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Themes
1. Health outcome surveillance using 

point data
2. Hazard metric validity
3. Exposure validity
4. Analytic validity
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Alameda County Demonstration 
Project

• Health outcomes
– Vital records--preterm birth and term low 

birthweight
– Asthma (multiple outcomes)

• Traffic exposure metrics
– Measures based on traffic counts
– Measures based on modeled NO2

• Land-use regression
• Modeled NO2 using ADMS-Urban
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Focus on spatial data
• Advantages

– Conviction that residential space is important 
component of disparities, both health and social

– Communities and populations often self-identify 
based on their spatial locations 

– Spatial presentation facilitates communication, 
educational objectives

• Disadvantages
– Maximizes confounding for any associations
– Complicates causal inference
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Health outcomes:
Data sources

• Birth outcomes
– Vital records
– California Center for Health Statistics
– 100% population sample

• Asthma outcomes
– Administrative and billing records
– Special research-oriented arrangement with Medi-

Cal and Kaiser Permanente of Northern California
– Approximately 1 of 3 county residents 

represented; data believed to have reasonable 
generalizability



Point data for health outcomes:
Primary illustrations

Local elevations in asthma event rates (p<0.05), ages 0-17, Alameda County, 2001

ER Visits Maintenance medication 
purchases
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Point data for health outcomes:
Primary illustrations

ER Visits due to asthma, 
ages 0-17
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Point data for health outcomes:
Primary illustrations

ER Visits due to asthma, 
ages 0-4

Relative Risk



Traffic Count data

• Source:  California Average Daily Traffic, 2001
Alameda CountyDepartment of 

Transportation
• Lack of consistent 

collection 
schedules and 
protocols

• Low-volume 
roadways missing 
data
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Traffic Count data
• Processing:  automated interface 

developed by CEHTP (available on 
web)

• Metrics chosen:
– Sum of AADT of all roadways within 300 m(R300)
– Sum of AADT adjusted for lengths of (L300)

segments within 300 m
– Sum of AADT within 300 adjusted (G300)
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Land-use regression
• 47 passive diffusion tubes placed around 

county during 2-week period in Spring 2005
• Analyzed by ion chromatography
• Predictors of log-transformed concentrations 

(R2=0.69, |residual|mean=1.85 ppb)
– Total AADT within 40 m radius
– Total AADT between 40 and 500 m radii
– Total area of Port of Oakland within 1,000 m
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Land-use regression
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ADMS-Urban
• Incorporation of road data, point 

sources, meteorology, atmospheric 
chemistry

• Questions about NOx/NO2 assumptions:  
is NO2 as modeled still best indicator of 
traffic exposure?

• Sensitive to small distance changes 
(e.g. road offset used for geocoded
health data)
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ADMS-Urban
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Traffic metrics and measured NO2

(Smorodinsky, et al. unpublished data)

Indicator
Sum of all volumes in 300 m 
buffer

Spearman r

0.69

p

<0.0001

Sum of all volumes between 
40 and 300 m 0.68 <0.0001

Maximum volume in 300 m 
buffer 0.57 <0.001

Gaussian adjusted maximum 
traffic in 1000 m buffer 0.48 0.002
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Performance of NO2 models

R2

ADMS-Urban
(n=38)

(all sources plus background)

0.60

Land Use 
Regression 

(n=12)

0.79

Fraction of 2 100% 100%

Fractional Bias 17.8% 11.9%

% within 5 ppb 68.4% 100%

(Smorodinsky, et al. unpublished data)
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Linkage of point data:
point-to-polygon intersection
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Analytic problems

• Assumes residuals εi have constant mean 
over study space

• This is equivalent to saying all spatial 
structure is accounted for by 

βexpxexp+ βcovxcov

• Solution: Allow for the spatial structure of your 
residuals in your regression model

( yxSpxxERf ,covcovexpexp0 +++= βββ( ) )
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Analytic problems
• Sp(x,y) Could be a description of how the 

covariance between neighboring points 
decreases with distance (Kriging, SAR, CAR)

• Other options are non-parametric functions 
such as locally weighted estimation (loess) or 
splines
– Currently this approach is the only one developed 

for point data

• Gotway and Waller:  No method necessarily 
superior, but some allowance for spatially 
structured residuals is required
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Questions about semi-
parametric models

• As currently used, packages in S-plus and R 
may under-estimate standard errors for β

• If lo(x,y) adapts to fit whatever is left out of 
the model (residual structure), will βexp
change depending on whether we include our 
covariates anymore? (Answer:  sometimes)

• If βexp can be relied upon to be independent 
of our choice of covariates, is this a solution 
to our problems with spatial confounding?
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Example:  AADT in 300 m radius and 
ER visits for asthma, ages 5-17
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Does linkage of traffic metrics to 
health outcomes “work?”

• This depends what we mean when we 
say “work?” (What is the association we 
should find?)

• Answer may depend on analytic 
methods and choices of covariates as 
much as on health and exposure 
metrics
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Does linkage of traffic metrics to 
health outcomes “work?”

• This attempt:  
– ER visits for asthma

• Poisson regression 
• Covariates of median family income in census tract and 

Medicaid status included

– Birth outcomes
• Logistic regression
• Covariates for maternal race/ethnicity included

– Both analyses:  Loess smoothing term to account 
for spatial structure of residuals (note this may 
under-estimate standard errors)
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Summary
• ER visits due to asthma:

– Metric with most consistent association:  
R300

– Age strata with strongest correlations:  0-4
and 45-64

• Birth outcomes:
– Metric most consistently associated with 

preterm birth: none
– Metric most consistently associated with 

term low birthweight: ADMS
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Summary
• Lack of associations with birth 

outcomes may be due to pollution levels 
in Alameda County too low for an effect 
(e.g. compared to LA)

• In any case, associations are 
inconsistent enough so that we feel 
like we are cherry-picking the ones 
we like
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Limitations and next steps
• Hazard validity

– Refinement of hazard metrics certainly 
possible, including use of vehicle profiles 
(truck counts) and pollutants besides NO2

– Still have to choose between source 
(“emissions”) and pollutant modeling

– In the absence of real gains in 
understanding of specific components of 
pollution responsible for health effects, 
“correct” focus is unknown

– Temporal analysis is more likely to help 
than spatial analysis in this regard
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Limitations and next steps
• Exposure validity

– Time activity patterns appear to be the next 
major refinement, but is this likely to lead to 
increased linkability of Tracking systems?

– When considering health effects of chronic 
exposure, residential history may be the 
more important variable for incorporation 
into linkage systems
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Limitations and next steps
• Analytic validity

– Not necessarily considered part of linkage, 
but lack of valid analytic approach will 
always be a roadblock to making spatial 
linkage useful

– Need to address spatial confounding, since 
can never include all important covariates 
in model--is this more an analytic problem 
than a data collection one?

– Spatial analytic methods designed for 
point data need further development
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Thank you!

The CDC Environmental Public Health 
Tracking Program

Lance A. Waller, PhD*

*For invaluable comments and advice; any errors 
and misconceptions are my fault, not his!


