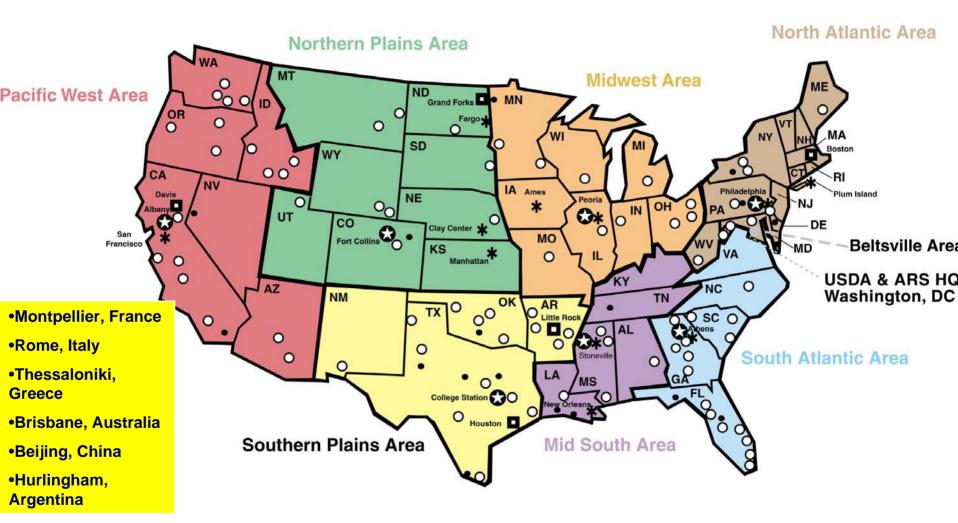


Profile of the Agricultural Research Service

- Scientific research arm of USDA
- Farm-to-table research scope
- Information and technology transfer
- National Programs
- 1,100+ projects

- FY06 Budget–\$1.1 billion
- 9,000+ employees
- 2,500+ scientists
- 100+ laboratory locations
- International collaboration
- Partnerships with other Federal agencies, universities and industry



Agricultural Research Service Area Organization

Area

* Research Centers

Human Nutrition Centers

- O Research Locations
- Research Worksites

ARS Mission

ARS conducts research to develop and transfer solutions to agricultural problems of high national priority and provide information access and dissemination to:

- ensure high-quality, safe food, and other agricultural products
- assess the nutritional needs of Americans
- sustain a competitive agricultural economy
- enhance the natural resource base and the environment, and
- provide economic opportunities for rural citizens, communities, and society as a whole.

How Do We Meet Our Mission?

- Through National Programs
 - A National Program is a set of research projects directed toward common goals to solve agricultural problems of high National priority.
 - National Programs are outcome driven, e.g., "A safer food supply"

ARS National Programs

Animal Production

Food Animal Production (101)

Animal Health (103)

Veterinary, Medical, and Urban Entomology (104)

Aquaculture (106)

Natural Resources

Water Quality & Management (201)

Soil Resource Management (202)

Air Quality (203)

Global Change (204)

Rangeland, Pasture & Forages (205)

Manure & Byproduct Utilization (206)

Integrated Agricultural Systems (207)

Bioenergy & Energy Alternatives (307)

Crop Production

Genetic Resources, Genomics and Genetic Improvement (301)

Plant Biological & Molecular Processes (302)

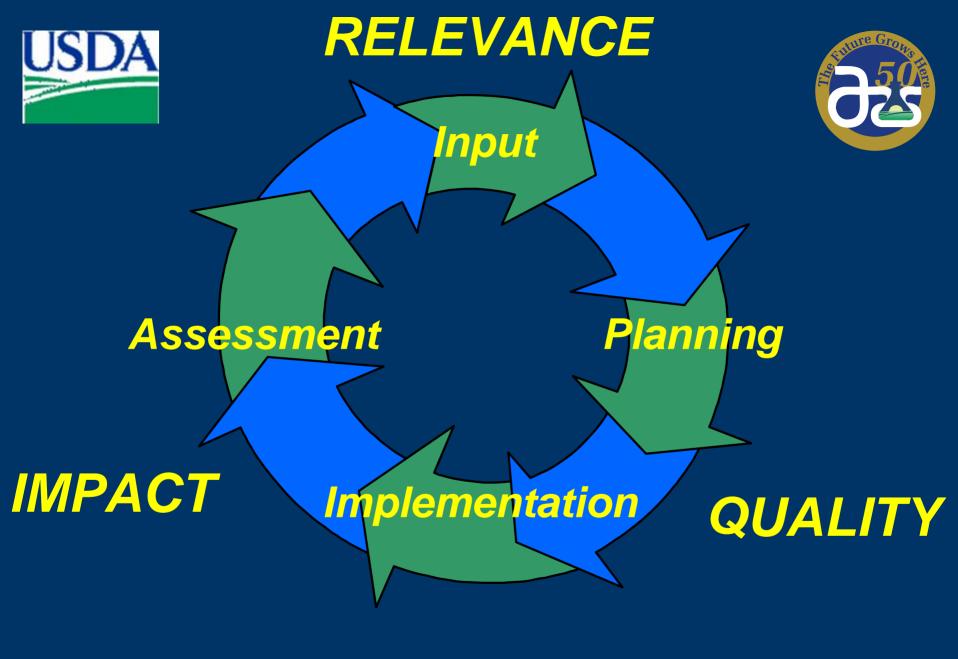
Plant Diseases (303)

Crop Protection & Quarantine (304)

Crop Production (305)

Methyl Bromide Alternatives (308)

Human Nutrition


Human Nutrition (107)

Food Safety (Animal & Plant Products) (108)

Quality and Utilization of Agricultural Products (306)

ARS National Program System

USDA- ARS Input

Executive and Legislative Branch

Customers,
Partners &
Stakeholders

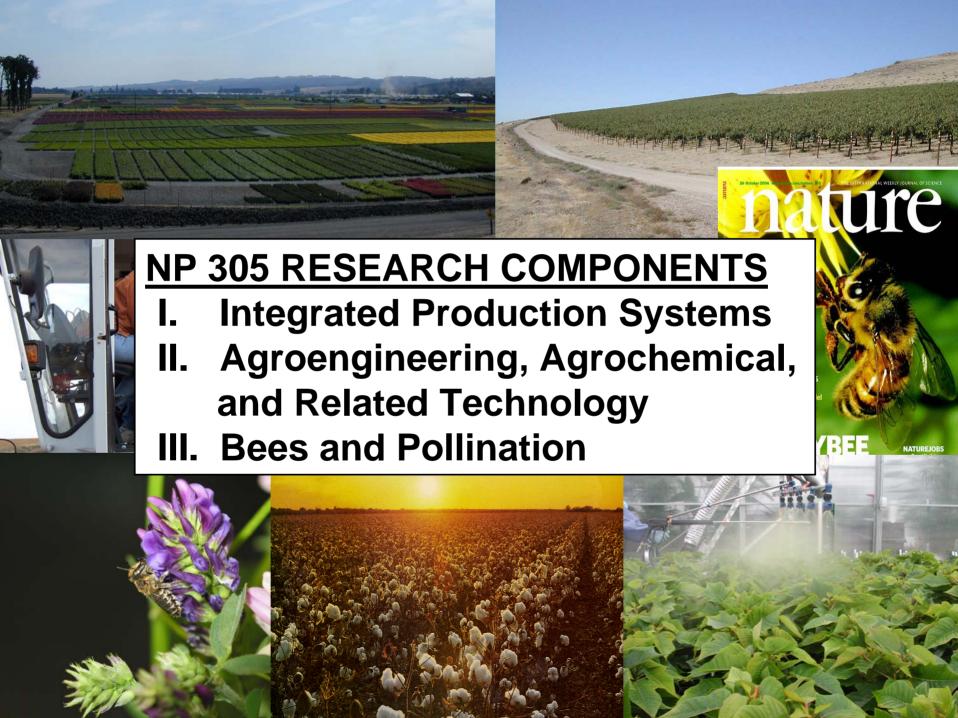
ARS
Program &
Budgeting
Priorities

Agency
Scientists
&
Managers

I Scientific Communities

NP 305 National Program Staff Team

Commodities in NP305


- Bees
- Berries and Cane Fruits
- Grapes
- Apple
- Stonefruit
- Pecan
- Trees & Forests
- Ornamental Trees

- Cut Flowers
- Potted Plants
- Bedding & GardenPlants
- Turf
- Beans
- Cucurbits
- Onions & Garlic

- Peppers
- Corn
- Wheat
- Cotton
- Sugar Cane
- Soybean
- Peanut

Component I Integrated Production Systems

Component II Agroengineering, Agrochemical, and Related Technology

Beltsville, MD

- Small Fruit Crops in Sustainable Production Systems
 - S. Wang, 20%, Plant Physiology
 - Vacant, 40%, Plant Pathology
- Accomplishments
 - Prohexadione-CA reduced fall runners & advanced branch crown formation in strawberry
 - Advanced Matted Row approach for strawberry
 - Increased atmospheric CO₂ increased phytonutrients and antioxidants in strawberry
 - Methyl jasmonate enhanced levels of anthocyanins and antioxidants in raspberry

Kearneysville, WV #1

- Small Fruit Production Systems
 - F. Takeda, 100%, Horticulture
- Accomplishments
 - Modified rotatable cross-arm trellis systems for trailing blackberries extends the harvest season in the eastern U.S.
 - New transplant propagation system extends the harvest season by producing strawberry plants that flower and fruit in the fall in the eastern U.S.

Kearneysville, WV #2

- Integrated Orchard Management & Automation for Deciduous Tree Fruit Crops
 - -D. Glenn, 100%, Soil Science
 - -T. Tworkoski, 100%, Plant Physiology
 - -T. Leskey, 100%, Entomology
 - -M. Brown, 100%, Entomology
 - -S. Miller, 100%, Horticulture
 - -Vacant, 50%

Recent Accomplishments

- -Surround WP Crop Protectant Particle film coating
 - Insect & weed control, sunburn& freeze protection
- -IPM strategies for tree fruit production systems
- Development new peach tree forms to increase yields
- -Mechanical harvesting system for cherries
- -Apple cultivar evaluations
- -Apple conveyor system
- Apple bin filling device

Byron, GA

- Pecan Cultivation and Disease Management
 - Bruce Wood (90%), Horticulture
 - Charles Reilly (100%), Plant Pathology
- Accomplishments
 - Nickel deficiency in pecan
 - Mouse-ear, little-leaf, replant
 - Diagnosis
 - Management

Florence, SC

- Enhancing the Sustainability of Cotton Production in the Southeast USA
 - P. Bauer, 40%, Agronomy
 - B. Campbell, 100%, Genetics
 - J. Novak, 10%, Soil Science
- Accomplishments
 - Conservation tillage for cotton in southeast US
 - Open-end spinning performance of cotton
 - Cotton cultivar testing

New Orleans, LA

- New & Improved Cultural Practices for Sustainable Sugarcane Production and Environmental Protection
 - R. Johnson, 100%, Agronomy
 - R. Viator, 100%, Plant Physiology
- Accomplishments
 - Green-cane harvest of sugarcane
 residue blanket reduces viold in
 - residue blanket reduces yield in ratoon crop
 - Precision agriculture techniques for sugarcane

Lane, OK

 Yield & Quality of Vegetable Crops in Conventional & Organic Production Systems

- -V. Russo, 100%, Plant Physiology
- -C. Webber III, 100%, Agronomy

Accomplishments

Integrated production systems for veggies – organic
 & conventional

Morris, MN

- Biological & Management Strategies to Increase Cropping Efficiency in Short-Season & High-Stress Environments
 - A. Jaradat, 20%, Agronomy
 - D. Archer, 10%, Genetics

- -F. Forcella, 70%, Agronomy
- -R. Gesch, 60%, Plant Physiology
- -S. Papiernik, 20%, Soil Science

Accomplishments

- SeedChaser, SolarCalc, WeedCast, WeedEm, WeedTurf, WheatScout
- Production system for cuphea

2005 marked the first-ever commercia

Davis, CA

- Sustainable Floriculture Production
 - C. Jiang, 100%, Plant Physiology
- Accomplishments
 - Identified key gene that controls leaf abscission
 - Evaluated new sleeve materials coated with a chlorine-based N-halamine technology to reduce botrytis infection during transport and storage

Corvallis, OR

- Production Systems to Promote Yield & Quality of Grapes in the Pacific Northwest
 - -J. Tarara, 100%, Horticulture
 - -J. Lee, 100%, Food Technology
 - -K. Shellie, 100%, Horticulture

Accomplishments

- –Environmental triggers causing sunscald in 'Merlot' grapes
- -Trellis tension monitor for yield estimation and crop monitoring in grapes

Dawson, GA

- Develop & Transfer Irrigated & Non-irrigated Peanut
 Management Systems and Technology
 - R. Sorenson, 100%, Agronomy
 - R. Nuti, 100% Agronomy
- Accomplishments
 - Surface vs. sub-surface drip irrigation
 - Planting row pattern and orientation

Wooster, OH #1

- Biological, Microclimate, & Transport Processes Affecting Pest Control Application Technology
 - H. Zhu, 100%, Agricultural Engineering
 - M. Reding, 10%, Entomology
 - C. Krause, 10%, Plant Pathology

Accomplishments

- Improved air-assist pesticide sprayer for dense canopied nursery crops
- Software that estimates drift potential for spray pesticide applications
- Monitoring system for water & fertilizer for pot-inpot containerized production systems

Wooster, OH #2

Improving Crop Protection Technology for Horticulture Crops

- R. Derksen, 100%, Agricultural Engineering
- C. Krause, 10%, Plant Pathology
- Vacant, 100%

Accomplishments

- Model to predict impact of sprayer components on the viability of insecticidal nematodes
- New application technologies that improve pesticide efficacy & reduce pesticide rates

Wooster, OH #3

- Develop Improved Technologies for Soil-less Greenhouse Plant Production to Minimize Water, Labor, Agrochemical inputs & Environmental Impacts
 - J. Locke, 100%, Plant Pathology
 - J. Frantz, 100%, Horticulture
 - C. Krause, 70%, Plant Pathology

- "Virtual Grower" software to design greenhouses
- Proteins responsive to boron stress

College Station, TX

Aerial Application Technology for Crop Production & Protection

- -W. Hoffman, 100%, Agricultural Engineering
- -Y. Lan, 100%, Agricultural Engineering
- -B. Fritz, 100%, Agricultural Engineering
- -D. Martin, 100%, General Engineering
- -J. De Dios Lopez, 100%, Entomology
- -J. Westbrook, 50%, Meteorology

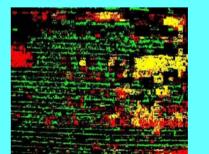
Accomplishments

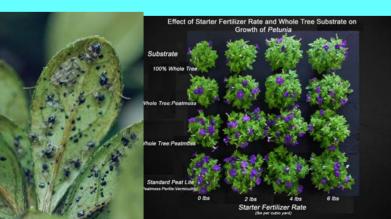
- Nozzle atomization models for helicopter and fixedwing aircraft spray applications
- Demonstrated that wind speed was the primary factor influencing transport & fate of aerial applied spray
- Validated model to predict impact of environmental & equipment parameters on spray deposition and movement

Stoneville, MS

- Development of Pesticide Application Technologies for Spray-Drift Management and Targeted Spraying
 - S. Thomson, 90%, Agricultural Engineering
 - J. Williford, 50%, Agricultural Engineering
 - J. Hanks, 20%, Agricultural Engineering
 - Vacant, 100%, Misc.
 - Vacant, 100%, Misc.

Accomplishments


Variable-rate aerial application systems



New Projects

- Development of Integrated Systems for Subtropical/Tropical Fruit Crop Production – Mayaquez, Puerto Rico
- Southeastern Production Systems for Small Fruits, Ornamentals, and Vegetables – Poplarville, MS

Contributing Projects

Location	Title	Primary NP
Davis, CA	Sustainable Management of Grapevine Diseases & Weeds	303
Albany, CA	Biologically based Integrated Management of Weeds on Western Rangeland Watersheds	304
Maricopa, AZ	Evaluation, Improvement, and Development of New/Alternative Industrial Crops	301
College Station,	Ecologically-based Management of Boll Weevils & Post-eradication Crop Pests	304
Lubbock, TX	Harvesting & Ginning Processes to Enhance the Profitability of Stripper Cotton	306

Contributing Projects

Location	Title	Primary NP
Stillwater, OK	Areawide Pest Management Program for Russian Wheat Aphid & Greenbug	304
New Orleans, LA	Developing Integrated Weed & Insect Pest Management Systems for Efficient & Sustainable Sugarcane Production	304
Stoneville, MS	Develop Soybean Genotypes & Management Systems for Early Season & Stress Environments	301
Stoneville, MS	Genetic-physiological Team Research to Improve Production, Fiber Quality, and Competitive Ability of Cotton	301
Stoneville, MS	Critical Biological Factors Determining Weediness	304 50

Contributing Projects

Location	Title	Primary NP
Stoneville, MS	Weed Biology & Ecology, & Development of Sustainable Integrated Weed Management Systems for Cotton, Soybean, Corn	304
Stoneville, MS	Augmentative Bioherbicide Strategies for Control of Invasive Weeds	304
Morris, MN	Soil Carbon cycling, Trace Gas Emission, Tillage & Crop Residue Management	204
Tifton, GA	Sustainable Systems for Integrated Pest Management & Conservation & Enhancement of Natural Enemies	304
Beltsville, MD	Management of Cover Crops for Enhancement of High Value Cropping Systems	207 50

Select Accomplishments from Contributing Projects

- Distribution of and management for armellaria root rot on grape
- Production systems for guayule and lesquerella
- Cover crop management system for date production
- Early planting system for cotton

NP305 Customer Workshop Bee Program: Where We've Been

K. Hackett February 20, 2007

Introduction

Component III: Bees and Pollination

History of the Bee Program: 1999-Present

Customer Meeting: November 19-20, 1999, College Park, Maryland

Proposed Bee Lab Closings for FY03

ARS BUDGET AND LAB IDENTITY

.700

.400

.300

.300

.500

Funding (\$)
1999

Bee Lab	
Baton Rouge	
Beltsville	
Tucson	
Weslaco	
Logan	

seitsville	1,926,500
ucson	1,003,800
Veslaco	1,289,300
.ogan	986,700

Subtotal permanent
Other Labs
Fargo
Gainesville
Montpellier
Subtotal temporary

One Time Allocations

Total	\$6,598,50

<u>999</u>	<u>2006</u>
1,392,200	\$2,294
1,926,500	2,061
1,003,800	1,124
1,289,300	1,879
986,700	1.594

0

0

0

0

\$8,954,200
64,600

208,400

Lab Identity

Honey Bee Breeding Honey Bee Disease Honey Bee Health Honey Bee IPM Non-Apis Bees

(36% increase permanent)

(41% increase in effort)

Non-Apis Bee Overwintering Honey Bee Pheromones Honey Bee Hive Environment

\$9,322,200 00

\$6,598,500

Bee Sequencing \$750,000 (USDA/REE) \$7,000,000 (NIH)

Almond Study \$76,000 (ARS Administrator's Account)

CHANGES IN PERSONNEL SINCE 1999

ARS Bee Research Budget and Personnel

RESEARCH AT THE BATON ROUGE LAB

Scientist Research Focus

T. Rinderer (RL) Russian Bee Breeding & Management

L. Bourgeois Marker-assisted Selection; Molecular Biology

R. Danka

Mite Resistance Breeding

Russian Bee Pollination

L. DeGuzman Russian Bee: Mite Resistance Mechanisms

Small Hive Beetle Incidence in Mite-resistant Colonies

J. Harris Mite Resistance (including VSH Trait) Breeding

A. Sylvester Molecular Biology: Chalkbrood

J. Villa Tracheal Mite Resistance

RECENT ACCOMPLISHMENTS

- o SMR/VSH Trait
- o Russian Bee

RESEARCH ROLES AT THE BELTSVILLE LAB

Scientist

Research Focus

J. Pettis (RL) IPM

Y. Chen Viruses, and Varroa Impact

J. Evans Genomic Tools for Disease Management

Vacant (vice-Collins) Germplasm Preservation and Honey Bee Stock

RECENT ACCOMPLISHMENTS

- o Germplasm Preservation
- o Varroa Control: Beltsville Screen Insert and Formic Acid Gel
- o Small Hive Beetle: Control in Honey Houses
- o American Foulbrood Control: FDA Approval for Tylosin;

Cross-protecting Bacteria

o Importance of Varroa as a Virus Vector

RESEARCH ROLES AT THE TUCSON LAB

Scientist

Research Focus

G. DeGrandi-Hoffman (RL) Africanized Honey Bee: Population Dynamics

Varroa: Control w/ Pheromones as Miticides

Pollination (oilseed crops to replace petroleum)

Pollination: Transgenic Crops

B. LeBlanc Nutritional Chemistry

D. Sammataro Varroa: Biology and IPM

RECENT ACCOMPLISHMENTS

o Pollen Substitute Diet

RESEARCH ROLES AT THE WESLACO LAB

Scientist

Research Focus

J. Adamcyzk (RL) Integrated Resistance Management: Varroa & SHB

K. Aronstein Genomics, especially Immune Response to Chalkbrood

F. Eischen Varroa: Control

Pollination: Almonds

P. Gregory Bee Health During Migratory Beekeeping

RECENT ACCOMPLISHMENTS

- o Immune Response to Infection
- o Slow Release Thymol for Varroa Control

RESEARCH ROLES AT THE LOGAN LAB

<u>Scientist</u>	Research Focus
R. James (RL)	Alfalfa Leafcutting Bee: Chalkbrood Control Alafalfa Leafcutting Bee: Immunity to Fungi Disease Control in Other Non-Apis Bees, e.g., BOB
J. Cane	Blue Orchard Bees for Almond Pollination New Pollinators for Small Fruits & Berries Pollination for Land Restoration
T. Griswold	New Pollinators: Biology and Systematics Diversity of Wild Bees in the U.S.
T. Pitts-Singer	Alfalfa Leafcutting Bee: Pollenball Control Alfalfa Leafcutting Bee: Management Chemically-mediated Nesting Behavior in Bees
J. Strange	Bumble Bee Pollinators: Tomato, Blueberry Bumble Bee Pollinators: Decline of Native Species

RECENT ACCOMPLISHMENTS

o Chalkbrood Disease: Epidemiology and Control

o Management of Blue Orchard Bee

o Pollination: Restoration of Wildlands

o New Pollinators and Systematics

RESEARCH ROLES AT NON-BEE LABS

Other Labs

Fargo, ND G. Yocum

J. Rinehart

Gainesville, FL P. Teal

T. Arbogast

M. Carroll (post doc)

B. Torto (visiting scientist)

Kearneysville, WV M. Glenn/G. Puterka

Montpellier, France W. Meikle

Honey Bee: Small Hive Beetle & Varroa Traps

Bee Physiology (Diapause): ALB, BOB

Bee Physiology (Diapause): ALB, BOB

Honey Bee: Small Hive Beetle Population Dynamics

Honey Bee: Varroa Pheromones Honey Bee: Pest Pheromones

Project Ended: Varroa Control by Sugar Esters

Honey Bee: Varroa Control with Hive Fungi

Honey Bee: Hive Weight Dynamics

RECENT ACCOMPLISHMENTS

- o Small Hive Beetle Trap
- o Sugar Esters for Varroa Control

