Mass
Q1	1.54	4.90	1.77	5.16	1.74	1.48	1.62	0.50	18.70
Q2	1.48	3.63	2.94	1.97	1.02	2.10	1.53	0.50	15.17
Q3	2.45	4.34	4.54	3.10	1.25	2.27	2.20	0.50	20.67
Q4	3.06	6.90	2.42	3.80	3.21	2.09	2.32	0.50	24.30
Annual	2.13	4.94	2.92	3.51	1.81	1.99	1.92	0.50	19.71
2015 Con	trolled PM2.	.5							
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Subtotal
Q1	1.08	3.38	1.27	4.13	1.48	1.49	1.10	0.50	14.44
Q2	0.93	2.25	1.82	1.64	0.85	2.10	0.92	0.50	11.01
Q3	1.57	2.82	2.72	2.51	1.04	2.20	1.36	0.50	14.72
Q4	2.33	5.31	1.72	3.08	2.70	2.11	1.73	0.50	19.47
Annual	1.48	3.44	1.88	2.84	1.51	1.98	1.28	0.50	14.9 ²

TABLE V- A-1c

Predicted 2015 PM2.5 at Compton Using the Speciated Modeling Attainment Test

RRF (CAN	/lx 2015/CA	Mx 2005)							
	NH4	NO3	SO4	OC	EC	OTR			
Q1	0.78	0.86	0.62	0.76	0.81	0.94			
Q2	0.70	0.75	0.63	0.80	0.81	0.91			
Q3	0.71	0.80	0.60	0.78	0.81	0.89			
Q4	0.78	0.86	0.63	0.76	0.80	0.93			
2005 Desi	ign Modified	by MATE	S-III with S	andwich					
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Filter
									Mass
Q1	1.42	4.33	2.47	4.80	2.13	1.81	1.86	0.50	19.30
Q2	1.30	3.11	3.78	0.68	0.90	2.16	2.16	0.50	14.60
Q3	2.17	3.15	5.34	2.28	0.82	1.94	2.07	0.50	18.27
Q4	2.76	5.63	2.69	3.60	3.23	2.44	2.03	0.50	22.87
Annual	1.91	4.06	3.57	2.84	1.77	2.09	2.03	0.50	18.76
2015 Con	trolled PM2.	.5							
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Subtotal
Q1	1.11	3.72	1.53	3.65	1.73	1.70	1.42	0.50	15.36
Q2	0.91	2.33	2.38	0.54	0.73	1.97	1.41	0.50	10.77
Q3	1.54	2.52	3.20	1.78	0.66	1.73	1.38	0.50	13.31
Q4	2.15	4.84	1.69	2.74	2.58	2.27	1.62	0.50	18.40
Annual	1.43	3.35	2.20	2.18	1.43	1.92	1.46	0.50	14.46

TABLE V- A-1d

Predicted 2015 PM2.5 at Fontana Using the Speciated Modeling Attainment Test

RRF (CAN	Mx 2015/CA	Mx 2005)							
,	NH4	NO3 [′]	SO4	OC	EC	OTR			
Q1	0.65	0.63	0.77	0.87	0.91	1.06			
Q2	0.53	0.50	0.61	0.84	0.89	1.05			
Q3	0.53	0.49	0.64	0.83	0.88	1.03			
Q4	0.69	0.68	0.73	0.86	0.90	1.06			
2005 Desi	ign Modified	by MATE	S-III with S	andwich					
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Filter Mass
Q1	1.89	6.22	1.82	2.95	1.84	1.58	1.94	0.50	18.73
Q2	2.24	5.93	3.30	1.63	1.46	2.16	1.94	0.50	19.17
Q3	2.10	4.83	4.27	1.37	1.88	3.24	2.00	0.50	20.20
Q4	3.53	8.29	2.40	0.55	2.51	2.67	2.72	0.50	23.17
Annual	2.44	6.32	2.95	1.63	1.92	2.41	2.15	0.50	20.32
2015 Con	trolled PM2.	5							
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Subtotal
Q1	1.23	3.92	1.40	2.57	1.67	1.67	1.28	0.50	14.24
Q2	1.19	2.97	2.01	1.37	1.30	2.27	1.05	0.50	12.65
Q3	1.11	2.37	2.73	1.14	1.65	3.34	1.23	0.50	14.07
Q4	2.44	5.64	1.75	0.47	2.26	2.83	2.22	0.50	18.11
Annual	1.49	3.72	1.97	1.39	1.72	2.53	1.45	0.50	14.77

TABLE V- A-1e

Predicted 2015 PM2.5 at Long Beach Using the Speciated Modeling Attainment Test

RRF (CAN	/lx 2015/CA	Mx 2005)							
	NH4	NO3	SO4	OC	EC	OTR			
Q1	0.75	0.81	0.62	0.73	0.79	0.84			
Q2	0.68	0.72	0.6	0.74	0.77	0.79			
Q3	0.68	0.77	0.57	0.72	0.76	0.76			
Q4	0.75	0.85	0.61	0.73	0.78	0.83			
2005 Desi	ign Modified	by MATE	S-III with S	andwich					
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Filter
									Mass
Q1	1.37	4.19	2.55	3.74	1.83	1.88	1.92	0.50	17.9
Q2	1.25	2.45	3.72	0.40	0.70	1.98	1.67	0.50	12.67
Q3	1.95	2.53	4.75	1.26	0.87	2.08	1.73	0.50	15.67
Q4	3.29	5.86	4.31	1.42	2.50	2.49	2.53	0.50	22.90
Annual	1.97	3.76	3.83	1.71	1.48	2.11	1.96	0.50	17.30
2015 Con	trolled PM2.	.5							
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Subtota
Q1	1.03	3.39	1.58	2.73	1.45	1.44	1.49	0.50	13.6 ⁻
Q2	0.85	1.76	2.23	0.30	0.54	0.99	1.09	0.50	8.2
Q3	1.33	1.95	2.71	0.91	0.66	1.14	1.19	0.50	10.38
Q4	2.47	4.98	2.63	1.04	1.95	1.84	1.88	0.50	17.2
Annual	1.42	3.02	2.29	1.24	1.15	1.35	1.41	0.50	12.38

TABLE V- A-1f

Predicted 2015 PM2.5 at Los Angeles Using the Speciated Modeling Attainment Test

RRF (CAN	/lx 2015/CA	,							
	NH4	NO3	SO4	OC	EC	OTR			
Q1	0.74	0.76	0.69	0.76	0.81	0.99			
Q2	0.67	0.69	0.62	0.79	0.81	0.98			
Q3	0.69	0.74	0.59	0.78	0.80	0.96			
Q4	0.78	0.82	0.67	0.77	0.81	0.99			
2005 Desi	ign Modified	bv MATE	S-III with S	andwich					
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Filter
						•		2.0	Mass
Q1	1.78	6.25	2.44	2.54	1.98	1.69	2.55	0.50	19.73
Q2	1.58	4.07	3.74	0.73	1.32	2.22	2.16	0.50	16.33
Q3	2.95	4.52	5.11	0.98	1.45	2.22	2.47	0.50	20.20
Q4	3.17	7.06	2.92	0.52	3.25	2.23	2.59	0.50	22.23
Annual	2.37	5.48	3.55	1.19	2.00	2.09	2.44	0.50	19.62
2015 Con	trolled PM2.	.5							
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Subtotal
Q1	1.32	4.75	1.68	1.93	1.60	1.67	1.90	0.50	15.36
Q2	1.06	2.81	2.32	0.58	1.07	2.18	1.38	0.50	11.89
Q3	2.04	3.34	3.01	0.76	1.16	2.13	1.58	0.50	14.53
Q4	2.47	5.79	1.96	0.40	2.63	2.21	2.03	0.50	17.99
Annual	1.72	4.17	2.24	0.92	1.62	2.05	1.72	0.50	14.94

TABLE V- A-1g

Predicted 2015 PM2.5 at Rubidoux Using the Speciated Modeling Attainment Test

RRF (CAN	/lx 2015/CA	Mx 2005)							
	NH4	NO3	SO4	OC	EC	OTR			
Q1	0.63	0.61	0.72	0.86	0.89	0.94			
Q2	0.49	0.46	0.58	0.81	0.87	0.90			
Q3	0.48	0.45	0.59	0.80	0.85	0.90			
Q4	0.66	0.65	0.69	0.85	0.89	0.94			
2005 Desi	ign Modified	by MATE	S-III with S	andwich					
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Filter
									Mass
Q1	1.79	6.51	1.93	4.18	2.00	1.81	2.44	0.50	21.17
Q2	3.00	8.25	3.18	1.39	1.18	2.15	2.23	0.50	21.87
Q3	2.94	7.29	4.30	1.62	1.17	2.50	2.27	0.50	22.60
Q4	3.47	8.44	2.65	1.53	2.61	2.64	3.04	0.50	24.87
Annual	2.80	7.62	3.02	2.18	1.74	2.28	2.50	0.50	22.63
2015 Con	trolled PM2.	.5							
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Subtotal
Q1	1.13	3.97	1.39	3.59	1.78	1.70	1.52	0.50	15.58
Q2	1.47	3.80	1.84	1.13	1.03	1.94	1.09	0.50	12.79
Q3	1.41	3.28	2.54	1.30	0.99	2.25	1.19	0.50	13.46
Q4	2.29	5.49	1.83	1.30	2.32	2.48	1.96	0.50	18.17
Annual	1.57	4.13	1.90	1.83	1.53	2.09	1.44	0.50	15.00

TABLE V- A-1h

Predicted 2015 PM2.5 at Wilmington Using the Speciated Modeling Attainment Test

RRF (CAN	/lx 2015/CA	Mx 2005)							
	NH4	NO3	SO4	OC	EC	OTR			
Q1	0.69	0.78	0.56	0.68	0.72	0.74			
Q2	0.66	0.72	0.56	0.69	0.69	0.70			
Q3	0.64	0.75	0.54	0.68	0.68	0.67			
Q4	0.71	0.81	0.57	0.68	0.71	0.74			
2005 Desi	ign Modified	by MATE	S-III with S	andwich					
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Filter
									Mass
Q1	1.27	3.49	2.91	3.43	2.44	2.08	1.84	0.50	17.97
Q2	1.13	2.02	3.84	0.38	0.92	2.14	1.74	0.50	12.67
Q3	1.73	1.95	5.12	1.34	1.15	2.16	1.73	0.50	15.67
Q4	2.62	5.02	3.88	2.47	3.37	2.79	2.27	0.50	22.90
Annual	1.69	3.12	3.94	1.91	1.97	2.29	1.90	0.50	17.30
2015 Con	trolled PM2.	.5							
	NH4	NO3	SO4	OC	EC	OTR	Water	Blank	Subtotal
Q1	0.88	2.72	1.63	2.33	1.76	1.54	1.24	0.50	12.60
Q2	0.75	1.45	2.15	0.26	0.63	1.50	0.93	0.50	8.18
Q3	1.11	1.46	2.76	0.91	0.78	1.45	0.99	0.50	9.96
Q4	1.86	4.07	2.21	1.68	2.39	2.06	1.63	0.50	16.40
Annual	1.15	2.43	2.19	1.30	1.39	1.64	1.20	0.50	11.79

TABLE V- A-2

Summary of Methodologies to Calculate 2015 24-Hour Average Design Value ($\mu g/m3$)

Location	24-Hour Average Design	Annual RRF to Design
Anaheim	47.0	33.4
Burbank	53.3	37.8
Compton (Using Lynwood)	51.3	37.4
Fontana	54.8	40.6
Long Beach	44.6	30.8
Los Angeles	60.7	43.1
Rubidoux	64.8	42.8
Wilmington (Using Long Beach)	44.6	26.6

TABLE V-A-3a

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.09	0.36	0.17	0.19	0.09	0.09			
Q2	0.09	0.29	0.36	0.06	0.05	0.14			
Q3	0.11	0.18	0.41	0.12	0.05	0.13			
Q4	0.14	0.32	0.17	0.14	0.12	0.11			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	51.8	46.3	27.6	47.3					
2004	48.2	30.5	46.8	49.9					
2005	41.8	27.6	42.9	43.8					
<u>Top-25</u> Percentile									
<u>RRF</u>	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
Q1	$\frac{1114}{0.78}$	0.78	$\frac{504}{0.80}$	0.81	0.78	1.00			
Q1 Q2	0.78	0.78	0.83	0.72	0.80	0.90			
Q2 Q3	0.73	0.08	0.57	0.80	0.83	1.00			
Q3 Q4	0.73	0.78	0.67	0.84	0.89	1.00			
Q+	0.72	0.74	0.07	0.04	0.89	1.05			
Q1 Com	-								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	3.6	12.3	5.6	11.3	4.1	9.7	5.6		
2004	3.3	11.4	5.2	10.5	3.8	9.1	5.2		
2005	2.9	9.9	4.5	9.1	3.3	7.8	4.5		
Q1 2	2015 Estime	ates							
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass
2003	3.6	14.5	7.0	8.0	3.6	4.7	4.4	0.5	46.4
2004	3.4	13.5	6.6	7.4	3.4	4.3	4.1	0.5	43.2
2005	2.9	11.7	5.7	6.4	2.9	3.8	3.5	0.5	37.5
Q2 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	SO4	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	2.7	8.2	9.2	11.5	2.3	5.0	6.4		
2004	1.8	5.4	6.0	7.5	1.5	3.3	4.2		
2005	1.6	4.9	5.4	6.8	1.4	3.0	3.8		
	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	OTR	<u>Water</u>	<u>Blank</u>	Mass
2003	2.8	9.1	13.8	2.0	1.9	5.8	5.8	0.5	41.7
2004	1.8	6.0	9.1	1.3	1.2	3.8	3.8	0.5	27.6
2005	1.7	5.4	8.2	1.2	1.1	3.5	3.4	0.5	25.1

Anaheim 24-Hour 2015 Design Value Estimation

Q3 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	3.0	4.6	7.0	4.3	1.1	4.6	2.2		
2004	5.1	7.9	12.0	7.4	1.9	7.9	3.7		
2005	4.7	7.2	11.0	6.8	1.7	7.2	3.4		
02	2015 Estim	7402							
~	2015 Estime		504	00	FC	OTD	Weter	D11	Maria
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	$\frac{OC}{C}$	<u>EC</u>	<u>OTR</u>	<u>Water</u>	Blank	Mass 22.2
2003	2.2	3.9	6.5	2.6	1.1	3.6	2.7	0.5	23.2
2004	3.8	6.6	10.9	4.5	1.9	6.1	4.7	0.5	38.9
2005	3.4	6.0	10.0	4.1	1.8	5.6	4.3	0.5	35.7
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	OC	EC	OTR	Water		
2003	5.1	11.2	5.6	10.3	4.7	4.7	4.2		
2004	5.4	11.9	5.9	10.9	4.9	4.9	4.4		
2005	4.8	10.4	5.2	9.5	4.3	4.3	3.9		
Q4	2015 Estime	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	4.8	11.2	5.4	5.6	5.1	5.4	3.6	0.5	41.4
2004	5.0	11.8	5.7	5.9	5.3	5.7	3.8	0.5	43.7
2005	4.4	10.4	5.0	5.2	4.7	5.0	3.3	0.5	38.4
	ighted 2015	e							
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	<u>Max</u>	<u>FDV</u>			
2003	46.4	41.7	23.2	41.4	46.4				
2004	43.2	27.6	38.9	43.7	43.7				
2005	37.5	25.1	35.7	38.4	38.4	42.8			

TABLE V-A-3b

										_
<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>				
Q1	0.08	0.32	0.13	0.28	0.10	0.08				
Q2	0.10	0.28	0.27	0.13	0.07	0.14				
Q3	0.12	0.24	0.31	0.15	0.06	0.11				
Q4	0.13	0.35	0.14	0.16	0.13	0.09				
Q ·	0.12	0.55	0.11	0.10	0.15	0.09				
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>						
2003	54.1	45.2	51.6	50.3						
2004	37.8	41.6	51.5	60.1						
2005	50.6	34.8	49.3	42.6						
TT 05										
Top-25 Percentile										
Percentile <u>RRF</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR				
<u>Q1</u>	0.79	$\frac{1003}{0.82}$	0.69	<u>0.74</u>	<u>1.C</u> 0.75	<u>01R</u> 1.00				
Q1 Q2	0.79	0.32	0.57	0.74	0.75	1.00				
	0.07	0.73	0.37	0.70	0.80	0.94				
Q3	0.71	0.93	0.33	0.07	0.83	0.94 1.00				
Q4	0.79	0.85	0.62	0.78	0.85	1.00				
Q1 Com	ponents									
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water			
2003	4.3	13.4	5.4	11.3	4.8	9.6	4.8			
2004	3.0	9.3	3.7	7.8	3.4	6.7	3.4			
2005	4.0	12.5	5.0	10.5	4.5	9.0	4.5			
Q1 2	2015 Estime									
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
2003	3.4	14.2	4.9	11.2	4.1	4.3	3.6	0.5	46.2	
2004	2.4	9.9	3.4	7.8	2.8	3.0	2.5	0.5	32.4	
2005	3.2	13.3	4.5	10.5	3.8	4.0	3.4	0.5	43.2	
02.0	,									
Q2 Com	-	NO2	0.04	00	EC	OTD	Western			
	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	OTR	Water			
2003	4.0	10.3	8.0	10.7	3.1	4.0	4.5			
2004	3.7	9.5	7.4	9.9	2.9	3.7	4.1			
2005	3.1	7.9	6.2	8.2	2.4	3.1	3.4			
02	2015 Estime	ates								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass	
$\frac{1000}{2003}$	3.0	9.2	7.0	4.5	$\frac{10}{2.5}$	6.3	3.6	0.5	36.7	
2003	2.8	8.5	6.4	4.1	2.3	5.8	3.4	0.5	33.8	
2004	2.3	7.1	5.4	3.4	1.9	4.9	2.8	0.5	28.4	
2005	2.3	/ • 1	5.7	5.7	1.7	7.7	2.0	0.5	20.7	•

Burbank 24-Hour 2015 Design Value Estimation

Q3 Components

<u>Year</u> 2003 2004 2005	<u>NH4</u> 6.1 6.1 5.9	<u>NO3</u> 10.7 10.7 10.2	<u>SO4</u> 11.2 11.2 10.7	<u>OC</u> 8.7 8.7 8.3	EC 3.1 3.1 2.9	<u>OTR</u> 5.1 5.1 4.9	<u>Water</u> 5.6 5.6 5.4		
Q3	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	4.4	11.8	5.6	5.2	2.6	5.3	3.7	0.5	39.0
2004	4.4	11.7	5.6	5.2	2.6	5.3	3.7	0.5	39.0
2005	4.2	11.2	5.3	5.0	2.5	5.1	3.5	0.5	37.3
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	5.5	13.4	4.0	12.0	6.0	4.5	4.5		
2004	6.6	16.1	4.8	14.3	7.2	5.4	5.4		
2005	4.6	11.4	3.4	10.1	5.1	3.8	3.8		
Q4	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	5.2	15.0	4.4	6.3	5.4	4.5	3.8	0.5	45.0
2004	6.2	17.9	5.2	7.5	6.5	5.4	4.5	0.5	53.7
2005	4.4	12.7	3.7	5.3	4.6	3.8	3.2	0.5	38.2
We	ighted 2015		lue						
<u>Year</u>	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	Max	<u>FDV</u>			
2003	46.2	36.7	39.0	45.0	46.2				
2004	32.4	33.8	39.0	53.7	53.7				
2005	43.2	28.4	37.3	38.2	43.2	47.7			

TABLE V-A-3c

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.08	0.28	0.18	0.26	0.11	0.10			
Q2	0.09	0.28	0.36	0.05	0.06	0.15			
Q3	0.12	0.19	0.41	0.13	0.05	0.11			
Q4	0.12	0.30	0.16	0.16	0.14	0.11			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	45.3	44.7	45.5	52.5					
2004	44.8	38.2	36.3	52.4					
2005	41.0	31.8	51.7	53.0					
<u>Top-25</u>									
<u>Percentile</u>									
RRF	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
Q1	0.77	0.97	0.27	0.82	0.91	1.17			
Q2	0.85	0.48	2.22	0.60	0.57	0.68			
Q3	0.81	0.96	0.62	0.74	0.75	0.90			
Q4	0.76	0.87	0.54	0.80	0.82	0.93			
-									
Q1 Com	ponents								
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	2.7	9.4	5.4	10.3	4.5	8.5	4.5		
2004	2.7	9.3	5.3	10.2	4.4	8.4	4.4		
2005	2.4	8.5	4.9	9.3	4.1	7.7	4.1		
	2015 Estime			0.0	50	0.775		DI 1	
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>	<u>Blank</u>	Mass
2003	2.6	12.4	2.2	9.5	4.7	5.1	2.5	0.5	39.5
2004	2.6	12.3	2.2	9.4	4.6	5.0	2.5	0.5	39.0
2005	2.4	11.2	2.0	8.6	4.2	4.6	2.3	0.5	35.8
Q2 Com	ponents								
	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
$\frac{1000}{2003}$	3.5	8.4	9.7	<u>9.7</u>	2.7	4.9	4.9		
2003	3.0	7.2	8.3	8.3	2.3	4.1	4.1		
2001	2.5	5.9	6.9	6.9	1.9	3.4	3.4		
_000									
Q2 2	2015 Estime	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	<u>Mass</u>
2003	3.5	6.0	36.1	1.3	1.6	4.7	12.4	0.5	66.1
2004	3.0	5.1	30.9	1.1	1.4	4.0	10.6	0.5	56.5
2005	2.5	4.2	25.7	0.9	1.2	3.3	8.8	0.5	47.2

Compton/Lynwood 24-Hour 2015 Design Value Estimation

Q3 Components

Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water		
2003	5.0	7.7	12.2	6.3	1.8	6.8	5.0		
2004	3.9	6.1	9.7	5.0	1.4	5.4	3.9		
2005	5.6	8.7	13.8	7.2	2.0	7.7	5.6		
Q3 .	2015 Estime	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	4.5	8.1	11.5	4.3	1.6	4.5	5.1	0.5	40.1
2004	3.6	6.5	9.2	3.4	1.3	3.6	4.1	0.5	32.1
2005	5.1	9.2	13.1	4.9	1.8	5.1	5.8	0.5	45.5
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	5.2	13.0	4.7	11.4	6.2	5.7	4.7		
2004	5.2	13.0	4.7	11.4	6.2	5.7	4.7		
2005	5.3	13.1	4.7	11.6	6.3	5.8	4.7		
Q4 .	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	4.9	13.7	4.6	6.8	6.2	5.3	3.7	0.5	45.7
2004	4.9	13.7	4.6	6.7	6.2	5.3	3.7	0.5	45.6
2005	5.0	13.8	4.7	6.8	6.3	5.4	3.7	0.5	46.1
Ш/-	:-1.4-1 2015	Destau Va	l						
	ighted 2015	-		0.4	м	FDU			
<u>Year</u>	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	<u>Max</u>	<u>FDV</u>			
2003	39.5	66.1	40.1	45.7	66.1				
2004	39.0	56.5	32.1	45.6	56.5				
2005	35.8	47.2	45.5	46.1	47.2	56.6			

TABLE V-A-3d

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.12	0.36			0.08	0.12			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.11	0.27	0.29	0.07	0.10	0.16			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.16	0.45	0.14	0.02	0.11	0.12			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c cccc} Top-25\\ \hline Percentile\\ \hline RRF & \underline{NH4} & \underline{NO3} & \underline{SO4} & \underline{OC} & \underline{EC} & \underline{OTR} \\ \hline q1 & 0.66 & 0.65 & 0.67 & 0.80 & 1.00 & 1.00 \\ \hline q2 & 0.56 & 0.67 & 0.37 & 1.25 & 1.33 & 1.25 \\ \hline q3 & 0.56 & 0.58 & 0.58 & 0.79 & 1.00 & 1.06 \\ \hline q4 & 0.63 & 0.66 & 0.56 & 0.84 & 0.86 & 1.00 \\ \hline \\$	2004	62.6	45.5	49.9	48.5					
Percentile RRF NH4 NO3 SO4 OC EC OTR Q1 0.66 0.65 0.67 0.80 1.00 1.00 Q2 0.56 0.67 0.37 1.25 1.33 1.25 Q3 0.56 0.58 0.58 0.79 1.00 1.06 Q4 0.63 0.66 0.56 0.84 0.86 1.00 Q1 Components	2005	48.2	43.7	38.4	43.0					
Percentile RRF NH4 NO3 SO4 OC EC OTR Q1 0.66 0.65 0.67 0.80 1.00 1.00 Q2 0.56 0.67 0.37 1.25 1.33 1.25 Q3 0.56 0.58 0.58 0.79 1.00 1.06 Q4 0.63 0.66 0.56 0.84 0.86 1.00 Q1 Components										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NTE 4	NO2	504	00	EC	OTT			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Q40.630.660.560.840.861.00QI ComponentsYearNH4NO3SO4OCECOTRWater20034.214.94.210.64.89.64.220045.017.45.012.45.611.25.020053.813.43.89.54.38.63.8QI 2015 EstimatesYearNH4NO3SO4OCECOTRWaterBlankMass20033.714.44.96.95.44.63.70.544.120044.316.85.78.16.35.44.30.551.420053.312.94.46.24.94.23.30.539.7Q2 ComponentsYearNH4NO3SO4OCECOTRWater20034.812.67.210.13.95.84.320044.511.76.89.53.65.44.120054.311.26.59.13.55.23.9										
Q1 Components Year NH4 NO3 SO4 OC EC OTR Water 2003 4.2 14.9 4.2 10.6 4.8 9.6 4.2 2004 5.0 17.4 5.0 12.4 5.6 11.2 5.0 2005 3.8 13.4 3.8 9.5 4.3 8.6 3.8 QI 2015 Estimates Year NH4 NO3 SO4 OC EC OTR Water Blank Mass 2003 3.7 14.4 4.9 6.9 5.4 4.6 3.7 0.5 44.1 2004 4.3 16.8 5.7 8.1 6.3 5.4 4.3 0.5 51.4 2005 3.3 12.9 4.4 6.2 4.9 4.2 3.3 0.5 39.7 Q2 Components Year NH4 NO3 SO4 OC EC OTR Water 2003 4.8 12.6 7.2 10.1 3.9 5.8										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q4	0.63	0.66	0.56	0.84	0.86	1.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01 Com	nonoute								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	NO2	504	00	FC	OTD	Water		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Q1 2015 Estimates \underline{Year} $\underline{NH4}$ $\underline{NO3}$ $\underline{SO4}$ \underline{OC} \underline{EC} \underline{OTR} \underline{Water} \underline{Blank} \underline{Mass} 20033.714.44.96.95.44.63.70.544.120044.316.85.78.16.35.44.30.551.420053.312.94.46.24.94.23.30.539.7Q2 Components \underline{Year} $\underline{NH4}$ $\underline{NO3}$ $\underline{SO4}$ \underline{OC} \underline{EC} \underline{OTR} \underline{Water} 20034.812.67.210.13.95.84.320044.511.76.89.53.65.44.120054.311.26.59.13.55.23.9										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2003	5.0	13.4	5.0	9.5	4.5	8.0	5.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	012	2015 Estima	ates							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				SO4	OC	EC	OTR	Water	Blank	Mass
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
Q2 ComponentsYearNH4NO3SO4OCECOTRWater20034.812.67.210.13.95.84.320044.511.76.89.53.65.44.120054.311.26.59.13.55.23.9										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
20034.812.67.210.13.95.84.320044.511.76.89.53.65.44.120054.311.26.59.13.55.23.9	Q2 Com	ponents								
20034.812.67.210.13.95.84.320044.511.76.89.53.65.44.120054.311.26.59.13.55.23.9	Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2005 4.3 11.2 6.5 9.1 3.5 5.2 3.9				7.2				4.3		
	2004	4.5	11.7	6.8	9.5	3.6	5.4	4.1		
	2005	4.3	11.2	6.5	9.1	3.5	5.2	3.9		
Q2 2015 Estimates	. –									
<u>Year NH4 NO3 SO4 OC EC OTR Water Blank Mass</u>										
2003 3.3 11.7 4.3 5.3 5.1 7.1 3.2 0.5 40.4										
2004 3.1 10.9 4.0 5.0 4.7 6.6 2.9 0.5 37.7										
2005 2.9 10.5 3.9 4.8 4.5 6.3 2.8 0.5 36.3	2005	2.9	10.5	3.9	4.8	4.5	6.3	2.8	0.5	36.3

Fontana 24-Hour 2015 Design Value Estimation

Q3 Components

<u>Year</u> 2003 2004 2005	<u>NH4</u> 4.1 4.4 3.4	<u>NO3</u> 9.7 10.4 8.0	<u>SO4</u> 8.3 8.9 6.8	<u>OC</u> 8.3 8.9 6.8	<u>EC</u> 3.7 4.0 3.0	<u>OTR</u> 8.3 8.9 6.8	<u>Water</u> 3.7 4.0 3.0		
03	2015 Estima	rtas							
~			504	00	EC	ОТР	Water	Dlopk	Maga
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	$\frac{OC}{2C}$	<u>EC</u>	OTR	<u>Water</u>	Blank	Mass 27.2
2003	2.8	7.3	8.0	2.6	4.4	8.1	3.7	0.5	37.3
2004	3.0	7.8	8.5	2.7	4.8	8.7	4.0	0.5	39.9
2005	2.3	6.0	6.6	2.1	3.7	6.7	3.0	0.5	30.9
04 Com	nonouts								
Q4 Com	•	NO2	604	00	FC	OTD			
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	OC 0.4	<u>EC</u>	<u>OTR</u>	<u>Water</u>		
2003	7.7	17.7	4.4	9.4	5.5	5.5	5.0		
2004	6.7	15.4	3.8	8.2	4.8	4.8	4.3		
2005	6.0	13.6	3.4	7.2	4.3	4.3	3.8		
Q4 2	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	5.5	16.5	4.5	1.1	5.3	6.6	4.0	0.5	43.9
2004	4.8	14.3	3.9	1.0	4.6	5.7	3.5	0.5	38.3
2005	4.2	12.7	3.5	0.9	4.1	5.1	3.1	0.5	34.0
We	ighted 2015	Design Val	lue						
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	Max	FDV			
2003	44.1	40.4	37.3	43.9	44.1				
2004	51.4	37.7	39.9	38.3	51.4				
2005	39.7	36.3	30.9	34.0	39.7	45.0			

TABLE V-A-3e

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.08	0.30	0.20	0.21	0.10	0.11			
Q2	0.10	0.23	0.41	0.03	0.06	0.16			
Q3	0.13	0.17	0.43	0.08	0.06	0.14			
Q4	0.15	0.31	0.26	0.06	0.11	0.11			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	46.5	42.9	36.9	47.4					
2004	45.8	32.9	34.6	45.9					
2005	37.3	27.7	46.1	43.2					
Top-25									
Percentile									
<u>RRF</u>	NH4	NO3	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
Q1	0.81	0.82	0.75	0.79	0.87	0.89	0.81		
Q2	0.71	0.93	0.62	0.67	0.75	0.75	0.71		
Q3	0.70	0.95	0.58	0.68	0.75	0.77	0.70		
Q4	0.77	0.75	0.83	0.89	0.83	0.84	0.77		
Q '	0.77	0.75	0.05	0.07	0.05	0.01	0.77		
Q1 Com	ponents								
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	2.8	10.1	5.1	10.1	3.7	9.2	5.1		
2004	2.7	10.0	5.0	10.0	3.6	9.1	5.0		
2005	2.2	8.1	4.0	8.1	2.9	7.4	4.0		
	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>	<u>Blank</u>	<u>Mass</u>
2003	3.0	11.3	6.9	7.9	4.2	4.5	3.9	0.5	42.1
2004	2.9	11.2	6.8	7.7	4.2	4.4	3.8	0.5	41.5
2005	2.4	9.1	5.5	6.3	3.4	3.6	3.1	0.5	33.9
Q2 Com	nononts								
	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	00	FC	<u>OTR</u>	Water		
2003	<u>3.0</u>	<u>6.8</u>	<u> </u>	<u>OC</u> 9.8	<u>EC</u> 2.5	<u>5.5</u>	<u>5.5</u>		
	3.0 2.3		9.8 7.5	9.8 7.5	2.5 1.9	5.5 4.2	5.5 4.2		
2004		5.2 4.4							
2005	1.9	4.4	6.3	6.3	1.6	3.5	3.5		
02 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass
2003	1.7	3.9	5.2	7.6	1.9	4.4	2.8	0.5	28.1
2004	1.3	3.0	4.0	5.8	1.5	3.4	2.1	0.5	21.6
2005	1.1	2.5	3.4	4.9	1.2	2.8	1.8	0.5	18.2
			2.1			2.0		0.0	1012

Long Beach 24-Hour 2015 Design Value Estimation

<u>Year</u> 2003	<u>NH4</u> 4.4	<u>NO3</u> 5.8	<u>SO4</u> 9.8	<u>OC</u> 5.8	<u>EC</u> 1.8	<u>OTR</u> 5.5	<u>Water</u> 3.6		
2004	4.1	5.5	9.2	5.5	1.7	5.1	3.4		
2005	5.5	7.3	12.3	7.3	2.3	6.8	4.6		
Q3 .	2015 Estime	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	3.3	5.9	9.1	2.1	1.6	3.9	4.0	0.5	30.4
2004	3.1	5.6	8.5	2.0	1.5	3.7	3.7	0.5	28.5
2005	4.1	7.4	11.4	2.6	2.0	4.9	4.9	0.5	37.8
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	6.1	10.8	6.1	9.8	4.7	5.6	3.8		
2004	5.9	10.4	5.9	9.5	4.5	5.4	3.6		
2005	5.6	9.8	5.6	9.0	4.3	5.1	3.4		
Q4 .	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	5.4	10.9	10.3	2.7	4.4	4.4	5.2	0.5	43.7
2004	5.2	10.5	10.0	2.6	4.3	4.3	5.0	0.5	42.3
2005	4.9	9.9	9.4	2.4	4.0	4.0	4.7	0.5	39.8
We	ighted 2015	Design Val	ue						
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	Max	FDV			
2003	42.1	36.8	30.4	43.7	43.7				
2004	41.5	28.3	28.5	42.3	42.3				
2005	33.9	23.9	37.8	39.8	39.8	41.9			

TABLE V-A-3f

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	$\frac{1}{0.09}$	0.41	<u>0.17</u>	0.13	0.10	<u>0.09</u>			
Q2	0.10	0.31	0.32	0.05	0.08	0.14			
Q2 Q3	0.15	0.26	0.32	0.05	0.00	0.11			
Q3 Q4	0.15	0.40	0.18	0.02	0.15	0.10			
× ·	0.12	0.10	0.10	0.02	0.12	0.10			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	53.6	55.1	51.0	55.3					
2004	49.7	44.0	55.9	61.3					
2005	53.5	38.2	36.8	52.0					
Top-25 Percentile									
<u>RRF</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
Q1	0.69	0.57	<u>304</u> 1.22	<u>00</u> 1.05	<u>1.29</u>	1.28			
Q1 Q2	0.76	0.83	0.55	0.78	0.83	0.94			
Q2 Q3	0.70	0.89	0.55	0.76	0.83	0.96			
Q3 Q4	0.84	0.87	0.7	0.70	0.78	1			
۲V	0.04	0.07	0.7	0.79	0.02	1			
Q1 Com	ponents								
<u>Year</u>	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	3.7	13.3	5.3	11.2	4.8	9.0	5.8		
2004	3.4	12.3	4.9	10.3	4.4	8.4	5.4		
2005	3.7	13.3	5.3	11.1	4.8	9.0	5.8		
Q1 2	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	3.4	12.6	11.3	7.4	7.1	6.0	5.4	0.5	53.8
2004	3.2	11.7	10.4	6.9	6.6	5.6	5.0	0.5	49.9
2005	3.4	12.6	11.2	7.4	7.1	6.0	5.4	0.5	53.7
Q2 Com									
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water		
2003	4.4	10.9	10.4	14.2	3.8	4.9	6.0		
2004	3.5	8.7	8.3	11.3	3.0	3.9	4.8		
2005	3.0	7.5	7.2	9.8	2.6	3.4	4.1		
027	015 Entire	atas							
<u>Vear</u>	2015 Estime <u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>	<u>Blank</u>	Mass
2003	4.2	<u>14.1</u>	<u> </u>	<u>0C</u> 2.0	<u>1.C</u> 3.8	7.3	<u>5.2</u>	0.5	46.8
2003	4.2 3.3	14.1	7.8	2.0 1.6	3.0	5.8	4.2	0.5	37.5
2004	3.3 2.9	9.8	6.7	1.0 1.4	3.0 2.6	5.0	4.2 3.6	0.5	32.6
2005	2.7	2.0	0.7	1.4	2.0	5.0	5.0	0.5	52.0

Los Angeles 24-Hour 2015 Design Value Estimation

<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>		
2003	6.6	9.6	10.6	8.6	3.0	7.6	5.1		
2004	7.2	10.5	11.6	9.4	3.3	8.3	5.5		
2005	4.7	6.9	7.6	6.2	2.2	5.4	3.6		
02.2	015 Estima								
~	015 Estima		004	00	FG	0.770		D1 1	
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>	<u>Blank</u>	<u>Mass</u>
2003	5.9	11.9	10.8	1.9	2.9	5.5	5.5	0.5	44.9
2004	6.4	13.0	11.8	2.1	3.2	6.0	6.0	0.5	49.2
2005	4.2	8.6	7.8	1.4	2.1	4.0	4.0	0.5	32.6
Q4 Comp	onents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	6.0	14.2	4.9	13.2	6.6	4.9	4.9		
2004	6.7	15.8	5.5	14.6	7.3	5.5	5.5		
2005	5.7	13.4	4.6	12.4	6.2	4.6	4.6		
Q4 20	015 Estima	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	OTR	Water	<u>Blank</u>	Mass
2003	6.8	19.1	7.1	1.0	6.8	5.7	5.3	0.5	52.2
2004	7.5	21.1	7.8	1.2	7.5	6.3	5.9	0.5	57.8
2005	6.4	17.9	6.6	1.0	6.4	5.3	5.0	0.5	49.1
Weig	hted 2015	Design Val	ue						
Year	<u>Q1</u>	<u>02</u>	<u>Q3</u>	<u>Q4</u>	Max	FDV			
2003	53.8	46.8	44.9	52.2	53.8				
2004	49.9	37.5	49.2	57.8	57.8				
2005	53.7	32.6	32.6	49.1	53.7	55.1			

TABLE V-A-3g

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.09	0.32	0.09	0.20	0.10	0.09			
Q2	0.14	0.39	0.15	0.07	0.06	0.10			
Q3	0.13	0.33	0.20	0.07	0.05	0.11			
Q4	0.14	0.35	0.11	0.06	0.11	0.11			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	72.9	61.6	60.5	66.0					
2004	59.5	60.5	55.3	76.6					
2005	56.6	55.8	47.0	49.5					
Top-25									
Percentile									
<u>RRF</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>			
Q1	0.69	0.66	0.70	0.80	0.86	0.91			
Q2	0.56	0.58	0.42	0.81	1.00	1.06			
Q3	0.52	0.52	0.50	0.79	0.80	0.89			
Q4	0.54	0.56	0.50	0.79	0.80	0.89			
Q1 Com	nonants								
<u>Year</u>	<u>NH4</u>	NO3	<u>SO4</u>	00	FC	ΟΤΡ	Water		
2003	5.1	<u>NO3</u> 18.8	<u>5.8</u>	<u>OC</u> 15.2	<u>EC</u> 6.5	<u>OTR</u> 14.5	7.2		
2003	5.1 4.1	15.3	5.8 4.7	13.2	5.3	14.5	5.9		
2004 2005	4.1 3.9	13.3 14.6	4.7	12.4	5.0	11.8	5.6		
2005	5.9	14.0	4.5	11.0	5.0	11.2	5.0		
Q1 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass
2003	4.5	15.2	4.7	11.7	6.3	6.0	3.8	0.5	52.7
2004	3.7	12.4	3.9	9.5	5.1	4.9	3.1	0.5	43.1
2005	3.5	11.8	3.7	9.1	4.9	4.6	3.0	0.5	41.0
Q2 Com	nonents								
	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
$\frac{100}{2003}$	7.3	<u>19.6</u>	7.9	<u>00</u> 11.0	<u>3.1</u>	<u>4.9</u>	7.3		
2003	7.2	19.0	7.8	10.8	3.0	4.8	7.2		
2004	6.6	19.2	7.8	10.8	2.8	4.4	6.6		
2005	0.0	1/./	1.2	10.0	2.0	4.4	0.0		
Q2 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass
2003	4.8	13.8	3.9	3.5	3.7	6.5	3.4	0.5	40.1
2004	4.7	13.5	3.8	3.4	3.6	6.4	3.4	0.5	39.4
2005	4.4	12.5	3.5	3.2	3.3	5.9	3.1	0.5	36.4

Rubidoux 24-Hour 2015 Design Value Estimation

<u>Year</u> 2003 2004 2005	<u>NH4</u> 8.4 7.7 6.5	<u>NO3</u> 16.8 15.3 13.0	<u>SO4</u> 9.0 8.2 7.0	<u>OC</u> 8.4 7.7 6.5	<u>EC</u> 2.4 2.2 1.9	<u>OTR</u> 8.4 7.7 6.5	<u>Water</u> 6.6 6.0 5.1		
03	2015 Estima	ates							
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	4.1	<u>10.4</u>	<u>5.9</u>	<u>3.3</u>	<u>1.</u> 2.4	<u>5.9</u>	<u>3.6</u>	0.5	<u>36.1</u>
2003 2004	4.1 3.7	9.5	5.4	3.5	2.4	5.9 5.4	3.3	0.5	33.1
2004 2005	3.7	9.5 8.1	5.4 4.6	2.6	2.2 1.9	5.4 4.6	2.8	0.5	28.2
2005	5.2	0.1	4.0	2.0	1.7	4.0	2.0	0.5	20.2
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	9.2	18.3	4.6	14.4	7.2	7.2	4.6		
2004	10.7	21.3	5.3	16.7	8.4	8.4	5.3		
2005	6.9	13.7	3.4	10.8	5.4	5.4	3.4		
Q4	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	Blank	Mass
2003	5.0	12.8	3.6	3.1	5.8	6.5	3.3	0.5	40.5
2004	5.8	14.8	4.2	3.6	6.7	7.5	3.8	0.5	47.0
2005	3.7	9.6	2.7	2.3	4.4	4.8	2.4	0.5	30.5
We	ighted 2015	5 Design Val	lue						
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	Max	<u>FDV</u>			
2003	52.7	40.1	36.1	40.5	52.7				
2004	43.1	39.4	33.1	47.0	47.0				
2005	41.0	36.4	28.2	30.5	41.0	46.9			

TABLE V-A-3h

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.07	0.25	0.23	0.20	0.14	0.12			
Q2	0.09	0.20	0.43	0.03	0.08	0.18			
Q3	0.11	0.12	0.46	0.09	0.08	0.14			
Q4	0.12	0.26	0.24	0.11	0.15	0.12			
-									
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	46.5	42.9	36.9	47.4					
2004	45.8	32.9	34.6	45.9					
2005	37.3	27.7	46.1	43.2					
Top-25									
Percentile									
<u>RRF</u>	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
Q1	0.74	0.78	0.67	0.77	0.71	0.78			
Q2	0.50	1.46	0.24	0.70	0.67	0.76			
Q3	0.60	1.00	0.47	0.65	0.57	0.68			
Q4	0.74	1.02	0.56	0.69	0.75	0.78			
Z ·	017 1	1.0-	0100	0.07	0110	0170			
Q1 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	3.4	11.4	10.5	9.1	6.5	5.5	5.1		
2004	3.3	11.2	10.4	9.0	6.4	5.5	5.0		
2005	2.7	9.2	8.4	7.3	5.2	4.4	4.1		
	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	2.5	8.9	7.0	7.0	4.6	4.3	3.6	0.5	38.5
2004	2.5	8.8	6.9	6.9	4.5	4.3	3.5	0.5	37.9
2005	2.0	7.1	5.7	5.6	3.7	3.5	2.9	0.5	31.0
Q2 Com	nonants								
		<u>NO3</u>	<u>SO4</u>	00	FC	<u>OTR</u>	Water		
<u>Year</u> 2003	4.0	<u>8.4</u>	<u>304</u> 18.4	<u>OC</u> 1.3	<u>EC</u> 3.2	7.5	Water 7.2		
2003 2004	4.0 3.1	8.4 6.5	18.4 14.1	1.3 1.0	3.2 2.5	7.5 5.8	7.2 5.5		
	3.1 2.6	6.5 5.4				5.8 4.9	5.5 4.7		
2005	2.0	5.4	11.9	0.9	2.1	4.9	4./		
<i>O2</i> 2	2015 Estime	ates							
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass
2003	2.0	12.3	4.4	0.9	$\frac{10}{2.2}$	5.7	3.1	0.5	31.1
2004	1.5	9.4	3.4	0.7	1.7	4.4	2.4	0.5	24.0
2005	1.3	7.9	2.8	0.6	1.4	3.7	2.0	0.5	20.3

Wilmington 24-Hour 2015 Design Value Estimation

<u>Year</u> 2003 2004 2005	<u>NH4</u> 4.2 3.9 5.3	<u>NO3</u> 4.5 4.2 5.6	<u>SO4</u> 16.9 15.9 21.1	<u>OC</u> 3.3 3.1 4.1	<u>EC</u> 2.8 2.6 3.5	<u>OTR</u> 5.3 4.9 6.6	<u>Water</u> 6.3 5.9 7.9		
Q3	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	2.5	4.5	7.9	2.1	1.6	3.6	3.3	0.5	26.1
2004	2.4	4.2	7.5	2.0	1.5	3.4	3.1	0.5	24.5
2005	3.2	5.6	9.9	2.6	2.0	4.5	4.2	0.5	32.5
	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water		
2003	5.5	12.5	11.1	5.2	7.1	5.9	5.6		
2004	5.4	12.1	10.8	5.1	6.9	5.7	5.5		
2005	5.1	11.4	10.2	4.8	6.5	5.4	5.1		
04	2015 Estima	atos							
~			504	00	EC	OTD	Watan	Dlopl	Maga
<u>Year</u>	<u>NH4</u>	<u>NO3</u> 12.7	<u>SO4</u> 6.2	$\frac{OC}{2}$	<u>EC</u>	<u>OTR</u>	<u>Water</u>	Blank	Mass 41.1
2003	4.1			3.6	5.3	4.6	4.0	0.5	41.1
2004	4.0	12.3	6.0	3.5	5.2	4.5	3.8	0.5	39.8
2005	3.7	11.6	5.7	3.3	4.9	4.2	3.6	0.5	37.5
We	ighted 2015	Design Val	lue						
Year	<u>01</u>	<u>02</u>	<u>Q3</u>	<u>Q4</u>	Max	FDV			
2003	38.5	31.1	26.1	41.1	41.1				
2004	37.9	24.0	24.5	39.8	39.8				
2005	31.0	20.3	32.5	37.5	37.5	39.5			

TABLE V-A-4a

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.09	0.36	0.17	0.19	0.09	0.09			
Q2	0.09	0.29	0.36	0.06	0.05	0.14			
Q3	0.11	0.18	0.41	0.12	0.05	0.13			
Q4	0.14	0.32	0.17	0.14	0.12	0.11			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	51.8	46.3	27.6	47.3					
2004	48.2	30.5	46.8	49.9					
2005	41.8	27.6	42.9	43.8					
<u>Top-25</u> Percentile									
RRF	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
Q1	0.70	0.70	$\frac{501}{0.71}$	0.80	0.86	1.03			
Q2	0.61	0.59	0.62	0.85	0.86	1.02			
Q2 Q3	0.63	0.65	0.58	0.82	0.85	1.02			
Q3 Q4	0.03	0.05	0.67	0.80	0.86	1.00			
۲v	0.75	0.75	0.07	0.00	0.00	1.02			
Q1 Com	-								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	3.6	12.3	5.6	11.3	4.1	9.7	5.6		
2004	3.3	11.4	5.2	10.5	3.8	9.1	5.2		
2005	2.9	9.9	4.5	9.1	3.3	7.8	4.5		
Q1 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	SO4	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass
2003	3.3	13.1	6.3	7.9	4.0	4.8	3.9	0.5	43.7
2004	3.0	12.1	5.8	7.3	3.7	4.5	3.6	0.5	40.7
2005	2.6	10.5	5.0	6.4	3.2	3.9	3.2	0.5	35.3
Q2 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	2.7	8.2	9.2	11.5	2.3	5.0	6.4		
2004	1.8	5.4	6.0	7.5	1.5	3.3	4.2		
2005	1.6	4.9	5.4	6.8	1.4	3.0	3.8		
Q2 2	2015 Estime	ates							
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass
2003	2.5	7.9	10.3	2.4	2.0	6.6	4.5	0.5	36.7
2004	1.7	5.2	6.8	1.6	1.3	4.4	3.0	0.5	24.4
2005	1.5	4.7	6.2	1.4	1.2	3.9	2.7	0.5	22.1

Alternate Anaheim 24-Hour 2015 Design Value Estimation

Q3 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	3.0	4.6	7.0	4.3	1.1	4.6	2.2		
2004	5.1	7.9	12.0	7.4	1.9	7.9	3.7		
2005	4.7	7.2	11.0	6.8	1.7	7.2	3.4		
Q3 2	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	1.9	3.2	6.6	2.7	1.2	3.6	2.7	0.5	22.4
2004	3.2	5.5	11.1	4.6	2.0	6.1	4.5	0.5	37.6
2005	3.0	5.0	10.2	4.2	1.8	5.6	4.1	0.5	34.5
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	5.1	11.2	5.6	10.3	4.7	4.7	4.2		
2004	5.4	11.9	5.9	10.9	4.9	4.9	4.4		
2005	4.8	10.4	5.2	9.5	4.3	4.3	3.9		
Q4	2015 Estime	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	4.8	11.4	5.4	5.3	4.9	5.3	3.6	0.5	41.2
2004	5.1	12.0	5.7	5.6	5.1	5.6	3.8	0.5	43.4
2005	4.5	10.5	5.0	4.9	4.5	4.9	3.4	0.5	38.2
We	ighted 2015	Design Val	ue						
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	<u>Max</u>	FDV			
2003	43.7	36.7	22.4	41.2	43.7				
2004	40.7	24.4	37.6	43.4	43.4				
2005	35.3	22.1	34.5	38.2	38.2	41.8			

TABLE V-A-4b

<u>Split</u>	NH4	<u>NO3</u>	SO4	<u>OC</u>	EC	OTR			
Q1	0.08	0.32	0.13	0.28	0.10	0.08			
Q2	0.10	0.28	0.27	0.13	0.07	0.14			
Q3	0.12	0.24	0.31	0.15	0.06	0.11			
Q4	0.13	0.35	0.14	0.16	0.13	0.09			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	<u>91</u> 54.1	<u>45.2</u>	<u>05</u> 51.6	<u>04</u> 50.3					
2003	37.8	43.2 41.6	51.5	50.5 60.1					
2004	50.6	34.8	49.3	42.6					
2003	50.0	34.0	49.5	42.0					
Top-25 Percentile									
RRF	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
Q1	0.70	0.69	0.72	0.80	0.85	1.01			
Q2	0.63	0.62	0.62	0.83	0.83	1.00			
Q3	0.64	0.65	0.60	0.81	0.83	0.97			
Q4	0.76	0.77	0.71	0.81	0.84	1.01			
Υ.	0.70	0.77	0.71	0.01	0.01	1.01			
Q1 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	4.3	13.4	5.4	11.3	4.8	9.6	4.8		
2004	3.0	9.3	3.7	7.8	3.4	6.7	3.4		
2005	4.0	12.5	5.0	10.5	4.5	9.0	4.5		
01	2015 Estime	ates							
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass
2003	3.0	11.9	5.1	12.1	4.6	4.4	3.4	0.5	45.0
2004	2.1	8.3	3.5	8.5	3.2	3.1	2.4	0.5	31.6
2005	2.8	11.2	4.7	11.3	4.3	4.1	3.2	0.5	42.1
Q2 Com									
	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	4.0	10.3	8.0	10.7	3.1	4.0	4.5		
2004	3.7	9.5	7.4	9.9	2.9	3.7	4.1		
2005	3.1	7.9	6.2	8.2	2.4	3.1	3.4		
<i>0</i> 2	2015 Estime	ates							
Year	<u>NH4</u>	NO3	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass
2003	2.8	7.8	7.6	4.9	2.6	6.3	3.6	0.5	36.2
							3.4	0.5	33.4
2004	2.6	7.2	7.0	4.5	2.4	5.8	3.4	0.5	33.4

Alternate Burbank 24-Hour 2015 Design Value Estimation

<u>Year</u> 2003 2004 2005	<u>NH4</u> 6.1 6.1 5.9	<u>NO3</u> 10.7 10.7 10.2	<u>SO4</u> 11.2 11.2 10.7	<u>OC</u> 8.7 8.7 8.3	EC 3.1 3.1 2.9	<u>OTR</u> 5.1 5.1 4.9	<u>Water</u> 5.6 5.6 5.4		
Q3	2015 Estima	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass
2003	4.0	8.0	9.6	6.3	2.6	5.5	4.4	0.5	40.9
2004	4.0	8.0	9.6	6.3	2.6	5.5	4.4	0.5	40.8
2005	3.8	7.7	9.2	6.0	2.5	5.3	4.2	0.5	39.1
	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>		
2003	5.5	13.4	4.0	12.0	6.0	4.5	4.5		
2004	6.6	16.1	4.8	14.3	7.2	5.4	5.4		
2005	4.6	11.4	3.4	10.1	5.1	3.8	3.8		
04	2015 Estima	atas							
~	<u>NH4</u>	<u>NO3</u>	504	00	FC	<u>OTR</u>	Water	<u>Blank</u>	Mass
<u>Year</u>	<u>1014</u> 5.0	<u>13.6</u>	<u>SO4</u> 5.0	<u>OC</u> 6.5	<u>EC</u> 5.5	<u>01K</u> 4.6	<u>3.8</u>	0.5	<u>101855</u> 44.4
2003				0.3 7.8					
2004	5.9	16.2	6.0		6.6	5.5	4.5	0.5	52.9
2005	4.2	11.5	4.2	5.5	4.7	3.9	3.2	0.5	37.7
We	ighted 2015	Design Val	lue						
Year	<u>01</u>	<u>02</u>	<u>Q3</u>	<u>Q4</u>	Max	<u>FDV</u>			
2003	45.0	36.2	40.9	44.4	45.0				
2004	31.6	33.4	40.8	52.9	52.9				
2005	42.1	28.0	39.1	37.7	42.1	46.7			

TABLE V-A-4c

		compton	Lynwood	1 2 4 -110u1	2013 D0	sign vara			
<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.08	0.28	0.18	0.26	0.11	0.10			
Q2	0.09	0.28	0.36	0.05	0.06	0.15			
Q3	0.12	0.19	0.41	0.13	0.05	0.11			
Q4	0.12	0.30	0.16	0.16	0.14	0.11			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	45.3	44.7	45.5	52.5					
2004	44.8	38.2	36.3	52.4					
2005	41.0	31.8	51.7	53.0					
<u>Top-25</u>									
Percentile									
<u>RRF</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>			
Q1	0.78	0.86	0.62	0.76	0.81	0.94			
Q2	0.70	0.75	0.63	0.80	0.81	0.91			
Q3	0.71	0.80	0.60	0.78	0.81	0.89			
Q4	0.78	0.86	0.63	0.76	0.80	0.93			
Q1 Com	ponents								
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	2.7	9.4	5.4	10.3	4.5	8.5	4.5		
2004	2.7	9.3	5.3	10.2	4.4	8.4	4.4		
2005	2.4	8.5	4.9	9.3	4.1	7.7	4.1		
Q1 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass
2003	2.7	11.0	5.0	8.8	4.2	4.1	3.2	0.5	39.4
2004	2.6	10.9	5.0	8.7	4.1	4.1	3.2	0.5	39.0
2005	2.4	10.0	4.5	8.0	3.8	3.7	2.9	0.5	35.7
Q2 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	3.5	8.4	9.7	9.7	2.7	4.9	4.9		
2004	3.0	7.2	8.3	8.3	2.3	4.1	4.1		
2005	2.5	5.9	6.9	6.9	1.9	3.4	3.4		
Q2 2	2015 Estima	ates							
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass
2003	2.9	9.3	10.2	1.7	2.3	6.2	4.7	0.5	37.9
2004	2.5	8.0	8.8	1.5	2.0	5.3	4.0	0.5	32.4
2005	2.1	6.6	7.3	1.2	1.6	4.4	3.3	0.5	27.1

Alternate Compton/Lynwood 24-Hour 2015 Design Value Estimation

Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	OTR	<u>Water</u>		
2003	5.0	7.7	12.2	6.3	1.8	6.8	5.0		
2004	3.9	6.1	9.7	5.0	1.4	5.4	3.9		
2005	5.6	8.7	13.8	7.2	2.0	7.7	5.6		
Q3 1	2015 Estima	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	3.9	6.8	11.1	4.6	1.7	4.4	4.8	0.5	37.8
2004	3.1	5.4	8.9	3.6	1.4	3.5	3.8	0.5	30.3
2005	4.5	7.7	12.7	5.2	1.9	5.0	5.4	0.5	42.9
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	5.2	13.0	4.7	11.4	6.2	5.7	4.7		
2004	5.2	13.0	4.7	11.4	6.2	5.7	4.7		
2005	5.3	13.1	4.7	11.6	6.3	5.8	4.7		
Q4 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass
2003	5.1	13.5	5.4	6.4	6.1	5.3	3.9	0.5	46.2
2004	5.0	13.5	5.4	6.4	6.1	5.3	3.9	0.5	46.1
2005	5.1	13.6	5.5	6.5	6.1	5.4	4.0	0.5	46.6
117	. 1 . 12015		1						
	ighted 2015	-		<i></i>					
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	Max	<u>FDV</u>			
2003	39.4	37.9	37.8	46.2	46.2				
2004	39.0	32.4	30.3	46.1	46.1				
2005	35.7	27.1	42.9	46.6	46.6	46.3			

TABLE V-A-4d

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>			
Q1	$\frac{1014}{0.10}$	<u>103</u> 0.41	<u> </u>	<u>0.16</u>	<u>LC</u> 0.10	0.09			
Q2	0.10	0.36	0.14	0.09	0.08	0.09			
Q2 Q3	0.12	0.27	0.24	0.07	0.00	0.12			
Q3 Q4	0.11	0.45	0.14	0.02	0.10	0.10			
V 1	0.10	0.45	0.14	0.16	0.11	0.09			
	0.10	0.41	0.14	0.10	0.10	0.07			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	53.6	48.8	46.6	55.7					
2004	62.6	45.5	49.9	48.5					
2005	48.2	43.7	38.4	43.0					
Top-25									
Percentile									
RRF	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
Q1	0.65	0.63	0.77	0.87	0.91	1.06			
Q2	0.53	0.50	0.61	0.84	0.89	1.05			
Q3	0.53	0.49	0.64	0.83	0.88	1.03			
Q4	0.69	0.68	0.73	0.86	0.90	1.06			
Υ'	0.09	0.00	0.75	0.00	0.90	1.00			
Q1 Com	ponents								
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	4.2	14.9	4.2	10.6	4.8	9.6	4.2		
2004	5.0	17.4	5.0	12.4	5.6	11.2	5.0		
2005	3.8	13.4	3.8	9.5	4.3	8.6	3.8		
01	2015 Estime	atas							
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	3.6	13.9	<u>5.6</u>	<u>0C</u> 7.5	<u>1.0</u> 4.9	<u>61R</u> 4.9	<u>3.9</u>	0.5	<u>101855</u> 44.9
2003	4.2	16.2	6.5	8.8	4.9 5.7	4.9 5.8	4.5	0.5	52.3
2004 2005	4.2 3.2	10.2	0.3 5.0	6.8	5.7 4.4	5.8 4.4	4.5 3.5	0.5	40.4
2003	5.2	12.3	5.0	0.8	4.4	4.4	5.5	0.5	40.4
Q2 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	4.8	12.6	7.2	10.1	3.9	5.8	4.3		
2004	4.5	11.7	6.8	9.5	3.6	5.4	4.1		
2005	4.3	11.2	6.5	9.1	3.5	5.2	3.9		
02	2015 Estime	atas							
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	OTR	Water	<u>Blank</u>	Mass
2003	3.1	<u>8.7</u>	<u>304</u> 7.1	<u>00</u> 3.6	<u>BC</u> 3.4	<u>5.9</u>	<u>3.7</u>	0.5	<u>36.0</u>
2003 2004	3.1 2.9	8.2	6.7	3.3	3.4 3.2	5.5	3.7 3.4	0.5	33.6
2004 2005	2.9	8.2 7.8	6.4	3.3 3.2	3.2 3.0	5.3 5.3	3.4 3.3	0.5	32.3
2003	2.0	1.0	0.4	5.2	5.0	5.5	5.5	0.3	52.3

Alternate Fontana 24-Hour 2015 Design Value Estimation

<u>Year</u> 2003 2004	<u>NH4</u> 4.1 4.4	<u>NO3</u> 9.7 10.4	<u>SO4</u> 8.3 8.9	<u>OC</u> 8.3 8.9	<u>EC</u> 3.7 4.0	<u>OTR</u> 8.3 8.9	<u>Water</u> 3.7 4.0		
2005	3.4	8.0	6.8	6.8	3.0	6.8	3.0		
Q3 2	2015 Estime	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	2.6	6.1	8.8	2.7	3.9	7.9	3.8	0.5	36.3
2004	2.8	6.6	9.4	2.9	4.2	8.5	4.1	0.5	38.9
2005	2.2	5.1	7.2	2.2	3.2	6.5	3.1	0.5	30.0
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	7.7	17.7	4.4	9.4	5.5	5.5	5.0		
2004	6.7	15.4	3.8	8.2	4.8	4.8	4.3		
2005	6.0	13.6	3.4	7.2	4.3	4.3	3.8		
Q4 2	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	6.0	17.0	5.8	1.2	5.6	7.0	4.6	0.5	47.5
2004	5.2	14.8	5.1	1.0	4.8	6.1	4.0	0.5	41.5
2005	4.6	13.1	4.5	0.9	4.3	5.4	3.5	0.5	36.8
	ighted 2015								
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	<u>Max</u>	<u>FDV</u>			
2003	44.9	36.0	36.3	47.5	47.5				
2004	52.3	33.6	38.9	41.5	52.3				
2005	40.4	32.3	30.0	36.8	40.4	46.7			

TABLE V-A-4e

										_
<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>				
Q1	0.08	0.30	0.20	0.21	0.10	0.11				
Q2	0.10	0.23	0.41	0.03	0.06	0.16				
Q3	0.13	0.17	0.43	0.08	0.06	0.14				
Q3 Q4	0.15	0.31	0.15	0.06	0.00	0.11				
Q '	0.15	0.51	0.20	0.00	0.11	0.11				
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>						
2003	46.5	42.9	36.9	47.4						
2004	45.8	32.9	34.6	45.9						
2005	37.3	27.7	46.1	43.2						
Top-25										
Percentile										
<u>RRF</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water			
Q1	0.75	0.81	0.62	0.73	0.79	0.84	0.75			
Q2	0.68	0.72	0.6	0.74	0.77	0.79	0.68			
Q3	0.68	0.77	0.57	0.72	0.76	0.76	0.68			
Q4	0.75	0.85	0.61	0.73	0.78	0.83	0.75			
Q1 Com	-									
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water			
2003	2.8	10.1	5.1	10.1	3.7	9.2	5.1			
2004	2.7	10.0	5.0	10.0	3.6	9.1	5.0			
2005	2.2	8.1	4.0	8.1	2.9	7.4	4.0			
	015 E									
	2015 Estime		004	00	FC	OTD	** 7	D1 1		
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	$\frac{OC}{7.2}$	$\frac{EC}{2.0}$	OTR	Water	Blank	Mass 20.0	
2003	2.7	11.2	5.7	7.3	3.8	4.2	3.5	0.5	38.9	
2004	2.7	11.0	5.6	7.2	3.8	4.1	3.4	0.5	38.4	
2005	2.2	9.0	4.6	5.8	3.1	3.4	2.8	0.5	31.3	
Q2 Com	ponents									
	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water			
$\frac{1000}{2003}$	3.0	6.8	<u>9.8</u>	<u>9.8</u>	$\frac{10}{2.5}$	5.5	5.5			
2003	2.3	5.2	7.5	7.5	1.9	4.2	4.2			
2001	1.9	4.4	6.3	6.3	1.6	3.5	3.5			
2005	1.9		0.5	0.5	1.0	5.5	5.5			
Q2 2	2015 Estima	ites								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
2003	3.0	7.1	10.7	1.0	1.9	5.5	4.5	0.5	34.3	
2004	2.3	5.4	8.2	0.8	1.5	4.2	3.5	0.5	26.4	
2005	1.9	4.6	6.9	0.7	1.2	3.6	2.9	0.5	22.3	
										-

Alternate Long Beach 24-Hour 2015 Design Value Estimation

Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water		
2003	4.4	5.8	9.8	5.8	1.8	5.5	3.6		
2004	4.1	5.5	9.2	5.5	1.7	5.1	3.4		
2005	5.5	7.3	12.3	7.3	2.3	6.8	4.6		
Q3 2	2015 Estime	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	3.2	4.8	8.9	2.2	1.6	3.8	3.8	0.5	28.9
2004	3.0	4.5	8.4	2.1	1.5	3.6	3.5	0.5	27.1
2005	4.0	6.0	11.2	2.8	2.0	4.8	4.7	0.5	36.0
Q4 Com	ponents								
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	6.1	10.8	6.1	9.8	4.7	5.6	3.8		
2004	5.9	10.4	5.9	9.5	4.5	5.4	3.6		
2005	5.6	9.8	5.6	9.0	4.3	5.1	3.4		
Q4 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	5.2	12.3	7.6	2.2	4.1	4.4	4.5	0.5	40.8
2004	5.1	11.9	7.3	2.1	4.0	4.2	4.3	0.5	39.5
2005	4.8	11.2	6.9	2.0	3.8	4.0	4.1	0.5	37.2
Wei	ighted 2015	Design Val	ue						
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	Max	FDV			
2003	38.9	34.3	28.9	40.8	40.8				
2004	38.4	26.4	27.1	39.5	39.5				
2005	31.3	22.3	36.0	37.2	37.2	39.1			

TABLE V-A-4f

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.09	0.41	<u>304</u> 0.17	<u>0.13</u>	<u>LC</u> 0.10	0.09			
Q1 Q2	0.10	0.31	0.32	0.05	0.08	0.14			
Q2 Q3	0.10	0.26	0.32	0.05	0.00	0.11			
Q4	0.15	0.40	0.18	0.02	0.15	0.10			
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	53.6	55.1	51.0	55.3					
2004	49.7	44.0	55.9	61.3					
2005	53.5	38.2	36.8	52.0					
Top-25									
Percentile									
RRF	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
Q1	0.74	0.76	0.69	0.76	0.81	0.99			
Q2	0.67	0.69	0.62	0.79	0.81	0.98			
Q3	0.69	0.74	0.59	0.78	0.80	0.96			
Q4	0.78	0.82	0.67	0.77	0.81	0.99			
Q1 Com	-								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	3.7	13.3	5.3	11.2	4.8	9.0	5.8		
2004	3.4	12.3	4.9	10.3	4.4	8.4	5.4		
2005	3.7	13.3	5.3	11.1	4.8	9.0	5.8		
013	2015 Estime	atos							
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	3.7	16.8	6.4	5.4	4.5	4.7	4.4	0.5	46.3
2003	3.4	15.6	5.9	5.0	4.1	4.3	4.1	0.5	43.0
2001	3.7	16.8	6.4	5.4	4.5	4.7	4.4	0.5	46.2
2000	011	1010	011			,		010	
Q2 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>		
2003	4.4	10.9	10.4	14.2	3.8	4.9	6.0		
2004	3.5	8.7	8.3	11.3	3.0	3.9	4.8		
2005	3.0	7.5	7.2	9.8	2.6	3.4	4.1		
	2015 Estima		504	00	EC	OTD	Weter	Dlert	Mass
<u>Year</u>	<u>NH4</u> 2.7	<u>NO3</u>	<u>SO4</u>	$\frac{OC}{20}$	<u>EC</u>	OTR 76	<u>Water</u>	Blank	Mass 45.5
2003	3.7	11.8	11.0 × 7	2.0	3.7	7.6	5.3	0.5	45.5
2004	2.9	9.4 8.1	8.7 7.6	1.6	3.0	6.0 5.3	4.2	0.5	36.4
2005	2.6	8.1	7.6	1.4	2.6	5.3	3.7	0.5	31.7

Alternate Los Angeles 24-Hour 2015 Design Value Estimation

<u>Year</u> 2003 2004	<u>NH4</u> 6.6 7.2	<u>NO3</u> 9.6 10.5	<u>SO4</u> 10.6 11.6	<u>OC</u> 8.6 9.4	<u>EC</u> 3.0 3.3	<u>OTR</u> 7.6 8.3	<u>Water</u> 5.1 5.5		
2005	4.7	6.9	7.6	6.2	2.2	5.4	3.6		
032	2015 Estime	ites							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water_	<u>Blank</u>	Mass
2003	5.3	9.9	10.6	2.0	3.0	5.5	5.1	0.5	41.9
2004	5.8	10.8	11.6	2.2	3.3	6.0	5.6	0.5	45.9
2005	3.8	7.1	7.6	1.4	2.2	4.0	3.7	0.5	30.4
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	6.0	14.2	4.9	13.2	6.6	4.9	4.9		
2004	6.7	15.8	5.5	14.6	7.3	5.5	5.5		
2005	5.7	13.4	4.6	12.4	6.2	4.6	4.6		
~	2015 Estime								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	6.3	18.0	6.8	1.0	6.7	5.6	5.0	0.5	49.9
2004	7.0	19.9	7.5	1.1	7.4	6.2	5.6	0.5	55.2
2005	5.9	16.9	6.4	1.0	6.3	5.3	4.7	0.5	46.9
Wei	iohted 2015	Design Val	ue						
Year	<u>01</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	Max	FDV			
2003	<u>46.3</u>	<u>45</u> .5	<u>41.9</u>	<u>49.9</u>	49.9	<u>1 D V</u>			
2003	43.0	36.4	45.9	55.2	55.2				
2004	46.2	31.7	30.4	46.9	46.9	50.7			

TABLE V-A-4g

$\begin{array}{c c c c c c c c c c c c c c c c c c c $											_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Split	NH4	NO3	SO4	OC	EC	OTR				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccc} $Top-25$\\ \hline Percentile \\ \hline RRF & NH4 & NO3 & SO4 & OC & EC & OTR \\ \hline Q1 & 0.63 & 0.61 & 0.72 & 0.86 & 0.89 & 0.94 \\ \hline Q2 & 0.49 & 0.46 & 0.58 & 0.81 & 0.87 & 0.90 \\ \hline Q3 & 0.48 & 0.45 & 0.59 & 0.80 & 0.85 & 0.90 \\ \hline Q4 & 0.66 & 0.65 & 0.69 & 0.85 & 0.89 & 0.94 \\ \hline \hline U Components \\ \hline Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water \\ \hline 2003 & 5.1 & 18.8 & 5.8 & 15.2 & 6.5 & 14.5 & 7.2 \\ 2004 & 4.1 & 15.3 & 4.7 & 12.4 & 5.3 & 11.8 & 5.9 \\ 2005 & 3.9 & 14.6 & 4.5 & 11.8 & 5.0 & 11.2 & 5.6 \\ \hline U 2015 Estimates \\ \hline $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water & Blank & Mass \\ 2003 & 4.1 & 14.0 & 4.9 & 12.5 & 6.5 & 6.2 & 3.7 & 0.5 & 52.4 \\ 2004 & 3.4 & 11.4 & 4.0 & 10.2 & 5.3 & 5.0 & 3.0 & 0.5 & 42.9 \\ 2005 & 3.2 & 10.9 & 3.8 & 9.7 & 5.0 & 4.8 & 2.9 & 0.5 & 40.8 \\ \hline Q 2 Components \\ \hline $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water \\ $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water \\ $2003 & 7.3 & 19.6 & 7.9 & 11.0 & 3.1 & 4.9 & 7.3 \\ 2004 & 7.2 & 19.2 & 7.8 & 10.8 & 3.0 & 4.8 & 7.2 \\ 2005 & 2.015 & Estimates \\ \hline $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water \\ $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water \\ $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water \\ $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water \\ $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water \\ $Year & NH4 & NO3 & SO4 & OC & EC & OTR & Water & Blank & Mass \\ $Year & NH4 & NO3 & SO4 & OC & SO4 & 0.8 & 4.4 & 6.6 \\ \hline $Year & NH4 & NO3 & SO4 & OC & SO4 & 0.5 & 3.5 & 0.5 & 3.6.7 \\ $Z004 & 4.2 & 10.7 & 5.2 & 3.4 & 3.2 & 5.4 & 3.4 & 0.5 & 36.1 \\ \hline \end{tabular}$	2004			55.3	76.6						
Percentile RRF NH4 NO3 SO4 OC EC OTR Q1 0.63 0.61 0.72 0.86 0.87 0.90 Q2 0.49 0.46 0.58 0.81 0.87 0.90 Q3 0.48 0.45 0.59 0.80 0.85 0.90 Q4 0.66 0.65 0.69 0.85 0.89 0.94 View of the original of the	2005	56.6	55.8	47.0	49.5						
Percentile RRF NH4 NO3 SO4 OC EC OTR Q1 0.63 0.61 0.72 0.86 0.87 0.90 Q2 0.49 0.46 0.58 0.81 0.87 0.90 Q3 0.48 0.45 0.59 0.80 0.85 0.90 Q4 0.66 0.65 0.69 0.85 0.89 0.94 View of the original ori	Top-25										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NH4	NO3	SO4	OC	EC	OTR				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z ·	0100	0100	0.07	0.00	0.07	0.7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q1 Com	ponents									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2003	5.1	18.8	5.8	15.2	6.5	14.5	7.2			
QI 2015 Estimates Year NH4 NO3 SO4 OC EC OTR Water Blank Mass 2003 4.1 14.0 4.9 12.5 6.5 6.2 3.7 0.5 52.4 2004 3.4 11.4 4.0 10.2 5.3 5.0 3.0 0.5 42.9 2005 3.2 10.9 3.8 9.7 5.0 4.8 2.9 0.5 40.8 Q2 Components Year NH4 NO3 SO4 OC EC OTR Water 2003 7.3 19.6 7.9 11.0 3.1 4.9 7.3 2004 7.2 19.2 7.8 10.8 3.0 4.8 7.2 Q2 2015 Estimates Year NH4 NO3 SO4 OC EC OTR Water Blank Mass 2005 6.6 17.7 7.2 10.0 2.8 4.4 6.6 Vear NH4 NO3 <t< td=""><td>2004</td><td>4.1</td><td>15.3</td><td>4.7</td><td>12.4</td><td>5.3</td><td>11.8</td><td>5.9</td><td></td><td></td><td></td></t<>	2004	4.1	15.3	4.7	12.4	5.3	11.8	5.9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2005	3.9	14.6	4.5	11.8	5.0	11.2	5.6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	017	015 Estim	-4								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				004	00	EC	OTD	XX	D11	Maria	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2005	3.2	10.9	3.8	9.7	5.0	4.8	2.9	0.5	40.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q2 Com	ponents									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.2	19.2					7.2			
Year NH4 NO3 SO4 OC EC OTR Water Blank Mass 2003 4.2 10.9 5.3 3.5 3.2 5.5 3.5 0.5 36.7 2004 4.2 10.7 5.2 3.4 3.2 5.4 3.4 0.5 36.1											
Year NH4 NO3 SO4 OC EC OTR Water Blank Mass 2003 4.2 10.9 5.3 3.5 3.2 5.5 3.5 0.5 36.7 2004 4.2 10.7 5.2 3.4 3.2 5.4 3.4 0.5 36.1											
20034.210.95.33.53.25.53.50.536.720044.210.75.23.43.25.43.40.536.1	~										
2004 4.2 10.7 5.2 3.4 3.2 5.4 3.4 0.5 36.1											
<u>2005</u> <u>3.8</u> <u>9.9</u> <u>4.8</u> <u>3.2</u> <u>2.9</u> <u>5.0</u> <u>3.2</u> <u>0.5</u> <u>33.3</u>											
	2005	3.8	9.9	4.8	3.2	2.9	5.0	3.2	0.5	33.3	_

Alternate Rubidoux 24-Hour 2015 Design Value Estimation

Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>		
2003	8.4	16.8	9.0	8.4	2.4	8.4	6.6		
2004	7.7	15.3	8.2	7.7	2.2	7.7	6.0		
2005	6.5	13.0	7.0	6.5	1.9	6.5	5.1		
Q3 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	3.8	9.0	7.0	3.4	2.6	6.0	3.7	0.5	35.9
2004	3.5	8.2	6.4	3.1	2.4	5.5	3.4	0.5	32.8
2005	2.9	7.0	5.4	2.6	2.0	4.7	2.9	0.5	28.0
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water		
2003	9.2	18.3	4.6	14.4	7.2	7.2	4.6		
2004	10.7	21.3	5.3	16.7	8.4	8.4	5.3		
2005	6.9	13.7	3.4	10.8	5.4	5.4	3.4		
Q4 2	2015 Estime	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	6.1	14.8	5.0	3.4	6.5	6.8	4.1	0.5	47.1
2004	7.1	17.2	5.8	3.9	7.5	7.9	4.7	0.5	54.6
2005	4.6	11.1	3.7	2.5	4.8	5.1	3.0	0.5	35.5
Wei	ighted 2015	Design Val	lue						
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	Max	FDV			
2003	52.4	36.7	35.9	47.1	52.4				
2004	42.9	36.1	32.8	54.6	54.6				
2005	40.8	33.3	28.0	35.5	40.8	49.3			

TABLE V-A-4h

<u>Split</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>			
Q1	0.07	0.25	0.23	0.20	0.14	0.12			
Q2	0.09	0.20	0.43	0.03	0.08	0.18			
Q3	0.11	0.12	0.46	0.09	0.08	0.14			
Q4	0.12	0.26	0.24	0.11	0.15	0.12			
C C									
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>					
2003	46.5	42.9	36.9	47.4					
2004	45.8	32.9	34.6	45.9					
2005	37.3	27.7	46.1	43.2					
TT 05									
Top-25 Percentile									
<u>RRF</u>	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR			
<u>Q1</u>	0.69	0.78	0.56	<u>0.68</u>	0.72	<u>0.74</u>			
Q1 Q2	0.66	0.78	0.56	0.69	0.72	0.74			
Q2 Q3	0.64	0.72	0.50	0.68	0.69	0.67			
Q3 Q4	0.71	0.81	0.57	0.68	0.00	0.07			
Y ¹	0.71	0.01	0.57	0.00	0.71	0.74			
Q1 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	3.4	11.4	10.5	9.1	6.5	5.5	5.1		
2004	3.3	11.2	10.4	9.0	6.4	5.5	5.0		
2005	2.7	9.2	8.4	7.3	5.2	4.4	4.1		
Q1 2	2015 Estime	ates							
Year	NH4	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass
2003	2.3	8.9	5.9	6.2	4.7	4.1	3.2	0.5	35.8
2004	2.3	8.8	5.8	6.1	4.6	4.0	3.1	0.5	35.3
2005	1.9	7.1	4.7	5.0	3.8	3.3	2.6	0.5	28.8
6 2 6									
Q2 Com	-	NO2	004	00	50		XX 7 ·		
<u>Year</u>		<u>NO3</u>	<u>SO4</u>	$\frac{OC}{1.2}$	EC	OTR	Water 7.2		
2003	4.0	8.4	18.4	1.3	3.2	7.5	7.2		
2004	3.1	6.5	14.1	1.0	2.5	5.8	5.5		
2005	2.6	5.4	11.9	0.9	2.1	4.9	4.7		
02 3	2015 Estime	ntes							
<u>Year</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass
2003	2.6	6.1	10.3	<u>0.9</u>	$\frac{10}{2.2}$	5.3	4.3	0.5	32.2
2003	2.0	4.6	7.9	0.9	1.7	4.0	3.3	0.5	24.8
2004	2.0 1.7	4.0 3.9	6.6	0.7	1.7	4.0 3.4	2.7	0.5	24.8
2005	1./	5.7	0.0	0.0	1.4	5.4	2.1	0.5	21.0

Alternate Wilmington 24-Hour 2015 Design Value Estimation

<u>Year</u> 2003 2004 2005	<u>NH4</u> 4.2 3.9 5.3	<u>NO3</u> 4.5 4.2 5.6	<u>SO4</u> 16.9 15.9 21.1	OC 3.3 3.1 4.1	EC 2.8 2.6 3.5	<u>OTR</u> 5.3 4.9 6.6	<u>Water</u> 6.3 5.9 7.9		
03	2015 Estima	ntes							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>	<u>Blank</u>	Mass
2003	2.7	<u>3.4</u>	<u>9.1</u>	2.2	<u>1.9</u>	3.5	<u>3.6</u>	0.5	26.9
2003	2.5	3.2	8.6	2.2	1.9	3.3	3.4	0.5	25.3
2005	3.4	4.2	11.4	2.8	2.4	4.4	4.5	0.5	33.5
2002	5.1		11.1	2.0	2		1.0	0.5	0010
Q4 Com	ponents								
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water		
2003	5.5	12.5	11.1	5.2	7.1	5.9	5.6		
2004	5.4	12.1	10.8	5.1	6.9	5.7	5.5		
2005	5.1	11.4	10.2	4.8	6.5	5.4	5.1		
Q4 .	2015 Estima	ates							
Year	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>
2003	3.9	10.1	6.4	3.6	5.1	4.4	3.7	0.5	37.6
2004	3.8	9.8	6.2	3.4	4.9	4.2	3.6	0.5	36.4
2005	3.6	9.2	5.8	3.2	4.6	4.0	3.3	0.5	34.3
We	ighted 2015	Design Val	ue						
Year	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>	<u>Max</u>	<u>FDV</u>			
2003	35.8	32.2	26.9	37.6	37.6				
2004	35.3	24.8	25.3	36.4	36.4				
2005	28.8	21.0	33.5	34.3	34.3	36.1			

TABLE V-A-5a

2015 Estimated Reduction Ratios to be Applied Anaheim 24-Hour PM2.5 Design

RRF	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR				
Q1	0.78	0.78	0.80	0.81	0.78	1.00				
Q2	0.67	0.68	0.83	0.72	0.80	0.90				
Q3	0.73	0.78	0.57	0.80	0.83	1.00				
Q4	0.72	0.74	0.67	0.84	0.89	1.03				
	0.78	0.78	0.80	0.81	0.78	1.00				
Q1 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
22-Jan-05	8.5	21.8	7.1	12	3.1	3.9	5.9	0.5	62.3	
11-Mar-05	7.3	17.2	6	6.2	1.3	3.3	4.8	0.5	46.1	
25-Jan-05	4.5	11.8	4.1	6.8	2.2	3	3.3	0.5	35.7	
Average									48.0	
Q1 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	SO4=	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	
22-Jan-05	6.6	17.0	5.7	9.7	2.4	3.9	4.6	0.5	50.5	
11-Mar-05	5.7	13.4	4.8	5.0	1.0	3.3	3.8	0.5	37.5	
25-Jan-05	3.5	9.2	3.3	5.5	1.7	3.0	2.6	0.5	29.3	
Average									39.1	0.81
	20114	NOA	0.04	00	FG	0770	XX 7	D1 1		Datia
Q2 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	OC	EC	OTR	<u>Water</u>	Blank	Mass	<u>Ratio</u>
25-May-05	4.5	5.0	9.4	5.3	0.9	1.7	4.1	0.5	30.8	
30-Jun-05	3.7	5.2	9.2	5.2	0.8	1.3	4.1	0.5	29.4	
22-May-05	2.2	4.8	5.8	6.5	0.9	1.9	2.8	0.5	24.9	
Average									24.8	
Q2 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass	
25-May-05	3.0	3.4	7.8	3.8	0.7	1.5	3.2	0.5	24.0	
30-Jun-05	2.5	3.5	7.6	3.7	0.6	1.2	3.1	0.5	22.8	
22-May-05	1.5	3.3	4.8	4.7	0.7	1.7	2.1	0.5	19.2	
Average									22.0	0.78

Q3 Observe	ed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
4-S	Sep-05	6.5	6.0	2.9	8.5	1.0	2.5	2.0	0.5	29.3	
22-	Sep-05	4.6	5.7	5.6	6.9	2.2	2.3	2.9	0.5	30.1	
1-S	Sep-05	3.8	4.8	6.5	5.8	0.9	3.4	3.1	0.5	28.3	
	Average									29.2	
Q3 2015	5 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
4-S	Sep-05	4.7	4.7	1.7	6.8	0.8	2.5	1.6	0.5	23.4	
22-	Sep-05	3.4	4.4	3.2	5.5	1.8	2.3	1.9	0.5	23.1	
1-S	Sep-05	2.8	3.7	3.7	4.6	0.7	3.4	1.9	0.5	21.4	
Av	verage									22.6	0.77
Q4 Observe	ed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
4-8	Sep-05	9.8	17.4	8.9	8.1	1.7	2.1	5.9	0.5	53.9	
22-	Sep-05	8.6	19.9	4.6	10.8	2	2.5	4.7	0.5	53.1	
1-S	Sep-05	6	12.6	3.8	9.9	4.2	2.7	3.3	0.5	42.6	
	Average									49.9	
Q4 201.	5 Estimates	NH4+	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass	
4-5	Sep-05	7.1	12.9	6.0	6.8	1.5	2.2	4.3	0.5	41.1	
22-	Sep-05	6.2	14.7	3.1	9.1	1.8	2.6	3.5	0.5	41.4	
1-5	Sep-05	4.3	9.3	2.5	8.3	3.7	2.8	2.4	0.5	34.0	
Av	verage									38.8	0.78
<u>Design</u>	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>							
2003	51.8	46.3	27.6	47.3							
2004	48.2	30.5	46.8	49.9							
2005	41.8	27.6	42.9	43.8							
Top-3											
Ratio	0.81	0.78	0.77	0.78							
	1 201 4										
Predicte		25.0	21.4	26.0	40.0						
2003	42.2	35.9	21.4	36.8	42.2						
2004	39.2	23.7	36.2	38.9	39.2	20 5					
2005	34.0	21.4	33.2	34.1	34.1	38.5					

TABLE V-A-5b

2015 Estimated Reduction Ratios to be Applied Burbank 24-Hour PM2.5 Design	
--	--

RRF	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water			
Q1	0.79	0.82	0.69	0.74	0.75	1.00	0.79			
Q2	0.67	0.73	0.57	0.76	0.80	1.00	0.67			
Q3	0.71	0.95	0.35	0.67	0.83	0.94	0.71			
Q4	0.79	0.85	0.62	0.78	0.83	1.00	0.79			
Q1 Observed Components	NH4+	NO3-	SO4=	<u>OC</u>	<u>EC</u>	OTR	Water	Blank	Mass	Ratio
~ 11-Mar-05	11.4	28.9	9.0	12.2	3.7	3.8	7.7	0.5	76.8	
22-Jan-05	6.9	19.7	3.8	14.0	3.9	3.8	4.4	0.5	56.4	
8-Mar-05	8.4	20.7	7.8	7.7	2.2	4.1	6.0	0.5	57.0	
Average									63.4	
Q1 2015 Estimates	NH4+	<u>NO3-</u>	SO4=	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
11-Mar-05	9.0	23.7	6.2	9.0	2.8	3.8	5.9	0.5	60.9	
22-Jan-05	5.5	16.2	2.6	10.4	2.9	3.8	3.4	0.5	45.2	
8-Mar-05	6.6	17.0	5.4	5.7	1.7	4.1	4.5	0.5	45.5	
Average									50.5	0.80
Q2 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
25-May-05	6.5	10.8	10.2	7.9	1.7	1.7	5.3	0.5	44.2	
4-May-05	5.7	9.8	7.7	7.0	1.5	1.7	4.3	0.5	37.7	
16-Apr-05	1.2	5.3	3.0	11.3	1.9	1.6	1.9	0.5	26.3	
Average									36.1	
Q2 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>	
25-May-05	4.4	7.9	5.8	6.0	1.4	1.7	3.3	0.5	30.9	
4-May-05	3.8	7.2	4.4	5.3	1.2	1.7	2.7	0.5	26.8	
16-Apr-05	0.8	3.9	1.7	8.6	1.5	1.6	1.1	0.5	19.7	
										0.71
Average									25.8	

3-Ju 9-Ju	l Components nl-05 nl-05 ep-05 Average	<u>NH4+</u> 5.2 3.9 7.6	<u>NO3-</u> 7.5 6.1 9.6	<u>SO4=</u> 9.7 8.5 8.4	<u>OC</u> 10.6 7.1 9.3	EC 0.8 1.0 1.9	OTR 3.3 2.1 2.2	<u>Water</u> 4.6 4.0 4.5	<u>Blank</u> 0.5 0.5 0.5	<u>Mass</u> 41.7 32.7 43.5 39.3	<u>Ratio</u>
	Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>	<u>Blank</u>	Mass	
	ıl-05	3.7	7.1	3.4	7.1	0.7	3.1	2.4	0.5	27.9	
	ıl-05	2.8	5.8	3.0	4.8	0.8	2.0	2.0	0.5	21.6	
	ep-05	5.4	9.1	2.9	6.2	1.6	2.1	2.7	0.5	30.5	
Ave	erage									26.7	0.68
Q4 Observea	l Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
6-No	ov-05	10.0	25.2	3.9	15.4	3.1	2.1	5.3	0.5	65.0	
22-0	Oct-05	11.0	27.2	8.7	6.7	1.9	2.1	7.3	0.5	65.0	
12-D	ec-05	4.9	13.2	1.9	15.2	5.8	2.4	2.7	0.5	46.0	
	Average									58.7	
Q4 2015	Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
6-No	ov-05	7.9	21.4	2.4	12.0	2.6	2.1	4.3	0.5	53.2	
22-0	Oct-05	8.7	23.1	5.4	5.2	1.6	2.1	5.5	0.5	52.1	
12-D	ec-05	3.9	11.2	1.2	11.9	4.8	2.4	2.2	0.5	38.0	
Ave	erage									47.8	0.81
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>							
2003	54.1	45.2	<u>51.6</u>	50.3							
2004		41.6	51.5	60.1							
2005	50.6	34.8	49.3	42.6							
Top-3											
Ratio	0.80	0.71	0.68	0.81							
Predicted	1 2014										
2003	43.1	32.3	35.0	41.0	43.1						
2004		29.7	34.9	48.9	48.9						
2005		24.9	33.4	34.7	40.3	44.1					

TABLE V-A-5c

2019 Estimated Reduction Ratios to be Applied to Compton 21 Hour 102.5 Design	2015 Estimated Reduction Ratios to be Applied to Compton 24	4-Hour PM2.5 Design
---	---	---------------------

RRF	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water			
Q1	0.77	0.97	0.27	0.82	0.91	1.17	0.77			
Q2	0.85	0.48	2.22	0.60	0.57	0.68	0.85			
Q3	0.81	0.96	0.62	0.74	0.75	0.90	0.81			
Q4	0.76	0.87	0.54	0.80	0.82	0.93	0.76			
Q1 Observed Components	NH4+	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	OTR	Water	Blank	Mass	Ratio
~ 22-Jan-05	8.5	21.8	7.1	12.0	3.1	3.9	5.9	0.5	62.3	
11-Mar-05	7.3	17.2	6.0	6.2	1.3	3.3	4.8	0.5	46.1	
25-Jan-05	4.5	11.8	4.1	6.8	2.2	3.0	3.3	0.5	35.7	
Average									48.0	
Q1 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	SO4=	<u>OC</u>	EC	OTR	Water	Blank	Mass	
22-Jan-05	6.5	21.1	1.9	9.8	2.8	4.6	3.9	0.5	51.3	
11-Mar-05	5.6	16.7	1.6	5.1	1.2	3.9	3.2	0.5	37.7	
25-Jan-05	3.5	11.4	1.1	5.6	2.0	3.5	2.1	0.5	29.7	
Average									39.6	0.82
Q2 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
25-May-05	4.5	5.0	9.4	5.3	0.9	1.7	4.1	0.5	30.8	
30-Jun-05	3.7	5.2	9.2	5.2	0.8	1.3	4.1	0.5	29.4	
22-May-05	2.2	4.8	5.8	6.5	0.9	1.9	2.8	0.5	24.9	
Average									24.8	
Q2 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>	
25-May-05	3.8	2.4	20.9	3.2	0.5	1.2	7.3	0.5	39.7	
30-Jun-05	3.1	2.5	20.4	3.1	0.5	0.9	7.1	0.5	38.1	
22-May-05	1.9	2.3	12.9	3.9	0.5	1.3	4.5	0.5	27.8	
Average									35.2	1.42

Q3 Observed (Components	NH4+	<u>NO3-</u>	SO4=	OC	EC	OTR	Water	Blank	Mass	<u>Ratio</u>
4-Sep	p-05	6.5	6.0	2.9	8.5	1.0	2.5	2.0	0.5	29.3	
22-Sep	p-05	4.6	5.7	5.6	6.9	2.2	2.3	2.9	0.5	30.1	
1-Sep	b-05	3.8	4.8	6.5	5.8	0.9	3.4	3.1	0.5	28.3	
	Average									29.2	
Q3 2015 E	Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
4-Sep		5.3	5.8	1.8	6.3	0.8	2.3	1.9	0.5	24.5	
22-Sep	•	3.7	5.5	3.5	5.1	1.7	2.1	2.2	0.5	24.2	
1-Sep		3.1	4.6	4.0	4.3	0.7	3.1	2.2	0.5	22.4	
Avera	age									23.7	0.81
Q4 Observed (Components	NH4+	<u>NO3-</u>	SO4=	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	Ratio
22-Oc	-	9.8	17.4	8.9	8.1	1.7	2.1	5.9	0.5	53.9	
6-Nov		8.6	19.9	4.6	10.8	2.0	2.5	4.7	0.5	53.1	
15-Dec	c-05	6.0	12.6	3.8	9.9	4.2	2.7	3.3	0.5	42.6	
	Average									49.9	
Q4 2015 E	Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	Blank	<u>Mass</u>	
22-Oc	et-05	7.4	15.1	4.8	6.5	1.4	2.0	4.2	0.5	41.9	
6-Nov	v-05	6.5	17.3	2.5	8.6	1.6	2.3	3.6	0.5	43.1	
15-Dec	c-05	4.6	11.0	2.1	7.9	3.4	2.5	2.5	0.5	34.5	
Avera	age									39.8	0.80
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>							
2003	45.3	44.7	45.5	52.5							
2004	44.8	38.2	36.3	52.4							
2005	41	31.8	51.7	53							
Top-3											
Ratio	0.82	1.42	0.81	0.80							
	2014										
Predicted 2			2 - 0	41.0	(2.4						
Predicted 2 2003	37.4	63.4	36.9	41.9	63.4						
	37.4 36.9	63.4 54.2	36.9 29.5	41.9 41.8	63.4 54.2						

TABLE V-A-5d

2015 Estimated Reduction Ratios to be Applied Politana 24-fibur 1 W2.5 Design										
RRF	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>			
Q1	0.66	0.65	0.67	0.80	1.00	1.00	0.66			
Q2	0.56	0.67	0.37	1.25	1.33	1.25	0.56			
Q3	0.56	0.58	0.58	0.79	1.00	1.06	0.56			
Q4	0.63	0.66	0.56	0.84	0.86	1.00	0.63			
Q1 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	OTR	Water	<u>Blank</u>	Mass	<u>Ratio</u>
~ 11-Mar-05	7.2	20.0	5.3	14.3	7.1	3.3	5.0	0.5	62.2	
8-Mar-05	6.5	16.1	4.6	14.2	4.3	3.6	4.1	0.5	53.6	
22-Jan-05	5.9	18.8	1.8	15.8	2.9	3.3	3.5	0.5	51.9	
Average									55.9	
Q1 2015 Estimates	NH4+	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass	
11-Mar-05	4.8	13.0	3.6	11.4	7.1	3.3	3.2	0.5	46.9	
8-Mar-05	4.3	10.5	3.1	11.4	4.3	3.6	2.7	0.5	40.3	
22-Jan-05	3.9	12.2	1.2	12.6	2.9	3.3	2.3	0.5	39.0	
Average									42.1	0.75
Q2 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
25-May-05	5.2	10.7	8.3	10.1	2.6	2.4	4.6	0.5	44.0	
15-Jun-05	7.4	17.9	6.1	7.7	1.6	2.5	4.9	0.5	48.1	
28-May-05	7.7	13.9	6.3	7.2	1.4	2.6	4.4	0.5	43.5	
Average									45.2	
Q2 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>	
25-May-05	2.9	7.2	3.1	12.6	3.5	3.0	2.2	0.5	34.9	
15-Jun-05	4.1	12.0	2.3	9.6	2.1	3.1	2.6	0.5	36.4	
28-May-05	4.3	9.3	2.3	9.0	1.9	3.3	2.4	0.5	32.9	
Average									34.7	0.77

2015 Estimated Reduction Ratios to be Applied Fontana 24-Hour PM2.5 Design

Q3 Observed Compo	onents <u>NH4</u> +	<u>NO3-</u>	SO4=	<u>OC</u>	EC	OTR	Water	Blank	Mass	<u>Ratio</u>
18-Jul-05	3.7	3.7	8.9	12.5	3.7	4.0	3.7	0.5	40.2	_
1-Sep-05	3.6	5.5	5.5	9.7	3.0	5.3	2.8	0.5	35.3	
29-Aug-05	3.4	3.7	5.3	12.1	3.7	5.1	2.5	0.5	35.7	
Avera									37.1	
Q3 2015 Estimat	-	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
18-Jul-05	2.1	2.1	5.2	9.9	3.7	4.2	2.1	0.5	29.8	
1-Sep-05	2.0	3.2	3.2	7.7	3.0	5.6	1.6	0.5	26.8	
29-Aug-05	1.9	2.1	3.1	9.6	3.7	5.4	1.4	0.5	27.7	
Average									28.1	0.76
Q4 Observed Compo	onents <u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
22-Oct-05	22.0	52.8	11.0	10.5	3.5	3.3	12.1	0.5	115.2	
6-Nov-05	9.9	26.4	3.4	11.8	3.2	2.4	5.3	0.5	62.4	
27-Dec-05	7.1	18.0	0.3	10.6	3.9	2.9	2.9	0.5	45.7	
Avera	ge								74.4	
Q4 2015 Estimat	es <u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	
22-Oct-05	13.9	34.8	6.2	8.8	3.0	3.3	7.8	0.5	78.3	
6-Nov-05	6.2	17.4	1.9	9.9	2.8	2.4	3.4	0.5	44.6	
27-Dec-05	4.5	11.9	0.2	8.9	3.4	2.9	2.0	0.5	34.2	
Average									52.3	0.70
Design Q1	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>							
2003 53.6	48.8	46.6	55.7							
2004 62.6	45.5	49.9	48.5							
2005 48.2	43.7	38.4	43							
т <u>э</u>										
Top-3 Ratio 0.75	0.77	0.76	0.70							
Katio 0.75	0.77	0.76	0.70							
Predicted 2014										
2003 40.3	37.5	35.3	39.2	40.3						
2004 47.1	35.0	37.8	34.1	47.1						
2005 36.3	33.6	29.1	30.3	36.3	41.2					

TABLE V-A-5e

2015 Estimated Reduction Ratios to be Applied to Long Beach 24-Hour PM2.5 Design	

<u>RRF</u>	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water			
Q1	0.81	0.82	0.75	0.79	0.87	0.89	0.81			
Q2	0.71	0.93	0.62	0.67	0.75	0.75	0.71			
Q3	0.70	0.95	0.58	0.68	0.75	0.77	0.70			
Q4	0.77	0.75	0.83	0.89	0.83	0.84	0.77			
Q1 Observed Components	<u>NH4+</u>	<u>NO3-</u>	SO4=	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	Blank	Mass	<u>Ratio</u>
~ 22-Jan-05	8.2	18.6	7.9	8.7	2.2	4.3	5.7	0.5	55.5	
1-Jan-05	0.3	1.9	2.0	18.8	6.0	4.5	1.0	0.5	34.5	
11-Mar-05	5.8	11.6	6.9	11.2	1.2	3.8	4.3	0.5	44.8	
Average									44.9	
Q1 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	SO4=	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
22-Jan-05	6.6	15.3	5.9	6.9	1.9	3.8	4.5	0.5	45.4	
1-Jan-05	0.2	1.6	1.5	14.9	5.2	4.0	0.7	0.5	28.6	
11-Mar-05	4.7	9.5	5.2	8.8	1.0	3.4	3.3	0.5	36.5	
Average									36.8	0.82
Q2 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
25-May-05	4.6	5.4	11.1	5.4	1.1	1.8	4.8	0.5	34.2	
30-Jun-05	5.0	4.4	11.0	4.4	1.0	1.5	4.6	0.5	32.0	
22-May-05	2.5	3.6	7.7	12.6	0.9	1.8	3.3	0.5	32.4	
Average									32.9	
Q2 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	SO4=	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	
25-May-05	3.3	5.0	6.9	3.6	0.8	1.4	3.1	0.5	24.6	
30-Jun-05	3.6	4.1	6.8	2.9	0.8	1.1	3.0	0.5	22.8	
22-May-05	1.8	3.3	4.8	8.4	0.7	1.4	2.1	0.5	23.0	
Average									23.5	0.71

Q3 Observed C	omponents	<u>NH4+</u>	<u>NO3-</u>	SO4=	<u>OC</u>	EC	OTR	Water	Blank	Mass	<u>Ratio</u>
22-Sep-	-05	6.2	8.5	0.3	8.7	2.9	6.0	1.4	0.5	34.0	
11-Aug	-05	3.4	6.5	14.3	4.4	1.4	7.1	6.1	0.5	43.1	
25-Sep-	-05	5.6	9.1	0.3	6.2	1.3	6.0	1.5	0.5	30.0	
Ā	Average									35.7	
Q3 2015 Es	-	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass	
22-Sep-	-05	4.3	8.1	0.2	5.9	2.2	4.6	1.5	0.5	27.3	
11-Aug	-05	2.4	6.2	8.3	3.0	1.1	5.5	3.6	0.5	30.5	
25-Sep-	-05	3.9	8.6	0.2	4.2	1.0	4.6	1.6	0.5	24.6	
Averag	ge									27.5	0.77
Q4 Observed C		<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	<u>Mass</u>	<u>Ratio</u>
6-Nov-		8.5	18.1	5.5	11.1	3.9	2.7	4.8	0.5	54.5	
22-Oct-		9.7	15.6	10.0	6.1	1.7	2.3	6.0	0.5	51.3	
24-Dec-		4.1	8.7	4.4	9.3	2.4	2.5	2.9	0.5	34.4	
	Average									46.7	
Q4 2015 Es		<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	
6-Nov-	05	6.5	13.6	4.6	9.9	3.2	2.3	3.8	0.5	44.4	
22-Oct-		7.5	11.7	8.3	5.4	1.4	1.9	4.9	0.5	41.6	
24-Dec-	-05	3.2	6.5	3.7	8.3	2.0	2.1	2.3	0.5	28.5	
Averag	ge									38.2	0.82
D :	01	~~	00	0.4							
	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>							
	46.5 45.8	42.9 32.9	36.9 34.6	47.4 45.9							
	+3.8 37.3	32.9 27.7	34.0 46.1	43.9 43.2							
2003	57.5	21.1	40.1	45.2							
Тор-3 (0.82	0.71	0.77	0.82							
Ratio											
Predicted 20)14										
	38.1	30.6	28.4	38.8	38.8						
	37.6	23.5	26.6	37.5	37.6						
2005 3	30.6	19.8	35.5	35.3	35.5	37.3					

TABLE V-A-5f

4	Loro Lon	nated Rec			c ripplied	1 to Los 7	Ingeles 24	nour r w	12.5 Desi	511
RRF	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water			
Q1	0.69	0.57	1.22	1.05	1.29	1.28	0.69			
Q2	0.76	0.83	0.55	0.78	0.83	0.94	0.76			
Q3	0.77	0.89	0.60	0.76	0.78	0.96	0.77			
Q4	0.84	0.87	0.70	0.79	0.82	1.00	0.84			
Q1 Observed Components	NH4+	<u>NO3-</u>	SO4=	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	<u>Ratio</u>
~ 11-Mar-05	11.8	30.3	10.5	11.5	3.4	3.7	8.4	0.5	79.6	
22-Jan-05	7.2	20.6	4.5	13.3	4.0	3.5	4.8	0.5	57.9	
8-Mar-05	2.4	19.6	4.3	8.0	2.1	2.8	4.6	0.5	43.9	
Average									60.5	
Q1 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
11-Mar-05	8.1	17.3	12.8	12.1	4.4	4.7	7.1	0.5	67.0	
22-Jan-05	5.0	11.7	5.5	14.0	5.2	4.5	3.7	0.5	50.0	
8-Mar-05	1.7	11.2	5.2	8.4	2.7	3.6	3.2	0.5	36.4	
Average									51.1	0.85
Q2 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>	<u>Ratio</u>
~ 25-May-05	5.8	8.8	11.6	8.1	1.5	2.5	5.5	0.5	43.9	
30-Jun-05	5.0	8.8	8.2	7.1	1.7	2.4	4.3	0.5	37.4	
22-May-05	2.4	5.9	6.3	12.5	1.6	2.9	3.2	0.5	34.9	
Average									38.7	
Q2 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	
25-May-05	4.4	7.3	6.4	6.3	1.2	2.4	3.4	0.5	31.9	
30-Jun-05	3.8	7.3	4.5	5.5	1.4	2.3	2.7	0.5	28.1	
22-May-05	1.8	4.9	3.5	9.8	1.3	2.7	1.9	0.5	26.4	
Average									28.8	0.74

2015 Estimated Reduction Ratios to be Applied to Los Angeles 24-Hour PM2.5 Design

Q3 Observed C	omponents	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
5-Aug-	05	7.9	15.8	18.3	11.2	4.2	5.7	9.0	0.5	72.2	
3-Jul-()5	5.9	6.7	10.6	7.2	1.0	4.3	4.8	0.5	40.6	
19-Sep-	-05	8.0	10.5	9.0	13.6	1.8	4.2	4.9	0.5	51.9	
A	Average									54.9	
Q3 2015 Es	timates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass	
5-Aug-	05	6.1	14.1	11.0	8.5	3.3	5.5	5.8	0.5	54.7	
3-Jul-()5	4.5	6.0	6.4	5.5	0.8	4.1	3.2	0.5	31.0	
19-Sep-	-05	6.2	9.3	5.4	10.3	1.4	4.0	3.5	0.5	40.7	
Averag	ge									42.2	0.77
Q4 Observed C	omponents	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
22-Oct-	-	12.5	26.3	9.2	7.6	1.9	2.6	7.4	0.5	67.5	
6-Nov-		9.8	25.8	4.4	12.2	2.9	2.5	5.6	0.5	63.1	
24-Nov		4.7	13.7	3.0	12.0	5.2	2.6	3.2	0.5	44.3	
	Average	,	1017	0.0	12.00	0.2	-10	0.1	010	58.3	
Q4 2015 Es	-	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>	
22-Oct-		10.5	22.9	6.4	6.0	1.6	2.6	6.0	0.5	56.5	
6-Nov-		8.2	22.4	3.1	9.6	2.4	2.5	4.6	0.5	53.4	
24-Nov		3.9	11.9	2.1	9.5	4.3	2.6	2.6	0.5	37.4	
Averag					,					49.1	0.84
- ·											
<u>Design</u>	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>							
	53.6	55.1	51	55.3							
	49.7	44	55.9	61.3							
2005	53.5	38.2	36.8	52							
Top-3											
Ratio	0.85	0.74	0.77	0.84							
Predicted 20	014										
	45.3	41.0	39.2	46.6	46.6						
	42.0	32.7	42.9	51.6	51.6						
	45.2	28.4	28.3	43.8	45.2	47.8					

TABLE V-A-5g

2015 Estimated Reduction Ratios to be Applied to Rubidoux 24-Hour PM2.5 Design	

RRF	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water			
Q1	0.69	0.66	0.70	0.80	0.86	0.91	0.69			
Q2	0.56	0.58	0.42	0.81	1.00	1.06	0.56			
Q3	0.52	0.52	0.50	0.79	0.80	0.89	0.52			
Q4	0.54	0.56	0.50	0.79	0.80	0.89	0.54			
Q1 Observed Components	NH4+	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	OTR	Water	Blank	Mass	Ratio
~ 11-Mar-05	0.0	16.7	3.2	13.9	3.4	3.1	3.7	0.5	44.1	
22-Jan-05	5.4	17.3	2.0	10.6	3.9	2.9	3.4	0.5	45.5	
8-Mar-05	5.8	16.2	4.4	8.2	3.2	3.7	4.1	0.5	45.5	
Average									45.0	
Q1 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
	3.8	11.0	2.2	11.1	2.9	2.8	2.5	0.5	36.9	
22-Jan-05	3.7	11.4	1.4	8.5	3.4	2.6	2.3	0.5	33.8	
8-Mar-05	4.0	10.7	3.1	6.6	2.8	3.4	2.7	0.5	33.7	
Average									34.8	0.74
Q2 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
15-Jun-05	9.4	17.1	5.4	5.9	1.1	1.5	4.6	0.5	44.8	
25-May-05	7.1	16.5	7.5	8.1	1.6	1.8	5.2	0.5	47.8	
16-Apr-05	5.4	17.6	3.3	7.1	1.3	1.7	3.9	0.5	40.1	
Average									44.2	
Q2 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	
15-Jun-05	5.3	9.9	2.3	4.8	1.1	1.6	2.5	0.5	27.9	
25-May-05	4.0	9.6	3.2	6.6	1.6	1.9	2.6	0.5	29.9	
16-Apr-05	3.0	10.2	1.4	5.8	1.3	1.8	2.0	0.5	26.0	
Average									27.9	0.62

Q3 Observed	Components	NH4+	<u>NO3-</u>	SO4=	<u>OC</u>	EC	OTR	Water	Blank	Mass	Ratio
6-Jul	-	4.1	10.6	<u>5.4</u>	<u>00</u> 14.1	$\frac{10}{2.1}$	<u>3.3</u>	<u>3.6</u>	0.5	43.2	<u></u>
14-Au		4.0	13.0	6.7	5.3	0.9	3.6	4.4	0.5	37.9	
3-Jul	-	5.4	11.6	6.7	7.2	1.0	3.3	4.2	0.5	39.4	
	Average	5.1	11.0	0.7	/.2	1.0	5.5		0.0	40.2	
Q3 2015 E	-	NH4+	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
€ 6-Jul		2.1	5.5	2.7	11.1	1.7	2.9	1.8	0.5	28.4	
14-Au		2.1	6.8	3.4	4.2	0.7	3.2	2.1	0.5	22.9	
3-Jul	-	2.8	6.0	3.4	5.7	0.8	2.9	2.1	0.5	24.2	
Avera	age									25.2	0.62
Q4 Observed	Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
22-Oc	et-05	20.6	55.6	21.1	10.9	3.5	2.7	16.1	0.5	130.5	
6-Nov	v-05	10.2	26.1	3.5	15.8	3.1	2.3	5.3	0.5	66.4	
12-No	ov-05	7.6	20.5	2.7	9.9	2.8	2.4	4.1	0.5	50.1	
	Average									82.3	
Q4 2015 E	Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	
22-Oc	rt-05	11.1	31.1	10.6	8.6	2.8	2.4	8.4	0.5	75.5	
6-Nov		5.5	14.6	1.8	12.5	2.5	2.0	3.0	0.5	42.3	
12-No	ov-05	4.1	11.5	1.4	7.8	2.2	2.1	2.3	0.5	31.9	
										49.9	0.60
Б. ·	01	00	00	0.1							
Design	<u>Q1</u>	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>							
2003	72.9	61.6	60.5	66 76 6							
2004	59.5	60.5	55.3	76.6							
2005	56.6	55.8	47	49.5							
Top-3											
Ratio	0.74	0.62	0.62	0.60							
Predicted 2	2014										
2003	53.6	38.3	37.6	39.8	53.6						
2004	43.7	37.6	34.4	46.2	46.2						
2005	41.6	34.7	29.2	29.9	41.6	47.1					

TABLE V-2A-5h

2015 Estimated Reduction Ratios to be Applied to Wilmington 24-Hour PM2.5 Design

RRF	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water			
Q1	0.74	0.78	0.67	0.77	0.71	0.78	0.74			
Q2	0.50	1.46	0.24	0.70	0.67	0.76	0.50			
Q3	0.60	1.00	0.47	0.65	0.57	0.68	0.60			
Q4	0.74	1.02	0.56	0.69	0.75	0.78	0.74			
Q1 Observed Components	NH4+	<u>NO3-</u>	SO4=	<u>OC</u>	EC	<u>OTR</u>	Water	Blank	Mass	<u>Ratio</u>
22-Jan-05	8.7	18.7	9.6	9.5	3.4	4.5	6.3	0.5	60.8	
1-Jan-05	0.2	1.9	2	15.8	4.9	4.6	1	0.5	30.4	
13-Jan-05	1.6	6.3	2.6	12.5	5.7	5.2	1.9	0.5	35.7	
Average									42.3	
Q1 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	SO4=	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
22-Jan-05	6.4	14.6	6.4	7.3	2.4	3.5	4.5	0.5	45.7	
1-Jan-05	0.1	1.5	1.3	12.2	3.5	3.6	0.6	0.5	23.3	
13-Jan-05	1.2	4.9	1.7	9.6	4.0	4.1	1.3	0.5	27.3	
Average									32.1	0.76
Q2 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
30-Jun-05	4.6	2.6	11.1	4.3	1.2	1.5	4.4	0.5	29.6	
25-May-05	4.6	4	11.4	6	1.1	1.7	4.7	0.5	33.5	
22-May-05	2.5	2	10.4	4.3	1	1.8	4	0.5	26.1	
Average									29.7	
Q2 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	<u>Mass</u>	
30-Jun-05	2.3	3.8	2.7	3.0	0.8	1.1	1.6	0.5	15.8	
25-May-05	2.3	5.8	2.7	4.2	0.7	1.3	1.8	0.5	19.4	
22-May-05	1.3	2.9	2.5	3.0	0.7	1.4	1.3	0.5	13.5	
Average									16.2	0.55

Q3 Observed Components	<u>NH4+</u>	<u>NO3-</u>	SO4=	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
21-Jul-05	1.6	3.2	9	4.6	1.9	2.4	3.7	0.5	26.3	
12-Jul-05	7	3.4	16.4	5.3	1.8	2.2	6.4	0.5	42.5	
22-Sep-05	5.4	9.3	0.3	7.4	3.8	5.3	1.5	0.5	33	
Average									33.9	
Q3 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	
21-Jul-05	1.0	3.2	4.2	3.0	1.1	1.6	1.8	0.5	16.4	
12-Jul-05	4.2	3.4	7.7	3.4	1.0	1.5	3.3	0.5	25.1	
22-Sep-05	3.2	9.3	0.1	4.8	2.2	3.6	1.5	0.5	25.3	
Average									22.3	0.66
Q4 Observed Components	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
24-Nov-05	3.4	11.9	5.3	12.7	3.1	3	3.7	0.5	43.1	
22-Oct-05	7.3	14	14.7	5.5	1.7	2.3	7.4	0.5	52.8	
6-Nov-05	7.3	14.2	5.1	15.1	2.9	2.8	4	0.5	51.5	
Average									49.1	
Q4 2015 Estimates	<u>NH4+</u>	<u>NO3-</u>	<u>SO4=</u>	<u>OC</u>	EC	OTR	Water	Blank	Mass	
24-Nov-05	2.5	12.1	3.0	8.8	2.3	2.3	2.7	0.5	34.2	
22-Oct-05	5.4	14.3	8.2	3.8	1.3	1.8	4.9	0.5	40.2	
6-Nov-05	5.4	14.5	2.9	10.4	2.2	2.2	3.3	0.5	41.3	
Average									38.6	0.79
Design Q1	<u>Q2</u>	<u>Q3</u>	<u>Q4</u>							
2003 46.5 4	2.9	36.9	47.4	De	esign lgbh					
2004 45.8 3	2.9	34.6	45.9							
2005 37.3 2	27.7	46.1	43.2							
Cop-3 Ratio 0.76 0).55	0.66	0.79							

Predicted	20

Predicte	ed 2014					
2003	35.3	23.4	24.2	37.2	37.2	
2004	34.8	18.0	22.7	36.1	36.1	
2005	28.3	15.1	30.3	33.9	33.9	35.8

TABLE V-A-6a

Episode Day Using RRF 22-Oct-05	<u>NH4</u> 0.736	<u>NO3</u> 0.842	<u>SO4</u> 0.549	<u>OC</u> 0.838	<u>EC</u> 0.866	<u>OTR</u> 0.985	<u>Water</u>	<u>Blank</u>	<u>Mass</u>	<u>Ratio</u>
Observed 22-Oct-05	9.8	17.4	8.9	8.1	1.7	2.1	5.9	0.5	53.9	
2015 Predicted	2.0	17.1	0.9	0.1	1.7	2.1	5.5	0.0	00.7	
22-Oct-05	7.2	14.7	4.9	6.8	1.5	2.1	4.2	0.5	41.7	0.7
Episode Day Using	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	Rat
Average 4-Q RRF	0.73	0.75	0.72	0.79	0.83	0.98				
Observed										
22-Oct-05	9.8	17.4	8.9	8.1	1.7	2.1	5.9	0.5	53.9	
2015 Predicted										
22-Oct-05	7.1	13.0	6.4	6.4	1.4	2.1	4.4	0.5	41.2	0.7
pisode Day Using RRF 22-Oct-05	Ratio I 0.74	Design 47	Future Des 34.6	sign						

Future Design

34.1

Design

47

Ratio

0.73

Episode Day Using

Average 4-Q RRF

2015 Episode Day Estimated Reduction Ratios to be Applied Anaheim 24-Hour PM2.5 Design

TABLE V-A-6b

Episode Day Using RRF 22-Oct-05	<u>NH4</u> 0.822	<u>NO3</u> 0.888	<u>SO4</u> 0.588	<u>OC</u> 0.856	<u>EC</u> 0.859	<u>OTR</u> 0.972	<u>Water</u>	<u>Blank</u>	<u>Mass</u>	<u>Ra</u>
Observed 22-Oct-05 2015 Predicted	11	27.2	8.7	6.7	1.9	2.1	7.3	0.5	65	
2013 Fredicted 22-Oct-05	9.0	24.2	5.1	5.7	1.6	2.0	5.6	0.5	53.8	0.
Episode Day Using	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	Ra
Average 4-Q RRF Observed	0.74	0.84	0.56	0.74	0.80	0.99				
22-Oct-05 2015 Predicted	11	27.2	8.7	6.7	1.9	2.1	7.3	0.5	65	
22-Oct-05	8.1	22.8	4.9	4.9	1.5	2.1	5.2	0.5	50.0	0.

2015 Episode Day Estimated Reduction Ratios to be Applied Burbank 24-Hour PM2.5 Design

Episode Day Using	Ratio	Design	Future Design
Average 4-Q RRF	0.74	53.3	39.4

TABLE V-A-6c

Episode Day Using	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Rati</u>
<i>RRF 22-Oct-05</i> Observed	0.731	0.822	0.601	0.809	0.823	0.866				
22-Oct-05	9.8	17.4	8.9	8.1	1.7	2.1	5.9	0.5	53.9	
2015 Predicted										
22-Oct-05	7.2	14.3	5.3	6.6	1.4	1.8	4.2	0.5	41.3	0.7
Episode Day Using	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	FC	<u>OTR</u>	Water	Blank	Mass	Rat
Average 4-Q RRF	$\frac{1114}{0.80}$	0.82	<u>304</u> 0.91	<u>0C</u> 0.74	<u>EC</u> 0.76	$\frac{01R}{0.92}$	<u>water</u>	DIAIIK	11111155	<u>1(u</u>
Observed	0.80	0.82	0.91	0.74	0.70	0.92				
22-Oct-05	9.8	17.4	8.9	8.1	1.7	2.1	5.9	0.5	53.9	
2015 Predicted										
22-Oct-05	7.8	14.3	8.1	6.0	1.3	1.9	5.2	0.5	45.1	0.8

2015 Episode Day Estimated Reduction Ratios to be Applied to Compton 24-Hour PM2.5 Design

Episode Day Using	Ratio	Design	Future Design
RRF 22-Oct-05	0.73	51.3	37.5
Episode Day Using	Ratio	Design	Future Design

 Average 4-Q RRF
 0.80
 51.3
 40.9

TABLE V-A-6d

2015 Episode Da	v Estimated Reduction	Ratios to be Applied For	ntana 24-Hour PM2.5 Design

Episode Day Using	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
RRF 22-Oct-05	0.672	0.703	0.59	0.844	0.886	1.003				
Observed										
22-Oct-05	22	52.8	11	10.5	3.5	3.3	12.1	0.5	115.2	
2015 Predicted										
22-Oct-05	14.8	37.1	6.5	8.9	3.1	3.3	8.3	0.5	82.4	0.67
Episode Day Using	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	EC	OTR	Water	<u>Blank</u>	Mass	<u>Ratio</u>
Average 4-Q RRF	0.60	0.64	0.55	0.92	1.05	1.08				
Observed										
22-Oct-05	22	52.8	11	10.5	3.5	3.3	12.1	0.5	115.2	
2015 Predicted										
22-Oct-05	13.3	33.8	6.0	9.7	3.7	3.6	7.5	0.5	77.9	0.60
Episode Day Using	Ratio D	esign	Future De	sign						
RRF 22-Oct-05		54.8	36.8	0						

Episode Day Using	Ratio	Design	Future Design
Average 4-Q RRF	0.60	54.8	33.0

TABLE V-A-6e

2015 Episode Day	V Estimated Reduction Ratios to	be Applied to Long Beach 24-	Hour PM2.5 Design

Episode Day Using RRF 22-Oct-05	<u>NH4</u> 0.76		<u>SO4</u> 0.67	<u>OC</u> 0.78	<u>EC</u> 0.90	<u>OTR</u> 0.7	<u>Water</u>	<u>Blank</u>	<u>Mass</u>	<u>Ratio</u>
Observed 22-Oct-05 2015 Predicted	9.7	15.6	10.0	6.1	1.7	2.3	6.0	0.5	51.3	
22-Oct-05	7.3	12.8	6.7	4.7	1.5	1.6	4.4	0.5	39.5	0.77
Episode Day Using Average 4-Q RRF Observed	<u>NH4</u> 0.562		<u>SO4</u> 0.565	<u>OC</u> 0.816	<u>EC</u> 0.829	<u>OTR</u> 1.011	<u>Water</u> 0.573	<u>Blank</u>	<u>Mass</u>	<u>Ratio</u>
22-Oct-05 2015 Predicted	9.7	15.6	10.0	6.1	1.7	2.3	6.0	0.5	51.3	
22-Oct-05	5.4	8.9	5.6	4.9	1.4	2.3	3.4	0.5	32.6	0.64
Episode Day Using RRF 22-Oct-05	Ratio 0.70	Design 44.6	Future Desi 31.2	gn						
		D :								

Episode Day Using	Ratio	Design	Future Design
Average 4-Q RRF	0.75	44.6	33.3

TABLE V-A-6f

Episode Day Using	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass	Ratio
RRF 22-Oct-05 Observed	0.82	0.87	0.67	0.84	0.93	0.93				
22-Oct-05	12.5	26.3	9.2	7.6	1.9	2.6	7.4	0.5	67.5	
2015 Predicted 22-Oct-05	10.3	22.9	6.2	6.4	1.7	2.4	5.7	0.5	56.1	0.83
Episode Day Using	<u>NH4</u>	<u>NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	<u>Water</u>	<u>Blank</u>	Mass	Rati
Average 4-Q RRF Observed	0.562		0.565	0.816	0.829	1.011	0.573	Dunk	111055	
22-Oct-05	12.5	26.3	9.2	7.6	1.9	2.6	7.4	0.5	67.5	
2015 Predicted										
22-Oct-05	7.0	15.0	5.2	6.2	1.5	2.7	4.2	0.5	42.3	0.63
pisode Day Using	Ratio	Design	Future Des	sign						
RRF 22-Oct-05	0.83	60.7	50.3	0						

Future Design

46.4

Design

60.7

Ratio

0.77

Episode Day Using

Average 4-Q RRF

2015 Episode Day Estimated Reduction Ratios to be Applied to Los Angeles 24-Hour PM2.5 Design

TABLE V-A-6g

2015 Episode Day	y Estimated Reduction Ratios to be Applied to Rubidoux 24-Hour PM	M2.5 Design

Episode Day Using RRF 22-Oct-05	<u>NH</u> 0.6		<u>SO4</u> 0.61	<u>OC</u> 0.82	<u>EC</u> 0.93	<u>OTR</u> 0.83	Water	<u>Blank</u>	Mass	<u>Ratio</u>
Observed	0.0	0.00	0.01	0.82	0.95	0.85				
22-Oct-05	20	.6 55.6	21.1	10.9	3.5	2.7	16.1	0.5	130.5	
2015 Predicted										
22-Oct-05	12	.6 33.3	12.8	9.0	3.3	2.2	9.8	0.5	83.0	0.64
Episode Day Using	NH	<u>14 NO3</u>	<u>SO4</u>	<u>OC</u>	<u>EC</u>	<u>OTR</u>	Water	<u>Blank</u>	Mass	<u>Ratio</u>
Average 4-Q RRF	0.5	62 0.571	0.565	0.816	0.829	1.011	0.573			
Observed										
22-Oct-05	20.	.6 55.6	21.1	10.9	3.5	2.7	16.1	0.5	130.5	
2015 Predicted										
22-Oct-05	11.	.6 31.7	11.9	8.9	2.9	2.7	9.2	0.5	79.0	0.61
Episode Day Using	Ratio	Design	Future De	sign						
RRF 22-Oct-05	0.60	64.8	38.6							

Episode Day Using	Ratio	Design	Future Design
Average 4-Q RRF	0.58	64.8	37.4

TABLE V-A-6h

2015 Episode Day Estimated Reduction Ratios to b	e Applied to Wilmington 24-Hour PM2.5 Design
--	--

Episode Day Using RRF 22-Oct-05	<u>NH</u> 0.7		<u>SO4</u> 0.7	<u>OC</u> 0.8	<u>EC</u> 0.8	<u>OTR</u> 0.6	<u>Water</u>	<u>Blank</u>	<u>Mass</u>	<u>Ratio</u>
Observed 22-Oct-05 2015 Predicted	7.3	3 14	14.7	5.5	1.7	2.3	7.4	0.5	52.8	
22-Oct-05	5.4	11.2	9.5	4.1	1.4	1.4	5.1	0.5	38.2	0.72
Episode Day Using Average 4-Q RRF	<u>NH</u> 0.6		<u>SO4</u> 0.6	<u>OC</u> 0.8	<u>EC</u> 0.8	OTR 1	Water 0.6	<u>Blank</u>	<u>Mass</u>	<u>Ratio</u>
Observed 22-Oct-05 2015 Predicted	7.3	8 14	14.7	5.5	1.7	2.3	7.4	0.5	52.8	
22-Oct-05	4.1	. 8	8.3	4.5	1.4	2.4	4.2	0.5	32.8	0.62
Episode Day Using	Ratio	Design	Future Des	Future Design						
RRF 22-Oct-05	0.68	44.6	30.3		Design lgbh					
Episode Day Using	Ratio	Design	Future Design		Design					
Average 4-Q RRF	0.65	44.6	28.8		lgbh					

ATTACHMENT-2

Model Performance Statistics

SubRegional Descriptions

Site	003 Contains the Following Sites: Site Description	Xcell		XPos(km)	YPos(km)
0069	Burbank	53		-27.848	
0088	Pasadena	56		-11.205	457.021
0074	Reseda		48	-48.000	463.105
0090	Santa Clarita	49		-48.140	483.357
SubRegion	004 Contains the Following Sites:				
Site	Site Description		Ycell	XPos(km)	YPos(km)
0060	Azusa	60		6.981	456.113
4164	Banning Airport	79	42	104.459	433.527
5181	Crestline	72	49	66.383	468.606
4158	Elsinore	71	37	60.525	405.907
5197	Fontana	68	40	46.811	453.081
0591	Glendora	61	47	13.487	457.010
5212	Mira Loma	67		42.938	438.915
4149	Perris	72	39	69.051	417.376
0075	Pomona	63	45	22.598	448.610
5204	Redlands	74	45	76.256	448.189
4144	Rubidoux	69		52.093	442.557
5203	San Bernardino		46	65.874	
5175	Upland	65	46	31.687	452.125
Site	005 Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
3176	Anaheim	60		7.422	421.645
0087	Los Angeles	54	45	-22.302	445.563
3195	Costa Mesa	60	37	6.793	405.626
3177	La Habra	59	42	4.359	432.978
0820	LAXH	51	42	-36.352	433.685
0072	Long Beach	55	40	-17.171	421.903
	Lynwood	55	42	-19.237	432.753
3812	Mission Viejo	64		29.671	400.791
0085	Pico Rivera		44	-5.273	
0091	West Los Angeles	52	45	-34.796	447.031
	009 Contains the Following Sites:				
Site	Site Description		Ycell	XPos(km)	. ,
4157	Indio Jackson	91		162.217	411.293
4137	Palm Springs	85	40	132.826	423.133

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 214 (08/02) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
	SubRegion Subregional Peak:	23	12.3	15		15 15	0 0	0.74 0.77	-0.9 (at d	1.3 cell 50	-0.10 x 53)	0.17	0.61
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	2 5 5 11			7.6 7.0 8.6 9.1	13	0 -2 0 0	1.11 1.06 0.94 0.74	0.1 0.1 0.0 -0.3	0.1 0.1 0.1 0.3	-1.11 -0.44 -0.44 -0.20	1.93 0.77 0.77 0.35	-99.00 0.06 0.65 0.88

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 214 (08/02) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations --------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Value Time Value Time Site Description No Lag Ratio Bias Error Bias Error (r) _____ ____ _____ ___ ____ ____ ____ ____ ____ _ ____ ____ _____ 0004 SubRegion 81 11.4 15 9.9 16 1 0.87 -0.2 1.3 -0.01 0.16 0.20 Subregional Peak: 10.2 16 0.89 (at cell 74 x 44) 1 0060 6.1 15 7.5 15 0 1.23 0.2 0.2 -0.86 13.06 -99.00 Azusa 1 2 11.4 15 7.6 17 0.66 -0.2 0.2 -0.09 1.31 0.25 4164 Banning Airport 10 8.7 17 5181 Crestline 15 9.3 17 0.94 -0.2 0.2 -0.06 0.87 0 0.82 7 4158 Elsinore 9.4 14 6.8 16 2 0.73 -0.3 0.3 -0.12 1.87 0.27 5 5197 Fontana 8.2 15 9.3 15 0 1.14 -0.172.61 0.1 0.1 0.94 0591 Glendora 2 7.0 15 8.7 15 0 1.24 0.2 0.2 -0.43 6.53 -99.00 5212 7 8.4 14 9.4 14 0 1.11 0.1 0.1 -0.12 1.87 0.93 Mira Loma Perris 7 7.9 13 8.8 16 3 1.11 1.87 4149 0.1 0.2 -0.12 -0.38 2 7.4 14 0075 Pomona 9.2 14 0 1.24 0.2 0.2 -0.43 6.53 -99.00 5204 Redlands 8 8.5 15 9.9 16 1 1.17 0.95 0.1 0.1 -0.11 1.63 7 Rubidoux 8.4 15 9.6 15 0 1.14 -0.12 1.87 0.97 4144 0.1 0.1 8.4 16 9.5 16 0 1.13 5203 San Bernardino 6 0.1 0.1 -0.14 2.18 0.86 4 8.4 15 9.5 15 0 1.13 0.2 0.2 -0.22 3.26 5175 Upland 0.82

Po	ollutant: 03	(pphm)	Projec	t: CAM2	c v4.4					Simu	ulation 3	ID: df0!	ōa
		ulated for the pairs with obser		-			. ,		6.0 (pp	ohm)			
				Peał	c Concen	itrati	ons		Con	mparisons	s with Ol	oservat:	ions
Site	Description	No	Obser [.] Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0009	SubRegion Subregional Pea	4.k:	7.4	20	4.0 8.0	20 17	 0 _3	0.54 1.09	-3.1 (at c	3.1 cell 81	-0.47 x 44)	0.47	0.91
4157 4137	Indio Jacksor Palm Springs	2 2	6.3 7.4		3.3 4.0	22 20	1 0	0.52 0.54	-0.5 -0.4	0.5 0.4	-0.94 -0.94	0.94 0.94	-99.00 -99.00

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 215 (08/03) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concer	itrati	ons		Con	parisons	s with Ok	servat	ions
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
0003	SubRegion Subregional Peak:	20	9.9	15	9.2 9.6	14 15	-1 0	0.93 0.97	0.2 (at c	0.9 cell 52	0.04 x 53)	0.13	0.44
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	2 4 6 8	7.2 7.6	13 14 13 15	8.5 8.1 8.5 9.2	15	1 1 3 -1	1.27 1.12 1.12 0.93	0.2 0.1 0.1 -0.1	0.2 0.1 0.1 0.1	0.44 0.22 0.15 0.11	1.26 0.63 0.42 0.31	-99.00 0.84 -0.20 0.88

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 215 (08/03) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peal	c Concer	ntrati	ons		Cor	mparison	s with Oł	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	Lized Error	(r)
0004	SubRegion Subregional Peak:	84	9.9	16	10.4 10.5	15 15	-1 -1	1.05 1.06	0.8 (at o	1.2 cell 73	0.12 x 44)	0.17	0.35
0060 4164	Azusa Banning Airport	3	7.4 9.9	15 16	8.6 8.8	15 17	0	1.16 0.89	0.2	0.2	3.27 1.09	4.76 1.59	1.00 0.56
5181	Crestline	12	9.9 9.6	15	0.0 10.0	16	1	1.04	0.0	0.2	0.82	1.19	0.56
4158	Elsinore	8	8.0	14	8.5	17	3	1.04	0.0	0.1	1.23	1.78	-0.38
5197	Fontana	6	8.0	14	9.2	15	1	1.15	0.2	0.2	1.63	2.38	0.89
0591	Glendora	4	8.0	15	9.2	15	0	1.14	0.2	0.2	2.45	3.57	0.91
5212	Mira Loma	7	8.4	14	9.7	15	1	1.15	0.1	0.1	1.40	2.04	0.84
4149	Perris	б	8.5	14	9.3	16	2	1.10	0.1	0.2	1.63	2.38	-0.21
0075	Pomona	4	7.2	14	9.0	15	1	1.25	0.3	0.3	2.45	3.57	0.70
5204	Redlands	6	8.7	14	10.3	16	2	1.18	0.2	0.2	1.63	2.38	0.56
4144	Rubidoux	7	8.5	14	10.0	15	1	1.18	0.2	0.2	1.40	2.04	0.77
5203	San Bernardino	7	9.3	14	10.4	15	1	1.12	0.2	0.2	1.40	2.04	0.89
5175	Upland	5	7.1	13	9.2	15	2	1.29	0.2	0.2	1.96	2.85	0.71

Pollutant: 03	(pphm)	Project: CAM	x v4.4			Simulation	ID: df05a
Statistics were cal Included were data-		-			6.0 (pphm)	
		Peal	Concentrations		Compa	risons with	Observations
		Observed	Predicted Time	Peak	Mean M	ean Norm	alized

Site	Description	No	Value 7	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0005	SubRegion Subregional Peak:	5	6.6	 19	6.4 9.8		 -6 -5	0.97 1.48	-1.7 (at c	1.8 ell 67	-0.26 x 35)	0.28	-0.95
3176 0820 0091	Anaheim LAXH West Los Angeles	1 2 2	6.1 6.6 6.6	19	6.4 4.5 5.1	18	0 -1 -1	1.05 0.68 0.78	0.0 -0.4 -0.3	0.0 0.4 0.3	-1.31 -0.66 -0.66	1.41 0.71 0.71	-99.00 -99.00 -99.00

Po	llutant: 03	(pphm)		Project	CAM2	x v4.4					Simu	lation 1	ID: df0	ōa	
	stics were calc ded were data-p			-				. ,		6.0 (pp	ohm)				
					- Peal	Concer	ıtrati	ons		Con	parisons	with Ok	oservat	ions	
~ ! .				0bserv		Predi		Time	Peak	Mean	Mean	Normal		<i>(</i>)	
Site	Description		No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)	
0009	SubRegion		5	8.7	19	5.7	18	-1	0.66	-2.2	2.2	-0.31	0.31	0.84	-
	Subregional Pea	k:				8.9	19	0	1.02	(at c	ell 82	x 41)			
4157	Indio Jacksor		1	6.1	21	3.9	21	0	0.63	-0.4	0.4	-1.55	1.55	-99.00	
4137	Palm Springs		4	8.7	19	5.7	18	-1	0.66	-0.3	0.3	-0.39	0.39	0.72	

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 216 (08/04) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concen	trati	ons		Cor	mparison	s with Ok	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	27	14.1	14	10.1 11.2	14 16	0 2	0.72 0.80	-0.7 (at d	1.5 cell 53	-0.05 x 51)	0.16	0.50
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	3 7 8 9	7.7 8.4 10.3 14.1		10.1 9.5 9.7 9.5	14 15 15 16	1 1 1 2	1.31 1.13 0.95 0.68	0.3 0.0 -0.1 -0.2	0.3 0.1 0.1 0.2	-0.46 -0.20 -0.17 -0.15	1.48 0.64 0.56 0.49	-0.32 0.75 0.93 0.84

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 216 (08/04) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observe	ed	Predi	cted	Time	Peak	Mean	Mean	Normal	lized	
Site	Description	No	Value 7	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion	99	11.8	 15	11.6	16	1	0.98	0.3	1.3	0.05	0.17	0.35
	Subregional Peak:				12.0	15	0	1.02	(at d	cell 70	x 42)		
0060	Azusa	5	9.1	14	9.4	15	1	1.03	0.2	0.2	0.92	3.29	0.59
4164	Banning Airport	13	10.8	16	9.1	17	1	0.84	-0.2	0.2	0.35	1.27	0.55
5181	Crestline	12	11.8	15	10.2	16	1	0.87	-0.2	0.2	0.38	1.37	0.86
4158	Elsinore	9	10.5	16	10.1	17	1	0.96	0.1	0.1	0.51	1.83	0.31
5197	Fontana	7	9.4	14	10.9	15	1	1.16	0.1	0.1	0.66	2.35	0.81
0591	Glendora	6	10.2	15	10.0	14	-1	0.98	0.1	0.1	0.77	2.74	0.72
5212	Mira Loma	8	9.4	13	11.4	14	1	1.22	0.1	0.2	0.58	2.06	0.72
4149	Perris	6	9.1	14	11.6	16	2	1.28	0.2	0.2	0.77	2.74	-0.54
0075	Pomona	5	9.0	14	10.2	13	-1	1.13	0.2	0.2	0.92	3.29	0.36
5204	Redlands	7	9.9	15	11.1	16	1	1.12	0.2	0.2	0.66	2.35	0.70
4144	Rubidoux	7	9.7	13	11.5	15	2	1.19	0.2	0.2	0.66	2.35	0.65
5203	San Bernardino	8	10.3	14	10.8	15	1	1.05	0.1	0.1	0.58	2.06	0.91
5175	Upland	6	9.1	16	10.9	14	-2	1.20	0.1	0.2	0.77	2.74	0.48

Po	ollutant: 03	(pphm)	Projec	t: CAM	x v4.4					Sim	ulation	ID: df0	5a
	istics were calc uded were data-p		-	-			. ,		6.0 (p	ohm)			
				Pea	k Concer	ntrati	ons		Cor	mparison	s with O	bservat	ions
Site	Description	No	Obser Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Pea	24 .k:	4 7.2	16	10.0 11.1	13 14	-3 -2	1.38 1.55	-0.2 (at o	1.1 cell 65	-0.02 x 39)	0.17	-0.14
3176 0087 3177 0820 3812 0091	Anaheim Los Angeles La Habra LAXH Mission Viejo West Los Ange	2]]	4 6.7 L 6.5 7 7.2	12 15 13 16 13 16	7.2 7.3 6.5 6.2 10.0 7.9	14	0 -1 0 -4 0 -3	1.03 1.08 1.00 0.86 1.56 1.12	0.0 0.0 -0.2 0.6 0.0	0.1 0.0 0.2 0.6 0.1	-0.15 -0.15 -0.60 -0.09 -0.30 -0.10	1.02 1.02 4.09 0.58 2.05 0.68	0.73 0.53 -99.00 -0.56 -99.00 0.43

Project: CAMx v4.4

Pollutant: 03

(pphm)

	stics were calculated for ded were data-pairs with c								6.0 (pr	ohm)			
				Peak	Concer	itrati	ons		Con	nparisons	with Ob	servat	ions
Site	Description	No	Observed Value Ti		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
0009	SubRegion Subregional Peak:	9	8.7 1	11	7.0 9.8	12 18	1 7	0.80 1.13	-1.1 (at c	1.4 cell 82	-0.14 x 41)	0.19	-0.45
4157 4137	Indio Jackson Palm Springs	2 7	6.3 1 8.7 1		7.0 5.7	12 9	0 -2	1.11 0.66	0.1 -0.2	0.1 0.2	-0.62 -0.18	0.87 0.25	-99.00 0.30

Simulation ID: df05a

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 217 (08/05) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concer	trati	ons		Con	mparison	s with Ok	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	23	12.3	13	10.9 11.4	15 16	2 3	0.89 0.92	-0.5 (at c	1.5 cell 50	-0.02 x 53)	0.17	0.51
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	3 3 7 10	6.6 11.1	14 14 13 13	8.6 8.4 10.6 10.9	14	1 0 1 2	1.18 1.28 0.95 0.89	0.2 0.2 0.0 -0.2	0.2 0.2 0.1 0.2	-0.17 -0.17 -0.07 -0.05	1.33 1.33 0.57 0.40	0.74 0.29 0.65 0.70

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 217 (08/05) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Norma	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion	91	11.9	 15	11.9	 16		1.00	0.0	1.9	0.03	0.24	0.20
	Subregional Peak:				12.0	16	1	1.01	(at d	cell 69	x 43)		
0060	Azusa	1	7.4	13	9.8	13	0	1.32	0.3	0.3	2.39	21.87	-99.00
4164	Banning Airport	12	11.8	16	6.0	17	1	0.51	-0.4	0.4	0.20	1.82	0.57
5181	Crestline	9	11.9	15	9.6	17	2	0.81	-0.1	0.2	0.27	2.43	0.71
4158	Elsinore	9	8.8	11	9.3	17	6	1.06	0.0	0.2	0.27	2.43	-0.44
5197	Fontana	7	10.8	15	11.3	16	1	1.05	0.1	0.2	0.34	3.12	0.49
0591	Glendora	5	7.9	13	11.6	15	2	1.47	0.5	0.5	0.48	4.37	0.31
5212	Mira Loma	7	10.2	14	11.6	15	1	1.14	0.2	0.2	0.34	3.12	0.26
4149	Perris	7	10.1	14	10.9	17	3	1.07	0.1	0.3	0.34	3.12	-0.44
0075	Pomona	4	8.8	14	11.8	15	1	1.34	0.4	0.4	0.60	5.47	0.07
5204	Redlands	9	11.2	14	10.3	17	3	0.92	0.0	0.2	0.27	2.43	0.51
4144	Rubidoux	7	10.5	14	11.9	16	2	1.13	0.2	0.2	0.34	3.12	0.19
5203	San Bernardino	9	11.2	14	10.5	16	2	0.94	0.0	0.2	0.27	2.43	0.60
5175	Upland	5	10.1	15	11.7	15	0	1.15	0.1	0.2	0.48	4.37	0.61

Po	ollutant: 03	(pphm)	Project	CAM:	x v4.4					Simu	lation	ID: df0!	ōa
	istics were calc uded were data-p		-						6.0 (pp	phm)			
				Peal	k Concer	ntrati	ons		Cor	mparisons	s with Ol	oservat	ions
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Pea	1 k:	6.3	12	9.3 10.9	12 14	0 2	1.48 1.72	3.0 (at d	3.0 cell 63	0.48 x 41)	0.48	-99.00
3812	Mission Viejo	1	6.3	12	9.3	12	0	1.48	0.5	0.5	0.48	0.48	-99.00

Pc	llutant: 03	(pphm)	Project	CAM:	x v4.4					Simu	ulation 3	ID: df05	a
		ulated for the 2 airs with observ	-				. ,		6.0 (pp	ohm)			
				- Peal	c Concen	trati	ons		Con	nparisons	s with Ol	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
	SubRegion Subregional Pea	18 k:	11.2	19	5.4 7.6		0 0	0.48 0.68	-3.1 (at c	3.1 cell 82	-0.39 x 41)	0.39	0.21
4157 4137	Indio Jackson Palm Springs	5 13	7.4 11.2	21 19	5.1 5.4	11 19	-10 0	0.69 0.48	-0.3 -0.4	0.3 0.4	-1.39 -0.54	1.39 0.54	-0.71 0.67

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 218 (08/06) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concen	trati	ons		Con	nparison	s with Ok	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
0003	SubRegion Subregional Peak:	37	14.3	13	13.1 13.2	15 15	2 2	0.91 0.92	0.1 (at c	1.9 cell 53	0.04 x 48)	0.21	0.24
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	7 8 9 13		14 15 12 13	13.1 12.6 10.2 9.8	15 16 15 15	1 1 3 2	1.49 1.27 0.93 0.68	0.3 0.2 0.1 -0.2	0.3 0.2 0.1 0.2	0.19 0.17 0.15 0.10	1.10 0.96 0.85 0.59	0.77 0.90 0.73 0.76

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 218 (08/06) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Norma	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004		111	12.7	14	12.7	16	2	1.00	-0.9	1.8	-0.09	0.20	0.49
	Subregional Peak:				13.2	16	2	1.04	(at d	cell 61	x 45)		
0060	Azusa	7	9.7	15	12.0	16	1	1.24	0.2	0.2	-1.47	3.13	0.45
4164	Banning Airport	6	8.2	12	4.7	11	-1	0.58	-0.4	0.4	-1.71	3.66	0.46
5181	Crestline	14	11.9	17	7.9	19	2	0.67	-0.3	0.3	-0.73	1.57	0.38
4158	Elsinore	11	9.6	17	8.6	18	1	0.89	-0.1	0.2	-0.93	1.99	0.35
5197	Fontana	9	12.7	14	10.4	17	3	0.82	-0.2	0.2	-1.14	2.44	0.68
0591	Glendora	8	11.3	13	11.7	17	4	1.04	0.0	0.2	-1.28	2.74	0.47
5212	Mira Loma	9	11.8	16	12.4	16	0	1.05	0.0	0.1	-1.14	2.44	0.58
4149	Perris	4	9.1	12	5.6	13	1	0.62	-0.3	0.3	-2.57	5.48	-0.06
0075	Pomona	8	11.0	16	12.7	16	0	1.15	0.1	0.1	-1.28	2.74	0.67
5204	Redlands	9	8.3	13	9.5	18	5	1.15	0.0	0.2	-1.14	2.44	0.13
4144	Rubidoux	8	11.5	16	12.0	17	1	1.04	0.0	0.2	-1.28	2.74	-0.10
5203	San Bernardino	9	11.5	13	9.0	18	5	0.78	-0.1	0.1	-1.14	2.44	0.06
5175	Upland	9	12.2	15	11.7	17	2	0.96	-0.1	0.2	-1.14	2.44	0.61

ollutant: 03	(pphm)	Project	CAM	x v4.4					Sim	ulation	ID: df0	5a
		-				. ,		6.0 (p	ohm)			
			- Pea	k Concer	itrati	ons		Coi	mparison	s with C	bservat	ions
Description	No					Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
5	23 k:	7.9	15			0	1.59 1.66	3.7 (at	3.9 cell 59	0.56 x 44)	0.59	0.29
Anaheim Los Angeles La Habra Lynwood Mission Viejo	6 7 3 1	7.2 6.6 6.1	14 14 13	11.5 12.5 11.0	14 15 13	0 0 1 0	1.70 1.60 1.90 1.80 1.52	0.7 0.3 0.9 0.8 0.6	0.7 0.4 0.9 0.8	2.14 1.84 4.29 12.86 2.14	2.25 1.93 4.50 13.49 2.25	0.34 0.57 0.80 -99.00 0.54
	uded were data-pa Description SubRegion Subregional Pea Anaheim Los Angeles La Habra	Description No SubRegion 23 Subregional Peak: Anaheim 6 Los Angeles 7 La Habra 3 Lynwood 1	istics were calculated for the 24-hour p uded were data-pairs with observed conce Description No Value SubRegion 23 7.9 Subregional Peak: Anaheim 6 6.9 Los Angeles 7 7.2 La Habra 3 6.6 Lynwood 1 6.1	istics were calculated for the 24-hour period aded were data-pairs with observed concentrat Pea Observed Description No Value Time 	istics were calculated for the 24-hour period of DOY aded were data-pairs with observed concentrations abo Peak Concer Description No Value Time Value 	istics were calculated for the 24-hour period of DOY 218 (uded were data-pairs with observed concentrations above a Peak Concentrati Observed Predicted Description No Value Time Value Time SubRegion 23 7.9 15 12.5 15 Subregional Peak: 13.1 15 Anaheim 6 6.9 13 11.7 13 Los Angeles 7 7.2 14 11.5 14 La Habra 3 6.6 14 12.5 15 Lynwood 1 6.1 13 11.0 13	istics were calculated for the 24-hour period of DOY 218 (08/06) aded were data-pairs with observed concentrations above a thresh Peak Concentrations Observed Predicted Time Description No Value Time Value Time Lag 	istics were calculated for the 24-hour period of DOY 218 (08/06) 2005 aded were data-pairs with observed concentrations above a threshold of Peak Concentrations Observed Predicted Time Peak Description No Value Time Value Time Lag Ratio SubRegion 23 7.9 15 12.5 15 0 1.59 Subregional Peak: 13.1 15 0 1.66 Anaheim 6 6.9 13 11.7 13 0 1.70 Los Angeles 7 7.2 14 11.5 14 0 1.60 La Habra 3 6.6 14 12.5 15 1 1.90 Lynwood 1 6.1 13 11.0 13 0 1.80	istics were calculated for the 24-hour period of DOY 218 (08/06) 2005 aded were data-pairs with observed concentrations above a threshold of 6.0 (pro- Peak Concentrations Con Observed Predicted Time Peak Mean Description No Value Time Value Time Lag Ratio Bias SubRegion 23 7.9 15 12.5 15 0 1.59 3.7 Subregional Peak: 13.1 15 0 1.66 (at of Anaheim 6 6.9 13 11.7 13 0 1.70 0.7 Los Angeles 7 7.2 14 11.5 14 0 1.60 0.3 La Habra 3 6.6 14 12.5 15 1 1.90 0.9 Lynwood 1 6.1 13 11.0 13 0 1.80 0.8	istics were calculated for the 24-hour period of DOY 218 (08/06) 2005 aded were data-pairs with observed concentrations above a threshold of 6.0 (pphm) Peak Concentrations Comparison Observed Predicted Time Peak Mean Mean Description No Value Time Value Time Lag Ratio Bias Error SubRegion 23 7.9 15 12.5 15 0 1.59 3.7 3.9 Subregional Peak: 13.1 15 0 1.66 (at cell 59 Anaheim 6 6.9 13 11.7 13 0 1.70 0.7 0.7 Los Angeles 7 7.2 14 11.5 14 0 1.60 0.3 0.4 La Habra 3 6.6 14 12.5 15 1 1.90 0.9 0.9 Lynwood 1 6.1 13 11.0 13 0 1.80 0.8 0.8	istics were calculated for the 24-hour period of DOY 218 (08/06) 2005 aded were data-pairs with observed concentrations above a threshold of 6.0 (pphm) Peak Concentrations Comparisons with C Observed Predicted Time Peak Mean Mean Norma Description No Value Time Value Time Lag Ratio Bias Error Bias SubRegion 23 7.9 15 12.5 15 0 1.59 3.7 3.9 0.56 Subregional Peak: 13.1 15 0 1.66 (at cell 59 x 44) Anaheim 6 6.9 13 11.7 13 0 1.70 0.7 0.7 2.14 Los Angeles 7 7.2 14 11.5 14 0 1.60 0.3 0.4 1.84 La Habra 3 6.6 14 12.5 15 1 1.90 0.9 0.9 4.29 Lynwood 1 6.1 13 11.0 13 0 1.80 0.8 0.8 12.86	istics were calculated for the 24-hour period of DOY 218 (08/06) 2005 aded were data-pairs with observed concentrations above a threshold of 6.0 (pphm) Peak Concentrations Comparisons with Observat Observed Predicted Time Peak Mean Mean Normalized Description No Value Time Value Time Lag Ratio SubRegion 23 7.9 15 12.5 15 0 1.59 3.7 3.9 0.56 0.59 Subregional Peak: 13.1 15 0 1.66 (at cell 59 x 44) Anaheim 6 6.9 13 11.7 13 0 1.70 0.7 0.7 2.14 2.25 Los Angeles 7 7.2 14 11.5 14 0 1.60 0.3 0.4 1.84 1.93 La Habra 3 6.6 14 12.5 15 1 1.90 0.9 0.9 4.29 4.50 Lynwood 1 6.1 13 11.0 13 0 1.80 0.8 0.8 12.86 13.49

Project: CAMx v4.4

Pollutant: 03

(pphm)

	stics were calculated for ded were data-pairs with c		-				6.0 (pp	ohm)			
			Peak	Concentrati	ons		Con	parisons	s with Ok	oservati	ons
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
	SubRegion Subregional Peak:	10	7.0 11	5.1 11 7.8 19	0 8	0.73 1.11	-1.9 (at c	1.9 cell 82	-0.29 x 41)	0.29	0.42
4157 4137	Indio Jackson Palm Springs	5 5	7.0 11 7.0 10	$5.1 \ 11 \\ 4.6 \ 9$	0 -1	0.73 0.66	-0.3 -0.3	0.3 0.3	-0.58 -0.58	0.58 0.58	0.36 0.61

Simulation ID: df05a

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 219 (08/07) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peał	Concen	trati	ons		Con	mparison	s with Ok	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	29	13.9	13	12.6 13.1	14 14	1 1	0.91 0.94	0.5 (at c	2.1 cell 53	0.09 x 49)	0.23	0.11
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	5 7 7 10	10.3 9.6	12 12 12 13	12.6 12.6 9.7 9.3	14	1 2 2 2	1.26 1.23 1.01 0.67	0.3 0.3 0.1 -0.2	0.3 0.3 0.2 0.2	0.52 0.37 0.37 0.26	1.33 0.95 0.95 0.66	0.90 0.56 0.48 0.77

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 219 (08/07) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Normal	lized	
Site	Description	No	Value '	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion	125	13.4	13	13.9	 15	2	1.04	-0.6	1.9	-0.04	0.20	0.42
	Subregional Peak:				14.0	15	2	1.04	(at c	cell 60	x 47)		
0060	Azusa	6	11.5	13	13.9	15	2	1.21	0.2	0.3	-0.91	4.16	0.01
4164	Banning Airport	15	11.0	15	8.7	18	3	0.79	-0.2	0.2	-0.37	1.66	0.13
5181	Crestline	14	12.9	13	10.3	18	5	0.80	-0.2	0.3	-0.39	1.78	0.02
4158	Elsinore	10	10.6	11	7.7	16	5	0.73	-0.2	0.3	-0.55	2.49	0.14
5197	Fontana	8	12.1	15	12.2	16	1	1.01	-0.1	0.2	-0.68	3.12	0.22
0591	Glendora	8	13.4	13	13.9	15	2	1.04	0.2	0.3	-0.68	3.12	0.32
5212	Mira Loma	11	11.7	14	12.1	15	1	1.04	0.0	0.1	-0.50	2.27	0.76
4149	Perris	6	7.9	14	8.3	15	1	1.05	0.0	0.1	-0.91	4.16	-0.90
0075	Pomona	8	12.5	13	12.9	16	3	1.03	0.1	0.2	-0.68	3.12	0.62
5204	Redlands	11	11.6	13	11.6	17	4	1.00	-0.1	0.1	-0.50	2.27	0.48
4144	Rubidoux	10	11.4	14	12.0	16	2	1.05	0.0	0.1	-0.55	2.49	0.57
5203	San Bernardino	10	13.3	15	11.7	17	2	0.88	-0.1	0.2	-0.55	2.49	0.45
5175	Upland	8	12.3	14	13.2	16	2	1.07	0.1	0.2	-0.68	3.12	0.39

Po	ollutant: 03	(pphm)	Project	CAM	x v4.4					Sim	ulation	ID: df0	ōa
		ulated for the 2 airs with observ	-				. ,		6.0 (pj	phm)			
				- Pea	k Concen	itrati	ons		Coi	mparison	s with Ol	oservat	ions
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Pea	20 k:	8.1	15	10.4 13.3		0 -1	1.28 1.64	2.4 (at o	2.4 cell 58	0.35 x 46)	0.35	0.18
3176 0087 3177 0072 3812	Anaheim Los Angeles La Habra Long Beach Mission Viejo	6 4 1 5	7.3 6.6 6.4 6.1 8.1	12 12 12 12 15	9.5 9.9 10.4 7.5 10.2	12	1 0 3 0 -3	1.30 1.50 1.63 1.23 1.26	0.3 0.4 0.5 0.2 0.3	0.3 0.4 0.5 0.2 0.3	1.18 1.76 1.76 7.05 1.41	1.18 1.76 1.76 7.05 1.41	0.75 0.37 -0.40 -99.00 -0.28

Pc	ollutant: 03	(pphm)	Proj	ect: (CAMx	v4.4				Simulation ID: df05a					
	stics were cald ded were data-p			6.0 (pp	hm)										
				1	Peak	Concen	ıtrati	ons		Comparisons with Observations					
Site	Description	Ν		erved Je Tim		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)	
0009	SubRegion Subregional Pea		8 10	.0 1	8	5.6 9.1		 -8 2	0.56 0.91	-2.6 (at c	2.6 ell 82	-0.35 x 41)	0.35	-0.48	
4157 4137	Indio Jacksor Palm Springs	=	3 7 5 10	.7 2: .0 1		4.9 5.6	16 10	-5 -8	0.63 0.56	-0.4 -0.3	0.4 0.3	-2.10 -0.42	2.10 0.42	-1.00 -0.48	

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 220 (08/08) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concen	trati	ons		Con	nparison	s with Ok	oservati	ons
Site	Description	No	Observe Value 7		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
0003	SubRegion Subregional Peak:	22	11.2	14	11.4 13.5	14 15	0 1	1.01 1.20	1.5 (at c	1.9 cell 52	0.21 x 51)	0.26	0.12
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	5 4 5 8	8.3	13 13 13 14	11.2 11.4 9.2 10.4	14 14 12 13	1 1 -1 -1	1.41 1.37 0.87 0.93	0.4 0.5 0.0 0.1	0.4 0.5 0.1 0.1	0.94 1.17 0.94 0.59	1.14 1.42 1.14 0.71	0.42 -0.15 0.88 0.61

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 220 (08/08) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Normal	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion	88	10.2	 14	13.0	 15	1	1.28	2.1	2.3	0.27	0.31	0.52
	Subregional Peak:				13.5	16	2	1.32	(at d	cell 59	x 49)		
0060	Azusa	4	8.4	13	12.7	15	2	1.51	0.6	0.6	5.97	6.76	0.06
4164	Banning Airport	7	7.7	11	6.3	10	-1	0.82	-0.1	0.1	3.41	3.87	0.56
5181	Crestline	17	9.4	17	10.7	18	1	1.14	0.1	0.2	1.40	1.59	0.79
4158	Elsinore	8	8.2	15	8.8	17	2	1.07	0.0	0.1	2.98	3.38	-0.30
5197	Fontana	5	9.4	15	12.7	16	1	1.35	0.5	0.5	4.77	5.41	0.21
0591	Glendora	5	9.9	14	12.8	15	1	1.29	0.5	0.5	4.77	5.41	0.04
5212	Mira Loma	9	10.2	14	12.6	15	1	1.24	0.2	0.2	2.65	3.01	0.78
4149	Perris	5	8.1	17	10.5	17	0	1.30	0.3	0.3	4.77	5.41	0.52
0075	Pomona	6	9.9	14	12.9	14	0	1.30	0.5	0.5	3.98	4.51	0.88
5204	Redlands	5	7.7	16	11.5	17	1	1.50	0.4	0.4	4.77	5.41	0.84
4144	Rubidoux	6	10.1	14	12.6	16	2	1.25	0.2	0.3	3.98	4.51	0.66
5203	San Bernardino	6	9.6	15	11.7	16	1	1.22	0.5	0.5	3.98	4.51	0.16
5175	Upland	5	9.5	14	13.0	15	1	1.37	0.4	0.4	4.77	5.41	0.75

Po	ollutant: 03	tant: 03 (pphm) Project: CAMx v4.4							Simulation ID: df05a					
	istics were calc uded were data-p		-				. ,		6.0 (p	ohm)				
				- Pea	k Concer	itrati	ons		Coi	mparison	s with O	bservat	ions	
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)	
0005	SubRegion Subregional Pea	15 k:	8.0	16	10.5 11.8	14 14	-2 -2	1.31 1.48	1.2 (at 0	1.9 cell 58	0.20 x 46)	0.29	-0.21	
3176 0087 3177 3812 0091	Anaheim Los Angeles La Habra Mission Viejo West Los Ange		8.0 6.4 6.5 7.5 6.7	15	8.3 7.8 9.0 10.5 8.1	14 12	-2 -1 0 1 -1	1.04 1.22 1.38 1.40 1.20	$0.0 \\ 0.1 \\ 0.4 \\ 0.6 \\ 0.1$	0.2 0.1 0.4 0.6 0.1	0.60 1.50 1.50 1.00 1.00	0.88 2.19 2.19 1.46 1.46	-0.22 -99.00 -99.00 0.42 -0.01	

P	ollutant: 03	(pphm)	Project	CAM2	v4.4				Simulation ID: df05a						
		ulated for the 24 pairs with observe		6.0 (pp	hm)										
				- Peał	Concer	ntrati	ons		Comparisons with Observations						
			Observ			lcted	Time	Peak	Mean	Mean	Normal	lized			
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r) 		
0009	SubRegion	5	6.8	13	6.3	13	0	0.92	-0.7	0.7	-0.11	0.11	0.83		
	Subregional Peak: 8.0 11 -2 1.1						1.17	7 (at cell 105 x 13)							
4137	Palm Springs	5	6.8	13	6.3	13	0	0.92	-0.1	0.1	-0.11	0.11	0.83		

 Pollutant: 03 (pphm)
 Project: CAMx v4.4
 Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 221 (08/09) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Pea	k Concentrati		Comparisons with Observations					
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	 7	7.2 13	9.8 13 12.2 15	0 2	1.36 1.69	2.4 (at c	2.4 cell 51	0.37 x 51)	0.37	0.41
0069 0088 0074	Burbank Pasadena Reseda	3 3 1	7.2 13 6.3 13 6.3 13	9.8 14 9.0 14 9.8 13	1 1 0	1.36 1.42 1.55	0.3 0.4 0.6	0.3 0.4 0.6	0.86 0.86 2.59	0.86 0.86 2.59	-0.16 -0.03 -99.00

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 221 (08/09) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Norma	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion	81	11.8	13	13.0	15	2	1.10	2.0	2.5	0.28	0.33	0.20
	Subregional Peak:				13.2	15	2	1.12	(at d	cell 74	x 46)		
0060	Azusa	2	6.5	14	10.4	13	-1	1.60	0.6	0.6	11.46	13.28	-99.00
4164	Banning Airport	9	9.0	12	10.8	16	4	1.20	0.0	0.1	2.55	2.95	0.41
5181	Crestline	13	11.8	13	12.6	16	3	1.07	0.0	0.2	1.76	2.04	0.33
4158	Elsinore	6	7.4	13	9.2	16	3	1.25	0.3	0.3	3.82	4.43	-0.73
5197	Fontana	6	8.5	12	12.0	15	3	1.42	0.4	0.4	3.82	4.43	0.55
0591	Glendora	3	7.7	14	11.0	14	0	1.43	0.4	0.4	7.64	8.85	0.38
5212	Mira Loma	8	9.0	12	11.9	14	2	1.33	0.4	0.4	2.86	3.32	0.38
4149	Perris	4	9.3	14	11.6	16	2	1.24	0.3	0.3	5.73	6.64	-0.28
0075	Pomona	5	7.4	13	11.3	14	1	1.53	0.5	0.5	4.58	5.31	0.79
5204	Redlands	6	10.8	13	13.0	15	2	1.20	0.4	0.4	3.82	4.43	0.38
4144	Rubidoux	7	9.5	12	12.4	15	3	1.30	0.4	0.4	3.27	3.79	0.18
5203	San Bernardino	6	10.5	13	12.8	15	2	1.22	0.4	0.4	3.82	4.43	0.17
5175	Upland	б	8.1	14	11.9	14	0	1.47	0.5	0.5	3.82	4.43	0.68

Po	llutant: 03	(pphm)	Project	t: CAM	x v4.4					Simu	ulation 3	ID: df05	ōa
		culated for the solution of th	-	-			. ,		6.0 (pp	phm)			
				Pea	k Concen	ntrati	ons		Con	mparisons	s with Ob	oservati	ions
Site	Description	No	Obser Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
	SubRegion Subregional Pea	4 ak:	7.1	13	10.6 11.9	13 15	0 2	1.50 1.68	2.8 (at c	2.8 cell 67	0.42 x 36)	0.42	0.91
3176 3812	Anaheim Mission Viejo	2 2	6.1 7.1	13 13	7.9 10.6		2 0	1.30 1.50	0.3 0.6	0.3 0.6	0.85 0.85	0.85 0.85	-99.00 -99.00

Pollutant: (03 (pphm)		Project	CAM2	x v4.4				Simulation ID: df05a					
	e calculated for data-pairs with o		-				. ,		6.0 (pp	ohm)				
				- Peał	c Concer	ntrati	ons		Comparisons with Observations					
Site Descript	tion	No	Observ Value		Predi Value		Time Lag		Mean Bias	Mean Error	Normal Bias	ized Error	(r)	
0009 SubRegion Subregion		 5	7.3	12	7.2 11.1		 -1 5	0.99 1.51	 -0.5 (at c	0.9 ell 81	-0.06 x 43)	0.13	-0.43	
4137 Palm Spi	rings	5	7.3	12	7.2	11	-1	0.99	-0.1	0.1	-0.06	0.13	-0.43	

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba	unk	53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a													
	stics were calculated for th ded were data-pairs with obs						6.0 (pphm); Averaged over 8 hours						
			Peak	Concentrati	ons		Comparisons with Observations						
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag		Mean Mean Normalized Bias Error Bias Error (r)						
0003	SubRegion Subregional Peak:	2	9.4 10	7.5 11 7.9 11	1 1	0.79 0.84	-0.9 1.1 -0.09 0.12 -99.00 (at 51 x 54) NSte: 0090; NSPk: 7.5						
	* * * Model Performance Evaluation * * *												
P	Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a												
	Statistics were calculated for the 24-hour period of DOY 214 (08/02) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours												
			Peał	Concentrati	ons		Comparisons with Observations						
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag		Mean Mean Normalized Bias Error Bias Error (r)						
0004	SubRegion Subregional Peak:	10	8.9 13	8.1 11 8.3 11	 -2 -2	0.91 0.93	0.0 1.0 0.02 0.13 -100.09 (at 74 x 44) NSte: 5204; NSPk: 8.2						
	*	* *	Model Perform	mance Evaluat	ion *	* *							
P	ollutant: O3 (pphm)		Project: CAM>	< v4.4			Simulation ID: df05a						
	stics were calculated for th ded were data-pairs with obs		-				6.0 (pphm); Averaged over 8 hours						
	Peak Concentrations Comparisons with Observations												
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Mean Normalized Bias Error Bias Error (r)						
0003	SubRegion Subregional Peak:	2	8.8 10	7.9 10 8.3 11	0 1	0.90 0.94	0.1 1.0 0.03 0.13 -99.00 (at 51 x 53) NSte: 0090; NSPk: 7.9						

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a												
Statistics were calculated for Included were data-pairs with					6.0 (pphm); Averaged over 8 hours							
		Pea	ak Concentrati	lons	Comparisons with Observations							
Site Description	No Va	served lue Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)							
0004 SubRegion Subregional Peak:	11	8.5 13	9.0 14 9.0 11	1 1.05 -2 1.06	0.9 1.1 0.13 0.16 -130.65							
* * * Model Performance Evaluation * * *												
Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a												
Statistics were calculated for the 24-hour period of DOY 215 (08/03) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours												
		Pea	ak Concentrati	lons	Comparisons with Observations							
Site Description	No Va	served lue Time		Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)							
0009 SubRegion Subregional Peak:		6.3 15	5.9 9 7.8 17	-6 0.93	-0.4 0.4 -0.07 0.07 -99.00							
	* * * Moc	el Perfor	mance Evaluat	ion * * *								
Pollutant: 03 (pphm)	Pro	ject: CAM	1x v4.4		Simulation ID: df05a							
Statistics were calculated for Included were data-pairs with					6.0 (pphm); Averaged over 8 hours							
		Pea	ak Concentrati	lons	Comparisons with Observations							
Site Description	No Va		Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)							
0003 SubRegion Subregional Peak:		0.8 10	8.3 10 10.0 14	0 0.77 4 0.93	-1.0 1.2 -0.09 0.13 -101.96							

Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df05a		
Statistics were calculated for the 24-hour period of DOY 216 (08/04) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours					
	Pe	ak Concentrations	Comparisons with Observations		
Site Description	Observed No Value Time	Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r) 		
0004 SubRegion Subregional Peak:	13 10.1 12	9.6 10 -2 0.94 10.0 10 -2 0.99	0.7 1.3 0.10 0.16 -123.56 (at 70 x 41) NSte: 4149; NSPk: 9.7		
* * * Model Performance Evaluation * * *					
Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df05a		
Statistics were calculated for the 24-hour period of DOY 216 (08/04) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours					
	Pe	ak Concentrations	Comparisons with Observations		
Site Description		Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)		
0005 SubRegion Subregional Peak:	2 6.7 10		-1.0 1.0 -0.15 0.15 -99.00 (at 67 x 36) NSte: 3812; NSPk: 8.0		
* * * Model Performance Evaluation * * *					
Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df05a		
Statistics were calculated for the 24-hour period of DOY 216 (08/04) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours					
	Ре	ak Concentrations	Comparisons with Observations		
Site Description		Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)		
0009 SubRegion Subregional Peak:	1 7.0 9	6.0 12 3 0.85 7.8 15 6 1.12	-1.0 1.0 -0.15 0.15 -99.00 (at 82 x 41) NSte: 4137; NSPk: 5.9		

Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df05a		
Statistics were calculated for the 24-hour period of DOY 217 (08/05) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours					
	Pea	ak Concentrations	Comparisons with Observations		
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)		
0003 SubRegion Subregional Peak:	2 11.0 10	9.1 11 1 0.83 9.9 15 5 0.91	-0.8 1.0 -0.07 0.10 -99.00 (at 53 x 51) NSte: 0069; NSPk: 7.1		
* * * Model Performance Evaluation * * *					
Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df05a		
Statistics were calculated for the 24-hour period of DOY 217 (08/05) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours					
	Pea	ak Concentrations	Comparisons with Observations		
Site Description		Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r) 		
0004 SubRegion Subregional Peak:	12 9.9 12	9.9 11 -1 1.00 10.1 11 -1 1.02	0.5 1.3 0.08 0.17 -60.13 (at 70 x 43) NSte: 4144; NSPk: 9.9		
* * * Model Performance Evaluation * * *					
Pollutant: 03 (pphm)	Project: CAI	Mx v4.4	Simulation ID: df05a		
Statistics were calculated for the 24-hour period of DOY 217 (08/05) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours					
	Pea	ak Concentrations	Comparisons with Observations		
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)		
0009 SubRegion Subregional Peak:	2 7.9 13	5.0 9 -4 0.63 6.0 16 3 0.76	-2.1 2.1 -0.29 0.29 -99.00 (at 82 x 41) NSte: 4137; NSPk: 4.8		

Po	ollutant: 03 (p	phm)	Project: CAM	x v4.4			Simulation ID: df05a		
	stics were calculat ded were data-pairs						6.0 (pphm); Averaged over 8 hours		
			Peal	<pre>Concentrati</pre>	ons		Comparisons with Observations		
Site	Description		Observed Value Time			Peak Ratio	Mean Mean Normalized Bias Error Bias Error (r)		
0003		4	11.8 10	10.2 11 10.7 13	1	0.86	0.4 1.9 0.08 0.21 -111.46 (at 53 x 49) NSte: 0069; NSPk: 10.2		
		* * *	Model Perform	nance Evaluat	ion * *	* *			
Po	ollutant: 03 (p	phm)	Project: CAM	x v4.4			Simulation ID: df05a		
	Statistics were calculated for the 24-hour period of DOY 218 (08/06) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours								
			Peal	<pre>Concentrati</pre>	ons		Comparisons with Observations		
Site	Description		Observed Value Time		Lag	Ratio	Mean Mean Normalized Bias Error Bias Error (r)		
0004	SubRegion Subregional Peak:	13	11.0 11		0	0.91	-0.3 1.1 -0.02 0.13 -46.49		
		* * *	Model Perform	mance Evaluat	ion * *	* *			
Po	ollutant: 03 (p	phm)	Project: CAM	x v4.4			Simulation ID: df05a		
	stics were calculat ded were data-pairs						6.0 (pphm); Averaged over 8 hours		
			Peal	<pre>Concentrati</pre>	ons		Comparisons with Observations		
Site	Description	No				Ratio	Mean Mean Normalized Bias Error Bias Error (r)		
0005	SubRegion Subregional Peak:		6.6 11	10.3 10 10.7 10	 -1 -1	1.56 1.61	2.9 2.9 0.44 0.44 -99.00 (at 62 x 41) NSte: 3176; NSPk: 10.1		

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a									
Statistics were calculated for the 24-hour period of DOY 218 (08/06) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours									
Peak Concentrations Comparisons with Ob									
Site Description			Predicted alue Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)				
0009 SubRegion Subregional Peak:	2 6	.3 8	5.0 9 6.6 18	1 0.79 10 1.04	-1.4 1.4 -0.22 0.22 -99.00 (at 82 x 41) NSte: 4137; NSPk: 4.8				
* * * Model Performance Evaluation * * *									
Pollutant: 03 (pphm)	Proj	ect: CAMx v	4.4		Simulation ID: df05a				
	Statistics were calculated for the 24-hour period of DOY 219 (08/07) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours								
		Peak C	oncentratio	ons	Comparisons with Observations				
Site Description		erved ue Time V		Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)				
0003 SubRegion Subregional Peak:	4 11		10.6 10 11.2 11	0 0.96 1 1.02	1.0 2.3 0.15 0.27 -66.80 (at 54 x 49) NSte: 0069; NSPk: 10.6				
*	* * Mode	l Performan	ce Evaluati	ion * * *					
Pollutant: O3 (pphm)	Proj	ect: CAMx v	4.4		Simulation ID: df05a				
Statistics were calculated for t Included were data-pairs with ob					6.0 (pphm); Averaged over 8 hours				
		Peak C	oncentratio	ons	Comparisons with Observations				
Site Description		ue Time V	Predicted alue Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)				
0004 SubRegion Subregional Peak:		.4 10	11.0 10 11.0 10	0 0.96 0 0.96	-0.3 1.3 -0.02 0.13 -67.69 (at 61 x 47) NSte: 0591; NSPk: 11.0				

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a										
	Statistics were calculated for the 24-hour period of DOY 219 (08/07) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours									
Peak Concentrations Comparisons with Observatio										
Site Description	Observed No Value Time	Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)							
0005 SubRegion Subregional Peak:	2 6.7 10	8.9 9 -1 1.33 10.5 10 0 1.56	1.9 1.9 0.29 0.29 -99.00							
*	* * * Model Performance Evaluation * * *									
Pollutant: 03 (pphm)	Project: CAN	Mx v4.4	Simulation ID: df05a							
Statistics were calculated for the 24-hour period of DOY 219 (08/07) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours										
	Pea	ak Concentrations	Comparisons with Observations							
Site Description	Observed No Value Time	Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r) 							
	2 7.7 14		-1.8 1.8 -0.25 0.25 -99.00							
*	* * Model Perfor	rmance Evaluation * * *								
Pollutant: 03 (pphm)	Project: CAI	Mx v4.4	Simulation ID: df05a							
	Statistics were calculated for the 24-hour period of DOY 220 (08/08) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours									
	Pea	ak Concentrations	Comparisons with Observations							
Site Description	Observed No Value Time		Mean Mean Normalized Bias Error Bias Error (r)							
0003 SubRegion Subregional Peak:	4 8.5 9	9.5 10 1 1.12 12.0 13 4 1.41	1.8 1.8 0.26 0.26 -179.28 (at 58 x 49) NSte: 0088; NSPk: 9.4							

Pollutant: 03 (pphm)	Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a									
	Statistics were calculated for the 24-hour period of DOY 220 (08/08) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours									
	Comparisons with Observations									
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)								
0004 SubRegion 1: Subregional Peak:		2.7 2.8 0.39 0.39 -85.14								
* *	* * * Model Performance Evaluation * * *									
Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a								
Statistics were calculated for the 24-hour period of DOY 220 (08/08) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours										
	Peak Concentrations	Comparisons with Observations								
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)								
	6.5 11 6.8 9 -2 1.05 9.9 11 0 1.53	0.3 0.3 0.05 0.05 -99.00								
* *	* Model Performance Evaluation * * *									
Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a								
	24-hour period of DOY 220 (08/08) 2005 red concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours								
	Peak Concentrations	Comparisons with Observations								
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)								
0009 SubRegion : Subregional Peak:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 0.2 0.04 0.04 -99.00 (at 82 x 41) NSte: 4137; NSPk: 6.2								

Pollutant: 03 (pphm)	Project: CAM	Simulation ID: d	Simulation ID: df05a						
Statistics were calculated for Included were data-pairs with				8 hours					
Peak Concentrations Comparisons with Observations									
Site Description	Observed No Value Time	5	tio Bias Error Bias Err	l cor (r)					
0004 SubRegion Subregional Peak:	11 10.8 9	11.3 10 1 1	05 2.5 2.6 0.35 0.3 .06 (at 74 x 45) NSte: 5204; N	86 -86.25					
	* * * Model Perfor	rmance Evaluation * * *							
Pollutant: 03 (pphm)	Pollutant: O3 (pphm) Project: CAMx v4.4 Simulation ID: df05a								
			6.0 pphm for DOY 214 through 2 0 Nearest Site: 4158	221					
	Obser	rved	Simulated						
Site Site ID Description		DOY DOY DOY Sit 216 217 218 Av	rg. 214 215 216 217 218 Ra	ax. Max. Max. Atio Bias Error					
	* * * Model Perfor	rmance Evaluation * * *							
Pollutant: 03 (pphm)	Project: CAN	Mx v4.4	Simulation ID: d	lf05a					
			6.0 pphm for DOY 214 through 2 4 Nearest Site: 0090	221					
	Obser	rved	Simulated						
Site Site ID Description	Site DOY DOY Avg. 214 215	216 217 218 Av	rg. 214 215 216 217 218 Ra	ax. Max. Max. Atio Bias Error					

Po	llutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a					
Subreg	Subregion 0002 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 214 through 221 Unpaired Subregional Maximum of 8.6 at Cell 49 x 52 Nearest Site: 0090							
	Observed Simulated							
Site ID 	Site Description		18 Avg. 214 215 216 217 218 Ratio Bias Error					
	* * * Model Performance Evaluation * * *							
Po	llutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a					
Subreg			ons above 6.0 pphm for DOY 214 through 221 1 54 x 50 Nearest Site: 0069					
		Observed	Simulated					
Site ID	Site Description	Site DOY DOY DOY DOY Avg. 214 215 216 217	18 Avg. 214 215 216 217 218 Ratio Bias Error					
0069 0088 0074 0090	Burbank Pasadena	7.35.15.45.95.47.55.65.87.05.37.96.76.69.18.8	7.7 8.1 6.1 6.9 7.6 7.0 10.0 1.35 0.35 0.35 6.6 8.1 6.1 6.4 7.3 7.1 10.2 1.23 0.25 0.25 6.6 8.4 6.9 7.7 8.3 9.0 9.4 1.03 0.07 0.10					
		* * Model Performance Eval	tion * * *					
Pol	llutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a					
Subreg			ons above 6.0 pphm for DOY 214 through 221 l 69 x 43 Nearest Site: 4144					
		Observed	Simulated					
Site ID 	Site Description							
0060 4164 5181 4158 5197 0591 5212 4149 0075 5204 4144 5203 5175	Azusa Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Perris Pomona Redlands Rubidoux San Bernardino Upland	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.7 7.0 6.5 7.0 7.3 5.6 6.5 1.00 -0.14 0.18 5 8.8 8.0 9.0 8.4 8.8 7.4 0.90 -0.09 0.15 7.9 7.6 6.1 7.6 9.0 7.5 7.3 0.97 0.01 0.13 0.90 7.4 8.1 8.6 8.7 8.5 0.99 0.14 0.21 6 9.1 7.0 7.4 8.5 9.0 9.7 1.14 0.24 0.24 2 9.4 7.8 8.2 9.1 9.7 9.9 1.01 0.13 0.14 1 8.5 7.2 7.9 9.6 8.3 8.3 1.29 0.25 0.25 1 9.0 6.9 7.2 8.0 8.8 10.0 1.12 0.30 0.30 3 9.2 8.1 8.8 9.2 8.8 7.9 1.09 0.17 0.20 8 9.5 7.9 8.6 9.4 9.9 9.4 1.03 0.17 0.18 9.2 7.8 8.8 8.9 9.1 8.0 0.95 0.11 0.19					

Pollutant: 03 Project: CAMx v4.4 Simulation ID: df05a (pphm) Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 214 through 221 Subregion 0005 Unpaired Subregional Maximum of 9.3 at Cell 66 x 42 -- Nearest Site: 5212 - - - - - Observed - - - - -- - - - - Simulated - - - - -Site DOY Site Site Site Max. Max. Max. ID 214 215 216 217 218 Avg. 214 215 216 217 218 Description Avq. Ratio Bias Error _____ ___ ___ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ ___ ____ _ _ _ ___ _ _ _ _ _ _ Anaheim 3176 6.5 4.9 5.1 5.8 5.2 5.9 7.2 5.9 5.8 5.9 7.6 10.0 1.54 0.15 0.15 Los Angeles 6.3 4.5 4.7 5.6 3.7 6.3 6.2 4.9 5.3 5.5 5.5 8.4 0087 1.33 0.33 0.33 0820 LAXH 6.5 4.8 5.5 6.5 4.1 4.7 5.7 4.8 5.3 5.1 5.4 7.6 1.17 -0.21 0.21 3812 Mission Viejo 6.7 4.5 4.5 5.0 4.8 6.6 8.5 6.7 7.1 8.3 8.5 10.3 1.54 0.44 0.44 0091 West Los Angeles 6.7 4.9 5.9 6.7 4.3 5.3 6.6 5.3 5.8 6.1 6.2 8.8 1.32 -0.10 0.10 * * * Model Performance Evaluation * * * Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a Subregion 0006 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 214 through 221 Unpaired Subregional Maximum of 9.4 at Cell 80 x 18 -- Nearest Site: 4158 - - - - Observed - - - - -- - - - - Simulated - - - - -Site Site Site DOY DOY DOY DOY DOY Site DOY DOY DOY DOY DOY Max. Max. Max. ID Description Avg. 214 215 216 217 218 Ava. 214 215 216 217 218 Ratio Bias Error _____ ___ --- --- --- ---_ _ _ _ ____ ___ ___ ____ ___ _ _ _ _ * * * Model Performance Evaluation * * * Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a Subregion 0007 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 214 through 221 Unpaired Subregional Maximum of 6.5 at Cell 40 x 66 -- Nearest Site: 0090 ---- Simulated ----- - - - Observed - - - - -Site Site Site DOY DOY DOY DOY DOY Site DOY DOY DOY DOY DOY Max. Max. Max. Description 214 215 216 217 218 TD Avg. 214 215 216 217 218 Avg. Ratio Bias Error ---- ---_ _ _ _ _ _ ____ ___ _ _ _ ____ ___ ___ _ _ _ ____ __ ___ * * * Model Performance Evaluation * * * Pollutant: 03 Simulation ID: df05a (pphm) Project: CAMx v4.4 Subregion 0008 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 214 through 221 Unpaired Subregional Maximum of 7.4 at Cell 70 x 58 -- Nearest Site: 5181

				Obser	ved					Simul	ated				
Site ID	Site Description	Site Avg.	DOY 214	DOY 215	DOY 216	DOY 217	DOY 218	Site Avg.	-	DOY 215	-	DOY 217	DOY 218	Max. Ratio	Max. Error

Pollutant: 03	(pphm)	Project: CAMx v4.4	Simulation ID: df05a
---------------	--------	--------------------	----------------------

Subregion 0009 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 214 through 221 Unpaired Subregional Maximum of 7.7 at Cell 91 x 41 -- Nearest Site: 4157

(Observed			Simulated
---	----------	--	--	-----------

Site	Site	Site	DOY	DOY	DOY	DOY	DOY	Site	DOY	DOY	DOY	DOY	DOY	Max. Max	. Max.
ID	Description	Avg.	214	215	216	217	218	Avg.	214	215	216	217	218	Ratio Bia	s Error
4157	Indio Jackson	6.2	4.4	4.6	5.8	6.1	6.3	5.5	4.6	5.3	6.6	5.0	5.0	1.06 -0.2	9 0.19
4137	Palm Springs	6.9	6.0	6.3	7.0	7.9	6.2	5.5	4.5	5.9	6.0	4.8	4.7	0.85 -0.2	9 0.20

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba	unk	53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

Pollutant:	03	(pphm)
------------	----	--------

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 217 (08/04) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Normal	ized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0003	SubRegion	22	9.9	15	6.7	13	-2	0.68	-2.0	2.0	-0.26	0.26	0.41
	Subregional Peak:				8.5	15	0	0.86	(at c	ell 53	x 55)		
0069	Burbank	4	7.2	14	5.9	13	-1	0.82	-0.2	0.2	-1.44	1.44	0.77
0088	Pasadena	4	7.1	14	5.2	14	0	0.73	-0.3	0.3	-1.44	1.44	0.85
0074	Reseda	7	8.0	16	6.4	12	-4	0.80	-0.3	0.3	-0.82	0.82	0.43
0090	Santa Clarita	7	9.9	15	6.7	13	-2	0.68	-0.3	0.3	-0.82	0.82	0.21

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 217 (08/04) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Peak Concentrations						Comparisons with Observations				
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0004	SubRegion Subregional Peak:	86	12.0	14	 7.9 8.8	 15 15	 1 1	0.66 0.73	-3.2 (at d	3.2 cell 79	-0.38 x 40)	0.38	0.56
0060	Azusa	3	7.4	15	5.3	14	-1	0.72	-0.3	0.3	-10.89	10.89	0.76
4164	Banning Airport	13	12.0	14	7.9	15	1	0.66	-0.5	0.5	-2.51	2.51	0.75
5181	Crestline	15	10.9	15	6.2	13	-2	0.57	-0.4	0.4	-2.18	2.18	0.45
4158	Elsinore	75	11.1	15	7.9	14	-1	0.71	-0.3	0.3	-4.67	4.67	0.73
5197	Fontana		8.1	13	5.0	13	0	0.62	-0.4	0.4	-6.53	6.53	0.68
0591	Glendora	4	8.3	15	5.5	14	-1	0.66	-0.3	0.3	-8.17	8.17	0.16
4149	Perris	9	10.2	15	7.2	13	-2	0.71	-0.3	0.3	-3.63	3.63	0.48
0075	Pomona	4	6.5	15	5.2	15	0	0.80	-0.3	0.3	-8.17	8.17	0.55
5204	Redlands	7	10.0	16	7.0	13	-3	0.70	-0.4	0.4	-4.67	4.67	0.15
4144	Rubidoux	9	9.1	14	6.1	11	-3	0.67		0.4	-3.63	3.63	0.27
5203	San Bernardino	5	9.1	15	6.6	13	-2	0.72	-0.4	0.4	-6.53	6.53	0.14
5175	Upland	5	7.5	16	5.1	15	-1		-0.3	0.3	-6.53	6.53	0.08

Pollutant: 03	(pphm)	Project: CAMx v4.4
---------------	--------	--------------------

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 217 (08/04) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Laq	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(\mathbf{r})
SILE	Description	NO	value	TTIlle	value	TTILE	цау	Ratio	BIAS	FLLOL	BIAS	FLLOL	(r)
0005	SubRegion	14	8.0	13	6.5	13	0	0.82	-2.2	2.3	-0.30	0.32	-0.59
	Subregional Peak:				8.0	14	1	1.00	(at d	cell 68	x 37)		
3176	Anaheim	б	8.0	13	4.7	14	1	0.58	-0.5	0.5	-0.71	0.74	0.13
0820	LAXH	2	7.0	12	4.9	12	0	0.70	-0.3	0.3	-2.12	2.21	-99.00
3812	Mission Viejo	4	6.6	15	6.5	13	-2	0.99	0.0	0.1	-1.06	1.10	-0.78
0085	Pico Rivera	2	6.7	14	5.0	13	-1	0.74	-0.2	0.2	-2.12	2.21	-99.00

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 217 (08/04) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Peal	k Concentrati	ons		Comparisons with Observations				
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0009	SubRegion Subregional Peak:	12	10.9 18	6.3 17 12.6 13	-1 -5	0.58 1.16	-2.2 (at o	2.2 cell 106	-0.26 x 13)	0.26	-0.05
4157 4137	Indio Jackson Palm Springs	2 10	6.7 11 10.9 18	5.8 11 6.3 17	0 -1	0.87 0.58	-0.2 -0.3	0.2 0.3	-1.56 -0.31	1.56 0.31	-99.00 -0.17

Pollutant:	03	(pphm)	Project:	CAMx	v4.4
------------	----	--------	----------	------	------

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 218 (08/05) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi		Time	Peak	Mean	Mean	Normal	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0003	SubRegion	29	11.0	15	8.9	13	-2	0.81	-2.8	2.8	-0.36	0.36	0.74
	Subregional Peak:				10.8	15	0	0.98	(at d	cell 52	x 54)		
0069	Burbank	5	8.6	14	6.6	14	0	0.77	-0.4	0.4	-2.08	2.10	0.96
0088	Pasadena	6	8.3	14	6.3	13	-1	0.76	-0.4	0.4	-1.73	1.75	0.78
0074	Reseda	10	9.6	14	7.9	14	0	0.82	-0.4	0.4	-1.04	1.05	0.72
0090	Santa Clarita	8	11.0	15	8.9	13	-2	0.81	-0.2	0.2	-1.30	1.31	0.64

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 218 (08/05) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peał	Concen	ıtrati	ons		Cor	mparisons	s with Ob	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	Lized Error	(r)
0004	SubRegion Subregional Peak:	98	11.2	14	11.0 11.7	14 14	0 0	0.98 1.04	-2.1 (at c	2.6 cell 77	-0.24 x 41)	0.31	0.24
0060	Azusa	5	7.9	13	6.8	14	1	0.86	-0.2	0.2	-4.78	5.99	0.36
4164 5181	Banning Airport Crestline	10 14	9.7 10.6	13 15	11.0 7.7	14 13	1 -2	1.14 0.73	-0.1 -0.4	0.2 0.4	-2.39 -1.71	2.99 2.14	0.40 0.41
4158 5197	Elsinore Fontana	7 6	8.7 9.3	12 15	10.1 5.6	15 12	3 -3	1.16 0.60	0.2 -0.4	0.2 0.4	-3.42 -3.99	4.28 4.99	-0.03 0.08
0591	Glendora	6	8.5	14	7.3	15	1	0.86	-0.2	0.2	-3.99	4.99	0.89
5212 4149	Mira Loma Perris	9	10.0 10.7	11 15	6.1 9.2	13 13	2 -2	0.61 0.86	$-0.4 \\ 0.0$	0.4 0.1	-3.42 -2.66	4.28 3.33	0.75 0.64
0075 5204	Pomona Redlands	6 9	8.7 11.2	14 14	6.1 9.4	16 13	2 -1	0.70 0.84	-0.3 -0.4	0.3 0.4	-3.99 -2.66	4.99 3.33	0.34 0.57
4144	Rubidoux	7	9.9	12	7.9	11	-1	0.80	-0.3	0.4	-3.42	4.28	0.23
5203 5175	San Bernardino Upland	6 6	9.6 8.7	15 15	8.2 6.1	13 16	-2 1	0.86 0.70	-0.4 -0.3	0.4 0.3	-3.99 -3.99	4.99 4.99	0.83 0.71

Pollutant: O3 (pphm) Proje

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 218 (08/05) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Peak:	52	8.7	16		13 14	-3 -2	0.87 1.15	-3.0 (at c	3.1 cell 68	-0.43 x 37)	0.45	0.30
3176	Anaheim	7	7.6	11	5.2	15	4	0.68	-0.5	0.5	-3.23	3.35	0.79
0087	Los Angeles	6	7.0	15	5.4	12	-3	0.77	-0.5	0.5	-3.77	3.91	0.44
3195	Costa Mesa	2	6.3	3	1.4	3	0	0.23	-0.8	0.8	-11.30	11.72	-99.00
3177	La Habra	5	6.9	12	5.2	15	3	0.76	-0.4	0.4	-4.52	4.69	-0.34
0820	LAXH	15	8.7	16	5.8	12	-4	0.67	-0.6	0.6	-1.51	1.56	0.70
0084	Lynwood	2	6.2	13	5.8	13	0	0.94	-0.2	0.2	-11.30	11.72	-99.00
3812	Mission Viejo	3	6.7	12	7.6	13	1	1.13	0.1	0.1	-7.53	7.81	0.44
0085	Pico Rivera	4	7.3	13	6.5	14	1	0.90	-0.2	0.2	-5.65	5.86	-0.34
0091	West Los Angeles	8	8.6	16	5.8	13	-3	0.68	-0.4	0.4	-2.82	2.93	0.04

* * * Model Performance Evaluation * * *

Pollutant: O3 (pphm)

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 218 (08/05) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				Peak	Concen	ıtrati	ons		Comparisons with Observations					
Site	Description	No	Observe Value T		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)	
	SubRegion Subregional Peak:	18	8.1	18	8.8 12.6		-3 -5	1.08 1.56	-0.8 (at d	1.4 cell 107	-0.11 x 12)	0.21	0.50	
4157 4137	Indio Jackson Palm Springs	8 10		10 18	7.3 8.8		1 -3	1.00 1.08	-0.2 0.0	0.3 0.2	-0.25 -0.20	0.47 0.38	0.51 0.15	

Pollutant:	03	(pphm)
------------	----	--------

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 219 (08/06) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Normal	ized	
Site	Description	No	Value '	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0003	SubRegion	37	10.0	 14	9.8	 13		0.98	-1.9	2.0	-0.25	0.27	0.78
	Subregional Peak:				12.3	15	1	1.23	(at c	ell 55	x 54)		
0069	Burbank	7	8.7	13	8.6	13	0	0.99	-0.2	0.2	-1.32	1.41	0.39
0088	Pasadena	8	9.8	14	7.8	14	0	0.79	-0.3	0.3	-1.16	1.23	0.87
0074	Reseda	11	8.6	15	9.0	12	-3	1.05	-0.2	0.3	-0.84	0.90	0.87
0090	Santa Clarita	11	10.0	14	9.8	13	-1	0.98	-0.3	0.3	-0.84	0.90	0.89

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 219 (08/06) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Pea	k Concen	itrati	ons		Cor	mparisons	s with O	bservat	ions	
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)	
0004	SubRegion Subregional Peak:	97	10.7	16	11.9 12.8	14 14 14	-2 -2	1.11 1.20	0.2 (at o	1.6 cell 71	0.03 x 37)	0.21	0.36	
0060	Azusa	2	8.8	14	8.3	14	0	0.94	0.0	0.1	1.41	10.24	-99.00	
4164	Banning Airport	12	8.1	16	11.5	15	-1	1.42	0.0	0.2	0.24	1.71	0.72	
5181	Crestline	18	10.7	16	9.0	15	-1	0.84	-0.2	0.2	0.16	1.14	0.64	
4158	Elsinore	7	8.5	14	11.9	14	0	1.40	0.3	0.4	0.40	2.93	0.44	
5197	Fontana	7	8.7	14	10.4	13	-1	1.20	0.1	0.3	0.40	2.93	0.32	
0591	Glendora	5	9.6	15	8.6	14	-1	0.89	-0.1	0.1	0.56	4.10	0.43	
5212	Mira Loma	8	9.2	13	10.5	12	-1	1.15	0.0	0.2	0.35	2.56	0.31	
4149	Perris	3	8.3	16	10.1	15	-1	1.21	0.2	0.2	0.94	6.83	-0.25	
0075	Pomona	5	7.5	16	8.7	14	-2	1.16	0.1	0.2	0.56	4.10	-0.43	
5204	Redlands	8	10.7	15	11.0	15	0	1.03	0.1	0.2	0.35	2.56	0.42	
4144	Rubidoux	10	10.1	14	11.0	13	-1	1.09	0.0	0.2	0.28	2.05	0.65	
5203	San Bernardino	6	9.8	15	10.5	14	-1	1.07	0.2	0.2	0.47	3.41	0.80	
5175	Upland	б	7.9	14	9.3	14	0	1.17	0.1	0.2	0.47	3.41	0.49	

Pollutant: 03 (pphm) Project: (

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 219 (08/06) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

	Description	N	Observ		Predi		Time	Peak	Mean	Mean	Norma		()
Site	Description	No	Value	11me	Value		Lag	Ratio	Bias	Error	Bias	Error	(r)
0005	SubRegion	49	9.0	13	8.9	14	1	0.99	-1.7	1.9	-0.23	0.25	0.22
	Subregional Peak:				9.5	15	2	1.06	(at d	cell 68	x 36)		
3176	Anaheim	8	8.4	14	5.7	13	-1	0.68	-0.4	0.4	-1.40	1.56	0.76
0087	Los Angeles	3	8.0	16	5.3	11	-5	0.66	-0.4	0.4	-3.74	4.15	0.13
3195	Costa Mesa	4	6.9	11	7.9	13	2	1.14	0.0	0.2	-2.80	3.11	0.21
3177	La Habra	б	6.9	14	7.2	14	0	1.04	-0.1	0.1	-1.87	2.08	0.17
0820	LAXH	8	8.2	14	5.4	14	0	0.66	-0.4	0.4	-1.40	1.56	0.69
0084	Lynwood	3	6.9	12	6.1	12	0	0.88	-0.1	0.1	-3.74	4.15	1.00
3812	Mission Viejo	5	8.7	13	8.9	14	1	1.02	0.0	0.1	-2.24	2.49	0.05
0085	Pico Rivera	5	9.0	13	7.4	13	0	0.82	-0.2	0.2	-2.24	2.49	0.92
0091	West Los Angeles	7	8.6	15	6.4	12	-3	0.75	-0.2	0.2	-1.60	1.78	-0.03

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 219 (08/06) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
0009	SubRegion Subregional Peak:	27	8.1 12	8.3 15 11.6 15	3		-0.5 (at c	0.9 ell 81	-0.07 x 44)	0.13	0.57
4157 4137	Indio Jackson Palm Springs	14 13	8.1 12 8.1 19	8.3 15 7.8 14	3 -5	1.03 0.96	-0.1 0.0	0.1 0.1	-0.14 -0.15	0.25 0.26	0.86 -0.33

Pollutant: O3 (pphm) Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 220 (08/07) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observe Value T		Predic Value T		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	36	12.8	 14		 12 15	 -2 1	0.84 1.15	 -1.6 (at o	1.9 cell 55	-0.20 x 53)	0.23	0.62
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	7 8 11 10	9.2 10.8	13 14 13 14	9.8 10.8	13 13 12 13	0 -1 -1 -1	1.18 1.06 1.00 0.67	0.0 -0.2 -0.2 -0.3	0.1 0.2 0.3 0.3	-1.00 -0.88 -0.64 -0.70	1.18 1.04 0.75 0.83	0.94 0.80 0.90 0.89

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 220 (08/07) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concen	ıtrati	ons		Cor	mparisons	s with Ok	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0004	SubRegion Subregional Peak:	134	15.6	16	12.7 13.3	15 16	-1 0	0.82	-1.3 (at o	1.5 cell 61	-0.13 x 52)	0.15	0.72
0060 4164 5181 4158 5197 0591 5212 4149 0075 5204	Azusa Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Perris Pomona Redlands	7 15 18 11 9 7 10 11 7 12	10.2 15.6 13.8 10.6 12.3 11.5 11.8 12.1 11.6 14.8	13 16 15 14 13 13 14 14 15	10.2 11.5 11.2 12.4 10.8 10.6 10.5 10.8 11.0 12.7	14 16 14 14 15 12 14 15 15	1 0 -1 -1 0 2 -1 0 1 0	1.00 0.74 0.81 1.17 0.88 0.92 0.89 0.90 0.95 0.86	-0.1 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2	0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2	-2.43 -1.13 -0.94 -1.54 -1.89 -2.43 -1.70 -1.54 -2.43 -1.54	2.93 1.37 1.14 1.86 2.28 2.93 2.05 1.86 2.93 1.71	0.78 0.80 0.63 0.83 0.87 0.68 0.79 0.74 0.74 0.92 0.78
4144 5203 5175	Rubidoux San Bernardino Upland	10 9 8	12.7 13.7 11.8	13 15 14	11.3 12.4 10.8	13 14 15	0 -1 1	0.89 0.90 0.92	-0.1 -0.1 -0.1	0.1 0.2 0.1	-1.70 -1.89 -2.12	2.05 2.28 2.56	0.90 0.78 0.92

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 220 (08/07) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Peak:	27	9.3	14	9.5 10.6	 14 15	0 1	1.02 1.14	-0.8 (at o	1.2 cell 68	-0.10 x 36)	0.15	0.52
3176 0087 3177 0084 3812 0085	Anaheim Los Angeles La Habra Lynwood Mission Viejo Pico Rivera	6 4 1 7 5	9.3 7.9 6.1 9.2	13 14 14 12 16 13	7.0 8.8 6.8 9.5	13 12 14 12 14 13	0 -2 0 -2 0	0.97 0.75 1.11 1.12 1.04 1.02	-0.2 -0.2 0.1 0.1 -0.1 -0.1	0.2 0.2 0.1 0.1 0.1 0.1	-0.46 -0.68 -0.68 -2.73 -0.39 -0.55	0.69 1.04 1.04 4.14 0.59 0.83	0.92 0.13 0.98 -99.00 0.76 0.80

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df04a Statistics were calculated for the 24-hour period of DOY 220 (08/07) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm) ----- Peak Concentrations -------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Description Site No Value Time Value Time Lag Ratio Bias Error Bias Error (r) ____ _ _ _ . _ _ _ _ _ ____ ____ ____ _ _ _ _ _ _ _ _ _ 11.3 18 9.4 13 -5 0.84 -1.6 2.5 0009 SubRegion 23 -0.15 0.29 -0.51 Subregional Peak: 10.7 15 -3 0.95 (at cell 82 x 42) Indio Jackson 4157 11 10.8 20 9.4 13 -7 0.87 -0.1 0.3 -0.31 0.60 -0.61 11.3 18 8.7 16 -0.2 0.55 -0.43 4137 Palm Springs 12 -2 0.77 0.2 -0.29

Pollutant: O3 (pphm) Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 221 (08/08) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observe Value T		Predic Value 1		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	32	13.6	 14		 12 14	-2 0	0.80 1.09	-1.3 (at d	1.7 cell 53	-0.12 x 52)	0.17	0.34
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	7 7 8 10	9.8 10.4	13 14 12 14	10.8	12 13 12 12	-1 -1 0 -2	1.02 0.99 1.04 0.60	0.1 0.0 -0.1 -0.4	0.1 0.1 0.1 0.4	-0.56 -0.56 -0.49 -0.39	0.79 0.79 0.69 0.55	0.97 0.85 0.94 0.80

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 221 (08/08) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concen	trati	ons		Cor	mparisons	s with Ok	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0004	SubRegion Subregional Peak:	132	13.6	15	14.6 15.2	14 14	-1 -1	1.07 1.12	0.3 (at o	1.4 cell 71	0.03 x 36)	0.16	0.75
0060 4164 5181 4158 5197 0591 5212 4149 0075 5204	Azusa Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Perris Pomona Bodlanda	6 15 13 8 6 9 13 7	9.8 12.2 11.0 12.2 10.8 10.9 11.4 10.0 11.9	13 14 15 14 14 13 14 12 13 15	10.0 13.1 12.9 14.4 12.8 10.8 11.8 13.2 11.2	13 16 14 14 14 14 12 14 14	0 2 -1 0 0 1 -2 2 1	1.02 1.07 1.17 1.18 1.19 0.99 1.03 1.32 0.94	0.0 -0.1 0.1 0.0 0.2 0.0 0.0 0.1 0.0	0.0 0.2 0.3 0.2 0.2 0.1 0.1 0.2 0.1	0.62 0.25 0.25 0.29 0.47 0.62 0.42 0.29 0.53 0.53	3.54 1.42 1.42 1.64 2.66 3.54 2.36 1.64 3.04	0.94 0.87 0.44 0.90 0.79 0.91 0.77 0.72 0.96
5204 4144 5203 5175	Redlands Rubidoux San Bernardino Upland	13 10 9 8	13.6 12.0 13.6 11.2	15 14 15 14	14.6 13.1 14.3 12.0	14 13 14 14	-1 -1 -1 0	1.07 1.09 1.05 1.07	-0.1 0.1 0.1 0.1	0.2 0.2 0.2 0.1	0.29 0.37 0.42 0.47	1.64 2.13 2.36 2.66	0.84 0.72 0.69 0.99

Pollutant:	03	(pphm)	Project:	CAMx v4.4

Simulation ID: df04a

Statistics were calculated for the 24-hour period of DOY 221 (08/08) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observed	d	Predio	cted	Time	Peak	Mean	Mean	Norma	lized	
Site	Description	No	Value Ti	ime	Value 7	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0005	SubRegion Subregional Peak:	25	8.4 1	14		13 12	-1 -2	1.21 1.43	-0.6 (at c	1.2 cell 68	-0.08 x 37)	0.16	0.52
3176	Anaheim	7	8.4	14	6.9	13	-1	0.82	-0.3	0.3	-0.30	0.58	0.83
0087	Los Angeles	3	7.4 1	13	6.0	12	-1	0.81	-0.2	0.2	-0.69	1.36	0.13
3177	La Habra	5	8.2 1	14	8.2	13	-1	1.00	0.0	0.1	-0.41	0.82	0.44
3812	Mission Viejo	6	8.2 1	14	10.1	13	-1	1.23	0.1	0.1	-0.35	0.68	0.66
0085	Pico Rivera	4	7.7 1	12	7.6	12	0	0.99	0.0	0.0	-0.52	1.02	0.86

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df04a Statistics were calculated for the 24-hour period of DOY 221 (08/08) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm) ----- Peak Concentrations --------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Description Lag Ratio Site No Value Time Value Time Bias Error Bias Error (r) ____ _ _ _ _ _ _ _ . _ _ _ _ _ ____ ____ ____ 11.0 16 8.9 16 -1.9 2.2 -0.24 0009 SubRegion 43 0 0.81 0.27 0.43 12.2 16 (at cell 82 x 42) Subregional Peak: 1.11 0 Indio Jackson 4157 22 9.4 19 8.0 16 -3 0.85 -0.3 0.3 -0.470.54 0.08 11.0 16 8.9 16 0.81 -0.2 0.2 4137 Palm Springs 21 0 -0.49 0.56 0.79

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba	unk	53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df04a										
	4-hour period of DOY 217 (08/04) 2004 ed concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours								
	Peak Concentrations	Comparisons with Observations								
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r) 								
0003 SubRegion 2 Subregional Peak:		-2.0 2.0 -0.26 0.26 -99.00 (at 52 x 55) NSte: 0090; NSPk: 5.6								
* *	* Model Performance Evaluation * * *									
Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df04a										
Statistics were calculated for the 24-hour period of DOY 217 (08/04) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours										
	Peak Concentrations	Comparisons with Observations								
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)								
0004 SubRegion 10 Subregional Peak:		-2.9 2.9 -0.34 0.34 -33.58 (at 72 x 36) NSte: 4158; NSPk: 6.5								
* *	* Model Performance Evaluation * * *									
Pollutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df04a								
Statistics were calculated for the 24-hour period of DOY 217 (08/04) 2004 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours										
	Peak Concentrations	Comparisons with Observations								
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)								
0005 SubRegion 1 Subregional Peak:		-3.4 3.4 -0.49 0.49 -99.00 (at 68 x 37) NSte: 3812; NSPk: 5.5								

Pollutant: 03 (pphm)	Pr	oject: CAM2	x v4.4		Simulation ID: df04a
Statistics were calculated for Included were data-pairs with o					6.0 (pphm); Averaged over 8 hours
	-	Pea}	Concentrati	ons	Comparisons with Observations
Site Description		bserved alue Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0009 SubRegion Subregional Peak:	1	7.4 12	6.3 10 10.4 10	-2 0.85 -2 1.41	-1.1 1.1 -0.15 0.15 -99.00 (at 106 x 12) NSte: 4157; NSPk: 6.1
*	* * Mo	del Perforr	mance Evaluat	ion * * *	
Pollutant: 03 (pphm)	Pr	oject: CAM2	x v4.4		Simulation ID: df04a
Statistics were calculated for Included were data-pairs with o					6.0 (pphm); Averaged over 8 hours
	-	Pea}	< Concentrati	ons	Comparisons with Observations
Site Description		bserved alue Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0003 SubRegion Subregional Peak:	4	9.0 11	7.0 10 8.3 11	$ \begin{array}{cccc} -1 & 0.78 \\ 0 & 0.92 \end{array} $	-2.1 2.1 -0.27 0.27 -68.38 (at 53 x 55) NSte: 0090; NSPk: 7.0
*	* * Mo	del Perform	mance Evaluat	ion * * *	
Pollutant: 03 (pphm)	Pr	oject: CAM>	x v4.4		Simulation ID: df04a
Statistics were calculated for Included were data-pairs with o					6.0 (pphm); Averaged over 8 hours
	-	Pea}	< Concentrati	ons	Comparisons with Observations
Site Description		bserved alue Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	13	9.9 11	9.0 10 9.2 10	-1 0.91 -1 0.92	-1.8 2.0 -0.21 0.25 -38.55 (at 71 x 37) NSte: 4158; NSPk: 9.2

Pollutant: 03 (pphm)	P	roject: CAMx	v4.4		Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with ob					6.0 (pphm); Averaged over 8 hours
		Peak	Concentrati	ons	Comparisons with Observations
Site Description	No	Observed Value Time	Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0005 SubRegion Subregional Peak:	6	8.0 11	5.1 10 8.5 10	-1 0.64 -1 1.07	-2.4 2.4 -0.35 0.35 -80.39 (at 68 x 37) NSte: 3812; NSPk: 6.5
*			nance Evaluat	ion * * *	
Pollutant: O3 (pphm)		roject: CAMx			Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with ob					6.0 (pphm); Averaged over 8 hours
		Peak	Concentrati	.ons	Comparisons with Observations
Site Description	No	Observed Value Time	Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0009 SubRegion Subregional Peak:	2		7.8 10 9.2 9	$\begin{array}{c} -2 \\ -2 \\ -3 \\ 1.23 \end{array}$	0.8 0.8 0.13 0.13 -99.00 (at 107 x 12) NSte: 4157; NSPk: 7.5
*	* * Mo	odel Perform	ance Evaluat	ion * * *	
Pollutant: 03 (pphm)	P	roject: CAMx	v4.4		Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with ob					6.0 (pphm); Averaged over 8 hours
		Peak	Concentrati	ons	Comparisons with Observations
Site Description		Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0003 SubRegion Subregional Peak:	4	8.9 10	7.4 9 9.2 11	-1 0.83 1 1.04	-1.4 1.4 -0.17 0.17 -186.06 (at 55 x 53) NSte: 0069; NSPk: 6.7

Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df04a
Statistics were calculated for Included were data-pairs with o			6.0 (pphm); Averaged over 8 hours
	Pe	ak Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	11 9.4 14	9.9 10 -4 1.06 10.6 10 -4 1.13	0.7 1.1 0.10 0.15 -100.48 (at 76 x 44) NSte: 5204; NSPk: 9.4
*	* * Model Perfo	rmance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df04a
Statistics were calculated for Included were data-pairs with o	-		6.0 (pphm); Averaged over 8 hours
	Pe	ak Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0005 SubRegion Subregional Peak:	6 7.7 9		-1.6 1.6 -0.21 0.21 -117.69 (at 68 x 37) NSte: 3812; NSPk: 6.7
*	* * Model Perfo	rmance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df04a
Statistics were calculated for Included were data-pairs with o			6.0 (pphm); Averaged over 8 hours
	Pe	ak Concentrations	Comparisons with Observations
Site Description	Observed No Value Time		Mean Mean Normalized Bias Error Bias Error (r)
0009 SubRegion Subregional Peak:	2 7.7 10	7.7 10 0 1.01 8.9 11 1 1.16	0.2 0.2 0.02 0.02 -99.00 (at 81 x 44) NSte: 4137; NSPk: 7.4

Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with o			6.0 (pphm); Averaged over 8 hours
	Pea	ak Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0003 SubRegion Subregional Peak:	4 10.3 10	8.1 10 0 0.79 11.5 13 3 1.11	-1.1 1.2 -0.12 0.13 -131.28 (at 59 x 50) NSte: 0088; NSPk: 7.0
*	* * Model Perfo	rmance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with o			6.0 (pphm); Averaged over 8 hours
	Pea	ak Concentrations	Comparisons with Observations
Site Description			Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	13 12.4 15	10.4 10 -5 0.84 11.1 10 -5 0.89	-1.1 1.1 -0.10 0.10 -86.36 (at 76 x 44) NSte: 5204; NSPk: 10.5
*	* * Model Perfo	rmance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CA	Mx v4.4	Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with o			6.0 (pphm); Averaged over 8 hours
	Pea	ak Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0005 SubRegion Subregional Peak:	5 7.6 11	7.1 10 -1 0.93 9.1 10 -1 1.21	-0.7 0.9 -0.10 0.13 -146.64 (at 68 x 37) NSte: 3812; NSPk: 6.8

Pollutant: 03 (pphm)	Project: CAN	Mx v4.4	Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with ob			6.0 (pphm); Averaged over 8 hours
	Pea	ak Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0009 SubRegion Subregional Peak:	2 9.1 17	8.4 10 -7 0.92 9.7 11 -6 1.06	-1.1 1.1 -0.12 0.12 -99.00 (at 81 x 43) NSte: 4137; NSPk: 7.4
*	* * Model Perfo	rmance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAN	Mx v4.4	Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with ob			6.0 (pphm); Averaged over 8 hours
	Pea	ak Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0003 SubRegion Subregional Peak:	4 11.3 10	8.6 9 -1 0.76 11.9 11 1 1.04	-1.1 1.2 -0.09 0.11 -83.40 (at 59 x 50) NSte: 0088; NSPk: 7.6
*	* * Model Perfo	rmance Evaluation * * *	
Pollutant: O3 (pphm)	Project: CAN	Mx v4.4	Simulation ID: df04a
Statistics were calculated for t Included were data-pairs with ob			6.0 (pphm); Averaged over 8 hours
	Pea	ak Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	13 12.2 11	12.9 10 -1 1.06 13.4 10 -1 1.10	0.7 0.8 0.07 0.08 -57.58 (at 74 x 46) NSte: 5204; NSPk: 12.9

P	Pollutant: 03 (pphm)		Project: CAM>	x v4.4			Simulation	ID: df04a	
	stics were calculated f ded were data-pairs wit					6.0 (pph	m); Averaged o	over 8 hours	3
			Peak	<pre>Concentrati</pre>	ons	Com	parisons with (Observations	
Site	Description		Value Time		Time Peak Lag Ratio	Mean Bias	Error Bias		,
0005		3	7.1 10	7.6 10	0 1.06	-0.3		0.11 -205	62
		* * *	Model Perform	nance Evaluat	ion * * *				
P	Pollutant: 03 (pphm)		Project: CAM	x v4.4			Simulation	ID: df04a	
Stati	stics were calculated f	or the 24-	hour period o	of DOY 221 (0	8/08) 2004				
						60 (nnh	m). Averaged	wor 9 hour	
	ided were data-pairs wit		l concentratio	ons above a t	hreshold of		m); Averaged o		
Inclu Site	ded were data-pairs wit Description	h observed No	d concentratio Peak Observed Value Time	ons above a t Concentrati Predicted Value Time	hreshold of ons Time Peak Lag Ratio	Com Mean Bias	parisons with (Mean Norma Error Bias	Dbservations alized Error (1	 _)
Inclu	ded were data-pairs wit Description	h observed No	d concentratio Peak Observed Value Time 	Cons above a t Concentrati Predicted Value Time 7.8 11	hreshold of ons Time Peak Lag Ratio 2 0.79	Com Mean Bias -1.3	parisons with (Mean Norma Error Bias	Dbservations alized Error (1 0.13 -99	 00
Inclu Site	ded were data-pairs wit Description SubRegion	h observed 2	d concentration Peak Observed Value Time	Concentrati Predicted Value Time 7.8 11 10.7 11	hreshold of ons Time Peak Lag Ratio -2 0.79 -2 1.08	Com Mean Bias -1.3	parisons with (Mean Norma Error Bias 1.3 -0.13	Dbservations alized Error (1 0.13 -99	 00
Site 0009	ded were data-pairs with Description SubRegion Subregional Peak:	h observed 2 * * *	d concentratio Peak Observed Value Time 9.9 13	ons above a t Concentrati Predicted Value Time 7.8 11 10.7 11 mance Evaluat	hreshold of ons Time Peak Lag Ratio -2 0.79 -2 1.08	Com Mean Bias -1.3	parisons with (Mean Norma Error Bias 1.3 -0.13	Observations alized Error (1 0.13 -99 L37; NSPk: 7	 00
Inclu Site 0009	Description 	h observed 2 * * * Paired Ave	d concentratio Peak Observed Value Time 9.9 13 Model Perform Project: CAMS	ons above a t Concentrati Predicted Value Time 7.8 11 10.7 11 mance Evaluat c v4.4 Concentratio	hreshold of ons Time Peak Lag Ratio -2 0.79 -2 1.08 ion * * *	Com Mean Bias -1.3 (at 81	parisons with (Mean Norma Error Bias 1.3 -0.13 x 43) NSte: 41 Simulation or DOY 217 throw	Dbservations alized Error (1 0.13 -99 L37; NSPk: 7	 00
Inclu Site 0009	Description 	h observed No 2 * * * Paired Ave ubregional	d concentratio Peak Observed Value Time 9.9 13 Model Perform Project: CAMP erage 8-Hour	ons above a t Concentrati Predicted Value Time 7.8 11 10.7 11 mance Evaluat v4.4 Concentratio 9.4 at Cell	hreshold of ons Time Peak Lag Ratio -2 0.79 -2 1.08 ion * * *	Com Mean Bias -1.3 (at 81 .0 pphm f Neares	parisons with (Mean Norma Error Bias 1.3 -0.13 x 43) NSte: 41 Simulation or DOY 217 throw	Dbservations alized Error (1 0.13 -99 L37; NSPk: 7 ID: df04a pugh 221	 00

Poll	utant: 03 (pphm)	Project: CAM	ix v4.4		Simulation ID: di	E04a
Subregio		ired Average 8-Hour regional Maximum of			for DOY 217 through 22 st Site: 0820	21
		Obser	ved	Simu	ulated	
Site ID 	Site Description	Avg. 217 218	DOY DOY DOY 219 220 221		3 219 220 221 Rat	x. Max. Max. tio Bias Error
		* * * Model Perfor	mance Evaluation	* * *		
Poll	utant: 03 (pphm)	Project: CAM	ix v4.4		Simulation ID: di	E04a
Subregio		ired Average 8-Hour regional Maximum of			for DOY 217 through 22 st Site: 0090	21
		Obser	ved	Simu	alated	
Site ID 	Site Description	Avg. 217 218	DOY DOY DOY 219 220 221	Avg. 217 218	3 219 220 221 Rat	k. Max. Max. Lio Bias Error
		* * * Model Perfor	mance Evaluation	* * *		
Poll	utant: 03 (pphm)	Project: CAM	ix v4.4		Simulation ID: di	E04a
	n 0003 Spatially Da				For DOY 217 through 22	21
Subregio		regional Maximum of	9.5 at Cell 53	8 x 52 Neares	st Site: 0090	
Subregio		-	9.5 at Cell 53		11 Site: 0090	
Site ID		Obser Site DOY DOY Avg. 217 218		Simu Site DOY DOY	ulated 7 DOY DOY DOY Max 8 219 220 221 Rat	x. Max. Max. tio Bias Error

Project: CAMx v4.4

Subregion 0004 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 217 through 221 Unpaired Subregional Maximum of 10.7 at Cell 76 x 44 -- Nearest Site: 5204

---- Observed ---- Simulated ----

Site ID	Site Description	Site Avg.	DOY 217	DOY 218	DOY 219	DOY 220	DOY 221	Site Avg.	DOY 217	DOY 218	DOY 219	DOY 220	DOY 221	Max. Max. Ratio Bias	Max. Error
0060	Azusa	7.5	5.5	6.7	5.5	8.2	7.6	6.1	4.1	5.2	6.4	 7.1	7.8	0.95 -0.11	0.12
4164	Banning Airport	10.0	11.1	9.1			11.4	9.1	 6.5	8.7		10.2		1.01 - 0.07	$0.12 \\ 0.15$
5181	Crestline	10.2	9.6	9.9		12.4	9.7	8.0	5.3	6.2	7.6	9.4		0.92 - 0.22	0.28
4158	Elsinore	9.1	10.3	7.3			10.9	9.5	6.7	9.0		10.0		1.08 0.07	0.21
5197	Fontana	8.2	6.8	7.9		10.0	9.3	7.7	4.6	5.3	8.2		10.7	1.08 -0.08	0.20
0591	Glendora	7.5	6.1	7.1	7.3	8.8	8.3	6.7	4.4	5.5	7.0	7.9	8.6	0.98 -0.13	0.14
5212	Mira Loma	9.2	0.5	8.5	7.8	10.4	10.0	7.5	4.6	5.7	7.9	9.1	10.3	0.99 -0.10	0.12
4149	Perris	9.4	9.1	8.7	5.9	10.4	9.4	8.9	6.1	8.5	9.2	9.6	11.2	1.07 -0.06	0.16
0075	Pomona	8.0	5.6	7.2	6.3	9.0	9.3	6.8	4.2	4.7	7.4	8.5	9.1	0.98 -0.06	0.15
5204	Redlands	9.9	8.4	9.0	8.1	12.0	12.2	8.9	5.5	6.7	9.2	10.4	12.9	1.06 -0.11	0.18
4144	Rubidoux	9.3	8.3	8.4	8.2	11.2	10.7	8.1	5.0	6.2	8.4	9.7	11.4	1.02 -0.14	0.17
5203	San Bernardino	9.1	7.1	8.6	7.3	11.0	11.4	8.5	5.2	6.0	8.6	9.9	12.6	1.11 -0.08	0.19
5175	Upland	7.7	6.1	7.1	6.8	9.5	9.2	7.1	4.4	4.9	7.9	8.8	9.7	1.02 -0.09	0.17

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Pollutant: 03

(pphm)

Simulation ID: df04a

Simulation ID: df04a

Subregion 0005 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 217 through 221 Unpaired Subregional Maximum of 9.7 at Cell 69 x 38 -- Nearest Site: 4158

				ODDCI	vea					DIMAT	acca				
Site ID	Site Description	Site Avg.	DOY 217	DOY 218	DOY 219	DOY 220	DOY 221	Site Avg.	DOY 217	DOY 218	DOY 219	DOY 220	DOY 221	Max. Max. Ratio Bias	Max. Error
3176	Anaheim	7.0	6.9	6.6	7.6	6.8	7.1	4.7	3.5	4.2	4.6	5.6	5.5	0.74 -0.33	0.33
0087	Los Angeles	6.7	4.8	6.6	4.2	6.7	5.7	4.6	3.3	4.2	5.0	5.4	5.3	0.81 -0.28	0.28
3177	La Habra	6.2	4.8	6.1	6.3	6.1	6.5	5.2	3.4	3.7	5.8	6.5	6.6	1.02 -0.10	0.14
0820	LAXH	7.8	5.6	8.0	7.7	5.2	5.3	4.7	4.5	5.1	4.8	4.8	4.4	0.64 -0.37	0.37
3812	Mission Viejo	7.2	5.9	5.6	7.0	7.6	7.0	6.7	5.6	6.4	6.8	7.1	7.6	1.00 -0.01	0.06
0085	Pico Rivera	6.6	4.8	6.1	6.7	7.0	5.9	5.2	3.6	4.5	5.7	6.0	6.0	0.86 -0.18	0.18
0091	West Los Angeles	7.5	4.9	7.7	7.2	5.2	5.1	5.3	4.4	5.0	5.3	6.0	5.6	0.77 -0.30	0.30

---- Observed ---- Simulated ----

Pollutant: 03 (P	ohm) Project: CAMx v4.4	Simulation ID: df04a
	lly Paired Average 8-Hour Concentrations above ed Subregional Maximum of 9.1 at Cell 80 x 2	
	Observed	Simulated
Site Site ID Description		ce DOY DOY DOY DOY DOY Max. Max. Max. /g. 217 218 219 220 221 Ratio Bias Error
	* * * Model Performance Evaluation * * *	e
Pollutant: 03 (I	ohm) Project: CAMx v4.4	Simulation ID: df04a
	lly Paired Average 8-Hour Concentrations above ed Subregional Maximum of 6.2 at Cell 50 x 7	
	Observed	Simulated
Site Site ID Description	Site DOY DOY DOY DOY DOY Sit Avg. 217 218 219 220 221 Av	<i>r</i> g. 217 218 219 220 221 Ratio Bias Error
	* * * Model Performance Evaluation * * *	e
Pollutant: 03 (p	phm) Project: CAMx v4.4	Simulation ID: df04a
	lly Paired Average 8-Hour Concentrations above ed Subregional Maximum of 7.5 at Cell 78 x 5	
	Observed	Simulated
Site Site ID Description	Avg. 217 218 219 220 221 Av	

Pollu	tant: 03 (pphm)	Pro	oject: CA	Mx v4.	4					Si	mulat	ion II	D: df04	a	
Subregion	0009 Spatially Pa: Unpaired Sub											-	gh 221		
			Obse	rved					Simul	ated					
Site	Site	Site	DOY DOY	DOY	DOY	DOY	Site	DOY	DOY	DOY	DOY	DOY	Max.	Max.	Max.
ID	Description	Avg.	217 218	219	220	221	Avg.	217	218	219	220	221	Ratio	Bias	Error
	ndio Jackson	7.6	5.7 6.2			7.8	7.5		7.6		8.4	7.8	0.94		0.07
4137 P	alm Springs	8.2	7.4 7.4	7.1	9.1	9.9	7.2	6.3	7.8	7.4	7.4	7.3	0.79	-0.10	0.14

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba	unk	53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

Pollutant: (23	(pphm)
--------------	----	--------

Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 237 (08/25) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- --- Comparisons with Observations ---

			Observe	d	Predi	cted	Time	Peak	Mean	Mean	Normal	lized	
Site	Description	No	Value T	'ime	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0003	SubRegion Subregional Peak:	5	8.1	15	7.4 9.8		-1 -1	0.91 1.21	-0.7 (at c	1.0 ell 49	-0.08 x 47)	0.14	-0.38
0088 0074 0090	Pasadena Reseda Santa Clarita	1 1 3	7.5 6.7 8.1	16	6.4 7.0 7.4	16	0 0 -1	0.85 1.04 0.91	-0.2 0.0 -0.1	0.2 0.0 0.2	-0.42 -0.42 -0.14	0.70 0.70 0.23	-99.00 -99.00 -0.25

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 237 (08/25) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peal	k Concer	ntrati	ons		Comparisons with Observations						
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)		
0004	SubRegion Subregional Peak:	35	8.6	15	8.7 9.3	15 14	0 -1	1.01 1.08	-1.2 (at (1.6 cell 72	-0.17	0.22	0.02		
0060 4164 5181 4158 5197 0591 5212 0075 5204 4144	Azusa Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Pomona Redlands Bubidouw	2 5 3 2 1 5 2 3	6.9 8.0 7.7 6.8 7.8 6.9 8.6 7.3 7.1	14 16 17 14 15 14 15 14 17 16	6.5 6.2 7.2 6.3 6.2 8.2 5.3 6.4 8.7	$ 14 \\ 15 \\ 14 \\ 15 \\ 14 \\ 14 \\ 15 \\ 16 \\ 15 \\ 16 \\ 15 \\ 15 \\ 16 \\ 15 \\ 15 \\$	0 -1 -1 0 0 0 -1 1 -1	0.94 0.78 0.94 0.91 0.81 0.90 0.96 0.73 0.91	-0.1 -0.4 -0.1 -0.3 -0.1 -0.1 -0.3 -0.1 -0.1	0.1 0.4 0.1 0.3 0.1 0.3 0.3 0.3 0.1	-2.89 -1.16 -1.93 -2.89 -2.89 -5.78 -1.16 -2.89 -1.93	3.83 1.53 2.55 3.83 3.83 7.66 1.53 3.83 2.55	-99.00 -0.20 0.07 -99.00 -99.00 -99.00 0.00 -99.00 -0.67		
4144 5203 5175	Rubidoux San Bernardino Upland	4 4 2	8.0 7.4 8.0	16 16 15	8.7 6.6 5.7	15 15 14	-1 -1 -1	1.08 0.89 0.72	-0.1 -0.2 -0.2	0.2 0.2 0.2	-1.44 -1.44 -2.89	1.91 1.91 3.83	0.31 0.40 -99.00		

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 237 (08/25) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site Description	No	Observed Value Time	Predicted Value Time		Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005 SubRegion Subregional Peak:	29	10.9 14	6.5 14 8.2 13	1	0.60 0.75	-2.7 (at 0	2.7 cell 68	-0.36 x 36)	0.36	0.55
3176 Anaheim 0087 Los Angeles 3195 Costa Mesa 0820 LAXH 0072 Long Beach 0091 West Los Angeles	3 3 5 7 4	6.6 16 7.2 15 8.0 13 8.0 12 7.2 15 10.9 14	$\begin{array}{rrrrr} 4.0 & 14 \\ 4.8 & 12 \\ 6.5 & 14 \\ 5.6 & 12 \\ 5.7 & 13 \\ 5.9 & 13 \end{array}$	-2 -3 1 0 -2 -1	0.61 0.67 0.81 0.70 0.80 0.55	-0.4 -0.3 -0.3 -0.3 -0.3 -0.4	0.4 0.4 0.3 0.3 0.3 0.4	-3.44 -3.44 -2.06 -1.47 -2.58 -1.47	3.44 3.44 2.06 1.47 2.58 1.47	-0.79 -0.06 0.82 0.74 -0.49 0.88

* * * Model Performance Evaluation * * *

Pollutant: 03 Project: CAMx v4.4 Simulation ID: df05a (pphm) Statistics were calculated for the 24-hour period of DOY 237 (08/25) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm) ----- Peak Concentrations --------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Site Description No Value Time Value Time Lag Ratio Bias Error Bias Error (r) _____ _____ ___ _____ ___ ____ ___ _____ ____ ____ ____ ____ ____ 4 7.2 17 4.3 17 2.9 0009 SubRegion 0 0.60 -2.9 -0.42 0.42 0.41 7.9 13 Subregional Peak: -4 1.10 (at cell 108 x 11) 4 7.2 17 4.3 17 0 0.60 -0.4 0.4 -0.42 0.42 4137 Palm Springs 0.41

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 238 (08/26) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0003	SubRegion	16	8.8	13	7.3	14	1	0.83	-1.6	1.6	-0.21	0.22	0.47
	Subregional Peak:				8.9	15	2	1.01	(at d	cell 55	x 49)		
0069	Burbank	5	8.0	15	7.3	14	-1	0.92	-0.2	0.2	-0.69	0.69	0.62
0088	Pasadena	б	8.2	14	6.6	14	0	0.80	-0.3	0.3	-0.57	0.58	0.88
0074	Reseda	3	8.8	13	6.2	11	-2	0.71	-0.2	0.2	-1.15	1.15	-0.98
0090	Santa Clarita	2	7.0	12	6.1	13	1	0.88	-0.1	0.1	-1.72	1.73	-99.00

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 238 (08/26) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Peak Concentrations						Comparisons with Observations						
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)	_	
0004	SubRegion Subregional Peak:	77	10.4	15	11.0 11.9	15 15	0 0	1.06 1.15	-1.8 (at d	2.3 cell 78	-0.23 x 39)	0.30	0.21		
0060 4164 5181 4158 5197	Azusa Banning Airport Crestline Elsinore Fontana	5 9 10 7 5	7.9 9.4 8.1 10.0 9.1	14 16 16 14 16	7.1 11.0 6.7 7.8 5.9	15 15 13 12 16	1 -1 -3 -2 0	0.89 1.17 0.82 0.78 0.65	-0.2 0.0 -0.3 -0.1 -0.3	0.2 0.3 0.2 0.3	-3.50 -1.94 -1.75 -2.50 -3.50	4.55 2.53 2.27 3.25 4.55	0.09 0.23 0.01 -0.04 0.34		
0591 5212 4149 0075 5204 4144 5203	Glendora Mira Loma Perris Pomona Redlands Rubidoux San Bernardino	7 6 1 5 5 6 6	10.3 7.1 9.6 9.0 10.4 8.9	14 14 15 16 15 15	7.5 5.9 8.3 7.6 9.3 6.4 7.3	15 16 14 15 14 13 13	1 2 0 -2 -2 -2	0.82 0.58 1.17 0.79 1.03 0.62 0.82	-0.3 -0.4 0.2 -0.2 -0.3 -0.2 -0.3	0.3 0.4 0.2 0.2 0.3 0.2 0.4	-2.50 -2.91 -17.49 -3.50 -3.50 -2.91 -2.91	3.25 3.79 22.73 4.55 4.55 3.79 3.79	0.59 0.16 -99.00 0.83 0.78 -0.23 0.14		
5175	Upland	5	9.6	16	7.0	16	0	0.73	-0.3	0.3	-3.50	4.55	0.97		

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 238 (08/26) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	Lized Error	(r)
0005	SubRegion Subregional Peak:	36	9.4	15	7.0 8.5	14 16	-1 1	0.74 0.90	-2.8 (at o	2.8 cell 68	-0.39 x 37)	0.39	0.35
3176	Anaheim	7	8.2	15	5.0	14	-1	0.61	-0.5	0.5	-2.03	2.03	0.63
0087	Los Angeles	4	8.0	16	4.9	14	-2	0.62	-0.6	0.6	-3.55	3.55	0.56
3195	Costa Mesa	3	7.6	16	6.0	14	-2	0.79	-0.3	0.3	-4.74	4.74	-0.98
3177	La Habra	2	6.8	15	6.0	15	0	0.88	-0.3	0.3	-7.11	7.11	-99.00
0820	LAXH	2	6.9	15	4.7	15	0	0.68	-0.3	0.3	-7.11	7.11	-99.00
0072	Long Beach	3	6.8	14	5.0	13	-1	0.74	-0.3	0.3	-4.74	4.74	0.32
0084	Lynwood	2	6.9	14	5.4	13	-1	0.78	-0.2	0.2	-7.11	7.11	-99.00
3812	Mission Viejo	7	8.3	16	7.0	14	-2	0.84	-0.3	0.3	-2.03	2.03	0.72
0091	West Los Angeles	б	9.4	15	5.5	13	-2	0.58	-0.4	0.4	-2.37	2.37	0.25

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05aStatistics were calculated for the 24-hour period of DOY 238 (08/26) 2005Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concen	ıtrati	ons		Comparisons with Observations						
Site	Description	No	Observe Value 7		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)		
0009	SubRegion Subregional Peak:	12	10.2	17	6.5 10.8		 -1 -2	0.63 1.05	-2.4 (at c	2.4 cell 81	-0.30 x 43)	0.30	0.30		
4157 4137	Indio Jackson Palm Springs	2 10		19 17	4.0 6.5		0 -1	0.57 0.63	-0.5 -0.3	0.5 0.3	-1.80 -0.36	1.80 0.36	-99.00 0.12		

Pc	ollutant: 03	(pphm)	Project: C	AMx v4.4					Sim	lation	ID: df05	a
		culated for the 2 pairs with observ						6.0 (pj	phm)			
			P	eak Concen	trati	ons		Cor	mparisons	s with O	bservati	ons
Site	Description	No	Observed Value Tim	e Value	Time	Lag	Peak Ratio	Mean Bias	Mean Error		Error	(r)
0003	SubRegion Subregional Pea	21		9.1	14	1		-2.3	2.7 cell 52	-0.26 x 49)	0.32	0.40
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	6 6 4 5	10.3 12 10.4 12 12.2 13 9.3 11	9.1 8.2 7.4 4.9	14 14 13 11	2 2 0 0	0.88 0.79 0.61 0.52	-0.1 -0.2 -0.4 -0.4		-1.39	1.12 1.12 1.68 1.34	0.66 0.07 0.89 0.82
Stati	stics were cal	(pphm) culated for the 2 pairs with observ	4-hour peri ed concentr	od of DOY	ve a	thresh	old of			alation		
Stati Inclu Site	stics were cald ded were data-p Description	culated for the 2 pairs with observ No	4-hour peri ed concentr P Observed Value Tim	od of DOY ations abo eak Concen Predi e Value	ve a tratio cted Time	thresh ons Time Lag	old of Peak Ratio	Cor Mean Bias	ohm) mparisons Mean Error	s with O Norma Bias	bservati lized Error	ons (r)
Stati Inclu Site 0004	stics were cald ded were data-p Description	vulated for the 2 pairs with observ No 99	4-hour peri ed concentr P Observed Value Tim 	od of DOY ations abo eak Concen Predi e Value 10.3	ve a tratio cted Time	thresh ons Time Lag -1	old of Peak	Cor Mean Bias -3.2	ohm) mparisons Mean	s with O Norma Bias -0.29	bservati lized Error	ons (r)
Stati Inclu Site 0004	stics were cald ded were data-p Description SubRegion	No No No No No No No No No No No No No N	4-hour peri ed concentr P Observed Value Tim 18.2 16 12.6 13 13.5 18 18.2 16 10.2 13 14.4 14 13.4 13 11.6 13 12.5 13 12.5 15 11.0 13	od of DOY ations abo eak Concen Predi e Value 10.3 10.6 8.9 8.8 5.2 8.9 9.5 9.5 9.5 9.5 9.2 9.9 8.8 9.5	ve a tratic cted Time 15 14 14 14 13 14 16 14 15 15 16 16 16	thresh ons Time Lag -1 -2 1 -2 1 -4 -3 1 2 1 2 2	Deak Ratio 0.56 0.58 0.70 0.66 0.29 0.87 0.66 0.71 0.79 0.79 0.71 0.87	Con Mean Bias -3.2 (at o -0.2 -0.2 -0.2 -0.5 0.0 -0.3 -0.1 -0 3	ohm) mparisons Mean Error 3.5	s with O Norma Bias -0.29 x 35) -4.82 -2.89 -2.06 -9.63 -4.13 -4.13 -2.89 -4.13 -3.21	bservati lized Error 0.34 5.66 3.40 2.43	ons (r)

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 239 (08/27) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	Lized Error	(r)
0005	SubRegion Subregional Peak:	30	9.5	13	7.9 10.1	12 14	-1 1	0.83 1.06	-1.6 (at c	1.7 cell 68	-0.21 x 36)	0.23	0.29
3176	Anaheim	4	8.4	14	6.8	13	-1	0.81	-0.3	0.3	-1.59	1.75	0.93
0087	Los Angeles	4	8.8	13	5.8	13	0	0.66	-0.3	0.3	-1.59	1.75	0.40
3195	Costa Mesa	5	6.9	13	6.2	13	0	0.89	-0.2	0.2	-1.27	1.40	0.44
3177	La Habra	3	7.8	14	7.4	14	0	0.94	-0.1	0.1	-2.12	2.33	1.00
0820	LAXH	1	6.1	12	5.3	12	0	0.88	-0.1	0.1	-6.35	6.98	-99.00
0072	Long Beach	4	7.7	14	5.6	13	-1	0.73	-0.2	0.2	-1.59	1.75	0.27
0084	Lynwood	3	7.6	13	6.2	13	0	0.82	-0.2	0.2	-2.12	2.33	0.32
3812	Mission Viejo	3	6.4	18	7.9	12	-6	1.23	-0.1	0.3	-2.12	2.33	-0.97
0091	West Los Angeles	3	9.5	13	6.1	12	-1	0.65	-0.3	0.3	-2.12	2.33	0.02

* * * Model Performance Evaluation * * *

 Pollutant: 03 (pphm)
 Project: CAMx v4.4
 Simulation ID: df05a

 Statistics were calculated for the 24-hour period of DOY 239 (08/27) 2005
 Generations above a threshold of 6.0 (pphm)

 Included were data-pairs with observed concentrations above a threshold of 000 comparisons with Observations --- Observed Predicted Time Peak Mean Mean Normalized

Site	Description	No	Value Time	Value Time	e Lag	Ratio	Bias	Error	Bias	Error	(r)
0009	SubRegion Subregional Peak:	29	11.4 21	6.5 15 9.2 15	-6 -6	0.57 0.80	-3.1 (at o	3.1 cell 84	-0.35 x 45)	0.35	-0.59
4157 4137	Indio Jackson Palm Springs	15 14	11.4 21 10.9 19	6.2 14 6.5 15	-7 -4	0.55 0.60	-0.4 -0.3	0.4 0.3	-0.67 -0.72	0.67 0.72	-0.84 -0.22

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 240 (08/28) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	34	14.2 13	9.6 13 11.9 14	0 1	0.67 0.84	 -4.1 (at c	4.1 cell 54	-0.42 x 49)	0.42	0.87
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	8 10 10 6	14.2 13 13.6 14 13.8 13 12.0 12	$\begin{array}{rrrr} 9.6 & 13 \\ 9.2 & 14 \\ 7.1 & 12 \\ 5.5 & 12 \end{array}$	0 0 -1 0	0.67 0.67 0.52 0.46	-0.3 -0.4 -0.5 -0.4	0.3 0.4 0.5 0.4	-1.79 -1.43 -1.43 -2.38	1.79 1.43 1.43 2.38	0.96 0.95 0.83 0.67

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 240 (08/28) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations --------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Value Time Value Time Site Description No Lag Ratio Bias Error Bias Error (r) _____ _____ ___ ____ ____ ____ _ _ _ _ _____ ___ _ _ _ _ ____ ____ _____ 10.8 14 0004 SubRegion 129 15.6 15 -1 0.69 -2.8 3.1 -0.28 0.33 0.57 11.5 14 (at cell 75 x 46) Subregional Peak: -1 0.74 0060 9 13.8 14 9.2 14 0.67 -0.4 0.4 -3.99 4.71 0.97 Azusa 0 -2.99 10.2 16 -3 1.02 3.53 4164 Banning Airport 12 10.0 19 0.0 0.3 -0.38 Crestline 13.3 17 5.3 15 -2 0.40 -0.5 -3.59 4.24 5181 10 0.5 0.69 4158 Elsinore 10 7.7 12 9.1 15 3 1.18 0.0 0.2 -3.59 4.24 0.10 5197 10 10.2 16 2 0.73 0.3 -3.59 Fontana 14.1 14 -0.3 4.24 0.86 9.8 15 0591 Glendora 9 15.6 15 0 0.63 -0.4 0.4 -3.99 4.71 0.97 -3.26 5212 11 12.2 12 9.4 15 3 0.77 -0.3 0.3 3.85 Mira Loma 0.64 Perris 8.9 17 1.14 4149 4 7.8 17 0 -0.2 0.2 -8.97 10.60 0.61 Pomona -3.99 0075 9 12.4 12 10.5 15 3 0.85 -0.3 0.3 4.71 0.83 5204 Redlands 12 11.0 16 10.8 14 -2 0.98 3.53 -0.1 0.2 -2.99 0.85 3 Rubidoux 10.2 16 0.85 0.3 -3.26 3.85 4144 11 12.0 13 -0.3 0.84 9.9 13 -2 5203 San Bernardino 12 13.3 15 0.74 -0.3 0.3 -2.99 3.53 0.95 5175 10 14.9 14 10.6 15 1 0.71 -0.5 Upland 0.5 -3.59 4.24 0.95

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 240 (08/28) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	Lized Error	(r)
0005	SubRegion Subregional Peak:	36	11.4	13	8.1 9.7	14 15	1 2	0.71 0.85	-2.0 (at o	2.1 cell 68	-0.24 x 36)	0.26	0.12
3176	Anaheim	6	7.6	15	6.6	13	-2	0.87	-0.2	0.2	-1.44	1.58	0.21
0087	Los Angeles	7	11.4	13	5.7	13	0	0.50	-0.4	0.4	-1.23	1.35	0.80
3195	Costa Mesa	2	6.9	13	6.3	13	0	0.91	-0.1	0.1	-4.32	4.73	-99.00
3177	La Habra	3	7.7	15	8.0	14	-1	1.04	-0.1	0.3	-2.88	3.16	-0.06
0820	LAXH	2	6.7	12	5.2	12	0	0.77	-0.2	0.2	-4.32	4.73	-99.00
0072	Long Beach	1	6.6	13	5.5	13	0	0.83	-0.2	0.2	-8.64	9.47	-99.00
0084	Lynwood	2	7.2	13	6.1	12	-1	0.84	-0.2	0.2	-4.32	4.73	-99.00
3812	Mission Viejo	8	8.8	12	8.1	14	2	0.92	-0.1	0.1	-1.08	1.18	0.74
0091	West Los Angeles	5	10.9	14	6.1	12	-2	0.56	-0.4	0.4	-1.73	1.89	0.04

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05aStatistics were calculated for the 24-hour period of DOY 240 (08/28) 2005Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concen	trati	ons		Com	parisons	s with Ob	servati	ons
Site Descri	ption	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
0009 SubRegio Subregio	n nal Peak:	19	9.1	10	6.6 10.4		2 5	0.73 1.14	-2.4 (at c	2.4 ell 81	-0.32 x 43)	0.32	0.32
4157 Indio 4137 Palm S	Jackson prings	11 8	8.3 9.1	10 10	6.6 5.9		2 4	0.80 0.65	-0.3 -0.4	0.3 0.4	-0.56 -0.77	0.56 0.77	0.35 0.50

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 241 (08/29) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi		Time	Peak	Mean	Mean	Normal	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0003	SubRegion	30	15.2	13	7.1	14	1	0.47	-3.8	3.8	-0.42	0.42	0.65
	Subregional Peak:				8.8	14	1	0.58	(at d	cell 52	x 51)		
0069	Burbank	6	8.5	14	6.1	13	-1	0.72	-0.3	0.3	-2.12	2.12	0.96
0088	Pasadena	6	7.5	14	5.2	14	0	0.69	-0.4	0.4	-2.12	2.12	0.69
0074	Reseda	9	11.6	13	6.8	13	0	0.59	-0.5	0.5	-1.41	1.41	0.77
0090	Santa Clarita	9	15.2	13	7.1	14	1	0.47	-0.5	0.5	-1.41	1.41	0.65

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 241 (08/29) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concer	ıtrati	ons		Cor	nparison	s with O	bservat	ions
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0004	SubRegion Subregional Peak:	89	10.8	16	10.4 11.3	14 15	-2 -1	0.96 1.05	-2.2 (at o	2.8 cell 76	-0.25 x 47)	0.34	-0.10
0060 4164 5181 4158 5197 0591 5212 4149 0075	Azusa Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Perris Pomona	5 8 12 9 6 6 9 1 5	8.2 8.0 10.8 7.9 10.6 9.5 10.6 6.2 9.7	14 15 16 14 14 14 11 13 13	5.7 10.4 8.4 9.7 5.0 6.1 6.3 8.8 5.8	15 14 13 13 15 14 13 15	1 -1 -3 -1 -1 1 3 0 2	0.69 1.30 0.78 1.23 0.47 0.65 0.60 1.42 0.60	$ \begin{array}{c} -0.4\\ 0.0\\ -0.3\\ 0.1\\ -0.4\\ -0.4\\ -0.4\\ -0.4\\ -0.4\\ \end{array} $	0.4 0.3 0.2 0.4 0.4 0.4 0.4 0.4 0.4	$\begin{array}{r} -4.44 \\ -2.77 \\ -1.85 \\ -2.47 \\ -3.70 \\ -3.70 \\ -2.47 \\ -22.19 \\ -4.44 \\ -4.44 \end{array}$	6.00 3.75 2.50 3.33 5.00 5.00 3.33 30.01 6.00	0.18 0.43 -0.15 0.71 -0.48 0.33 0.43 -99.00 -0.27
5204 4144 5203 5175	Redlands Rubidoux San Bernardino Upland	7 8 7 6	8.5 9.8 9.5 10.5	13 12 12 14	9.6 6.5 8.3 5.5	13 15 13 16	0 3 1 2	1.13 0.66 0.87 0.52	-0.1 -0.3 -0.2 -0.4	0.3 0.3 0.2 0.4	-3.17 -2.77 -3.17 -3.70	4.29 3.75 4.29 5.00	0.35 0.61 -0.04 0.46

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 241 (08/29) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

- 1 -			Observ		Predi		Time	Peak	Mean	Mean	Normal		<i>i</i> .
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0005	SubRegion	13	7.2	 15		12	-3	1.01	-1.5	1.7	-0.22	0.25	0.29
	Subregional Peak:				8.8	14	-1	1.22	(at d	cell 68	x 36)		
3176	Anaheim	2	6.7	16	5.1	14	-2	0.76	-0.3	0.3	-1.45	1.62	-99.00
0087	Los Angeles	3	6.7	16	3.9	15	-1	0.59	-0.5	0.5	-0.96	1.08	0.00
3812	Mission Viejo	5	6.9	11	7.3	12	1	1.06	0.0	0.0	-0.58	0.65	0.57
0091	West Los Angeles	3	7.2	15	5.2	14	-1	0.72	-0.3	0.3	-0.96	1.08	-0.78

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 241 (08/29) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Ре	ak Concent	rations -	 Co	mparison	s with Ob	oservati	ons
Site	Description	No	Observed Value Time	Predic Value T		Mean Bias	Mean Error	Normal Bias	Lized Error	(r)
0009	SubRegion Subregional Peak:	14	8.6 16		13 -3 11 -5	 -0.9 (at	1.4 cell 113	-0.13 x 12)	0.21	0.20
4157 4137	Indio Jackson Palm Springs	10 4	6.9 16 8.6 16	7.7 6.6		 -0.1 -0.1	0.2 0.1	-0.18 -0.45	0.30 0.75	0.12 0.54

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba	unk	53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

Pollutant: 03 (pphm)	Project: CAM	Ix v4.4	Simulation ID: df05a
Statistics were calculated for Included were data-pairs with c			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0003 SubRegion Subregional Peak:	1 6.1 10	6.3 9 -1 1.03 7.3 10 0 1.18	0.2 0.2 0.03 0.03 -99.00 (at 48 x 47) NSte: 0074; NSPk: 7.1
*	* * Model Perfor	mance Evaluation * * *	
Pollutant: O3 (pphm)	Project: CAM	ix v4.4	Simulation ID: df05a
Statistics were calculated for Included were data-pairs with c			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	2 6.3 13	6.2 9 -4 0.98 7.2 10 -3 1.14	-0.2 0.2 -0.03 0.03 -99.00 (at 72 x 32) NSte: 4158; NSPk: 5.7
*	* * Model Perfor	mance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAM	Ix v4.4	Simulation ID: df05a
Statistics were calculated for Included were data-pairs with c			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0005 SubRegion Subregional Peak:	4 8.3 10	5.1 10 0 0.61 6.8 9 -1 0.82	-2.4 2.4 -0.34 0.34 -74.00 (at 68 x 36) NSte: 3812; NSPk: 4.0

Pollutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
	4-hour period of DOY 238 (08/26) 2005 ed concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours
	Peak Concentrations	Comparisons with Observations
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
	6.9 11 4.8 10 -1 0.70 6.8 10 -1 0.99	-1.9 1.9 -0.29 0.29 -99.00 (at 54 x 50) NSte: 0069; NSPk: 5.0
* *	* Model Performance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
	4-hour period of DOY 238 (08/26) 2005 ed concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours
	Peak Concentrations	Comparisons with Observations
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
	8.0 11 8.8 10 -1 1.10 10.1 10 -1 1.26	-1.4 1.6 -0.19 0.22 -77.67 (at 78 x 38) NSte: 4164; NSPk: 8.9
* *	* Model Performance Evaluation * * *	
Pollutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
	4-hour period of DOY 238 (08/26) 2005 ed concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours
	Peak Concentrations	Comparisons with Observations
Site Description No	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0005 SubRegion 5 Subregional Peak:		-2.3 2.3 -0.34 0.34 -66.08 (at 68 x 37) NSte: 3812; NSPk: 5.5

Pollutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
	24-hour period of DOY 238 (08/26) 2005 ved concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours
	Peak Concentrations	Comparisons with Observations
Site Description N	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
	8.0 12 5.8 10 -2 0.72 8.8 10 -2 1.10	-2.3 2.3 -0.28 0.28 -99.00 (at 81 x 43) NSte: 4137; NSPk: 5.8
* *	* Model Performance Evaluation * * *	
Pollutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
	24-hour period of DOY 239 (08/27) 2005 ved concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours
	Peak Concentrations	Comparisons with Observations
-	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
	4 7.7 10 7.0 10 0 0.92 7.8 10 0 1.01	-1.2 1.2 -0.17 0.17 -120.12 (at 54 x 49) NSte: 0069; NSPk: 7.3
* *	* Model Performance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
	24-hour period of DOY 239 (08/27) 2005 ved concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours
	Peak Concentrations	Comparisons with Observations
Site Description N	Observed Predicted Time Peak Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion 1 Subregional Peak:		-2.9 3.1 -0.27 0.31 -52.11 (at 70 x 35) NSte: 4158; NSPk: 7.8

P	collutant: O3 (pphm)		Project: CAM	x v4.4			Simulation ID: df05a
	stics were calculated fo ded were data-pairs with		-				6.0 (pphm); Averaged over 8 hours
			Peal	<pre>Concentrati</pre>	ons		Comparisons with Observations
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag		Mean Mean Normalized Bias Error Bias Error (r)
0005	SubRegion Subregional Peak:	3	6.6 10	5.2 10 8.6 11	0 1	0.79 1.30	-1.6 1.6 -0.25 0.25-4764.13 (at 68 x 37) NSte: 3812; NSPk: 6.6
		* * *	Model Perform	nance Evaluat	ion *	* *	
P	ollutant: 03 (pphm)		Project: CAM	x v4.4			Simulation ID: df05a
	stics were calculated fo ded were data-pairs with						6.0 (pphm); Averaged over 8 hours
			Peal	<pre>Concentrati</pre>	ons		Comparisons with Observations
Site	Description		Observed Value Time	Predicted Value Time	Lag		Mean Mean Normalized Bias Error Bias Error (r)
0009	SubRegion Subregional Peak:	2		5.9 10 7.7 10	 -5 -5	0.63	-3.5 3.5 -0.38 0.38 -99.00 (at 82 x 44) NSte: 4137; NSPk: 5.8
		* * *	Model Perform	mance Evaluat	ion *	* *	
P	collutant: O3 (pphm)		Project: CAM	x v4.4			Simulation ID: df05a
	stics were calculated fo ded were data-pairs with		-				6.0 (pphm); Averaged over 8 hours
			Peal	<pre>Concentrati</pre>	ons		Comparisons with Observations
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag		Mean Mean Normalized Bias Error Bias Error (r)
0003	SubRegion Subregional Peak:	4	11.3 10	7.3 10 8.3 10	 0 0	0.65	-3.7 3.7 -0.36 0.36 -69.61 (at 54 x 49) NSte: 0069; NSPk: 7.6

Pollutant: 03 (pphm)	Project: CAM	x v4.4	Simulation ID: df05a
Statistics were calculated for t Included were data-pairs with ob			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	12 12.1 11	9.2 11 0 0.76 9.4 10 -1 0.77	-2.6 3.1 -0.22 0.29 -42.70 (at 76 x 44) NSte: 5204; NSPk: 9.3
*	* * Model Perfor	mance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAM	x v4.4	Simulation ID: df05a
Statistics were calculated for t Included were data-pairs with ob			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0005 SubRegion Subregional Peak:	4 8.5 10	6.6 10 0 0.78 8.6 10 0 1.01	-2.2 2.2 -0.29 0.29 -61.42 (at 68 x 36) NSte: 3812; NSPk: 6.3
*	* * Model Perfor	mance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAM	x v4.4	Simulation ID: df05a
Statistics were calculated for t Included were data-pairs with ob			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0009 SubRegion Subregional Peak:	2 7.7 8	5.8 10 2 0.76 8.4 11 3 1.10	-1.7 1.7 -0.22 0.22 -99.00 (at 81 x 43) NSte: 4137; NSPk: 5.7

Pollutant: 03 Project: CAMx v4.4 Simulation ID: df05a (pphm) Statistics were calculated for the 24-hour period of DOY 241 (08/29) 2005 6.0 (pphm); Averaged over 8 hours Included were data-pairs with observed concentrations above a threshold of ----- Peak Concentrations -------- Comparisons with Observations ---Observed Predicted Time Peak Mean Normalized Mean Site Description Value Time Value Time Ratio Bias Error No Laq Bias Error (r) _____ ____ ____ ____ ____ _ _ _ _ ____ _ _ _ _ ____ 0003 SubRegion 4 10.9 10 6.1 10 0 0.56 -3.5 3.5 -0.40 0.40 -27.48 Subregional Peak: 6.4 10 0 0.59 (at 49 x 51) NSte: 0090; NSPk: 6.1 * * * Model Performance Evaluation * * * Pollutant: 03 Project: CAMx v4.4 Simulation ID: df05a (mdqq) Statistics were calculated for the 24-hour period of DOY 241 (08/29) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours ----- Peak Concentrations ---- --- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Description Site No Value Time Value Time Laq Ratio Bias Error Bias Error (r) -_ _ _ _ ____ ____ ____ ____ ____ ____ 12 9.2 22 0004 SubRegion 8.8 10 -12 0.95 -1.9 2.3 -0.23 0.30 -36.93 9.3 11 Subregional Peak: -11 1.01 (at 79 x 38) NSte: 4164; NSPk: 8.8 * * * Model Performance Evaluation * * * Simulation ID: df05a Pollutant: 03 Project: CAMx v4.4 (pphm) Statistics were calculated for the 24-hour period of DOY 241 (08/29) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours ----- Peak Concentrations --------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Site Description No Value Time Value Time Lag Ratio Bias Error Bias Error (r) 1 6.2 10 6.2 9 -1 0.99 0.0 0005 SubRegion 0.0 -0.01 0.01 -99.00 Subregional Peak: 7.5 10 0 1.21 (at 68 x 37) NSte: 3812; NSPk: 6.0

Pollutant: 03 (pphm)	Project: CAMx v4.4 Si	mulation ID: df05a
	r the 24-hour period of DOY 241 (08/29) 2005 observed concentrations above a threshold of 6.0 (pphm); A	averaged over 8 hours
	Peak Concentrations Compariso	ons with Observations
Site Description	Observed Predicted Time Peak Mean Mean No Value Time Value Time Lag Ratio Bias Error	
0009 SubRegion Subregional Peak:	2 6.4 11 7.0 11 0 1.09 0.2 0.4	
	* * * Model Performance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAMx v4.4 Si	mulation ID: df05a
	aired Average 8-Hour Concentrations above 6.0 pphm for DOY pregional Maximum of 9.5 at Cell 83 x 10 Nearest Site	
	Observed Simulated	
Site Site ID Description	Site DOY DOY <td>240 241 Ratio Bias Error</td>	240 241 Ratio Bias Error
	* * * Model Performance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAMx v4.4 Si	mulation ID: df05a
	aired Average 8-Hour Concentrations above 6.0 pphm for DOY pregional Maximum of -99.0 at Cell -9 x -9 Nearest Site	
	Observed Simulated	
Site Site ID Description	Site DOY DOY DOY DOY DOY Site DOY DOY DOY Avg. 237 238 239 240 241 Avg. 237 238 239	

_ _ _

---- ---- ---- ----- -----

--- --- --- ---

Po	llutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
Subreg	ion 0002 Spatially Pai Unpaired Subr	ed Average 8-Hour Concentrations above 6.0 gional Maximum of 6.4 at Cell 42 x 53	pphm for DOY 237 through 241 Nearest Site: 0090
		Observed	- Simulated
Site ID	Site Description	Avg. 237 238 239 240 241 Avg.	DOY DOY DOY DOY DOY Max. Max. Max. 237 238 239 240 241 Ratio Bias Error
		* * Model Performance Evaluation * * *	
Po	llutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
Subreg		ed Average 8-Hour Concentrations above 6.0 gional Maximum of 7.8 at Cell 54 x 48	
		Observed	- Simulated
Site ID	Site Description	Avg. 237 238 239 240 241 Avg.	DOY DOY DOY DOY Max. Max. 237 238 239 240 241 Ratio Bias Error
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	7.94.36.47.310.87.16.07.75.66.97.310.26.55.29.74.75.37.711.310.16.2	5.8 4.8 7.0 7.3 4.8 0.68 -0.23 0.23 4.8 4.6 6.2 6.5 3.9 0.63 -0.31 0.31
	ł	* * Model Performance Evaluation * * *	
Po	llutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
Subreg		ed Average 8-Hour Concentrations above 6.0 gional Maximum of 9.2 at Cell 77 x 48	
		Observed	- Simulated
Site ID	Site Description	Avg. 237 238 239 240 241 Avg.	DOY DOY DOY DOY DOY Max. Max. Max. 237 238 239 240 241 Ratio Bias Error
0060 4164 5181 4158 5197 0591 5212 0075 5204 4144 5203 5175		7.8 4.8 6.5 7.7 10.6 6.4 5.2 7.7 6.3 7.6 10.6 7.0 7.0 8.0 10.2 5.3 7.4 13.0 11.0 9.2 5.7 7.1 5.2 7.4 6.7 6.9 7.4 7.5 9.1 4.8 6.8 9.9 11.9 7.8 5.8 8.8 4.9 7.3 8.4 11.8 7.6 5.8 8.7 6.3 8.0 10.0 10.6 8.7 6.2 8.3 4.9 7.0 8.8 10.6 7.0 5.6 8.8 5.3 6.8 10.7 10.0 7.6 7.4 9.2 5.9 8.0 9.6 10.6 8.7 6.8 9.5 5.3 6.9 11.2 11.4 8.3 6.8	4.8 4.6 6.1 6.4 4.2 0.61 -0.31 0.31 6.0 8.8 7.8 8.6 8.8 0.84 0.07 0.20

Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
	Paired Average 8-Hour Concentrations a abregional Maximum of 8.2 at Cell 69	above 6.0 pphm for DOY 237 through 241 9 x 37 Nearest Site: 4158
	Observed	Simulated
Site Site ID Description	Site DOY DOY DOY DOY DOY Avg. 237 238 239 240 241	Site DOY DOY DOY DOY DOY Max. Max. Max. Avg. 237 238 239 240 241 Ratio Bias Error
3176 Anaheim 0087 Los Angeles 3195 Costa Mesa 0820 LAXH	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Subregion 0006 Spatially P	Project: CAMx v4.4	Simulation ID: df05a above 6.0 pphm for DOY 237 through 241 2 x 11 Nearest Site: 4158
Site Site ID Description		Site DOY DOY DOY DOY DOY Max. Max. Max. Avg. 237 238 239 240 241 Ratio Bias Error
	* * * Model Performance Evaluation	
Pollutant: O3 (pphm) Subregion 0007 Spatially P Unpaired Su	Paired Average 8-Hour Concentrations a abregional Maximum of 6.0 at Cell 44	
Site Site ID Description	Observed	Simulated Site DOY DOY DOY DOY Max. Max. Max. Avg. 237 238 239 240 241 Ratio Bias Error

Pol	llutant: 03 (pphm)	Pr	oject: C	AMx v4	. 4					Si	mulat	ion I	D: df05a	a	
Subregi		Paired Avera ubregional M	-										gh 241		
			Obs	erved					Simul	ated					
Site ID	Site Description	Site Avg.	DOY DC 237 23		DOY 240	DOY 241	Site Avg.	DOY 237	DOY 238	DOY 239	DOY 240	DOY 241	Max. Ratio	Max. Bias	Max. Error
Pol	llutant: 03 (pphm)	-	del Perf oject: C			uation	* * *			Si	mulat	ion I	D: df05a	a	
Subregi		Paired Avera ubregional M 	aximum c		4 at C	ell 8	7 x 45 -		arest	Site	: 413	7	gh 241		
Site ID	Site Description	Site Avg.	DOY DC 237 23		DOY 240	DOY 241	Site Avg.	DOY 237	DOY 238	DOY 239	DOY 240	DOY 241	Max. Ratio	Max. Bias	Max. Error
 4157 4137	Indio Jackson	 7.7	3.6 5.	 7 9.4	7.2	6.4	 6.1	 5.9	6.1	 5.9	 5.8	7.0	0.74 -	-0.15	0.22

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba	unk	53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 195 (07/14) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observed Value Ti		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	15	8.6 1	14		14 15	0 1	1.09 1.33	-0.3 (at c	1.3 cell 51	-0.04 x 52)	0.18	0.30
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	1 2 4 8	6.1 1 7.4 1 8.6 1 8.6 1	17 14	6.0 4.4 9.0 9.3	16	0 -1 0 1	0.98 0.60 1.05 1.09	$ \begin{array}{c} 0.0 \\ -0.4 \\ 0.0 \\ 0.0 \end{array} $	0.0 0.4 0.1 0.2	-0.64 -0.32 -0.16 -0.08	2.70 1.35 0.68 0.34	-99.00 -99.00 0.40 0.28

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 195 (07/14) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			- Peal	k Concen	trati	ons	Comparisons with Observations					
Description	No					Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias		(r)
SubRegion Subregional Peak:	64	10.0	14	10.8 11.6	15 15	1 1	1.08 1.16	-0.6 (at	1.5 cell 70	-0.08 x 36)	0.21	0.25
Banning Airport Crestline	10 6	8.5 10.0	14 14	7.9 8.3	14 15	0 1	0.93 0.83	-0.2 -0.1	0.2 0.1	-0.52 -0.87	1.37 2.28	0.63 0.59
Elsinore Fontana	8 4	9.0 7.7	12 14	10.8	15 14	3 0	1.20 0.79	0.1	0.2	-0.65 -1.31	1.71 3.42	0.10 0.72
Mira Loma	⊥ 6 ∡	8.4	14	7.1	13	-1	0.85	-0.1	0.2	-0.87	2.28	-99.00 0.30 -0.64
Pomona Redlands	2	7.0	14 13	4.5 9.3	13 15	-1 2	0.64	-0.4 0.0	0.4	-2.62	6.83 2.28	-99.00 -0.35
Rubidoux San Bernardino Upland	8 6 2	8.4	13 12	8.7 8.9	13 15 12	0 3	1.04	-0.1 -0.1	0.1 0.2	-0.65 -0.87	1.71 2.28	0.94 -0.16 0.21
	SubRegion Subregional Peak: Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Perris Pomona Redlands Rubidoux	SubRegion64Subregional Peak:64Banning Airport10Crestline6Elsinore8Fontana4Glendora1Mira Loma6Perris4Pomona2Redlands6Rubidoux8San Bernardino6	DescriptionNoValueSubRegion6410.0Subregional Peak:6Banning Airport10Restline6108.5Crestline6108.5Fontana47Glendora16.6Pomona27.0Redlands88.4San Bernardino68.5	DescriptionNoObserved Value TimeSubRegion6410.014Subregional Peak:108.514Crestline610.014Elsinore89.012Fontana47.714Glendora16.614Mira Loma68.414Perris46.617Pomona27.014Redlands68.713Rubidoux88.413San Bernardino68.512	Observed Prediver Description No Value Time Value SubRegion 64 10.0 14 10.8 Subregional Peak: 11.6 11.6 11.6 Banning Airport 10 8.5 14 7.9 Crestline 6 10.0 14 8.3 Elsinore 8 9.0 12 10.8 Fontana 4 7.7 14 6.1 Glendora 1 6.6 14 5.2 Mira Loma 6 8.4 14 7.1 Perris 4 6.6 17 9.4 Pomona 2 7.0 14 4.5 Redlands 6 8.7 13 9.3 Rubidoux 8 8.4 13 8.7 San Bernardino 6 8.5 12 8.9	Description No Value Time Predicted SubRegion 64 10.0 14 10.8 15 Subregional Peak: 10 8.5 14 7.9 14 Crestline 6 10.0 14 8.3 15 Elsinore 8 9.0 12 10.8 15 Fontana 4 7.7 14 6.1 14 Glendora 1 6.6 14 5.2 14 Mira Loma 6 8.4 14 7.1 13 Perris 4 6.6 17 9.4 13 Redlands 6 8.7 13 9.3 15 Rubidoux 8 8.4 13 8.7 13 San Bernardino 6 8.5 12 8.9 15	Description No Value Time Predicted Time Lag SubRegion 64 10.0 14 10.8 15 1 Subregional Peak: 10 8.5 14 7.9 14 0 Crestline 6 10.0 14 8.3 15 1 Banning Airport 10 8.5 14 7.9 14 0 Crestline 6 10.0 14 8.3 15 1 Elsinore 8 9.0 12 10.8 15 3 Fontana 4 7.7 14 6.1 14 0 Glendora 1 6.6 14 5.2 14 0 Mira Loma 6 8.4 14 7.1 13 -1 Perris 4 6.6 17 9.4 13 -4 Pomona 2 7.0 14 4.5 13 -1 Redlands 6	Description No Value Time Value Time Lag Ratio SubRegion 64 10.0 14 10.8 15 1 1.08 Subregional Peak: 64 10.0 14 10.8 15 1 1.08 Banning Airport 10 8.5 14 7.9 14 0 0.93 Crestline 6 10.0 14 8.3 15 1 0.83 Elsinore 8 9.0 12 10.8 15 3 1.20 Fontana 4 7.7 14 6.1 14 0 0.79 Glendora 1 6.6 14 5.2 14 0 0.79 Mira Loma 6 8.4 14 7.1 13 -1 0.85 Perris 4 6.6 17 9.4 13 -4 1.42 Pomona 2 7.0 14 4.5 13 -1	Description No Value Time Predicted Time Lag Ratio Bias SubRegion 64 10.0 14 10.8 15 1 1.08 -0.6 Subregional Peak: 10 8.5 14 7.9 14 0 0.93 -0.2 Crestline 6 10.0 14 8.3 15 1 0.83 -0.1 Elsinore 8 9.0 12 10.8 15 3 1.20 0.1 Fontana 4 7.7 14 6.1 14 0 0.79 -0.2 Mira Loma 6 8.4 14 7.1 13 -1 0.85 -0.1 Perris 4 6.6 17 9.4 13 -4 1.42 0.3 Pomona 2 7.0 14 4.5 13 -1 0.64 -0.4 Redlands 6 8.7 13 9.3 15 <td< td=""><td>Description No Observed Value Time Predicted Value Time Time Lag Mean Ratio Mean Bias Mean Error SubRegion 64 10.0 14 10.8 15 1 1.08 -0.6 1.5 Subregional Peak: 64 10.0 14 10.8 15 1 1.08 -0.6 1.5 Banning Airport 10 8.5 14 7.9 14 0 0.93 -0.2 0.2 0.2 Crestline 6 10.0 14 8.3 15 1 0.83 -0.1 0.1 Elsinore 8 9.0 12 10.8 15 3 1.20 0.1 0.2 Fontana 4 7.7 14 6.1 14 0 0.79 -0.2 0.2 Glendora 1 6.6 14 5.2 14 0 0.79 -0.2 0.2 Mira Loma 6 8.4 14 7.1 13</td><td>Description No Value Time Predicted Time Lag Mean Mean Mean Mean Bias SubRegion 64 10.0 14 10.8 15 1 1.08 -0.6 1.5 -0.08 SubRegion 64 10.0 14 10.8 15 1 1.08 -0.6 1.5 -0.08 Subregional Peak: 10 8.5 14 7.9 14 0 0.93 -0.2 0.2 -0.52 Crestline 6 10.0 14 8.3 15 1 0.83 -0.1 0.1 -0.87 Elsinore 8 9.0 12 10.8 15 3 1.20 0.1 0.2 -0.65 Fontana 4 7.7 14 6.1 14 0 0.79 -0.2 0.2 -5.24 Mira Loma 6 8.4 14 7.1 13 -1 0.64 -0.4 0.4 <</td><td>Description No Value Time Predicted Time Peak Mean Mean Mean Mean Mean Bias Error Bias</td></td<>	Description No Observed Value Time Predicted Value Time Time Lag Mean Ratio Mean Bias Mean Error SubRegion 64 10.0 14 10.8 15 1 1.08 -0.6 1.5 Subregional Peak: 64 10.0 14 10.8 15 1 1.08 -0.6 1.5 Banning Airport 10 8.5 14 7.9 14 0 0.93 -0.2 0.2 0.2 Crestline 6 10.0 14 8.3 15 1 0.83 -0.1 0.1 Elsinore 8 9.0 12 10.8 15 3 1.20 0.1 0.2 Fontana 4 7.7 14 6.1 14 0 0.79 -0.2 0.2 Glendora 1 6.6 14 5.2 14 0 0.79 -0.2 0.2 Mira Loma 6 8.4 14 7.1 13	Description No Value Time Predicted Time Lag Mean Mean Mean Mean Bias SubRegion 64 10.0 14 10.8 15 1 1.08 -0.6 1.5 -0.08 SubRegion 64 10.0 14 10.8 15 1 1.08 -0.6 1.5 -0.08 Subregional Peak: 10 8.5 14 7.9 14 0 0.93 -0.2 0.2 -0.52 Crestline 6 10.0 14 8.3 15 1 0.83 -0.1 0.1 -0.87 Elsinore 8 9.0 12 10.8 15 3 1.20 0.1 0.2 -0.65 Fontana 4 7.7 14 6.1 14 0 0.79 -0.2 0.2 -5.24 Mira Loma 6 8.4 14 7.1 13 -1 0.64 -0.4 0.4 <	Description No Value Time Predicted Time Peak Mean Mean Mean Mean Mean Bias Error Bias

Pollutant: 03 (pphm) Project: CAMx v4.4

	stics were calculated for ded were data-pairs with c	6.0 (pphm)					
			Comparisons wit	th Observations			
Site	Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean No Bias Error Bia	ormalized as Error (r)
	SubRegion Subregional Peak:	2	7.7 16	4.4 16 11.0 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.7 2.7 -0 (at cell 68 x 3	.37 0.37 -99.00 7)
3176 0087	Anaheim Los Angeles	1 1	6.2 16 7.7 16	4.4 16 4.2 16	0 0.71 0 0.54		.75 0.75 -99.00 .75 0.75 -99.00

Simulation ID: df05a

P	ollutant: 03 (pp)	nm)	Project	CAM:	x v4.4				Simulation ID: df05a					
	istics were calculate uded were data-pairs								6.0 (pj	phm)				
				Coi	mparison	s with Ol	bservati	ons						
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)	
0009	SubRegion Subregional Peak:	5	8.9	14	6.8 18.2		 -1 -1		-1.7 (at o	1.7 cell 106	-0.21 x 13)	0.21	0.92	
4137	Palm Springs	5	8.9	14	6.8	13	-1	0.76	-0.2	0.2	-0.21	0.21	0.92	

Stati	llutant: O3 (pphm) stics were calculated fo ded were data-pairs with	or the 24		eriod	of DOY				6.0 (pj		ulation	12. ULU	
				- Peał	c Concen	trati	ons		Coi	mparisons	s with O	bservati	ions
lite	Description	No	Observ Value	Time	Value	Time	Time Lag	Ratio	Mean Bias	Mean Error	Norma Bias	Error	(r)
	SubRegion Subregional Peak:	 14	9.1		11.3 12.7	15	 -1 0	1.24 1.40	0.8 (at (1.1 cell 51	0.09 x 55)	0.14	0.75
0088 0074 0090	Pasadena Reseda Santa Clarita	1 6 7	6.6 8.2 9.1	15	5.6 9.0 11.3	14	0 -1 -1	1.09	-0.1 0.1 0.1	0.1 0.1 0.2	1.29 0.21 0.18	1.91 0.32 0.27	-99.00 0.75 0.45
		* * *	Model P	erform	mance Ev	raluat	ion *	* *					
Po	llutant: 03 (pphm)		Project	: CAM2	x v4.4					Simu	ulation	ID: df05	ōa
Stati	stics were calculated for	or the 24	1-hour p	eriod	of DOY				6.0 (p)		ulation	ID: df05	ōa
Stati	· ·	or the 24	4-hour p ed conce	eriod ntrati	of DOY ions abc	ve a	thresh						
Stati: Includ ite	stics were calculated fo ded were data-pairs with Description	or the 24 h observe No	4-hour p ed conce Observ Value	eriod ntrati - Peał ed Time	of DOY ions abc c Concen Predi Value	ove a tratio cted Time	thresh ons Time Lag	old of Peak Ratio	Con Mean Bias	ohm) mparisons Mean Error	s with O Norma Bias	bservati lized Error	
Stati: Includ ite 	stics were calculated fo ded were data-pairs with	or the 24 h observe No	4-hour p ed conce Observ	eriod ntrat: - Pea ed Time 	of DOY ions abc c Concen Predi	ove a stration cted Time 14	thresh ons Time Lag	Peak Ratio 0.88	Con Mean Bias 0.3	ohm) mparisons Mean	s with O Norma Bias 0.07	bservati lized Error	ions
Stati; Includ Site 0004 : 1 4164 5181	stics were calculated fo ded were data-pairs with Description SubRegion	or the 24 h observe 88 12 13 9	4-hour p ed conce Observ Value 15.8 11.6 15.8 9.1	eriod ntrat: - Pea ed Time 14 16 14 15	of DOY ions abc Concen Value 13.9 15.4 13.0 11.5	ove a tration cted Time 14 15 16	thresh ons Time Lag 0	Peak Ratio 0.88	Con Mean Bias 0.3	ohm) mparisons Mean Error 1.8	s with O Norma Bias 0.07	bservati lized Error	ions (r)
Stati: Includ Site 0004 : 4164 5181 4158 5197 0591 5212	Description Juded were data-pairs with Description SubRegion Subregional Peak: Banning Airport Crestline Elsinore Fontana Glendora Mira Loma	or the 24 h observe 88 12 13 9 8 1 7	4-hour p ed conce Observ Value 15.8 11.6 15.8 9.1 9.2 6.4 8.1	eriod ntrat: - Pea ed Time 14 16 14 15 12 16 16 16	of DOY ions abc c Concen Value 13.9 15.4 13.0 11.5 10.8 10.8 5.4 9.7	cted Time 14 15 16 14 16 12 16 11	thresh ons Time Lag 0 1 0 0 1 0 0 -5	Peak Ratio 0.88 0.98 1.12 0.73 1.18 1.17 0.85 1.20	Con Mean Bias 0.3 (at 0 -0.1 -0.3 0.2 0.0 -0.2 0.2	ohm) mparisons Error 1.8 cell 77 0.1 0.3 0.2 0.2 0.2 0.2 0.2	s with O Norma Bias 0.07 x 43) 0.53 0.49 0.71 0.79 6.35 0.91	bservati lized Error 0.20 1.48 1.37 1.97 2.22 17.75 2.54	(r) 0.44 0.86 0.79 0.46 0.84 -99.00 0.04
Statis Includ Site 0004 : 1 4164 5181 4158 5197 0591	Description SubRegion Subregional Peak: Banning Airport Crestline Elsinore Fontana Glendora	or the 24 h observe 88 12 13 9 8 1	4-hour p ed conce Observ Value 15.8 11.6 15.8 9.1 9.2 6.4	eriod ntrat: - Pea ed Time 14 16 16 16 16 16 16 16 16 16 16 13	of DOY ions abc Concen Value 13.9 15.4 13.0 11.5 10.8 10.8 5.4	cted Time 14 15 16 14 16 12 16 11 15 15 14	thresh ons Lag 0 1 0 0 1 0 0 1 0 0 -5 -1 -1 1	Deak Peak Ratio 0.88 0.98 1.12 0.73 1.18 1.17 0.85 1.20 1.35 1.17	Con Mean Bias 0.3 (at 0 -0.1 -0.3 0.2 0.0 -0.2	ohm) mparisons Error 1.8 cell 77 0.1 0.3 0.2 0.2 0.2	s with O Norma Bias 0.07 x 43) 0.53 0.49 0.71 0.79 6.35	bservati lized Error 0.20 1.48 1.37 1.97 2.22 17.75 2.54 3.55	(r) 0.44 0.86 0.79 0.46 0.84 -99.00

Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID:														
Statistics were calculated Included were data-pairs w					6.0 (pph	m)								
		Peak	Concentrati	ons	Compa	arisons	with Ob	servati	ons					
Site Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Bias 1		Normal Bias	ized Error	(r)					
0005 SubRegion Subregional Peak:	6	6.8 18	$5.3 15 \\ 11.5 14$	-3 0.78 -4 1.68	-2.1 (at ce	2.1	-0.33 37)	0.33	-0.37					
0820 LAXH	6	6.8 18	5.3 15	-3 0.78	-0.3	0.3	-0.33	0.33	-0.37					
Pollutant: 03 (pphm	* * * Model Performance Evaluation * * * Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a													
Statistics were calculated Included were data-pairs w					6.0 (pph	m)								
		Peak	Concentrati	ons	Compa	arisons	with Ob	servati	ons					
Observed Predicted Time Peak Mean Mean Normalized Site Description No Value Time Value Time Lag Ratio Bias Error Bias Error (r)														
0009 SubRegion 25 11.2 16 9.7 16 0 0.86 -0.8 1.9 -0.08 0.23 0.14 Subregional Peak: 16.0 13 -3 1.43 (at cell 105 x 14)														
4157 Indio Jackson 4137 Palm Springs	12 13	8.9 19 11.2 16	9.7 16 8.6 12	-3 1.08 -4 0.77	0.1 -0.2	0.2 0.2	-0.17 -0.16	0.48 0.45	0.35 0.71					

Pollutant: O3 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 197 (07/16) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predio Value 2		Time Laq	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
													(±)
0003	SubRegion	32	17.3	14	12.4	14	0	0.72	-0.7	1.8	-0.03	0.17	0.72
	Subregional Peak:				14.7	15	1	0.85	(at d	cell 51	x 54)		
		_											
0069	Burbank	7	9.0	12	10.7	14	2	1.19	0.1	0.1	-0.13	0.76	0.74
0088	Pasadena	6	8.7	13	10.5	15	2	1.21	0.1	0.2	-0.15	0.89	0.42
0074	Reseda	9	10.7	15	10.1	15	0	0.94	0.0	0.1	-0.10	0.59	0.89
0090	Santa Clarita	10	17.3	14	12.4	14	0	0.72	-0.2	0.2	-0.09	0.53	0.91

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 197 (07/16) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peal	c Concer	ntrati	ons		Cor	mparisons	s with Ol	oservati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0004	SubRegion Subregional Peak:	119	16.6	15	14.1 15.6	15 14	0 -1	0.85 0.94	-0.6 (at d	1.9 cell 76	-0.03 x 41)	0.20	0.55
0060 4164 5181 4158 5197 0591 5212 4149	Azusa Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Perris	5 15 14 11 8 6 9 10	9.9 13.4 16.6 10.4 13.5 11.2 12.2 12.6	14 17 15 17 16 14 14 14	9.1 14.1 10.7 13.8 10.4 8.9 11.1 13.2	16 15 15 16 16 15 15	2 -2 0 -2 0 2 1 1	0.92 1.05 0.65 1.33 0.77 0.79 0.91 1.05	$\begin{array}{c} 0.0 \\ -0.1 \\ -0.3 \\ 0.4 \\ -0.2 \\ -0.1 \\ 0.0 \\ 0.2 \end{array}$	0.2 0.1 0.3 0.4 0.2 0.1 0.2 0.2	-0.70 -0.23 -0.25 -0.32 -0.44 -0.59 -0.39 -0.35	4.75 1.58 1.70 2.16 2.97 3.96 2.64 2.37	-0.53 0.89 0.86 0.25 0.97 0.54 0.62 0.90
0075 5204 4144 5203 5175	Pomona Redlands Rubidoux San Bernardino Upland	7 9 8 9 8	10.8 14.6 13.0 15.6 12.7	14 15 14 15 15	9.9 13.2 11.6 12.4 9.8	15 15 15 14 15	1 0 1 -1 0	0.91 0.91 0.89 0.80 0.77	0.0 0.0 0.0 -0.2 -0.2	0.1 0.1 0.2 0.2 0.2	-0.50 -0.39 -0.44 -0.39 -0.44	3.39 2.64 2.97 2.64 2.97	0.59 0.97 0.58 0.93 0.92

Pol	llutant: 03	(pphm)		Project	: CAM2	c v4.4					Simu	ulation 1	D: df05	ōa
	stics were calc led were data-p									6.0 (pp	ohm)			
					- Peał	Concen	ıtrati	ons		Com	parisons	s with Ob	oservati	ions
Site	Description			Value	Time	Predi Value	Time	Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	Error	(r)
	SubRegion Subregional Pea		4			7.9 13.3	13		1.20	0.9	0.9 ell 68	0.15		-0.13
0087 0091	Los Angeles West Los Ange	les	1 3	6.4 6.6	12 14	7.5 7.9	12 13	0 -1	1.18 1.20	0.2 0.1				-99.00 -0.10
		*	* *	Model P	erform	nance Ev	raluat	ion *	* *					
Po	llutant: 03	(pphm)		Project	: CAM2	c v4.4					Simu	ulation 1	D: df0	ōa
	stics were calc ded were data- <u>r</u>									6.0 (pp)			
					- Peak	Concen	ıtrati	ons		Com	parisons	s with Ob	oservati	ions
Site	Description		No	Observ Value	Time	Predi Value	Time	5	Peak Ratio	Mean Bias	Mean Error	Normal Bias	Error	(r)
0009 SubRegion 27 13.9 18 8.8 14 -4 0.64 -3.0 3.2 -0.28 0.31 -0.05 Subregional Peak: 17.8 14 -4 1.28 (at cell 107 x 13)											-0.05			
4157 4137	Indio Jacksor Palm Springs	L	11 16	10.6 13.9		8.8 8.3	14 12		0.83 0.60		0.2 0.4	-0.70 -0.48		-0.69 0.41

Pollutant: O3 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 198 (07/17) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	33	16.5 14	12.2 13 15.7 14	-1 0	0.74 0.95	 -1.9 (at o	2.5 cell 52	-0.16 x 52)	0.23	0.54
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	5 6 9 13	11.0 13 11.0 13 12.9 12 16.5 14	12.2 13 11.2 14 11.1 13 11.6 13	0 1 1 -1	1.11 1.02 0.86 0.70	0.1 0.0 -0.2 -0.4	0.1 0.1 0.2 0.4	-1.07 -0.89 -0.59 -0.41	1.54 1.29 0.86 0.59	0.93 0.85 0.82 0.89

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 198 (07/17) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Peak Concentrations						Con	mparisons	s with Ob	servati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
0004	SubRegion Subregional Peak:	137	16.3	15	15.0 15.6	15 15	0 0	0.92 0.96	0.0 (at c	1.5 cell 72	0.02 x 47)	0.16	0.71
0060 4164 5181 4158 5197 0591 5212 4149 0075	Azusa Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Perris Pomona	7 17 13 12 10 8 9 14 7	12.3 14.2 14.5 13.9 14.5 13.7 13.5 10.1 13.2	13 13 15 15 15 14 14 16 13	12.1 13.2 11.6 12.9 13.1 13.0 11.4 12.1 12.5	14 15 16 14 15 16 14 16	1 2 1 -1 1 2 -2 3	0.98 0.93 0.80 0.93 0.90 0.95 0.84 1.20 0.95	0.1 -0.2 -0.2 0.0 0.1 0.1 0.0 0.2 0.1	0.2 0.3 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1	0.38 0.16 0.20 0.22 0.26 0.33 0.29 0.19 0.38	3.10 1.28 1.67 1.81 2.17 2.72 2.41 1.55 3.10	0.86 0.78 0.93 0.87 0.86 0.92 0.54 0.90 0.82
5204 4144 5203 5175	Redlands Rubidoux San Bernardino Upland	11 9 11 9	13.9 13.4 16.3 13.9	15 15 15 15	15.0 12.2 14.5 13.8	15 13 14 14	0 -2 -1 -1	1.08 0.91 0.89 0.99	0.1 0.1 0.0 0.1	0.1 0.2 0.1 0.1	0.24 0.29 0.24 0.29	1.97 2.41 1.97 2.41	0.95 0.62 0.90 0.97

Pollutant:	03	(pphm)	Project:	CAMx	v4.4
------------	----	--------	----------	------	------

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 198 (07/17) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	ite Description		Observ Value		Predi Value		Time Laq	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
		No 					ша <u>9</u> 						(1)
0005	SubRegion	19	8.9	13	9.9	15	2	1.12	1.1	1.4	0.17	0.21	0.17
	Subregional Peak:				12.5	14	1	1.41	(at c	ell 68	x 37)		
3176	Anaheim	5	6.7	11	9.9	13	2	1.47	0.2	0.3	0.63	0.81	-0.56
0087	Los Angeles	2	7.8	13	8.4	12	-1	1.07	0.0	0.0	1.58	2.02	-99.00
3177	La Habra	4	8.2	12	9.9	15	3	1.21	0.2	0.2	0.79	1.01	-0.69
0084	Lynwood	1	6.1	12	8.5	12	0	1.40	0.4	0.4	3.16	4.04	-99.00
3812	Mission Viejo	7	8.9	13	9.7	12	-1	1.08	0.2	0.2	0.45	0.58	0.77

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a Statistics were calculated for the 24-hour period of DOY 198 (07/17) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm) ----- Peak Concentrations --------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Description Site No Value Time Value Time Lag Ratio Bias Error Bias Error (r) ____ ____ ____ ____ _ _ _ _ _ _ _ _ _ 10.9 10 7.9 17 7 0.73 -3.0 3.0 -0.36 0009 SubRegion 42 0.36 0.38 12.8 15 Subregional Peak: 5 1.17 (at cell 81 x 43) Indio Jackson 4157 20 10.9 10 7.9 17 7 0.73 -0.3 0.3 -0.76 0.76 0.39 10.7 9 6.1 17 8 0.57 -0.4 0.4 -0.69 4137 Palm Springs 22 0.69 0.48

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 199 (07/18) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

	ita Danusiatian		Observ		Predi		Time	Peak	Mean	Mean	Normal	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0003	SubRegion	32	17.1	14	8.9	13	-1	0.52	-3.4	3.4	-0.36	0.36	0.57
	Subregional Peak:				11.9	13	-1	0.70	(at d	cell 59	x 50)		
0069	Burbank	5	7.6	16	6.6	13	-3	0.87	-0.1	0.1	-2.30	2.30	-0.64
0088	Pasadena	5	7.7	12	6.5	14	2	0.84	-0.2	0.2	-2.30	2.30	-0.97
0074	Reseda	12	11.5	14	8.1	13	-1	0.71	-0.5	0.5	-0.96	0.96	0.82
0090	Santa Clarita	10	17.1	14	8.9	13	-1	0.52	-0.4	0.4	-1.15	1.15	0.76

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 199 (07/18) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				- Peak	Concen	trati	ons		Con	mparisons	s with Ok	servati	ons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	ized Error	(r)
0004	SubRegion Subregional Peak:	118	14.4	16	14.0 15.2	15 15	-1 -1	0.97 1.06	-0.8 (at c	1.6 cell 76	-0.08 x 46)	0.18	0.68
0060 4164 5181 4158 5197 0591 5212 4149 0075 5204	Azusa Banning Airport Crestline Elsinore Fontana Glendora Mira Loma Perris Pomona Redlands	5 18 10 11 7 6 9 12 5 10	7.5 14.4 12.3 12.9 11.9 8.4 11.3 10.4 9.1 12.7	13 16 13 15 15 13 15 15 14 14	7.0 13.2 12.8 12.6 10.0 7.8 9.6 11.6 8.4 14.0	14 16 15 14 13 14 13 14 14 14 15	1 0 2 -1 -2 1 -2 -1 0	0.93 0.91 1.04 0.97 0.84 0.93 0.85 1.11 0.93 1.10	$\begin{array}{c} 0.0\\ -0.2\\ 0.1\\ -0.1\\ -0.1\\ 0.0\\ -0.2\\ 0.0\\ -0.1\\ -0.1 \end{array}$	0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.3 0.2 0.1 0.2	-1.95 -0.54 -0.97 -0.89 -1.39 -1.62 -1.08 -0.81 -1.95 -0.97	4.15 1.15 2.08 1.89 2.97 3.46 2.31 1.73 4.15 2.08	-0.05 0.88 0.93 0.79 0.33 0.76 0.15 0.50 0.98 0.84
5204 4144 5203 5175	Rubidoux San Bernardino Upland	10 9 10 6	12.7 11.9 11.9 11.3	14 15 16 14	14.0 11.9 13.4 9.0	13 14 13	-2 -2 -1	1.10 1.00 1.12 0.80	-0.1 -0.1 -0.1 -0.1	0.2 0.3 0.2 0.1	-0.97 -1.08 -0.97 -1.62	2.08 2.31 2.08 3.46	0.84 0.16 0.71 0.83

Project: CAMx v4.4

Pollutant: 03

(pphm)

	stics were calculated for ded were data-pairs with		-						6.0 (pp	phm)			
				- Peał	Concer	ntrati	ons		Cor	mparisons	s with Oł	oservati	ons
Site	Description	No	Observe Value 1		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
	SubRegion Subregional Peak:	35	11.7	 16	9.4 15.5		 -3 -3	0.80 1.32	-2.2 (at o	2.8 cell 105	-0.25 x 13)	0.34	0.22
4157 4137	Indio Jackson Palm Springs	17 18	8.6 11.7	9 16	9.4 7.3		4 -4	1.09 0.62	-0.1 -0.4	0.3 0.4	-0.51 -0.48	0.69 0.65	-0.01 0.90

Simulation ID: df05a

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 200 (07/19) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations -------- Comparisons with Observations ---Normalized Observed Predicted Time Peak Mean Mean Lag Ratio Site Description Value Time Value Time Bias Error Bias Error No (r) _ _ _ _ _____ ____ _____ ___ _____ ___ ____ ____ ____ ____ ____ ____ _____ 1.4 -1.1 0003 SubRegion 23 12.4 14 11.3 14 0 0.91 -0.11 0.16 0.66 Subregional Peak: 13.4 15 1 1.08 (at cell 52 x 56) 0069 Burbank 2 7.3 14 0.1 6.4 15 -1 1.14 0.1 -1.31 1.85 -99.00 0088 Pasadena 6.7 15 0.89 -0.87 3 7.6 15 0 -0.1 0.1 1.23 1.00 Reseda 7 0074 10.1 16 8.4 13 -3 0.84 -0.1 0.2 -0.37 0.53 -0.15 Santa Clarita 12.4 14 0.91 0090 11 11.3 14 0 -0.2 0.2 -0.24 0.34 0.74

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 200 (07/19) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Normal	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion Subregional Peak:	71	13.3	15	15.8 17.3	14 15	-1 0	1.18 1.30	1.2 (at o	1.9 cell 75	0.15 x 47)	0.23	0.71
0060	Azusa	3	6.9	14	6.5	16	2	0.95	-0.1	0.1	3.57	5.52	-0.89
4164	Banning Airport	9	7.4	11	10.7	12	1	1.45	0.3	0.4	1.19	1.84	0.32
5181	Crestline	14	13.3	15	13.9	16	1	1.05	0.0	0.1	0.76	1.18	0.95
4158	Elsinore	3	6.8	9	9.0	10	1	1.32	0.3	0.3	3.57	5.52	0.32
5197	Fontana	5	9.4	15	8.7	15	0	0.93	-0.1	0.1	2.14	3.31	0.41
0591	Glendora	5	8.4	15	8.2	17	2	0.98	-0.1	0.2	2.14	3.31	-0.16
5212	Mira Loma	5	9.5	14	11.1	14	0	1.17	0.1	0.2	2.14	3.31	0.67
0075	Pomona	5	8.3	15	9.3	15	0	1.12	0.1	0.2	2.14	3.31	-0.01
5204	Redlands	8	11.4	15	15.8	14	-1	1.38	0.4	0.4	1.34	2.07	0.93
4144	Rubidoux	5	9.8	14	13.0	15	1	1.33	0.3	0.3	2.14	3.31	0.86
5203	San Bernardino	6	11.3	15	13.2	15	0	1.16	0.4	0.4	1.78	2.76	0.96
5175	Upland	3	9.0	15	8.1	15	0	0.90	-0.2	0.2	3.57	5.52	0.94

P	ollutant: O3	(pphm)	Project	CAM:	x v4.4					Sim	ulation :	ID: df0	5a
		ulated for the 2 airs with observ	-						6.0 (pp	phm)			
				Peal	k Concer	ntrati	ons		Cor	mparisons	s with Ol	oservat	ions
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0009	SubRegion Subregional Pea	2 k:	6.4	16	8.3 11.6		 _2	1.30 1.81	1.7 (at d	1.7 cell 81	0.27 x 44)	0.27	-99.00
4137	Palm Springs	2	6.4	16	8.3	17	1	1.30	0.3	0.3	0.27	0.27	-99.00

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba	unk	53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59	46 46 Ycell 40 45 37 42	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

Pollutant: 03 (pphm)	Project: (CAMx v4.4	Simulation ID: df05a
Statistics were calculated for t Included were data-pairs with of			6.0 (pphm); Averaged over 8 hours
	I	eak Concentrations	Comparisons with Observations
Site Description	Observed No Value Tim	Predicted Time Peak Ne Value Time Lag Ratic	
0003 SubRegion Subregional Peak:	2 7.0 10		0.4 0.4 0.06 0.06 -99.00
*	* * Model Perf	formance Evaluation * * *	
Pollutant: 03 (pphm)	Project: (CAMx v4.4	Simulation ID: df05a
Statistics were calculated for t Included were data-pairs with ob			6.0 (pphm); Averaged over 8 hours
	I	eak Concentrations	Comparisons with Observations
Site Description		Predicted Time Peak Ne Value Time Lag Ratic	Bias Error Bias Error (r)
	7 7.7 10		-0.5 0.7 -0.07 0.10 -215.59
*	* * Model Perf	ormance Evaluation * * *	
Pollutant: 03 (pphm)	Project: (CAMx v4.4	Simulation ID: df05a
Statistics were calculated for t Included were data-pairs with of	-		6.0 (pphm); Averaged over 8 hours
	I	eak Concentrations	Comparisons with Observations
Site Description	Observed No Value Tim	Predicted Time Peak ne Value Time Lag Ratic	Mean Mean Normalized Bias Error Bias Error (r)
0009 SubRegion Subregional Peak:	1 6.9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.9 0.9 -0.13 0.13 -99.00

Pollutant: 03 (pphm)	Project: CAM	ix v4.4	Simulation ID: df05a
Statistics were calculated for Included were data-pairs with o			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0003 SubRegion Subregional Peak:	2 7.9 11	9.1 11 0 1.15 10.7 11 0 1.35	0.8 0.8 0.11 0.11 -99.00 (at 51 x 55) NSte: 0090; NSPk: 9.1
*	* * Model Perfor	mance Evaluation * * *	
Pollutant: O3 (pphm)	Project: CAM	ix v4.4	Simulation ID: df05a
Statistics were calculated for Included were data-pairs with o			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	10 14.3 12	11.3 11 -1 0.79 12.8 11 -1 0.90	0.7 1.7 0.13 0.20 -35.40 (at 77 x 45) NSte: 5204; NSPk: 11.5
*	* * Model Perfor	mance Evaluation * * *	
Pollutant: 03 (pphm)	Project: CAM	ix v4.4	Simulation ID: df05a
Statistics were calculated for Included were data-pairs with o			6.0 (pphm); Averaged over 8 hours
	Pea	k Concentrations	Comparisons with Observations
Site Description	Observed No Value Time	Predicted Time Peak Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0005 SubRegion Subregional Peak:	1 6.3 14	5.2 11 -3 0.83 10.1 10 -4 1.61	-1.1 1.1 -0.17 0.17 -99.00 (at 68 x 37) NSte: 3812; NSPk: 6.4

Pollutant: O3 (pphm)		Project: CAM	x v4.4		Simulation ID: df05a
Statistics were calculated for Included were data-pairs with o					6.0 (pphm); Averaged over 8 hours
		Peal	Concentrati	ons	Comparisons with Observations
Site Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0009 SubRegion Subregional Peak:	2	9.4 10	8.7 10 11.8 10	0 0.93 0 1.25	-0.3 1.7 -0.01 0.20 -99.00 (at 105 x 13) NSte: 4157; NSPk: 8.8
Dollutont: 02 (nnhm)	* * *	Model Perform		ion * * *	Simulation ID: df05a
Pollutant: 03 (pphm) Statistics were calculated for	the 24	Project: CAM		7/16) 2005	Simulation ID: drusa
Included were data-pairs with o					6.0 (pphm); Averaged over 8 hours
		Peal	<pre>K Concentrati</pre>	ons	Comparisons with Observations
Site Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0003 SubRegion Subregional Peak:	4	14.1 11	10.5 11 12.4 12	0 0.75 1 0.88	-0.5 1.3 0.00 0.12 -30.92 (at 52 x 55) NSte: 0090; NSPk: 10.7
,	* * *	Model Perform	mance Evaluat	ion * * *	
Pollutant: O3 (pphm)		Project: CAM	x v4.4		Simulation ID: df05a
Statistics were calculated for Included were data-pairs with o					6.0 (pphm); Averaged over 8 hours
		Peal	Concentrati	ons	Comparisons with Observations
Site Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	13	13.8 12	12.2 11 13.4 11	-1 0.88 -1 0.97	-0.4 1.4 -0.02 0.14 -31.16 (at 75 x 41) NSte: 4149; NSPk: 12.0

Pollutant: 03 (pphm)	Proje	ct: CAMx v4.4		Sin	nulation ID: df05a
Statistics were calculated for Included were data-pairs with c					veraged over 8 hours
		Peak Concen	trations	Comparison	ns with Observations
Site Description	No Valu	rved Predi e Time Value			Normalized Bias Error (r)
0009 SubRegion Subregional Peak:		6 13 8.3 11.9	10 -3 0	.72 -2.6 2.6	-0.24 0.24 -99.00 NSte: 4137; NSPk: 7.6
*	* * Model	Performance Ev	aluation * * *		
Pollutant: 03 (pphm)	Proje	ct: CAMx v4.4		Sin	mulation ID: df05a
Statistics were calculated for Included were data-pairs with c					veraged over 8 hours
		Peak Concen	trations	Comparison	ns with Observations
Site Description		rved Predi e Time Value			Normalized Bias Error (r)
0003 SubRegion Subregional Peak:	4 14.	2 10 9.4 12.4	9 -1 0	.66 -1.3 2.0	-0.07 0.18 -95.50 NSte: 0090; NSPk: 9.2
*	* * Model	Performance Ev	aluation * * *		
Pollutant: 03 (pphm)	Proje	ct: CAMx v4.4		Sin	mulation ID: df05a
Statistics were calculated for Included were data-pairs with c					veraged over 8 hours
		Peak Concen	trations	Comparison	ns with Observations
Site Description		rved Predi e Time Value	cted Time Pe Time Lag Ra	ak Mean Mean tio Bias Error	Normalized Bias Error (r)
0004 SubRegion Subregional Peak:		2 11 13.1 13.6		.99 0.2 0.9	0.02 0.08 -101.58 NSte: 5204; NSPk: 13.3

Pollutant: O3 (pphm)		Project: CAM	x v4.4		Simulation ID: df05a
Statistics were calculated for Included were data-pairs with					6.0 (pphm); Averaged over 8 hours
		Peal	k Concentrati	ons	Comparisons with Observations
Site Description	No	Observed Value Time		Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0005 SubRegion Subregional Peak:	3	7.1 10	8.4 10 10.6 10	0 1.18 0 1.49	1.4 1.4 0.22 0.22 -238.21 (at 68 x 37) NSte: 3812; NSPk: 8.3
	* * *	Model Perform	mance Evaluat	ion * * *	
Pollutant: O3 (pphm)		Project: CAM	x v4.4		Simulation ID: df05a
Statistics were calculated for Included were data-pairs with					6.0 (pphm); Averaged over 8 hours
		Peal	k Concentrati	ons	Comparisons with Observations
Site Description	-	Observed Value Time		Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
Site Description 0009 SubRegion Subregional Peak:	-				
0009 SubRegion		Value Time	Value Time 7.5 11	Lag Ratio 4 0.79	Bias Error Bias Error (r) -2.5 2.5 -0.27 0.27 -99.00
0009 SubRegion	2	Value Time	Value Time 7.5 11 11.3 11	Lag Ratio 4 0.79 4 1.20	Bias Error Bias Error (r) -2.5 2.5 -0.27 0.27 -99.00
0009 SubRegion	2	Value Time 9.4 7	Value Time 7.5 11 11.3 11 mance Evaluat	Lag Ratio 4 0.79 4 1.20	Bias Error Bias Error (r) -2.5 2.5 -0.27 0.27 -99.00
0009 SubRegion Subregional Peak:	2 * * * *	Value Time 9.4 7 Model Perform Project: CAM2 -hour period of	Value Time 7.5 11 11.3 11 mance Evaluat x v4.4 of DOY 199 (0	Lag Ratio 4 0.79 4 1.20	Bias Error Bias Error (r) -2.5 2.5 -0.27 0.27 -99.00 (at 81 x 43) NSte: 4137; NSPk: 5.9
0009 SubRegion Subregional Peak: Pollutant: 03 (pphm) Statistics were calculated for	2 * * * *	Value Time 9.4 7 Model Perform Project: CAM2 -hour period of concentratio	Value Time 7.5 11 11.3 11 mance Evaluat x v4.4 of DOY 199 (0	Lag Ratio 4 0.79 4 1.20 2005 27/18) 2005 Chreshold of	Bias Error Bias Error (r) -2.5 2.5 -0.27 0.27 -99.00 (at 81 x 43) NSte: 4137; NSPk: 5.9 Simulation ID: df05a
0009 SubRegion Subregional Peak: Pollutant: 03 (pphm) Statistics were calculated for	2 * * * *	Value Time 9.4 7 Model Perform Project: CAM2 -hour period of concentratio	Value Time 7.5 11 11.3 11 mance Evaluat x v4.4 of DOY 199 (0 ons above a t k Concentrati	Lag Ratio 4 0.79 4 1.20 2005 27/18) 2005 Chreshold of	<pre>Bias Error Bias Error (r) -2.5 2.5 -0.27 0.27 -99.00 (at 81 x 43) NSte: 4137; NSPk: 5.9 Simulation ID: df05a 6.0 (pphm); Averaged over 8 hours</pre>

Pollutant: 03 (pphm)		Project: CAM	x v4.4		Simulation ID: df05a
Statistics were calculated for Included were data-pairs with					6.0 (pphm); Averaged over 8 hours
		Peal	k Concentrati	ons	Comparisons with Observations
Site Description	No	Observed Value Time		Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)
0004 SubRegion Subregional Peak:	13	12.0 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.97 1 1.10	-0.4 0.7 -0.04 0.07 -22.57 (at 76 x 48) NSte: 5204; NSPk: 11.7
	* * *	Model Perform	nance Evaluat	ion * * *	
Pollutant: 03 (pphm)		Project: CAM	x v4.4		Simulation ID: df05a
Statistics were calculated for Included were data-pairs with					6.0 (pphm); Averaged over 8 hours
		Doal	. Concontrati	ons	Comparisons with Observations
		Pear		.0115	comparisons with observations
Site Description	-	Observed Value Time	Predicted	Time Peak Lag Ratio	- Mean Mean Normalized Bias Error Bias Error (r)
Site Description 	-	Observed	Predicted	Time Peak	Mean Mean Normalized
0009 SubRegion		Observed Value Time	Predicted Value Time 8.4 11	Time Peak Lag Ratio 1 0.79	Mean Mean Normalized Bias Error Bias Error (r) -1.4 2.3 -0.12 0.24 -99.00
0009 SubRegion	2	Observed Value Time	Predicted Value Time 8.4 11 12.5 10	Time Peak Lag Ratio 1 0.79 0 1.17	Mean Mean Normalized Bias Error Bias Error (r) -1.4 2.3 -0.12 0.24 -99.00
0009 SubRegion	2	Observed Value Time 10.6 10	Predicted Value Time 8.4 11 12.5 10	Time Peak Lag Ratio 1 0.79 0 1.17	Mean Mean Normalized Bias Error Bias Error (r) -1.4 2.3 -0.12 0.24 -99.00
0009 SubRegion Subregional Peak:	2 * * * *	Observed Value Time 10.6 10 Model Perform Project: CAM2 hour period of	Predicted Value Time 8.4 11 12.5 10 mance Evaluat x v4.4 of DOY 200 (0	Time Peak Lag Ratio 1 0.79 0 1.17	Mean Mean Normalized Bias Error Bias Error (r) -1.4 2.3 -0.12 0.24 -99.00 (at 105 x 13) NSte: 4157; NSPk: 8.5
0009 SubRegion Subregional Peak: Pollutant: 03 (pphm) Statistics were calculated for	2 * * * *	Observed Value Time 10.6 10 Model Perform Project: CAM2 hour period of concentratio	Predicted Value Time 8.4 11 12.5 10 mance Evaluat x v4.4 of DOY 200 (0	Time Peak Lag Ratio 1 0.79 0 1.17 Cion * * *	Mean Mean Normalized Bias Error Bias Error (r) -1.4 2.3 -0.12 0.24 -99.00 (at 105 x 13) NSte: 4157; NSPk: 8.5 Simulation ID: df05a
0009 SubRegion Subregional Peak: Pollutant: 03 (pphm) Statistics were calculated for	2 * * * *	Observed Value Time 10.6 10 Model Perform Project: CAM2 hour period of concentratio	Predicted Value Time 8.4 11 12.5 10 mance Evaluat x v4.4 of DOY 200 (0 ons above a t x Concentrati	Time Peak Lag Ratio 1 0.79 0 1.17 Cion * * *	Mean Mean Normalized Bias Error Bias Error (r) -1.4 2.3 -0.12 0.24 -99.00 (at 105 x 13) NSte: 4157; NSPk: 8.5 Simulation ID: df05a 6.0 (pphm); Averaged over 8 hours

Pollutant: 03 (pphm	n) Pro	ject: CAMx v4.4		Simulation ID	: df05a
Statistics were calculated Included were data-pairs wi				pphm); Averaged ove	r 8 hours
		Peak Concentrat:	.ons 0	Comparisons with Obs	ervations
Site Description	No Va	oserved Predicted lue Time Value Time	Time Peak Mea: Lag Ratio Bias	Error Bias	Error (r)
0004 SubRegion Subregional Peak:	11 1		-1 1.14 1.		0.21 -24.58
	* * * Mod	lel Performance Evaluat	ion * * *		
Pollutant: 03 (pphm	1) Pro	ject: CAMx v4.4		Simulation ID	: df05a
		e 8-Hour Concentration ximum of 9.6 at Cell			h 200
		- Observed	S	imulated	
Site Site ID Description	Avg.	DOY DOY DOY DOY DO 195 196 197 198 19	9 Avg. 195	DOY DOY DOY DOY 196 197 198 199	Max. Max. Max. Ratio Bias Error
	* * * Mod	el Performance Evalua	ion * * *		
Pollutant: 03 (pphm	n) Pro	ject: CAMx v4.4		Simulation ID	: df05a
		ge 8-Hour Concentration ximum of 6.3 at Cell			h 200
		- Observed	S	imulated	
Site Site ID Description	Avg.	DOY DOY DOY DOY DO 195 196 197 198 19	9 Avg. 195	DOY DOY DOY DOY 196 197 198 199 	Max. Max. Max. Ratio Bias Error

Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a												
Subregion 0002 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 195 through 200 Unpaired Subregional Maximum of 8.9 at Cell 49 x 53 Nearest Site: 0090														
	Observed Simu	ulated												
Site Site ID Description	Avg. 195 196 197 198 199 Avg. 195 196	Y DOY DOY DOY Max. Max. Max. 5 197 198 199 Ratio Bias Error 												
* * * Model Performance Evaluation * * *														
Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a														
Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a Subregion 0003 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 195 through 200 Unpaired Subregional Maximum of 9.9 at Cell 52 x 55 Nearest Site: 0090														
	Unpaired Subregional Maximum of 9.9 at Cell 52 x 55 Nearest Site: 0090 Observed Simulated													
Site Site ID Description	Avg. 195 196 197 198 199 Avg. 195 196	Y DOY DOY DOY Max. Max. Max. 5 197 198 199 Ratio Bias Error												
0069 Burbank 0088 Pasadena 0074 Reseda	7.2 4.4 4.5 7.6 7.5 6.4 6.7 5.2 6.0 7.1 5.3 4.5 7.1 8.1 6.2 5.9 4.0 4.6 8.5 6.1 6.8 8.9 10.9 9.9 7.8 6.9 7.2	0 8.3 8.8 5.6 1.16 0.04 0.13 5 8.0 8.4 5.0 1.03 -0.01 0.12 2 9.2 9.4 6.5 0.86 -0.06 0.13 1 10.5 9.1 7.4 0.74 -0.17 0.22												
*	* * Model Performance Evaluation * * *													
Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a												
	red Average 8-Hour Concentrations above 6.0 pphm f egional Maximum of 11.5 at Cell 76 x 46 Neares													
	Observed Simu	ulated												
Site Site ID Description	Avg. 195 196 197 198 199 Avg. 195 196	Y DOY DOY DOY Max. Max. Max. 6 197 198 199 Ratio Bias Error												
4158 Elsinore	10.2 7.2 10.3 12.0 13.2 12.0 10.4 7.1 10.2 11.5 7.3 14.3 13.8 12.5 10.2 9.6 6.6 9.3 8.9 7.7 7.7 8.4 11.9 11.7 10.1 8.5 9.6 9.2 5.8 8.0 10.8 11.4 8.7 8.2 4.8 8.5 7.8 4.7 4.8 7.8 9.6 6.9 7.0 4.4 5.5 8.5 7.1 7.0 9.6 10.6 9.5 8.3 6.1 8.5 9.0 6.0 6.8 10.4 9.6 9.3 10.1 8.1 9.6 7.9 5.2 5.5 8.2 9.9 6.9 7.2 3.9 6.8 10.2 6.8 9.4 12.0 12.3 11.9 11.0 6.3 11.3 8.9 7.5 7.6 10.0 10.8 10.2 9.6 6.7 9.7 10.1 7.0 9.9 12.4 12.9 10.5 10.3 6.0 10.5	38.910.010.90.81-0.140.19512.211.510.41.020.170.22												

Ро	llutant: O3 (pphm)	Project: CAMx v4.4 Simulation ID:	df05a
Subreg		aired Average 8-Hour Concentrations above 6.0 pphm for DOY 195 through bregional Maximum of 10.5 at Cell 69 x 37 Nearest Site: 4158	200
		Observed Simulated	
Site ID	Site Description	Avg. 195 196 197 198 199 Avg. 195 196 197 198 199 R	lax. Max. Max. atio Bias Error
3176 3177 0820 3812	Anaheim La Habra LAXH Mission Viejo	6.14.84.55.06.14.95.64.25.46.67.34.216.23.83.34.66.24.05.73.25.67.07.84.816.33.96.35.35.04.45.04.25.26.15.64.407.13.84.54.67.14.97.05.96.37.28.46.81	.21 0.21 0.21 .26 0.26 0.26 .97 -0.17 0.17
		* * * Model Performance Evaluation * * *	
Ро	llutant: O3 (pphm)	Project: CAMx v4.4 Simulation ID:	df05a
Subreg		aired Average 8-Hour Concentrations above 6.0 pphm for DOY 195 through bregional Maximum of 10.3 at Cell 70 x 36 Nearest Site: 4158	200
		Observed Simulated	
Site ID	Site Description	Avg. 195 196 197 198 199 Avg. 195 196 197 198 199 R	Max. Max. Max. Patio Bias Error
		* * * Model Performance Evaluation * * *	
Ро	llutant: O3 (pphm)	Project: CAMx v4.4 Simulation ID:	df05a
Subreg		aired Average 8-Hour Concentrations above 6.0 pphm for DOY 195 through bregional Maximum of 6.7 at Cell 41 x 68 Nearest Site: 0090	200
		Observed Simulated	
Site ID 	Site Description		Max. Max. Max. Matio Bias Error

Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a
	ired Average 8-Hour Concentrations above 6.0 p pregional Maximum of 8.6 at Cell 73 x 58	
	Observed	Simulated
Site Site ID Description	Site DOY DOY DOY DOY DOY Site DO Avg. 195 196 197 198 199 Avg. 19	
Pollutant: O3 (pphm)	* * * Model Performance Evaluation * * * Project: CAMx v4.4	Simulation ID: df05a
	ired Average 8-Hour Concentrations above 6.0 p regional Maximum of 10.6 at Cell 105 x 13 Observed	Nearest Site: 4157
Site Site ID Description	Site DOY DOY DOY DOY DOY Site DO Avg. 195 196 197 198 199 Avg. 19	
4157 Indio Jackson 4137 Palm Springs	8.3 5.2 7.4 9.5 8.9 7.5 7.9 6. 9.6 6.9 9.4 11.6 9.4 10.6 7.0 6.	

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba		53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

Po	ollutant: 03 (pphm)		Project	CAMx	x v4.4					Simu	ulation 1	D: df0	ōa
	istics were calculated for uded were data-pairs with o			6.0 (pr	phm)								
				- Peak	Concer	itrati	ons		Cor	mparisons	s with Ob	pservat	ions
Site	Description	No	Observe Value 7		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	2	6.2	15	5.0 6.8		0 -1	0.81 1.10		1.3 cell 53	-0.22	0.22	-99.00
0090	Santa Clarita	2	6.2	15	5.0	15	0	0.81	-0.2	0.2	-0.22	0.22	-99.00
Po	ollutant: 03 (pphm)		Project	САМх	c v4.4					0.÷	ulation 1	י df0	āa
	istics were calculated for uded were data-pairs with o								6.0 (pr				
			ed concer	ntrati		ove a	thresh	old of		ohm)	s with Of		
			ed concer	ntrati - Peak ed	lons abo	ove a ntrati .cted Time	thresh ons Time Lag	old of	Cor Mean Bias	ohm)	s with Ok Normal Bias	oservat:	
Inclu Site	uded were data-pairs with o	bserve	d concer Observe	ntrati - Peak ed Fime 	lons abo Concer Predi Value	ove a ntrati .cted Time 14	thresh ons Time Lag 	old of Peak Ratio 	Cor Mean Bias 	ohm) nparisons Mean	s with Ok Normal Bias -0.20	oservat: Lized	ions

P	ollutant: 03	(pphm)	Project: CAN	1x v4.4		2	Simulation	ID: df05	a	
	istics were calcu uded were data-pa					6.0 (pphm)				
			Pea	ak Concentrati	ons	Comparisons with Observations				
Site	Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Bias Erro	or Bias	lized Error	(r)	
0009	SubRegion Subregional Peak	12 :	7.2 16	6.4 15 7.0 15	-1 0.88 -1 0.97	-0.9 0.9 (at cell	9 -0.14	0.14	0.44	
4157 4137	Indio Jackson Palm Springs	7 5	6.8 17 7.2 16	6.1 16 6.4 15	-1 0.90 -1 0.88	-0.1 0.1 -0.1 0.1		0.23 0.33	0.43 0.48	
		* * *	Model Perfor	mance Evaluat	ion * * *					
P	ollutant: 03	(pphm)	Project: CAM	1x v4.4		2	Simulation	ID: df05	a	
	istics were calcu uded were data-pa					6.0 (pphm)				
			Pea	ak Concentrati	ons	Comparis	sons with O	bservati	ons	
Site	Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Bias Erro	or Bias	lized Error	(r)	
0003	SubRegion Subregional Peak	15 :	7.6 14	5.6 12 6.6 14	-2 0.74 0 0.87	-1.9 1.9 (at cell	-0.28	0.28	0.45	
0069 0074 0090	Burbank Reseda Santa Clarita	1 7 7	$\begin{array}{rrrr} 6.3 & 15 \\ 7.0 & 14 \\ 7.6 & 14 \end{array}$	4.7 15 4.9 14 5.6 12	0 0.75 0 0.70 -2 0.74	-0.3 0.1 -0.3 0.1 -0.3 0.1	3 -0.61	4.25 0.61 0.61	-99.00 0.56 -0.02	

Pollutant: O3 (pphm)

Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 138 (05/18) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observe Value T		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0004	SubRegion Subregional Peak:	78	9.3	16	7.8 9.2	14 15	-2 -1	0.84 0.99	-2.0 (at o	2.1 cell 79	-0.28 x 38)	0.28	0.20
4164	Banning Airport	11	8.8	16	7.8	14	-2	0.89	-0.2	0.2	-1.97	2.01	0.13
5181	Crestline	6	9.3	16	6.1	14	-2	0.66	-0.3	0.3	-3.62	3.69	-0.38
4158	Elsinore	9	8.1	15	6.1	12	-3	0.75	-0.2	0.2	-2.41	2.46	0.09
5197	Fontana	7	8.2	14	5.1	13	-1	0.62	-0.3	0.3	-3.10	3.16	0.25
0591	Glendora	5	6.5	15	5.0	15	0	0.76	-0.3	0.3	-4.34	4.42	0.16
5212	Mira Loma	8	8.0	14	5.0	12	-2	0.63	-0.4	0.4	-2.71	2.76	0.39
4149	Perris	4	6.7	15	6.2	14	-1	0.93	-0.2	0.2	-5.43	5.53	-0.52
0075	Pomona	3	6.7	13	5.0	15	2	0.75	-0.3	0.3	-7.24	7.37	-0.99
5204	Redlands	5	8.1	16	7.0	14	-2	0.86	-0.2	0.2	-4.34	4.42	0.21
4144	Rubidoux	9	8.9	14	5.7	13	-1	0.64	-0.4	0.4	-2.41	2.46	0.62
5203	San Bernardino	7	8.4	15	6.2	13	-2	0.74	-0.3	0.3	-3.10	3.16	0.29
5175	Upland	4	7.1	14	4.5	13	-1	0.64	-0.3	0.3	-5.43	5.53	0.54

Po	ollutant: 03 (pr	ohm)	Project	CAM2	c v4.4			Simulation ID: df05a						
	istics were calculat uded were data-pairs	6.0 (pr	phm)											
				- Peal	Concer	ntrati	ons		Cor	mparison	s with Ol	oservati	.ons	
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)	
0005	SubRegion Subregional Peak:	8	6.6	14	5.0 6.4		2 -1	0.76 0.97	-1.8 (at d	1.8 cell 66	-0.29 x 33)	0.29	-0.02	-
3176 3812 0091	Anaheim Mission Viejo West Los Angeles	4 1 3	6.5 6.2 6.6		4.7 5.0 4.8	16	1 0 0	0.72 0.81 0.73	-0.3 -0.2 -0.3	0.3 0.2 0.3	-0.58 -2.30 -0.77	0.58 2.30 0.77	-0.18 -99.00 0.70	

Project: CAMx v4.4

Pollutant: 03

(pphm)

	stics were calculated for ded were data-pairs with	6.0 (pphm)									
			Pe	ak Concentrat	ions		Comparisons with Observa				ons
Site	Description	No	Observed Value Time	Predicted Value Time		Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
	SubRegion Subregional Peak:	22	8.9 13	8.5 15 10.8 13	2 0	0.96 1.22	-0.4 (at	0.7 cell 107	-0.06 x 12)	0.10	0.65
4157 4137	Indio Jackson Palm Springs	10 12	8.9 13 7.6 12	8.5 15 7.4 15	2 3	0.96 0.98	-0.1 0.0	0.1 0.1	-0.13 -0.11	0.21 0.18	0.79 0.38

Simulation ID: df05a

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 139 (05/19) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

				Concen	trati	ons		Comparisons with Observations					
Site	Description	No	Observed Value T:		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	14	9.6	15	6.0 7.5	12 14	-3 -1	0.62 0.78	-2.7 (at c	2.7 ell 55	-0.34 x 52)	0.34	0.16
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	4 4 3 3	9.6 8.6 9.6 7.6	15	5.5 5.4 5.3 6.0	13 14 13 12	-2 -1 1 0	0.58 0.63 0.55 0.79	-0.4 -0.4 -0.3 -0.2	0.4 0.4 0.3 0.2	-1.19 -1.19 -1.58 -1.58	1.19 1.19 1.58 1.58	0.29 -0.09 0.06 0.84

Pollutant: 03 (pphm)

Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 139 (05/19) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Normal	ized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion Subregional Peak:	100	10.7	 16	8.6 8.9	 14 15	 -2 -1	 0.80 0.84	 -3.3 (at d	3.3 2ell 79	-0.39 x 39)	0.39	0.23
	Subregionar reality				0.5	10	-	0.01	(uc t	, , , , , , , , , , , , , , , , , , ,	n 397		
0060	Azusa	5	8.2	15	5.2	14	-1	0.63	-0.4	0.4	-7.85	7.85	0.51
4164	Banning Airport	10	9.5	17	8.6	14	-3	0.90	-0.2	0.2	-3.92	3.92	-0.07
5181	Crestline	6	10.7	16	6.2	14	-2	0.58	-0.3	0.3	-6.54	6.54	-0.58
4158	Elsinore	9	9.6	18	6.2	11	-7	0.65	-0.3	0.3	-4.36	4.36	-0.48
5197	Fontana	8	10.2	14	5.3	16	2	0.52	-0.5	0.5	-4.91	4.91	0.46
0591	Glendora	7	8.9	16	5.4	15	-1	0.61	-0.4	0.4	-5.61	5.61	0.81
5212	Mira Loma	10	9.3	11	5.4	15	4	0.58	-0.4	0.4	-3.92	3.92	0.55
4149	Perris	4	10.7	17	5.6	16	-1	0.53	-0.5	0.5	-9.81	9.81	0.02
0075	Pomona	6	9.3	16	5.7	15	-1	0.61	-0.4	0.4	-6.54	6.54	0.25
5204	Redlands	9	8.5	16	7.3	13	-3	0.86	-0.3	0.3	-4.36	4.36	0.27
4144	Rubidoux	9	10.3	14	6.0	11	-3	0.58	-0.4	0.4	-4.36	4.36	0.26
5203	San Bernardino	10	10.1	15	6.2	13	-2	0.62	-0.4	0.4	-3.92	3.92	0.36
5175	Upland	7	8.8	16	5.2	15	-1	0.59	-0.5	0.5	-5.61	5.61	0.66

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a Statistics were calculated for the 24-hour period of DOY 139 (05/19) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm) ----- Peak Concentrations -------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Site Description No Value Time Value Time Laq Ratio Bias Error Bias Error (r) _____ ___ ____ ____ ____ ____ ____ _ _ _ _ _____ ___ ____ ____ _____ 2.8 0005 SubRegion 20 8.4 13 5.8 14 0.68 -2.8 -0.38 0.38 0.36 1 Subregional Peak: 6.1 13 0.73 0 (at cell 66 x 33) 3176 Anaheim 3 7.4 15 4.0 14 -1 0.54 -0.5 0.5 -2.55 2.55 0.82 4.5 13 0087 Los Angeles 3 7.9 14 -1 0.56 -0.5 0.5 -2.55 2.55 0.18 1 7.1 15 4.3 15 0 0.60 -7.66 3177 La Habra -0.4 0.4 7.66 -99.00 0820 LAXH 1 6.5 13 4.7 13 0 0.72 -0.3 0.3 -7.66 7.66 -99.00 2 6.4 14 4.2 13 -1 0.66 3.83 -99.00 0072 Long Beach -0.4 0.4 -3.83 2 6.3 13 4.5 13 0 0.71 0084 Lynwood -0.3 0.3 -3.83 3.83 -99.00 5 5.8 14 0 3812 Mission Viejo 8.3 14 0.69 -0.3 0.3 -1.53 1.53 -0.24 0091 West Los Angeles 3 8.4 13 5.2 13 0 0.62 -0.3 0.3 -2.55 2.55 0.77

Ро	llutant: 03	(pphm)	Project	CAM:	x v4.4					Simu	ulation :	ID: df05	a
		alated for the 2 airs with observ	-				. ,		6.0 (pr	phm)			
				- Peal	c Concer	ıtrati	ons		Cor	mparisons	s with Ol	oservati	ons
	Description	N	Observ		Predi		Time	Peak	Mean	Mean	Norma		()
Site	Description	No	Value		Value		Lag	Ratio	Bias	Error	Bias	Error	(r)
0009	SubRegion	23	9.4	17	9.3	14	-3	0.99	-0.7	1.4	-0.08	0.19	0.15
	Subregional Peal	:			13.2	12	-5	1.40	(at d	cell 109	x 13)		
4157	Indio Jackson	9	9.2	11	9.3	14	3	1.01	0.1	0.2	-0.20	0.48	0.16
4137	Palm Springs	14	9.4	17	7.8	12	-5	0.83	-0.2	0.2	-0.13	0.31	0.36

* * * Model Performance Evaluation * * *

Pollutant: 03 Project: CAMx v4.4 Simulation ID: df05a (pphm)

Statistics were calculated for the 24-hour period of DOY 140 (05/20) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Peak	Concentrati	ons		Con	nparisons	s with Ok	oservati	ons
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	8	8.5 13	$5.7 12 \\ 7.8 14$	-1 1	0.67 0.91	-2.0 (at c	2.0 cell 55	-0.26 x 53)	0.26	0.23
0069 0088 0074	Burbank Pasadena Reseda	3 3 2	8.1 14 7.3 14 8.5 13	5.6 13 5.1 14 5.7 12	-1 0 -1	0.69 0.71 0.67	-0.3 -0.3 -0.2	0.3 0.3 0.2	-0.71 -0.71 -1.06	0.71 0.71 1.06	-0.19 0.49 -99.00

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 140 (05/20) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	Lized Error	(r)
0004	SubRegion Subregional Peak:	95	10.4	13	8.0 9.1	14 15	1 2	0.77 0.87	-2.3 (at o	2.4 cell 78	-0.30 x 32)	0.31	0.37
0060	Azusa	3		14	4.7	14	0	0.68	-0.3	0.3	-9.58	9.87	1.00
4164	Banning Airport	12	8.9	12	8.0	14	2	0.90	-0.1	0.2	-2.40	2.47	0.39
5181	Crestline	11	10.4	13	6.6	13	0	0.64	-0.4	0.4	-2.61	2.69	0.71
4158	Elsinore	6	7.8	10	6.4	12	2	0.81	-0.2	0.2	-4.79	4.93	-0.51
5197	Fontana	8	8.1	14	5.5	15	1	0.68	-0.4	0.4	-3.59	3.70	0.73
0591	Glendora	4	8.6	15	5.0	15	0	0.58	-0.4	0.4	-7.19	7.40	0.89
5212	Mira Loma	9	8.1	13	5.0	15	2	0.61	-0.4	0.4	-3.19	3.29	0.80
0075	Pomona	6	6.9	16	5.3	14	-2	0.77	-0.3	0.3	-4.79	4.93	0.41
5204	Redlands	10	8.2	15	7.6	13	-2	0.93	-0.2	0.2	-2.87	2.96	0.34
4144	Rubidoux	10	10.1	10	5.9	11	1	0.59	-0.4	0.4	-2.87	2.96	0.84
5203	San Bernardino	10	9.3	15	6.8	12	-3	0.73	-0.3	0.3	-2.87	2.96	0.68
5175	Upland	6	7.9	16	5.2	15	-1	0.65	-0.3	0.3	-4.79	4.93	0.43

Po	ollutant: 03	(pphm)	Project	CAM2	k v4.4					Sim	ulation :	ID: df05	ā
	istics were calcu uded were data-pa		-						6.0 (pp	phm)			
				Peal	c Concer	ntrati	ons		Cor	mparison	s with Ol	oservati	lons
Site	Description	No	Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Peal	ς:	7.4	16	5.5 6.5		-1 -3		-1.8 (at d	1.8 cell 66	-0.26 x 34)	0.26	-0.05
0087 3812 0091	Los Angeles Mission Viejo West Los Angel		6.5 7.4 7.0		4.3 5.5 5.4		0 -1 1	0.67 0.74 0.77	-0.3 -0.3 -0.2	0.3 0.3 0.2	-1.32 -0.66 -0.66	1.32 0.66 0.66	-99.00 -99.00 -99.00

P	ollutant: 03	(pphm)	Project: CAM	c v4.4			Simulation 3	ID: df05	a
	istics were calcu uded were data-pa					6.0 (pphm)			
			Peal	Concentrati	ons	Compari	isons with O	bservati	ons
Site	Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mea Bias Err	for Bias	lized Error	(r)
0009	SubRegion Subregional Peak	16	9.2 11	7.4 12 11.1 12	1 0.81 1 1.21	-1.8 1. (at cell	.8 -0.22	0.22	0.73
4157 4137	Indio Jackson Palm Springs	9 7	9.2 11 8.8 12	7.4 12 6.6 12	1 0.81 0 0.75		-0.39 2 -0.50	0.39 0.50	0.69 0.73
Stat	istics were calcu	(pphm) lated for the 2		c v4.4 of DOY 141 (Simulation :	ID: df05	a
THET	lueu were uala-pa			ond shores a		6.0.(pphm)			
		IIS WICH ODSELV			threshold of	6.0 (pphm)	conc with O	baometi	27.5
Site	Description	No		Concentrati Predicted Value Time	threshold of ons Time Peak Lag Ratio	Compari Mean Mea Bias Err	for Bias	lized Error	(r)
	Description SubRegion Subregional Peak	No 31	Peal Observed	Concentrati Predicted	threshold of ons Time Peak Lag Ratio	Compari Mean Mea Bias Ern -2.6 2.	an Norma for Bias	lized Error	

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 141 (05/21) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Norma	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion Subregional Peak:	93	12.7	16	10.1 11.4	 14 15	 -2 -1	0.80	 -1.4 (at d	1.8	-0.16 x 35)	0.21	0.40
	Subregional Feak.				11.1	тJ	-1	0.90	(at t	JEII /2	x JJ/		
0060	Azusa	7	9.0	14	6.7	15	1	0.75	-0.3	0.3	-2.09	2.78	0.76
4164	Banning Airport	7	8.3	16	9.2	15	-1	1.10	0.0	0.1	-2.09	2.78	0.85
5181	Crestline	12	12.7	16	8.0	15	-1	0.63	-0.3	0.3	-1.22	1.62	0.52
4158	Elsinore	8	8.2	14	10.1	14	0	1.23	0.2	0.2	-1.82	2.43	0.73
5197	Fontana	7	11.1	15	7.3	14	-1	0.66	-0.2	0.2	-2.09	2.78	0.91
0591	Glendora	5	9.7	14	7.0	15	1	0.72	-0.2	0.2	-2.92	3.89	0.57
5212	Mira Loma	9	9.9	13	7.2	13	0	0.73	-0.2	0.2	-1.62	2.16	0.80
4149	Perris	5	9.1	15	9.0	14	-1	0.99	0.0	0.1	-2.92	3.89	0.84
0075	Pomona	4	9.2	13	7.0	15	2	0.77	-0.2	0.2	-3.65	4.86	-0.14
5204	Redlands	7	10.4	16	8.9	14	-2	0.85	0.0	0.1	-2.09	2.78	0.68
4144	Rubidoux	10	11.1	14	8.1	14	0	0.73	-0.2	0.2	-1.46	1.95	0.86
5203	San Bernardino	б	12.3	15	8.3	15	0	0.67	-0.2	0.2	-2.43	3.24	0.87
5175	Upland	6	10.3	14	7.0	15	1	0.68	-0.2	0.2	-2.43	3.24	0.78

Po	ollutant: 03	(pphm)	Proje	ct: CAM	x v4.4					Sim	ulation	ID: df0	5a
	istics were calc uded were data-p			centrat	ions abo	ove a	thresh	nold of	6.0 (p)				
				Pea	k Concer	ntrati	ons		Coi	mparison	s with O	bservat	ions
Site	Description	N	Obse o Valu	rved e Time	Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Pea	-	0 10.	0 15	8.7 9.4	14 15	-1 0	0.87 0.94	-2.4 (at	2.6 cell 67	-0.32 x 35)	0.36	-0.04
3176 0087 3195 0072 0084 3812 0091	Anaheim Los Angeles Costa Mesa Long Beach Lynwood Mission Viejo West Los Ange	0	2 6. 7 8. 4 6. 3 6. 3 7. 5 7. 6 10.	9 14 4 16 0 15 4 13	5.7 5.3 6.4 4.4 5.1 8.7 5.5	13 14 16 14	0 -3 0 -1 1 -3	0.91 0.63 0.92 0.69 0.73 1.17 0.55	-0.3 -0.5 -0.3 -0.5 -0.3 0.1 -0.5	0.3 0.5 0.3 0.5 0.3 0.1 0.5	-4.82 -1.38 -2.41 -3.21 -3.21 -1.93 -1.61	5.38 1.54 2.69 3.58 3.58 2.15 1.79	-99.00 -0.23 0.89 0.71 0.73 0.58 -0.09

Pc	ollutant: 03 (pphm)		Project: C	AMx v4.4					Sim	ulation	ID: df05	a
	stics were calculated aded were data-pairs wi							6.0 (pr	phm)			
			P	eak Conce	ntrati	ons		Cor	nparison	s with O	bservati	ons
Site	Description	No	Observed Value Tim		icted Time	Time Lag		Mean Bias	Mean Error	Norma Bias	lized Error	(r)
	SubRegion Subregional Peak:	22	9.6 18		17 12		0.74 1.01		1.3 cell 110	-0.14		-0.07
4157 4137	Indio Jackson Palm Springs	11 11	7.9 20 9.6 18		13 17	-7 -1	0.90 0.74	-0.1 -0.2		-0.29 -0.29		-0.43 0.17
	ollutant: O3 (pphm) stics were calculated		Model Perf Project: C -hour peri	AMx v4.4		-			Sim	ulation	ID: df05	a
	stics were calculated. ded were data-pairs wi							6.0 (pr	phm)			
			P	eak Conce	ntrati	ons		Cor	mparison	s with O	bservati	ons
Site	Description	No	Observed Value Tim		icted Time		Peak Ratio	Mean Bias	Mean Error	Norma Bias	Error	(r)
	SubRegion Subregional Peak:	39	16.4 14	8.9 11.2	13 15		0.54	-4.5 (at d	4.5 cell 55	-0.46		0.73
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	9 10 11 9	13.7 13 14.5 13 11.2 12 16.4 14	8.1 7.5	13 14 12 14		0.65 0.56 0.67 0.37	-0.4 -0.5 -0.5 -0.4		-1.97 -1.78 -1.61 -1.97	1.97 1.78 1.61 1.97	0.95 0.93 0.90 0.84

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 142 (05/22) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observed		Predic	ted	Time	Peak	Mean	Mean	Normal	ized	
Site	Description	No	Value Tin	me	Value T	ime	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion	151	16.0 1	5	14.7	 15		0.92	-2.6	2.9	-0.25	0.29	0.57
	Subregional Peak:					15	0	0.94	(at d	cell 74	x 46)		
0060	Azusa	9	14.5 1	4	8.0	15	1	0.55	-0.5	0.5	-4.13	4.80	0.90
4164	Banning Airport	16	12.1 1	5	11.7	17	2	0.96	-0.1	0.2	-2.32	2.70	0.87
5181	Crestline	13	15.7 1	5	13.6	15	0	0.87	-0.2	0.2	-2.86	3.32	0.68
4158	Elsinore	10	10.1 1	4	12.4	14	0	1.23	0.1	0.1	-3.71	4.32	0.89
5197	Fontana	12	15.0 1	5	12.3	13	-2	0.82	-0.4	0.4	-3.10	3.60	0.82
0591	Glendora	10	16.0 1	5	8.4	15	0	0.53	-0.4	0.4	-3.71	4.32	0.84
5212	Mira Loma	12	13.2 1	3	11.7	13	0	0.89	-0.3	0.3	-3.10	3.60	0.76
4149	Perris	11	9.7 1	5	10.7	15	0	1.11	0.0	0.2	-3.38	3.93	0.82
0075	Pomona	10	14.0 14	4	9.2	12	-2	0.66	-0.4	0.4	-3.71	4.32	0.74
5204	Redlands	14	13.0 1	5	14.7	15	0	1.13	-0.2	0.3	-2.65	3.09	0.71
4144	Rubidoux	12	14.4 1	3	13.2	14	1	0.92	-0.3	0.3	-3.10	3.60	0.74
5203	San Bernardino	13	14.9 1	5	14.2	14	-1	0.96	-0.3	0.3	-2.86	3.32	0.78
5175	Upland	9	13.5 1	4	9.9	13	-1	0.74	-0.3	0.3	-4.13	4.80	0.63

P	ollutant: 03	(pphm)	Pi	roject	CAM:	x v4.4					Sim	ulation	ID: df05	a
	istics were calc uded were data-p			-				. ,		6.0 (p	phm)			
					- Peal	k Concer	ıtrati	ons		Cot	mparison	s with O	bservati	ons
Site	Description	:		Observ Value		Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Pea		55	12.5	14	10.0 11.9	14 12	0 -2	0.80 0.96	-2.8 (at (2.9 cell 68	-0.33 x 37)	0.34	0.40
3176 0087 3195 3177 0084 3812 0091	Anaheim Los Angeles Costa Mesa La Habra Lynwood Mission Viejo West Los Ange		9 8 7 8 6 9 8	8.0 12.1 6.9 8.0 11.1 12.5 11.4	13 13 17 12 13 14 12	6.1 6.2 6.8 7.0 5.9 10.0 6.8	14 13 12 11 13 14 13	1 0 -5 -1 0 1	0.77 0.52 0.99 0.87 0.53 0.80 0.59	$ \begin{array}{r} -0.4 \\ -0.5 \\ -0.2 \\ -0.2 \\ -0.4 \\ -0.2 \\ -0.4 \\ -0.2 \\ -0.4 \end{array} $	0.4 0.5 0.2 0.2 0.4 0.2 0.4	-2.04 -2.29 -2.62 -2.29 -3.06 -2.04 -2.29	2.08 2.34 2.67 2.34 3.11 2.08 2.34	0.83 0.89 -0.06 0.57 0.82 0.80 0.87

Pc	ollutant: 03	(pphm)	Projec	t: CAM	x v4.4					Simu	ulation 3	ID: df05	a
		culated for the zoairs with observ		-					6.0 (pr	ohm)			
				Pea	k Concer	ntrati	ons		Con	mparisons	s with Ol	oservati	ons
Site	Description	No	Obser [.] Value		Predi Value		Time Laq	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
	SubRegion Subregional Pea	34 ak:	12.7	18	8.7 11.0	13 16	 -5 -2	 0.69 0.87	 -2.6 (at c	3.0 cell 92	 -0.28 x 10)	0.33	-0.03
4157 4137	Indio Jackson Palm Springs	n 14 20	10.2 12.7	20 18	8.7 7.7	13 15	-7 -3	0.86 0.60	-0.2 -0.3	0.3 0.3	-0.67 -0.47	0.81 0.56	-0.35 0.32

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 143 (05/23) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Pe	ak Concer	ntrati	ons		Con	nparison	s with Oł	oservati	ons
Site	Description	No	Observed Value Time	Predi Value		Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	28	11.4 15	8.3 9.8	13 15	-2 0	0.73 0.86	-2.4 (at c	2.4 cell 53	-0.30 x 55)	0.30	0.59
0069 0088 0074 0090	Burbank Pasadena Reseda Santa Clarita	6 4 9 9	7.0 12 7.1 13 9.4 16 11.4 15	6.5 5.9 7.5 8.3	12 13 13 13	0 0 -3 -2	0.93 0.84 0.80 0.73	-0.2 -0.2 -0.4 -0.3	0.2 0.2 0.4 0.3	-1.38 -2.08 -0.92 -0.92	1.38 2.08 0.92 0.92	0.97 0.29 0.68 0.85

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 143 (05/23) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	red	Predi	cted	Time	Peak	Mean	Mean	Norma	lized	
Site	Description	No	Value	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion	113	13.0	15	11.2	13	-2	0.86	-1.5	2.1	-0.17	0.25	0.46
	Subregional Peak:				11.9	13	-2	0.91	(at d	cell 77	x 40)		
0060	Azusa	4	8.6	14	5.9	15	1	0.69	-0.3	0.3	-4.91	7.02	0.03
4164	Banning Airport	15	13.0	15	11.2	13	-2	0.86	-0.2	0.2	-1.31	1.87	0.85
5181	Crestline	18	11.6	15	8.6	13	-2	0.74	-0.4	0.4	-1.09	1.56	0.91
4158	Elsinore	9	8.8	11	11.0	13	2	1.25	0.2	0.3	-2.18	3.12	0.12
5197	Fontana	7	10.6	13	8.1	12	-1	0.76	-0.3	0.3	-2.81	4.01	0.68
0591	Glendora	5	9.6	14	6.2	15	1	0.65	-0.3	0.3	-3.93	5.61	0.06
5212	Mira Loma	8	9.2	14	8.2	12	-2	0.89	-0.2	0.2	-2.46	3.51	0.78
4149	Perris	9	9.8	12	10.4	13	1	1.06	0.1	0.2	-2.18	3.12	0.80
0075	Pomona	6	8.2	13	6.6	12	-1	0.80	-0.3	0.3	-3.27	4.68	0.21
5204	Redlands	9	10.1	12	10.9	13	1	1.08	0.0	0.1	-2.18	3.12	0.92
4144	Rubidoux	8	10.4	14	9.1	12	-2	0.87	-0.2	0.2	-2.46	3.51	0.66
5203	San Bernardino	9	10.0	13	10.2	13	0	1.02	-0.1	0.1	-2.18	3.12	0.89
5175	Upland	6	9.5	14	7.0	12	-2	0.74	-0.3	0.3	-3.27	4.68	-0.19

P	ollutant: 03 (pphm)	Project: CAN	1x v4.4		Sin	mulation	ID: df05	a
	istics were calcul uded were data-pai		~			6.0 (pphm)			
			Pea	ak Concentrati	ons	Comparison	ns with O	bservati	ons
Site	Description	No	Observed Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Bias Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Peak:	8	8.0 15	5.2 12 9.1 12	-3 0.65 -3 1.14	-3.3 3.3 (at cell 6	-0.48 3 x 37)	0.48	0.69
0091	West Los Angele	s 8	8.0 15	5.2 12	-3 0.65	-0.5 0.5	-0.48	0.48	0.69

Project: CAMx v4.4

Pollutant: 03

(pphm)

	stics were calculated for ded were data-pairs with		-				6.0 (pp)			
	Peak Concentrations							parisons	with Ok	oservati	ons
Site	Description	No	Observed Value Time	Predicted Value Time		Peak Ratio	Mean Bias	Mean Error	Normal Bias	lized Error	(r)
0009	SubRegion Subregional Peak:	40	11.4 16	9.0 14 11.3 14	-2 -2 -2	0.79 0.99	-2.4 (at c	2.6 ell 106	-0.28 x 12)	0.30	0.51
4157 4137	Indio Jackson Palm Springs	19 21	10.1 18 11.4 16	9.0 14 7.8 16	-4 0	0.89 0.68	-0.3 -0.3	0.3 0.3	-0.59 -0.54	0.63 0.57	0.38 0.90

Simulation ID: df05a

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05aStatistics were calculated for the 24-hour period of DOY 144 (05/24) 2005Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

			Peak Concentrations				Comparisons with Observations				ons
Site	Description	No	Observed Value Time	Predicted Value Time	Time Lag	Peak Ratio	Mean Bias	Mean Error	Norma] Bias	lized Error	(r)
0003	SubRegion Subregional Peak:	10	8.8 15	7.8 13 9.2 14	-2 -1	0.88 1.04	-1.4 (at c	1.4 cell 52	-0.18 x 55)	0.18	0.79
0074 0090	Reseda Santa Clarita	5 5	7.7 13 8.8 15	6.4 12 7.8 13	-1 -2	0.83 0.88	-0.2 -0.2	0.2 0.2	-0.37 -0.37	0.37 0.37	0.53 0.80

Pollutant: 03 (pphm) Project: CAMx v4.4

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 144 (05/24) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations ---- Comparisons with Observations ---

			Observ	ed	Predi	cted	Time	Peak	Mean	Mean	Norma	lized	
Site	Description	No	Value '	Time	Value	Time	Lag	Ratio	Bias	Error	Bias	Error	(r)
0004	SubRegion	90	10.6	15	9.6	15	0	0.91	-1.7	2.1	-0.22	0.27	0.34
	Subregional Peak:				9.9	14	-1	0.94	(at d	cell 77	x 41)		
0060	Azusa	3	6.6	14	5.8	15	1	0.88	-0.2	0.2	-6.51	8.21	0.85
4164	Banning Airport	13	10.6	15	9.6	15	0	0.91	-0.2	0.2	-1.50	1.89	0.89
5181	Crestline	13	9.5	16	7.0	13	-3	0.74	-0.4	0.4	-1.50	1.89	0.16
4158	Elsinore	9	7.7	11	9.1	14	3	1.18	0.1	0.2	-2.17	2.74	-0.14
5197	Fontana	6	8.1	15	5.8	12	-3	0.71	-0.4	0.4	-3.26	4.10	0.06
0591	Glendora	5	7.4	15	5.7	15	0	0.78	-0.2	0.2	-3.91	4.93	0.69
5212	Mira Loma	7	8.4	12	6.2	15	3	0.73	-0.2	0.2	-2.79	3.52	0.90
4149	Perris	6	7.7	14	8.8	13	-1	1.15	0.1	0.2	-3.26	4.10	0.26
0075	Pomona	5	7.6	14	4.1	12	-2	0.54	-0.4	0.4	-3.91	4.93	-0.73
5204	Redlands	6	8.8	14	8.5	13	-1	0.96	-0.1	0.2	-3.26	4.10	0.24
4144	Rubidoux	7	9.2	12	7.0	12	0	0.76	-0.3	0.3	-2.79	3.52	0.81
5203	San Bernardino	6	8.6	15	7.5	13	-2	0.87	-0.2	0.2	-3.26	4.10	0.26
5175	Upland	4	7.2	14	4.3	13	-1	0.60	-0.4	0.4	-4.89	6.16	-0.97

P	ollutant: 03 (pph	n)	Project: CAM2	c v4.4				Sim	ulation	ID: df0!	5a
	istics were calculated uded were data-pairs		-				6.0 (p	ohm)			
			Peał	Concentrat:	ions		Cor	mparison	s with Ol	bservat	ions
Site	Description	No	Observed Value Time	Predicted Value Time		Peak Ratio	Mean Bias	Mean Error	Norma Bias	lized Error	(r)
0005	SubRegion Subregional Peak:	1	6.1 18	2.4 18 7.8 14		0.39 1.28	-3.7 (at d	3.7 cell 68	-0.61 x 37)	0.61	-99.00
0091	West Los Angeles	1	6.1 18	2.4 18	0	0.39	-0.6	0.6	-0.61	0.61	-99.00

Pollutant: O3	(pphm)	Project: CAMx v4.4	
---------------	--------	--------------------	--

Simulation ID: df05a

Statistics were calculated for the 24-hour period of DOY 144 (05/24) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm)

----- Peak Concentrations -------- Comparisons with Observations ---Observed Predicted Time Peak Mean Mean Normalized Site Description No Value Time Value Time Lag Ratio Bias Error Bias Error (r) _____ ____ ___ _____ ___ ____ ____ ____ ____ ____ ____ _____ 0009 SubRegion 1 0.86 2.0 27 9.5 13 8.2 14 -1.8 -0.23 0.26 0.24 Subregional Peak: 12.6 14 1 1.33 (at cell 106 x 13) 4157 Indio Jackson 8.2 14 0.2 12 8.1 13 1 1.01 -0.1 -0.51 0.59 0.43 15 9.5 13 6.4 11 -2 0.67 4137 Palm Springs -0.3 0.3 -0.41 0.47 0.50

SubRegional Descriptions

Site	003	Contains the Following Sites: Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0069	Burba	unk	53	48	-27.848	461.308
0088	Pasad	lena	56		-11.205	457.021
0074	Resec	la	49	48	-48.000	463.105
0090	Santa	Clarita	49	52	-48.140	483.357
SubRegion	004	Contains the Following Sites:				
Site		Site Description	Xcell	Ycell	XPos(km)	YPos(km)
0060	Azusa	L	60		6.981	
4164		ng Airport	79		104.459	433.527
5181	Crest		72	49	66.383	468.606
4158	Elsir		71	37	60.525	405.907
5197	Fonta		68	46	46.811	453.081
0591	Glend		61	47	13.487	457.010
5212	Mira _.		67		42.938	438.915
4149	Perri		72	39	69.051	417.376
0075	Pomor		63	45	22.598	448.610
5204	Redla Rubic		74		76.256	448.189
	Dubic		69	44	52.093	442.557
4144			69	1.6		
4144 5203 5175		Sernardino	72 65	46 46	65.874 31.687	
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65 Xcell	46 46 Ycell	65.874 31.687 XPos(km)	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005	ernardino d Contains the Following Sites: Site Description	72 65	46 46 Ycell	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site	San E Uplar 005 Anahe	Contains the Following Sites: Site Description	72 65 Xcell 60	46 46 Ycell 40	65.874 31.687 XPos(km) 7.422	453.299 452.125 YPos(km)
5203 5175 SubRegion Site 3176	San E Uplar 005 Anahe Los A	ernardino d Contains the Following Sites: Site Description	72 65 Xcell 60 54	46 46 Ycell 40 45	65.874 31.687 XPos(km)	453.299 452.125 YPos(km) 421.645
5203 5175 SubRegion Site 3176 0087	San E Uplar 005 Anahe Los A	Contains the Following Sites: Site Description 	72 65 Xcell 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302	453.299 452.125 YPos(km) 421.645 445.563
5203 5175 SubRegion Site 3176 0087 3195	San E Uplar 005 Anahe Los P Costa	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60	46 46 Ycell 40 45 37	65.874 31.687 XPos(km) 7.422 -22.302 6.793	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978
5203 5175 SubRegion Site 3176 0087 3195 3177	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51	46 46 Ycell 40 45 37 42 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359	453.299 452.125 YPos(km) 421.645 445.563 405.626
5203 5175 SubRegion Site 3176 0087 3195 3177 0820	San E Uplar 005 Anahe Los A Costa La Ha LAXH	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc	Gernardino d Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi	Gernardino Id Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico	Contains the Following Sites: Site Description 	72 65 Xcell 60 54 60 59 51 55 55 55 64	46 46 Ycell 40 45 37 42 42 40 42 36	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52	46 46 Ycell 40 45 37 42 42 40 42 36 44 45	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion	San E Uplar 005 Anahe Los A Costa La Ha LAXH Long Lynwc Missi Pico West	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 42 40 42 36 44	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)
5203 5175 SubRegion Site 3176 0087 3195 3177 0820 0072 0084 3812 0085 0091 SubRegion Site 	San E Uplar 005 Anahe Los <i>P</i> Costa La Ha LAXH Long Lynwc Missi Pico West 009	Gernardino d Contains the Following Sites: Site Description Site Description Sim Ingeles Mesa Ibra Beach bod .on Viejo Rivera Los Angeles Contains the Following Sites:	72 65 Xcell 60 54 60 59 51 55 55 64 57 52 Xcell	46 46 Ycell 40 45 37 42 42 40 42 36 44 45 Ycell 	65.874 31.687 XPos(km) 7.422 -22.302 6.793 4.359 -36.352 -17.171 -19.237 29.671 -5.273 -34.796 XPos(km)	453.299 452.125 YPos(km) 421.645 445.563 405.626 432.978 433.685 421.903 432.753 400.791 442.860 447.031 YPos(km)

P	Pollutant: 03 (pphm)		Project: CAMx v4.4		Simulation ID: df05a
	stics were calculated for ded were data-pairs with				6.0 (pphm); Averaged over 8 hours
			Peak Concentr	ations	Comparisons with Observations
Site	Description	No	Value Time Value Ti		
004	SubRegion Subregional Peak:	2	6.1 11 5.9 6.8 1	9 -2 0.97 0 1.11	-0.7 0.7 -0.11 0.11 -99.00
		* * *	Model Performance Eval	uation * * *	
P	Pollutant: 03 (pphm)		Project: CAMx v4.4		Simulation ID: df05a
	stics were calculated for ded were data-pairs with				6.0 (pphm); Averaged over 8 hours
			Peak Concentr	ations	Comparisons with Observations
Site	Description	No	Value Time Value Ti		
009	SubRegion Subregional Peak:	2	6.4 11 5.8 1 6.2 1	0 -1 0.91	-0.6 0.6 -0.09 0.09 -99.00
		* * *	Model Performance Eval	ation * * *	
F	Pollutant: 03 (pphm)		Project: CAMx v4.4		Simulation ID: df05a
	stics were calculated for ded were data-pairs with				6.0 (pphm); Averaged over 8 hours
			Peak Concentr	ations	Comparisons with Observations
Site	Description	No			

 0003
 SubRegion
 2
 6.8
 11
 5.0
 10
 -1
 0.73
 -1.8
 1.8
 -0.28
 0.28
 -99.00

 Subregional Peak:
 5.7
 10
 -1
 0.83
 (at 61 x 58)
 NSte:
 0088;
 NSPk:
 3.9

P	Pollutant: 03 (pphm)		Project: CAMx v4.4				Sim	ulation	ID: df05a
	stics were calculated for ded were data-pairs with o					6.0 (pph	m); Av	eraged o	ver 8 hours
			Peak Concer	ntrations		Com	parison	s with O	bservations
Site	Description	No	Observed Pred: Value Time Value		Ratio	Mean Bias	Mean Error	Norma Bias	lized Error (r
004	SubRegion Subregional Peak:	9		10 0 11 1	0.87 1.00	-1.7	1.7 x 38) 1	-0.23 NSte: 41	0.23 -103. 64; NSPk: 7
	*	* *	Model Performance Ev	valuation *	* *				
P	Pollutant: 03 (pphm)		Project: CAMx v4.4				Sim	ulation	ID: df05a
	stics were calculated for ded were data-pairs with o					6.0 (pph	m); Av	eraged o	ver 8 hours
			Peak Concer	ntrations		Com	parison	s with O	bservations
ite	Description	No	Value Time Value		Ratio	Mean Bias	Mean Error	Norma Bias	lized Error (r
009	SubRegion Subregional Peak:	2		10 0	0.93 1.00	-0.2	0.3 x 12) 1	 -0.03 NSte: 41	0.04 -99. 57; NSPk: 7
	*	* *	Model Performance E	valuation *	* *				
P	ollutant: O3 (pphm)		Project: CAMx v4.4				Sim	ulation	ID: df05a
Stati	Pollutant: O3 (pphm) stics were calculated for ded were data-pairs with o		-hour period of DOY 1			6.0 (pph			ID: df05a ver 8 hours
Stati	stics were calculated for		-hour period of DOY 1	ve a thresho	old of		m); Av	eraged o	
Stati	stics were calculated for ded were data-pairs with o Description	bserve No	-hour period of DOY 3 d concentrations abov Peak Concer	ve a thresho ntrations icted Time Time Lag	old of	Com Mean Bias	m); Av	eraged o	ver 8 hours bservations

 0003
 SubRegion
 3
 6.7
 10
 4.8
 10
 0
 0.72
 -2.2
 2.2
 -0.33
 0.33
 -664.68

 Subregional Peak:
 5.9
 11
 1
 0.89
 (at 58 x 50)
 NSte: 0088; NSPk: 3.9

Pollutant: O3 (pphm)		Simulation ID: df05a							
Statistics were calculated for Included were data-pairs with c	-		6.0 (pphm); Averaged over 8 hours						
	Peak Concentra	tions	Comparisons with Observations						
Site Description	No Value Time Value Tim	5	Mean Mean Normalized Bias Error Bias Error (r)						
0004 SubRegion Subregional Peak:	13 9.5 11 7.1 10 8.0 10	-1 0.75	-2.7 2.7 -0.34 0.34 -53.45 (at 79 x 38) NSte: 4164; NSPk: 7.1						
* * * Model Performance Evaluation * * *									
Pollutant: 03 (pphm)	Project: CAMx v4.4		Simulation ID: df05a						
Statistics were calculated for the 24-hour period of DOY 139 (05/19) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours									
	Peak Concentra	tions	Comparisons with Observations						
Site Description	Observed Predicte No Value Time Value Tim	d Time Peak e Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)						
	1 6.7 11 4.5 10		-2.2 2.2 -0.33 0.33 -99.00						
*	* * Model Performance Evalu	ation * * *							
Pollutant: 03 (pphm)	Project: CAMx v4.4		Simulation ID: df05a						
	Statistics were calculated for the 24-hour period of DOY 139 (05/19) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours								
Peak Concentrations Comparisons with Observations									
Site Description	No Value Time Value Tim	5	Mean Mean Normalized Bias Error Bias Error (r)						
0009 SubRegion Subregional Peak:	2 8.5 12 8.4 10		-0.2 0.9 -0.02 0.11 -99.00 (at 108 x 13) NSte: 4157; NSPk: 8.4						

Pollutant: 03 (pphm)		Simulation ID: df05a				
Statistics were calculated fo: Included were data-pairs with					6.0 (pphm); Averaged over 8 hours	
	-	Peak	Concentrati	ons	Comparisons with Observations	
Site Description	No V)bserved Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)	
0004 SubRegion Subregional Peak:	10	9.6 11	7.0 9 7.8 10	-2 0.74 -1 0.82	-2.1 2.1 -0.27 0.27 -42.25 (at 78 x 33) NSte: 4149; NSPk: 5.9	
			mance Evaluat	ion * * *		
Pollutant: 03 (pphm)		roject: CAM>			Simulation ID: df05a	
Statistics were calculated for Included were data-pairs with					6.0 (pphm); Averaged over 8 hours	
	-	Peak	Concentrati	ons	Comparisons with Observations	
Site Description	No V	Dbserved Value Time		Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)	
0009 SubRegion Subregional Peak:	2	8.7 10	6.7 9 9.2 9	-1 0.77	-1.6 1.6 -0.19 0.19 -99.00 (at 109 x 12) NSte: 4157; NSPk: 6.6	
	* * * Mc	del Perform	mance Evaluat	ion * * *		
Pollutant: O3 (pphm)	Pr	roject: CAM ₂	c v4.4		Simulation ID: df05a	
Statistics were calculated for Included were data-pairs with					6.0 (pphm); Averaged over 8 hours	
	-	Peak	Concentrati	ons	Comparisons with Observations	
Site Description	No V	Dbserved Value Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)	
0003 SubRegion Subregional Peak:	4	8.7 11	5.8 10	-1 0.66 1 0.95	-2.3 2.3 -0.30 0.30 -228.96 (at 59 x 51) NSte: 0088; NSPk: 5.0	

Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a													
Statistics were calculated for the 24-hour period of DOY 141 (05/21) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours													
		Pea	ak Concentrati	ons	Comparis	ons with Observations							
Site Description	No Va	served lue Time		Time Peak Lag Ratio	Mean Mear Bias Erro	or Bias Error (r)							
0004 SubRegion Subregional Peak:		1.2 13	8.6 10 9.4 11	-3 0.77 -2 0.84	-1.1 1.6								
	* * * Model Performance Evaluation * * *												
Pollutant: 03 (pphm	i) Pro	ject: CAN	4x v4.4		S	imulation ID: df05a							
Statistics were calculated for the 24-hour period of DOY 141 (05/21) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours													
		Pea	ak Concentrati	ons	Comparis	ons with Observations							
Site Description	No Va	served lue Time	Predicted Value Time	Time Peak Lag Ratio	Mean Mean Bias Erro	or Bias Error (r)							
0005 SubRegion Subregional Peak:		7.4 11	6.6 11 7.8 11	0 0.88 0 1.05	-1.6 1.7								
	* * * Moc	el Perfor	rmance Evaluat	ion * * *									
Pollutant: 03 (pphm	n) Pro	ject: CAN	4x v4.4		S	imulation ID: df05a							
Statistics were calculated Included were data-pairs wi					6.0 (pphm);	Averaged over 8 hours							
		Pea	ak Concentrati	ons	Comparis	ons with Observations							
Site Description	No Va	served lue Time		Time Peak Lag Ratio	Mean Mear Bias Erro	or Bias Error (r)							
0009 SubRegion Subregional Peak:	2	7.7 14	6.5 10 8.3 9	-4 0.85 -5 1.09	-0.7 0.7								

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a												
Statistics were calculated for the 24-hour period of DOY 142 (05/22) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours												
Peak Concentrations Comparisons with Observation												
Site Description	Observed Predicted Time Peak To Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)										
0003 SubRegion Subregional Peak:	4 11.4 10 6.5 10 0 0.57 8.6 11 1 0.76	-4.5 4.5 -0.43 0.43 -231.13 (at 58 x 49) NSte: 0088; NSPk: 6.0										
* * * Model Performance Evaluation * * *												
Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a										
	24-hour period of DOY 142 (05/22) 2005 eved concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours										
	Peak Concentrations	Comparisons with Observations										
1	Observed Predicted Time Peak Jo Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)										
	13 14.5 12 11.1 10 -2 0.77 11.6 10 -2 0.80	-2.4 2.7 -0.18 0.22 -48.40 (at 73 x 47) NSte: 5203; NSPk: 11.1										
* * * Model Performance Evaluation * * *												
Pollutant: O3 (pphm)	Project: CAMx v4.4	Simulation ID: df05a										
Statistics were calculated for the 24-hour period of DOY 142 (05/22) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours												
	Peak Concentrations	Comparisons with Observations										
Site Description :	Observed Predicted Time Peak Jo Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)										
0005 SubRegion Subregional Peak:	7 9.8 10 7.0 10 0 0.71 9.7 9 -1 0.99	-2.7 2.7 -0.31 0.31 -54.11 (at 68 x 37) NSte: 3812; NSPk: 6.7										

Pollutant: 03 (pphm)Project: CAMx v4.4Simulation ID: df05a													
Statistics were calculated for the 24-hour period of DOY 142 (05/22) 2005 Included were data-pairs with observed concentrations above a threshold of 6.0 (pphm); Averaged over 8 hours													
	Comparisons with Observations												
Site Description	No	Observed Predicted Time Value Time Value Time Lag	Ratio	Mean Mean Normalized Bias Error Bias Error (r)									
0009 SubRegion Subregional Peak:	2	10.9 15 7.8 10 -5 9.5 11 -4	0.72	-2.5 2.5 -0.24 0.24 -99.00 (at 81 x 43) NSte: 4137; NSPk: 6.9									
*	* * * Model Performance Evaluation * * *												
Pollutant: 03 (pphm)		Project: CAMx v4.4		Simulation ID: df05a									
Statistics were calculated for t Included were data-pairs with ob				6.0 (pphm); Averaged over 8 hours									
		Peak Concentrations -		Comparisons with Observations									
Site Description	No	Observed Predicted Time Value Time Value Time Lag	Ratio	Mean Mean Normalized Bias Error Bias Error (r)									
0003 SubRegion Subregional Peak:	3	9.5 11 6.4 10 -1 7.4 11 0	0.68	-2.3 2.3 -0.27 0.27 -72.40 (at 53 x 55) NSte: 0090; NSPk: 6.5									
* * * Model Performance Evaluation * * *													
Pollutant: O3 (pphm)		Project: CAMx v4.4		Simulation ID: df05a									
Statistics were calculated for t Included were data-pairs with ob				6.0 (pphm); Averaged over 8 hours									
		Peak Concentrations -		Comparisons with Observations									
Site Description	No	Observed Predicted Time Value Time Value Time Lag		Mean Mean Normalized Bias Error Bias Error (r)									
0004 SubRegion Subregional Peak:	12	10.9 10 9.6 9 -1 10.3 9 -1		-1.0 1.6 -0.12 0.19 -32.97 (at 76 x 42) NSte: 4164; NSPk: 9.7									

Pollutant: 03 (pphm)	Simulation ID: df05a							
Statistics were calculated for the Included were data-pairs with obse	24-hour period of DOY 143 (05/23) 2005 rved concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours						
	Comparisons with Observations							
-	Observed Predicted Time Peak No Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)						
	1 7.1 12 4.7 10 -2 0.66 8.0 8 -4 1.13	-2.4 2.4 -0.34 0.34 -99.00 (at 68 x 37) NSte: 3812; NSPk: 6.1						
* *	* Model Performance Evaluation * * *							
Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a						
	24-hour period of DOY 143 (05/23) 2005 rved concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours						
	Peak Concentrations	Comparisons with Observations						
Site Description	Observed Predicted Time Peak No Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)						
0009 SubRegion Subregional Peak:	2 10.8 11 8.5 10 -1 0.78 9.5 11 0 0.88	-2.1 2.1 -0.20 0.20 -99.00 (at 106 x 12) NSte: 4157; NSPk: 8.4						
* *	* Model Performance Evaluation * * *							
Pollutant: 03 (pphm)	Project: CAMx v4.4	Simulation ID: df05a						
	24-hour period of DOY 144 (05/24) 2005 rved concentrations above a threshold of	6.0 (pphm); Averaged over 8 hours						
	Peak Concentrations	Comparisons with Observations						
	Observed Predicted Time Peak No Value Time Value Time Lag Ratio	Mean Mean Normalized Bias Error Bias Error (r)						
0003 SubRegion Subregional Peak:	2 7.6 11 6.4 10 -1 0.85 7.4 11 0 0.98	-1.3 1.3 -0.18 0.18 -99.00 (at 52 x 55) NSte: 0090; NSPk: 6.4						

P	ollutant: 03	(pphm)		Simulation ID: df05a							
	stics were calc ded were data-pa						6.0 (pph	m); Avei	raged ove	er 8 ho	urs
				Peak Conce	entrations -		Com	parisons	with Obs	servatio	ns
Site	Description		Observ No Value		licted Time e Time Lag	Ratio	Mean Bias	Mean Error	Normal: Bias	Error	(r)
 004	SubRegion Subregional Pe				10 -1 5 10 -1	0.88 0.92	 -1.0 (at 76	1.4 x 41) NS	-0.14	0.20 - 4; NSPk:	40.82
		* *	* Model B	Performance E	Svaluation *	* *					
		(])						Simu	lation TI	D: df05a	
tati	ollutant: O3 stics were calc ded were data-pa		24-hour pe				6.0 (pph	m); Avei		er 8 ho	
tati: ncluo ite	stics were calc	ulated for the airs with obser	24-hour pe rved concer Observ No Value	eriod of DOY ntrations abo Peak Conce ved Pred Time Value	ove a thresh entrations - dicted Time e Time Lag	old of Peak Ratio	Com Mean Bias	m); Aven parisons Mean Error	raged ove with Obs Normal: Bias	servatio ized Error	urs ns (r)
tati: ncluo ite	stics were calc ded were data-p Description	ulated for the airs with obser	24-hour pe rved concer Observ	eriod of DOY ntrations abo Peak Conce ved Pred Time Value 12 7.4	ove a thresh entrations - dicted Time e Time Lag	Peak Ratio 0.84	Com Mean	m); Aven parisons Mean Error 1.3	raged ove with Obs Normal: Bias -0.15	servatio ized Error 0.15 -	urs ns (r) 99.00
tati: ncluo ite	stics were calc ded were data-p Description SubRegion	alated for the airs with obser 	24-hour perved concer Observ No Value 2 8.9	eriod of DOY ntrations abo Peak Conce ved Pred Time Value 12 7.4	entrations licted Time e Time Lag l 10 -2 9 -3	Deak Peak Ratio 0.84 1.00	Com Mean Bias -1.3	m); Aven parisons Mean Error 1.3	raged ove with Obs Normal: Bias -0.15	servatio ized Error 0.15 -	urs ns (r) 99.00
tati: ncluo ite 009	stics were calc ded were data-p Description SubRegion	alated for the airs with obser 	24-hour perved concer Observ No Value 2 8.9 * Model E	eriod of DOY ntrations abo Peak Conce ved Pred Time Value 12 7.4 8.8	entrations licted Time e Time Lag l 10 -2 9 -3	Deak Peak Ratio 0.84 1.00	Com Mean Bias -1.3	m); Aven parisons Mean Error 1.3 x 13) NS	raged ove with Obs Normal: Bias -0.15	servatio ized Error 0.15 - 7; NSPk:	urs ns (r) 99.00 7.4
ite 009	stics were calco ded were data-pa Description SubRegion Subregional Pea ollutant: 03 gion 0000 Spa	alated for the airs with obser 	24-hour perved concer Observ No Value 2 8.9 * Model E Project Average 8	eriod of DOY htrations abo Peak Conce ved Pred Time Value 12 7.4 8.8 Performance F c: CAMx v4.4 8-Hour Concer	entrations	<pre>peak Ratio 0.84 1.00 * *</pre>	Com Mean Bias -1.3 (at 105	m); Aven parisons Mean Error 1.3 x 13) NS Simul or DOY 13	raged ove with Obs Normal: Bias -0.15 Ste: 415' lation II	servatio Error 0.15 - 7; NSPk: D: df05a	urs ns (r) 99.00 7.4
ite 009	stics were calco ded were data-pa Description SubRegion Subregional Pea ollutant: 03 gion 0000 Spa	alated for the airs with observed ak: (pphm) atially Paired paired Subregio	24-hour perved concer Observ Observ No Value 2 8.9 * Model E Project Average 8 onal Maximu	eriod of DOY htrations abo Peak Conce ved Pred Time Value 12 7.4 8.8 Performance F c: CAMx v4.4 8-Hour Concer	entrations	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	Com Mean Bias -1.3 (at 105 0 pphm f - Neares	m); Aven parisons Mean Error 1.3 x 13) NS Simul or DOY 13 t Site: 4	raged ove with Obs Normal: Bias -0.15 Ste: 415' lation II 37 throug 4157	servatio Error 0.15 - 7; NSPk: D: df05a	urs ns (r) 99.00 7.4

Pollutant: 03 Project: CAMx v4.4 Simulation ID: df05a (pphm) Subregion 0001 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 137 through 144 Unpaired Subregional Maximum of -99.0 at Cell -9 x -9 -- Nearest Site: 0820 _ _ _ _ _ Observed - - - - -- - - - - Simulated - - - - -Site Site Site DOY DOY DOY DOY DOY Site DOY DOY DOY DOY DOY Max. Max. Max. ID 137 138 139 Avq. 137 138 139 140 141 Description Avq. 140 141 Ratio Bias Error _____ ___ _ _ _ _ _ _ _ _ _ _ ____ ___ _ _ _ _ _ _ ____ _ _ _ ___ _ _ _ ___ ____ _ _ _ _ ___ * * * Model Performance Evaluation * * * Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a Subregion 0002 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 137 through 144 Unpaired Subregional Maximum of 6.6 at Cell 49 x 54 -- Nearest Site: 0090 - - - - - Observed - - - - -- - - - - Simulated - - - - -Site Site Site DOY DOY DOY DOY DOY Site DOY DOY DOY DOY DOY Max. Max. Max. ID Description Avg. 137 138 139 140 141 Avg. 137 138 139 140 141 Ratio Bias Error _ _ _ _ ------___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ ___ ___ ___ _ _ _ ____ ___ ___ * * * Model Performance Evaluation * * * Pollutant: 03 (pphm) Project: CAMx v4.4 Simulation ID: df05a Subregion 0003 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 137 through 144 Unpaired Subregional Maximum of 8.2 at Cell 59 x 50 -- Nearest Site: 0060 - - - - - Observed - - - - -- - - - - Simulated - - - - -Site Site Site Site DOY Max. Max. Max. 137 138 139 140 141 138 139 ID Description Avg. Avg. 137 140 141 Ratio Bias Error _____ ___ _____ _ _ _ _ ___ ____ _ _ _ 0069 Burbank 7.6 4.3 5.2 6.4 5.4 7.1 5.0 4.6 4.4 4.4 4.7 5.5 0.62 -0.28 0.28 0088 Pasadena 8.6 4.4 5.3 6.5 5.3 8.0 4.5 3.9 3.9 4.1 5.0 0.52 -0.42 0.42 4.0 0074 Reseda 7.6 5.2 6.3 6.7 5.1 7.3 5.4 5.0 4.5 4.8 5.0 5.8 0.66 -0.27 0.27 0090 Santa Clarita 8.7 5.5 6.8 5.7 4.0 8.7 5.5 5.0 5.0 5.3 5.1 5.5 0.60 -0.32 0.32

Subregion 0004 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 137 through 144 Unpaired Subregional Maximum of 9.2 at Cell 68 x 48 -- Nearest Site: 5197

---- Observed ---- Simulated ----

Site ID	Site Description	Site Avg.	DOY 137	DOY 138	DOY 139	DOY 140	DOY 141	Site Avg.	DOY 137	DOY 138	DOY 139	DOY 140	DOY 141	Max. Max. Ratio Bias	Max. Error
0060	Azusa	8.6	4.2	5.4	6.3	5.0	7.2	4.6	4.1	4.1	3.9	3.9	5.1	0.51 -0.39	0.39
4164	Banning Airport	8.5	6.1	7.5	9.0	7.3	7.2	7.8	5.9	6.9	7.1	7.0	7.5	0.92 -0.08	0.09
5181	Crestline	9.9	5.2	7.1	7.9	9.6		6.6	4.9	5.4	5.6	5.9	7.0	0.74 -0.31	0.31
4158	Elsinore	7.4	5.3	7.2	7.1	6.2	7.3	7.4	5.7	5.6	5.8	5.7	8.6	1.11 0.03	0.16
5197	Fontana	8.4	5.1	6.7	8.5	7.3	8.1	5.7	4.3	4.6	4.7	4.9	6.1	0.76 -0.30	0.30
0591	Glendora	8.1	4.7	5.9	7.4	6.2	7.3	4.9	4.4	4.3	4.2	4.2	5.5	0.55 -0.34	0.34
5212	Mira Loma	8.3	5.6	7.3	8.4	7.6	7.9	5.9	4.7	4.4	4.8	4.6	6.4	0.81 -0.28	0.28
4149	Perris	7.1	4.6	6.1	7.1	4.1	6.6	7.3	5.6	5.7	6.0	6.0	7.9	1.14 0.08	0.15
0075	Pomona	7.7	4.5	5.9	7.4	5.9	6.5	5.0	4.2	4.3	4.3	4.4	5.8	0.72 -0.29	0.29
5204	Redlands	8.1	4.6	6.8	7.5	7.6	7.9	7.2	5.1	5.8	5.8	6.4	7.6	0.98 -0.08	0.10
4144	Rubidoux	8.9	6.1	8.0	9.5	8.8	8.9	6.5	4.9	4.9	5.3	5.3	7.0	0.79 -0.28	0.28
5203	San Bernardino	8.7	4.8	6.9	8.3	8.5	8.5	6.7	4.8	5.3	5.4	5.9	7.1	0.85 -0.20	0.20
5175	Upland	8.1	4.3	5.9	7.5	6.3	7.5	5.1	4.1	4.2	4.2	4.3	5.8	0.74 -0.31	0.31

* * * Model Performance Evaluation * * *

Pollutant: 03 (pphm)

Pollutant: 03

Project: CAMx v4.4

Simulation ID: df05a

Subregion 0005 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 137 through 144 Unpaired Subregional Maximum of 8.8 at Cell 69 x 37 -- Nearest Site: 4158

- - - - - Simulated - - - - -- - - - - Observed - - - - -Site Site Site DOY DOY DOY DOY DOY Site DOY DOY DOY DOY DOY Max. Max. Max. ID Description Avq. 137 138 139 140 141 Avq. 137 138 139 140 141 Ratio Bias Error _____ ___ _ _ _ _ ___ ___ ___ _ _ _ ____ ___ ____ 3176 Anaheim 7.5 5.2 5.9 5.7 4.7 5.8 4.1 3.9 3.5 3.2 3.2 4.2 0.65 -0.35 0.35 0087 Los Angeles 8.4 4.6 4.9 4.8 4.1 6.9 3.9 3.8 3.6 3.5 3.6 4.1 0.47 -0.47 0.47 3195 Costa Mesa 6.2 4.5 5.0 4.7 3.8 6.0 5.2 5.2 5.3 4.7 4.9 5.3 0.87 -0.12 0.12 3177 La Habra 7.4 3.7 4.6 3.7 3.1 4.7 4.2 3.8 3.8 3.8 3.8 4.8 0.83 -0.17 0.17 4.2 0084 Lynwood 8.2 4.2 4.4 4.4 3.6 5.6 4.0 4.0 3.7 3.9 4.4 0.60 -0.40 0.40 3812 Mission Viejo 7.2 4.8 5.4 6.7 5.5 6.4 5.5 4.8 4.9 4.5 4.5 6.6 0.82 -0.16 0.18 0091 7.8 4.8 5.4 4.9 4.8 7.4 4.6 4.6 4.3 4.3 4.6 4.4 West Los Angeles 0.56 -0.40 0.40

(pphm) Project: CAMx v4.4

Simulation ID: df05a

Pollutant: 03	Simulation II	D: df05a										
Subregion 0006 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 137 through 144 Unpaired Subregional Maximum of 9.0 at Cell 70 x 36 Nearest Site: 4158												
Observed Simulated												
Site Site ID Descrip	e Site ption Avg.	DOY DOY DOY DOY D 137 138 139 140 1	41 Avg. 137	DOY DOY DOY DOY 138 139 140 141	Max. Max. Max. Ratio Bias Error							
	* * * Mo	odel Performance Evalua										
Pollutant: 03	(pphm) P:	roject: CAMx v4.4		Simulation II	D: df05a							
		age 8-Hour Concentrati Maximum of -99.0 at Cel			gh 144							
		Observed		Simulated								
Site Site ID Descrip		DOY DOY DOY DOY D 137 138 139 140 1	41 Avg. 137	DOY DOY DOY DOY 138 139 140 141	Max. Max. Max. Ratio Bias Error							
	* * * Mo	odel Performance Evalua	tion * * *									
Pollutant: 03	(pphm) P:	roject: CAMx v4.4		Simulation II	D: df05a							
Subregion 0008 S	Spatially Paired Avera Unpaired Subregional N	age 8-Hour Concentrati Maximum of 7.4 at Cel	ons above 6.0 pphm 1 80 x 60 Nea	n for DOY 137 throug arest Site: 5181	gh 144							
		Observed		Simulated								
ID Descrip	e Site ption Avg.		41 Avg. 137	DOY DOY DOY DOY 138 139 140 141	Max. Max. Max. Ratio Bias Error							

Pollutant: 03 (pphm)				Project: CAMx v4.4						Simulation ID: df05a							
Subregi	Subregion 0009 Spatially Paired Average 8-Hour Concentrations above 6.0 pphm for DOY 137 through Unpaired Subregional Maximum of 8.1 at Cell 107 x 12 Nearest Site: 4157										gh 144						
					Obser	ved					Simul	ated					
Site	Sit	e	Site	DOY	DOY	DOY	DOY	DOY	Site	DOY	DOY	DOY	DOY	DOY	Max.	Max.	Max.
ID	Descri	ption	Avg.	137	138	139	140	141	Avg.	137	138	139	140	141	Ratio	Bias	Error
4157	Indio Jack	son	7.9	6.4		7.7	8.7	6.7	7.3	5.7	7.6	8.4	6.7	6.5	0.93	-0.07	0.09
4137	Palm Sprin	gs	8.5	6.4	7.0	8.5	7.5	7.7	6.7	5.8	7.1	7.3	6.3	6.4	0.68	-0.19	0.19

ATTACHMENT-3

Draft Modeling Protocol

DRAFT

MODELING PROTOCOL FOR OZONE AND PARTICULATE MATTER MODELING IN SUPPORT OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 2007 AIR QUALITY MANAGEMENT PLAN UPDATE

Draft Report May 9, 2006

Jointly Prepared by:

California Air Resources Board Planning & Technical Support Division P.O. Box 2815 Sacramento, CA 95812

and

South Coast Air Quality Management District Planning, Rule Development and Area Sources 21865 Copley Drive Diamond Bar, CA 91765

Send Comments to:

Kevin Durkee South Coast Air Quality Management District <u>kdurkee@aqmd.gov</u>

Contributors:

Mark Bassett Joseph Cassmassi John DaMassa Kevin Durkee Bruce Jackson Bong-Mann Kim Satoru Mitsutomi Xinqiu Zhang

TABLE OF CONTENTS

	liii
LIST OF FIGURES	liii
LIST OF TABLES	liii
LIST OF ACRONYMS	liii
INTRODUCTION	
Background	
Regulatory Modeling Requirements and Guidance	
AQMP Ozone Modeling History in the South Coast Air Basin	
AQMP PM Modeling History in the South Coast Air Basin	
2007 AQMP Modeling Analysis Goals	
Ozone Design Value Determination	
Overview of the Modeling Analysis	
2007 AQMP Schedule	
AQMP Modeling Technical Oversight	53
MODEL SELECTION	53
Meteorological Model	53
Background	53
Previous AQMP Applications	53
2007 AQMP Meteorological Modeling Approach	53
Air Quality Model	
Background	
2007 AQMP Air Quality Modeling Approach	53
MODELING DOMAIN	53
Meteorological Modeling Domain	53
Ozone Modeling Domain	53
PM Modeling Domain	53
HORIZONTAL AND VERTICAL GRID RESOLUTION	53
Horizontal Grid Resolution	53
Vertical Resolution	53
Meteorological Modeling	53
nieceorologieur niodening	
Air Quality Modeling	
	53
Air Quality Modeling	53 53
Air Quality Modeling	53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes	53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday)	53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday)	53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday)	53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday)	53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997	53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking	53 53 53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking PM Episodes	53 53 53 53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking PM Episodes Annual PM: January 1 – December 31, 2005	53 53 53 53 53 53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking PM Episodes Annual PM: January 1 – December 31, 2005 & March 6-12, 2005	53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking PM Episodes Annual PM: January 1 – December 31, 2005 Episodic PM10/2.5: October 19-25, 2005 & March 6-12, 2005 INITIAL AND BOUNDARY CONDITIONS	53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking PM Episodes Annual PM: January 1 – December 31, 2005 Episodic PM10/2.5: October 19-25, 2005 & March 6-12, 2005 INITIAL AND BOUNDARY CONDITIONS Initial Conditions	53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking PM Episodes Annual PM: January 1 – December 31, 2005 Episodic PM10/2.5: October 19-25, 2005 & March 6-12, 2005 INITIAL AND BOUNDARY CONDITIONS Initial Conditions Boundary Conditions	53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking PM Episodes Annual PM: January 1 – December 31, 2005 Episodic PM10/2.5: October 19-25, 2005 & March 6-12, 2005 INITIAL AND BOUNDARY CONDITIONS Initial Conditions Boundary Conditions METEOROLOGICAL INPUTS	53 53
Air Quality Modeling EPISODE SELECTION Ozone Episodes August 3-7, 1997 (Sunday – Thursday) June 3-7, 2004 (Thursday – Monday) August 4-8, 2004 (Wednesday – Sunday) May 17-24, 2005 (Tuesday – Tuesday) July 14-19, 2005 (Thursday – Tuesday) August 25-29, 2005 (Thursday – Monday) Possible Seasonal Ozone Episode: Summer 1997 Ozone Episode Statistical Ranking PM Episodes Annual PM: January 1 – December 31, 2005 Episodic PM10/2.5: October 19-25, 2005 & March 6-12, 2005 INITIAL AND BOUNDARY CONDITIONS Initial Conditions Boundary Conditions	53 53

Quantitative Analyses	53
EMISSION INVENTORY INPUTS	53
Emissions Characterization	53
Point Sources	53
Area Sources	53
On-Road Mobile Sources	53
Other Mobile Sources	53
Biogenic Emissions	53
Organic Gas Speciation	53
Day-Specific Emissions	53
Emissions Quality Assurance	
Emission Projections	53
AIR QUALITY MODEL PERFORMANCE EVALUATION	53
Statistical and Graphical Analyses	53
Subregional Performance	53
Multi-Species Evaluations	53
Aloft Comparisons	53
Acceptable Model Performance	
Sensitivity Analyses	53
Diagnostic Simulations	53
USE OF THE MODEL RESULTS	53
Attainment Demonstration	53
Relative Reduction Factors	53
Carrying Capacity Estimation	53
REFERENCES	53

LIST OF FIGURES

FIGURE 1	Nested MM5 Domains	53
FIGURE 2	The Fine-Scale (5 km) MM5 Domain.	53
FIGURE 3	2007 AQMP Ozone Modeling Domain	53
FIGURE 4	2007 AQMP PM Modeling Domain, inside the Ozone Modeling Domain	53

LIST OF TABLES

TABLE 1	National Ambient Air Quality Standards Compliance Status in the South Coast Air	
Basin.	· · · ·	53
TABLE 2	Ozone Design Value (ppb) for Each Station, 2000-2004	53
TABLE 3	Summary of Proposed 2007 AQMP Model Selection and Application	53
TABLE 4	Tentative 2007 AQMP Schedule	53
TABLE 5	Vertical Structure for the MM5 Meteorological Model	53
TABLE 6	Vertical Structures for the CAMx Ozone and PM Simulations	53
TABLE 7	Summary of Ozone Episodes to be Simulated for the 2007 AQMP	53
TABLE 8	Ozone Episode Characterization	53
TABLE 9	Highest 24-Hour Averaged SSI PM2.5 Concentration in 2005	53
	SAPRC-99 Chemical Mechanism Species	
	Proposed Meteorological Input Performance Benchmarks	
	Performance Goals for 1-Hour Ozone	

LIST OF ACRONYMS

Several acronyms are used in the modeling protocol document. For convenience, the acronyms used are listed below to aid the reader.

AAMA	_	American Automobile Manufacturer's Association
AGL	_	Above Ground Level
AQMD	_	Air Quality Management District
AQMP	_	
AQMPAG		<u>Air Quality Management Plan Advisory Group</u>
AUSPEX	_	Atmospheric Utility Signatures, Predictions, and
		Experiments
AVHRR	_	<u>A</u> dvanced <u>Very</u> <u>High</u> <u>R</u> esolution <u>R</u> adiometer
BEIS	_	<u>Biogenic Emission Inventory System</u>
CAA	_	<u>Clean Air Act Amendment of 1990</u>
CAMx	_	<u>Comprehensive</u> <u>Air-Quality</u> <u>Model</u> with <u>Extensions</u>
CARB	_	<u>California Air Resources Board</u>
CBM	_	<u>Carbon Bond Mechanism</u>
CCAA	_	<u>California Clean Air Act</u>
CEFS	_	<u>California Emission Forecasting System</u>
CMAQ	_	<u>Community</u> <u>Multi-scale</u> <u>Air</u> <u>Quality</u> (model)
CO	_	<u>C</u> arbon <u>M</u> onoxide
COG	_	<u>C</u> ouncil <u>of</u> <u>G</u> overnments
DARS	_	<u>Data A</u> ttribute <u>Rating System</u>
DWM	_	Diagnostic Wind Model
DTIM	_	<u>D</u> irect <u>T</u> ravel <u>I</u> mpact <u>M</u> odel
EIWG	_	<u>E</u> mission <u>I</u> nventory <u>W</u> orking <u>G</u> roup
EKMA	_	<u>E</u> mpirical <u>K</u> inetics <u>M</u> odeling <u>A</u> pproach
EMFAC	_	Emission Factor (model)
FCM	_	<u>Flexible Chemical Mechanism</u>
FDDA	_	<u>Four-Dimensional Data Assimilation</u>
GAP	_	Geographical Approach to Protection of Biological
		Diversity
GCM	_	<u>G</u> lobal <u>C</u> limate <u>M</u> odel
ICAPCD	_	Imperial County Air Pollution Control District
IOP	_	Intensive Operation Period
LIDAR	—	Light Detection and Ranging
MDAQMD	—	<u>M</u> ojave <u>D</u> esert <u>A</u> ir <u>Q</u> uality <u>M</u> anagement <u>D</u> istrict
MM5	_	<u>Mesoscale Meteorological Model (5th generation)</u>
MWG	_	<u>M</u> odeling <u>W</u> orking <u>G</u> roup
NAAQS	_	<u>N</u> ational <u>A</u> mbient <u>A</u> ir Quality <u>S</u> tandard
NDVI	—	Normalized Difference Vegetative Index

NOx	_	Nitrogen Oxides
NO2	_	<u>N</u> itrogen <u>D</u> ioxide
PDT	_	
PM	_	
PM10	_	
1 1110		aerodynamic diameter
PM2.5	_	
1 1012.5		aerodynamic diameter
PMcourse	_	
PMfine	_	
RADM	_	Regional Acid Deposition Model
RECLAIM		<u>Regional Clean Air Incentives Market</u>
ROG	_	<u>Reactive Organic Gases</u>
RRF	_	Relative Reduction Factor
SANDAG		
SAPRC	_	State Air Pollution Research Center
SAQM	_	SARMAP <u>Air Quality Model</u>
SAQM	_	<u>SJVAQS/AUSPEX Regional Model Adaptation Project</u>
SBCAG	_	Santa Barbara County Association of Governments
SBCAPCD		Santa Barbara County Air Pollution Control District
SCAB	_	South Coast Air Basin
SCAG	_	Southern California Association of Governments
SCAQMD		South Coast Air Quality Management District
SCAQS	_	Southern California Air Quality Study
SCE	_	Southern California Edison
SCD SCOS97	_	Southern California Ozone Study (1997)
SDCAPCD		San Diego County <u>Air Pollution Control District</u>
SIP	_	State Implementation Plan
SJVAQS	_	
SOx	_	
		Scientific, Technical, Modeling and Peer Review
510111010		<u>A</u> dvisory <u>G</u> roup
TOG	_	
UAM		<u>Urban Airshed Model</u>
USEPA		<u>United States Environmental Protection Agency</u>
UTM	_	Universal Transverse Mercator
VCAPCD		Ventura County Air Pollution Control District
VMT	_	Vehicle Miles Traveled
VOC	_	<u>V</u> olatile <u>O</u> rganic <u>C</u> ompound
WSPA	_	
,, ,, , , , , , , , , , , , , , , , , ,		<u> </u>

INTRODUCTION

The federal Clean Air Act (CAA) requires areas with unhealthy levels of ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and inhalable particulate matter to develop plans, known as State Implementation Plans (SIPs), describing how they will attain national ambient air quality standards (NAAQS). The 2007 Air Quality Management Plan (AQMP or Plan) for the South Coast Air Basin (Basin) will meet the SIP update requirements for this area, demonstrating NAAQS attainment. The federal Clean Air Act (CAA) requires the use of photochemical grid models that are approved by the Unites States Environmental Protection Agency (USEPA) to perform the attainment demonstration. This document addresses the air quality modeling protocol for the 2007 AQMP, as developed through a joint cooperative effort between the staff of the South Coast Air Quality Management District (AQMD or District) and the California Air Resources Board (CARB), with technical oversight from the Scientific, Technical, Modeling and Peer Review Advisory Group (STMPRAG).

The objective of this modeling protocol is to define the methodology to be used for simulating the formation and transport of ozone and particulate matter in the Basin, including:

- the model(s) to be used;
- the modeling domain;
- the horizontal and vertical grid resolution;
- the annual PM period and ozone and PM episodes to be simulated;
- the model input data, including meteorology, emissions, initial conditions; and lateral and top boundary conditions;
- the process for model performance evaluation.

In addition, the protocol outlines the attainment demonstration process, including a review of the California Clean Air Act (CCAA) requirements. This protocol document is intended to be dynamic and will be updated in response to reviewer comments and to reflect the results of new information that will emerge during the AQMP modeling process.

In order to devote the maximum resources practicable to the development of the District's 2007 AQMP, the Executive Officers of CARB and AQMD have agreed to jointly develop the emissions and air quality modeling needed to determine the carrying capacity and attainment demonstration for the ozone and PM standards. The technical staffs of both agencies are working closely together to plan and carry out the necessary work for the AQMP and are committed to intensive and timely coordination to ensure that it is based on the soundest science possible. Both agencies agree that their staffs will collaborate on this work such that the product will be mutually acceptable modeling analyses for use in the 2007 Plan.

Background

Regulatory Modeling Requirements and Guidance

The 1990 amendments to the federal CAA set new deadlines for attainment based on the severity of the pollution problem and launched a comprehensive planning process for attaining the NAAQS. The promulgation of the new national eight-hour ozone standard and the fine particulate matter (PM2.5) NAAQS in 1997 required additional statewide air quality planning efforts. In response to new federal regulations, SIPs must also address ways to improve visibility in national parks and wilderness areas. SIPs demonstrating attainment of the federal ozone standard must be adopted by the local air districts and CARB, and submitted to the USEPA by June 15, 2007.

USEPA's guidelines on air quality modeling previously recommended the use of the Urban Airshed Model (UAM) for attainment demonstrations involving entire urban areas. However, USEPA revised its recommendation (USEPA, 2001a) to no longer include a recommended air quality model for ozone. Instead, USEPA recommends that air quality models proposed for an ozone attainment demonstration be subjected to model performance evaluations to demonstrate that they are appropriate for attainment demonstration purposes.

USEPA issued the <u>Guideline for Regulatory Applications of the Urban</u> <u>Airshed Model</u> (USEPA, 1991) and <u>Guidance on the Use of Modeled</u> <u>Results to Demonstrate Attainment of 1-hour Ozone NAAQS</u> (USEPA, 1996) to assist states in preparing the attainment demonstration required by the CAA. In addition, the CARB <u>Technical Guidance Document:</u> <u>Photochemical Modeling</u> (CARB, 1992) provides photochemical modeling guidance for use by the districts to ensure the technical validity of the modeling results. Most recently, USEPA has finalized attainment demonstration guidance for the 8-hour ozone NAAQS (USEPA, 2005). The ozone modeling protocol in this document is based on these guideline documents. Guidance for the PM portion of the modeling protocol utilizes the <u>Draft Guidance for Demonstrating Attainment of Air Quality Goals for</u> <u>PM2.5 and Regional Haze</u> (USEPA, 2001b).

Under the federal Clean Air Act of 1990 (CAA), the South Coast Air Basin (Basin) was classified as an "extreme" nonattainment area for 1-hour ozone. Section 182(c)(2)(A) of the CAA set November 15, 1994 as the deadline for submission of a SIP to demonstrate attainment of the NAAQS for ambient 1-hour ozone of 0.125 parts per million (ppm) by December 2010. AQMD satisfied that CAA requirement with the submittal of the 1994 AQMP in September 1994. A subsequent revision was submitted to USEPA in February 1997. This was amended in 1999 to revise the Basin ozone portion of the 1997 AQMP due to its partial approval/disapproval by USEPA. The 2003 AQMP took advantage of information obtained from the 1997 Southern California Ozone Study (SCOS97) and emissions inventory enhancements. It updated the attainment demonstration for the ozone and PM10 particulate matter NAAQS, replaced the 1997 attainment demonstration for the CO NAAOS, and updated the maintenance plan for the NO2 NAAQS that the Basin has met since 1992. In 2005, AQMD submitted a CO attainment request and maintenance plan to CARB and USEPA; approval of this is pending.

In July 1997, the USEPA established new ozone NAAQS of 0.085 ppm based on an 8-hour average measurement. Due to legal challenges, the final form of the ozone NAAQS has been implemented in two phases. The Phase 1 ozone implementation rule, finalized on June 15, 2004, defined the classification scheme for 8-hour ozone nonattainment areas and revoked the 1-hour ozone NAAQS, while requiring states to maintain control programs which were included in their state implementation plans (SIP) for the 1-hour standard. Fifteen areas in California were designated that violate the federal 8-hour ozone standard. Each nonattainment area's classification and attainment deadline is based on the severity of its ozone problem. Southern California's nonattainment areas and attainment deadlines are: South Coast Air Basin (2021); Coachella Valley (2013); Ventura County (2010); Western Mojave Desert (2010); Antelope Valley (2010); San Diego (2009-2014); and Imperial County (2007).

The Phase 2 ozone rule, adopted November 9, 2005, described the actions that states must take to reduce ground level ozone and set the deadline for ozone SIP submittal of June 2007. The AQMD began air quality modeling analyses related to the 8-hour ozone standard during the 1997 AQMP, prior to the final NAAQS implementation. This analysis effort was continued for the 2003 AQMP. The 2007 AQMP modeling will expand the 8-hour ozone analysis and include an attainment demonstration for the current form of the NAAQS. The 2007 AQMP will include an analysis of 1-hour ozone to

provide additional milestones for progress of ongoing control programs and for continuity with previous efforts.

AQMP Ozone Modeling History in the South Coast Air Basin

The first Air Quality Management Plan (AQMP) for the Basin was produced in 1979 as part of a revision to California's SIP. The 1979 AQMP indicated that it would not be possible to achieve the federal 1-hour ozone air quality standard of 0.12 ppm by 1982. Because the emission controls discussed in the 1979 AQMP would not be fully effective until after 1982, CARB and USEPA granted an extension to 1987 for achievement of the standard. As part of that extension, a revision to the AQMP was performed by the AQMD in 1982 which included a new series of modeling analyses to address concerns regarding the original 1979 modeling analysis.

For both the 1979 and 1982 AQMP revisions, the city-specific Empirical Kinetics Modeling Approach (EKMA) was applied. The 1979 AQMP used the city-specific EKMA procedures then in existence. The 1982 AQMP revision used a more sophisticated version of the EKMA procedures and also contained sensitivity analyses (Appendix VI-A of the 1982 AQMP revision). The UAM was used in conjunction with the EKMA analyses to evaluate the effect of applying all feasible control measures by 1987 (Appendix VI-E of the 1982 AQMP revision). On the basis of those modeling studies, it was determined that hydrocarbon reductions on the order of 75 percent or greater would be required to attain the federal standard by 1987, given a forecasted 23 percent reduction in oxides of nitrogen. Forecasted emission data indicated that only a 33 percent hydrocarbon reduction could be expected by 1987. Issues raised during the 1979 and 1982 AQMP revisions highlighted the need to use a threedimensional, photochemical model such as the UAM to better understand the complex interactions between precursor emissions, meteorology, and the formation of ozone in the Basin.

For the 1989 AQMP revision, the UAM was applied to a single, multiday, ozone episode to demonstrate attainment of the National Ambient Air Quality Standard (NAAQS) for ozone. It was determined from the modeling analysis that hydrocarbon and oxides of nitrogen emission reductions of more than 80 percent would be needed in order to attain the 1-hour ozoneNAAQS by the year 2007. The 1989 AQMP revision outlined three levels of controls (identified as Tiers I, II, and III) that separated the proposed control measures by known and proven technologies from those technologies anticipated to be available within the next 20 years.

For the 1991 AQMP, the AQMD used the UAM to further assess the effectiveness of the three tiers of control measures in reducing ambient ozone levels. To complement the single, multiday ozone episode used for the 1989 AQMP revision, two additional ozone episodes were modeled to investigate the effect of projected emission reductions on future ozone concentrations during a wider variety of meteorological conditions. Additional evaluations of model performance, including new graphical procedures and subregional performance statistics, were used to ensure adequate representation of the physical and chemical processes that influence ozone formation in the Basin.

A number of improvements were made to the modeling analysis for the 1994 AQMP. Growth factors for population and vehicle miles traveled (VMT) were revised to reflect the 1990 Census data and the economic climate of the early 1990s, and improved transportation modeling was considered. The modeling analysis benefited from a number of AQMD, CARB, and SCAG studies that improved the area source emission inventory (Appendix III-A). On-road, mobile emission estimates were improved with the use of the latest CARB emission factors program, EMFAC7F. Five ozone episodes were simulated to evaluate control strategy effectiveness. In addition to the June 5-7, 1985, episode used in the 1989 AQMP, and the two Southern California Air Quality Study (SCAQS) episodes (August 26-28, 1987, and June 23-25, 1987) added for the 1991 AQMP analysis, two additional episodes (July 13-15, 1987, a SCAQS episode, and September 7-9, 1987) were simulated for the 1994 AQMP. In this manner, control strategy decisions were based on a range of meteorological conditions, thereby reducing uncertainty in the control strategy's effectiveness. It was determined that hydrocarbon and oxides of nitrogen emission reductions on the order of 80 and 60 percent, respectively, would be needed in order to attain the NAAOS.

Based on the AQMD's experience with the five ozone episodes used in preparing the 1994 AQMP, it was decided to drop the June 1985 meteorological episode for the 1997 AQMP. The AQMD believed that the 1987 meteorological episodes were satisfactorily evaluated. Since the 1985 meteorological episode was based on routinely monitored data, it was believed that the 1987 SCAQS episodes provided improved performance. In October 1998, AQMD provided to the USEPA a "weight of evidence" analysis that indicated that even without the June 1985 episode, a viable ozone attainment demonstration could be made.

As a result of intense interest for aerometric databases to support *regional* ozone modeling, a large-scale field measurement program was carried out

in southern California during the Summer of 1997 to collect sufficient aerometric data to allow data analysts and modelers to characterize and simulate ozone formation and fate in the region. Several agencies and others participated during the planning and operational phases of the field study, including CARB, USEPA, the local air districts, the US Navy, the US Marines, and the marine industry. The 1997 Southern California Ozone Study, or SCOS97, occurred over a four month period from June 15 through October 15, 1997 and captured several episodic ozone days.

The 2003 AQMP updated the attainment demonstration for the federal standards for ozone and PM10; replaced the 1997 attainment demonstration for the federal CO standard and provided a basis for a maintenance plan for CO for the future; and updated the maintenance plan for the federal NO2 standard that the Basin has met since 1992. New ozone episodes, including these from SCOS97, were included as complementary or replacement episodes in the 2003 AQMP. This revision to the AQMP also addressed several state and federal planning requirements and incorporated significant new scientific data, primarily in the form of updated emissions inventories, ambient measurements, new meteorological episodes and new air quality modeling tools. This revision pointed to the need for additional emission reductions (beyond those incorporated in the 1997/99 Plan) from all sources, specifically those under the jurisdiction of CARB and the USEPA which account for approximately 80 percent of the ozone precursor emissions in the Basin.

The 2007 AQMP modeling effort focuses primarily on recent ozone episodes in 2004 and 2005. These periods better reflect emissions conditions following the reformulation of gasoline in California. The August 1997 episode from SCOS97 will be retained for continuity with the previous AQMP analyses. The 2007 AQMP will be consistent with and will build upon the modeling approaches taken in the previous SIP efforts for the South Coast Air Basin, utilizing the latest tools and technical guidance.

AQMP PM Modeling History in the South Coast Air Basin

PM is a multicomponent pollutant including inorganic species such as sulfate, nitrate, ammonium, sodium, chloride, and organic compounds, elemental carbon, and a variety of trace metals. The PM10 modeling analysis shows that the annual average PM10 concentration is the controlling factor for attainment of the federal PM10 standards in the future. Although there were several PM10 modeling tools, there had been no single reliable annual PM10 model available to address the

multicomponent nature of the PM10. Therefore, a multi-pronged modeling methodology was employed to assess regional PM10 and demonstrate future compliance with the federal PM standards.

For the 1989, 1991, and 1994 AQMP, the Chemical Mass Balance (CMB) model for primary and secondary organic carbon and the Particle-In-Cell (PIC) model for sulfate and nitrate were used for annual PM10 analysis. And speciated linear rollback (SLR) was used for maximum 24-hour PM10 analysis.

For 1997 AQMP, a new annual PM10 modeling methodology, the UAM/LC model, was developed and applied. The Urban Airshed Model (UAM) (Ames, et al., 1985; and Morris, et al., 1990a, 1990b) was used as a host air quality model and the parameterized linear chemistry (LC) module was incorporated into the UAM. UAM was adapted to address the formation of particulate nitrate, sulfate, and ammonium and handling of primary particles by replacing the UAM standard chemical mechanism with the parameterized linear chemistry module. UAM/LC, unlike the PIC model, addresses the 3-dimensional aspects of transport and diffusion, varying mixing height, ammonia emissions change, and particulate nitrate concentrations. However, the UAM/LC model cannot handle secondary organic carbon because the current parameterized linear chemistry does not include organic chemistry. Secondary organic carbon is treated separately by the CMB model.

For the 2003 AQMP, UAM/LC model was further enhanced to include secondary organic carbon and PM2.5 partition. The resulting UAMAERO-LT model, for the first time, provided a more robust, stand-alone platform for primary and secondary annual PM2.5 and PM10 simulations.

2007 AQMP Modeling Analysis Goals

The 2007 AQMP modeling will focus primarily on the 8-hour ozone and the annual and 24-hour PM2.5 NAAQS attainment demonstration and reasonable further progress. The applicable NAAQS, along with the current attainment status of the South Coast Air Basin and recent design values, are presented in Table 1. Although the 1-hour federal standard was revoked in 2005, the analysis of 1-hour ozone will be retained as a benchmark of progress toward meeting the former 1-hour ozone NAAQS, as well as toward the State of California ozone standards. In addition to the PM2.5 NAAQS attainment demonstration, the particulate modeling analysis will include annual and 24-hour PM10 attainment demonstrations. Further, the 2007 AQMP modeling will address maintenance plans for Carbon Monoxide (CO) and Nitrogen Dioxide (NO2).

The modeling effort may also include initial modeling strategy development toward demonstrating attainment of the inhalable coarse particle (PM10-2.5) NAAQS and a stricter PM2.5 NAAQS recently proposed by USEPA. The proposed standards are:

- PM10-2.5: 98th percentile 24-hour PM10-2.5 in a year, averaged over 3 years not to exceed 70.4 µg/m³; no annual standard;
- PM2.5: 98th percentile 24-hour PM2.5 in a year, averaged over 3 years not to exceed $35.4 \,\mu g/m^3$; no change to annual standard.

TABLE 1 National Ambient Air Quality Standards Compliance Status in the South Coast Air Basin

	8-Hour Ozone	24-Hour PM2.5	Annual PM2.5
Standard	3-year average of the 4 th highest concentration not to exceed 0.084 ppm	3-year average of the 98th percentile of 24-hour concentrations not to exceed 65.4 μ g/m ³	3-year average of 4 quarterly averages not to exceed 15.04 μ g/m ³
Classification	Severe-17 [may petition for Extreme]	Non-Attainment	Non-Attainment
Attainment Date	2021 [2024, if Extreme]	2015	2015
Design Value	0.127 ppm (2002-2004)	67 μg/m ³ (2002-2004)	24.8 μg/m ³ (2002-2004)
	24-Hour PM10	Annual PM10	
Standard	3-year average of the 99th percentile of 24-hour concentrations not to exceed 154 μ g/m ³	3-year average of 4 quarterly averages not to exceed 50.4 μ g/m ³	
Classification	Serious Non-Attainment	Serious Non-Attainment	
Attainment Date	2006	2006	
Design Value	159 μg/m ³ (2002-2004)	57 μg/m ³ (2002-2004)	

Ozone Design Value Determination

Since the base year emissions are for 2004, air quality data from the three overlapping 3-year periods from 2000 through 2004 were used for calculation of the 8-hour ozone design values for each AQMD air monitoring station. These are shown in Table 2, along with the Relative Reduction Factors (RRF) needed. Per USEPA guidance, the design value averages are truncated (not rounded).

TABLE 2

Ozone Design Value (ppb) for Each Station, 2000-2004

	2000-2002	2001-2003	2002-2004	Current	
	Design	Design	Design	Design Value	RRF
Station	Value	Value	Value	(DVC)	Required
AZUS	102.3	101.0	101.0	101.43	0.8284
BURK	91.7	91.3	91.3	91.43	0.9190
LGBH	61.7	60.7	60.7	61.03	
RESE	93.3	106.3	106.3	101.97	0.8235
POMA	89.7	96.7	96.7	94.37	0.8898
LYNN	51.0	53.3	53.3	52.53	
PICO	80.3	79.0	79.0	79.43	
CELA	79.3	78.3	78.3	78.63	
PASA	96.3	95.3	95.3	95.63	0.8787
SCLR	113.3	126.7	126.7	122.23	0.6874
WSLA	69.3	73.3	73.3	71.97	
HAWT	69.3	71.0	71.0	70.43	
GLEN	110.7	114.3	114.3	113.10	0.7427
ANAH	69.7	71.7	71.7	71.03	
LAHB	75.7	74.7	74.7	75.03	
CSTA	67.3	71.3	71.3	69.97	
MSVJ	80.0	82.7	82.7	81.80	
PLSP	105.3	108.3	108.3	107.30	0.7829
RIVR	108.0	112.7	112.7	111.13	0.7561
PERI	114.0	115.7	115.7	115.13	0.7298
INDI	92.3	96.7	96.7	95.23	0.8824
ELSI	104.3	109.0	109.0	107.43	0.7821
UCRI	113.3	117.3	117.3	115.97	0.7241
BNAP	110.3	118.7	118.7	115.90	0.7248
UPLA	114.0	113.0	113.0	113.33	0.7414
CRES	129.0	131.7	131.7	130.80	0.6422
FONT	112.3	123.0	123.0	119.43	0.7035
SNBO	114.7	118.7	118.7	117.37	0.7155

(Average of the 4th highest 8-hour station concentration in each 3-year period)

RDLD	120.0	128.3	128.3	125.53	0.6693
MLOM	103.0	106.0	106.0	105.00	0.8000
RHIS	130.3	136.7	136.7	134.57	0.6241

Overview of the Modeling Analysis

The analysis techniques currently recommended for attainment demonstrations using air quality models have changed significantly from those used in past demonstrations. In <u>Guidance on the Use of Models and</u> <u>Other Analyses in Attainment Demonstration for the 8-hour Ozone NAAQS</u> (USEPA, 2005), USEPA recommends that the air quality models be used in a relative sense in concert with observed air quality data rather than applying the air quality model in a deterministic sense. The Relative Reduction Factor (RRF) which takes the ratio of future to present predicted air quality is multiplied to an "ambient design value" to demonstrate attainment. The proposed ozone modeling analysis is comprised of the following tasks:

- Identify potential, new ozone meteorological episodes to be used. These episodes should represent the different meteorological conditions that are conducive to ozone formation in the Basin.
- Among the widely accepted state-of-the-science ozone models, CAMx was selected for the attainment demonstration. CMAQ may be employed in the sensitivity analysis and weight-of-evidence section as a supportive modeling tool.
- Develop model inputs. This task includes evaluation of the raw data and of the model input files developed from them. The input files will be evaluated using graphical and other techniques.
- Simulate each episode with the proposed ozone models. This task includes a separate performance evaluation for each episode and each model. Documentation of the simulation results and performance evaluations will be provided.
- Project ozone air quality with proposed control measures in effect for the years 2007, 2010, 2014, and 2020. This task includes the required attainment demonstration using RRF. Model projections for the year 2007 are necessary since that is the year that the CAA requires attainment for severe-17 areas, such as the Coachella Valley and Mojave Desert Ozone Nonattainment Areas. Ozone air quality projections to 2020 will be used to demonstrate that the control strategy maintains the ozone NAAQS and to establish emission budgets needed for conformity purposes.

The work to do the foregoing tasks will be divided between the AQMD and CARB staffs and they will fully share all analyses, model inputs and outputs, findings, and conclusions. Consensus on each component of the analysis shall be reached before proceeding with subsequent components. In the event of technical disagreement on any of the work elements, the AQMD and CARB staffs shall attempt to reach consensus on a mutually acceptable approach. In the event that consensus cannot be reached, the disagreement will be elevated to the Executive Officers for resolution. Table 3 summarizes the model selection and application elements for the 2007 AQMP and the changes from the 2003 AQMP modeling.

 TABLE 3

 Summary of Proposed 2007 AQMP Model Selection and Application

2007 AQMP Element	2003 AQMP Element	Selection Process/Issues/Comments
Ozone Dispersion Platform: CAMx Chemistry: SAPRC99	Ozone Dispersion Platform: UAM Chemistry: SAPRC99	 Peer Group Recommendation to move to state-of-art mass-consistent model/chemistry Integrates with numerical weather model output CAMx used by several agencies for SIP development and supported by Environ Option for one atmosphere modeling Alternates CMAQ: Emissions preprocessing more extensive CALGRID: performance similar to CAMx with no one-atmosphere modeling
 PM10/PM2.5 Annual and Episodic Dispersion Platform: CAMx <u>Chemistry:</u> AERO-LT with CB-IV Enhanced CFI scheme with CB-IV Optional One Atmosphere Aerosol chemistry 	<i>PM10/PM2.5</i> Dispersion Platform: UAM Chemistry: AERO-LT with CB- IV	 CAMx PM dispersion consistent with ozone discussion above. Installed SCAQMD version of AERO-LT into latest CAMx code (V4.20). Enhanced CAMx two section CFI aerosol scheme. It will be compared with AERO-LT.
 Meteorology MM5/4DDA Hybrid MM5/CALMET MM5 initialized using NCEP data 	 Meteorology CALMET Objective Analysis Hybrid MM5/CALMET 	 EPA has expressed concerns about using the hybrid approach MM5/4DDA is more mass consistent but doesn't capture localize wind impacts (transport to San Fernando Valley) Testing several land use assumptions with prognostic model to optimize wind fields and vertical mixing/diffusivity fields. Using Environ's and Aerospace met-model performance evaluation software.

		•	Where possible take advantage of enhanced observation field data (e.g. 3D-Var)
Domain/ Coordinates SCOS97	Domain SCOS97	•	Maintained the SCOS97 domain however emissions inventories require coordinate system offsets to adjust from statewide modeling domain. Impacts
Meteorology: Lambert Conformal Emissions and Model application: UTM	Meteorology: UTM Emissions and Model application: UTM		are to biogenic and CEDARS output.
Ozone: 16 layers PM10/2.5: 8 layers	Ozone & PM10 5-layers		

2007 AQMP Element	2003 AQMP Element	Selection Process/Issues/Comments
 Emissions Inventories 2002 Base year Enhanced aircraft/airport and shipping inventories POLA/POLB updates EMFAC2007 gross adjustments "focused" inventories Final public model Adjustments to fugitive PM10/PM2.5 categories 	 <i>Emissions Inventories</i> 1997 Ozone base year & 1995 PM10 base year Updated aircraft/airport and shipping inventories EMFAC2002V2.01 (major effort to develop surrogates for area sources) 	 2002 Inventory will be used to back-cast 1997, 2000 and project inventories through 2030 for milestone years Waiting on SCAGS' growth estimates based on 2004 RTP which is expected to differ only slightly from the 2007 RTP. Episodic temperature and humidity fields submitted to CARB for biogenic emissions CARB is adjusting temperature fields for planning inventory development Gridded inventories awaiting focused on and off road model output and supplemental inventories No weekend trip model output available from SCAG CARB will develop a "weekend" overlay to mimic VMT based on Caltrans in-road counter data
 Air Quality Model Performance Ozone Assess model performance based on both 1-hour and 8-hour statistics 60 ppb threshold (both indices) Weight of Evidence Analysis Mid-Course simulations PM10/PM2.5 (annual and episodic) Base statistics at speciation 	 Air Quality Model Performance Use EPA recommendations for 1-hour ozone and outline for PM10 and CO. Ozone Mid-Course 2002 simulation Comparative relative reduction for UAM/CAMx/CMAQ per Peer Advisory Group Recommendation PM10 	 Will review thresholds and geographical zones used for ozone performance evaluation. Conduct sensitivity simulations to test emissions mass, VOC/NOx ratios, emissions timing (daily and weekend vs. weekday), ammonia mass

TABLE 3 (Continued)

 sites Weight of evidence analysis Mid-Course simulations 	Analyzed "hot spot" grid cell emissions	
Relative Reduction Factors	Relative Reduction Factors	
RRF: sites specific applied to 3- year average of the design value (PM2.5 and ozone)	Tested for ozone and PM10 but not applied	

2007 AQMP Element	2003 AQMP Element	Selection Process/Issues/Comments
Episode Selection Ozone 1997 August 3-7 1997 Seasonal: August 2004 June 3-7 2004 August 4-8 2005 May 17-24 2005 July 14-19 2005 August 25-29 PM10/2.5 Annual 2005 (January – December) 2005 October 19-25 2005 March 6-12	Episode Selection Ozone • 1997 August 4-7 <u>PM10/2.5</u> • January – December 1995 • Episodic: Rollback <u>CO</u> • 1997 October 31- November 1	 Meteorological episodes include SCOS97 and post California Fuel reformulation (2003) MATES-III meteorological data base development concurrent with AQMP data base development Contract with Aerospace to provide additional observations data and MM5 initialization fields using (satellite ingest and 3DVAR
Initial/Boundary Conditions	Initial/Boundary Conditions	• Will test varying top boundary concentration
 Ozone EPA recommended boundary conditions 40 ppb ozone top profiled to lower layers PM10/2.5 	 <u>Ozone</u> Use EPA recommended boundary conditions Per SCOS97 sampling tested 60 ppb ozone aloft 	• Review alternate approaches for quantifying boundary conditions
Monthly varying emissions generated	<u>PM10</u>	

TABLE 3 (Continued)

boundary conditions	Monthly varying boundary	
(simulate model with zero	conditions based on coastal	
boundary conditions and	monitoring site data	
let model generate	_	
boundary using 3-5 grid		
cells from model domain		
boundary as representative		
of boundary)		

1/4/2006

2007 AQMP Schedule

The schedule of 2007 AQMP modeling efforts is driven by the regulatory deadlines for SIP submittal to USEPA, which is June 15, 2007 for 8-Hour Ozone. Table 4 outlines the tentative schedule of events leading up to the SIP submittal.

Task	Due Date
Episode Selection	January 2006
Air Quality and Meteorological Data Preparation	January 2006
Emission Inventory Preparation	April 2006
Performance Evaluation	May 2006
Control Strategy Development	May 2006
Attainment Demonstration	June 2006
Draft SIP Documents	September 2006
District Board Approval of Final SIP	November 2006
CARB Board Approval of Final SIP	February 2007
SIP Submittal to USEPA	June 15, 2007

TABLE 4Tentative 2007 AQMP Schedule

[Add EIR Schedule, Alternative Modeling, Public Workshops]

AQMP Modeling Technical Oversight

The AQMD Governing Board has established several advisory groups to assist with technical oversight and scientific community and business involvement in air quality programs. The mission of the Air Quality Management Plan Advisory Group (AQMPAG), whose membership is appointed by the Board, is to review the overall aspects of a draft air quality management plan and to make recommendations concerning emission inventories, modeling, control measures, and socioeconomic impacts. Tasks of the AQMPAG, include:

- Provide review and comments on (1) studies relevant to advancing scientific and technical knowledge in support of AQMP preparation; (2) emissions inventory development and modeling approaches; (3) the development of new and revised control measures, including on-and off-road mobile sources; (4) socioeconomic data and evaluations.
- Foster coordinated approaches toward overall attainment strategies.
- Assist in resolving key technical issues.

In addition, the AQMD Governing Board has established a more focused technical oversight committee to review the technical aspects of the ongoing modeling analyses. Since the late 1980's the AQMD has had socioeconomic and modeling working groups, when the Governing Board passed a resolution to form the Modeling Working Group (MWG) during the adoption of the 1989 AQMP revision. The MWG, comprised of individuals with photochemical and aerosol modeling expertise, provided oversight and technical consensus on AQMP modeling issues. In 1997, the MWG was reconstituted as the Scientific, Technical, and Modeling Peer Review Advisory Group (STMPRAG). The STMPRAG role expands upon that of the MWG and includes experts in socioeconomic assessment and human health, providing review of AQMD modeling, monitoring and related scientific issues.

The STMPRAG assists AQMD in resolving technical issues related to air quality and socio-economic modeling by providing ongoing technical review and consensus of procedures and analyses. The objectives of the STMPRAG are as follows:

- Suggest methods to gather and process meteorological, aerometric and emission data with a specific focus on air quality modeling.
- Provide technical guidance to the air quality modeling efforts, with an emphasis on ozone and particulate matter. Some specific areas of technical guidance include: (1) Formulation of modeling approaches; (2) Selection and development of appropriate modeling techniques; and (3) Identification of model performance evaluation methods.
- Review and provide comments on the AQMP modeling procedures and analyses.
- Make recommendations on future modeling resource requirements (i.e., staffing and computational needs).
- Recommend methods for interpretation of modeling results.
- Provide a linkage between the air quality and socio-economic modeling communities, emphasizing the importance of future growth and economic factors on future air quality attainment demonstrations.

The STMPRAG consists of approximately 20 members appointed by the Governing Board, with representatives from USEPA, CARB, Southern California Association of Governments (SCAG), the California Small Business Aliance (CSBA), Southern California Edison (SCE), Western States Petroleum Association (WSPA), and technical experts from universities and consultant firms. Finally, as progress is made and products are available, interim results will be shared with the interested public at appropriate times and locations.

MODEL SELECTION

Meteorological Model

Background

Air quality models require three-dimensional, meteorological inputs. The key parameters are winds, mixing heights, temperature, and insolation. The windfields describe the transport and dispersion of pollutants. Mixing heights define the vertical extent of pollutant mixing near the surface. Temperature and insolation fields influence emission rates and the rates of chemical transformation. Because meteorological measurements can be made only at discrete locations, meteorological models are required to develop the 3-dimensional fields required by air quality models.

The meteorological models used to generate these three-dimensional fields are generally of three types: objective, diagnostic or prognostic. *Objective models* are the least sophisticated meteorological models. These models rely on interpolation of observations. Obtaining a reasonable field requires sufficient observations to accurately represent the atmosphere. This is especially true for windfields. In areas with complex terrain and bodies of water, such as the proposed modeling domain, the meteorology can be quite complex, and a successful objective analysis would require an extremely large number of observations.

Diagnostic models rely both on observations and constraints based on physical concepts such as the conservation of mass. A diagnostic wind model can simulate thermally induced circulations and the effects of surface friction. One example of this type of model is the Diagnostic Wind Model (DWM) which is distributed by the USEPA. For the DWM, the user first defines an initial-guess mean wind field that can be representative of synoptic scale patterns. The domain mean wind is then adjusted for the effects of terrain. Available observations are then used to develop meteorological fields using objective analysis. The initial guess and the objective analysis are then combined using a weighting function based on distance from observations. A criticism of diagnostic models is that the fields produced are not consistent from one hour to the next. Since the processes which create the wind, temperature, and mixing height fields are relatively independent, these models are also criticized for not being thermodynamically consistent between the meteorological parameter fields.

Prognostic models are the most sophisticated of the meteorological models. They are based on principles of atmospheric physics, i.e., conservation of mass, momentum, energy and moisture. As a result, they are computationally intensive. The use of four dimensional data assimilation (FDDA) or observational nudging –

22

where observations are introduced to the model as an additional forcing term - is typically used in areas of complex meteorology to improve the accuracy of the outputs. Another approach is objective combination, in which observations are introduced after the model has estimated a value. Prognostic models are capable of explicitly incorporating many of the physical flow processes important in the domain. However, prognostic models have historically had problems estimating fine-scale flow features due to the limited resolution of datasets used for describing geographic features.

Previous AQMP Applications

In the past, CARB and AQMD have utilized prognostic, diagnostic, and objective models to generate meteorological inputs for modeling. The National Center for Atmospheric Research's prognostic, non-hydrostatic Mesoscale Model (MM5) was applied for modeling in support of attainment planning in the San Joaquin Valley. The SCAQMD also has experience with the SAIMM prognostic model. Diagnostic models (WIND2D, WIND3D, DWM) have been applied in the Sacramento area and in southern California to prepare meteorological input fields for the application of photochemical models in those areas. CARB and AQMD conducted a review of CALMET, which may be viewed as an improved version of the DWM and which is being distributed through the USEPA for air quality modeling applications. The CALMET model has an added feature that allows a hybrid meteorological field to be developed by merging the results from a prognostic model, such as the National Center for Atmospheric Research Mesoscale Model Version 5 (MM5), with an objective or diagnostic analysis characteristic of the CALMET model. This hybrid approach has the potential to take advantage of the prognostic capabilities of MM5 in areas of the domain where meteorological measurements are few, and utilizing measurements in an objective analysis where there are many.

2007 AQMP Meteorological Modeling Approach

The SCOS97 field study generated a dataset with a relatively high spatial density of meteorological observations. While this dataset suggests that an objective/diagnostic model could be adequate to develop the meteorological parameter fields required for air quality modeling of the August SCOS97 episode, there are large portions of the modeling domain—such as over the ocean or the inland desert—where there are few observations. The approach for the 2007 AQMP modeling will be to use the MM5 prognostic model with a 5 km grid resolution. The meteorological boundary conditions for MM5 are generated using the output from a Global Climate Model (GCM) with a relatively coarse grid of 45 km. The MM5 prognostic model uses more accurate and complete physics than the diagnostic models used previously. The MM5 has relatively good replication 23

of meteorological features of the Basin, such as the coastal eddies, Santa Ana winds, recirculation, & strong inversions.

The recent air quality models are designed to use inputs from the prognostic models, such as MM5, and the use of such a model is strongly encouraged by USEPA. In the past, the use of MM5 meteorological fields in air quality models has brought limited success in the prediction of peak ozone concentrations that result from extreme meteorological conditions and complex distribution of precursor emissions. However, the prediction of ozone with MM5 meteorological fields on most days is comparable to the results using other models. Since the air quality model will be employed in more of a relative sense for the 2007 AQMP, with the use off relative reduction factors instead of peak concentration comparisons, the MM5 is an appropriate choice for the AQMP modeling. The premise is that the magnitude of RRF will reflect the ozone concentration resulting from the various meteorological episode classifications. With the use of the MM5 meteorological model, the AQMP modeling effort will move closer to the "one atmosphere" air quality modeling perspective (i.e., ozone and fine particles simulated with the same model). The successful application of this prognostic model is critical for the development of multipollutant control strategies.

Several MM5 initialization fields and data ingest options are also being explored for the 2007 AQMP modeling effort:

- MM5 model initialized with the National Centers for Environmental Prediction (NCEP) 12 km ETA/North American Model (NAM);
- MM5 model with Aerospace Corp 3DVAR forecast fields;
- Weather Research and Forecasting (WRF) community model using Aerospace Corporation 3DVAR;
- MM5 model with NCEP database of upper air and surface observations and the 1degree by 1 degree Global Tropospheric Analysis
- Above method of MM5 with NCEP database and Global Tropospheric Analysis and four-dimensional data assimilation (4DDA) of AQMD station meteorological data (this method is more mass consistent, but may be difficult to capture localized wind impacts (e.g., transport to San Fernando Valley);
- Hybrid CALMET with MM5 as background field

To supplement the MM5 meteorological modeling, the CALMET/MM5 hybrid meteorological model will be used to bolster the sensitivity analyses and weight-of-evidence discussions. The RRF can be adjusted or supported by the air quality modeling results using this alternative hybrid meteorological field. In this approach, the parameter fields will be overlaid using a weighting scheme that is based on the proximity to meteorological observations. The resultant fields

benefit from the capabilities of the prognostic model in those areas of the modeling domain with few observations (such as offshore, in complex terrain, and in the desert areas), and benefit from the objective analysis component of the diagnostic model to force the fields to agree with observations. To develop the hybrid fields, the fields developed using CALMET and MM5 will need to be mapped into common horizontal and vertical coordinate domains. The CALMET model code is structured to facilitate this mapping.

Air Quality Model

Background

The air quality model employed for previous AQMP efforts, the Urban Airshed Model (UAM-IV (USEPA 1990), is widely acknowledged to have characteristics which limit its utility when applied to large modeling domains or to domains that are not geographically uniform. In addition, much of the science in the model is outdated, and both the USEPA and CARB are no longer recommending that model for most analyses. Several photochemical models have been developed to improve upon the UAM-IV. Among those models, CAMx and CMAQ were widely accepted models as the state of the science models that include the most up-to-date chemical mechanisms, physics and the efficient numerical algorithms. The following summarizes the current models.

• CALGRID

The CALGRID model (Yamartino et. al, 1989) was developed for CARB in the late 1980's. The model has been applied by various air pollution agencies around the world. It is modular to allow the user to substitute various types of wind fields and chemical mechanisms. CALGRID incorporates refined treatments of numerical advection, vertical transport and dispersion, and dry deposition. The model can be exercised with either the Carbon Bond IV (CB-IV) or SAPRC chemical mechanisms, and contains highly efficient chemical integration routines. The vertical structure of the atmosphere can be optionally defined relative to a mixing height field, similar to the UAM, or can be based on fixed layer heights and a derived mixing height.

• Models-3

Models-3 (USEPA, 1998a) is a flexible software system designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric chemistry and physics. The Models-3 system is a framework that allows the user to go from developing model inputs to visualizing results all in one package. At the heart of the current version of Models-3 is the *Community Multi-scale Air Quality (CMAQ) Model*. The capabilities of CMAQ include urban to regional scale air quality simulation of

25

ozone, acid deposition, visibility and fine particles. CMAQ is a modular system capable of using output from the MM5 prognostic meteorological model, along with the CB-IV, RADM-2, or SAPRC-99 chemical mechanisms. The CMAQ model also includes a plume-in-grid module, vertical and horizontal growth due to turbulence and shear, a choice of advection schemes and a cloud- module to simulate precipitating and non-precipitating clouds. Since the Models-3 system is relatively new, some implementation and application problems are likely.

• SARMAP Air Quality Model (SAQM)

SAQM (Chang, et. al, 1997) is a three-dimensional non-hydrostatic model based upon the Regional Acid Deposition Model (RADM) (Chang et. al 1987, 1990). However, SAQM includes a number of improvements over RADM, including: a fixed vertical coordinate system that is compatible with MM5; a horizontal coordinate system defined in a Lambert-Conformal projection that accounts for curvature of the Earth; a mass conservation module for compatibility with non-hydrostatic meteorological inputs; the Bott advection scheme (Bott 1989a, 1989b) to reduce numerical diffusion and increase numerical accuracy; two-way nesting, and the capability to use either the CB-IV or SAPRC chemical mechanisms. A version of SAQM with plume-in-grid treatment is also available.

• Urban Airshed Model-Flexible Chemical Mechanism (UAM-FCM)

The UAM-FCM (Kumar et. al, 1995) is an alternate version of the UAM-IV that has been enhanced to allow the flexibility to incorporate any Carbon Bond- or SAPRC-type chemical mechanism. The FCM allows incorporation of reaction-specific photolysis rates. In addition, the UAM-FCM has a generalized methodology to solve the set of differential equations that is mechanism independent. However, the meteorological dispersion algorithms are the same as in UAM-IV.

• Urban Airshed Model-Variable (UAM-V)

The UAM-V (Systems Applications International, 1996) is an updated version of the Urban Airshed Model (UAM-IV) which incorporates many state-of-the-art enhancements in chemical mechanisms, meteorological models and the representation of emissions. Perhaps the most significant additions are: an updated CB-IV mechanism to include aqueous phase chemistry; plume-in-grid capabilities; an improved dry deposition algorithm; and an improved plume rise algorithm. Other enhancements over UAM-IV include allowing the user a fixed vertical structure as opposed to one that is relative to the diffusion break, the ability to use three dimensional inputs from prognostic models and two-way grid nesting. However, the present non-public domain status of UAM-V may preclude regulatory usage. The model developers have

26

indicated that the model could be made available for any party to review if the party agrees that the use of the model would be solely for the review of the AQMP.

• Comprehensive Air-Quality Model with Extensions (CAMx)

CAMx (Environ, 1997) contains a number of advanced features, including grid nesting, sub-grid scale plume-in-grid simulation, alternative numerical advection solvers and the ability to use alternative chemical mechanisms. In addition it has the ability to tag emissions so that at the end of the simulation one can determine the sources of emissions impacting a particular receptor. Since CAMx is a relatively new model, thus there is a relatively short history of experience applying the model.

2007 AQMP Air Quality Modeling Approach

CAMx will be the primary air quality model for the attainment demonstration. This dispersion platform integrates well with numerical meteorological model output and it will be run using both the prognostic (MM5) and hybrid (CALMET/MM5) meteorological fields. The application of the MM5 and CAMx modeling system for both ozone and particulate matter simulation will bring AQMD closer to the "one atmosphere" modeling concept, where ozone and particulates are simulated in the same model. CMAQ model may also be run as a supporting model in the sensitivity analysis discussion.

The ozone air quality models will be run using the SAPRC (Carter 1999, 2001) chemical mechanism, based on chemical reactivity scales. At its meeting on October 8, 1999, CARB's Reactivity Scientific Advisory Committee (chaired by Dr. John Seinfeld, with participation by other members Dr. Roger Atkinson, Dr. Jack Calvert, Dr. Harvey Jeffries, Dr. Jana Milford, and Dr. Armistead Russell) discussed a peer review of the SAPRC-99 mechanism conducted by Dr. William Stockwell. Members of the committee agreed that the peer review was excellent, that SAPRC-99 was a state-of-the-art chemical mechanism, and they approved the peer review. The Committee then unanimously recommended that SAPRC-99, as the most up-to-date mechanism available, be used for SIP modeling.

The particulate matter air quality model will use CAMx with the AERO-LT/CB-IV chemical mechanism and the enhanced two-section CFI aerosol scheme with CV-IV. The AQMD version of the AERO-LT chemistry and the enhanced version of the CAMx CFI scheme have been installed in the latest CAMx code and comparative analyses will be presented. Advisory group recommendations have been to move toward a state-of-the-art, mass-consistent model and chemistry. This system will integrate well with numerical weather model output and with also use the MM5 model for meteorological fields.

MODELING DOMAIN

Meteorological Modeling Domain

Nested domains of 15 km and 5 km are defined within MM5 to simulate meteorological fields for the fine grid scale of the modeling domain. The modeling domain for MM5 is defined in a Lambert-Conformal projection with two parallels to account for curvature of the Earth within the modeling domain over such a large region. Figure 1 shows the nested MM5 domains. Figure 2 shows the finest scale (interior) MM5 domain, covering most of southern California. The vertical structure of MM5 is defined in a terrain-following, "sigma" coordinate system based upon a normalized pressure index. The 30 vertical layers defined for MM5 to approximately 15,000 m above ground level (AGL) can be transformed to fit the requirements of any air quality model. The MM5 meteorological fields are converted from Lambert-Conformal projection to UTM coordinates for input into the air quality models.

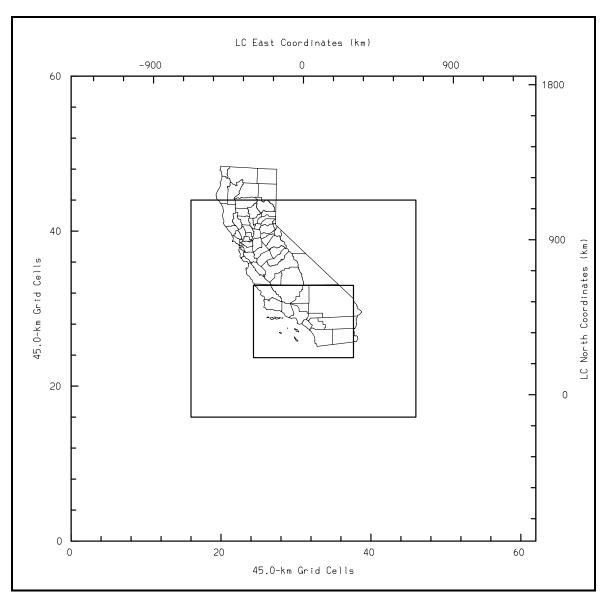


FIGURE 1 Nested MM5 Domains

The horizontal grid resolution of the outermost domain is 45 km, for the middle domain is 15 km, and for the fine scale domain is 5 km.

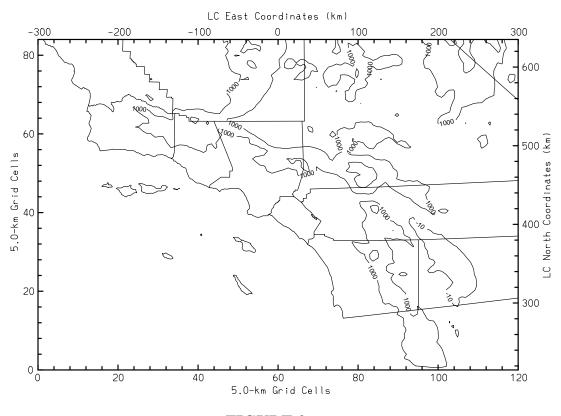


FIGURE 2 The Fine-Scale (5 km) MM5 Domain.

Ozone Modeling Domain

The proposed ozone regional modeling domain is that previously developed for the modeling of the SCOS97 field study episodes, encompassing a 600 km wide by 160 km area, as shown in Figure 3. Specifically, the UTM Zone 11 coordinates of the domain are 150-700 km UTM East and 3580-3950 km UTM North. This corresponds to 100 by 74 grid cells at 5 km grid spacing. The vertical modeling domain will extend to a height of approximately 5,000 m AGL for a more complete representation of atmospheric processes. This will contain observed high ozone concentrations aloft and allow three-dimensional wind flow patterns near elevated terrain features to be represented, providing accurate representation of pollutant transport and recirculation. This same domain will be used for all of the ozone episodes.

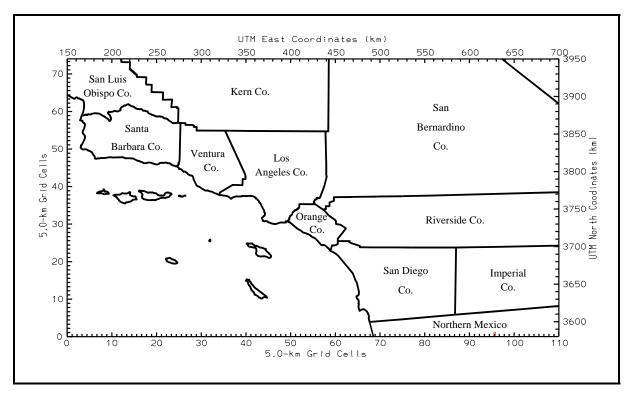


FIGURE 3 2007 AQMP Ozone Modeling Domain

The ozone modeling domain encompasses much of southern California, as follows: all of the South Coast Air Basin (including Orange County and the nondesert portions of Los Angeles, Riverside and San Bernardino Counties), the Coachella Valley and San Diego County; the California-Mexico border regions; most of Imperial County; most of the inland deserts; and almost all of the South Central Coast Air Basin (excepting a small piece of San Luis Obispo County). This large domain minimizes the influence of boundary conditions on simulation results and allows the effects of recirculation and interbasin transport to be better represented by the meteorological and photochemical model simulations. It also eliminates the need to define boundary concentrations between the air basins and it extends far enough offshore to contain wind flow patterns conducive to over-water recirculation.

PM Modeling Domain

The modeling domain for the particulate matter modeling will be smaller than the ozone domain, encompassing a 325 km wide by 200 km area, as shown in Figure 4. This corresponds to 65 by 40 grid cells at 5 km grid resolution. The reduced domain is due in part to the computational resource and time constraints of modeling the full 2005 year for annual PM. In addition, PM SIP modeling is not

needed in the southernmost counties of California and adequate ammonia emissions inventories are not available from many areas surrounding the South Coast Air Basin.

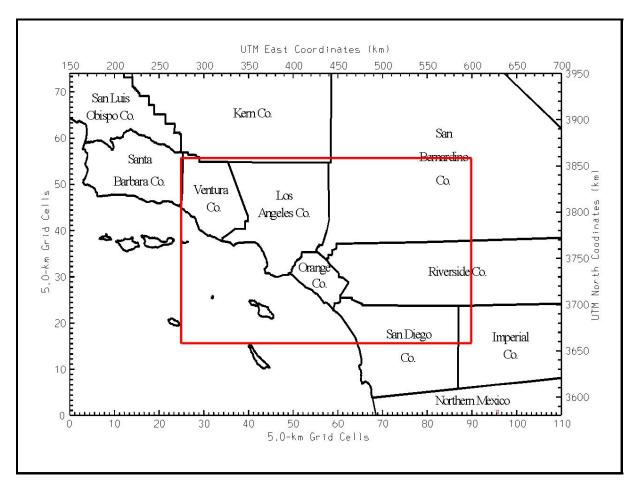


FIGURE 4 2007 AQMP PM Modeling Domain, inside the Ozone Modeling Domain

HORIZONTAL AND VERTICAL GRID RESOLUTION

Horizontal Grid Resolution

The horizontal grid resolution plays an important role in the modeling process. Large grid resolution tends to smooth emission gradients and meteorological inputs, which in turn leads to a smoothing of the resulting concentration fields. In general, the resolution should be sufficiently small to pick up emission gradients in urban areas and be consistent with the major terrain features which may affect the air flow. In the past, photochemical models have been applied in California with horizontal grid resolutions ranging from 2 x 2 km to 8 x 8 km. The specific grid resolution chosen was primarily dependent on the size of the modeling domain, computer resources available and the time and money available to carry out the simulations. In effect the final resolution was a compromise between the accuracy desired and the cost. However, the current generation of high-speed computers has minimized cost and resource constraints.

For the year 2007 AQMP ozone, particulate and meteorological modeling, a horizontal grid resolution of 5 km is proposed to be used for the air quality modeling. No grid nesting is anticipated. This resolution is consistent with the grid resolution used in earlier photochemical modeling studies for the South Coast Air Basin and for San Diego. In addition, this will reduce resources needed to create gridded emissions, which are based on 5 km grid cells. For the proposed ozone modeling domain, use of a 5 km resolution results in a modeling grid with 110 cells in the east-west direction and 74 cells in the north-south direction. The Universal Transverse Mercator (UTM) coordinate system is adopted as the primary coordinate system for the air quality modeling. There are variations in Lambert-Conformal map projection systems, such as the Normal Sphere (6471 km radius) used in MM5, the North American 1927 Clerk 1866 used in CARB's emissions development system, and the Arakawa-C or Arakawa-B variable configuration which assign meteorological parameters at grid points or the center of the grid. The selection of UTM simplifies translation from one grid system to another and the gridded emissions inventory is based on a UTM coordinate system.

Vertical Resolution

As with the selection of the horizontal grid resolution, the vertical resolution defined for air quality modeling domains has been limited by computational resources. In addition, available aloft meteorological and air quality databases were not sufficient to characterize conditions aloft. As a result, simulation results have been limited by a relatively small number of vertical layers within the 34

atmospheric boundary layer, resulting in poor representation of the stratification of the atmosphere. The ability to better simulate the vertical structure of the atmosphere has improved significantly due to the increased availability of measurements aloft (including radar wind profilers and aircraft measurements), the emergence of higher-speed computers, and our increased experience with diagnostic and prognostic meteorological models.

Meteorological Modeling

For the terrain-following MM5 model, the proposed vertical layer consists of 34 layers to a height of over 15,000 meters AGL, as shown in Table 5. For input into the air quality model, the 34 layers are reduced to match the vertical resolution of the ozone or particulate matter air quality model.

Layer #	Sigma	P ₀ (P a)	Height (m)*	Depth (m)*	
34	0.000	10000	15674	2004	
33	0.050	14500	13670	1585	
32	0.100	19000	12085	1321	
31	0.150	23500	10764	1139	
30	0.200	28000	9625	1004	
29	0.250	32500	8621	900	
28	0.300	37000	7720	817	
27	0.400	41500	6903	750	
26	0.300	46000	6163	693	
25	0.450	50500	6461	645	
24	0.500	55000	4816	604	
23	0.550	59500	4212	568	
22	0.600	64000	3644	536	
21	0.650	68500	3108	508	
20	0.700	73000	2600	388	
19	0.740	76600	2212	282	
18	0.770	79300	1930	274	
17	0.800	82000	1657	178	
16	0.820	83800	1478	175	
15	0.840	85600	1303	172	
14	0.860	87400	1130	169	
13	0.880	89200	961	167	
12	0.900	91000	794	82	
11	0.910	91900	712	82	
10	0.920	92800	631	81	
9	0.930	93700	550	80	
8	0.940	94600	469	80	
7	0.950	95500	389	79	
6	0.960	96400	310	78	
5	0.970	97300	232	78	
4	0.980	98200	154	39	
3	0.985	98650	115	39	
2	0.990	99100	77	38	
1	0.995	99550	38	38	
0	1.000	100000	0	0	
* The vertical coordinate system for MM5 is based on a normalized pressure					

 TABLE 5

 Vertical Structure for the MM5 Meteorological Model

* The vertical coordinate system for MM5 is based on a normalized pressure scale. The above layer heights were calculated from sea level using standard conditions. Layer heights are lower relative to ground level as terrain height increases.

36

Air Quality Modeling

For sufficient vertical representation of the atmosphere, 16 vertical layers will be used for the CAMx ozone modeling, to a top height of nearly 5000 m AGL. Five of the layers will be below 500 m AGL (the nominal height of the summer afternoon mixing height within the Los Angeles coastal plain). The computational resources required for the annual particulate matter modeling necessitate a reduction in the number of layers used in the CAMx model for particulates. For this, eight vertical layers will used to a top height of approximately 5000 m AGL. The proposed vertical structure for the ozone and PM models are shown in Table 6, along side of the MM5 vertical structure.

TABLE 6

MM5 Vertical Layer Heights (34)			Ozone Model Layers (16)		PM Model Layers (8)		
No.	Sigma	Height (m AGL)	Depth (m)	Height (m AGL)	Depth (m)	Height (m AGL)	Depth (m)
24	0.500	4816	604	4816	1172	4816	2216
23	0.550	4212	568				
22	0.600	3644	536	3644	1044		
21	0.650	3108	508				
20	0.700	2600	388	2600	670	2600	670
19	0.740	2212	282				
18	0.770	1930	274	1930	274	1930	627
17	0.800	1657	178	1657	178		
16	0.820	1478	175	1478	175		
15	0.840	1303	172	1303	172	1303	508
14	0.860	1130	169	1130	169		
13	0.880	961	167	961	167		
12	0.900	794	82	794	164	794	325
11	0.910	712	82				
10	0.920	631	81	631	161		
9	0.930	550	80				
8	0.940	469	80	469	159	469	315
7	0.950	389	79				
6	0.960	310	78	310	156		
5	0.970	232	78				
4	0.980	154	39	154	78	154	116
3	0.985	115	39				
2	0.990	77	38	77	38		
1	0.995	38	38	38	38	38	38
0	1.000	0	0				

Vertical Structures for the CAMx Ozone and PM Simulations with Corresponding MM5 Meteorological Model Layers

EPISODE SELECTION

Ozone Episodes

Five ozone episodes were simulated for the 2003 AQMP: June 24-25, 1987; August 27-28, 1987; August 3-7, 1997; September 26-29, 1997; and July 13-18, 1998. To maintain continuity with the last plan submittal, the model performance for the August 1997 episode will be reevaluated using updated emission data and modeling protocols. Five new recent episode periods from 2004 and 2005 will evaluated to better represent current conditions, including those associated with the reformulation of gasoline in the past several years. The six episodes are outlined in Table 7 and briefly described below.

TABLE 7Summary of Ozone Episodes to be Simulated for the 2007 AQMP

	Peak 1-Hr.	Peak 8-Hr.	
Episode	Ozone	Ozone	Notes
August 3-7, 1997	0.187 ppm	0.117 ppm	SCOS97 intensive measurement
(Sunday – Thursday)	Tuesday, August 5	Tue.& Wed.,	episode. Primary
	at Rubidoux	August 5 & 6	modeling episode
			from 2003 AQMP.
			Before California
			fuel reformulation.
June 3-7, 2004	0.163 ppm	0.145 ppm	2004 Basin
			maximum 1-hour
(Thursday – Monday)	Saturday, June 5	Saturday, June 5	and 8-hour ozone
	at Crestline	at Crestline	concentrations.
August 4-8, 2004	0.156 ppm	0.124 ppm	
(Wednesday – Sunday)	Saturday, August 7	Saturday, August 7	
	at Banning	at Crestline	
May 17 -24, 2005	0.164 ppm	0.145 ppm	2005 Basin
			maximum 8-hour
(Tuesday – Tuesday)	Sunday, May 22	Sunday, May 22	ozone concentration.
July 14-19, 2005	at Santa Clarita	at Crestline 0.143ppm	
July 14-19, 2005	0.173 ppm	0.14 3 ppm	
(Thursday – Tuesday)	Saturday, July 16	Friday, July 15	
	at Santa Clarita	at Crestline	
August 25-29, 2005	0.182 ppm	0.130 ppm	2005 Basin maximum 1-hour
(Thursday – Monday)	Saturday, Aug. 27	Saturday, Aug. 27	ozone concentration.
	at Crestline	at Crestline	

<u> August 3-7, 1997 (Sunday – Thursday)</u>

The episode period of August 3-7, 1997 was selected to provide continuity with the previous AQMP modeling effort. This episode was the primary modeling episode for the 2003 AQMP and it is representative of the most extreme meteorological conditions conducive to the highest ozone concentrations in the Basin. Unlike the more recent ozone episodes, the peak concentrations during this period did not occur on a weekend. Model input data supporting the August 1997 simulations were derived from intensive field monitoring that occurred during the 1997 Southern California Ozone Study (SCOS97). The SCOS97 study benefited from state-of-the art upper air wind and temperature monitoring and recently developed advances in particulate and oxides of nitrogen sampling technology.

The August 1997 episode included the peak ozone concentrations measured in the South Coast Air Basin during SCOS97 that were not associated with an exceptional event. A peak 1-hour ozone concentration of 0.187 ppm was measured at the AQMD Metropolitan Riverside County (Rubidoux) air monitoring station on Tuesday, August 5 and peak 8-hour concentrations of 0.117 ppm were measured on Tuesday, August 5 and Wednesday, August 6. High ozone concentrations were also observed in the Mojave Desert Air Basin (1-hour peak of 0.140 ppm) and in Ventura County (1-hour peak of 0.130 ppm, 8-hour peak of 0.115 ppm).

The August 1997 meteorological episode began on Sunday, August 3 under a ridge of high pressure aloft with 500 mb heights measured in excess of 5900 m each day. Weak onshore flow gave way to stagnant winds through the middle of the episode. Winds observed on August 5th, illustrate a classic "south route" transport regime that has been identified as characteristic of past severe Basin ozone meteorological episodes. Beginning late on August 6 and continuing into August 7, a well-defined coastal eddy developed that contributed to southerly flow and transport northward toward Ventura County. Peak inland afternoon temperatures crested over 100 degrees Fahrenheit on each day during the episode and downtown Los Angeles consistently reached the mid to upper 90's. The excessive regional surface temperatures and stagnant flow also contributed to a massive wildfire in the mountainous portions of eastern Ventura and southeastern Santa Barbara counties during the later part of the episode.

Ozone air quality reached the California Ozone Health Advisory level (0.150 ppm or higher) on two day during the episode at Redlands, San Bernardino, Rubidoux and Mira Loma. The peak observed value of 0.187 ppm occurred on the August 5 at Rubidoux. Eleven locations exceeded the federal 1-hour ozone standard. Areas such as Azusa, Pasadena, Glendora and Santa Clarita that routinely experience higher values of ozone during episodic conditions were spared the brunt of the

impact due to excessive daytime heating that deepened the mixed layer. Overall, The peak concentrations in the Basin reached 0.140 ppm on the August 4 in the Central San Bernardino Mountains, 0.187 ppm at Rubidoux on August 5, 0.170 ppm and 0.150 ppm on August 6 and 7, respectively, in the Central San Bernardino Mountains. On August 6, ozone transport was observed through the Newhall pass to the Santa Clarita area and concentrations rose in Reseda and Ventura County as the coastal eddy developed.

June 3-7, 2004 (Thursday – Monday)

- Peak 1-hour Ozone: 0.163 ppm on Saturday, June 5 at Crestline (2004 Basin max 1-hour ozone)
- Peak 8-hour Ozone: 0.145 ppm on Saturday, June 5 at Crestline (2004 Basin max 8-hour ozone)

August 4-8, 2004 (Wednesday – Sunday)

- Peak 1-hour Ozone: 0.156 ppm on Saturday, August 7 at Banning
- Peak 8-hour Ozone: 0.124 ppm on Saturday, August 7 at Crestline

<u> May 17-24, 2005 (Tuesday – Tuesday)</u>

- Peak 1-hour Ozone: 0.164 ppm on Sunday, May 22 at Santa Clarita
- Peak 8-hour Ozone: 0.145 ppm on Sunday, May 22 at Crestline (2005 Basin max 8-hour ozone)

<u> July 14-19, 2005 (Thursday – Tuesday)</u>

- Peak 1-hour Ozone: 0.173 ppm on Saturday, July 16 at Santa Clarita
- Peak 8-hour Ozone: 0.143 ppm on Friday, July 15 at Crestline

The morning of July 13, 2005 had a low, strong temperature inversion layer in the Basin, which continued for several days, and hot weather except at the immediate coast. Skies were mostly clear, except for low clouds and fog offshore an at the coastline for most of the day. Ozone levels were starting to increase in the inland valley areas. The inland valley areas remained hot on July 14 while the coast remained much cooler with coastal low clouds and fog. On July 15, high pressures aloft, centered over the western U.S. deserts, helped to keep inland temperatures hot. Excessive heat warnings were in effect for many desert areas. The marine layer deepened a little with increased onshore flow, bringing night and morning low clouds and fog into the coastal valleys and transporting ozone and ozone precursors towards the Inland Empire with a 8-hour ozone peaking at Crestline (0.143 ppm). Skies in the Basin were mostly sunny with haze. On July 16, the hot inland temperatures continued while coastal low cloud and fog in the morning clearing in the afternoon. .On July 17, the strong inversion layer continued along with the hot temperatures in the inland valley areas. Only the

immediate coastal strip will escaped the hot weather due to low clouds and fog along the coastline and offshore. With strong high pressure aloft over the west coast, temperature will remain hot on July 18 and through the week with an excessive heat advisory and record temperature possible in some areas on Monday, July 18. A lower temperature inversion confined morning low clouds and fog to the coast, with hazy sunshine elsewhere. Little change occurred on July 19 as inland heating likely caused the inversion to break in the afternoon inland.

August 25-29, 2005 (Thursday – Monday)

Peak 1-hour Ozone: 0.182 ppm on Saturday, August 27 at Crestline (2005 Basin max 1-hour ozone)
 Peak 8-hour Ozone: 0.130 ppm on Friday, August 27 at Crestline

Possible Seasonal Ozone Episode: Summer 1997

Ozone Episode Statistical Ranking

For the 2003 AQMP ozone attainment demonstration a statistical model was developed to characterize the ozone meteorological episodes selected for regional modeling evaluation. The statistical model related degree of ozone meteorological episode severity relative to the long term trend (1981-2002). Multi-variate regression was conducted using the Basin 1-hour average maximum ozone concentration and surface and upper air meteorological data for 1996 to generate an ozone prediction equation. This equation was applied to the air quality and meteorological data for the 22-year period to predict Basin daily maximum ozone and establish a daily ranking. The multiple linear regression analysis is discussed in Appendix V of the 2003 AQMP.

The statistical evaluation used in the 2003 AQMP used the daily maximum 1-hour ozone as the dependent variable to characterize the meteorological episodes. The meteorological conditions that give rise to higher 8-hour average concentrations are essentially a subset of those giving rise to peak 1-hour concentration. CART pattern recognition analysis (Cassmassi, 1998) demonstrated that the meteorological conditions that lead to high 1-hour average concentrations were the same as those for peak 8-hour concentrations. In addition, station specific correlations between maximum 1- and 8-hour average ozone concentrations generally explain more than 95 percent of the variance in the data. Given the consistency between the meteorological profiles contributing to both maximum 1-

and 8-hour average concentrations, it was assumed that the algorithm used to rank episodes in the 2003 AQMP would be applicable for ranking the 8-hour episodes.

The 1997 episode ranking was taken directly from the 2003 AQMP. The statistical characterization was then extended to the 2004 and 2005 candidate episodes and their predicted daily maximum concentrations were compared to the 22-year distribution to determine relative rank. Table 6 summarizes the analysis.

Eleven of the 13 days ranked above the 95th percentile in episode severity with only August 6, 2004 failing to rank in the 90th percentile. The daily maximum 8hour ozone averages were averaged by episode and compared to the 4th highest ozone value in the Basin (99th percentile) for each of the modeling years. The 1997 episode was a match for the annual design value while the 2004 and 2005 episodes bracketed the annual design values, each depicting episodes that were more or less severe than the design. The overall distribution listed in Table 8 may be enhanced at a later date if a seasonal modeling application is determined to be viable.

Ranking Applied to Historical 22-Year Period (1981-2002)					
					Annual 4 th
Episode	Rank	Percentile	8-Hour Max	Episode	Highest
			Ozone	Average	Station
			(PPB)	(PPB)	(PPB)
8/5/97	198	98	124	127	127
					San
8/6/97	203	97	130		Bernardino
6/5/04	83	99	148	138	
6/6/04	524	93	127		116
8/6/04	1009	87	94	111	Crestline
8/7/04	331	96	127		
5/21/05	389	95	112	129	
5/22/05	50	99	145		
7/16/05	22	99	141	136	125
7/17/05	15	99	141		Crestline
7/18/05	73	99	127		Clesuine
8/27/05	160	98	130	126	
8/28/05	138	98	121		

TABLE 8Ozone Episode Characterization

Ranking Applied to Historical 22-Year Period (1981-2002)

PM Episodes

Annual particulate matter modeling will cover the entire year of 2005, taking advantage of additional speciated particulate measurements and meteorological data archived in association with the Multiple Air Toxics Exposure Study III (MATES-III) in the South Coast Air Basin. In addition, two PM2.5 episodes in 2005 will be modeled for 24-hour NAAQS compliance: October 19-25 and March 6-12, 2005. These two days were chosen since they were the highest PM2.5 episodes in 2005 that were not influenced by exceptional events. Both episode periods exhibited multiple-day buildups in the Beta Attenuation Monitor (BAM) continuous PM2.5 monitoring and affected multiple stations. Only July 5 had a higher PM2.5 concentration, but it was associated with fireworks on the night of July 4. Table 9 shows the days in 2005 with the highest Size Selective Inlet (SSI) sampler PM2.5 concentrations and the associated 24-hour BAM PM2.5 and SSI PM10 concentrations.

TABLE 9

Date	Station	SSI PM2.5 (µg/m ³)	BAM PM2.5 (μg/m ³)	SSI PM10 (µg/m ³)
July 5, 2005	Azusa	132.7		
October 22, 2005	San Bernardino	106.3		
October 22, 2005	Rubidoux	98.7	120.6	123/124
October 22, 2005	Fontana	96.8		
October 23, 2005	Rubidoux	95.9	117.9	
October 22, 2005	Riverside	95.0		
October 22, 2005	Ontario	87.8		
October 21, 2005	Rubidoux	82.1	98.5	
July 5, 2005	Rubidoux	79.9	102.0	
March 10, 2005	Downtown LA	73.7	88.2	
March 11, 2005	Downtown LA	67.6	84.7	70

Highest 24-Hour Averaged SSI PM2.5 Concentration in 2005 with BAM PM2.5 and SSI PM10 Concentrations

Annual PM: January 1 – December 31, 2005

- AQMP database development concurrent with MATES-III
- Peak Annual Average PM2.5: $23.3 \mu g/m^3$ at Rubidoux
- Peak Annual Average PM10: $52.2 \,\mu g/m^3$ at Rubidoux

Episodic PM10/2.5: October 19-25, 2005 & March 6-12, 2005

- Peak 24-Hour PM2.5 was 132.7 μg/m³ at Azusa on July 5, 2005 (due to Independence Day fireworks)
- Second Peak 24-Hour Average PM2.5: 106.3 $\mu g/m^3$ at San Bernardino on October 22, 2005
- Rubidoux exceeded the 24-hour PM2.5 standard on the most days in 2005 (8 days)
- Peak 24-Hour Average PM10: $131 \mu g/m^3$ at South Long Beach on May 4, 2005
- Second Peak 24-Hour Average PM10: 123 μg/m³ at Rubidoux on October 22, 2005
- No 24-Hour NAAQS violations were measured in the Basin in 2005

INITIAL AND BOUNDARY CONDITIONS

Previous ozone modeling results in southern California proved sensitive to initial and boundary concentrations of air pollutants. This reflected the physical processes of recirculation of pollutants within southern California and the transport of pollutants from one air basin to another. However, because of the three-dimensional nature of transport and recirculation, it is difficult to take field study measurements that are adequate to determine boundary conditions. Ozonesonde measurements made during SCOS97 have shown high concentrations of ozone at heights above 3,000 m AGL. The modeling domain developed for the SCOS97 episodes, which will be used for the 2007 AQMP, has been expanded both horizontally and vertically from that of earlier studies in an attempt to minimize the influence of boundary conditions. With the boundaries extending horizontally well into the desert areas an over the ocean and vertically to 5000 m, the effects of recirculation and interbasin transport will be better represented by the meteorological and photochemical model simulations.

The sensitivity of the model simulations to initial and boundary conditions will be extensively examined with sensitivity analyses. Chemical species concentration measurements, where available from the SCOS97 field study archive and the PAMS measurements, will be used to check the initial and boundary conditions for reasonableness. For the large areas of the study domain in which there are few such measurements, initial and boundary conditions are often assigned "background" values based on the minimum concentrations measured from monitoring sites where measurements are available. The use of larger-domain air quality models to provide the initial, top and lateral boundary concentrations will also be explored. Speciated gridded pollutant and precursor profiles from the 36 km grid CMAQ model used for the WRAP visibility modeling is currently being evaluated to provide the initial and boundary conditions. The boundary profiles will vary with time and height level, as well as location, while the top boundary concentration will vary by time and grid location.

Initial Conditions

Initial conditions in the air quality models define the spatial distribution of chemical species concentrations throughout the 3-dimensional modeling domain at the time at which the air quality model simulation begins. There are two limitations inherent in defining initial conditions. The first is that chemical species concentrations are only measured at discrete locations and, for some species, for discrete time periods. In particular, observed VOC data is sparse although some PAMS monitoring stations data are available. Therefore, observed concentrations must be extrapolated to estimate concentrations throughout the

modeling domain. The second limitation is that observed chemical species concentrations may not represent chemical equilibrium, especially since not all important chemical species are measured explicitly.

To minimize the importance of initial conditions on air quality model simulation results, the simulation is frequently started at some time interval before the period of interest. Historically, this "spin-up" time interval has ranged between 8 and 72 hours. For the 2007 AQMP episodes, the modeling period starts early in the morning (typically 0000 PDT) of the day before the first day of interest for spin-up. This allows a full diurnal cycle of sunlight for air quality model to reach chemical equilibrium. Since most of the modeling episodes encompass several days, the day with the worst air quality is typically well into the simulation.

Boundary Conditions

The top and lateral boundary conditions in the air quality models are the chemical species concentrations on the study domain boundaries and represent the concentrations for the air mass moving into the modeling domain. Unlike initial conditions which need to be defined only for the beginning of the simulation, boundary conditions must be defined for each hour of an air quality model simulation on the 2-dimensional, vertical planes on each of the horizontal boundaries of the domain and at the top of the modeling domain.

Ideally, the modeling domain boundaries are placed so remotely that simulation results are insensitive to boundary conditions. Even for the large SCOS97 modeling domain, the influence of boundary conditions on the simulation results may be problematic. Beyond the northern boundary, emissions from central California could have an impact on the domain. To the south, emissions from Mexico could have an impact. The western boundary is over the Pacific Ocean, where recirculation may be an issue.

Also, the determination of vertical profiles of chemical species is problematic. During SCOS97, ozone concentrations aloft were measured by launching balloonborne ozonesondes. The measurements indicated that there are layers of high ozone ranging 60 to 80 ppb at near 3000 m. Prescribing a 60 ppb ozone concentration aloft in the model would contribute to high ozone concentrations at the surface due to advection or vertical diffusion. Ideally boundary conditions would be determined from measured chemical species concentrations, but these are rarely available for the most of the episode days or in all locations needed.

For the 2007 AQMP, AQMD proposes to use relatively clean initial and boundary conditions, based on the results of a larger domain model, the WRAP CMAQ visibility simulations. The SAPRC species for the initial and boundary conditions

48

are shown in Table 10 for the ozone modeling. The use of relatively clean boundary conditions could significantly impact the predicted peak ozone concentration which results in poor model performance for ozone peak prediction. However, the use of clean boundary condition minimizes the uncertainty in futureyear model predictions. The calculated RRF should only reflect the impact of anthropogenic emissions reductions. Also, as the future year air quality becomes close to background concentrations, the treatment of boundary conditions may be problematic, particularly in 8-hour ozone attainment demonstration. A part of the air quality model evaluation process, sensitivity analysis and weight of evidence analysis will be to assess the influence of boundary and initial concentrations on simulation results and RRF.

Species	Species
ACET	ISPD
ALK1	MEK
ALK2	MEOH
ALK3	METH
ALK4	MGLY
ALK5	MPAN
ARO1	MVK
ARO2	NO
BACL	NO2
BALD	NOXY
ССНО	NPHE
CO	O3
CO2H	OLE1
CO3H	OLE2
COOH	PAN
CRES	PAN2
DCB1	PBZN
DCB2	PHEN
DCB3	PROD
ETHE	RC2H
GLY	RC3H
HC2H	RCHO
HC2H	RNO3
НСНО	ROOH
HNO3	SO2
HNO4	SULF
HO2H	TERP
HONO	XN
ISOP	

TABLE 10SAPRC-99 Chemical Mechanism Species

METEOROLOGICAL INPUTS

Meteorological Input Evaluation and Technical Review

The quality of the meteorological inputs can have a profound influence on the accuracy of the simulations concentrations of ozone, PM and other pollutants by the air quality models. It is therefore essential that the products of the meteorological models undergo a rigorous evaluation. By evaluating the flow characteristics of the wind fields, as well as the representativeness of the temperature, relative humidity and mixing height fields, the uncertainty in the air quality simulations can be minimized. AQMD and CARB staff will consider both qualitative and quantitative analyses in judging the meteorological fields and in reaching consensus on the appropriateness of those fields for use in the 2007 AQMP. Graphical and statistical analysis software is available to facilitate the meteorological input field evaluation.

The use of routine and special study monitoring data and model analysis archives provides a robust data set for comparing and analyzing the simulated meteorological fields. Some of the available data sets include:

- Routine surface meteorological network data, including:
 - South Coast AQMD (~32 stations),
 - Ventura County APCD,
 - San Diego County APCD,
 - Mojave Desert/Antelope Valley APCD,
 - NOAA/FAA Stations (METAR obs),
 - California Remote Access Weather Stations (RAWS),
 - California Irrigation Management Information System (CIMIS) Stations;
- Special study meteorological station data, such that from the Multiple Air Toxics Exposure Study III (MATES-III) project during part of 2004 and all of 2005;
- Marine buoy data from National Data Buoy Center (NDBC);
- Routine National Weather Service and military radiosonde observation (RAOB) data, including the stations at Miramar MCAS, Point Mugu NAS, San Nicolas Island NAS, Vandenberg AFB, Edwards AFB, China Lake NAS, Oakland, Mercury/Desert Rock, and Tucson;
- Southern California radar wind and temperature profiling network, including stations operated by:
 - South Coast AQMD (Los Angeles International Airport, Ontario International Airport and Moreno Valley),
 - Ventura County APCD (Simi Valley)

- San Diego County APCD (Pt. Loma, Valley Center or Miramar)
- NOAA project and SCOS97 profilers, when available (e.g., Goleta, San Clemente Island, Santa Catalina Island during SCOS97).
- National Center for Environmental Prediction (NCEP) gridded observational databases and model analysis fields, including:
 - NCEP ds353.4 ADP Global Upper Air Observations database,
 - NCEP ds464.0 ADP Global Surface Observations database,
 - NCEP ds083.2 Global Tropospheric Analyses, 1 degree x 1 degree gridded database,
 - NCEP ETA-12 km model forecast fields,
 - NCEP ETA-40 km Model Forecast Fields,
 - NCEP EDAS-40 km Gridded Data;
- Aerospace Corporation MM5/3-Dimensional Variational Analysis System (3DVAR) archives (incorporating surface, upper-air, ships, buoys, aircraft and satellite observations)

Qualitative Analyses

The qualitative analysis of modeled wind fields includes an evaluation of the gross circulation features in the modeling region to determine if the model is replicating those essential features (Mulberg, 1995, Lolk and Douglas, 1996). Such features include areas of convergence and divergence, eddy circulations, land/sea breezes, slope flows, and transport corridors. Since the modeling domain includes large overwater areas it is also necessary to evaluate offshore flows as well. Key features of the windfield are areas of convergence and divergence. These features result in vertical velocities which can transport pollutants upward (in the case of convergence) or bring pollutants from aloft down to the surface (with divergence). The evaluation will include a review of the convergence and divergence zones in the simulated windfield, and their impact on realistic vertical velocities, to determine agreement with measurements or conceptual models in terms of location, timing, and extent.

Synoptic forcing and mesoscale flow characteristics can sometimes result in eddy circulations. In the SCOS97 domain two key eddy features are prevalent: the Catalina Eddy (named since its center is often near Santa Catalina Island), and the Gaviota Eddy in the Santa Barbara Channel (Smith, et. al., 1984). Both eddy circulations are important transport mechanisms; they are capable of transporting precursors and aged ozone concentrations onshore and northward to Santa Clarita and sometimes Ventura and Santa Barbara Counties. Exceedances of the ozone standards are often observed with the presence of an eddy circulation and the deep of the marine layer that accompanies a mature coastal eddy can end an ozone episode. The timing of the onset, persistence, and spatial extent of eddy circulations, are a critical part of the windfield validation.

Land/sea breeze circulations are another important flow feature. The sea breeze is one method whereby pollutants generated in the Los Angeles Basin are transported eastward. That is, the strength of the sea breeze will determine how far precursors and ozone generated near the coast will be transported inland. Errors in the timing of the sea breeze can cause precursor emissions to be transported to the wrong locations instead of inland where peak concentrations are observed. It is essential that the onset of the sea and land breezes simulated by the model be compared to observations for reasonableness.

The onshore portion of the 2007 AQMP modeling domains includes areas of complex terrain. Slope flows are important as a recirculation mechanism that may influence ozone concentrations. Slope flows are probably the most challenging feature for prognostic meteorological models, due to the sparse observational data in complex terrain and these models have a tendency to overdo the speed of the slope flows. A proposed qualitative approach is to determine if wind speeds estimated by the model appear to be reasonable in areas of complex terrain.

As a qualitative and quantitative evaluation of the windfields, wind speeds are proposed to be statistically summarized and plotted by site and globally throughout the domain (Seaman et. al., 1995, Bigler-Engler et. al., 1996). Temporal plots for key sites will be examined to determine agreement with observations. Quantitative techniques will make use of statistical measures such as the mean gross error and mean bias to compare modeled and measured wind speeds (Mulberg, 1995).

Some of the methods being explored for the meteorological modeling incorporate observations, thus reasonably good agreement should be expected near those observation sites where data was used as input to the model. In order to diagnose the impact that incorporation of the observations has on the meteorological models, it may be useful to consider withholding some observations when executing the models to have an independent set of observations for comparison. The sites withheld should have some relation to the sites used to provide some assurance in the results from the comparison. This diagnostic evaluation is proposed to be conducted once acceptable meteorological fields have been prepared.

Temperature fields will also be examined. At the surface, qualitative analyses will include an examination of the diurnal and spatial variation of estimated and observed temperatures, as well as consistency of the gridded data within regions.. The interface at the coastline will be examined for the expected gradients between the ocean and the land. Mean bias and mean gross error statistics will also be calculated to provide quantitative measures of performance. In addition, the vertical temperature profiles generated by the models will be compared to those observed at rawinsonde sites and boundary layer wind and temperature profiler locations. The vertical temperature profile influences the stability characteristics of the modeling domain which significantly affects vertical mixing. The evaluation will include temporal and spatial evaluations of simulated vertical temperatures and mixing as compared to those estimated from observed soundings and profiler data. The timing of the onset and breakup of the inversion will also be evaluated, as this phenomenon has a profound effect on estimated ozone concentrations.

Quantitative Analyses

ENVIRON Corporation International (Emery, et al., 2001) proposed performance benchmarks and developed a statistical analysis software package, called METSTAT, to statistically and graphically analyze the meteorological fields. METSTAT is publicly available and widely used by the modeling community. It can read the MM5 output files and the observational data, and then calculate the following statistics: mean observation, mean prediction, bias error, gross error, root mean square error (RMSE), systematic root mean square error (RMSEs), unsystematic root mean square error (RMSEu), and index of agreement (IOA). It should be noted that the statistical evaluations are influenced by the number of stations and the duration of sampling period. The benchmark statistics will be applied to all observational stations available and to specific geographic groupings (e.g., coastal, mid-Basin, inland areas). Both daily and hourly statistics will be compiled for each modeled period.

Meeting the METSTAT benchmarks provides assurance that the model performance is comparable with performance achieved in the past. METSTAT can be used as a screening tool to identify the periods when the performance is poor that require further analysis. These statistics can also be used to identify stations where performance is consistently poor. Table 11 shows the proposed performance benchmarks for the meteorological inputs for the 2007 AQMP air quality modeling. In addition, temporal plots will provide direct comparison of modeled meteorological parameters at grid points corresponding to observational stations.

rop	bosed Meteorological Input Perfo	ormance Benchm	nark
	Parameter	Benchmark	
	Wind Speed Total RMSE	\leq 2.0 m/s	

TABLE 11 P ΧS

Wind Speed Bias

54

 $< \pm 0.5 \text{ m/s}$

Wind Speed IOA	\geq 0.6
Wind Direction Gross Error	\leq 30 degrees
Wind Direction Bias	$\leq \pm 10 \deg$
Temperature Gross Error	\leq 2.0 K
Temperature Bias	$\leq \pm 0.5 \text{ K}$
Temperature IOA	≥ 0.8
Humidity Gross Error	$\leq 2 \text{ g/Kg}$
Humidity Bias	$\leq \pm 1.0 \text{ g/Kg}$
Humidity IOA	≥ 0.6

[These benchmarks may be too stringent for MM5, especially Temperature. These may need to be reevaluated after seeing more results.]

EMISSION INVENTORY INPUTS

Ozone episodes occurring in 1997, 2004, and 2005 will be simulated for the 2007 AQMP. Gridded, hourly base year emissions inventories, including CO, NOx, SOx, and TOG emsissions, for those years are needed for photochemical ozone modeling. The 2005 base year particulate matter emissions will also be needed to support inputs needed for aerosol modeling. The information needed to complete the emission inventory for the modeling region is obtained from the local air pollution control districts, transportation planning agencies and CARB. For the 2007 AQMP, the 2002 base year emissions will be used. The statewide emissions inventory will be gridded to the modeling domain. The 2002 emissions will be backcasted to the 1997 episode year and grown to the 2004 and 2005 episode years. Specific month and day-of-week emissions will be estimated from the annual average emissions, based on temperature corrections derived from ambient measurements. The emissions will also be grown to the attainment milestone and demonstration years of 2005, 2010, 2020 and, possibly 2015 and 2030.

Adjustments to the 2002 base year inventory for the 2007 AQMP will likely reflect the following changes from the 2003 AQMP inventory:

- Overall emissions inventory changes will likely include higher VOCs, lower NOx and lower CO emissions. New temperature and relative humidity profiles will be used for annual inventory adjustments.
- The stationary source inventory will reflect that the actual 2002 emissions were mostly lower than 2003 AQMP-projected emissions.
- The mobile source inventory will be projected with EMFAC Gross Adjustments (to be provided by Spring 2006). It will reflect increased VOC and NOx emissions from the 2003 AQMP inventory. Key areas of mobile source inventory adjustment include:
 - Truck Distribution/VMT/deterioration rate;
 - Ethanol & evaporatives and permeation issues;
 - Modified temperature distribution.
- For the particulate matter emissions categories, the new USEPA fugitive PM10/PM2.5 ratio will be evaluated and applied.
- Temperature and humidity corrections will be applied to the biogenic inventory.

Other potential emissions inventory changes will possibly result from improved inventories for ports, the Alameda Corridor, shipping, aircraft and airports. The 2007 AQMP on-road emissions will be based on technical-adjustments to the SCAG 2004 Regional Transportation Plan. No weekend trip model will be available from SCAG, so CARB will develop a "weekend" overlay to mimic

VMT based on California Department of Transportation (Caltrans) in-road counter data. Air quality modeling analyses will stress emissions sensitivity runs, since the spatial distribution of emissions will be critical to model performance due to the use of Relative Reduction Factors (RRFs) instead of peak concentration performance metrics.

Emissions Characterization

Point Sources

Characterizing anthorpogenic point source emission is the responsibility of the local air districts. Emission inventories for point sources (including RECLAIM facilities) are compiled by local districts and reported to CARB. If annual emissions for a facility fall below 10 tons/year (this cutoff varies with district) the source is included in the area source inventory. Point sources are allocated to grid cells using the location that is stored as part of the point source emission database. Temporal codes which describe hours of operation are also included in the emission database. Factors are also stored to convert annual average emissions to a specific month and day of week. Point sources have been inventoried for 2002. SCAQMD's point source inventory for 2002 includes an update to locations (UTM coordinates) and stack parameters. Point source emissions will be estimated using the CARB California Emission Forecast System (Johnson, 1997) for the modeling episode base years and future years.

Area Sources

Area sources are comprised of emission source types that are difficult to inventory individually. Examples are architectural coatings, residential water heating, gasoline stations and off-road mobile sources not included in the CARB OFFROAD model. The area sources include point sources smaller than 10 tons per year and area surrogates are used for sources such as consumer products.

Districts and CARB share responsibility for estimating area source emissions according to a long-standing division of categories. CARB, 1997b describes methodologies used to estimate emissions from area sources. Factors are also included that allow estimates of specific month and day of week emissions from annual average emissions. Temporal codes which describe hours of operation are also included in the area source emission database. Area source categories have been inventoried for 2002. Emissions for the modeling episode base years and future years will be grown using CARB emission forecasting system.

On-Road Mobile Sources

On-road mobile source inventories are prepared using vehicle activity data from transportation planning agencies. The majority of travel is reflected in transportation plans developed by:

- Southern California Association of Governments (SCAG);
- San Diego Association of Governments (SANDAG);
- Santa Barbara County Association of Governments (SBCAG); and
- Kern Council of Governments (Kern COG).

Travel data for areas not covered by the transportation planning agencies are extracted from the California Statewide Planning Model maintained by the California Department of Transportation. Emission factors for on-road mobile sources will ultimately be estimated using the CARB EMFAC2007 emission factor model. However, the release of EMFAC2007 will likely be concurrent with the 2007 SIP submittal, so the modeling will proceed using the 2002 base year emissions inventory from the 2003 AQMP with gross EMFAC adjustments based on CARB technical documentation. DTIM4 will use both the emission factors and travel activity data to produce hourly gridded emission estimates for the SCOS97 region.

CARB is leading the effort to acquire all travel data needed for this modeling study. The network and travel activity data provided by transportation planning agencies is developed for peak and off-peak time periods, which will be processed into 24 hourly data sets. Day-specific traffic count data will be used to calibrate DTIM4 inputs for development of day-specific on-road mobile source emissions. CARB will use the network and travel activity data to produce gridded DTIM4 inventories for episode days.

Other Mobile Sources

Area source emissions from most categories of off-road mobile sources will be estimated using the CARB off-road mobile source emission model (OFFROAD). OFFROAD covers more than 12 off-road categories, including lawn and garden equipment, small utility and construction equipment, as well as farm equipment. Categories not estimated by OFFROAD will be covered under "area sources". However, specific emissions for aircraft, marine vessels, and locomotives will be provided through separate special studies. OFFROAD will produce gridded emission inventories for each calendar year desired. The OFFROAD model will have the capability to estimate exhaust, starting, and evaporative emissions for differing spatial and temporal conditions.

Biogenic Emissions

The derivation of a gridded natural biogenic emission inventory requires data sets describing the spatial distributions of plant species, biomass, and emission factors that define rates of hydrocarbon emissions for each plant species. The Biogenic Emission Inventory System (BEIS 2.3) (USEPA, 1995) model, distributed by the USEPA for this purpose, is one source of these data sets for areas throughout the United States. However, the BEIS model has been shown to have limited use in California because of poor spatial resolution within the referenced data sets and a simplified scheme for assigning emission factors (e.g., Jackson, et al., 1996). The development of a gridded biogenic emission inventory for the SCOS97 domain will benefit from research conducted within California that describes the needed data sets in more detail than is defined within the BEIS model (Benjamin et. al., 1998).

CARB, in consultation with researchers at UCLA, developed a methodology to complete a gridded biogenics inventory for the SCOS97 modeling domain. The methodology involves the use of: (1) gridded plant species maps using the GAP data base (Davis et. al., 1995), an inventory of biomass diversity for the United States; (2) biomass distribution, determined using published correlations between biomass and Normalized Difference Vegetative Index (NDVI), an index of relative "greenness" from Advanced Very High Resolution Radiometer (AVHRR) satellite remote sensing data sets; (3) emission factors of isoprene, monoterpenes, methyl butenol, and other VOCs for various plant species known to exist within the modeling domain using taxonomic relationships between the plant species (Benjamin et. al., 1996). The gridded biogenic inventory, including the gridded plant species, biomass distribution and emission factor databases, are combined with ambient temperature and radiation data to produce gridded hourly emissions of isoprene, monoterpenes, methyl butenol, and other VOCs.

Organic Gas Speciation

Organic gas speciation profiles are applied to all categories of TOG emissions to obtain estimates for each organic gas species emitted in the modeling region. CARB maintains a database of current profiles that are routinely updated to reflect recent information. The most recent updates were for gasoline exhaust and evaporation, diesel exhaust and jet engine exhaust. The CARB publication *Identification of VOC Species Profiles* (CARB, 1991) documents the organic gas profiles.

Day-Specific Emissions

Emissions from many sources vary from day to day. Evaporative emissions from vehicles and vegetation increase with ambient temperature. Exhaust emissions are KRD: DRAFTModelingProtocol.doc 59

also a function of ambient temperature. Increased air conditioning demands on hot days also lead to increased emissions from electrical generation. Hourly surface temperatures for episode days are interpolated to each grid cell and are used in estimating emissions from vegetation and on-road mobile sources.

Criteria pollutant emissions from approximately 80 major point sources will also be estimated hourly for each specific episode day. Each district has acquired data from major point sources for the episode days and is developing day-specific point source inventories for those years. The districts also collect information on variances, temporary breakdowns and shutdowns. DTIM4 will be run to develop mobile source inventories for several episode days, including weekend days.

Where feasible, wildfire emissions will be estimated. Emissions from large ships in the shipping lanes are also estimated, using ship activity data (for commercial vessels) from shipping ports, ship-specific engine characteristics data, and the latest emission factors. Emissions from aircraft will be estimated using aircraft activity data, including hourly landing, takeoff, approach, climbout and cruise emission. This type of information will allow development of temporally and spatially resolved emission estimates.

Emissions Quality Assurance

CARB has provided specific guidelines to assist state and local agencies in implementing uniform and systematic approaches for collecting, compiling, and reporting emission inventory data. A comprehensive quality control and quality assurance plan was prepared to ensure good quality practices during development of the 2002 and future year emission inventories. These procedures include: quality control checks for collecting non-emission data, updating activity data, and using appropriate emission factors for calculating emissions; emission calculation methodology; quality assurance evaluation using the Data Attribute Rating System (DARS); and quality review of the entire inventory. The DARS program, originally developed by the USEPA, will be used as an additional quality assurance tool to quantify the relative accuracy of the annual emission inventories. CARB has also provided the districts with a variety of quality assurance reports to aid in the review of inventory data important for modeling. These reports were intended to provide checks on the accuracy of the emission calculations, stack data, facility location data, temporal data, devices data, process data, etc.

Emission Projections

Future year emissions form the basis for an air quality emission reduction target. Future year emissions for area and point sources are projected by accounting for growth and control, generally using growth and control factors applied to the base KRD: DRAFTModelingProtocol.doc 60 year (2002) emissions. Control factors are derived based on adopted measures. Growth factors are derived from socioeconomic and demographic data provided by districts and local agencies, and CARB-sponsored research factors elsewhere. Area source and offroad emissions are gridded using the appropriate surrogates as used for 2002. Gridded future year surrogates for the entire modeling domain region and also being prepared for milestone and attainment demonstration years. Surrogates for other years can be interpolated as needed.

Future year traffic activity and network data are also prepared by local planning agencies. EMFAC will give estimates of future year emission factors. DTIM4 uses future year emission factors and network travel data to obtain gridded future year on-road mobile emissions. DTIM4 inputs for future years are being compiled and prepared. Ambient temperatures that occurred during 2002 are also used in calculating future year emissions for each episode day.

Biogenic emissions will not change for future years. Even though there may be a shift in farm or landscaping plans and species, the capability does not exist to incorporate any potential changes into the inventory. Seep emissions will also remain constant in future year inventories.

3/2/2007

61

AIR QUALITY MODEL PERFORMANCE EVALUATION

It is a well established tenet of the modeling community that for an air quality modeling simulation to give reliable results, it must be capable of giving the right answers for the right reasons. That is, not only must the model be capable of reproducing observed air pollution measurements with a reasonable level of accuracy, but it must also pass a series of prescribed tests designed to ensure that the apparently accurate results are not produced by a combination of compensating errors. Several tests on the modeling simulations, both at the surface and aloft are proposed to be conducted as part of the model performance evaluation. Both precursor and secondary species will be evaluated, in addition to 1-hour and 8hour ozone, PM10 and PM2.5 for each episode and model variation. Statistical and graphical analyses will compare simulated concentration to measured values, throughout the domain and by geographic region. Diagnostic simulations will be used to analyze the sensitivity of the model to the input parameters and assumptions. This performance evaluation should allow a determination that the model is working properly. The following evaluation tools are based on previous modeling practices, the CARB photochemical modeling guidance (CARB 1992), and the USEPA attainment demonstration guidance for ozone (USEPA, 2005) and particulate matter (USEPA, 2001b).

Statistical and Graphical Analyses

The model performance evaluation effort will include both graphical and statistical analyses. These will compare simulated pollutant concentrations with measured values from the routine air monitoring stations and special study sites, including the PAMS stations. The statistical evaluations for the particulate matter modeling will focus primarily on comparisons to the speciated particulate data from the MATES-III study. The graphical analyses will include time series plots showing temporal variations, contour plots showing spatial variations, scatter plots showing tendencies for over- or under- estimation, and residual plots showing the distribution of the differences between observed and predicted concentrations.

The statistical analyses will examine the accuracy of peak estimates (both paired and unpaired in time and space), mean normalized bias, mean absolute gross error, and mean absolute normalized gross error. The statistical performance criteria outlined in the CARB guidance document for Class B or better ozone performance will be used to guide the determination of acceptable model performance. These statistical criteria will be used as a criterion for acceptable model performance. However, other analyses (graphical, multi-species, aloft comparisons and the diagnostic simulations) will also be used to determine acceptable model performance, and ultimately a conclusion that the model is working properly must

be made considering the evidence from all of the analyses. Table 12 shows some of the statistical performance goals for the ozone simulations.

Statistic for 1-Hour Ozone	Criteria (%)	Comparison Basis
Normalized Gross Bias	$\leq \pm 15$	Paired in space and time
Normalized Gross Error	≤35	Paired in space (+2 grid cells) and time
Peak Prediction Accuracy	$\leq \pm 20$	Unpaired in space and time

TABLE 12Performance Goals for 1-Hour Ozone

Subregional Performance

The performance tests will be evaluated for the entire domain, by district or air basin, and for several geographic subregional zones to ensure that the domainwide statistics do not mask subregional issues with the simulation. Since the modeling domains are very large, six geographic zones are proposed to be evaluated for model performance: San Fernando Valley, west (or coastal) Basin, mid-Basin, San Gabriel Valley, east Basin, and Coachella Valley. The same statistical acceptance criteria will be used for the subregions as for the entire domain.

Multi-Species Evaluations

To be useful for planning or other purposes, an air quality model must be able to replicate measured concentrations with reasonable accuracy. However, it is also important to compare estimated and measured concentrations of precursors and secondary species, to establish confidence that the chemistry is being simulated properly. The important ozone precursors are NO, NOx, HONO, and organic gas species; important secondary species are HNO3 and PAN. Organic gas concentrations will be lumped according to the scheme employed by each model's chemical mechanism. Comparisons will be made for each of the estimated precursor species and lumped organic gas species, for each monitoring location. In addition, comparisons will also be made for NOx, and total ROG.

The multi-species comparisons may reveal modeling issues that were not obvious from the direct ozone comparison. Many of the precursor species have a secondary component as well. Concentrations of primary pollutants tend to have higher gradients than do secondary species. This makes it more difficult to KRD: DRAFTModelingProtocol.doc 63

assume that a measured concentration of a primary pollutant represents a grid cell average. For these reasons it is probably unreasonable to expect the same accuracy in replicating precursor concentrations as for ozone concentrations. Thus, use of a specific statistical error or bias criterion is not recommended. These comparisons should be viewed as more qualitative, to uncover potential problems in precursor and secondary performance.

Aloft Comparisons

Aloft air quality measurement data for the 2004 and 2005 episodes is minimal. The vertical profile of the chemical species will be evaluated qualitatively and a more quantitative analysis will be conducted whenever observational data are available. For the SCOS97 August 1997 episode, more extensive the upper air measurements are available. The concentrations of selected air pollutants were measured above the ground using aircraft, balloons and LIDAR. The primary component of these measurements is the oxidant concentrations measured with ozonesondes to a height of 5,000 m AGL. Ozonesondes were flown at seven sites, at 6-hour intervals, for selected episode days. Also, four aircraft were flown up to three times per day and an ozone LIDAR was operated continuously on selected episode days.

When air quality data aloft is available, the performance of air quality model simulations above the ground will be determined by quantitatively comparing simulated oxidant and ozone concentrations with measurements, at reasonable close times and locations. Measured concentration profiles will be averaged for the vertical layer increments corresponding to those of the air quality model. Due to the vertical resolution of the air quality models, the vertical resolution of the aloft comparisons is likely to be somewhat inconclusive and the evaluation will be of a more qualitative nature.

In addition to measuring ozone, three of the SCOS97 aircraft measured oxides of nitrogen and collected samples for later hydrocarbon analysis. Comparisons between these precursor data and concentrations simulated using the air quality models will also be made. However, there are relatively few samples and because an aircraft is not in one grid cell for an hour, comparisons may not be consistent with modeled concentrations. Comparisons to see if any large discrepancies exist between modeled and measured concentrations aloft will be made.

Acceptable Model Performance

While it is expected that acceptable model performance can be achieved for the ozone and particulate episodes, this is not always feasible given the regulatory deadlines for plan submittals. While the modeling results of some episodes may not meet all the performance goals, the episode can still be used for carrying

capacity and attainment demonstration purposes assuming the relative reduction factors reflect the change in emission reduction. The RRF will be extensively evaluated with sensitivity analyses and such issues will be described in the weight-of-evidence discussions.

Sensitivity Analyses

Diagnostic Simulations

Several diagnostic or investigative simulations will be employed to further determine the fidelity of the model results. These sensitivity analyses will help evaluate potential concerns regarding such factors as emissions mass, VOC/NOx ratios, ammonia mass, and emissions timing, including daily and weekend vs. weekday emissions. The diagnostic simulations that are anticipated help evaluate model sensitivity and performance will include the following:

- Zero emissions all anthropogenic and biogenic emissions will be set to zero to test the model's sensitivity to emissions and to ensure that the base case results are influenced appropriately by the emission inputs.
- **Double anthropogenic emissions** all anthropogenic emissions will be doubled to test the model's sensitivity to increased man-made emissions. In addition, as separate tests of anthropogenic emissions affects, only mobile source emissions will be doubled and only stationary source emissions will be doubled.
- *Emissions adjusted based on uncertainty analysis results* The anthropogenic emissions estimate include various inherent uncertainties because of the nature of human activity, such as the possibility that some VOC sources could not be accounted and uncertainty in the spatial distribution of the emission sources. The adjustment factors will be developed based on the ambient VOC species adjusted within the bounds of the uncertainty. Various emissions estimate scenarios will be tested to diagnose model sensitivity and performance.
- Zero biogenic emissions biogenic emissions will be set to zero to test the model's sensitivity to biogenic emissions.
- Zero surface deposition deposition will be turned off for all species to examine the effects of dry deposition on ozone estimations.
- *Reduced wind speeds* reducing the wind speeds by 50% is proposed to test the model's sensitivity to that parameter. However, it is possible that the resulting wind fields will not be dynamically consistent, so these results will need to be approached with caution.

- Zero and estimated or measured boundary and initial conditions A range of boundary and initial conditions will be analyzed to test the sensitivity of the models to these inputs. The modeling results using the following initial and boundary conditions will be analyzed: (1) the boundary conditions at the top and sides of the modeling domain and the three-dimensional initial conditions will be set to zero; (2) the observed air quality data is interpolated for the initializations hours, using data from PAMS and other measurements as available to prepare estimated speciated initial and boundary profiles; (3) a range of boundary and initial conditions will be evaluated, based on the larger scale WRAP modeling results.
- *Grid cell averaging sensitivity* For the attainment demonstration, relative reduction factors (RRF) will be calculated using 9-cell (15 km by 15 km) averages. As a sensitivity run, 1-cell (5 km by 5 km), 4-cell (10 km by 10 km) and 16-cell (20 km by 20 km) averages will be examined.

USE OF THE MODEL RESULTS

Attainment Demonstration

The modeling results are anticipated to be used for estimating carrying capacities and demonstrating future attainment of the NAAQS. For the attainment demonstration, the years 2007, 2010, 2014 and 2021 will be simulated with the proposed control measures (the control strategy) for 8-hour ozone NAAQS attainment. Attainment of the revoked 1-hour ozone NAAQS will also be demonstrated for the future year 2010 as a milestone and to show reasonable further progress. The years 2006, 2010, 2015 and 2020 will be simulated to demonstrate the particulate matter NAAQS attainment. In the past the use of the model results for these goals has been contingent upon acceptable base case model performance for the episodes simulated. That is, only episodes for which the model is judged to be operating properly and which meet the model performance acceptance criteria will be used.

Weight-of-evidence discussions will also factor into the attainment demonstration by providing supportive analyses to confirm or compliment the modeling assessment. Examples of the weight-of-evidence considerations may include: trend analyses, sensitivity modeling analyses (e.g., altered emissions scenarios), hot spot grid evaluations, and statistical analyses. Special analyses may also be targeted to problem locations, for example, incorporating the Rubidoux study results.

Relative Reduction Factors

Historically, AQMD developed the carrying capacity and attainment demonstration for ozone based on a set of specific control measures that was projected to achieve the 1-hour ozone NAAQS for all modeled episodes. The USEPA 8-hour ozone guidance (USEPA, 2005) and draft particulate matter guidance (USEPA, 2001b) recommend the use of relative reduction factors (RRFs) as part of the attainment demonstration process, assuming that satisfactory base year model performance is established. The RRF is a non-dimensional factor that incorporates design period monitoring data, using the 3-year average of the design value, directly into the attainment test along with the ratio of future to current year model predictions. The RRF is defined as the ratio of the future daily maximum concentration predicted near a monitor (averaged over multiple days) to the baseline daily maximum concentration predicted near the monitor (averaged over the same days).

The RRF are site specific and will be based on the 9-cell average (15 km by 15 km) for multiple episodes. Areas with severe or higher nonattainment status KRD: DRAFTModelingProtocol.doc 67

require a minimum of 15 simulated days. It allows the model to be used in a relative, rather than absolute, sense to reduce uncertainty in the predictions. The use of RRFs also potentially address two problems in model applications that tend to result in underestimation of emission reductions needed to attain standards. The first problem is that modeled episodes usually have ozone concentrations lower than the design value. The second problem is that simulation results have historically exhibited a tendency towards underestimation of observed concentrations. By utilizing monitored data along with model estimations, RRFs address both problems.

However, there may be some limitations in using RRFs, especially for 1-hour ozone. Examples of such situations include:

- Measured ozone concentrations at some sites and for some episodes may differ substantially from design values for those sites. That is, each available ozone episode will not be representative of design value conditions at all sites. In such instances it may not be reasonable to include the non-representative sites in the RRF analysis.
- Model performance typically varies considerably between sites and episodes in a domain. The reported ozone performance measures (such as peak prediction accuracy, bias, and gross error) may not capture this variation. Thus it may not be reasonable to include sites which have poor model performance for a given episode.

Some characteristics of RRFs include the following:

- More robust analysis due to multiple episodes;
- Less reliant on peak concentration performance statistics;
- Allows for episodic, seasonal or annual composite application;
- Can be site specific;
- Directly applied to design values so unusually adverse years weigh heavily;
- Weekend/weekday differences may not be adequately characterized;
- More applicable to 8-hour than 1-hour ozone;
- Not applied for previous AQMPs

Carrying Capacity Estimation

A traditional use of models for planning has been the estimation of carrying capacities for ozone precursors. This is typically achieved by exercising the model with a series of across-the-board precursor emission reductions from the future year baseline, from which an ozone isopleth ("EKMA") diagram is constructed. The metric used for the isopleth diagram can be one of several, such

as peak 1-hour or 8-hour ozone concentrations within the modeling domain or subregion, number of grid cells above the standard, or one of many population exposure metrics. Since the carrying capacity for each precursor is based on across-the-board emission changes, rather than source- and location-specific controls as would be specified in a plan, it should only be viewed as an initial estimate for determining the emissions reductions necessary for attainment.

For the 2007 AQMP, ozone isopleth diagrams for the following air quality metrics will be constructed by episode:

- Peak 1-hour ozone concentration for the domain.
- Population exposure for 1-hour ozone concentrations.
- Peak 8-hour ozone concentration for the domain. This information will serve as an indicator of the need for potential additional precursor emission reductions to meet the 8-hour ozone NAAQS.

3/2/2007

REFERENCES

- Arey, J., D.E. Crowley, M. Crowley, M. Resketo, and J. Lester: 1995. "Hydrocarbon emissions from natural vegetation in California's South Coast Air Basin." <u>Atmos.</u> <u>Environ.</u> 21: 2977-2988.
- Benjamin, M.T., M. Sudol, L. Bloch, and A.M. Winer. 1996. "Low-emitting urban forests: A Taxonomic methodology for assigning isoprene and monoterpene emission rates." <u>Atmos. Environ.</u> 30: 1437-1452.
- Benjamin, M.T., A.M. Winer, J. Karlik, S. Campbell, B. Jackson, and A. Lashgari. 1998. "Assembling a biogenic hydrocarbon emissions inventory for the SCOS97-NARSTO modeling domain." <u>Proceedings of the A&WMA 91st annual Meeting.</u> Paper No. 98-WP75.08. A&WMA. Pittsburg, PA 15222.
- Bigler-Engler, V., H. Brown, and K. Wagner. 1996. "A Hybrid Modeling Technique to Address Coastal Meteorology and Complex Terrain in the San Diego Photochemical Modeling Domain." <u>Proceedings Ninth Joint Conference on Applications of Air</u> <u>Pollution Meteorology</u> with A&WMA, Atlanta.
- Bott, A. 1989a. "A Positive Definite Advection Scheme Obtained by Non-Linear Renormalization of the Advective Fluxes." <u>Mon. Wea. Rev.</u>, 117:1006-1015.
- Bott, A. 1989b. "Reply." Mon. Wea. Rev., 117:2633-2636.
- California Air Resources Board. 1991. <u>Identification of Volatile Organic Compound</u> <u>Species Profiles</u>. August 1991.
- California Air Resources Board: 1992. <u>TECHNICAL GUIDANCE DOCUMENT:</u> <u>Photochemical Modeling</u>. April, 1992.
- California Air Resources Board. 1997a. <u>The 1997 Southern California Ozone Study–</u> <u>NARSTO: Preparation of the 1997 Gridded Emission Inventory</u>. A&WMA June 1998 Presentation.
- California Air Resources Board. 1997b. <u>Emission Inventory Procedures Manual:</u> <u>Methods for Assessing Area Source Emissions, Volume III</u>. October 1997.
- California Air Resources Board, and the SCOS97-NARSTO Technical Committee. 1998. <u>SCOS97-NARSTO 1997 Southern California Ozone Study and Aerosol Study</u>, <u>Volume III: Summary of Field Operations</u>. April 1998.
- Carter, W.P.L. 1990. "A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds." <u>Atmos. Environ.</u> 24A:481-518.

- Carter, W.P.L., D. Luo, I.L. Malkina, and J.A. Pierce. 1993. <u>An Experimental and Modeling Study of the Photochemical Ozone Reactivity of Acetone</u>. Final Report to the Chemical Manufacturers Association. Contract No. KET-ACE-CRC 2.0. December 10, 1993.
- Carter, W.P.L. 1995. "Computer Modeling of Environmental Chamber Studies of Maximum Incremental Reactivities of Volatile Organic Compounds." <u>Atmos.</u> <u>Environ.</u>, 29:2513-2527.
- Carter, W.P.L., D. Luo, and I.L. Malkina. 1996. <u>Environmental Chamber Studies for</u> <u>Development of An Updated Photochemical Mechanism for VOC Reactivity</u> <u>Assessment</u>. December, 1996. Prepared by the University of California, Riverside for the California Air Resources Board.
- Carter, W.P.L., D. Luo, and I.L. Malkina. 1997. <u>Environmental Chamber Studies for</u> <u>Development of An Updated Photochemical Mechanism for VOC Reactivity</u> <u>Assessment</u>. Final Report to the California Air resources Board, Coordinating Research Council, and National Renewable Energy Laboratory. November 26.
- Chang, J.S., R.A. Brost, I.S.A. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, and C.J. Walcek. 1987. "A Three-Dimensional Eulerian Acid Deposition Model. Physical Concepts and Formulation." J. Geophys. Res., 92:14681-14700.
- Chang, J.S., P. Middleton, W.R. Stockwell, C.J. Walcek, J.E. Pleim, and H.H. Lansford. 1990. <u>The Regional Acid Deposition Model and Engineering Model</u>. Final Assessment Reports of the National Acid Precipitation Assessment Program. V. 4. Government Printing Office, Washington, D.C.
- Chang, J.S., S. Jin, Y. Li, M. Beauharnois, C.L. Lu, and H. Huang. 1997. <u>The SARMAP Air Quality Model</u>. April, 1997. Prepared by the Atmospheric Sciences Research Center, State University of New York.
- Davis, F.W., P.A. Stine, D.M. Stoms, M. I. Borchert, and A. D. Hollander. 1995. "GAP analysis of the actual vegetation of California 1. The southwestern region." <u>Madrono</u>. 42: 40-78.
- Emery, C.A., E. Tai, G. Yarwood. 2001. "Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes." Prepared for the Texas Natural Resource Conservation Commission, by ENVIRON International Corp, Novato, CA.
- ENVIRON. 1997. <u>User's Guide to the Comprehensive Air Quality Model with</u> <u>Extensions</u>. April, 1997.

- Gery, M.W., G.Z. Whitten, J.P. Killus, and M.C. Dodge. 1989. "A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling." J. of Geophys. Res. 94: 12,925-12,956.
- Jackson, B.S., E. Mulberg, and N. Wheeler. 1996. "The application of biogenic emission inventory estimates to photochemical modeling in California." <u>Proceedings</u> of the 9th Joint Conference of the American Meteorological Society and A&WMA. January, 1996. Pages 575-579. American Meteorological Society. Boston, MA. 02108.
- Johnson, M. 1997. <u>Redesign of California's Emission Forecasting System (CEFS)</u>. California Air Resources Board. A&WMA Presentation October 1997 presentation.
- Kumar, N., F.W. Lurmann, and W.P.L. Carter. 1995. <u>Development of the Flexible</u> <u>Chemical Mechanism Version of the Urban Airshed Model</u>. August, 1995. Prepared by Sonoma Technology, Inc. for the California Air Resources Board.
- Lolk, N.K. and S.G. Douglas. 1996. "Evaluation of Meteorological Fields Generated by a Prognostic Mesoscale Model Using Data Collected During the 1993 GMAQS/Coast Field Study." <u>Proceedings Ninth Joint Conference on Applications of Air Pollution</u> <u>Meteorology</u> with A&WMA, Atlanta.
- Mulberg, E. 1995. "A Comparison of Three Wind Models for the Broader Sacramento Area." <u>Proceedings Regional Photochemical Measurement and Modeling Studies</u>, A&WMA, San Diego.
- SCAQMD. 1990. "Inventory of Leaf Biomass and Emission Factors for Vegetation in the South Coast Bain Basin." <u>Technical Report III-C. Draft Air Quality Management</u> <u>Plan</u>. South Coast Air Quality Management District. Diamond Bar, CA. 91765.
- SCAQMD. 1994. "Ozone Modeling Performance Evaluation." <u>Technical Report V-B</u>. Air Quality Management Plan. South Coast Air Quality Management District. Diamond Bar, CA. 91765.
- Seaman, N.L., D.R. Stauffer, and A.M. Lario. 1995. "A Multi-Scale Four Dimensional Data Assimilation System Applied in the San Joaquin Valley During SARMAP. Part 1: Modeling Design and Basic Performance Characteristics." <u>Journal of Applied</u> <u>Meteorology</u>, 34:1739-1776.
- Sonoma Technology, Inc. 1996. "Development of a Gridded Leaf Biomass Inventory for use in Estimating Biogenic Emissions for Urban Airshed Modeling". Final Report STI-996086-1599-R. Ventura County APCD. Ventura, CA. 93003-5401. August 28, 1996.

- Smith, T.B., W.D. Saunders, and D.M. Takeuchi. 1984. <u>Application of Climatological</u> <u>Analysis to Minimize Air Pollution Impacts in California</u>. Prepared for the California Air Resources Board, Sacramento. Report A2-119-32.
- Systems Applications International. 1996. <u>User's Guide to the Variable-Grid Urban</u> <u>Airshed Model (UAM-V)</u>. October 1996. SYSAPP-96-95/27r.
- Systems Applications, Intl. 1997. <u>Preparation of a Draft 1990 Gridded Emission</u> <u>Inventory for Southern California</u>. March 1997. Prepared for the California Air Resources Board. SYSAPP-97/08.
- USEPA. 1990. <u>User's Guide for the Urban Airshed Model, Volume I: User's Manual</u> for UAM (CB-IV). Office of Air Quality Planning and Standards. EPA-450/4-90-007A.
- USEPA. 1991. <u>Guideline For Regulatory Application of the Urban Airshed Model</u>. EPA Publication No. EPA-450/4-91-013. U.S. Environmental Protection Agency, Research Triangle Park, NC.
- USEPA. 1995. <u>Urban Airshed Model (UAM) Biogenic Emission Inventory System</u> <u>Version 2. (BEIS2) User's Guide</u>. Final Report. USEPA Contract No. 68-D3-0034. Work Assignment No. 1-9. EC/R Project No. AQM-108. United States Environmental Protection Agency. Air Quality Modeling Group. RTP, NC 27711.
- USEPA. 1996. <u>Guidance on the Use of Modeled Results to Demonstrate Attainment of</u> <u>1-hour Ozone NAAQS.</u> June 1996. Office of Air Quality Planning and Standards. EPA-454/B-95-007.
- USEPA. 1998a. <u>EPA Third-Generation Air Quality Modeling System: Models-3</u> <u>Volume 9b User Manual</u>. June 1998. Office of Research and Development. EPA-600/R-98/069(b).
- USEPA. 1998b. <u>Use of Models and Other Analyses in Attainment Demonstrations for</u> <u>the 8-Hour Ozone NAAQS (Draft)</u>. October, 1998.
- USEPA. 2001a. <u>Guideline on Air Quality Models</u>. July 2001. Appendix W to Part 51, Federal Register, 40 CFR Ch. I.
- USEPA. 2001b. <u>Draft Guidance for Demonstrating Attainment of Air Quality Goals for</u> <u>PM2.5 and Regional Haze</u>. January 2001. <u>http://www.epa.gov/scram001/guidance/guide/draft_pm.pdf</u>

USEPA. 2005. <u>Guideline on the Use of Models and Other Analyses in Attainment</u> <u>Demonstrations for the 8-Hour Ozone NAAQS</u>. October 2005. Office of Air Quality Planning and Standards. EPA-454/R-05-002. http://www.epa.gov/scram001/guidance/guide/8-hour-o3-guidance-final-version.pdf Yamartino, R.J., J.S. Scire, S.R. Hanna, G.R. Carmichael, and Y.S. Chang. 1989.
 <u>CALGRID: A Mesoscale Photochemical Grid Model, Volume I: Model Formulation</u> <u>Document</u>. June, 1989. Prepared for the California Air Resources Board by Sigma Research Corp.

ATTACHMENT-4

Summary of Preliminary Critiques of Peer Reviewers

Draft AQMP Appendix V (December 16, 2006 Version) Peer Review Summary of Comments

Scientific, Technical & Modeling Peer Review Advisory Group Meeting February 2007

General Appendix V Comments

- Ozone modeling methodology is state-of-the-art.
- Ozone modeling performance is quite good.
- PM modeling methodology is solid but a more complete description of the CAMx PM model, including a description of each sub-model is desirable.
- Some concerns of PM model predictions of ammonium, sulfate and nitrate. These depend on the ammonia emissions inventory, the generation of nitric acid in CB4 and the CAMx thermodynamic module.
- How were boundary conditions treated between the large scale and the nested model (Page V-1-6)? For example, were nested grid values relaxed to large-scale values using a few rows? Also, did the vertical layers match between the large scale and the nested grids?

- Define "Severe-17 nonattainment" (Page V-1-1)
- It seems inconsistent to use different meteorology and chemistry algorithms to study ozone versus PM2.5 (Table V-1-1). It would be useful to have a short discussion explaining why this was done.
- Clarify whether future-year and base-year model predictions in the RRF equation are an average over the model domain versus over a specified region versus over a specific location and whether they are time-averaged values versus values at a single time. (Page V-1-4)
- What is the temperature-correction algorithm used to adjust mobile emissions (either a reference or an equation)? (Page V-1-10)
- The time series CO figure curves should fit into the entire figure rather than be scrunched near the bottom (e.g., instead of a max vertical axis of 6000 ppb, use 2000 ppb for most figures). Same with other chemicals. (Page 319 ff ?)

General Appendix V Comments (cont.)

 "...vertical structure was increased to 11 layers (compared with the 5-layer analysis of UAMAERO-LT), but less than the 19 layers used for the MM5 simulations (Page V-1-6)" My concern is that mapping the MM5 vertical gridding onto the CAMx gridding will introduce substantial error in the results.

3/2/2007

Emissions Control Suggestions

- Consider a rule to restrict heavy-duty truck access to the ports of Los Angeles and Long Beach and nearby distribution terminals to allow only new and/or retrofitted clean diesel engines. The ports are a magnet for diesel trucks, and the environmental burden of rapidly growing freight movement on nearby neighborhoods is disproportionate and unfair.
- Consider a rule to require use of new/retrofitted diesel equipment at construction sites in the South Coast Air Basin, once more stringent standards for off-road diesel engine emissions take effect in 2015.
- Strengthen rules to control other sources of primary PM2.5 including wood smoke, meat charbroiling at restaurants, etc.
- After major successes in control of light-duty motor vehicle VOC emissions during the 1990s, attention seems to have turned to other issues. To further advance the control of air toxics, VOC mass emissions and reactivity, and secondary organic aerosol contributions to PM2.5, consider further reductions in the aromatic content of California gasoline. This could help reduce the air quality impact of both on-road and off-road gasoline engine emissions.

General Appendix V Comments (cont.)

Episode Selection

- Ozone planning should be matched to meteorological conditions that lead to the "design value" (i.e., the 4th highest ozone day in each of 3 consecutive years). As noted in the modeling protocol document, the 4th highest daily maximum value out of 365 days corresponds to the 99th percentile of the annual distribution. There is no discussion of the high O3 summers of 1998 and 2003; why were they excluded from the analysis? The modeling protocol document (page 40) states that 11 out of 13 of the days considered in the AQMP are at the 95th percentile or higher; this undershoots the requirement to consider conditions corresponding to the 99th percentile from 3 consecutive years. Even if 2004 and 2005 "bracket the annual design value [shouldn't the design value be based on 2003-05?]", it is possible that inclusion of the 4th highest day from 2003 would increase emission control requirements.
- I don't understand why the phase-out of MTBE and switch to ethanol in California gasoline is relevant to episode selection for ozone modeling. This fuel switch occurred 2003-04, but I expect small effects on emissions compared to the much larger Phase 2 reformulated gasoline changes that took effect 1995-96.
- A major field measurement program (MATES III) focusing on the composition of particulate matter in the South Coast Air Basin was conducted during 2005. Staff efforts to develop needed emissions, meteorological, and other data for this timeframe will be helpful in the analysis of MATES data. Likewise, MATES will provide useful aerometric data to support air quality modeling. However, since the applicable air quality standard for PM2.5 requires consideration of a 3-year average, was 2005 cleaner, dirtier, or typical relative to 2003-05?

Emission Inventory

- Maps showing spatial distributions of VOC, NOx, SO2, NH3, and PM2.5 emissions should be developed and analyzed. Have anthropogenic emissions been inventoried for the entire modeling domain? Also I wonder if in-transit emissions from ships have been included; traditionally only the in-port emissions have been inventoried. Emissions from shipping lanes are likely a significant source of NOx, SO2, and PM.
- An emission inventory question needing more work is the description of heavy-duty diesel truck activity and emissions. How were the spatial and temporal patterns of diesel truck activity estimated on weekdays? Setting the truck fraction to a constant proportion of total vehicle travel in each grid cell and hour is not accurate. Truck traffic follows different spatial and temporal patterns; for example, there should be hot-spots of truck travel near the ports, and long-haul truck traffic takes place almost entirely on highways. This is important as one of the major emission control programs that will affect air quality in future years is more stringent standards on heavy-duty truck emissions.

General Appendix V Comments (cont.)

Emission Inventory (cont.)

- For schedule reasons, the 2007 AQMP modeling was conducted using a motor vehicle emission inventory developed prior to the latest release of California's on-road vehicle emission inventory model (EMFAC2007). Heavy-duty truck activity and NOx emission rates were significantly revised in EMFAC2007. Are these revisions to diesel emissions captured at least approximately in the AQMP?
- An important uncertainty in the emission inventory is the amount of off-road mobile source activity, specifically heavy-duty diesel engines used in construction and agriculture. Kean et al. (*J. A&WMA* **50**, 1929-1939, 2000) found that some major categories of off-road engine activity may be overstated in the U.S. by a factor of about 2. Curently on-road and off-road engine emissions are estimated separately. While the dividing line between on-road and off-road fuel use may be difficult to draw clearly, the sum should be easier to estimate and compare to known total diesel fuel production/supply to the California market.
- The modeling protocol document mentions briefly CARB's library of organic gas emission speciation profiles. Similar information for particulate matter and NOx emissions is missing. I am concerned that a 10% NO2 fraction and a 2% nitrous acid (HONO) fraction in all direct sources of NOx emissions may be too high.

Boundary Conditions

It is not clear from the materials received if/how a vertical concentration profile of pollutants was specified along the lateral boundaries of the modeling domain. From ozone soundings at Trinidad Head (northern California coastal site), we know that there are vertical gradients in ozone from ~20 ppb at the surface to 40-50 ppb above the planetary boundary layer. Over the ocean, stable stratification is expected in the marine boundary layer. This could allow large vertical concentration gradients to develop for pollutants that are soluble/reactive at the ocean surface. Surface observations at coastal or offshore sites may therefore not represent the true inflow concentrations along the western boundary of the modeling domain, especially aloft.

PM Modeling Comments

- Predicted ammonium at Compton, LA & Pico Rivera exceed Rubidoux. Ammonium not well correlated with sulfate, except at Compton (Table V-2-10a).
- Nitrate not correlated with amonium, except at Pico Rivera (Table V-2-10b).
- Why is predicted annual average PM2.5 largest at LA, Compton and Pico Rivera (Table V-2-10g)?
- OC is substantially underpredicted at Fontana (Figure V-2-11d).
- EC is underpredicted everywhere, except Long Beach (Figures V-2-12a through -12e). This suggests that the emissions inventory is underestimating EC. Cross-check emissions from diesel fleet with the NOx inventory from the fleet.
- Predicted annual average PM2.5 at Big Bear is curiously low in relation to the measured value (Table V-2-11). Make sure this is not an indication of a larger problem. Also, Ontario, San Bernardino and Riverside-Magnolia are higher than observed.

- It is not clear whether a two-mode particle size aerosol module is accurate enough to predict aerosol physical processes (Page V-1-5). Why was this method chosen instead of the size-resolved method?
- "The peak PM2.5 24-hour average concentration...occurred on October 22, 2005" (Page V-1-7). This date is a typical date for a Santa Ana wind. If a Santa Ana wind was occurring, this might be mentioned. Does the model treat natural soildust emissions and/or would it be able to account for high PM during Santa Ana conditions or does it rely solely on anthropogenic sources?
- "The coarse portion of the PM10 is assumed to be held constant in this analysis" (Page V-1-8). Do you mean PM10-PM2.5 is held constant? How was the constant value determined?
- Were aerosol and cloud effects on UV radiation accounted for in the simulation of ozone with CAMx? (Page V-1-8)

- How are sea-spray chemicals treated in the model (Na+, Ca2+, K+, Mg2+, Cl-, etc.). Since these components can form a significant portion of PM10 and a portion of PM2.5 in Los Angeles, they would appear relevant. Are they added as "crustal?" (Page V-2-1)
- Figure V-2-2 shows the components of PM2.5 mass (Page V-2-4). Does the "blank" capture mass that is not speciated? Please clarify.
- Please provide the dates of each quarter. (Page V-2-6)
- Please provide the relative humidity at which the aerosol water content was determined for. (Page V-2-6, Figure V-2-3a and related figures)
- Based on Eq. V-2-1, it seems that OC (organic carbon) should be called (OM) organic matter, since OM contains noncarbon elements in addition to pure OC. (Page V-2-13)
- The calculation of bonded water and, thus, of OC, depends significantly on the relative humidity. Also, bonded water is a function of Na+ and Cl- as well as the other components. This should be mentioned. (Page V-2-13)

- "The boundary and top concentration input files were created on a month by month basis." How were top-boundary values incorporated into the model? Were they outside-model values treated during downward inflow or were they really fixed top-modellayer values. If the latter, mass must not have been conserved during vertical transport. Please discuss. (Page V-2-17)
- Similarly, for the lateral boundaries, were specified mixing ratios values just outside the model domain used for inflow or were they values fixed at inside of the boundary? (Page V-2-17)
- Top and lateral boundary values should change diurnally due to chemistry. Keeping the values constant may provide a source of error. This should be discussed here. (Page V-2-17)
- The use of 4-5 significant digits in the boundary condition values gives the appearance of too much confidence in those values. (Page V-2-18, Table V-2-6)
- Why was a lower limit placed on the vertical diffusivity (1 m²/s)? Does the code fail at a lower diffusivity? This is quite a high minimum. (Page V-2-19)

- Define "controlled" emissions. What controls, specifically? (Page V-2-19)
- There is little discussion about how the future emission inventories were developed. This is discussed more in the protocol but could be expanded on briefly here. (Page V-2-19)
- "A nearest cell average of predicted concentrations is typically used when comparing...to station measurements." Using bilinear interpolation to the exact location is a more physically correct method and has been used in several studies. A comment about this option would be beneficial. (Page V-2-24)
- Are the statistics based on hourly comparisons? Is there a lower cutoff value for comparisons? The table should also include a column (or state in the caption) the number of comparisons that were made for each city. (Page V-2-25, Tables V-2-10a-...)
- Are the normalized bias and error fractions or mass concentrations? I would suggest using normalize gross error as a percent = 100% * (1/N) * sum(abs(Pi-Oi)/Oi), where N=number of observations, Oi = ith observation, Pi=ith paired-in-time-and-space prediction, and the sum is over all comparisons. (Page V-2-25, Tables V-2-10a-...)

- For the yearly simulations, how frequently was the model restarted from initial conditions (or was the model run for a year straight)? (Page P. V-2-31)
- Table V-2-11 is not such a useful table since a comparison of two annual concentrations is a bias rather than an error comparison (Thus the column, "Percentage prediction error" is mislabeled and should be "Percentage prediction bias"). The normalized bias will be less than the normalized gross error, so including a normalized gross error, where the comparisons are paired in time (as well as space), would be beneficial. (Page V-2-47)
- "NOx reductions are approximately three time more effective..." Is this true at low NH4+ levels as well as at current NH4+ levels? (Page V-2-50)
- "Figure V-2-14 presents the grid cell extrapolated of 2005 PM2.5 annual design values." I do not understand what this sentence and figure are showing. Similarly, the description for Table V-2-14 is unclear as are the descriptions for Tables V-2-15a.... More description in the text or table captions would be helpful. (Page V-2-61)

- It is difficult to distill what information is important from these tables. Can the key information be summarized? (Tables V-2-16a...)
- "Future year predictions of maximum and second maximum 24-hour average PM10 are calculated using the site specific ratio between annual PM2.5 calculated for 2005 and 2015." Why not just use information from 2015 simulations directly? Why is it necessary to apply a ratio? 2015 simulations could be initialized with similar meteorology as 2005. (Page V-3-1)
- "Visual range in 2021 is estimated... (Page V-3-6)." How is visual range being calculated? The standard Koschmieder equation for visual range (3.912/bext) differs significantly from a practical prevailing visibility equation based on a fit to data (1.9/bext) (e.g., Griffing, 1980, Atmos. Environ, 14, 577).
- Light extinction depends significantly on liquid water content of aerosol particles. Page V-3-7, Tables V-3-2 and V-3-3 do not appear to include liquid water (or if they do, they must be at a constant RH). More discussion is needed.
- Why is the extinction due to sulfate 0 (Page V-3-7, Table V-3-3)?

- Page V-3-8, Table V-3-4 estimates significant reductions in PM concentrations but Table V-2-7 indicates only an 18% reduction in PM2.5 emissions in 2020 under controlled conditions relative to 2005. Is something missing from Table V-3-4?
- Why is PM10 being discussed instead of PM-coarse (PM10-2.5)? (Page V-1-8)
- Page V-2-3 to V-2-5: Three points:
 - (1) the total mass differs from the sum of the component masses. This is common and should be addressed in the discussion especially since uncertainty was just discussed a few pages earlier.
 - (2) The metals content seems unusually high. I'm more used to ng/m3 concentrations of metals. Any explanation for this?
 - (3) The sulfate seems very high, considering the current fuel sulfur levels. Are there data from San Nicholas or a coastal location – I would like to know how much of this sulfate is background or long range transport and how much is associated with marine shipping?

- Page V-2-13 to V-2-14 (Sandwich): Of course, all the error in mass measurement then goes into the estimate of OC using this method. A context would help: What will this Sandwich estimated OC value be used for?
- Page V.2.15: "The vertical structure for the CAMx modeling was increased to 8 layers of height dependent varying depth (compared with the 5-layer analysis of UAMAERO-LT) but less than the 19 layers used for the MM5 simulations in effort to conserve computational resources." This statement disagrees with the one above (Page V-1-6) but agrees with the main document regarding vertical layers. Are the 11 layers for ozone whereas the 8 layers are for PM?
- Page V-2-22 (*VMT Capping*): Capping depends on whether the source of the silt is related to the vehicle traffic. Some of the silt is from airborne or waterborne dust, which may make sense to cap, but much is from brake and tire wear which will increase with VMT (although brake wear may not increase as much as hybrids continue to increase their market penetration).

- Page V-2-25 (PM2.5 Component Species Performance Evaluation for the MATES-III Sites): The agreements are good but possibly the average agreement is good but the agreement during peak episodes is not as good or better. How do these look?
- Page V-2-50: "the proposed strategy focuses on the reductions of SOx and primary PM2.5 through cleaner marine fuels and extensive diesel trap retrofits respectively." Is marine fuel sulfur content within the SCAQMD jurisdiction? The state's? Even if the local fuel sold has the lower sulfur content, there is no guarantee that ships will buy this more expensive fuel and they will unlikely be using it as they come into port.
- Page V-2-51, Table V-2-12: How can SOx reductions have twice the PM2.5 impact of primary PM2.5 emissions? Most of SOx is SO2, much of which will not be converted to sulfate within the basin. The sulfate will have water and ammonium associated with it, but is that enough to overcome the fraction of sulfate produced?

Ozone Modeling Comments

- Ozone is underpredicted for weekend episode on:
 - 7/15 7/17 at Crestline (Figure V-4-17b),
 - 7/16 7/18 at Fontana (Figure V-4-17c),
 - 7/16 7/19 at Santa Clarita and San Bernardino (Figure V-4-17g).
- Sensitivity analyses should address the possibility that an inaccurate weekend emissions inventory caused this underprediction.
- What is the effect of this underprediciton on the RRFs derived for these sites?

Ozone Modeling Comments (cont.)

- "...a minimum observed concentration...exceeds 70 ppb..." Is this averaged over 8 hours, 1 hour, or is it instantaneous? (Page V-1-10)
- It would be useful to see how accurate the model is in predicting the peak at the exact location of the peak (using bilinear interpolation from four surrounding grid cells in the model to estimate the value at the exact location of the peak) in addition to seeing whether the model predicted the peak within 15 km. (Page V-1-11)
- "Overall per-capita exposure to ambient ozone..." Does the exposure model account for the 3-D modeled ozone concentration in a grid cell multiplied by the population in the grid cell? A discussion of how exposure is calculated would be useful. Also, ozone health effects begin to occur above 35 ppbv, so shouldn't an exposure model account for such concentrations as well as those above the state standard? (Page V-4-6)
- "Minimum vertical diffusivity set at 1 m2/sec. (Page V-4-17, Table V-4-6)." Again, this limit appears to be arbitrary and may result in over-diffusion.

Ozone Modeling Comments (cont.)

- How is photolysis treated (Page V-4-17, Table V-4-6)? How above cloud effects on photolysis and on gas/particle processing?
- For future years, the boundary values could increase due to longrange transport of pollutants (e.g., growth of emissions from Asia) as well as decrease due to lower local emissions (Page V-4-21). The effects of long-range transport of pollution from Asia is not discussed in the AQMD. This is increasingly thought to be important, particularly in April for PM but also year around.
- The Gross errors for MM5 with data assimilation appear quite large (particularly for temperature and wind direction) (Page V-4-22, Table V-4-8). Is data assimilation providing any benefit relative to no data assimilation? If so this might be stated.
- Normalized gross errors should be paired exactly in space and time (e.g., using bilinear interpolation) rather than within 2 grid cells and time (Page V-4-27). This would make comparisons of error statistics with evaluations from other models consistent. It would also make the statistic consistent with the normalized gross bias (which are stated to be paired in time and space although my guess is that bilinear interpolation was not used for that either).

Ozone Modeling Comments (cont.)

- Using a cutoff of 60 ppb for ozone statistics is also inconsistent with several studies that use 40 ppbv as the cutoff. (Page V-4-27)
- Page V-4-12: "Cassmassi (1998) used Classification and Regression Tree analysis (CART) to determine whether the conceptual model for a 1-hour ozone episode differed from the meteorological profile characterizing an 8-hour average ozone episode in the Basin." For analyzing single particle mass spec data, we found that ART2a was easier to understand and employ than CART.
- Page V-4-21: "For the future year scenarios, the boundary, region top and ambient air quality concentrations were rolled back based on the percentage reduction in emissions from 2002 base year to the projected emissions levels for future year of the simulation (2009, 2012, or 2020)." How sensitive are the peak basin predictions to the boundary conditions, especially the top ones? Rolling them back in proportion to the emissions reductions ignores the inevitable increase in background from Asia over the coming years.
- Page V-4-27: Again, I do not know what unpaired statistical comparisons really mean. If there is peak agreement but no correspondence in space or time, does that really tell us anything other than that coincidences happen sometimes?

Meteorological Model Comments

- Was the NCEP reanalysis used at 2.5 degrees or 1 degree resolution? (Page V-1-6)
- How frequently were MM5 fields fed into CAMx? (Page V-1-10)

ATTACHMENT-5

2014 Control Measures Basin PM2.5 Attainment

Run Date: 8/16/2007 1:53:51 PM

(PC-CEPA V. 4.2/ May 2001) C:\AQMP2007\CF0207\CM3-0607\cf2014-060607.txt C:\AQMP2007\CF0207\CM3-0607\master-060607.txt C:\AQMP2007\dump0906\xz011607\ems14ocs.txt C:\AQMP2007\CF0207\CM3-0607\scen4-060607-noltm.txt C:\AQMP2007\CF0207\CM3-0507\impact-051107.txt

Year 2014 Emission Reductions Excluding Natural Sources by Control Measure in the South Coast Air Basin (Annual Average Inventory - Tons/Day)

(A) Reductions Without Overlapping/Double-Counting With Other Control Measures (1)

		(R	eductions -	Tons/Day)			
Measure	Name	VOC	NOx	CO	SOx	PM10	PM2.5
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines [NOX]	0.00	2.40	0.00	0.00	0.00	0.00
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	4.50	0.00	0.00	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood Stoves	0.00	0.00	0.00	0.00	1.05	1.01
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00	1.08	1.07
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces	0.00	3.48	0.00	0.00	0.00	0.00
CMB-02	Reduction SOx Reductions	0.00	0.00	0.00	2.89	0.00	0.00
CMB-03	NOx Reductions from Residential Space Heaters [NOx]	0.00	0.79	0.00	0.00	0.00	0.00
CTS-01	Industrial Lubricants [VOC]	1.87	0.00	0.00	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing Facilities [V	3.71	0.00	0.00	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	1.59	0.00	0.00	0.00	0.00
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00	0.43	0.38
MCS-01V	Facility Modernization [VOC]	2.02	0.00	0.00	0.00	0.00	0.00
MCS-05	Non-Dairy Livestock Waste [VOC,NH3]	0.75	0.00	0.00	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development Projects	0.00	0.00	0.00	0.00	0.00	0.00
EGM-01P	Emission Reductions from New & Re-Development Projects [PM]	0.00	0.00	0.00	0.00	0.00	0.00
EGM-01V	Emission Reductions from New & Re-Development Projects	0.00	0.00	0.00	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00	0.48	0.44
FLX-02V	Petroleum Refinery Pilot Program [VOC]	0.74	0.00	0.00	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	10.09	12.55	0.00	0.00	0.21	0.19
ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	2.84	2.49	0.00	0.00	0.06	0.05
ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	3.72	0.00	0.00	0.00	0.00	0.00
ARB-ON4	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	5.13	47.14	0.00	0.00	3.26	3.00
ARB-ON5	Port Truck Modernization [NOX,PM]	0.00	1.98	0.00	0.00	0.54	0.50
ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM]	0.00	38.53	0.00	19.98	2.77	2.70
ARB-OFF2	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	0.70	4.30	0.00	0.00	0.22	0.20
ARB-OFF3	Clean Up Existing Harbor Craft [VOC,NOX,PM]	0.00	4.60	0.00	0.00	0.21	0.20
ARB-OFF4	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM]	2.72	10.52	0.00	0.00	2.72	2.50
ARB-OFF5	New Emis Stds for Recreational Boats [VOC,NOX]	2.85	0.25	0.00	0.00	0.00	0.00
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC]	1.85	0.00	0.00	0.00	0.00	0.00
ARB-CONS	Consumer Products [VOC]	12.93	0.00	0.00	0.00	0.00	0.00
MOB-05	AB 923 Light-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.77	0.36	11.16	0.00	0.00	0.00
MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.46	0.48	5.55	0.00	0.00	0.00
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs [VOC,NOX,CO,PM]	0.40	0.92	11.78	0.00	0.05	0.04
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles [VOC,NOX,CO,PM]	0.00	24.89	0.00	0.00	1.35	1.24
SCONRD-4*	Further Emis. Red. from Port Trucks [NOX,PM]	0.00	5.99	0.00	0.00	0.02	0.02
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC,NOX]	2.88	14.14	0.00	0.00	0.00	0.00
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	1.08	0.00	0.00	0.02	0.02
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	10.95	0.00	0.00	0.45	0.41
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	2.89	1.06	0.00	0.00	0.84	0.63
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	1.35	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation [NOX,SOX,PM]	0.00	3.98	0.00	0.05	0.25	0.23
Grand Total (1	Net)	63.80	194.49	28.49	24.27	16.00	14.84

(B) Reductions With Overlapping/Double-Counting With Other Control Measures (2)

		(F	eductions -	Tons/Day)			
Measure	Name	VOC	NOx	CO	SOx	PM10	PM2.5
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines	0.00	2.40	0.00	0.00	0.00	0.00
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	4.50	0.00	0.00	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood	0.00	0.00	0.00	0.00	1.05	1.01
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00	1.08	1.07
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and	0.00	3.48	0.00	0.00	0.00	0.00
CMB-02	Reduction SOx Reductions	0.00	0.00	0.00	2.89	0.00	0.00
CMB-03	NOx Reductions from Residential Space Heaters [NOx]	0.00	0.79	0.00	0.00	0.00	0.00
CTS-01	Industrial Lubricants [VOC]	1.87	0.00	0.00	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing	3.71	0.00	0.00	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	1.59	0.00	0.00	0.00	0.00
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00	0.43	0.38
MCS-01V	Facility Modernization [VOC]	2.02	0.00	0.00	0.00	0.00	0.00
MCS-05	Non-Dairy Livestock Waste [VOC.NH3]	0.75	0.00	0.00	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development	0.00	0.00	0.00	0.00	0.00	0.00
EGM-01P	Emission Reductions from New & Re-Development	0.00	0.00	0.00	0.00	0.00	0.00
EGM-01V	Emission Reductions from New & Re-Development	0.00	0.00	0.00	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00	0.48	0.44
FLX-02V	Petroleum Refinery Pilot Program [VOC]	0.74	0.00	0.00	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	10.09	12.55	0.00	0.00	0.21	0.19
ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	3.03	2.74	0.00	0.00	0.06	0.05
ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	3.96	0.00	0.00	0.00	0.00	0.00
ARB-ON4	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	5.13	47.14	0.00	0.00	3.26	3.00
ARB-ON5	Port Truck Modernization [NOX,PM]	0.00	2.75	0.00	0.00	1.19	1.09
ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM]	0.00	38.53	0.00	19.98	2.77	2.70
ARB-OFF2	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	0.70	4.30	0.00	0.00	0.22	0.20
ARB-OFF3	Clean Up Existing Harbor Craft [VOC,NOX,PM]	0.00	4.60	0.00	0.00	0.22	0.20
ARB-OFF4	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM]	2.72	10.52	0.00	0.00	2.72	2.50
ARB-OFF5	New Emis Stds for Recreational Boats [VOC,NOX]	2.90	0.25	0.00	0.00	0.00	0.00
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC]	1.88	0.00	0.00	0.00	0.00	0.00
ARB-CONS	Consumer Products [VOC]	12.93	0.00	0.00	0.00	0.00	0.00
MOB-05	AB 923 Light-Duty High-Emitter Id.	0.87	0.41	11.16	0.00	0.00	0.00
MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.51	0.53	5.55	0.00	0.00	0.00
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs	0.45	1.05	11.89	0.00	0.05	0.04
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles	0.00	42.42	0.00	0.00	4.05	3.72
SCONRD-4*	Further Emis. Red. from Port Trucks [NOX,PM]	0.00	11.42	0.00	0.00	0.20	0.18
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC.NOX]	3.62	15.85	0.00	0.00	0.00	0.00
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	1.08	0.00	0.00	0.02	0.02
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	14.32	0.00	0.00	0.63	0.58
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	3.13	1.09	0.00	0.00	0.84	0.63
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	1.35	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation	0.00	6.35	0.00	0.05	0.64	0.59
	with potential overlapping)	65.48	226.18	28.61	24.27	20.10	18.62
Siuna rotar (potentian o compping)	05.40	220.10	20.01	21.27	20.10	10.02

EMISSION SUMMARY FOR (POINT, AREA, MOBILE SOURCE, AND OFF-ROAD MV)

Baseline Emissions	VOC	NOx	СО	SOx	PM10	PM2.5
Point source	37.71	8.69	54.15	1.99	10.09	8.85
Area source	218.83	41.16	123.68	2.47	236.24	59.69
RECLAIM	0.00	26.51	0.00	11.76	0.00	0.00
RECEARIN	0.00	20.51	0.00	11.70	0.00	0.00
Total Stationary	256.54	76.36	177.83	16.23	246.33	68.54
On-road	144.06	292.24	1392.93	2.22	24.01	16.83
Off-road	117.11	263.06	936.79	22.30	17.33	15.25
Aircraft	9.99	21.95	69.16	2.08	1.03	1.01
TOTAL	527.69	653.62	2576.71	42.83	288.70	101.62
EMISSION REDUCTIONS						
Point source	2.76	1.34	0.00	0.00	0.91	0.82
Area source	23.74	4.17	0.00	0.00	2.13	2.08
RECLAIM	0.00	0.00	0.00	2.89	0.00	0.00
RECEARIN	0.00	0.00	0.00	2.07	0.00	0.00
Total Stationary	26.51	5.51	0.00	2.89	3.05	2.91
On-road	22.06	98.58	28.49	1.31	5.54	5.10
Off-road	15.24	90.40	0.00	20.06	7.41	6.84
Aircraft	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	63.80	194.49	28.49	24.27	16.00	14.84
REMAINING EMISSIONS						
Point source	34.94	7.35	54.15	1.99	9.18	8.03
Area source	195.09	36.99	123.68	2.47	234.10	57.60
RECLAIM	0.00	26.51	0.00	8.87	0.00	0.00
Total Stationary	230.03	70.85	177.83	13.34	243.28	65.63
On-road	122.00	193.66	1364.44	0.91	18.48	11.73
Off-road	101.87	172.66	936.79	2.24	9.91	8.41
Aircraft	9.99	21.95	69.16	2.08	1.03	1.01
TOTAL	463.89	459.13	2548.22	18.56	272.70	86.78
NSR/Set-Aside	5.00	-1.20	0.00	0.00	0.00	0.00
Public Funding	0.00	-4.20	0.00	0.00	0.00	-0.10
GRAND TOTAL (T/D)	468.89	453.73	2548.22	18.56	272.70	86.68
Mobility Adjustments (3)	0.00	0.00	0.00	0.00	0.00	0.00

- (1) Emission reductions for individual measures were estimated based on the sequence of listing contained here. When the sequence changes, reductions from each measure could be affected, but the net total remain the same. The purpose of this table is to estimate total emission reductions without overlapping or double-counting between measures.
- (2) Emission reductions without overlapping or double-counting between measures.
- Therefore, the sequence of listing does not affect the reduction estimates. The purpose of this table is to provide emission reduction estimates for Appendix IV control measure summary tables as well as cost effectiveness analysis.
- (3) Mobility Adjustment includes TCM-01, ATT-01, ATT-02, ATT-05 and adjustments are reflected in the CEPA baseline beyond year 2000.
- *For the purpose of attainment demonstration, these mobile source measures were selected to achieve the additional 63 tons per day of NOx reductions needed by 2014 for PM2.5 attainment. However, CARB can implement any combination of strategies to achieve the needed reductions.

ATTACHMENT-6

2017 Control Measures For Coachella Valley Ozone Attainment

Run Date: 8/22/2007 4:29:10 PM

(PC-CEPA V. 4.2/ May 2001) C:\AQMP2007\CF0207\CM3-0607\cf2017-060607.txt C:\AQMP2007\CF0207\CM3-0607\master-060607.txt C:\AQMP2007\dump0906\xz011607cv\ems17cv.txt C:\AQMP2007\CF0207\CM3-0607\scen4-060607-noltm.txt C:\AQMP2007\CF0207\CM3-0507\impact-051107.txt

Year 2017 Emission Reductions Excluding Natural Sources by Control Measure in Coachella Valley (Planning Inventory - Tons/Day)

(A) Reductions Without Overlapping/Double-Counting With Other Control Measures (1)

		(Reductions - Tons/Day)			
Measure	Name	VOC	NOx	CO	NO2
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines [NOX]	0.00	0.02	0.00	0.02
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	0.14	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood Stoves	0.00	0.00	0.00	0.00
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces	0.00	0.10	0.00	0.10
CMB-01 CMB-03	NOx Reduction from Residential Space Heaters [NOx]	0.00	0.10	0.00	0.10
CTS-01	Industrial Lubricants [VOC]	0.07	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing Facilities [V	0.09	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	0.00	0.00	0.00
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00
MCS-01V	Facility Modernization [VOC]	0.00	0.00	0.00	0.00
MCS-01 V MCS-05	Non-Dairy Livestock Waste [VOC,NH3]	0.00	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development Projects [NOx]	0.00	0.00	0.00	0.00
EGM-01P	Emission Reductions from New & Re-Development Projects [NOX]	0.00	0.00	0.00	0.00
EGM-01V	Emission Reductions from New & Re-Development Projects [PIV]	0.00	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00
FLX-02F	Petroleum Refinery Pilot Program [VOC]	0.00	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	0.00	0.00	0.00	0.00
ARB-ON1 ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	0.33	0.29	0.00	0.30
ARB-ON2 ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	0.00	0.03	0.00	0.03
ARB-ON3	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	0.16	3.98	0.00	4.07
	Port Truck Modernization [NOX,PM]	0.32	0.25	0.00	0.26
ARB-ON5 ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM]	0.00	0.23	0.00	0.20
ARB-OFF1	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	0.00	0.00	0.00	0.60
	Clean Up Existing Harbor Craft [VOC,NOX,PM]	0.10	0.05	0.00	0.00
ARB-OFF3 ARB-OFF4	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM]	0.00	0.00	0.00	0.00
ARB-OFF5	New Emis Stds for Recreational Boats [VOC,NOX]	0.03	0.19	0.00	0.19
		0.10	0.01	0.00	0.00
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC] Consumer Products [VOC]	0.14	0.00	0.00	0.00
ARB-CONS	and the second for a second s				
MOB-05	AB 923 Light-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.03	0.01	0.35	0.01
MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.01	0.01	0.11	0.01
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs [VOC,NOX,CO,PM]	0.05	0.11	1.11	0.11
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles [VOC,NOX,CO,PM]	0.00	1.94	0.00	1.99
SCONRD-4*		0.00	0.41	0.00	0.41
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC,NOX]	0.05	0.53	0.00	0.54
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	0.00	0.00	0.00
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	1.11	0.00	1.06
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	0.20	0.11	0.00	0.03
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation [NOX,SOX,PM]	0.00	0.21	0.00	0.21
Grand Total (I	Net)	2.52	10.02	1.57	10.08

Year 2017 Emission Reductions Excluding Natural Sources by Control Measure in Coachella Valley (Planning Inventory - Tons/Day)

(B) Reductions With Overlapping/Double-Counting With Other Control Measures (2)

		(Reductions - Tons/Day)			
Measure	Name	voc	NOx	co	NO2
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines [NOX]	0.00	0.02	0.00	0.02
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	0.14	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood Stoves	0.00	0.00	0.00	0.00
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces	0.00	0.10	0.00	0.10
CMB-03	NOx Reductions from Residential Space Heaters [NOx]	0.00	0.01	0.00	0.07
CTS-01	Industrial Lubricants [VOC]	0.07	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing Facilities [V	0.09	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	0.05	0.00	0.04
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00
MCS-01V	Facility Modernization [VOC]	0.00	0.00	0.00	0.00
MCS-05	Non-Dairy Livestock Waste [VOC,NH3]	0.00	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development Projects [NOx]	0.00	0.00	0.00	0.00
EGM-01P	Emission Reductions from New & Re-Development Projects [PM]	0.00	0.00	0.00	0.00
EGM-01V	Emission Reductions from New & Re-Development Projects [VOC]	0.00	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00
FLX-02V	Petroleum Refinery Pilot Program [VOC]	0.00	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	0.33	0.29	0.00	0.30
ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	0.07	0.06	0.00	0.06
ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	0.17	0.00	0.00	0.00
ARB-ON4	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	0.52	3.98	0.00	4.07
ARB-ON5	Port Truck Modernization [NOX,PM]	0.00	0.35	0.00	0.36
ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM]	0.00	0.00	0.00	0.00
ARB-OFF2	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	0.10	0.63	0.00	0.60
ARB-OFF3	Clean Up Existing Harbor Craft [VOC,NOX,PM]	0.00	0.00	0.00	0.00
ARB-OFF4	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM]	0.05	0.19	0.00	0.19
ARB-OFF5	New Emis Stds for Recreational Boats [VOC,NOX]	0.10	0.01	0.00	0.00
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC]	0.15	0.00	0.00	0.00
ARB-CONS	Consumer Products [VOC]	0.40	0.00	0.00	0.00
MOB-05	AB 923 Light-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.03	0.02	0.35	0.02
MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.01	0.02	0.11	0.02
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs [VOC,NOX,CO,PM]	0.06	0.12	1.13	0.13
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles [VOC,NOX,CO,PM]	0.00	2.88	0.00	2.95
SCONRD-4*	Further Emis. Red. from Port Trucks [NOX,PM]	0.00	0.72	0.00	0.74
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC,NOX]	0.07	0.60	0.00	0.61
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	0.00	0.00	0.00
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	1.53	0.00	1.46
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	0.22	0.11	0.00	0.03
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation [NOX,SOX,PM]	0.00	0.37	0.00	0.37
Grand Total (v	vith potential overlapping)	2.58	12.05	1.59	12.13

EMISSION SUMMARY FOR (POINT, AREA, MOBILE SOURCE, AND OFF-ROAD MV)

BASELINE EMISSIONS

	VOC	NOx	СО	NO2
Point source	0.63	0.40	0.16	0.40
Area source	7.70	0.90	2.43	1.24
RECLAIM	0.00	0.00	0.00	0.00
Total Stationary	8.33	1.30	2.58	1.64
On-road	4.99	17.15	35.23	17.58
Off-road	4.33	5.53	19.97	5.00
Aircraft	0.43	2.53	6.17	2.53
TOTAL	18.08	26.52	63.96	26.75
EMISSION REDUCTIONS				
Point source	0.00	0.02	0.00	0.02
Area source	0.71	0.13	0.00	0.18
RECLAIM	0.00	0.00	0.00	0.00
Total Stationary	0.72	0.16	0.00	0.21
On-road	1.09	7.22	1.57	7.39
Off-road	0.71	2.64	0.00	2.48
Aircraft	0.00	0.00	0.00	0.00
TOTAL	2.52	10.02	1.57	10.08
REMAINING EMISSIONS				
Point source	0.63	0.38	0.16	0.38
Area source	6.98	0.77	2.43	1.05
RECLAIM	0.00	0.00	0.00	0.00
Total Stationary	7.61	1.15	2.58	1.43
On-road	3.90	9.93	33.67	10.19
Off-road	3.62	2.89	19.97	2.52
Aircraft	0.43	2.53	6.17	2.53
TOTAL	15.56	16.50	62.39	16.67
NSR/Set-Aside	0.00	0.00	0.00	0.00
Public Funding	0.00	0.00	0.00	0.00
GRAND TOTAL (T/D)	15.56	16.50	62.39	16.67
Mobility Adjustments (3)	0.00	0.00	0.00	0.00

- (1) Emission reductions for individual measures were estimated based on the sequence of listing contained here. When the sequence changes, reductions from each measure could be affected, but the net total remain the same. The purpose of this table is to estimate total emission reductions without overlapping or double-counting between measures.
- (2) Emission reductions for individual measures were estimated in the absence of other measures. Therefore, the sequence of listing does not affect the reduction estimates. The purpose of this table is to provide emission reduction estimates for Appendix IV control measure summary tables as well as cost effectiveness analysis.
- (3) Mobility Adjustment includes TCM-01, ATT-01, ATT-02, ATT-05 and adjustments are reflected in the CEPA baseline beyond year 2000.
- *For the purpose of attainment demonstration in the South Coast Air Basin, these mobile source measures were selected to achieve the additional 63 tons per day of NOx reductions needed by 2014 for PM2.5 attainment. The corresponding Coachella Valley emission reductions for these measures in 2017 are provided here. However, CARB can implement any combination of strategies to achieve the needed reductions.

ATTACHMENT-7

2017 Control Measures For Basin Ozone Attainment

Run Date: 8/16/2007 11:42:24 AM (PC-CEPA V. 4.2/ May 2001) C:\AQMP2007\CF0207\CM3-0607\cf2017-060607.txt C:\AQMP2007\CF0207\CM3-0607\master-060607.txt C:\AQMP2007\dump0906\xz011607\ems17ocs.txt C:\AQMP2007\CF0207\CM3-0607\scen4-060607-noltm.txt C:\AQMP2007\CF0207\CM3-0507\impact-051107.txt

Year 2017 Emission Reductions Excluding Natural Sources by Control Measure in the South Coast Air Basin (Planning Inventory - Tons/Day)

(A) Reductions Without Overlapping/Double-Counting With Other Control Measures (1)

		(Reductions - Tons/Day)			
Measure	Name	VOC	NOx	CO	NO2
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines [NOX]	0.00	2.09	0.00	2.22
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	4.60	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood Stoves	0.00	0.00	0.00	0.00
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces	0.00	3.84	0.00	3.84
CMB-03	NOx Reductions from Residential Space Heaters [NOx]	0.00	0.56	0.00	2.68
CTS-01	Industrial Lubricants [VOC]	1.91	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing Facilities [V	3.82	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	1.93	0.00	1.70
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00
MCS-01V	Facility Modernization [VOC]	4.63	0.00	0.00	0.00
MCS-05	Non-Dairy Livestock Waste [VOC,NH3]	0.69	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development Projects [NOx]	0.00	0.00	0.00	0.00
EGM-01P	Emission Reductions from New & Re-Development Projects [PM]	0.00	0.00	0.00	0.00
EGM-01V	Emission Reductions from New & Re-Development Projects [VOC]	0.00	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00
FLX-02V	Petroleum Refinery Pilot Program [VOC]	1.19	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	9.47	9.96	0.00	11.22
ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	2.26	1.92	0.00	2.17
ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	4.19	0.00	0.00	0.00
ARB-ON4	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	4.14	36.83	0.00	38.79
ARB-ON5	Port Truck Modernization [NOX,PM]	0.00	1.56	0.00	1.63
ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM]	0.00	43.38	0.00	43.38
ARB-OFF2	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	0.72	4.65	0.00	4.65
ARB-OFF3	Clean Up Existing Harbor Craft [VOC,NOX,PM]	0.00	4.08	0.00	4.08
ARB-OFF4	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM]	2.25	8.19	0.00	8.33
ARB-OFF5	New Emis Stds for Recreational Boats [VOC.NOX]	4.08	0.42	0.00	0.11
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC]	2.62	0.00	0.00	0.00
ARB-CONS	Consumer Products [VOC]	13.23	0.00	0.00	0.00
MOB-05	AB 923 Light-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.78	0.48	13.46	0.54
MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.54	0.60	6.76	0.64
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs [VOC,NOX,CO,PM]	1.56	3.93	44.48	4.47
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles [VOC,NOX,CO,PM]	0.00	15.81	0.00	16.62
SCONRD-4*	Further Emis. Red. from Port Trucks [NOX,PM]	0.00	2.51	0.00	2.63
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC,NOX]	2.39	23.60	0.00	24.02
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	0.84	0.00	0.84
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	9.88	0.00	9.88
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	12.44	5.81	0.00	1.49
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation [NOX,SOX,PM]	0.00	3.14	0.00	3.15
Grand Total (N		77.53	186.01	64.69	189.08

Year 2017 Emission Reductions Excluding Natural Sources by Control Measure in the South Coast Air Basin (Planning Inventory - Tons/Day)

(B) Reductions With Overlapping/Double-Counting With Other Control Measures (2)

		(Reductions - Tons/Day)			
Measure	Name	VOC	NOx	CO	NO2
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines [NOX]	0.00	2.09	0.00	2.22
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	4.60	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood Stoves	0.00	0.00	0.00	0.00
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces	0.00	3.84	0.00	3.84
CMB-03	NOx Reductions from Residential Space Heaters [NOx]	0.00	0.56	0.00	2.68
CTS-01	Industrial Lubricants [VOC]	1.91	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing Facilities [V	3.82	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	1.93	0.00	1.70
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00
MCS-01V	Facility Modernization [VOC]	4.63	0.00	0.00	0.00
MCS-05	Non-Dairy Livestock Waste [VOC,NH3]	0.69	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development Projects [NOx]	0.00	0.00	0.00	0.00
EGM-01P	Emission Reductions from New & Re-Development Projects [PM]	0.00	0.00	0.00	0.00
EGM-01V	Emission Reductions from New & Re-Development Projects [VOC]	0.00	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00
FLX-02V	Petroleum Refinery Pilot Program [VOC]	1.19	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	9.47	9.96	0.00	11.22
ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	2.42	2.11	0.00	2.39
ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	4.44	0.00	0.00	0.00
ARB-ON4	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	4.14	36.83	0.00	38.79
ARB-ON5	Port Truck Modernization [NOX,PM]	0.00	2.17	0.00	2.26
ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM]	0.00	43.38	0.00	43.38
ARB-OFF2	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	0.72	4.65	0.00	4.65
ARB-OFF3	Clean Up Existing Harbor Craft [VOC,NOX,PM]	0.00	4.08	0.00	4.08
ARB-OFF4	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM]	2.25	8.19	0.00	8.33
ARB-OFF5	New Emis Stds for Recreational Boats [VOC.NOX]	4.15	0.42	0.00	0.11
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC]	2.68	0.00	0.00	0.00
ARB-CONS	Consumer Products [VOC]	13.23	0.00	0.00	0.00
MOB-05	AB 923 Light-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.88	0.54	13.46	0.61
MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.60	0.66	6.76	0.71
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs [VOC.NOX,CO.PM]	1.78	4.46	45.16	5.08
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles [VOC,NOX,CO,PM]	0.00	27.03	0.00	28.48
SCONRD-4*	Further Emis. Red. from Port Trucks [NOX,PM]	0.00	4.50	0.00	4.70
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC,NOX]	2.99	26.46	0.00	26.92
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	0.84	0.00	0.84
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	12.96	0.00	12.96
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	13.44	5.97	0.00	1.53
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation [NOX,SOX,PM]	0.00	5.15	0.00	5.23
	with potential overlapping)	80.05	208.76	65.37	212.71
	win potentia overapping)	00.05	200.70	05.57	212./1

EMISSION SUMMARY FOR (POINT, AREA, MOBILE SOURCE, AND OFF-ROAD MV)

BASELINE EMISSIONS

	VOC	NOx	СО	NO2
Point source	45.23	10.05	57.66	10.08
Area source	225.49	31.53	231.28	46.85
RECLAIM	0.00	27.23	0.00	27.23
Total Stationary	270.72	68.82	288.94	84.16
On-road	129.18	231.52	1136.72	251.59
Off-road	138.59	253.82	788.67	239.38
Aircraft	10.96	24.29	74.29	24.29
TOTAL	549.45	578.45	2288.63	599.42
EMISSION REDUCTIONS				
Point source	5.82	1.78	0.00	1.78
Area source	24.25	4.16	0.00	6.14
RECLAIM	0.00	0.00	0.00	0.00
Total Stationary	30.08	5.94	0.00	7.92
On-road	21.26	75.20	64.69	80.40
Off-road	26.20	104.87	0.00	100.76
Aircraft	0.00	0.00	0.00	0.00
TOTAL	77.53	186.01	64.69	189.08
REMAINING EMISSIONS				
Point source	39.41	8.27	57.66	8.30
Area source	201.24	27.37	231.28	40.71
RECLAIM	0.00	27.23	0.00	27.23
Total Stationary	240.65	62.87	288.94	76.24
On-road	107.93	156.32	1072.03	171.19
Off-road	112.39	148.96	788.67	138.62
Aircraft	10.96	24.29	74.29	24.29
TOTAL	471.92	392.44	2223.93	410.34
NSR/Set-Aside	5.00	-1.20	0.00	-1.20
Public Funding	0.00	-4.20	0.00	-4.20
GRAND TOTAL (T/D)	476.92	387.04	2223.93	404.94
Mobility Adjustments (3)	0.00	0.00	0.00	0.00

- (1) Emission reductions for individual measures were estimated based on the sequence of listing contained here. When the sequence changes, reductions from each measure could be affected, but the net total remain the same. The purpose of this table is to estimate total emission reductions without overlapping or double-counting between measures.
- (2) Emission reductions for individual measures were estimated in the absence of other measures. Therefore, the sequence of listing does not affect the reduction estimates. The purpose of this table is to provide emission reduction estimates for Appendix IV control measure summary tables as well as cost effectiveness analysis.
- (3) Mobility Adjustment includes TCM-01, ATT-01, ATT-02, ATT-05 and adjustments are reflected in the CEPA baseline beyond year 2000.
- *For the purpose of attainment demonstration, these mobile source measures were selected to achieve the additional 63 tons per day of NOx reductions needed by 2014 for PM2.5 attainment. The corresponding emission reductions for these measures in 2017 are provided here. However, CARB can implement any combination of strategies to achieve the needed reductions.

ATTACHMENT-8

2023 Control Measures For Basin Ozone Attainment (Annual)

Run Date: 8/21/2007 12:28:06 PM (PC-CEPA V. 4.2/ May 2001) C:\AQMP2007\CF0207\CM3-0607\cf2023-060607.txt C:\AQMP2007\CF0207\CM3-0607\master-060607.txt C:\AQMP2007\dump0906\x2011607\ems23ocs.txt C:\AQMP2007\CF0207\CM3-0607\scen4-060607-wbx.txt C:\AQMP2007\CF0207\CM3-0507\impact-051107.txt

Year 2023 Emission Reductions Excluding Natural Sources by Control Measure in the South Coast Air Basin (Annual Average Inventory - Tons/Day)

(A) Reductions Without Overlapping/Double-Counting With Other Control Measures (1)

Measure Name VOC NOx CO SOx PM10 PM2.5 BA-LSI ARB Baseline Adjustment for large spark-ignited engines [NOX] 0.00 1.96 0.00 1.64 1.58 BCM-05 Reductions from Under-fired Charbroilers [PM] 0.00
BA-CONS ARB Baseline Adjustment for Consumer Products [VOC] 4.80 0.00 0.00 0.00 0.00 BCM-03 Emission Red. from Wood Burning Fireplaces and Wood Stoves 0.00 0.00 0.00 0.00 1.64 1.58 BCM-05 Reductions from Under-fired Charbroilers [PM] 0.00
BCM-03 Emission Red. from Wood Burning Fireplaces and Wood Stoves 0.00 0.00 0.00 0.00 1.64 1.58 BCM-05 Reductions from Under-fired Charbroilers [PM] 0.00 0.00 0.00 0.00 1.17 1.16 CMB-01 Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces 0.00 3.84 0.00<
BCM-05 Reductions from Under-fired Charbroilers [PM] 0.00 0.00 0.00 0.00 1.17 1.16 CMB-01 Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces 0.00 3.84 0.00 0.00 0.00 0.00 CMB-02 Reduction SOx Reductions 0.00 <
CMB-01 Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces 0.00 3.84 0.00 0.00 0.00 0.00 CMB-02 Reduction SOx Reductions 0.00 0.00 0.00 2.89 0.00 0.00 CMB-03 NOx Reductions from Residential Space Heaters [NOx] 0.00 3.34 0.00 0.00 0.00 0.00 CTS-01 Industrial Lubricants [VOC] 2.00 0.00
CMB-02Reduction SOx Reductions0.00.000.002.890.000.00CMB-03NOx Reductions from Residential Space Heaters [NOX]0.003.340.000.000.000.00CTS-01Industrial Lubricants [VOC]2.000.000.000.000.000.00FUG-02Emission Red. from Gasoline Transfer and Dispensing Facilities [V4.060.000.000.000.000.00MCS-01NFacility Modernization [NOX]0.001.980.000.000.000.000.00MCS-01PFacility Modernization [PM]0.000.000.000.000.000.000.00MCS-01VFacility Modernization [VOC]7.990.000.000.000.000.00MCS-05Non-Dairy Livestock Waste [VOC,NH3]0.610.000.000.000.000.00EGM-01PEmission Reductions from New & Re-Development Projects0.000.000.000.000.000.00EGM-01PEmission Reductions from New & Re-Development Projects0.530.000.000.000.000.00EGM-01VEmission Reductions from New & Re-Development Projects0.530.000.000.000.000.00FLX-02PPetroleum Refinery Pilot Program [PM]0.000.000.000.000.000.000.00FLX-02VPetroleum Refinery Pilot Program [VOC]1.640.000.000.000.000.00
CMB-03 NOx Reductions from Residential Space Heaters [NOx] 0.00 3.34 0.00 0.00 0.00 CTS-01 Industrial Lubricants [VOC] 2.00 0.00 0.00 0.00 0.00 FUG-02 Emission Red. from Gasoline Transfer and Dispensing Facilities [V 4.06 0.00 0.00 0.00 0.00 MCS-01N Facility Modernization [NOx] 0.00 1.98 0.00 0.00 0.00 0.00 MCS-01P Facility Modernization [PM] 0.00 <
CTS-01Industrial Lubricants [VOC]2.000.000.000.000.00FUG-02Emission Red. from Gasoline Transfer and Dispensing Facilities [V4.060.000.000.000.00MCS-01NFacility Modernization [NOX]0.001.980.000.000.000.00MCS-01PFacility Modernization [PM]0.000.000.000.001.911.70MCS-01VFacility Modernization [VOC]7.990.000.000.000.000.00MCS-05Non-Dairy Livestock Waste [VOC,NH3]0.610.000.000.000.000.00EGM-01PEmission Reductions from New & Re-Development Projects0.000.000.000.000.000.00EGM-01VEmission Reductions from New & Re-Development Projects0.530.000.000.000.000.00EGM-01VEmission Reductions from New & Re-Development Projects0.530.000.000.000.00FLX-02PPetroleum Refinery Pilot Program [PM]0.000.000.000.000.000.00FLX-02VPetroleum Refinery Pilot Program [VOC]1.640.000.000.000.000.00
FUG-02Emission Red. from Gasoline Transfer and Dispensing Facilities [V4.060.000.000.000.000.00MCS-01NFacility Modernization [NOx]0.001.980.000.000.000.00MCS-01PFacility Modernization [PM]0.000.000.000.001.911.70MCS-01VFacility Modernization [VOC]7.990.000.000.000.000.00MCS-05Non-Dairy Livestock Waste [VOC,NH3]0.610.000.000.000.000.00EGM-01NEmission Reductions from New & Re-Development Projects [PM]0.000.000.000.000.000.00EGM-01VEmission Reductions from New & Re-Development Projects0.530.000.000.000.000.00FLX-02PPetroleum Refinery Pilot Program [PM]0.000.000.000.000.000.000.00FLX-02VPetroleum Refinery Pilot Program [VOC]1.640.000.000.000.000.00
MCS-01N Facility Modernization [NOx] 0.00 1.98 0.00 0.00 0.00 MCS-01P Facility Modernization [PM] 0.00 0.00 0.00 0.00 1.91 1.70 MCS-01V Facility Modernization [VOC] 7.99 0.00 0.00 0.00 0.00 0.00 MCS-05 Non-Dairy Livestock Waste [VOC,NH3] 0.61 0.00 0.00 0.00 0.00 EGM-01N Emission Reductions from New & Re-Development Projects 0.00 0.79 0.00 0.00 0.00 0.00 EGM-01P Emission Reductions from New & Re-Development Projects [PM] 0.00
MCS-01P Facility Modernization [PM] 0.00 0.00 0.00 0.00 1.70 MCS-01V Facility Modernization [VOC] 7.99 0.00
MCS-01V Facility Modernization [VOC] 7.99 0.00
MCS-05 Non-Dairy Livestock Waste [VOC,NH3] 0.61 0.00
EGM-01N Emission Reductions from New & Re-Development Projects 0.00 0.79 0.00 0.00 0.00 0.00 EGM-01P Emission Reductions from New & Re-Development Projects [PM] 0.00 0.00 0.00 5.23 0.52 EGM-01V Emission Reductions from New & Re-Development Projects 0.53 0.00 0.00 0.00 0.00 0.00 FLX-02P Petroleum Refinery Pilot Program [PM] 0.00 0.00 0.00 0.48 0.44 FLX-02V Petroleum Refinery Pilot Program [VOC] 1.64 0.00 0.00 0.00 0.00
EGM-01P Emission Reductions from New & Re-Development Projects [PM] 0.00 0.00 0.00 5.23 0.52 EGM-01V Emission Reductions from New & Re-Development Projects 0.53 0.00 0
EGM-01V Emission Reductions from New & Re-Development Projects 0.53 0.00
FLX-02P Petroleum Refinery Pilot Program [PM] 0.00 0.00 0.00 0.00 0.48 0.44 FLX-02V Petroleum Refinery Pilot Program [VOC] 1.64 0.00
FLX-02V Petroleum Refinery Pilot Program [VOC] 1.64 0.00 0.00 0.00 0.00
ARB-ON1 Smog Check Enhancements [VOC NOX PM] 7.28 7.24 0.00 0.00 0.21 0.19
ARB-ON2 Expand Vehicle Retirement [VOC,NOX,PM] 0.54 0.23 0.00 0.07 0.06
ARB-ON3Modifications to Reformulated Gasoline Program [VOC]2.090.000.000.000.00
ARB-ON4 Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM] 1.70 18.24 0.00 0.00 1.08 0.99
ARB-ON5 Port Truck Modernization [NOX,PM] 0.00 6.99 0.00 0.33 0.30
ARB-OFF1 Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM] 0.00 70.67 0.00 29.50 4.20 4.10
ARB-OFF2 Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM] 1.90 15.60 0.00 0.61 0.56
ARB-OFF3 Clean Up Existing Harbor Craft [VOC,NOX,PM] 0.00 5.91 0.00 0.32 0.29
ARB-OFF4 Cleaner In-Use Off-Road Equipment [VOC,NOX,PM] 1.92 14.01 0.00 0.00 1.42 1.30
ARB-OFF5 New Emis Stds for Recreational Boats [VOC,NOX] 12.17 1.51 0.00 0.00 0.00
ARB-OFF6 Expanded Off-Road Rec. Veh Ems Stds [VOC] 4.89 0.00 0.00 0.00 0.00
ARB-CONS Consumer Products [VOC] 13.69 0.00 0.00 0.00 0.00
MOB-05 AB 923 Light-Duty High-Emitter Id. [VOC,NOX,CO,PM] 0.67 0.42 13.00 0.01 0.01
MOB-06 AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM] 0.59 0.66 6.20 0.00 0.00
SCONRD-1* Accelerated Penetration of ATPEVs and ZEVs [VOC,NOX,CO,PM] 1.93 4.66 53.83 0.00 0.39 0.36
SCONRD-3* Further Emis. Red. from Heavy-Duty Vehicles [VOC,NOX,CO,PM] 0.00 5.84 0.00 0.00 0.21 0.19
SCONRD-4* Further Emis. Red. from Port Trucks [NOX,PM] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SCOFRD-1* Construction/Industrial Fleet Modernization [VOC,NOX] 1.32 15.24 0.00 0.00 0.00 0.00
SCOFRD-2* Cargo Handling Equipment [NOX,PM] 0.00 0.55 0.00 0.01 0.01
SCOFRD-3* Further Ems. Red. From Locomotives [NOX,PM] 0.00 3.26 0.00 0.11 0.10
SCOFRD-6* Accelerated Turnover Pleasure Craft [VOC,NOX,PM] 7.78 5.75 0.00 0.00 5.31 4.01
SCFUEL-1* California Phase III Reformulation Gasoline [NOX,SOX] 0.00 0.00 1.47 0.00 0.00
SCFUEL-2* Greater Use of Diesel Fuel Alt. & Reformulation [NOX,SOX,PM] 0.00 4.32 0.00 0.11 0.28 0.26
SCLTM-03 Further Reduction from Consumer Products [VOC] 20.03 0.00 0.00 0.00 0.00
LTM-04 Phase II Gasoline Fuels [VOC,NOX] 6.28 6.66 0.00 0.00 0.00 0.00
LTM-05 Phase II Diesel Fuel Alternatives [NOX,SOX,PM] 0.00 10.32 0.00 0.20 0.54 0.49
SCLTM1-2 Further Reductions from On-Road and Off-Road Mobile Sources 0.00 171.76 0.00 0.00 0.00 0.00
Grand Total (Net) 106.41 381.75 73.03 34.16 25.53 18.65

(B) Reductions With Overlapping/Double-Counting With Other Control Measures (2)

		(R	eductions -	Tons/Day)			
Measure	Name	VOC	NOx	CO	SOx	PM10	PM2.5
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines	0.00	1.96	0.00	0.00	0.00	0.00
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	4.80	0.00	0.00	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood	0.00	0.00	0.00	0.00	1.64	1.58
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00	1.17	1.16
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and	0.00	3.84	0.00	0.00	0.00	0.00
CMB-02	Reduction SOx Reductions	0.00	0.00	0.00	2.89	0.00	0.00
CMB-02	NOx Reductions from Residential Space Heaters [NOx]	0.00	3.34	0.00	0.00	0.00	0.00
CTS-01	Industrial Lubricants [VOC]	2.00	0.00	0.00	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing	4.06	0.00	0.00	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	1.98	0.00	0.00	0.00	0.00
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00	1.91	1.70
MCS-01V	Facility Modernization [VOC]	7.99	0.00	0.00	0.00	0.00	0.00
MCS-05	Non-Dairy Livestock Waste [VOC,NH3]	0.61	0.00	0.00	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development	0.00	0.79	0.00	0.00	0.00	0.00
EGM-01P	Emission Reductions from New & Re-Development	0.00	0.00	0.00	0.00	5.23	0.52
EGM-01V	Emission Reductions from New & Re-Development	0.53	0.00	0.00	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00	0.48	0.00
FLX-02V	Petroleum Refinery Pilot Program [VOC]	1.64	0.00	0.00	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	7.28	7.24	0.00	0.00	0.21	0.19
ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	0.57	0.25	0.00	0.00	0.07	0.06
ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	2.19	0.00	0.00	0.00	0.00	0.00
ARB-ON4	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	1.70	18.24	0.00	0.00	1.08	0.99
ARB-ON5	Port Truck Modernization [NOX,PM]	0.00	8.67	0.00	0.00	0.50	0.46
ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM]	0.00	70.67	0.00	29.50	4.20	4.10
ARB-OFF2	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	1.90	15.60	0.00	0.00	0.61	0.56
ARB-OFF3	Clean Up Existing Harbor Craft [VOC,NOX,PM]	0.00	5.91	0.00	0.00	0.32	0.29
ARB-OFF4	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM]	1.92	14.25	0.00	0.00	1.42	1.30
ARB-OFF5	New Emis Stds for Recreational Boats [VOC,NOX]	12.32	1.51	0.00	0.00	0.00	0.00
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC]	4.94	0.00	0.00	0.00	0.00	0.00
ARB-CONS	Consumer Products [VOC]	13.69	0.00	0.00	0.00	0.00	0.00
MOB-05	AB 923 Light-Duty High-Emitter Id.	0.73	0.47	13.00	0.00	0.01	0.01
MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.63	0.70	6.20	0.00	0.00	0.00
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs	2.14	5.24	54.92	0.00	0.40	0.37
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles	0.00	9.70	0.00	0.00	0.39	0.36
SCONRD-4*	Further Emis. Red. from Port Trucks [NOX,PM]	0.00	0.00	0.00	0.00	0.00	0.00
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC,NOX]	1.72	22.19	0.00	0.00	0.00	0.00
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	0.55	0.00	0.00	0.01	0.01
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	10.55	0.00	0.00	0.41	0.38
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	11.85	6.76	0.00	0.00	5.31	4.01
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	1.47	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation	0.00	7.05	0.00	0.11	0.59	0.54
SCLTM-03	Further Reduction from Consumer Products [VOC]	22.89	0.00	0.00	0.00	0.00	0.00
LTM-04	Phase II Gasoline Fuels [VOC,NOX]	7.65	8.52	0.00	0.00	0.00	0.00
LTM-05	Phase II Diesel Fuel Alternatives [NOX,SOX,PM]	0.00	17.63	0.00	0.25	1.23	1.13
SCLTM1-2	Further Reductions from On-Road and Off-Road Mobile Sources	0.00	319.50	0.00	0.00	0.00	0.00
Grand Total (v	with potential overlapping)	115.75	563.10	74.13	34.21	27.20	20.19

EMISSION SUMMARY FOR (POINT, AREA, MOBILE SOURCE, AND OFF-ROAD MV)

Baseline Emissions	VOC	NOx	СО	SOx	PM10	PM2.5
Point source	41.72	9.47	57.87	2.10	10.91	9.56
Area source	234.49	38.39	128.19	2.67	255.07	63.84
RECLAIM	0.00	26.51	0.00	11.76	0.00	0.00
Total Stationary	276.21	74.37	186.06	16.53	265.98	73.40
On-road	99.13	164.07	837.54	2.42	23.63	16.04
Off-road	107.25	238.56	1034.26	33.41	16.94	14.60
Aircraft	13.08	29.34	85.03	2.69	1.19	1.17
TOTAL	495.67	506.34	2142.90	55.05	307.74	105.21
EMISSION REDUCTIONS						
Point source	9.63	1.71	0.00	0.00	2.40	2.14
Area source	45.72	7.48	0.00	0.00	8.07	3.29
RECLAIM	0.00	0.00	0.00	2.89	0.00	0.00
Total Stationary	55.35	9.18	0.00	2.89	10.47	5.43
On-road	18.18	136.99	73.03	1.58	2.83	2.60
Off-road	32.88	213.77	0.00	29.69	12.23	10.62
Aircraft	0.00	21.80	0.00	0.00	0.00	0.00
TOTAL	106.41	381.75	73.03	34.16	25.53	18.65
REMAINING EMISSIONS						
Point source	32.10	7.76	57.87	2.10	8.52	7.41
Area source	188.77	30.91	128.19	2.67	247.00	60.55
RECLAIM	0.00	26.51	0.00	8.87	0.00	0.00
Total Stationary	220.86	65.18	186.06	13.64	255.51	67.97
On-road	80.95	27.08	764.51	0.84	20.80	13.43
Off-road	74.37	24.79	1034.26	3.72	4.70	3.98
Aircraft	13.08	7.54	85.03	2.69	1.19	1.17
TOTAL	389.26	124.59	2069.87	20.89	282.21	86.55
NSR/Set-Aside	5.00	-1.20	0.00	0.00	0.00	0.00
Public Funding	0.00	-6.20	0.00	0.00	0.00	-0.20
GRAND TOTAL (T/D)	394.26	117.19	2069.87	20.89	282.21	86.35
Mobility Adjustments (3)	0.00	0.00	0.00	0.00	0.00	0.00

- (1) Emission reductions for individual measures were estimated based on the sequence of listing contained here. When the sequence changes, reductions from each measure could be affected, but the net total remain the same. The purpose of this table is to estimate total emission reductions without overlapping or double-counting between measures.
- (2) Emission reductions for individual measures were estimated in the absence of other measures. Therefore, the sequence of listing does not affect the reduction estimates. The purpose of this table is to provide emission reduction estimates for Appendix IV control measure summary tables as well as cost effectiveness analysis.
- (3) Mobility Adjustment includes TCM-01, ATT-01, ATT-02, ATT-05 and adjustments are reflected in the CEPA baseline beyond year 2000.
- *For the purpose of attainment demonstration, these mobile source measures were selected to achieve the additional 63 tons per day of NOx reductions needed by 2014 for PM2.5 attainment. The corresponding emission reductions for these measures in 2023 are provided here. However, CARB can implement any combination of strategies to achieve the needed reductions.

ATTACHMENT-9

2023 Control Measures For Basin Ozone Attainment (Planning)

Run Date: 8/21/2007 12:28:06 PM (PC-CEPA V. 4.2/ May 2001) C:\AQMP2007\CF0207\CM3-0607\cf2023-060607.txt C:\AQMP2007\CF0207\CM3-0607\master-060607.txt C:\AQMP2007\dump0906\xz011607\ems23ocs.txt C:\AQMP2007\CF0207\CM3-0607\scen4-060607-wbx.txt C:\AQMP2007\CF0207\CM3-0507\impact-051107.txt

Year 2023 Emission Reductions Excluding Natural Sources by Control Measure in the South Coast Air Basin (Planning Inventory - Tons/Day)

(A) Reductions Without Overlapping/Double-Counting With Other Control Measures (1)

		(Re	ductions - T	Cons/Day)	
Measure	Name	VOC	NOx	CO	NO2
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines [NOX]	0.00	1.91	0.00	2.03
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	4.80	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood Stoves	0.00	0.00	0.00	0.00
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces	0.00	4.11	0.00	4.11
CMB-03	NOx Reductions from Residential Space Heaters [NOx]	0.00	1.15	0.00	5.54
CTS-01	Industrial Lubricants [VOC]	2.00	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing Facilities [V	4.06	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	2.18	0.00	1.95
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00
MCS-01V	Facility Modernization [VOC]	9.16	0.00	0.00	0.00
MCS-05	Non-Dairy Livestock Waste [VOC,NH3]	0.61	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development Projects [NOx]	0.00	0.78	0.00	0.80
EGM-01P	Emission Reductions from New & Re-Development Projects [PM]	0.00	0.00	0.00	0.00
EGM-01V	Emission Reductions from New & Re-Development Projects [VOC]	0.63	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00
FLX-02V	Petroleum Refinery Pilot Program [VOC]	1.64	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	7.49	6.92	0.00	7.83
ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	0.54	0.22	0.00	0.24
ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	2.50	0.00	0.00	0.00
ARB-ON4	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	1.69	18.32	0.00	19.16
ARB-ON5	Port Truck Modernization [NOX,PM]	0.00	7.04	0.00	7.27
ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC,NOX,PM]	0.00	70.67	0.00	70.67
ARB-OFF2	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	1.90	15.60	0.00	15.60
ARB-OFF3	Clean Up Existing Harbor Craft [VOC,NOX,PM]	0.00	5.91	0.00	5.91
ARB-OFF4	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM]	1.90	13.89	0.00	14.14
ARB-OFF5	New Emis Stds for Recreational Boats [VOC,NOX]	17.74	2.40	0.00	0.61
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC]	6.40	0.00	0.00	0.00
ARB-CONS	Consumer Products [VOC] AB 923 Light-Duty High-Emitter Id. [VOC.NOX.CO.PM]	13.69 0.71	0.00	$0.00 \\ 12.70$	0.00
MOB-05 MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.71	$0.40 \\ 0.64$	6.26	$0.46 \\ 0.68$
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs [VOC,NOX,CO,PM]	2.07	0.04 4.46	52.58	5.07
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles [VOC,NOX,CO,PM]	0.00	4.40 5.87	0.00	6.12
SCONRD-4*	Further Emis. Red. from Port Trucks [NOX,PM]	0.00	0.00	0.00	0.00
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC,NOX]	1.31	15.11	0.00	15.37
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	0.55	0.00	0.55
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	3.26	0.00	3.26
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	12.57	9.08	0.00	2.32
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation [NOX,SOX,PM]	0.00	4.40	0.00	4.38
SCLTM-03	Further Reduction from Consumer Products [VOC]	20.03	0.00	0.00	0.00
LTM-04	Phase II Gasoline Fuels [VOC,NOX]	7.39	6.59	0.00	6.94
LTM-05	Phase II Diesel Fuel Alternatives [NOX,SOX,PM]	0.00	10.52	0.00	10.46
SCLTM1-2	Further Reductions from On-Road and Off-Road Mobile Sources	0.00	172.48	0.00	174.62
Grand Total (N		121.37	384.48	71.54	386.10
· · ·					

Year 2023 Emission Reductions Excluding Natural Sources by Control Measure in the South Coast Air Basin (Planning Inventory - Tons/Day)

(B) Reductions With Overlapping/Double-Counting With Other Control Measures (2)

		(Re	ductions - T	[ons/Day]	
Measure	Name	VOC	NOx	CO	NO2
BA-LSI	ARB Baseline Adjustment for large spark-ignited engines [NOX]	0.00	1.91	0.00	2.03
BA-CONS	ARB Baseline Adjustment for Consumer Products [VOC]	4.80	0.00	0.00	0.00
BCM-03	Emission Red. from Wood Burning Fireplaces and Wood Stoves	0.00	0.00	0.00	0.00
BCM-05	Reductions from Under-fired Charbroilers [PM]	0.00	0.00	0.00	0.00
CMB-01	Nox Reduction from Non-Reclaim Ovens, Dryers and Furnaces	0.00	4.11	0.00	4.11
CMB-03	NOx Reductions from Residential Space Heaters [NOx]	0.00	1.15	0.00	5.54
CTS-01	Industrial Lubricants [VOC]	2.00	0.00	0.00	0.00
FUG-02	Emission Red. from Gasoline Transfer and Dispensing Facilities [V	4.06	0.00	0.00	0.00
MCS-01N	Facility Modernization [NOx]	0.00	2.18	0.00	1.95
MCS-01P	Facility Modernization [PM]	0.00	0.00	0.00	0.00
MCS-01V	Facility Modernization [VOC]	9.16	0.00	0.00	0.00
MCS-05	Non-Dairy Livestock Waste [VOC,NH3]	0.61	0.00	0.00	0.00
EGM-01N	Emission Reductions from New & Re-Development Projects [NOx]	0.00	0.78	0.00	0.80
EGM-01P	Emission Reductions from New & Re-Development Projects [PM]	0.00	0.00	0.00	0.00
EGM-01V	Emission Reductions from New & Re-Development Projects [VOC]	0.63	0.00	0.00	0.00
FLX-02P	Petroleum Refinery Pilot Program [PM]	0.00	0.00	0.00	0.00
FLX-02V	Petroleum Refinery Pilot Program [VOC]	1.64	0.00	0.00	0.00
ARB-ON1	Smog Check Enhancements [VOC,NOX,PM]	7.49	6.92	0.00	7.83
ARB-ON2	Expand Vehicle Retirement [VOC,NOX,PM]	0.58	0.24	0.00	0.27
ARB-ON3	Modifications to Reformulated Gasoline Program [VOC]	2.60	0.00	0.00	0.00
ARB-ON4	Cleaner In-Use Heavy-Duty Trucks [VOC,NOX,PM]	1.69	18.32	0.00	19.16
ARB-ON5	Port Truck Modernization [NOX,PM]	0.00	8.74	0.00	9.02
ARB-OFF1	Marine Vessels - Fuel, Aux. & Main Eng. [VOC, NOX, PM]	0.00	70.67	0.00	70.67
ARB-OFF2	Accel. Intro. Of Cleaner Line-Haul Loco. [VOC,NOX,PM]	1.90	15.60	0.00	15.60
ARB-OFF3	Clean Up Existing Harbor Craft [VOC,NOX,PM]	$0.00 \\ 1.90$	5.91 14.13	$0.00 \\ 0.00$	5.91 14.37
ARB-OFF4 ARB-OFF5	Cleaner In-Use Off-Road Equipment [VOC,NOX,PM] New Emis Stds for Recreational Boats [VOC,NOX]	1.90	2.40	0.00	0.61
ARB-OFF6	Expanded Off-Road Rec. Veh Ems Stds [VOC]	6.48	0.00	0.00	0.01
ARB-CONS	Consumer Products [VOC]	13.69	0.00	0.00	0.00
MOB-05	AB 923 Light-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.77	0.00	12.70	0.00
MOB-06	AB 923 Med-Duty High-Emitter Id. [VOC,NOX,CO,PM]	0.60	0.43	6.26	0.72
SCONRD-1*	Accelerated Penetration of ATPEVs and ZEVs [VOC,NOX,CO,PM]	2.28	5.01	53.66	5.70
SCONRD-3*	Further Emis. Red. from Heavy-Duty Vehicles [VOC,NOX,CO,PM]	0.00	9.74	0.00	10.18
SCONRD-4*	Further Emis. Red. from Port Trucks [NOX,PM]	0.00	0.00	0.00	0.00
SCOFRD-1*	Construction/Industrial Fleet Modernization [VOC,NOX]	1.71	21.99	0.00	22.38
SCOFRD-2*	Cargo Handling Equipment [NOX,PM]	0.00	0.55	0.00	0.55
SCOFRD-3*	Further Ems. Red. From Locomotives [NOX,PM]	0.00	10.55	0.00	10.55
SCOFRD-6*	Accelerated Turnover Pleasure Craft [VOC,NOX,PM]	19.18	10.69	0.00	2.73
SCFUEL-1*	California Phase III Reformulation Gasoline [NOX,SOX]	0.00	0.00	0.00	0.00
SCFUEL-2*	Greater Use of Diesel Fuel Alt. & Reformulation [NOX,SOX,PM]	0.00	7.14	0.00	7.18
SCLTM-03	Further Reduction from Consumer Products [VOC]	22.89	0.00	0.00	0.00
LTM-04	Phase II Gasoline Fuels [VOC,NOX]	9.10	8.78	0.00	8.50
LTM-05	Phase II Diesel Fuel Alternatives [NOX,SOX,PM]	0.00	17.84	0.00	17.95
SCLTM1-2	Further Reductions from On-Road and Off-Road Mobile Sources	0.00	323.03	0.00	321.61
Grand Total (w	vith potential overlapping)	133.70	569.51	72.61	566.44
	- ** *				

EMISSION SUMMARY FOR (POINT, AREA, MOBILE SOURCE, AND OFF-ROAD MV)

BASELINE EMISSIONS

	VOC	NOx	СО	NO2
Point source	48.47	10.65	60.13	10.68
Area source	236.06	31.02	236.91	46.92
RECLAIM	0.00	27.23	0.00	27.23
Total Stationary	284.53	68.89	297.03	84.83
On-road	103.19	161.32	824.43	174.19
Off-road	135.17	246.02	850.98	231.35
Aircraft	13.08	29.34	85.03	29.34
TOTAL	535.98	505.57	2057.47	519.71
EMISSION REDUCTIONS				
Point source	10.80	2.07	0.00	2.07
Area source	45.82	5.39	0.00	9.56
RECLAIM	0.00	0.00	0.00	0.00
Total Stationary	56.62	7.46	0.00	11.62
On-road	19.08	134.79	71.54	145.39
Off-road	45.68	220.43	0.00	207.29
Aircraft	0.00	21.80	0.00	21.80
TOTAL	121.37	384.48	71.54	386.10
REMAINING EMISSIONS				
Point source	37.67	8.58	60.13	8.61
Area source	190.25	25.62	236.91	37.37
RECLAIM	0.00	27.23	0.00	27.23
Total Stationary	227.92	61.43	297.03	73.21
On-road	84.11	26.53	752.89	28.80
Off-road	89.50	25.59	850.98	24.06
Aircraft	13.08	7.54	85.03	7.54
TOTAL	414.60	121.10	1985.93	133.61
NSR/Set-Aside	5.00	-1.20	0.00	-1.20
Public Funding	0.00	-6.20	0.00	-6.20
GRAND TOTAL (T/D)	419.60	113.70	1985.93	126.21
Mobility Adjustments (3)	0.00	0.00	0.00	0.00

- (1) Emission reductions for individual measures were estimated based on the sequence of listing contained here. When the sequence changes, reductions from each measure could be affected, but the net total remain the same. The purpose of this table is to estimate total emission reductions without overlapping or double-counting between measures.
- (2) Emission reductions for individual measures were estimated in the absence of other measures. Therefore, the sequence of listing does not affect the reduction estimates. The purpose of this table is to provide emission reduction estimates for Appendix IV control measure summary tables as well as cost effectiveness analysis.
- (3) Mobility Adjustment includes TCM-01, ATT-01, ATT-02, ATT-05 and adjustments are reflected in the CEPA baseline beyond year 2000.
- *For the purpose of attainment demonstration, these mobile source measures were selected to achieve the additional 63 tons per day of NOx reductions needed by 2014 for PM2.5 attainment. The corresponding emission reductions for these measures in 2023 are provided here. However, CARB can implement any combination of strategies to achieve the needed reductions.