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Abstract As an alternative to ground-cover data

collection by conventional and expensive sampling

techniques, we compared measurements obtained

from very large scale aerial (VLSA) imagery for

calibrating moderate resolution Landsat data. Using a

grid-based sampling scheme, 162 VLSA images were

acquired at 100 m above ground level. The percent

vegetation cover in each photo was derived using

SamplePoint (a manual inventory method) and Veg-

Measure (a reflectance based, automated method).

Approximately two-thirds of the VLSA images were

used for calibrating Landsat data while the remainder

was used for validation. Regression models with

Landsat bands accounted for 55% of the VegMea-

sure-based measurements of vegetation, whereas

models that included both Landsat bands and elevation

data accounted for 67%. The relationship between the

Landsat bands and the percent vegetation cover

measured by SamplePoint was lower (R2 = 20%),

highlighting the differences between the inventory and

reflectance based protocols. Results from the model

validation indicated that the model’s predictive power

was lower when the vegetation cover was either\20%

or[55%. Additional work is needed in these ecosys-

tems to improve the calibration techniques for sites

with low and high vegetation cover; however, these

results demonstrate the VLSA imagery could be used

for calibrating Landsat data and deriving rangeland

vegetation cover. By adopting such methodologies the

US Federal land management agencies can increase

the efficiency of the monitoring programs in Wyoming

and in other western states of the US.
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Introduction

Rangelands are characterized by grass, forb, and

shrub vegetation (e.g., the Sonoran desert, the

sagebrush (Artemesia spp.) steppe, tall- and short-

grass prairies). In the US, rangelands occupy 324 M

ha, providing numerous ecological services of which

grazing, wildlife habitat (including habitat for several
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species listed as threatened under the Federal Endan-

gered Species Act (NS-GCT 2004; FWS 2005)),

watersheds, recreation, and extractable minerals are

commonly recognized. Less obvious are the range-

land biophysical processes important to a well-

functioning global environment. Natural and

human-induced rangeland disturbances such as wild-

fires, droughts, cattle grazing, and housing

developments all influence rangeland vegetation

and, in turn, affect the carbon and water cycles (Kolb

and Sperry 1999; Gilmanov et al. 2004; Morgan et al.

2004). Given their ecological and economic impor-

tance, and increasing multiple uses, accurate and

continuous assessment of rangeland is fundamental to

ongoing sustainable use. Public US rangeland is

primarily managed by the Department of Interior’s

Bureau of Land Management (BLM) and the Depart-

ment of Agriculture’s Forest Service (USFS). These

agencies operate under several public laws including

the Resources Planning Act (1974), Federal Land

Policy and Management Act (1976), Soil and Water

Resources Conservation Act (1977), Forest and

Rangeland Resources Planning Act (1978), and the

Environmental Monitoring and Assessment Act

(1988). Included in each of these acts is the directive

to monitor and account for the ecological ‘‘health’’ of

the resources for which they are responsible.

The difficulties associated with statistically-ade-

quate ecological assessments make conventional field

survey and sampling impractical if not impossible to

apply to the vast US rangelands (West 1999; Schino

et al. 2003), and do not provide timely information

for those regions that undergo frequent changes.

Remote sensing provides a viable method for mon-

itoring and characterizing rangeland vegetation.

Moderate spatial resolution data collected by Landsat

and other satellites provide a temporal resolution and

economy not matched by aerial or ground methods.

Several studies have demonstrated the utility of

Landsat data for mapping rangeland vegetation (Todd

et al. 1998; Ikeda et al. 1999; Hostert et al. 2003;

Schino et al. 2003; Cingolani et al. 2004). Todd et al.

(1998) found that Landsat bands were able to account

for 67% of the variance in the measured biomass in

grazed rangelands of Colorado (USA). However,

most of the studies used correlation to analyze the

relationship between field-measured vegetation data

and remotely sensed reflectance values, and fewer

studies have tested the relationship with regression

models. Ancillary data such as elevation, slope,

aspect, and soil type are often used together with

the reflectance values recorded by Landsat to assist

classification (Kozar et al. 2002; Zambon et al.

2006). For example, the association between eleva-

tion and species distribution was used to separate

mountain fir (elevation range 2652–2774 m) from

spruce-fir (elevation [ 2774 m), though their spectral

reflectance values were identical (Homer et al. 1997).

Precise ground-based measurements are required

to calibrate the Landsat pixels prior to characterizing

the rangeland vegetation. However, conventional

ground-based methods of collecting calibration data

are expensive. Seefeldt and Booth (2006) have

demonstrated the utility of aerial images for moni-

toring and measuring rangeland ground cover using

Very Large Scale Aerial (VLSA) photography.

VLSA photography refers to low-altitude, high-

resolution (1–20 mm GSD) imagery that is acquired

intermittently during an aerial rangeland survey

(Booth and Cox 2006). Booth et al. (2005a) reported

that a sub-millimeter contact area had the highest

correlation of measured cover to known values.

VLSA surveys are excellent for acquiring large

sample numbers, but they are a sampling, not a

mapping method.

The goal of this study was to assess the potential of

VLSA data (spatial resolution 1 mm) for calibrating

Landsat Thematic Mapper 5 (TM5) data (spatial

resolution 30 m) so as to extend the reach of highly

detailed imaging with the field-of-view and period-

icity of space imagery. Specific objectives of this

study were: (1) Test the relationship between ground

cover measurements derived from VLSA photos and

Landsat reflectance values through regression analy-

ses; (2) Compare the advantages of using transformed

bands instead of raw Landsat reflectance values; and

(3) Assess the value of incorporating the physio-

graphic variables (elevation, slope and aspect) in the

regression models. We used approximately two thirds

of the VLSA data for testing the relationship and

model development between the percent vegetation

derived from VLSA and Landsat reflectance values.

The rest of the data was used to test regression model

validity. If a useful relationship exists, then a multi-

scale approach that combines VLSA images and early

growing season medium resolution satellite data

could be used for some routine monitoring and for

mapping rangeland plant communities.
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Materials and methods

Study area

The 9,000-ha Hay Press Creek Pasture is in the

northeast part of the Green Mountain Common

Allotment, southwest of Jeffrey City, Wyoming

(42�270 N, 107�550 W) between Green Mountain

and the flood plain of the Sweetwater River (Fig. 1).

It is managed by the US Department of the Interior,

Bureau of Land Management, Lander Field Office.

The pasture contains 85% sagebrush/grassland (Arte-

misia tridentata Nutt. ssp. wyomingensis Beetle and

Young) (7,526 ha), 12% riparian area (1,096 ha), 2%

Playa (161 ha) and 0.5% road (30 ha) (Beetle 1960;

Booth et al. unpublished data).

Very large scale aerial photography (VLSA)

We acquired 162 color digital aerial images on 8th

and 9th June 2004, using a light airplane (225-kg

empty weight, fixed wing, three-axis), a navigation

and camera-triggering system, a digital camera, and a

laser rangefinder (Booth and Cox 2006). The aircraft

speed ranged between 68 and 95 km/h. The naviga-

tion system was powered by Tracker software

(Track’Air B.V., Oldenzaal, The Netherlands) on a

laptop computer interfaced with (1) a central navi-

gation box, (2) a differentially-corrected geographic

positioning system and (3) a 15-cm in-cockpit pilot

display. The navigation system was programmed

using a laptop PC to automatically trigger the camera

at 800-m intervals along 12 flight lines. We used a

Canon EOS 1Ds 11.1-megapixel single lens reflex,

color (RGB) digital camera with a Canon 600 mm

f/4.0 EF lens plus a 1.49 teleconverter to yield the

equivalent of a 840 mm, f/5.6 lens. (Canon USA,

Lake Success, NY, USA). Shutter speed was manu-

ally set for 1/4,000th second with safety shift enabled

to allow the shutter speed to slow in inadequate light.

The camera was interfaced with a laptop PC

(3.2-GHz, 40-GB-hard drive) running Canon Remote

Capture software and images were stored directly on

the hard drive. Images were initially saved as RAW

(10MB compressed) files and later converted to

24-bit, 31 MB, 4064 9 2704-pixel TIFF files for

analysis. A Riegl 3100VHS laser rangefinder (Riegl,

Orlando, FL, USA) was used as an altimeter in

conjunction with LaserLOG software (Booth et al.

2006a) to continuously read and record the airplane’s

altitude above-ground-level (AGL) below 300 m.

Altitude was displayed for the pilot on the screen of

the laptop storing the images, while stored data were

saved for later correlation with images. Planned flight

altitude for the upland survey was 100 m AGL with

an expected image resolution of 1 mm ground surface

distance (GSD) and a 3 9 4 m field of view. The

flight plan of 12 E-W flight lines totaling 121 km was

created by extracting coordinates of user-defined

points drawn on a digital raster graphic in ArcView

GIS 3.3 (ESRI, Redlands, CA), then using Track’Air

SnapXYZ flight planning software to enter the

coordinates into a flight plan utilized in flight by

Track’Air SnapShot software. Photo targets were

planned on a 0.8-km grid covering the entire pasture.

A DGPS Max differentially-corrected global posi-

tioning system (DGPS) unit (CSI Wireless, Calgary,

Alberta) with sub-meter accuracy was used to guide

the pilot to the photo targets. Booth and Cox (2006)

estimated that the cost of acquiring VLSA images

was approximately $0.08 per hectare, based on the

images acquired for a 70,800-ha rangeland watershed

in Wyoming.

SamplePoint analysis

SamplePoint is a digital ‘pointframe’ designed for

point sampling digital images. With 1 mm GSD

ground-acquired images it is has comparable accu-

racy to conventional field-methods for ground-coverFig. 1 Location of the study area in Wyoming, USA
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measurements (Booth et al. 2006b). The program

loads the images from a specified data base then

systematically locates a user-defined number of

sample points in the image—in this study we used

100 and each image had about a 3 9 4 m field-

of-view. The software takes the user from one sample

point to the next so that errors from double counting

or missing a point are avoided. SamplePoint identifies

each sample point by 4 red, 1-pixel-thick lines in a

crosshair pattern that surround but do not cover, the

sample-point pixel. Thirty buttons under the image

are labeled for users to identify designated ground-

cover characteristics. When a user classifies a point

by clicking a button, the user’s classification is saved

to the database and the next point automatically

shows up in the image window at the user-defined

zoom level. Labels can be user-defined and we

defined 16 categories: bare ground, litter, rock,

biological crust, perennial grass, annual grass, peren-

nial forb, annual forb, little sagebrush (Artemisia

arbuscula Nutt. ssp. arbuscula), silver sagebrush

(Artemisia cana Pursh), big sagebrush (Artemisia

tridentata Nutt. ssp. wyomingensis Beetle and

Young), Greene’s rabbitbrush (Chrysothamnus gree-

nei (Gray) Greene), greasewood (Sarcobatus

vermiculatus (Hook.) Torr.), spineless horsebrush

(Tetradymia canescens DC.), plains pricklypear

(Opuntia polyacantha Haw.), and unknown. The

software allows a user to zoom in or out as needed to

understand the context or detail of an image pixel.

Measuring vegetation cover (%) using

VegMeasure

We used VegMeasure v1.6.0, a software program

developed at Oregon State University to measure plant

cover on rangeland (Louhaichi et al. 2001; Johnson

et al. 2003). VegMeasure quantifies areas of specific

color, and does so for large batches of digital images

through rapid binary classification. The green leaf

algorithm (Louhaichi et al. 2001) was used to measure

green cover and the blue band and brightness algo-

rithms (Johnson et al. 2003) were used to measure bare

ground. The blue band and brightness algorithms were

used for bare ground because, in our experience, they

more accurately separated bare ground from other

parameters of ground cover. The detection threshold in

VegMeasure is a pre-process user-adjustable method

in which users are presented with side by side views of

the original image and its simplified, black and white

binary-classified depiction. The threshold for the

characteristic under consideration is manipulated

looking at the original color image. To objectively

calibrate the threshold we used SamplePoint software

(Booth et al. 2006b) to classify a 10% subset of the

images by setting the threshold to reflect the Sample-

Point measure of vegetative cover (Booth et al. 2005b,

2006b). SamplePoint has a 98% potential accuracy and

a 92% practical accuracy, the difference being due to

the pixel mixing inherent in imaging methods (Booth

et al. 2006b).

Physiographic data

Each VLSA image is geocoded by the Track’Air

system using the system’s GPS (Booth and Cox

2006). Image centerpoints were added as a layer to a

GIS (ArcView 3.3, ESRI, Redlands, CA, USA)

containing a digital elevation model (DEM) acquired

from the Wyoming Geographic Information Science

Center (WYGISC, University of Wyoming, Laramie,

WY, USA). The DEM was used to generate aspect

and slope raster layers. Using the StatMod extension

(Garrard 2002), all VLSA image centerpoints were

queried for elevation, aspect and slope.

Landsat TM5 data

A cloud-free, TM5 scene (Path 36 - Row 30) acquired

by Landsat on June 2nd, 2004 was obtained from the

Upper Midwest Aerospace Consortium (UMAC).

The scene was corrected for geometric and terrain

distortions at the US Geological Survey—Earth

Resource Observation Satellite Data Center in Sioux

Falls, SD (USA). Raw digital numbers associated

with the TM5 pixels were converted to at-satellite

radiance using gain and offset values provided by the

USGS (Markham and Barker 1986; Chander and

Markham 2003). Using ERDAS Imagine� software

(Atlanta, GA, USA) geographic location of each

VLSA image (center point) was located on the

Landsat image. Mean reflectance values in each band

were obtained for the 162 VLSA images. Several

transformed bands and vegetation indices were

derived from the six multi-spectral bands of Landsat

image (Table 1). Image transformation methods were

used to reduce the dimensionality of the six Landsat

bands to fewer bands or indices that could be related
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to certain vegetation phenomenon (Jenson 2000;

Campbell 2002).

The 162 VLSA data points were randomly divided

into two groups. Approximately two thirds (or 105) of

the data points were used for assessing the relation-

ship between the percent vegetation estimated from

the photos and Landsat image. The remaining one

third (or 57) of the data points were set aside for

validation.

Regression model development and validation

Stepwise multivariate regression analysis was used to

select a subset from the six multi-spectral Landsat

bands that accounted for most of the variability in the

dependent variable (Montgomery and Peck 1992;

Sivanpillai et al. 2006). We used an alpha value of

0.05 as the criteria for retaining a variable that was

selected in each step. The vegetation-cover measure-

ments (dependent variable) derived from VLSA

imagery using VegMeasure software were regressed

against the following four sets of independent

variables: (1) six Landsat bands, (2) six Landsat

bands and physiographic data, (3) seven transformed

bands described in Table 1, and (4) seven trans-

formed bands and physiographic data. Independent

variables of the final model were selected based on a

combination of both their individual contribution to

the model and the overall adjusted R2 value. A similar

procedure was repeated with vegetation-cover mea-

surements derived from the SamplePoint software.

Regression models developed for predicting veg-

etation cover were validated using the 57 data points

that were set aside. VegMeasure cover measurements

and estimates derived from the four regression

models were compared for assessing the adequacy

of the regression models. This was followed by a

comparison of the SamplePoint measurements and

estimates derived from the four regression models.

We also measured the correlation between Sample-

Point and VegMeasure data. To determine if the

SamplePoint and VegMeasure data sets were statis-

tically independent of each other and that an

assumption of homoscedasticity was valid even

though the VegMeasure detection threshold was

calibrated using SamplePoint, we tested the null

hypothesis that the mean of regression residuals (the

correlation coefficient is identical to the slope of the

regression line) was not equal to zero.

Results

Model calibration

The regression model containing Landsat bands 1

(blue), 3 (red), 5 (near-infrared 2) and 7 (mid-

infrared) was the best subset among the 6 raw

Landsat bands to predict the percent vegetation

measured by VegMeasure from 1 GSD (100-m

AGL) VLSA imagery (Table 2). All the independent

variables were significant in the regression model

(F = 29.16; P \ 0.001) and the adjusted R2 value

was 52%. The root mean square error associated with

this model was 8. However, the regression model

containing the Landsat bands 1, 3 and 7 and elevation

was the best predictor of measured percent vegeta-

tion. All four independent variables in the above

Table 1 Transformed

bands and indices derived

from Landsat data that were

used in this study

Name

Greenness Condition Index (GI): Band 4/Band 3

Normalized Difference Vegetation Index (NDVI): Band 4 - Band 3/Band 4 + Band 3

Vegetation Condition Index (VCI): Band 7/Band 4

Mid-IR/Red Reflectance Index (MIRI): Band 7 - Band 3/Band 7 + Band 3

Tasseled Cap Brightness: 0.29 Band 1 + 0.25 Band 2 + 0.48 Band 3 + 0.56 Band 4 + 0.44

Band 5 + 0.17 Band 7

Tasseled Cap Greenness: - 0.27 Band 1 - 0.22 Band 2 - 0.55 Band 3 + 0.72 Band 4 + 0.07

Band 5 - 0.16 Band 7

Tasseled Cap Wetness: 0.14 Band 1 + 0.18 Band 2 + 0.33 Band 3 + 0.34 Band 4 - 0.62

Band 5 - 0.42 Band 7
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regression model were significant (F = 49.95;

P \ 0.001) and the adjusted R2 value increased to

65%. Reflectance values recorded by Landsat bands 3

and 7 decreased with increases in vegetation cover as

measured by VegMeasure (inversely proportional),

whereas values in band 1 increased with vegetation

cover. Elevation was the only physiographic variable

included in the model. The root mean square error

associated with this model was 7.

Among the transformed Landsat bands, the regres-

sion model containing Vegetation Condition Index

(Band 7/Band 4), mid-IR/Red reflectance index

(MIRI), and tasseled cap brightness, greenness and

wetness bands was the best subset (F = 26;

P \ 0.001) to predict the measured percent vegeta-

tion (Table 2). The adjusted R2 value was 55% and

this was only 3% more than the model containing raw

Landsat bands. VCI, MIRI, tasseled cap brightness,

greenness and wetness bands, and elevation (m) were

the best subset (F = 36; P \ 0.001) to predict the

percent vegetation (Table 2). This model had the

highest adjusted R2 value of 67% (n = 105) and all

six transformed bands were significant (F = 36.7;

P \ 0.001). MIRI values were directly proportional

to percent vegetation content whereas all other

independent variables included in this model were

inversely proportional to percent vegetation cover.

Elevation was the only physiographic variable

included in the model. The root mean square error

associated with this model was 6.8.

The regression model containing Landsat bands 5

(mid-infrared1) and 7 (mid-infrared2) was the best

subset (F = 12.87; P \ 0.001) among the 6 raw

Landsat bands to predict the percent vegetation

measured by SamplePoint, and the adjusted R2 value

was 19% (Table 3). Inclusion of elevation did not

improve the overall significance (F = 9.8;

P \ 0.001), nor adjusted R
2

value (19%). Reflectance

Table 2 Models selected

by the stepwise regression

procedure when percent

vegetation estimate, derived

from VLSA imagery using

VegMeasure software, were

regressed against

combinations of Landsat

(original and transformed)

bands and physiographic

data as independent

variables

All regression models

significant at 95% level

(a = 0.05)

Landsat TM5 bands

% cover = 2.3 + 0.68 Band 5 - 1.91 Band 7 - 2.12 Band 3 + 2.45 Band 1

Adjusted R2 = 52%; RMSE = 8.2

Landsat TM5 bands and physiographic data

% cover = -308 + 0.16 Elevation - 0.98 Band 7 - 1.64 Band 3 + 2.27 Band 1

Adjusted R2 = 65%; RMSE = 7.0

Transformed Landsat TM5 bands

% cover = 870 - 965 Band 7/Band 4 + 1159 MIRI - 1.9 TC_B - 12 TC_G - 3.7 TC_W

Adjusted R2 = 55%; RMSE = 8.0

Transformed Landsat TM5 bands and physiographic data

% cover = 347 - 744 Band 7/Band 4 + 1043 MIRI - 1.4 TC_B - 10 TC_G - 2 TC_W

+ 0.15 Elevation

Adjusted R2 = 67%; RMSE = 6.8

Table 3 Models selected

by the stepwise regression

procedure when percent

vegetation estimate, derived

from VLSA imagery using

SamplePoint software, were

regressed against

combinations of Landsat

(original and transformed)

bands and physiographic

data as independent

variables

All regression models

significant at 95% level

(a = 0.05)

Landsat TM5 bands

% cover = 86.7 - 1.38 Band 7 + 0.56 Band 5

Adjusted R2 = 19%; RMSE = 9.0

Landsat TM5 bands and physiographic data

% cover = 5.6 - 1.11 Band 7 + 0.4 Band 5 + 0.04 Elevation

Adjusted R2 = 19%; RMSE = 9.0

Transformed Landsat TM5 bands

% cover = -95.4 + 1150 NDVI - 89.9 MIRI - 0.45 TC_B - 6.4 TC_G

Adjusted R2 = 20%; RMSE = 8.9

Transformed Landsat TM5 bands and physiographic data

% cover = -95.4 + 1150 NDVI - 89.9 MIRI - 0.45 TC_B - 6.4 TC_G

Adjusted R2 = 20%; RMSE = 8.9
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values recorded by Landsat band 7 decreased with

increases in vegetation cover as measured by Sam-

plePoint (inversely proportional), whereas band 5

values increased with vegetation cover. The root

mean square error was 9 in both models.

Among the transformed Landsat bands, the regres-

sion model containing Normalized Vegetation

Difference Index (NDVI), MIRI, and tasseled cap

brightness and greenness bands was the best subset

(F = 7.5; P \ 0.001) to predict the measured percent

vegetation (Table 3). Inclusion of elevation values

did not improve the overall significance (F = 7.5;

P \ 0.001) or the adjusted R2 value (20%). The root

mean square error associated with this model was 8.9.

Model validation

Two models that included the elevation as an

independent variable were selected and validated

using the 57 observations that were set aside earlier

(Table 2). Predicted values from the regression

models were compared with the percent vegetation

derived from VLSA imagery using VegMeasure

(Fig. 2a, b) and checked for model adequacy. Veg-

etation cover, as measured by VegMeasure from

VLSA imagery, was significantly correlated to the

predicted values using both raw (r = 0.83,

P \ 0.001) and transformed (r = 0.86, P \ 0.001)

Landsat bands. Points were spread above and below

the 1:1 line in the 20% to 50% vegetation cover

range. In the lower ranges (\20%) both models tend

to over-predict the percent vegetation cover and in

the higher ranges ([55%) the models under-predict

the values. Since the models developed using Sam-

plePoint measurements had lower R2 values

(Table 3), the validation process did not yield any

insights regarding the relationship between the mea-

surements and Landsat reflectance values.

Correlation between VegMeasure and

SamplePoint measurements

The percent cover values obtained from VegMeasure

and SamplePoint were well correlated (r = 0.64,

P \ 0.001) and the assumption of data-set homosce-

dasticity was justified (residual mean = 0.001,

P = 0.99); however, for most of the points the

VegMeasure estimates were lower than the Sample-

Point estimates (Fig. 3). All types of vegetation

including their non-chlorophyll parts (stems) were

included in SamplePoint whereas VegMeasure used

reflectance values. This could explain the lower

values obtained from the VegMeasure protocol.

Fig. 2 Regression of vegetation cover derived from VLSA

imagery with models involving raw (a) and transformed (b)

Landsat bands (Table 1)

Fig. 3 Scatter plot of the percent vegetation cover estimates

obtained from the aerial photos through the SamplePoint and

VegMeasure sampling protocols (r = 0.64)
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Discussion

VegMeasure and Landsat

The regression model with a subset of transformed

Landsat bands and elevation values was able to

account for 67% of the variance in the percent

vegetation derived from VegMeasure, whereas a

similar model with raw Landsat bands accounted

for 65% (Table 2). Models with Landsat bands were

able to account for only 52% and 55% of the

variability in the vegetation estimates derived from

VegMeasure. Several factors on the ground could

have contributed to the differences observed between

Landsat reflectance values and VegMeasure values.

First, the reflectance of wet soil in the mid infrared

region is lower in comparison to the reflectance

values of dry soil of the same type. Second, numerous

studies have demonstrated the near infrared (band 4)

is a better predictor of vegetation biomass than are

bands 1 (blue) and 3 (red). However, the reflectance

values of band 4 are also influenced by soil moisture.

The presence of wet soil patches following snow melt

could have resulted in differences in the near infrared

reflectance values. In addition, background soil color

could have also contributed to the differences though

the vegetation cover could have been similar. Todd

et al. (1998) found the red band (band 3) to be a

useful discriminator of vegetation in semi-arid

regions, since the reflectance values are a combina-

tion of bright soil background and some dry

vegetation. The regression model using the trans-

formed Landsat bands increase the adjusted R2 by

only 3%. Inclusion of tasseled cap wetness band in

both models (Table 2) indicates that soil moisture

could have influenced the reflectance values.

Incorporating elevation values improved the pre-

dictive power of the regression model. Increasing

elevation in this pasture was correlated with increas-

ing bare ground (Booth et al. unpublished data) and

thus with greater soil reflectance. The observed

increase in bare ground at the higher elevations of

the pasture could be due to a decrease in plant

cover—particularly rhizomatous grasses—resulting

from lower water infiltration and storage. The soils

in this area often appear to be of coarser materials

than soils at lower elevations. The higher-elevations

within this pasture do not appear to receive the

precipitation nor have the abundance of rock that

might account for less bare ground at elevations on

Green Mountain above the Hay Press Creek Pasture.

That elevation was a significant variable in the

regression models (raw and transformed Landsat

bands) is indicative of the ability of TM data to

capture important ecological differences that can be

correlated with finer data. Exclusion of slope and

aspect as a significant independent variable indicates

either these variables were not influencing the

vegetation reflectance values or Landsat instruments

were not sensitive enough to capture the differences.

SamplePoint, Landsat, and VegMeasure

Regression models using SamplePoint measurements

as the dependent variable with combinations of

Landsat data accounted for only 20% of the variance

(Table 3). Mid infrared bands (5 and 7) accounted for

the variability in SamplePoint measurements. Eleva-

tion was not a major contributor to the models using

SamplePoint measurement and the absence of a

significant relationship with the blue and red bands (1

and 3) indicates a lack of influence from the higher-

elevation bare ground—thus highlighting the differ-

ence between SamplePoint and VegMeasurement.

The degree of association between SamplePoint

measurements and Landsat reflectance values were

lower, though significant. Landsat and VegMeasure-

ment values were based on reflectance, whereas

SamplePoint measurements included spectral, tex-

ture, and context information derived through human

interpretation. SamplePoint measurements were anal-

ogous to an inventory of various plant life forms

irrespective of their reflectance characteristics. For

example, when a SamplePoint user found pixels that

fell on non-green parts of vegetation (live stems), it

was included in the vegetation class.

The difference between protocols and high and

low values might also be due to the fact that VLSA

data contain some motion blur at the pixel level. Blur

increases the amount of judgment a SamplePoint user

must exercise and therefore increases the suscepti-

bility of users to a bias for green color (Booth et al.

2005a, b). It is possible that in addition to assigning

brown stem vegetation to total plant cover, there were

also a percentage of drab categories (bare ground,

rock, litter) that were classified as green due to the

combination of motion blur and human bias. The

differences in the methods suggests that accurate
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Landsat analysis may be enhanced by developing

correlations among SamplePoint and VegMeasure

analyses, and between VegMeasure and Landsat data.

Understanding how these separate analyses relate to

each other may open a door that will allow Landsat

data to be used to signal subtle, but ecologically

important change and a need for a VLSA-type survey

to identify and quantify the change.

Application to rangeland monitoring

A careful assessment of bare-ground measurement

accuracy implies that at 1-mm GSD, SamplePoint

and VegMeasure are 90% and 80% respectively; but,

the latter is true only where there is a clear spectral

separation between ground-cover characteristics

(Booth et al. 2006b). VegMeasure will batch process

5-megapixel images at about 1 image/s (Booth et al.

2005b) and 11 megapixel images at\10 sec/image. It

requires about 15 min for a person to read 100 points

on an image using SamplePoint. Therefore, we

recommend the use of VLSA and VegMeasure with

Landsat for modeling extensive land areas with good

contrast between ground-cover characteristics where

*80% is an acceptable level of accuracy. Where

greater accuracy is required or where the spectral

separation of ground-cover characteristics is not

good, we recommend the use of VLSA and Sample-

Point with Landsat but emphasize that more work is

required to develop a better relationship between

SamplePoint cover data and Landsat bands or

indexes.

Conclusions

Regression models incorporating elevation values

and Landsat bands as independent variables were

better predictors of range vegetation cover (R2 = 65–

67%; P \ 0.001) than those models containing only

Landsat bands (R2 = 52–55%; P \ 0.001). However

the ability of Landsat bands to predict vegetation

cover at the low (\20%) and high ([55%) ranges is

somewhat diminished. Landsat reflectance values

accounted for more of the variability in the percent

vegetation cover measurements derived from Veg-

Measure protocol (R2 = 52–67%; P \ 0.001) than

from those derived from the SamplePoint protocol

(R2 = 19–20%; P \ 0.001). VLSA imagery can be

used to calibrate Landsat data for estimating percent

vegetation in semi-arid rangelands, thereby reducing

the need to conduct expensive field and plot surveys.

Calibrated Landsat data can be used to model

rangeland vegetation conditions in Wyoming and

similar semi-arid environments but more work is

needed to improve the models relating VLSA and

Landsat data.
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