Columbus, Ohio Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Wetland Reservoir Subirrigation System (WRSIS)
Source Water Protection Initiative - Conservation Effects Assessment Project
Benefits of SWP Initiative and CEAP Research
 

Research Project: ENVIRONMENTAL AND SOURCE WATER QUALITY EFFECTS OF MANAGEMENT PRACTICES AND LAND USE ON POORLY DRAINED LAND

Location: Columbus, Ohio

Project Number: 3604-13000-009-00
Project Type: Appropriated

Start Date: Dec 23, 2006
End Date: Dec 22, 2011

Objective:
The overall multi-location CEAP-WAS project objective is to evaluate and develop cost-effective conservation practices, strategies, and technologies for water management and water quality protection that minimize offsite delivery of sediment, nutrients, and agrichemicals from agricultural, urban, and turf watersheds located in the humid region of the United States. The research at this location is focused on the use of conservation practices and industrial by-products as a means of improving soil and drainage water quality from rural and urban components of the landscape, including turf systems, to minimize its impact on surface public drinking water supplies. This region has unique soil and climate characteristics that make it a highly productive and economically important region. CEAP-WAS objectives in the Upper Big Walnut Creek Watershed include: 1. Measure and quantify the effects of innovative conservation practices, source water protection practices, and land use management on water quality, water quantity, and lotic ecosystems at the field, farm, and watershed scales. 2. Assess and characterize the environmental aspects of urban and golf course turf, including the development and evaluation of management strategies or technologies that utilize industrial by-products to mitigate the potential offsite transport of sediment, nutrients, and pesticides. 3. Develop and apply policy-planning tools to aid selection and placement of conservation practices to optimize profit, water quality, and conservation practice efficiency.

Approach:
Quantify the influence of conservation practices and land use on the water chemistry and hydrology of agricultural drainage ditches and streams in the Upper Big Walnut Creek watershed using a before-after-control-impact (BACI) paired watershed design. Two pairs of watersheds, one pair characterized as drainage ditches and one pair characterized as streams, have been identified and instrumented with flumes and automated samplers. Discharge and water samples will be collected automatically via Isco equipment. To quantify how much the loading to headwater streams is reduced by watershed scale adoption of nutrient and pesticide management practices, water samples will be collected using both time and flow proportional sampling. The samples will be analyzed for nutrients using colorimetric flow injection analysis and for pesticides using gas chromatography and ELISA. Apply a calibrated watershed scale model to aid selection, placement and extent of BMPs. Determine the impact of conservation practices on aquatic communities in lotic ecosystems by measuring and quantifing in-stream habitat (water depth, velocity, wet width, and substrate types), in situ water chemistry measurements (dissolved oxygen, pH, conductivity, water temperature), and aquatic communities in each site three times a year in the spring, summer, and fall for the duration of the study. Conduct field experiments to determine the influence of herbaceous riparian buffers on the physical habitat and aquatic communities in agricultural drainage ditches. Geomorphology and riparian habitat will be sampled once a year, while in-stream habitat, water chemistry, and aquatic communities will be sampled at least three times a year for two years. Laboratory, field, and modeling approaches will be used to assess and characterize the environmental aspects of urban and golf course turf, including the development and evaluation of management strategies and/or technologies. Before ¿ after watershed scale studies will be used to quantify the fate and transport as well as aid in the determination of the processes and management controlling the fate and transport of nutrients, pesticides, and sediment from turf environments and urban landscapes. Laboratory studies, replicated plots, and paired field sites will be used to evaluate innovative technologies, strategies and/or management practices. The cost benefit analysis will combine the benefits from a recreational use analysis and additional non-use value estimates of the benefits of water quality improvements with the costs of different types of practices that provide those benefits.

   

 
Project Team
King, Kevin
Smiley, Jr, Peter - Rocky
Fausey, Norman - Norm
 
Project Annual Reports
  FY 2008
  FY 2007
 
Publications
   Publications
 
Related National Programs
  Soil Resource Management (202)
  Water Availability and Water Management (211)
 
Related Projects
   CONSERVATION EFFECTS ASSESSMENT PROJECT - COLUMBUS
   ECONOMIC ANALYSIS OF THE BENEFITS OF CONSERVATION PRACTICE ADOPTION IN THE UPPER BIG WALNUT WATERSHED
   ASSESSMENT OF COMMERCIALLY MARKETED FILTER MATERIALS FOR TILE DRAINAGE OUTLETS ON GOLF COURSES
   PESTICIDE AND NUTRIENT MANAGEMENT PRACTICE IMPLEMENTATION IN UPPER BIG WALNUT CREEK CEAP WATERSHED
   QUANTIFICATION OF BMPS ON MANAGED TURF
 
 
Last Modified: 11/07/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House