# Engineering Solutions for the US Grape & Wine Industries

Nick Dokoozlian E&J Gallo Winery and the National Grape and Wine Initiative



#### National Grape and Wine Initiative

#### Objectives

- Create a common vision for the US grape and wine industries
- Identify strategic research and extension priorities
- Build a partnership among public and private sectors for sustained investment in research and outreach activities to drive industry growth

# US Grape & Wine Industry Top line metrics

|                                                     | Acres   | Farm-gate value |
|-----------------------------------------------------|---------|-----------------|
| Wine grapes<br>California<br>Washington<br>New York | 600,000 | 4.0 Billion     |
| Raisin grapes                                       | 200,000 | 0.5 Billion     |
| Table grapes                                        | 125,000 | 1.2 Billion     |
| Juice grapes<br>Washington<br>New York              | 60,000  | 0.1 Billion     |

#### US Grape and Wine Industry Engineering solutions

- Publicly funded programs not focused on the grape industry
  - Land grant universities
  - USDA
- Innovation has been driven by vendors and growers
- Production efficiency = competitive advantage
- Fruit quality driving industry growth
- Aging farm labor workforce in US

#### US Grape and Wine Industry Engineering solutions

- Robotics, mechanization & automation
- Precision agriculture
- Sensors and sensor networks
- Information systems & decision aids
- Human and social dimensions and enterprise
- Education and workforce

#### Robotics, mechanization and automation

- Largest labor savings = pruning and harvest
  - Mechanical harvest of wine and juice grapes employed since the late 1960's
  - Mechanical harvest of raisin grapes increasing rapidly since the mid-1990's
  - Machine pruning (or pre-pruning) of wine grapes employed since the mid-1980's
  - No mechanization for table grapes to date
- Vision for the future fine tuning and sophistication
  - Artificial intelligence
  - Robotics



















































# Sensors and Sensor Networks

- Traditional sensor technology currently employed
  - Climate characterization for water, pest and disease management
- Next generation
  - Wireless and real-time
  - More sophisticated, physiologically based
    - Vine physiology parameters
    - Pest populations and disease incidence
    - Fruit development and composition

















### **Precision Viticulture**

- Research and adaptation in the US grape industry lagging significantly behind other regions
  - Spatial variability management
  - Input and resource management
- Need focused research and education effort to demonstrate the potential value of the technology
  - Harvest variation
  - Water and fertilizer applications
  - Pesticide applications





## **Information Systems**

- Current systems improving but not widely employed
  - -How can we make real-time data available for decision making?
    - Crop development
    - Water and fertilization needs
    - Pest and disease management
    - Harvest timing







