Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Bioremediation of Contaminated Sediments and Dredged Material

EPA Grant Number: R825513C019
Subproject: this is subproject number 019 , established and managed by the Center Director under grant R825513
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: HSRC (1989) - South and Southwest HSRC
Center Director: D. Reible, Danny
Title: Bioremediation of Contaminated Sediments and Dredged Material
Investigators: Ward, C. Herb , Hughes, J. B.
Institution: Rice University
EPA Project Officer: Manty, Dale
Project Period: January 1, 1992 through January 1, 1995
Project Amount: Refer to main center abstract for funding details.
RFA: Hazardous Substance Research Centers - HSRC (1989)
Research Category: Hazardous Substance Research Centers

Description:

Objective:

The goal of this project was to develop the technical basis for evaluating the potential of bioremediation processes for cost-effective treatment and risk reduction of contaminated sediments (CS) and dredged material (DM).

Specific objectives of this project included:

1) Determine the unique properties of sediment-associated contaminants that influence their biodegradability.
2) Identify and quantify the factors that control the biodegradation of contaminants in sediments.
3) Assess the limits (how clean is clean?) of realistic field approaches to the bioremediation of CS and DM.
4) Use mass balance approaches to assess the potential risk reduction benefits of bioremediation systems.
5) Explore the feasibility of in-situ and in place bioremediation of CS and DM based on knowledge of sediment structure and mechanics and dredging and disposal operations.

Approach:

The biodegradation of PAHs was studied in laboratory-scale slurry systems. Sediments for use in these experiments were collected on several occasions. Initially, sampling focused on four locations in the Houston Ship Channel - Turning Basin, Vince Bayou, San Jacinto Monument and Patrick Bayou. An additional sediment sampling location was identified approximately 30 miles south of the ship channel in Dickinson Bayou. Following sample collection, sediments were stored at 4 C in sealed wide-mouth glass containers. Prior to use in experimental systems, individual containers were homogenized and large debris (shells, sticks, etc.) were removed. Initially, studies were conducted to assess the ability of indigenous bacteria to mineralize PAHs. These experiments have clearly demonstrated mineralization of naphthalene, fluorene, and phenanthrene. In most cases, PAH degradation occurs without an observable lag (less than 24 hours). However, PAH mineralization rates are relatively slow - presumably due to their limited aqueous solubility. To develop an elevated population of indigenous PAH degraders for use in experimental systems, an enrichment culture was established using Dickinson Bayou sediments (10% to 15% solids) by routinely adding naphthalene, fluorene, and phenanthrene and other PAHs.

Slurry reactors were used to evaluate factors including: adsorption/desorption rates; the rate and extent of phenanthrene mineralization (by indigenous sediment bacteria); the rate and extent of contaminant biodegradation from sediments; and factors which may influence the design/operation of engineered bioreactors for use in remediation of contaminated sediments. Lab-scale slurry reactors ranged in size from 60 mL to 250 mL total volume depending on the requirements of an individual experiment. Mass balances were facilitated by the use of 14C-labeled PAHs.

A focus of this project was to assess the ability to increase biodegradation rates through addition of surfactants. In theory, surfactants have the potential to increase degradation rates by enhancing hydrocarbon solubility and reducing interfacial tension, but there are conflicting reports on the effect of surfactants on biodegradation rates in the literature. Studies focused on non-ionic surfactants and their impact in the rate and extent of biodegradation were achieved.

Publications and Presentations:

Publications have been submitted on this subproject: View all 25 publications for this subprojectView all 427 publications for this center

Journal Articles:

Journal Articles have been submitted on this subproject: View all 6 journal articles for this subprojectView all 114 journal articles for this center

Supplemental Keywords:

bioavailability, volatile organics, and remediation. , Water, Scientific Discipline, Waste, RFA, Chemical Engineering, Analytical Chemistry, Hazardous Waste, Environmental Engineering, Environmental Chemistry, Contaminated Sediments, Hazardous, Ecology and Ecosystems, Bioremediation, remediation, risk assessment, PAHs, decontamination of soil, biodegradation, biotransformation, risk management, waste mixtures, contaminated sediment, slurry reactors, metal compounds, anaerobic biotransformation, environmental technology, CERCLA, contaminants in soil, contaminated soils, hazardous waste management, contaminated soil, bioremediation of soils, hazardous waste treatment, PAH, sediment treatment, technology transfer

Progress and Final Reports:
Final Report


Main Center Abstract and Reports:
R825513    HSRC (1989) - South and Southwest HSRC

Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R825513C001 Sediment Resuspension and Contaminant Transport in an Estuary.
R825513C002 Contaminant Transport Across Cohesive Sediment Interfaces.
R825513C003 Mobilization and Fate of Inorganic Contaminant due to Resuspension of Cohesive Sediment.
R825513C004 Source Identification, Transformation, and Transport Processes of N-, O- and S- Containing Organic Chemicals in Wetland and Upland Sediments.
R825513C005 Mobility and Transport of Radium from Sediment and Waste Pits.
R825513C006 Anaerobic Biodegradation of 2,4,6-Trinitrotoluene and Other Nitroaromatic Compounds by Clostridium Acetobutylicum.
R825513C007 Investigation on the Fate and Biotransformation of Hexachlorobutadiene and Chlorobenzenes in a Sediment-Water Estuarine System
R825513C008 An Investigation of Chemical Transport from Contaminated Sediments through Porous Containment Structures
R825513C009 Evaluation of Placement and Effectiveness of Sediment Caps
R825513C010 Coupled Biological and Physicochemical Bed-Sediment Processes
R825513C011 Pollutant Fluxes to Aquatic Systems via Coupled Biological and Physicochemical Bed-Sediment Processes
R825513C012 Controls on Metals Partitioning in Contaminated Sediments
R825513C013 Phytoremediation of TNT Contaminated Soil and Groundwaters
R825513C014 Sediment-Based Remediation of Hazardous Substances at a Contaminated Military Base
R825513C015 Effect of Natural Dynamic Changes on Pollutant-Sediment Interaction
R825513C016 Desorption of Nonpolar Organic Pollutants from Historically Contaminated Sediments and Dredged Materials
R825513C017 Modeling Air Emissions of Organic Compounds from Contaminated Sediments and Dredged Materials title change in last year to "Long-term Release of Pollutants from Contaminated Sediment Dredged Material"
R825513C018 Development of an Integrated Optic Interferometer for In-Situ Monitoring of Volatile Hydrocarbons
R825513C019 Bioremediation of Contaminated Sediments and Dredged Material
R825513C020 Bioremediation of Sediments Contaminated with Polyaromatic Hydrocarbons
R825513C021 Role of Particles in Mobilizing Hazardous Chemicals in Urban Runoff
R825513C022 Particle Transport and Deposit Morphology at the Sediment/Water Interface
R825513C023 Uptake of Metal Ions from Aqueous Solutions by Sediments
R825513C024 Bioavailability of Desorption Resistant Hydrocarbons in Sediment-Water Systems.
R825513C025 Interactive Roles of Microbial and Spartina Populations in Mercury Methylation Processes in Bioremediation of Contaminated Sediments in Salt-Marsh Systems
R825513C026 Evaluation of Physical-Chemical Methods for Rapid Assessment of the Bioavailability of Moderately Polar Compounds in Sediments
R825513C027 Freshwater Bioturbators in Riverine Sediments as Enhancers of Contaminant Release
R825513C028 Characterization of Laguna Madre Contaminated Sediments.
R825513C029 The Role of Competitive Adsorption of Suspended Sediments in Determining Partitioning and Colloidal Stability.
R825513C030 Remediation of TNT-Contaminated Soil by Cyanobacterial Mat.
R825513C031 Experimental and Detailed Mathematical Modeling of Diffusion of Contaminants in Fluids
R825513C033 Application of Biotechnology in Bioremediation of Contaminated Sediments
R825513C034 Characterization of PAH's Degrading Bacteria in Coastal Sediments
R825513C035 Dynamic Aspects of Metal Speciation in the Miami River Sediments in Relation to Particle Size Distribution of Chemical Heterogeneity

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.