Soil-atmosphere exchange of CH_4 , CO_2 , NO_x , and N_2O in the Colorado shortgrass steppe under elevated CO_2 A.R. Mosier^{1,4}, J.A. Morgan¹, J.Y. King¹, D. LeCain¹ & D.G. Milchunas^{2,3} ¹USDA/ARS, Fort Collins, CO; ²NREL, Colo. St. Univ.; ³Rangeland Ecosystem Science Department, Colo. St. University, USA; ⁴Corresponding author* Received 25 June 2001. Accepted in revised form 15 December 2001 Key words: global change, grasslands, greenhouse gases #### **Abstract** In late March 1997, an open-top-chamber (OTC) CO₂ enrichment study was begun in the Colorado shortgrass steppe. The main objectives of the study were to determine the effect of elevated CO₂ (\sim 720 μ mol mol⁻¹) on plant production, photosynthesis, and water use of this mixed C₃/C₄ plant community, soil nitrogen (N) and carbon (C) cycling and the impact of changes induced by CO₂ on trace gas exchange. From this study, we report here our weekly measurements of CO₂, CH₄, NO_x and N₂O fluxes within control (unchambered), ambient CO₂ and elevated CO₂ OTCs. Soil water and temperature were measured at each flux measurement time from early April 1997, year round, through October 2000. Even though both C₃ and C₄ plant biomass increased under elevated CO₂ and soil moisture content was typically higher than under ambient CO₂ conditions, none of the trace gas fluxes were significantly altered by CO₂ enrichment. Over the 43 month period of observation NO_x and N₂O flux averaged 4.3 and 1.7 in ambient and 4.1 and 1.7 μ g N m⁻² hr⁻¹ in elevated CO₂ OTCs, respectively. NO_x flux was negatively correlated to plant biomass production. Methane oxidation rates averaged -31 and -34 μ g C m⁻² hr⁻¹ and ecosystem respiration averaged 43 and 44 mg C m⁻² hr⁻¹ under ambient and elevated CO₂, respectively, over the same time period. #### Introduction During the past few decades, the atmospheric concentration of CO₂ has increased at historically unprecedented rates (IPCC, 1995), as have N₂O (CMDL, 2000) and CH₄ (IPCC, 1995). Increasing CO₂ concentrations will have a direct effect on plant production and plant communities and indirectly feed back into a number of soil biotic systems that influence long term ecosystem viability (Hungate et al., 1997a,b,c; Owensby et al., 1993a). The impact of elevated CO₂ on the shortgrass steppe, which is used extensively for grazing and is similar to regions which occupy about 8% of the US and about 11% of global land area (Bailey, 1979) has not been previously addressed. These interactive feedbacks on the soil C and N cycles * FAX No: 1970-490-8213. E-mail: amosier@lamar.colostate.edu and their influence on trace gas fluxes have potentially important impacts on the global atmospheric budgets of the gases and the long term sustainability of the grassland. Earlier studies within the shortgrass steppe have demonstrated that such grasslands play an important role in global atmospheric N2O and CH₄ concentrations; as a consumer of atmospheric CH₄, and producer of N₂O (Mosier et al., 1991, 1996, 1997). The impact of elevated CO2 on the production and consumption of other trace gases (NO_x, N₂O and CH₄) is not well understood and had not been assessed in semiarid grasslands. The few measurements of NO_x, N₂O, CH₄and CO₂ in CO₂ enrichment studies give contradictory results, and long term measurements have not been made within any ecosystem. Ineson et al. (1998) measured the soil-atmosphere exchange of N₂O, CH₄ and CO₂ semicontinuously within a free-atmosphere CO₂-enrichment (FACE) study in Switzerland for 11 d immediately after a grass (*Lolium perenne*) harvest. During the measurement period, plots were irrigated and N-fertilized with 14 g N m $^{-2}$ of ammonium nitrate. They observed that, during the brief measurement period, N_2O emissions were $\sim\!27\%$ higher under elevated (600 $\mu l~l^{-1}$) CO $_2$ while the rate of uptake of atmospheric CH $_4$ was approximately three times greater in ambient CO $_2$ soils. Dark respiration was $\sim\!10\%$ higher in ambient CO $_2$ plots than from elevated CO $_2$ plots, suggesting that more C may be stored in this grassland under elevated CO $_2$. In another study, Arnone and Bohlen (1998) moved soil-vegetation monoliths from a perennial grassland in northwestern Switzerland into greenhouses where the atmospheres were maintained at either ambient or $600 \,\mu\text{mol mol}^{-1}$ CO₂ concentration. The monoliths were maintained in the greenhouse for two years before the gas sampling was conducted. N₂O and CO₂ (net ecosystem dark respiration) fluxes were measured once immediately before harvesting the above ground vegetation and again one month later. N2O fluxes under elevated CO2 were double those observed under ambient CO₂. Ecosystem respiration was also about double under elevated CO₂ compared to ambient CO₂ monoliths. The higher N₂O and CO₂ fluxes under elevated CO₂ were attributed to improved soil moisture and increases in C supplies to soil organisms that are responsible for mineralization, nitrification and denitrification. Robinson and Conroy (1999) conducted growth chamber studies with soil columns seeded with $Panicum\ coloratum$ under ambient and $1000\ \mu mol\ mol\ ^{-1}$ CO_2 atmospheres. They measured soil nitrate concentrations and N isotopic composition of the nitrate during a 41-d growth period. In the presence of plants under elevated CO_2 , they found that the delta ^{15}N of residual soil nitrate increased. This increase was attributed to enhanced N loss by denitrification under elevated CO_2 , because of wetter soils and increased plant root oxygen consumption. They suggested that greater N_2O emissions are likely under elevated CO_2 . An open-top-chamber (OTC) study was conducted in California, USA in a mainly annual grassland (Hungate et al., 1997a,b,c). Microplots were fertilized with 20 g urea N m $^{-2}$. They simulated a first autumn rainfall event with the addition of 9-cm water to microplots contained within the OTCs. Immediately before and after water addition, gross mineralization, nitrification, ammonium and nitrate consumption and N₂O and NO fluxes were measured. Gas fluxes were measured for 9 days after wet up. Hungate et al. (1997 b,c) found that, during wet up, NO emissions were depressed by 55% in high nutrient conditions under elevated CO_2 (ambient + 360 μ mol mol⁻¹) while there was no difference among treatments in N₂O emissions. Where no additional N was supplied, NO and N₂O fluxes were not different under ambient and elevated CO_2 . In nutrient addition plots, elevated CO_2 stimulated N immobilization, decreased nitrification and decreased NO emission, thereby increasing N retention of added N during the early season wet up. Growth chamber studies suggest that plant C/N ratios, nitrogen use efficiency and water use efficiency all increase under enhancedCO₂ (Drake et al., 1996; Morgan et al., 1994; Rogers et al., 1994). In the short term, resulting increases in soil moisture contents (Hungate et al., 1997a,b,c) may accelerate rates of C and N mineralization and N availability for plant uptake. Over the long term, however, decreased litter quality will increase N immobilization rates, likely reducing N availability for plant uptake. From these observations, we hypothesized that initially elevated CO₂ would induce increased soil moisture and increased N mineralization rates. As a result, CO2, NO and N2O emissions should increase on the short term under elevated CO2, while CH4 uptake should decrease. Over the longer term, however, increased C/N ratios in plant litter and roots would result in longer term decreases in N mineralization rates, and decreased NO and N2O fluxes would be observed. To test these responses, the soil-atmosphere exchange of CO₂, NO_x, N₂O and CH₄ were monitored weekly, year-round, April 1997 to November 2000 on unchambered control, ambient CO_2 and $\sim 720 \ \mu \text{mol mol}^{-1} \ CO_2$ experimental plots in the Colorado shortgrass steppe. ## Materials and methods The CO_2 enrichment studies are being conducted at the USDA/ARS Central Plains Experimental Range (CPER) on which is located the Shortgrass Steppe long-term-ecological-research (LTER) project, about 60 km NE of Fort Collins, near Nunn, CO (40° 50′ N, 104 42′ W). The semiarid grassland site is at 1650 m elevation and has a long term average annual precipitation of \sim 320 mm. Annual mineral nitrogen input is an estimated 0.5 g N m⁻² mainly through wet and dry atmospheric deposition (Mosier et al., 1996). Table 1. Selected soil properties^a of the soil at the Open-Top-Chamber study site | | | | • | | | Total C | Bulk density
g cm ⁻³ | |-------|----|----|----|-----|-------|---------|------------------------------------| | 0–10 | 76 | 14 | 10 | 7.3 | 0.101 | 0.891 | 1.28 | | 10-20 | 74 | 15 | 11 | 8.1 | 0.077 | 0.606 | 1.42 | | 20-30 | 74 | 13 | 13 | 8.0 | 0.076 | 0.584 | 1.48 | ^aGravimetric soil water content for the 0–15 cm depth at water filled pore space of 0.2, 0.4 and 0.6 is 7.2, 14.4 and 21.6 kg kg⁻¹, respectively (Mosier et al., 1998). #### Experimental site In the fall of 1995, vegetation and soil surveys were conducted in native shortgrass steppe at the experimental site. The survey results enabled a selection of relatively similar experimental plots on the basis of soil and plant community information and documented plot differences before the treatments were implemented. The grassland community is comprised of over 25 species of forbs and grasses, but dominated by three grass species, Bouteloua gracilis (C₄, accounts for approximately 42% of total aboveground biomass), Pascopyrum smithii (C₃, 21% of total aboveground biomass) and Stipa comata (C₃, 26% of total aboveground biomass). Nine experimental plots of similar plant species composition were selected on the basis of this initial survey. The soil within the study site is a Remmit fine sandy loam (Ustollic camborthids) which holds 18% (gravimetric) water at field capacity, and 4% at the permanent wilting point (Table 1). On six of the nine plots, open-top chambers (4.5 m diameter by 3 m height) of similar design to Owensby et al. (1993a,b) were installed in March 1997 (Morgan et al., 2001a). All chambers are equipped with blowers to exchange 1.5 air volumes per minute. Three of the chambers have precision valve outlets located in-line between the blowers and the chambers and attached to a compressed CO₂ source for elevating CO₂ to approximately 720 μ mol mol⁻¹. An instrument trailer is located at the site, with data acquisition/control equipment. Carbon dioxide in the chambers is controlled only during the growing season, from approximately early April to late October. Chambers are removed in the winter. Daily precipitation is measured at a meteorological station located about 50 m from the OTCs. Precipitation falling on the chamber tops is collected and delivered to reservoirs where pumps re-apply the water back onto the experimental plots through an automated irrigation system. Water meters in the irrigation system record amounts of water applied back to plots, and additional irrigation water is added as needed to correct for occasional unequal collection among the chambers. #### Trace gas flux measurements We measured fluxes of NO_x, N₂O, CH₄ and CO₂, weekly, from two 20 cm diameter locations within each OTC and control (unchambered) plot from April 1997 through October 2000. Gas flux sampling locations were established by driving flux chamber anchors (20 cm diameter, 10 cm high PVC cylinder) 8- cm into the soil, about a year before flux measurements were begun. Midmorning of each sampling day, N₂O, CH₄ and CO₂ fluxes were measured using a vented closed chamber method (Hutchinson and Mosier, 1981; Mosier et al., 1991) where the changes in concentration of N₂O, CO₂ and CH₄ within the chamber were measured by withdrawing samples from the chamber by syringe at three time periods and analyzing the gas concentrations by gas chromatography (Mosier et al., 1996, 1997, 1998). Nitric oxide flux was monitored from the same chamber anchors on the same day using a flow-through chamber system (Martin et al., 1998) and a Thermo Environmental Instruments model 42C chemiluminescence NO-NO₂-NO_x analyzer that is housed in the instrument trailer (Mosier et al., 1998). NO_x emissions from the soil are typically > 90% NO, so fluxes will generally be discussed in terms of NO only (Martin et al. 1998; Mosier et al., 1998). Soil water content was monitored weekly to a depth of 1 m by neutron probe and time domain reflectrometry (TDR) for 0–15 cm surface soils. # Statistical analyses Gas flux measurements, soil moisture and soil temperatures within each treatment replicate (OTC or unchambered location) were averaged (n=3) for each observation time. Over each specific time interval, e.g. season, year, 4 years, data were averaged and single factor analysis of variance was performed (Microsoft Excel). Individual CO_2 treatments were compared for a designated time interval using a paired t-test. Significance levels of 0.05 were used unless specifically noted. #### Results Trace gas fluxes and soil temperature and water content over the 43 month observation period Growth of both C₃ and C₄ plants was enhanced under elevated CO₂. Both mid-season and seasonal aboveground production increased by 26% in 1997 and 47% in 1998, respectively, at elevated CO₂ with no differences in response of C₃/C₄ grasses or forbs being observed (Morgan et al., 2001a,b). Soil water content was generally higher under elevated CO₂ than within the ambient chambers and was generally similar to the unchambered control (Morgan et al., 2001a). In 1999 and 2000, a similar response of plant growth to elevated CO₂ was observed (unpublished data). Monthly precipitation at the site varied between zero and almost 160 mm with highest amounts of precipitation typically occurring during the summer months and lowest during the winter (Figure 1a). Annual precipitation, with approximately 80% falling between April and October each year, was 387, 565, 402, 557 and 299 mm during 1996, 1997, 1998, 1999, and 2000. Year 2000 was particularly dry with little winter and early spring precipitation. Approximately one third of the annual precipitation fell during a single half-hour long rain event on the 16th August. Soil volumetric water content ranged between 2 and 23% and was much greater in the unchambered control soils during the 1997 growing season than within ambient or elevated CO₂ chambers (Figures 1b and 2f). These early differences in water distribution are attributed to problems with the chamber water collection and distribution system which were partly corrected in 1997 and finally resolved in early 1998. Also, canopy air temperature in the OTCs averaged 2.6 °C warmer than over the unchambered control plots, resulting in more desiccating environments inside the OTCs (Morgan et al., 2001a). Throughout the sampling period, growing season soil water content in control soils was generally higher than in elevated CO₂ soils. Soil water content was significantly lower (P<0.05) in ambient chamber soils compared to both control and elevated CO₂ soils (Figures 1b, c and 2f; Table 2). Soil temperature (T), measured at 5 cm depth, was generally 1–2 °C higher in chambered soils than in the control plots at the time of gas flux measurements. Soil T did not differ significantly between ambient and elevated chambers (Figure 2e, Table 2). Over the 43-month measurement period, CO₂, CH₄ and N₂O fluxes were not significantly different (P>0.1) in control, ambient or elevated CO_2 locations (Table 2). Ecosystem respiration (CO2 flux) followed the anticipated seasonal trends with winter fluxes declining to near zero during the coldest periods and increasing with increased plant growth during the growing seasons (Figure 2d). Although uptake of atmospheric CH₄ into the soil was not statistically significantly influenced by CO₂ enrichment, CH₄ consumption under elevated CO2 tended to be greater than in control and ambient CO2 soils. CH4 uptake rates were typically highest during the summer and lower during the winter, but seasonal differences in uptake rates were small (Figure 2b; Table 2). There was no detected CO₂ treatment effect on N₂O emissions (Table 2). Nitrous oxide flux was low annually and differed little seasonally (Figure 2c; Table 2). N₂O emissions generally increase following precipitation events and were observed over only a relatively narrow flux range of -1 to less than $10 \mu g \text{ N m}^{-2} \text{ hr}^{-1}$. The flux of NO_x differed only between the control plots and the chambered plots and there was no discernable CO₂ effect (Table 2). NO_x emissions were much greater from the control plots during the 1997 growing season and were also significantly higher than from chambered plots during the 1998 and 1999 growing seasons, but by much smaller amounts. We attribute the treatment difference in 1997 to the timing and greater amount of rainfall that reached the control plots relative to the chambered plots that year. During the much drier 2000 growing season, NO_x fluxes did not differ among treatments (Table 2), although higher emission from ambient plots compared to elevated CO₂ chambers was observed the day after the large rain event in August (Figure 2a). Seasonal trace gas fluxes and soil temperature and water content Chambered period (April-October) During the time when the OTCs were operating, no differences in whole system respiration (dark chamber CO_2 flux measurements), CH_4 uptake or N_2O emissions were observed when fluxes were averaged over the whole period (4-period mean; Table 2). NO_x Table 2. Seasonal and mean trace gas flux rates and soil temperature and water content for April 1997 through October 2000 within the shortgrass steppe open-top-chamber ${\rm CO_2}$ enrichment study | CO ₂ treatment | CO ₂ | CH ₄ | NO _x | | Soil T | Volumetric | |---------------------------|--|--|--------------------------------|-------------|--------|---| | | $\begin{array}{c} \rm mg~C~m^{-2}\\ hr^{-1} \end{array}$ | μ g C m ⁻² hr ⁻¹ | μ g N m $^{-2}$ hr $^{-1}$ | | °C | Soil H ₂ O
m ³ m ⁻³ | | Mean Flux Rat | es April 1997– | -November 20 | 00 | | | | | Control | 56a | -29a | 11a | 1.6a | 11.4b | 11.5a | | Ambient | 43a | -31a | 4.3b | 1.7a | 12.5a | 7.7b | | Elevated | 44a | -34a | 4.1b | 1.7a | 12.3a | 10.1a | | Chambered Per | riod (April–No | ovember)-4-Pe | riod Mear | 1 | | | | Control | 74a | -31a | 15a | 1.7a | 15.9b | 11.4a | | Ambient | 56a | -31a | 6.4b | 1.8a | 17.1a | 7.1c | | Elevated | 58a | -35a | 5.0b | 1.8a | 17.0a | 9.5b | | Chambered Per | riod (April–No | ovember) For | each Year | | | | | 1997 | | | | | | | | Control | 94a | -31a | 37a | 1.8a | 17.1b | 10.5a | | Ambient | 87a | -36a | 11.9b | 1.7a | 18.6a | 5.8c | | Elevated | 70a | -36a | 11.1b | 1.1b | 18.1a | 7.1b | | 1998 | | | | | | | | Control | 86a | -30a | 15a | 1.7a | 14.3b | 13.8a | | Ambient | 62a | -30a | 5.5b | 1.6a | 15.2a | 8.7c | | Elevated | 77a | -36a | 4.9b | 1.9a | 14.8a | 11.0b | | 1999 | | | | | | | | Control | 72a | -33a | 9.0a | 1.8a | 14.4b | 12.4a | | Ambient | 47a | -33a | 5.5b | 1.6a | 15.6a | 8.1c | | Elevated | 45a | -36a | 3.6b | 1.5a | 15.6a | 11.3b | | 2000 | | | | | | | | Control | 45a | -30a | 0.1a | 1.2a | 15.9b | 11.4a | | Ambient | 34a | -27ab | 2.2a | 2.3a | 17.1a | 7.1b | | Elevated | 42a | -34a | 0.4a | 1.9a | 17.0a | 9.5a | | Unchambered l | Period (Novem | ber through l | March)-3-1 | Period Mean | | | | Control | 11.2a | −24a | -0.5a | 1.5a | 1.2a | 11.2a | | Ambient | 11.4a | -29a | -0.9a | 1.6a | 1.7a | 8.1b | | Elevated | 11.7a | -31a | -0.9a | 1.5a | 1.6a | 10.6a | | Unchambered 1 | Period (Noven | nber through | March) | | | | | 1997–1998 | 11.6 | 225 | 1.0- | 1.50 | 0.00- | 11.6 | | Control | 11.6a | -23a | -1.0a | 1.5a | 0.99a | 11.6a | | Ambient | 11.1a | −29a | -1.7a | 1.3a | 0.99a | 10.2b | | Elevated | 11.4a | −27a | -1.9a | 1.58a | 0.95a | 11.4a | | 1998–1999 | | | | | | | | Control | 11.4a | -21b | -0.39a | 2.0a | 0.67a | 13.6a | | Ambient | 12a | −28a | -0.87a | 1.9a | 1.05a | 12.3b | | Elevated | 11.9a | -30a | −0.79a | 1.5a | 1.05a | 13.2a | | 1999–2000 | | | | | | | | Control | 10.9a | -31b | -0.2a | 1.5a | 1.2a | 11.3a | | Ambient | 10.6a | -35ab | 0.1a | 2.0a | 1.7a | 8.7b | | Elevated | 11.1a | -39a | 0.1a | 1.9a | 1.6a | 11.2a | ^{*}Numbers in each column followed by the same letter are not significantly different (P>0.05) for each group of three. Figure 1. a) OTC site monthly precipitation for 1997–2000 and 80 year average; (b) volumetric soil water content, 0–15 cm depth, for the 1997–2000 growing seasons; and (c) volumetric soil water content, 0–15 cm depth, for the winter (OTC unchambered periods) during 1997–2000. Soil water measurements were made at the time of gas flux measurements, weekly from April, 1997 through October 2000. emissions were significantly higher from the control plots. Soil temperature was generally lower in control plots compared to chambered plots. Soil water content was, in order of decreasing amount, control>high chamber>ambient chamber over the 4 years. During 1997, the main differences appear in soil water content and NO_x flux. Soil water content was much lower in ambient chambers than in high chambers, which was much lower than in the control plots. NO_x flux averaged more than three times higher from the control plots than from the chambered plots. During 1998 and 1999, the same trends are evident but the differences are not as large. CO₂ emissions averaged approximately 4% higher, but not significantly (P > 0.05) from the elevated CO₂ plots and CH₄ uptake tended to be higher, but not significantly (P>0.05) under elevated CO_2 . Soil temperatures were not significantly (P>0.05) higher in ambient OTC soils compared to elevated CO_2 OTC soils, while both ambient and elevated CO_2 OTC soil T averaged 0.5–1.2 °C higher than control soils during the times of each year when OTCs were in place (Table 2). ## *Unchambered period (November–March)* During the time when the OTCs were removed from the CO_2 enrichment plots (winter), soil water content tended to equilibrate and soil T was not different. Nitrous oxide emissions were not different among treatments and averaged about the same during the winter as during the chambered periods. Soils were net sinks for NO_x during the winter and did not differ with CO_2 treatment (Figure 2a). Methane uptake ten- Figure 2. Trace gas flux, soil temperature and soil water content in ambient and elevated CO_2 chambers: (a) NO_X flux; (b) uptake of atmospheric CH_4 by soil micro-organisms; (c) N_2O flux; (d) dark chamber CO_2 flux; (e) 5 cm depth soil temperature; and (f) volumetric soil water content, 0–15 cm depth. Gas flux measurements for CO_2 , CH_4 and N_2O were taken weekly using a closed chamber technique (Mosier et al., 1991, 1996) and NO_X flux measurements were made using a continuous flow system at the same sampling locations (Martin et al., 1998; Mosier et al., 1998) Soil water and temperature measurements were made at the time of gas flux measurements. Measurements were made weekly from April 1997 through October 2000. ded to be higher (P>0.1) in the previously OTC plots than in the control. CO_2 flux was not different among treatments during the winter months (Table 2). # Discussion Trace gas fluxes Studies at the shortgrass steppe, along with data from other research, indicate that rates of N gas loss are similar to rates of atmospheric N inputs. This suggests that exports of N in gaseous form may well be the principal control on long-term grassland N balance and productivity (Groffman et al., 1993; Martin et al., 1998; Mosier et al., 1991). One of the dominant pathways of ecosystem N loss at the CPER and other grasslands appears to be efflux of NO (Martin et al., 1998; Mosier et al., 1998; Williams and Fehsenfeld, 1991). Emissions of NO, N₂O and N₂ from soils represents loss of end products, by products, and intermediates of several interacting biotic and abiotic processes. The responses of grasslands to increased atmospheric CO₂ will ultimately depend on a complicated interaction of plant and microbial responses that are linked through the N cycle. Elevated CO₂ enhances water use efficiency in grasslands (Morgan et al., 2001b), which can increase soil water content, thereby enhancing the supply of mineral N. At the same time, however, CO₂-induced plant production increase will increase the demand for soil N. In the tallgrass prairie Williams et al. (2001) found that soil microbes out competed the plants for available N supply. Microbial biomass control of plant N uptake in the N-limited tallgrass prairie was implicated. For the shortgrass steppe, the result may be that mineral N pools will be smaller than the typically low levels for the tallgrass prairie, as suggested by the data of Morgan et al. (1994). Enhanced production and higher C/N ratios under elevated CO₂, and transfer of that C below ground can result in immobilization of N, further limiting soil mineral N. In a California annual grassland, Hungate et al. (1997b) observed that increased N mineralization under elevated CO2 was balanced by decreased microbial production of NO, N2O and N₂. In another report, Hungate et al. (1997c) found increased N mineralization due to increased soil water content under elevated CO2, which should increase NO and N₂O emissions. This overall result would be a more rapid depletion of soil mineral N. Studies conducted in more humid grasslands indicate that NO_x and N2O emissions may be enhanced under elevated CO₂ (Arnone and Bohlen, 1998; Ineson et al., 1998; Robinson and Conroy, 1999). In contrast, Hungate et al. (1997b) observed a decrease in nitrification and NO_x emissions in an N-fertilized annual grassland under elevated CO₂. In the semi-arid shortgrass steppe we observed no general CO₂-induced effect on NO_x and N2O flux. $NO_{\rm x}$ and N_2O The lower NO_x emissions from both ambient and elevated CO₂ chamber soils compared to control may be related to N demand by the plants. Aboveground biomass production was higher in ambient chambers than control plots, and significantly higher under elevated CO₂ (Morgan et al., 2001a,b). A good relationship was observed between above ground biomass production and NO_x emissions for the 1997, 1998 and 1999 growing seasons (Figure 3). Even though N content of above ground biomass, in October of each year, tended to follow the pattern of elevated CO₂<ambient CO₂<control, the total N transferred from the soil into above ground biomass was greatest under elevated CO₂ (unpublished data). This slight trend in decrease of NO_x and N₂O emissions under elevated CO₂ supports the concept of increased N uptake by plants grown under elevated CO₂ and decreased availability of mineral N to soil microbes (Hungate et al., 1997c; Hu et al., 2001). NO_x fluxes were much higher (P < 0.01) from the control soils (15 μ g N m⁻² h⁻¹) than either the ambient OTC (6.4 μ g N m⁻² h⁻¹) or elevated CO₂ OTC (5.2 μ g N m⁻² h⁻¹). The control soils were generally wetter with less plant production than in chambered soils, likely resulting in higher N availability to soil microbes. Although soil water content was greater under elevated CO₂ than in the ambient OTC, the surface 15 cm soil on average was drier than control soil through the whole growing season within the OTCs, regardless of CO₂ enrichment. The NO_x fluxes from the control plots were about 10 times greater than were N_2O fluxes, the NO_x emissions represent a significant loss of ecosystem N. During the first year of CO_2 enrichment, 1997, NO_x emissions totaled approximately 0.16 g N m⁻² (calculated by summing daily fluxes obtained from linear interpolations of weekly observations) from the control plots compared to approximately 0.05 g N m⁻² from both ambient and elevated CO_2 chambered plots. Growing season NO_x emissions from control plots continued to be higher than from chambered plots through 1998 and 1999 though by a smaller amount than in 1997 (Table 2). This probably occurred because the unchambered soils tended to be wetter than the chambered soils (Martin et al., 1998). ### CO₂ and CH₄ fluxes Ecosystem respiration, measured as dark chamber CO₂ flux, was not affected by elevated CO₂ over the Figure 3. The relationship between above ground plant biomass production (October harvest data) in unchambered control, ambient and elevated OTC CO₂ treatments and NO_x fluxes during the 1997, 1998, and 1999 growing seasons. 43-month measurement period. During the growing seasons, when CO₂ flux included aboveground plant respiration, plant root respiration, and respiration of soil organisms, CO₂ emissions were not significantly different (P>0.3) in control, ambient or elevated CO₂ treatments. CO₂ emissions tended to be higher from the control soils (P>0.2) (Table 2), probably in response to higher soil moisture content. During the very dry 2000 spring and early summer, soils were wetter under elevated CO₂ than ambient chambers (Figure 2f) and occasionally higher CO₂ flux was observed from the elevated CO2 ecosystem than from the ambient chambers (Figure 2d). During the winter, when maintenance root respiration and soil respiration were the main sources of emitted CO₂, we found no trends or differences among the three treatments. These observations suggest that, because of the increased above ground biomass production, the system should accrue carbon under elevated CO_2 . We should be able to substantiate this supposition by the end of our 5-year study by measuring changes in soil C under ambient and elevated CO₂. The apparent imbalance between production and loss suggests that either plant respiration rates were lower under elevated CO₂ (Amthor, 1997) or that soil processes (including root respiration) were slower. Shortgrass steppe plants grown under elevated ${\rm CO}_2$ apparently do not release appreciable amounts of organic substances that stimulate microbial respiration, since little difference in system respiration was observed (Figure 2d; Table 2). This is different from the observations in the annual grassland where Hungate et al. (1996) observed stimulated microbial respiration under elevated CO₂. Ineson et al. (1998) observed a decrease in CO₂ emissions under elevated CO₂. They attributed this decrease to reduced root decomposition rates or lower soil respiration due to unspecified changes in soil physical conditions. Rates of oxidation of atmospheric CH₄ were not affected by CO₂ enrichment in our study (Table 2). This contrasts with Ineson et al. (1998) who found that net CH₄ consumption was greater in control than in elevated CO2 soils. It is not clear if elevated CO2 inhibited CH₄ oxidation or if CH₄ diffusion was decreased because of the probably wetter soils under elevated CO2. CH4 oxidation rates in our study tended to be slightly higher under elevated CO_2 (P>0.3). Soil moisture content was significantly lower (P < 0.05)in elevated CO₂ soils compared to controls and was much lower in ambient chamber soils. However, diffusion rates at higher soil water contents were likely counterbalanced by higher microbial activity under wetter conditions. The optimum soil moisture conditions for CH₄ oxidation in this soil texture is approximately 20% water filled pore space (Mosier et al., 1996). Soil feed-backs on plant responses The capability of plants to maintain continued CO₂responsiveness, i.e., continued enhanced growth, depends on their ability to obtain additional water and essential nutrients (Sage, 1994), especially N (Stitt and Krapp, 1999), which in the shortgrass steppe are often in short supply (Lauenroth and Milchunas, 1991). Most studies of plant response indicate that CO₂ enrichment leads to enhanced productivity and lower tissue concentrations of N (Conroy, 1992; Owensby et al., 1993b), as is the case in our study (Morgan et al., 2001a). There is some evidence that reductions in tissue N concentrations are due, in part, to reduced soil N availability (Rice et al., 1993). In N-limited systems, these reductions may simply be the result of higher plant demand by larger plants under CO₂enrichment, thus reducing the amount of soil available N. The possibility also exists that sequestration of more C belowground of higher C/N ratio tissues may lead to immobilization of soil N in plants/soils after long-term exposure to elevated CO₂ (Hunt et al., 1988; Morgan et al., 1994). Hu et al. (2001) suggest that soil microbial decomposition is slowed under elevated CO₂ because of N limitation. Loiseau and Soussana (2000) also observed that the soil N cycle appeared to be slowed under elevated CO₂. Conversely, Hungate et al. (1997c) found that higher soil water contents under elevated CO₂ in an annual grassland stimulated soil N mineralization and resulted in greater plant N uptake. Hungate et al. (1996) found that the direction and magnitude of CO2-induced alteration in plant N pools and ammonium uptake were species dependent. It is possible that reduced plant tissue N under elevated CO₂ is not entirely driven by available soil N, but results, at least in part, from plant acclimation response to elevated CO₂ resulting in greater N use efficiency (Drake et al., 1996). The interactions of soil microbiology and plant physiology on CO₂-related alterations in soil available N are complex and may vary with time. In the shortgrass steppe where N input is exclusively from atmospheric deposition (Woodmansee 1978), the long-term impact on N availability requires an understanding of the relationships between CO2 enrichment, water and N dynamics, represented by NO_x and N2O fluxes, and their interactive effect on plant growth. ## **Summary** From weekly measurement of trace gas exchange in control, ambient CO2 and elevated CO2 OTCs we observed no statistically significant CO₂ enrichment effect on ecosystem respiration, oxidation of atmospheric CH₄, or emissions of NO_x or N₂O. Methane oxidation tended to be higher under elevated CO₂ while NO_x and N₂O tended to be lower, but not significantly in either case. Above ground biomass production was higher under elevated CO2 (Morgan et al., 2001a), which utilized more soil N (unpublished data). Soils under elevated CO2 were wetter than in ambient CO2 OTCs, which should have enhanced soil N mineralization under elevated CO₂ (Hungate et al., 1997a,b,c). The two opposing processes apparently offset each other as NO_x and N₂O emissions, which reflect system N mineralization and nitrification, did not differ. Ecosystem respiration, which included soil respiration, was not generally higher under elevated CO₂. This suggests that readily mineralizable C exudates induced by elevated CO2 are relatively small, or that enhanced C mineralization was either too small or too ephemeral to observe with weekly measurements. As CO₂ efflux was not greatly enhanced, the possibility of increased carbon storage from greater plant production under increasing CO₂ exists, if ecosystem productivity does not become N limited. # Acknowledgements We thank Larry Tisue, David Jensen, Mary Smith, Dean Ackerman, Jim Nelson and Scott Andre who have maintained the OTCs and collected the trace gas data. We also thank the Terrestrial Ecology and Climate Change Initiative grants (NSF-IBN-9524068 and USDA/NRICGP-98-134), NSF DEB-9708596 for funding support, SGS-LTER and NASA-EOS for providing salary funds for Larry Tisue and David Jensen and USDA-ARS for providing the remaining support for this project. ## References Amthor J S 1997 Plant respiratory responses to elevated CO₂ partial pressure. *In* Advances in Carbon Dioxide Effects Research. Eds. LH Allen, MB Kirkham, DM Olszyk and C Whitman. 228 pp. Amer. Soc. of Agron. Special Publication 61. Madison, WI. Arnone J A III and Bohlen P J 1998 Stimulated N₂O flux from intact grassland monoliths after two growing seasons under elevated CO₂. Oecologia 116, 331–335. - Bailey H P 1979 Semiarid climates: their definition and distribution. *In* Agriculture In Semiarid Environments. Eds. AE Hall, GH Cannell and HW Lawton. pp 73–97. Springer-Verlag. NY. - CMDL 2000 Climate Monitoring and Diagnostic Laboratory (CMDL) of the National Oceanographic and Atmospheric Administration, Boulder, CO, USA. N₂O data from: ftp://ftp.cmdl.noaa.gov/hats/n2o/insitu GCs/global/. Hall, B.D. et al. Halocarbons and other Atmospheric Trace Species Group, CMDL Summary Report 1998–1999, NOAA/CMDL. - Conroy J P 1992 Influence of elevated atmospheric CO₂ concentrations on plant nutrition. Aust. J. Bot. 40, 445–456. - Drake B G, Gonzalez–Meler M A and Long S P 1996 More efficient plants: a consequence of rising atmospheric CO₂? Annual Rev. Plant Physiol. Molecular Biol. 48, 607–637. - Groffman P M, Rice C W and Tiedje J M 1993 Denitrification in a tallgrass prairie landscape. Ecology 74, 855–862. - Hu, S, Chapin III F S, Firestone M K, Field C B and Chiariello N R 2001 Nitrogen limitation of microbial decomposition in a grassland under elevated CO₂. Nature 409, 188–191. - Hunt H W, Ingham E R, Coleman D C, Elliott E T and Reid C P P 1988 Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology 69, 1009– 1016. - Hungate B A, Canadell J and Chapin E S 1996 Plant species mediate changes in soil microbial N in response to elevated CO₂. Ecology 77, 2505–2515. - Hungate B A, Holland E A, Jackson R B, Chapin F S, Mooney H A and Fields C B 1997a The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576–579. - Hungate B A, Lund C P, Pearson H L and Chapin F S 1997b Elevated CO₂ and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37, 89–109. - Hungate B A, Chapin F S, Zhong H, Holland E A and Field C B 1997c Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109, 149–153. - Hutchinson G L and Mosier A R 1981 Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 45, 311–316. - Ineson P, Coward P A and Hartwig U A 1998 Soil gas fluxes of N₂O, CH₄ and CO₂ beneath *Lolium perenne* under elevated CO₂: The Swiss free air carbon dioxide enrichment experiment. Plant Soil 198, 89–95. - IPCC 1995 Intergovernmental Panel on Climate Change. Climate Change 1994. Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. Houghton, JT et al. (eds). Published for the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge UK. 337 pp. - Lauenroth W K and Milchunas D G 1991 Short-Grass Steppe. In Ecosystems of the World 81. Natural Grasslands. Ed. RT Coupland. pp 183–226. Elsevier, New York. - Loiseau P and Soussana J F 2000 Effects of elevated CO2, temperature and N fertilization on nitrogen fluxes in a temperate grassland ecosystem. Global Change Biol. 6, 953–965. - Martin R E, Scholes M C, Mosier A R, Ojima D S, Holland E S and Parton W J 1998 Controls on annual emissions of nitric oxide from soils of the Colorado shortgrass steppe. Global Biogeochem. Cycles 12, 81–91. - Morgan J A, Knight W G, Dudley L W and Hunt H W 1994 Enhanced root system C-sink activity, water relations and aspects of nutrient acquisition in mycotrophic *Bouteloua gracilis* subjected to CO₂ enrichment. Plant Soil 165, 139–146. - Morgan J A, LeCain D R, Mosier A R and Milchunas D G 2001a Elevated CO₂ enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Global Change Biol. 7, 451–466. - Morgan J A, Newton P C D, Nosberger J and Owensby C E 2001b The influence of rising atmospheric CO₂ on grassland ecosystems. Proceedings of the XIX International Grasslands Congress. pp. 973–980. Brazilian Society of Animal Husbandry, Sao Paulo, Brazil. - Mosier A R, Schimel D S, Valentine D W, Bronson K F and Parton W J 1991 Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands. Nature 350, 330–332. - Mosier A R, Valentine D W, Parton W J, Ojima D S, Schimel D S and Delgado J A 1996 CH₄ and N₂O fluxes in the Colorado shortgrass steppe: I. Impact of landscape and nitrogen addition. Global Biogeochem. Cycles 10, 387–399. - Mosier A R, Parton W J, Valentine D W, Ojima D S, Schimel D S and Heinemeyer O 1997 CH₄ and N₂O fluxes in the Colorado shortgrass steppe:2. Long-term impact of land use change. Global Biogeochem. Cycles 11, 29–42. - Mosier A R, Parton W J and Phongpan S 1998 Long-term large N and immediate small N addition effects on trace gas fluxes in the Colorado shortgrass steppe. Biol. Fertil. Soils 28, 44–50. - Owensby C E, Coyne P I and Auen L M 1993a Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Plant Cell Environ. 16, 843–850. - Owensby C E, Coyne P I, Ham J M, Auen L M and Knapp A K 1993b Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO₂. Ecol. App. 3, 644–653. - Rice C W, Garcia F O, Hampton C O and Owensby C E 1994 Soil microbial response in tallgrass prairie to elevated CO₂. Plant Soil 165, 67–74 - Robinson D and Conroy J P 1999 A possible plant-mediated feed-back between elevated CO₂, denitrification and the enhanced greenhouse effect. Soil Biol. Biochem. 31, 43–53. - Rogers H H, Runion G B and Krupa S V 1994 Plant responses to atmospheric CO₂ enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 83, 155–189. - Sage RF 1994 Acclimation of photosynthesis to increasing atmospheric CO₂: The gas exchange perspective. Photosynth. Res. 39, 351–368. - Stitt M and Krapp A 1999 The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Pland Cell Environ. 22, 583–621. - Williams E J and Fehsenfeld F C 1991 Measurement of soil nitrogen oxide emissions at three American ecosystems. J. Geophys. Res. 96, 1033–1042. - Williams M A, Rice C W and Owensby E E 2001 Nitrogen competition in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Soil Sci. Soc. Am. J. 65, 340–346. - Woodmansee R G 1978 Additions and losses of nitrogen in grass-land ecosystems. Bioscience 28, 448–453. Section editor: R. Merckx