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Assessment of Greenhouse Gas Emission Benefits of  
Heavy Duty Natural Gas Vehicles in the United States 

Final Report 
 

 
EXECUTIVE SUMMARY 
 
Research Objective 
 
The objective of this research effort is to reduce the uncertainty associated with the greenhouse 
gas (GHG) benefits of heavy duty natural gas vehicles by producing new exhaust emission 
factors for carbon dioxide (CO2) and methane (CH4) from different heavy duty compressed 
natural gas (CNG) and liquefied natural gas (LNG) vehicle applications through a 
comprehensive analysis of existing vehicle emissions test data.   
 
Research Context  
 
GHG emissions data and inventories associated with transportation systems are important 
because of the increasingly large share of overall anthropogenic GHG emissions from mobile 
source combustion and its relative contribution to global climate change.  At 1,770.4 million 
metric tons of CO2 equivalent in 2003, mobile sources account for approximately one third of 
overall U.S. GHG emissions, and heavy duty vehicles emit roughly 20 percent of mobile source 
emissions.1  GHG inventories and reduction strategies for the transportation sector are limited by 
the availability of emission factors, which are unavailable or uncertain for subclasses of natural 
gas-fueled heavy-duty vehicles.  Vehicle emission factors provide estimates of GHGs emitted 
per unit of fuel consumed or distance traveled.2  Accurate emission factors are important for 
entities seeking strategies to reduce emissions and as inputs to air quality models and forecasts.   
  
Research Importance 
 
Additional research on the GHG emissions from heavy-duty vehicles is necessary so that project 
developers, fleet decision makers, government policy makers, and industry researchers can 
consider the GHG consequences and risks along with the known benefits of natural gas fuel 
switching and advanced technology programs.  More accurate emission factors for heavy duty 
diesel and natural gas vehicle exhaust are important because organizations are proactively 
implementing fuel switching projects and purchasing natural gas vehicle fleets, and claiming 
GHG benefits.  For example, the Governor’s Office of the State of Washington specifically 
mentions the conversion of buses from diesel power to natural gas as an option to comply with a 

                                                 
1 U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks. (EPA 430-R-05-
003), Washington, DC., 2005.  Note: Alternative fuels account for less than one percent of total heavy duty vehicle 
emissions.   
2 The Intergovernmental Panel on Climate Change inventory guidance states that CO2 emissions are most accurately 
estimated based on the carbon content of the fuel consumed, whereas CH4 emissions should be estimated based on 
mileage-based emission factors.  
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2004 law requiring power plants to offset their CO2 emissions.3  Approximately 22 percent of all 
new transit bus purchases are for natural gas-fueled vehicles.4  While the assumptions of GHG 
benefits of natural gas-fueled vehicles may be based on the best information publicly available 
today, they are highly uncertain because of a general lack of published GHG emission 
coefficients for heavy duty vehicles.  GHG reduction estimates for fuel switching projects are 
often based on estimates of CO2 only, without considering increases in CH4 emissions from 
natural gas vehicles.  In the case of heavy duty natural gas vehicles, this may present a problem 
for the crediting of GHG benefits because these vehicles may not always reduce overall GHG 
emissions when compared with their conventional diesel-fueled counterparts.  Natural gas 
vehicles generally produce more CH4, which has a much higher global warming potential than 
CO2.  Further, under certain driving conditions, a reduction in the fuel economy of natural gas 
vehicles relative to diesel may counteract the expected CO2 benefits.   
 
Research Overview 
 
To improve the state of knowledge about the environmental effects of different natural gas 
vehicle applications, Science Applications International Corporation (SAIC) and West Virginia 
University (WVU) examined past emission tests undertaken at WVU’s mobile testing facility, 
extracted previously unpublished data on CO2 and CH4 emissions from heavy duty vehicles, 
analyzed emissions from different fuels, vehicle types, engine technologies, and drive cycles, and 
summarized the results in this Final Report.  The results of SAIC’s research reduce some of the 
uncertainty about the CO2 and CH4 emission benefits of diesel and natural gas-fueled vehicles by 
providing emission factors. 
 
Report Overview 
 
This paper presents a review of existing literature on emission factors, emission data collection 
techniques and analytic approaches; presents the results of SAIC’s analysis of available CO2 and 
CH4 GHG emission data from chassis dynamometer tests of heavy-duty vehicle exhaust; 
identifies sources of emission factor uncertainty; and provides suggestions for further reducing 
this uncertainty.  The summary includes the background, methodology, results, and conclusions.  
The research focused on emissions data from diesel-, LNG- and CNG-fueled heavy-duty 
vehicles, but the some of the paper’s findings about statistical issues may be extrapolated to 
emission factors for different vehicle types and technologies. 
 
Research Results 
 
The WVU data are insufficient to draw universal conclusions about natural gas relative to diesel 
use in heavy duty vehicles.  The analysis indicates that most emission factors that could be 
extracted from the WVU data set are not robust enough to be representative of any population.  
This is attributed to the limited number of emission tests taken from a high number of different 
                                                 
3 Office of Governor Gary Locke. “Gov. Gary Locke Signs Bills Strengthening Environmental Protection Policies,” 
State of Washington, For Immediate Release – March 31, 2004.  http://www.governor.wa.gov/press/press-
view.asp?pressRelease=1573&newsType=1.  Accessed 2 April 2004. 
4 The Natural Gas Vehicle Coalition.  NGVC.org - About Natural Gas Vehicles – Fast Facts.  
http://www.ngvc.org/ngv/ngvc.nsf/bytitle/fastfacts.htm.  Accessed 19 March 2004.   
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vehicle types and driving cycles.  The mean emission values reported in the tables reflect 
emissions from vehicles that span a wide range in model year and weight categories, which 
contributes to the lack of statistical certainty, but may be useful for estimating aggregate 
emissions from a large, heterogeneous population of heavy duty vehicles.  Owing to the few tests 
relative to the high number of variables, the emission factors could not be developed for certain 
useful subcategories of data, such as vehicle weight, number of axles, number of cylinders, or 
model year.  The results are identified by the variables of fuel type, vehicle type, and drive cycle, 
but could not be subdivided further.  To address this limitation, further research is needed to 
identify additional unpublished heavy duty vehicle emissions data sets and additional emissions 
testing based on statistical samples.  Despite the limitations of the data, some useful results were 
observed.   
 
Major findings are illustrated in Tables ES1 through ES5.  Although the resulting emission 
factors were not found to be statistically significant, the available data shown in Tables ES1 and 
ES2 suggest that for refuse trucks and school buses operating in conditions similar to the central 
business district driving cycle, total GHG emissions from natural gas-fueled vehicles may be 
equivalent or greater than diesel-fueled vehicles.  Another important result was that the CO2 and 
CH4 data results for CNG buses tested by WVU are generally consistent with the results of 
recent emission tests on some of the same vehicle types, fuel types, and drive cycles, as shown in 
Table ES3.  Table ES3 also emphasizes the strong impact of the operating conditions, as 
indicated by the drive cycle, on both CO2 and CH4 emissions from heavy duty vehicles.  Table 
ES4 presents selected results of the analysis of WVU’s heavy duty vehicle emission test data.  
Table ES5 compares selected results of the analysis of heavy duty vehicle emission test data to 
other published emission factors.   
 
Table ES1. Comparison of Refuse Truck Emissions on CBD Cycle 
Fuel Number of 

Samples 
CO2 Mean 

(g/mi) 
CH4 Mean 

(g/mi) 
GWP -Weighted 

Emissions CO2E (g/mi) 
CNG 165 2,844 14.6 3,180 
Diesel 153 3,223 Not tested 3,223 
LNG 5 2,919 Not tested Not available 
  
 
Table ES2. Comparison of School Bus Emissions on CBD Cycle 
Fuel Number of 

Samples 
CO2 Mean 

(g/mi) 
CH4 Mean 

(g/mi) 
GWP -Weighted 

Emissions CO2E (g/mi) 
CNG 68 2,008 18.5 2,434 
Diesel 18 2,001 Not tested 2,001 
  
 
Table ES3. Impact of Drive Cycle: Consistent Results for CNG Bus on CBD and NYBUS 
Cycles  
Fuel 
Type 

Vehicle 
Type/Control 
Technology 

Drive Cycle Source Mean CH4 Emissions 
(g/mi) 

Mean CO2 
Emissions (g/mi) 

This study 16.8 2,502 CBD ERMD (2001) 16.4 2,287 
This study 53.6  6,077 CNG Transit Bus 

NY BUS 
ERMD (2001) 54.5 5,609 
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Table ES4. Mean CO2 Emissions from Heavy-Duty, CNG-, LNG-, and Diesel-Fueled 
Vehicles, and Corresponding CH4 Emission Rates from Same Vehicle Samples 
Fuel 
Type 

Vehicle 
Type/Control 
Technology 

Drive Cycle 
Mean CO2 
Emissions 

(g/mi) 

Mean CH4 Emissions 
from Same Sample 

(g/mi) 

GWP -Weighted 
Emissions CO2E 

(g/mi)  
 
LNG Transit Bus CBD Cycle 2,374 11.3 2,634 

Chassis Bus Arterial Cycle 1,937 10.4 2,177 
Refuse Truck CBD Cycle 2,844 14.6 3,179 

Refuse Truck 
New York 
Garbage 
Truck Cycle 

6,810 48.3 7,922 

School Bus CBD Cycle 2,008 18.5 2,434 

Street 
Sweeper 

NYC Street 
Sweeper 
Cycle 

4,079 26.2 4,681 

Tractor Truck 
City 
Suburban 
Route 

2,018 41.7 2,977 

CNG 

Transit Bus Triple Length 
CBD 2,495 9.5 2,713 

Diesel Refuse Truck WHM Cycle 3,314 Not tested 3,314 
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Table ES5. Comparison of Reported Emission Rates for CH4 from Heavy-Duty, CNG-, LNG-, 
and Diesel-Fueled Vehicles, and Corresponding CO2 Emission Rates from Same Vehicle 
Samples 

Fuel 
Type 

Vehicle 
Type/Control 
Technology 

Drive Cycle Source 
Mean CH4 
Emissions 

(g/mi) 

Mean CO2 
Emissions 
from Same 

Sample (g/mi) 

GWP- 
Weighted 
Emissions 
CO2E (g/mi) 

Heavy-duty (HD) 
vehicles Not specified EPA (2004) 6.9 Not reported Not available  

LNG Transit Bus Arterial cycle This study 11.8 1,717 1,988 

Garbage Truck 
AQMD 
Compactor 
cycle 

This study 9.9 1,689 1,917 

Transit Bus Triple Length 
CBD This study 9.5 2,495 2,714 

Buses (1999 
DDC Series 50G) CBD cycle ERMD (2001) 16.4 2,287 2,664 

Buses (1999 
DDC Series 50G) NY BUS cycle ERMD (2001) 54.5 5,609 6,863 

Buses Not specified EPA (2004) 12.4 Not reported  Not 
available 

CNG 

HD vehicles Not specified EPA (2004) 9.6 Not reported  Not 
available 

Advanced HD 
vehicles FTP cycle Browning 

(2004) 0.004 1,588 1,588 

Moderate HD 
vehicles FTP cycle Browning 

(2004) 0.004 1,627 1,627 Diesel 

Uncontrolled HD 
vehicles FTP cycle Browning 

(2004) 0.004 1,765 1,765 

 
 
The conclusions, based on the review of literature and detailed data analysis, describes sources of 
uncertainty in emission factors and suggests the use of more detailed survey work and data 
collection.  In particular, additional emissions data testing is recommended.  This testing would 
be most effective if it is based on surveys of vehicle use and conditions across the country.  
These surveys can be used to clearly define emission tests that represent not only a vehicle’s type 
and fuel but also regional driving patterns.  
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1. BACKGROUND 
 
Extensive research on the comparative greenhouse gas (GHG) emissions from different light-
duty vehicles has been conducted in the past and has resulted in a large body of emissions test 
data and models demonstrating the GHG emission benefits of switching from certain 
conventional fuels to natural gas.  However, only few studies have been undertaken to examine 
the GHG benefits of various fuel options in different classes of heavy duty vehicles. Among these 
studies, not all emission tests have shown a uniform reduction in GHG emissions from natural 
gas vehicles, particularly when compared to similar diesel-fueled vehicles.  This is because the 
high methane content of natural gas and the reduction in vehicle fuel economy of some heavy 
duty natural gas vehicles sometimes leads to higher overall GHG emissions than similar heavy 
duty diesel vehicles.  This study attempts to improve the state of knowledge about the GHG 
emissions from heavy duty natural gas and diesel vehicles by examining previously unpublished 
carbon dioxide (CO2) and methane (CH4) emissions test data recorded by West Virginia 
University (WVU).  WVU operates a mobile emissions testing laboratory which has been used 
for testing criteria pollutants from hundreds of heavy duty vehicles.  During many of these tests, 
data on CO2 and CH4 emissions were also recorded by WVU, but were never analyzed or 
published, owing to the absence of regulatory control of GHGs.  The DOT Center for Climate 
Change and Environmental Forecasting funded this study to determine whether the unpublished 
test results recorded by WVU could be used to develop representative or statistically meaningful 
CO2 and CH4 emission factors for different classes of heavy duty diesel and natural gas vehicles. 
 
Improved data on GHG emissions from heavy duty natural gas vehicles would be useful for 
project developers, fleet decision makers, government policy makers, and industry researchers as 
they consider the GHG consequences along with other environmental benefits of natural gas fuel 
switching.  Currently, GHG inventories and reduction strategies for the transportation sector are 
limited by the availability of emission factors, which at present are unavailable or uncertain for 
subclasses of natural gas heavy duty vehicles.  Updated emission factors will allow for increased 
accuracy of emission inventories, GHG offset project benefits, and may improve current 
assumptions about the benefits of some heavy duty natural gas vehicle applications.  More 
accurate emission factors are important because organizations already are implementing fuel 
switching projects and purchasing natural gas vehicle fleets, and claiming GHG benefits.  For 
example, the Governor’s Office of the State of Washington specifically mentioned the 
conversion of buses from diesel power to natural gas as an option to comply with the 2004 law 
requiring power plants to offset their CO2 emissions.5  Approximately 22 percent of all new 
transit bus purchases are for natural gas-fueled vehicles.6  While the assumptions of GHG 
benefits of natural gas-fueled vehicles may be based on the best information publicly available 
today, they are highly uncertain because of a general lack of published GHG emission 
coefficients for heavy duty vehicles. 
 

                                                 
5 Office of Governor Gary Locke. “Gov. Gary Locke Signs Bills Strengthening Environmental Protection Policies,” 
State of Washington, For Immediate Release – March 31, 2004.  http://www.governor.wa.gov/press/press-
view.asp?pressRelease=1573&newsType=1.  Accessed 2 April 2004. 
6 The Natural Gas Vehicle Coalition.  NGVC.org - About Natural Gas Vehicles – Fast Facts.  
http://www.ngvc.org/ngv/ngvc.nsf/bytitle/fastfacts.htm.  Accessed 19 March 2004.   
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Natural gas vehicles have often been highlighted for their potential to reduce GHG emissions 
from transportation.  This is primarily based on studies indicating that natural gas, including 
liquefied natural gas (LNG) and compressed natural gas (CNG), in light duty spark ignition 
engines may reduce GHG emissions by up to 20 percent when compared with similar gasoline 
engines.7  However, the estimated GHG benefits of replacing diesel with natural gas in heavy 
duty vehicles are much more uncertain and available test data do not always show an 
improvement in total GHG emissions from natural gas vehicles when compared with similar 
conventional diesel vehicles.   
 
Most published results of heavy duty vehicle emission tests have focused on local air pollutants, 
such as particulate matter (PM), nitrogen oxides (NOx), and carbon monoxide (CO), and rarely 
include a discussion of the GHG emissions of the vehicles examined.  The few studies that 
addressed GHG emissions from heavy duty vehicles have focused on CO2 emissions and 
excluded other potential GHGs, such as CH4 and nitrous oxide (N2O).8  In the few cases where 
all potential GHG emissions have been discussed the conclusions are conflicting or limited.9  As 
a result, GHG inventory and reporting programs have little information to use as they develop 
emission estimates and accounting guidance for entities reporting on the emission impacts of fuel 
switching in their heavy duty vehicle fleets.  In 2004, EPA attempted to identify emissions 
factors for alternative fuel heavy duty vehicles, and concluded that “limited data exists on N2O 
and CH4 emission factors for alternative fuel vehicles, and most of this data is for older emission 
control technologies.”10  Similarly, the General Reporting Protocol for the California Climate 
Change Registry (CCAR) provides CH4 and N20 emission factors for different weight classes of 
gasoline- and diesel-fueled heavy duty vehicles, but does not provide emission factors for heavy 
duty natural gas and other alternative fuel vehicles.11

 
Partly owing to the limited data availability regarding the potential GHG emissions benefits from 
heavy-duty natural gas vehicles, some of the widely used accounting protocols for estimating and 
reporting GHG emissions at the corporate and/or project level assume that heavy duty natural gas 
vehicles lead to lower emissions.  This is because some protocols focus on reporting of CO2 only 
and do not require an examination of other GHGs.  For example, the World Resources 
Institute/World Business Council for Sustainable Development (WRI/WBCSD) GHG Reporting 
Protocol, which has become a worldwide standard for the reporting of GHG emissions at the 
entity level, includes procedures for estimating CO2 emissions from vehicle fuel switching 

                                                 
7 Wang, M., Regulated Emissions and Energy Use in Transportation (GREET), Argonne National Laboratory, 
<http://www.transportation.anl.gov/ttrdc/greet> 
8 Northeast Advanced Vehicle Consortium. Hybrid-Electric Drive Heavy-Duty Vehicle Testing Project—Final 
Emissions Report. February 15, 2000; and Environmental Technology Centre Emissions Research and Measurement 
Division, Environment Canada. Diesel and Natural Gas Urban Transit Bus Evaluation—Regulated and Speciated 
Emissions. ERMD Report #01-34. 
9 Gaines, Linda et. al.. Life-Cycle Analysis for Heavy Vehicles. June 1998; Verstegen, Peter. Natural Gas Vehicles 
and their Impact on Global Warming. European Natural Gas Vehicle Association – Issue Paper. March 1996; and 
Beer, Tom et. al. Fuel-Cycle Greenhouse Gas Emissions from Alternative Fuels in Australian Heavy Vehicles. 
Atmospheric Environment 36 (2000) 753-763. 
10 U.S. Environmental Protection Agency.  2003 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-
2001, EPA430-R-03-004.  2003. 
11 California Climate Action Registry, General Reporting Protocol, Version 2.0, October 2003 
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projects, but does not address CH4.12  As a result, reporters using the WRI/WBCSD GHG 
Protocol for estimating the emission benefits of switching from diesel to natural gas heavy-duty 
vehicles may end up reporting higher estimated GHG emission reductions than actually 
achieved.  Increased availability of test results and emission factors could help guide policy 
makers as they consider relevant options for reducing GHG emissions from the transportation 
sector and could serve as useful background information for improving the accuracy of existing 
GHG reporting and accounting tools. 
 
1.1 Transportation GHG Emissions 
 
GHG emissions data and inventories associated with transportation systems are important 
because of the increasingly large share of overall anthropogenic GHG emissions from mobile 
source combustion and its relative contribution to global climate change.  At 1,770.4 million 
metric tons of CO2 equivalent in 2003, mobile sources account for approximately one third of 
overall U.S. GHG emissions, and heavy duty vehicles emit roughly 20 percent of mobile source 
emissions (Figure 1).13   
 
The GHGs most closely identified w
the transportation sector include CO

ith 

sions, 

al 
bout 

  

                                                

2, 
N2O and CH4.14  CO2 contributes the 
largest share of these GHG emis
typically resulting in 85 percent of 
lifecycle emissions from convention
gasoline light-duty vehicles and a
two thirds of total lifecycle emissions 
of light-duty natural gas vehicles.15

CO  emissions are easy to estimate, because CO  is directly related to the carbon content of each 
fuel and thus the quantity of fuel consumed.  Most fleet operators already track fuel consumption 
as part of their financial operations and can therefore quickly apply this data to existing fuel-
specific emission factors to estimate CO  emissions.   

2 2

2

HD Gasoline

HD Diesel

HD Alternative Fuels

Other Mobile Sources

Figure 1. Heavy Duty Vehicles Share of Total GHG 
Emissions from Mobile Sources (Tg CO2 E) 

 
Combustion emissions of CH4 and N2O are less directly related to fuel composition as they also 
depend on the combustion dynamics and emission control technologies of the vehicle.  CH4 and 
N2O emissions can therefore not be easily derived and instead must be determined through use of 
published emission factors for each combination of fuel, end-use technology, combustion 

 
12 World Resources Institute (WRI)/World Business Council for Sustainable Development (WBCSD). “Calculating 
CO2 Emissions from Mobile Sources—Guidance to Calculation Worksheets” from the GHG Protocol – Mobile 
Guide. July 15, 2002. 
13 U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks. (EPA 430-R-05-
003), Washington, DC., 2005.  Note: Alternative fuels account for less than one percent of total heavy duty vehicle 
emissions.   
14 Mobile emission sources include not only GHGs, but also significant quantities of other local, regulated air 
pollutants, such as PM, NOx, and CO.  Most published results of heavy duty vehicle emission tests have focused on 
these local air pollutants.  This study addresses this gap in published literature by focusing on GHG emissions, 
which are less well understood than the local air pollutants. 
15 Timothy Lipman and Mark A. Delucchi, “Emissions of Nitrous Oxide and Methane form Conventional and 
Alternative Fuel Motor Vehicles,” Climatic Change, 53: 477-516, 2002 
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conditions, and emissions control system.  For this reason, CH4 and N2O emission factors are 
typically expressed in terms of mass of compound emitted per distance traveled, and the 
preferred method of calculating these emissions is based on mileage. 
 
Per unit of energy, natural gas contains less carbon than either motor gasoline or diesel fuel,16 
and therefore is often assumed to produce fewer CO2 emissions per vehicle distance traveled. 
Although this is generally the case when natural gas vehicles are compared with gasoline 
vehicles, this is not always true when compared with diesel, which is the most widely used fuel 
for heavy duty vehicles.  While natural gas-fueled engines offer significant reductions in 
regulated emissions (i.e., SO2, PM), they tend to show reduced efficiency and greater equivalent 
fuel consumption when compared to diesel engines.  Due to engine throttling losses under part 
load operation and greater vehicle weight, heavy duty natural gas vehicles often have a poorer 
fuel economy on urban driving cycles, canceling out some of the CO2 benefits gained from using 
a low carbon content fuel.17  As a result, depending on the drive cycle, using natural gas instead 
of diesel in heavy duty vehicles may not provide substantial GHG emission benefits and may 
even increase emissions in some instances.  CH4 is a potent GHG, with a global warming 
potential 23 times18 higher than that of CO2, and should be addressed in any study comparing the 
GHG emission impacts of different vehicle fuel types.  This is particularly important for vehicles 
operating on natural gas because of the high methane content of this fuel.  N2O emissions have a 
higher global warming potential19 relative to CO2 and CH4 but are less important for comparing 
diesel and natural gas-fueled heavy duty vehicles.  N2O emissions are understood to be largely a 
function of the catalytic converter used for emission control, and it is expected that comparable 
diesel and natural gas heavy duty vehicles would have similar emissions control technologies 
installed.20   
 
1.2 GHG Emission Factors 
 
A GHG emission factor is a factor that relates activity data and absolute GHG emissions to 
estimate emissions from specific activities.  CO2 emission factors for mobile sources are 
typically presented in terms of grams per unit of energy consumed because this “mass-balance” 
method is the most accurate approach available for estimating CO2 emissions.  As mentioned in 
Section 1.1, CH4 and N2O emission factors are presented in terms of distance traveled to capture 
differences caused by combustion dynamics and emission control technologies.  Because CH4 
and N2O have not been regulated in the past, emission test data are limited and representative 
emission factors are not available for all vehicle types and fuels.  

                                                 
16 U.S. Department of Energy, Energy Information Administration, Documentation for Emissions of Greenhouse 
Gases in the United States 2002, Table 6-1. DOE/EIA-0638(2002). Washington D.C., January 2004. 
17 The reductions in efficiency for natural gas engines are greatest under part load conditions, primarily due to 
throttling losses.  Throttling at light loads with engines burning homogeneous fuel-air mixtures requires reducing the 
fuel flow rate.  However, the ‘leaning out’ of the mixture results in the engine approaching its lean limit; hence, the 
engine misfires.   
18 The IPCC's Third Assessment Report (TAR) identifies the GWP of CH4 as 23 rather than the 21 found in the 
Second Assessment Report.  In this study, we use 23, as reported in the TAR.  
19 The Global Warming Potential (GWP) of a GHG is the ratio of global warming, or radiative forcing (both direct 
and indirect), from one unit mass of a GHG to one unit mass of CO2 over a period of time. 
20 U.S. Environmental Protection Agency.  2003 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-
2001, EPA430-R-03-004.  2003. 
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For the development of national or regional GHG inventories, the Intergovernmental Panel on 
Climate Change (2005) recommends that emission factors per distance traveled be developed 
based on estimates of cold start emissions and running emissions and data on the average number 
of vehicle starts and distance traveled per day for a specific demographic (e.g., national average).  
Because emission test laboratories undertake vehicle testing in response to a variety of research 
objectives, which may not include the development of emission factors, they do not always 
perform cold start emission testing.  The resulting inconsistencies in emission factor 
development may impede comparison of emission factors across vehicle fuels and technology 
type. 
 
1.3 WVU Emissions Test Data  
 
To improve the understanding of the potential emissions impact of heavy duty natural gas and 
diesel vehicles, SAIC and WVU extracted, organized, and evaluated emissions data recorded by 
WVU over the past 14 years during the testing of hundreds of heavy duty vehicles over 
thousands of test runs at the university’s mobile emissions testing laboratories.  The existing 
WVU tests were undertaken mainly to examine mass emission rates of local air pollutants, such 
as PM, NOx, CO, and total hydrocarbons (THC), and to make the results of these tests publicly 
available.  Although typically not analyzed or published, many of WVU’s heavy duty vehicle 
emission tests also measured emissions of CO2 and CH4.   
 
Some records in the database contain data on both CO2 and CH4; other records contain only CO2 
data.  Although the test dates go back as far as March 1992, CH4 data were not collected until 
July 1996 for natural gas-fueled vehicles.  WVU did not measure or record data on CH4 
emissions from any heavy duty diesel vehicles because such vehicles emit CH4 in minimal 
quantities.21  N2O data were not collected by the WVU mobile emissions lab, so no N2O 
emissions data are available for this analysis.   
 
The WVU emissions database contained CO2 and CH4 emissions data in units of grams per mile 
and grams per cycle.  The tests were based on laboratory test values for heavy duty vehicle 
running emissions over specific transient drive cycles that include accelerations and 
decelerations, but not cold starts.  For light duty vehicles, chassis dynamometer tests are 
normally conducted for regulatory purposes (i.e., certification) and therefore include both hot 
and cold start testing.  However, in the case of heavy duty vehicles, chassis dynamometer testing 
is not done for regulatory purposes, and therefore typically does not include cold start testing 
unless specifically requested by the user. 
 
WVU recorded 4,351 emissions tests performed on 1,095 heavy duty vehicles, using the 
following variables to describe each emission value: 
 

1. Identification Variables 
a. Test identification number 
b. Test run identification number 

                                                 
21 Studies of heavy-duty vehicles have shown CH4 emissions to generally be below 10 mg/mi, and near background 
levels compared with total hydrocarbons (THC). Source: Durbin (2004). 
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2. Classification Variables 
a. Cycle full name 
b. Vehicle Type  
c. Primary Fuel 
d. Catalytic Converter Model 
e. Engine Displacement 
f. Engine Model Year 
g. Odometer Reading (mi) 
h. Gross Vehicle Weight (lb) 
i. Number Of Axles 
j. Number Of Cylinders 
k. Vehicle Model Year 
l. Vehicle Transmission Configuration 
m. Vehicle Transmission Type 
n. Turbo 

3. Data Values  
a. CO2 (g/cycle) 
b. CO2 (g/mi) 
c. CH4 (g/cycle) 
d. CH4 (g/mi) 

 
The data analyzed cover a broad selection of heavy duty vehicle types and engine technologies, 
ranging from urban trucks, school buses, and tractor trailers.  The fuel types tested include two 
grades of on- and off-road diesel fuel (D1 and D2), CNG, and LNG. No other transportation fuel 
types, such as LPG, were tested for heavy duty vehicles.  
 
 
2. DATA AND ANALYSIS  
 
SAIC reviewed a broad scope of literature to develop the analytic approach to the research.  The 
review included past studies of emissions from road vehicles and sources of emission factor 
uncertainty, such as differences in data collection procedures, tested vehicles, and engine 
technologies.  The review included the following studies: 
 

• Austin, et al (1997) 
• Bishop, Stedman, and Ashbaugh (1996) 
• Browning (2004)  
• Durbin (2004) 
• EPA (1997) 
• EPA (2004) 
• ERMD (2001) 
• Frey, Zheng, and Unal (1999) 
• Gillenwater (2004) 

Holmén and Niemei• er (1998) 
IPCC/UNEP/OECD/IEA (1997• ) 

• Knepper, et al (1993) 
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• Lawson, et al (1990) 
• Lipman and Delucchi (2002) 

996) 

(2000) 
4) 

 

he literature review focused on two aspects: 

useful for grouping and analyzing the heavy-duty 

the emission 

ies 

• McClintock (1999) 
• Singer and Harley (1
• Stedman, et al (1997 

lott • Wenzel, Singer, and S
• Zhang, Bishop, and Stedman (199

 
T
 
(1) The specific data categories that would be 

vehicles emissions data, and  
(2) Statistical issues and analytic methods associated with vehicle emissions data.   
 

fter completing the literature review, a research strategy was developed to analyze A
test data collected at WVU’s mobile testing facility. The results of the literature review are 
summarized below. 
 

.1 Data Categor2
 
This research required us to determine for which data categories there would be enough data to 
develop statistically robust results and meaningful emission factors.  The development of data 
classes began by identifying the broadest subsets of heavy-duty vehicles, starting with fuel type.  
We then evaluated each fuel type subset, vehicle type, and drive cycle.  The following 
paragraphs review past findings regarding each of these data groupings and summarize how 
WVU’s database reflects each category.      
 

uel type F
 

O2 emissions from vehicles are primarily dependent on the carbon content of the fuel 
22 e fuel 

e 

f these differences across fuels, the IPCC recommends that national inventories of 

 be 

C
consumed,  and CO2 emissions per mile are a function of the same factors that influenc
economy (e.g., fuel type, engine design, condition, and load, vehicle weight, drive cycle).  For 
CH4, some of the factors that influence emission rates are different from those that affect CO2.  
CH4 emissions from motor vehicles are a function of the type of fuel used; the type, condition, 
and age of the engine; the type, condition, and age of emissions control technology; and the driv
cycle.23   
 

ecause oB
emissions from mobile sources be developed, at a minimum, based on fuel consumption 
estimates sorted according to fuel type.  If additional data are available, emissions should also
estimated based on vehicle and control technology type.24   
 
                                                 
22 IPCC/UNEP/OECD/IEA (1997). 

enwater (2004). 23 Lipman and Delucchi (2002); Gill
24 IPCC/UNEP/OECD/IEA (1997). 
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Following this guidance, the WVU data was grouped as follows:25

• CNG  
• LNG 
• Diesel (D1 and D2)  

 
Of the 1,095 vehicles tested, 601 used CNG or LNG as primary fuel, and 494 used diesel fuel.  
Of the emissions tests, WVU conducted 2,283 on natural gas-fueled (CNG or LNG) vehicles and 
,068 on diesel-fueled (D1 or D2) vehicles. Of the 2,283 emissions data records for heavy duty 

 
2
vehicles using natural gas, 646 represent tests on LNG-fueled vehicles and 1,636 on CNG-fueled
vehicles.  Table 1 presents the range and average number of tests conducted on vehicles of each 
fuel type. Table 2 summarizes the emissions data that WVU collected by GHG and vehicle fuel 
type. 
 
Table 1.  Range and Average Number of Tests per Vehicle 
Fuel Type Maximum Tests for a Mean Tests per 

Given Vehicle Vehicle 
CNG 13 4.01 
LNG 12 3.34 
Diesel (D1 and D2) 14 4.18 
  
Table 2.  Emissions Data Type per Vehicle Fuel Type 
Data Collected per Emissions Test LNG CNG Diesel 
Contains CO  and CH2 4 data 475 727 -- 
Contains CO2 data only 168 826 2,283 
Contains CO data and some CH data 3 2 4 83 -- 
 
 
Drive cycle 
 
The drive cycle is a testing procedure developed to compare engines and their emissions under 
identical preparation and operating conditions.  A drive cycle (also called driving cycle) is a 
standardized driving pattern that specifies ambient temperature, vehicle load, and the time and 
distance of operation at various speeds.26  The Federal Test Procedure (FTP),27 for example, is a 
common drive cycle defined in the Code of Federal Regulations pursuant to the Clean Air Act 
Amendments of 1970 to represent combined highway and city driving in urban Los Angeles.28  
Browning (2004) recently developed vehicle emission factors based on the FTP.   
 
The drive cycle is expected to affect emissions per mile of CO2 and CH4, although the effects 
may be quite different for each gas.  Wenzel, Singer, and Slott state that “emissions of most 
vehicles will vary substantially with environmental and driving conditions.”   Lipman and 

                                                

29

 
sis of this research, includes CNG-, LNG-, and diesel-fueled vehicles.  Diesel 

    

d Slott (2000). 

25 The WVU data set, which is the ba
is the most common fuel type in heavy duty vehicles.  Although not evaluated in this analysis, other conventional 
and alternative fuel types, including gasoline and liquefied petroleum gas (LPG), are used in heavy duty vehicles.  
26 Wenzel, Singer, and Slott (2000). 
27 Browning (2004). 
28 Wenzel, Singer, an
29 Wenzel, Singer, and Slott (2000). 
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Delucchi report that CH4 emissions from natural gas-fueled, light-duty vehicles depend on drive 
cycle.  Gillenwater states that CH4 emissions from road transport are a function of many 
variables including driving practices.  Durbin, in a peer review of Browning (2004) suggests that 
future research should consider the potential effects of other parameters, including driving cycle 
and vehicle mileage/age, on CH4 and N2O30 emissions.31 As a result, all drive cycles for which 
WVU data were available were included in subsequent analysis in attempt to correlate emissions 
with test parameters.   
 
Each WVU data record reflects emissions from a vehicle tested by a chassis dynamometer on 
one of 36 different driving cycles, which are listed in Table 3.  The name of each driving cycle 

.g., Central Business District Cycle) generally describes the test case it is intended to simulate.  

e 

s 

(e
The laboratory dynamometer measures emissions as the vehicle is operated over a specified 
driving cycle, which is intended to represent the on-road driving conditions for a certain test cas
and allow for repeatable conditions, such as ambient temperature, acceleration, deceleration, 
steady state for that test case.  The WVU data, summarized in Table 3, indicate that for each 
driving cycle, both the duration and distance were fixed.  For some vehicles, emissions were 
measured at varied vehicle test weights, a parameter intended to simulate load.  Other vehicle
were tested only once, or the vehicle test weight was held constant.  
 
Table 3.  Driving Cycle Test Conditions 

Vehicle Test Weight (lbs) Duration Driving 
Driving Cycle Time Distance 

Minimum Maximum Mean (Seconds) (Mile) 
14 Peak Route 33  568 2.01 200 33200 33200
AQMD Comp 406actor Cycle 800 6.83 00 42000 41300 
AQMD Refuse Truck Cycle Extended C 2129 6.79 40600 42000 41300 
Arterial Cycle 291.5 2 21300 35210 29574 
Background Cycle 1800 0 35800 56000 45900 
Business Arterial Cycle 855 2.65 38514 42000 40171 
CARB HHDDT Transient Mode 2.85 688 42000 42000 42000 
Central Business District Cycle 568 2 11300 45750 31715 
Central Business District Route 568 2.44 33200 33200 33200 
City Suburban Route 1710 6.67 12600 60400 38733 
Cold Start Extended CBD Cycle 2930 10.06 18975 18975 18975 
Cold Start William H. Martin Cycle 1  298.1 3.82 42000 42000 42000 
Commute Cycle 329.5 55 31675 31675 31675 
Double New York Garbage Truck Cycle 1170 0.784 40600 40600 40600 
Double Test D with Warmup 2122.2 15.58 36400 36400 36400 
Double WHM Cycle 12.49 2596.2 42000 42000 42000 
Idle State Cycle 900.1 0 12600 56000 33933 
Lug Down 0 0 60000 60000 60000 
Manhattan 1089.1 2.35 32775 34925 34031 
Modified WVU Truck Cycle (Route) 900 5 17914 42000 29935 

                                                 
30 Light- and heavy-duty vehicles emit N2O in addition to other GHGs (i.e., CH4 and CO2) and local air pollutants 
(e.g., CO, NOx, and PM).  N2O emissions data were not collected by WVU and therefore were not available in the 
data set for analysis.  
31 Durbin (2004). 
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Morgantown On-road Cycle 20.33 2806.1 60400 60400 60400 
NYC Street Sweeper Cycle 1 3.38 800 25320 26886 26103 
New York Bus Cycle 600 0.615 22325 37495 31553 
New York Composite Cycle 1029 2.52 19500 37495 30275 
New York Garbage Truck Cycle 585 0.374 42000 42000 42000 
New York Truck Cycle 1016 2.14 13946 19280 16613 
Orange County Transit Authority Bu 1950 6.54 32775 34775 33775 
Orange County Transit Authority Cy 3859.6 14 26670 26670 26670 
Quadruple CBD 0 0 35800 35800 35800 
Route22 530 2.05 22325 37495 32885 
Route77 860 4 35820 35899 35860 
Steady State Cycle – 20MPH 900.1 5 17914 33200 25557 
Steady State Cycle – 30MPH 900.1 7.5 17914 17914 17914 
Steady State Cycle – 40MPH 900.1 10 37495 42000 39748 
Triple Length CBD 6.03 1136 18975 42000 33413 
UDDS 1060 5.54 28531 56000 37689 
Unknown   25000 60000 40462 
Viking Freight Adhoc Cycle 1888.6 19.09 36400 36400 36400 
WHM Cycle 1298.1 6.17 42000 42000 42000 
WVU Truck Cycle (5 Peak) 900.2 5 18000 42000 32347 
Washington DC Metro Transit Bus Cy 18 9 4.25 3 34700 36450 35763 

 
 
Each of the more than 4,000 WVU data rec eflects e ssions f vehic d onords r mi rom a le teste  one 
of 36 different driving cycles.  Preliminary nalysis d on f e gro  with data a  base uel typ upings out 
consideration of drive cycle indicate a very large range in emissions from any given fuel type 
and large deviations from the mean.  However, when specific drive cycles are isolated, 
meaningful trends were observed.  For example, transit bus emissions data collected by WVU 
show that CO2 emissions are higher for diesel fueled- than for natural gas-fueled engines on the
Central Business District (CBD) cycle (refer to Figures 2 and 3).  This is because the rapid 
accelerations from idle to 20 mph, as demanded by the cycle, result in high loads on the
which result in better fuel economy for the natural gas engine.  However, in tests using the WV
Truck Cycle, which is characterized by lighter loads and lower accelerations, the diesel engine 
provides better fuel economy, that is, lower CO

 

 engine, 
U 

2 emissions.   
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Figure 2. Comparison of CO2 Emissions from Diesel and CNG Engines on Central 
Business District Cycle 
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Figure 3. Comparison of CO2 Emissions from Diesel and CNG Engines on WVU Truck 
Cycle 

CO2 comparison Model Year 1997 Engines on a Modified WVU truck cycle 

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8

Number of runs

C
O

2 e
m

is
ss

io
ns

 (g
/m

ile
)

Diesel- various engines
CNG- Cummins GL-10-300E

 
 

 
 
The WVU database contains emissions data from tests using several drive cycles representing 
the unique street network and traffic conditions of New York City (e.g., Manhattan; New York 
Bus Cycle; NYC Street Sweeper Cycle), in addition to other drive cycles.  Emissions from 
vehicles tested on the New York drive cycles are typically greater than those from vehicles tested 
on a drive cycle developed to represent less severe driving conditions, such as in Morgantown, 
West Virginia.   
 
The WVU database also includes emissions data based on an “unknown” cycle, and other drive 
cycles that appear to produce data outliers.  For example, some emissions data based on the 
“Background Cycle” are orders of magnitude larger than other emissions.  Rather than a drive 
cycle, the Background Cycle was found to be a “dummy” cycle used to operate all of the 
necessary emissions measurement equipment to gather background emissions data prior to and 
following a set of tests.  To ensure impartial analysis, we used a systematic approach to 
objectively evaluate these and other potential outliers. 
 

Page 19 of 41 



SAIC Final Report  September 22, 2005 

Vehicle Type 
 
Vehicle weight and operating conditions, which can characterize a vehicle type, are expected to 
affect CH4 and CO2 emissions per mile.  Emission factors disaggregated by vehicle type are 
therefore beneficial to developers of GHG emission inventories and mitigation projects.  For 
example, in the first step in the methodology for estimating CH4 and N2O emissions from mobile 
combustion, EPA determines vehicle miles traveled by vehicle type, fuel type, and model year 
(used as a proxy for control technology type).32  The IPCC guidelines also recommend that 
national inventories of emissions from mobile sources be developed based on fuel consumption 
estimates by fuel type at a minimum and by vehicle and control technology type if data are 
available.33  However, it is important to note that very few emissions tests were performed on 
certain vehicle types, particularly heavy duty vehicles, and IPCC recommendations therefore 
represent the preferred option in most cases, but not necessarily the most practical option.   
 
Table 4 presents sample frequency of data for each fuel and vehicle type tested by WVU  This 
table shows that only three vehicle types, specifically transit bus, tractor truck, and trash truck, 
were sampled using all fuel types – diesel, CNG, and LNG. 
 
Table 4.  Sample Frequency and Relative Frequency of Data  
for Each Fuel Type per Vehicle Type 
Vehicle Type Fuel Type Count 

D1 36 
Articulating Transit Bus 

D2 4 
Bus CNG 34 
Chassis Bus CNG 118 
Experimental Transit Bus CNG 37 
Hybrid Bus CNG 6 

CNG 149 
School Bus 

D2 21 

Tour Bus CNG 8 
CNG 732 
D1 484 
D2 780 

Transit Bus 

LNG 288 
CNG 25 

Trolley Bus 
D2 4 

Box Truck D2 3 
D1 10 

Dump Truck 
D2 4 

CNG 70 
Garbage Truck 

LNG 151 
Parcel Delivery Truck CNG 12 
Pick-up Truck D2 1 
Refuse Truck CNG 362 

                                                 
32 EPA (2004). 
33 IPCC/UNEP/OECD/IEA (1997). 
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D1 87 
D2 109 

LNG 80 
D1 28 

Snow Plow Truck 
D2 6 

CNG 6 
Street Sweeper 

D2 6 
Suburban D2 55 

D1 9 
Tanker Truck 

D2 7 
CNG 11 
D1 9 Tire Truck 
D2 22 

Tractor CNG 22 
CNG 45 
D1 13 
D2 370 

Tractor Truck 

LNG 127 
 
 
Model Year 
 
Emissions control technologies, which can be assumed based on vehicle model year, are known 
to influence CH4 emissions from light- and heavy-duty gasoline- and diesel-fueled vehicles.34  
However, in this study, it was not possible to group and analyze CH4 emissions data based on 
vehicle model year because of the limited number of data for each vehicle type/drive cycle/fuel 
type category.   
 
Data Cleaning 
 
The procedure to clean and prepare the data included a combination of initial exploration using 
standard spreadsheet software and further review using statistical software.  A simple point and 
click approach was used to explore and clean the data.  Data cleaning resulted in a reduction of 
data points from 4,351 to 3,602 tests.  The cases in which data were deleted are outlined as 
follows: 
 

1. Deleted observations with blank odometer readings; 
2. All buses are grouped as transit buses except for school buses; 
3. Deleted background cycle tests; and 
4. Deleted unknown driving cycle tests. 

 
The remaining 3,602 observations include diesel-, CNG-, and LNG-fueled vehicles of many 
types, ages, and technologies, and many different drive cycles.  Because of the high number of 
variables in the database, the number of tests for any given vehicle, technology type, fuel type 

                                                 
34 IPCC/UNEP/OECD/IEA (1997); Lipman and Delucchi (2002); EPA (2004); Gillenwater (2004). 
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and drive cycle were very limited. However, the existing data provides interesting insight on 
what prompts considerable change on the absolute value of emission factors. 
 
 
2.2 Literature on Statistical Issues and Analytic Methods 
 
A literature review was conducted to identify statistical issues and analytical methods associated 
with the development of emission factors for mobile sources.  However, past statistical analyses 
of GHG emissions from mobile sources are limited.  Wenzel, et al (2000), identifies a potential 
source of bias that stems from how, why and by whom data are collected.  Sample bias could be 
reflected by a normal distribution.  Wenzel, et al suggest that normally distributed vehicle 
emission test samples are “normal” because they lack any real-world variability.  Bishop, et al 
(1996); Wenzel, et al (2000); Zhang, et al (1994); and Frey, et al (1999) note that emission test 
result samples typically are highly skewed and show high kurtosis values, hinting chi 
distributions.  This means that there is typically a lack of symmetry in the distribution of the 
emission data analyzed and that observations for each sub-category are skewed in one direction.  
Skewed data make it difficult to derive statistically meaningful emission factors.  Additionally, 
Bishop, et al (1996) concludes that most volatility, or the degree of fluctuation in each variable 
analyzed, is attributable to the vehicle type, its condition and driving conditions, such as use and 
the general environment, and not to the testing method.  
 
Bishop, et al (1996) indicates that there are two types of outliers in vehicle emissions data 
specifically related to high emitters and suggests a test that can be used to identify outlier 
observations in emissions data sets.  According to Bishop, et al, random-shock high emitters are 
those vehicles that emit considerably different pollutant values, randomly increased or decreased, 
within alternative tests undertaken on the same driving cycle.  In most cases, this is due to 
undetected malfunctions in the vehicle.  Another category of outliers can be attributed to vehicles 
with increasingly higher emissions over time, which indicates “trend plus drift” processes.  Such 
high emitters signal the natural decay of a vehicle.  Older vehicles have a tendency to produce 
more pollutants due to vehicle engine and emissions system degradation over time.  Moreover, 
newer, cleaner technologies are more susceptible to random-shock high emitter behavior due to 
their inherited reliance on additional equipment.  The latter of the two outlier types can be 
detected by monitoring control variables such as odometer readings and any supplemental 
information from the sponsor (e.g., vehicle care).  Bishop, et al, outlines a test to detect the 
former by analyzing consecutive emissions data for the same vehicle under the same drive cycle 
(characteristics).   
 
The analytical approach was developed with consideration of the findings of the literature 
review.  Specifically, the statistical analysis focused on reviewing the sample selection processes 
to identify potential test selection bias, and identifying the skewness and volatility in the dataset 
to determine which WVU’s emission test results can be used to develop statistically meaningful 
emission factors for each subcategory outlined in Section 2.1.  This was accomplished by 
analyzing the variance in vehicle emissions data and by selecting and reviewing alternative 
sample subgroups of the database.  Skewness and kurtosis measures were analyzed to identify 
potentially useful sub-groups, and the results are presented in scatter plots of kurtosis versus 
skewness.  An outlier analysis was conducted and the skewness and kurtosis measures were 
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reanalyzed.  Further discussion of the analytic approach is below, followed by a presentation of 
the estimated emission factors derived from the dataset and a discussion of which of these are 
statistically meaningful. 
  
 
2.3 Analytical Approach  
 
Univariate analysis of potential data classes, as suggested by Browning (2004), was used to 
estimate candidate emission factors.35  Univariate analysis is a data analysis methodology that 
considers only one factor or variable at a time - the analysis of single variables as distinct from 
relationships among variables.  The univariate analysis tools were applied to subsets of measured 
data to see if different data subsets generate significantly different emission factors.  Control 
variables such as fuel type were used to define such subsets.  The potential identification of 
significantly different emission factors would inform us about two important characteristics of 
the variance in emissions tests: 
 

• Information about the chosen control variables can explain the volatility in emission 
factors, and; 

• As a result, multivariate analysis tools could be used to parameterize (measure) how 
control variables influence emission factors. 

 
In other words, the univariate analysis was used to determine if enough information is available 
to describe how emission factors change when variables, such as vehicle type, are considered. 
 
Additional analytical methods were also used to evaluate WVU’s emissions data, such as 
interactive outlier analysis to review estimate robustness.  If certain outliers were determined to 
be indicative of an error or an anomaly not representative of the population, they were eliminated 
and estimates recomputed.   
 
Emission Factor Volatility and the Source of Bias 
 
The analysis included an investigation of emission factor intra- and inter-temporal volatility and 
the source of bias.  Average emission results of a subject test (a vehicle) can show two forms of 
volatility; random and a mean with drift.  Several potential sources of bias in vehicle emissions 
tests can lead to volatility, including the vehicles and the vehicle survey process.  The vehicle 
selection process could create so much bias in an observed emission factor that it could be 
deemed useless for representing real-world emissions.  Outlier detection processes suggested by 
Bishop, et al (1996) were used to refine possible emission factors.  
 
To evaluate potential test selection bias, understand the context of the tests, and interpret any 
possible bias, the WVU test sponsors objectives and purpose for the emissions testing were 
reviewed, including the mix of sponsors.  The potential impact of test selection bias, such as the 
observation of a “normal” but not representative population distribution, is suggested by Wenzel, 
et al (2000).  The following questions were thus examined: 

                                                 
35 Browning (2004). 
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1. Who were the public or private sponsors of the emissions tests?  If proprietary, how many 

unique public and private sponsors are associated with the emissions data? 

2. Was there a defined purpose of the sponsorship(s) (e.g., for academic research and 
learning, to improve emissions inventories, to compare emissions from different fleet 
vehicles, to compare emissions from different fuel types)?  For example, the CRC E55/59 
study had multiple sponsors (i.e., CARB, CRC, NREL, EMA, SCAQMD, and EPA) and 
a stated objective (i.e., to improve the on-road vehicle emissions inventory of regulated 
pollutants from diesel engines; generate emission factors; improve source profiles).   

3. How were the vehicles recruited by WVU?  Is it possible to connect each individual test 
to the appropriate data collection method?  Alternatively, is it possible to use a reference 
proxy to establish some relationship between test groups and data collection methods? 

4. Are there any rewards or punishments for complying or not complying? For example: 

• Did WVU or any of the tests sponsors provided some reward from having the 
vehicles tested?  

• Did any of the sponsors threaten test candidates if they failed to report to the test 
site?  

• Was there a sense, from the test candidate's perspective, that the emissions test's 
outcome would carry any positive or negative consequence? 

5. Was the vehicle's condition a factor in determining if the vehicle should be tested or not, 
and/or was the vehicle fixed before the test was made? 

 
WVU reported that emissions data were collected over a 15-year period from 1989 to 2004.  
WVU populated the database with the results of 49 separate projects sponsored by 33 unique 
organizations and collaboratives.  WVU identified and associated each sponsor and project with 
one or more objective for the vehicle emissions testing conducted by WVU using their mobile 
emissions testing laboratory.  Just a few examples of sponsoring organizations include:  
 

• U.S. Department of Energy; 
• National Renewable Energy Laboratory; 
• South Coast Air Quality Management District; 
• North Carolina Department of Transportation; and 
• Undisclosed private sponsors  

 
Each project had one or more of the following six objectives: 
   

1. Emissions Evaluation; 
2. Engine Technology Evaluation; 
3. Exhaust After-treatment System Evaluation (Emissions Related); 
4. PM Sizing; 
5. Emissions Inventory; and/or 
6. Repair/Maintenance Related Issues. 
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The research into the sponsors’ purpose for the emission tests suggests that the test results may 
not be representative of the U.S. vehicle population as a whole.  To the extent that these tests 
where tailored to the sponsors’ specific needs, the less representative these tests will be of the 
population.  For example, while a test to determine the emissions inventory of a sponsor’s fleet 
(objective 5) may provide a representative factor for that fleet, the fleet and their characteristics 
may not be representative of other similar vehicles on different roads, cities, and driving patterns. 
 
Based on the analysis of test selection bias, we further tested the underlying properties of the 
available data.  Alternative skewness and kurtosis measures were reviewed to shed light into the 
distribution of each vehicle population.  Zhang, et al (1994) suggests simple rules of thumb to 
determine a population distribution:  

• A normal distribution has skewness and kurtosis values of zero.36  
• An exponential distribution has skewness and kurtosis values of one.  
• A chi distribution has correlated skewness and kurtosis values (i.e., same value and 

sign).   
• Skewness and kurtosis values of different signs do not represent a distribution and 

they are said to represent white noise. 
 
Statistical Methodology 
 
Alternative sample subgroups of the database were reviewed for skewness and kurtosis values.  
The estimated skewness and kurtosis measures for CO2 and CH4 emissions data are presented in 
Figures 4 and 5, respectively.  We assume that the distribution of CO2 and CH4 can be expected 
to display the same distribution characteristics as local air pollutants studied in the literature, 
which is consistent with Zhang, et al.  Figures 4 and 5 contain scatter plots of skewness and 
kurtosis measures for 76 and 40 unit random samples within the database subset as described in 
Zhang, et al.37

 

                                                 
36 The kurtosis for a standard normal distribution is 3, but is normalized to zero. 
37 Zhang plots skewness and kurtosis measures for more than 60,000 emission tests and obtains 45 degree plots. 
Additionally, he plots skewness and kurtosis measures against time and shows how volatility augments with 
technology. 
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Figure 4. Kurtosis Versus Skewness of CO2 Emissions Data to Test for Chi Distribution of 
Vehicle Emissions  
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Figure 5. Kurtosis Versus Skewness of CH4 Emissions Data to Test for Chi Distribution of 
Vehicle Emission  
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The skewness and kurtosis tests were repeated for each variable/subcategy identified for analysis 
in Section 2.1, including fuel type, vehicle type, driving cycle, and vehicle model year.  The 
figures show that the skewness and kurtosis measures are not equal since the data in the scatter 
plots do not fall in the 45-degree line.  These results were similar for every variable identified as 
a focus of analysis.  Moreover, plots of skewness and kurtosis measures against time show no 
correlation between volatility and technology. 
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Outlier Analysis 
 
The outlier analysis test selected the 25th and 75th percentile of each vehicle emissions values for 
which four or more tests were taken.  Any set of observations with at least one emission value 
larger or smaller than the 25th or 75th percentiles was deleted from the sample.  Using these tools, 
we identified 153 outliers in the WVU data set.  The outlying observations were deleted and the 
distribution tests for skewness and kurtosis were recomputed.  However, the robustness of the 
resulting emission factors did not improve significantly and use of this tool to eliminate outliers 
did not change the underlying conclusions of this report.  
 
 
3. RESULTS AND CONCLUSIONS  
 
The WVU data are insufficient to draw universal conclusions about the emission benefits of 
natural gas relative to diesel in heavy duty vehicles because WVU database does not have 
enough emission test data for similar subcategories of diesel and natural gas vehicles to enable a 
comparison across fuel types.  Moreover, a review of the population distribution within each 
vehicle subcategory indicates that most emission factors that could be developed from the WVU 
data set are not statistically robust enough to be representative of any population.  This is 
attributed to the limited number of emission tests taken for each subcategory of different vehicle 
types and driving cycles.  However, the observed emission factors may still be useful for 
estimating emissions from certain populations of heavy duty vehicles, where more robust, less 
disaggregated emission factors are not available.   
 
The mean emission values derived from the analysis and illustrated in the following data tables 
reflect emissions from vehicles that span a wide range in model year and weight categories.  This 
contributes to the lack of statistical certainty of the emission factors.   
 
Owing to the few emission tests for each vehicle subcategory relative to the high number 
potential variables, emission factors could not be developed for certain useful subcategories of 
data, such as vehicle weight, number of axles, number of cylinders, or model year.  Instead, 
emission factors were only identified for the variables of fuel type, vehicle type, and drive cycle, 
but could not be subdivided further.  Figures 6 through 9 provide an example of the effects of the 
large number of variables on emissions.  Specifically, the scatter plots show the results of a linear 
regression analysis to determine whether engine model year or gross vehicle weight had a large 
enough impact on CO2 emissions to outweigh the effects of the drive cycle and other variables in 
the database.  For the regression analysis, SAIC grouped the WVU data by fuel type but did not 
group by any other test parameters.  The R2 value indicates how well the data are correlated.  A 
strong correlation would be indicated by a high R2 value, close to 1.0.  These charts indicate R2 
values close to 0, which means the data set, which includes many variables, some of which have 
a strong impact on emissions, do not reflect any correlation between age of the engine or vehicle 
weight and increased CO2 emissions.  This does not mean that there is no correlation, but rather 
that given the large number of variables, it is not possible to identify a trend in CO2 emissions as 
a function of weight or age without normalizing for other variables.  The strong impact of the 
drive cycle may outweigh the effect of vehicle weight and other variables in some cases (e.g., a 
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2005 light heavy-duty vehicle operating on a New York drive cycle may emit more than a 1995 
heavy heavy-duty vehicle operating on a West Virginia drive cycle).  Later, after normalizing for 
drive cycle and vehicle type, it was determined that the data set contained too few data to further 
disaggregate beyond three levels of subcategories: fuel type, drive cycle, and vehicle type.  To 
address these limitations of the data set, further research is recommended to identify additional 
unpublished heavy duty vehicle emissions data sets and additional emissions testing based on 
statistical samples.  Despite the limitations of the data, several useful results were observed.   
 
Figure 6. CO2 Emissions (g/mi) from Diesel Vehicles by Engine Model Year  
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Figure 7. CO2 Emissions (g/mi) from CNG Vehicles by Engine Model Year 
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Figure 8. CO2 Emissions (g/mi) from Diesel Vehicles by Gross Vehicle Weight (lbs) 

CO2 Emissions from Diesel Vehicles as a 
Function of Gross Vehicle Weight
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Figure 9. CO2 Emissions (g/mi) from CNG Vehicles by Gross Vehicle Weight (lbs)  

CO2 Emissions from CNG Vehicles as a Function 
of Gross Vehicle Weight 
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Major findings are illustrated in Tables 5 through 10.  Although not statistically significant, the 
CO2 and CH4 data results for CNG buses tested by WVU are generally consistent with the results 
of recent emission tests on some of the same vehicle types, fuel types, and drive cycles,38 as 
shown in Table 5.  Table 5 also emphasizes the strong impact of the operating conditions, as 
indicated by the drive cycle, on both CO2 and CH4 emissions from heavy duty vehicles.  Table 6 
compares selected results of SAIC’s analysis of heavy duty vehicle emission test data to other 
published emission factors.  Table 7 presents selected results of SAIC’s analysis of WVU’s 
heavy duty vehicle emission test data.   
 
Although the resulting emission factors were not found to be statistically significant, the 
available data shown in Tables 8 and 9 suggest that for refuse trucks and school buses operating 

                                                 
38 Emission testing of three New Flyer CNG buses conducted by the Emissions Research and Measurement Division 
(ERMD) of Environment Canada in partnership with the New York City Transit Authority (NYCTA). 
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in conditions similar to the central business district driving cycle, total GHG emissions from 
natural gas-fueled vehicles may be equivalent or greater than diesel-fueled vehicles.   
 
The statistical analysis produced two very similar, possibly significant CH4 emission factors for 
CNG- fueled vehicles (refer to Table 6).  It should be noted that CO2 emission factors in units of 
distance traveled, while useful for comparing emissions across fuel types, driving cycles, or 
vehicle types, are not recommended for developing CO2 emissions inventories.  CO2 emissions 
are most accurately estimated based on the total carbon content of the fuel consumed.39

 
Emission factors from normal distributions and emission factors from chi distributions are 
evaluated as follows: 
 

 Emission factors from normal distributions. These were tests tailored for individual 
sponsors. These are a source of bias in our study since they do not represent a larger 
population but reflect only the individual vehicles tested. 

 Emission factors from chi distributions. Our analysis indicates that these values are 
relevant since the sample units seem to represent some population, albeit “noisy.”  
However, conventional tools cannot confirm their significance since we do not have other 
variables to control the volatility of the vehicle emission data.  The robustness of the 
majority of the emission factors in this category are therefore inconclusive since they 
represent emissions factors that were normalized to an individual’s needs or interests and 
not to represent a major sub-group of a population. 

 Mean emission rates not representative of a population.  The statistical analysis 
indicates that the mean CO2 and CH4 emission rate for the majority of data categories is 
not representative of a population, and therefore inconclusive.  However, although the 
data are insufficient to produce statistically significant emission factors, the results do 
provide important information about the high variability of vehicle emissions among and 
across fuel types, drive cycles, and vehicle types.    

 
Table 5 compares the results of this study for CNG-fueled transit buses to a Canadian study in 
which in partnership with NYCTA, the ERMD of Environment Canada performed emissions 
testing on three 1999 New Flyer CNG bus operated without an oxidation catalyst.  Exhaust 
emissions were measured while the buses were operated over the Central Business District 
(CBD) and New York Bus Cycle (NYBUS) cycle.  There are two major conclusions that can be 
drawn from this comparison:  

 Although the mean CH4 and CO2 emission values produced by SAIC’s analysis of the 
WVU data on CNG transit buses for the CBD and NYBUS cycles are not statistically 
significant, they are meaningful since they indicate consistency with another recent 
study of the same vehicle type, fuel type, and drive cycle, which provides some 
validation of each of the studies. 

 The operating condition, as indicated by the drive cycle, has a major impact on both 
CH4 and CO2 emissions, as illustrated by the huge difference between emissions from 
the CBD Cycle and the NYBUS Cycle. 

                                                 
39 IPCC/UNEP/OECD/IEA (1997) and IPCC (2005). 
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Table 5.  Comparison of Emission Results for CNG-Fueled Bus on CBD and NYBUS 
Cycles  
Fuel 
Type 

Vehicle 
Type/Control 
Technology 

Drive Cycle Source Mean CH4 
Emissions (g/mi) 

Mean CO2 
Emissions (g/mi)

This study 16.8 2,502 CBD ERMD (2001) 16.4 2,287 
This study 53.6  6,077 CNG Transit Bus 

NY BUS 
ERMD (2001) 54.5 5,609 

Notes:  Neither CH4 nor CO2 data results from this study indicate chi or normally distributed populations.  
SAIC calculated the CH4 mean for the ERMD study as the difference between THC and NMHC. 
SAIC calculated the mean for the ERMD study from the reported average of samples for 3 buses. 
Sources: This study on behalf of DOT that analyzes data from WVU emissions database; and ERMD 
(2001): Emissions Research and Measurement Division (ERMD) of Environment Canada, in partnership 
with the New York City Transit Authority (NYCTA), ERMD Report #01-34 
 
 

Table 6 presents the three CH4 factors produced by the WVU data, the corresponding CO2 
emissions mean for the same sample group, and for comparison, other studies’ heavy-duty 
vehicle CH4 and CO2 emissions factors.  The three CH4 factors produced by the WVU data were 
found to be representative of a chi distributed population.  It was determined that the CO2 data 
were not representative of a population.  Interesting observations include:  

 The relative CH4 emissions from various heavy-duty vehicle types, fuel types, and drive 
cycles are sometimes consistent and other times inconsistent with previous studies and 
theory.  For example, EPA’s recently updated emission factor for CH4 from the CNG-
fueled, generic heavy duty vehicle category is relatively close to the values produced in 
this study for transit buses and garbage trucks on different drive cycles.  However, EPA’s 
recently updated CH4 factor for a CNG transit bus was higher than the WVU value for a 
bus.  EPA’s CH4 factor for a LNG-fueled unspecified heavy-duty vehicle was much 
lower than what this study found for transit bus emissions on the arterial cycle.  Much of 
the differences may be attributed to differences in drive cycles.  The arterial cycle is 
intended to represent driving conditions on arterial roads, which include state roads with 
relatively high mobility (i.e., greater mobility than local or collector roads, but less 
mobility than freeways).  Greater mobility generally means higher speeds and less start-
stop driving patterns, which would suggest higher fuel efficiency and therefore lower 
CO2 emissions per mile.  If the EPA value was developed from vehicles tested on urban 
driving cycles, such as the CBD cycle, one would expect greater emissions per mile from 
the less efficient driving patterns.  

 The statistical analysis produced very similar, possibly significant (i.e., chi distributed) 
CH4 emission factors for CNG-fueled heavy duty vehicles, specifically garbage trucks 
and transit buses, despite the tests being conducted on different drive cycles. 

 There are no normal populations in the CH4 data. 
   

Page 31 of 41 



SAIC Final Report  September 22, 2005 

Table 6. Comparison of Reported Emission Rates for CH4 from Heavy-Duty, CNG-, LNG-, 
and Diesel-Fueled Vehicles, and Corresponding CO2 Emission Rates from Same Vehicle 
Samples 

Fuel 
Type 

Vehicle 
Type/Control 
Technology 

Drive Cycle Source 
Mean CH4 
Emissions 

(g/mi) 

Mean CO2 
Emissions 
from Same 

Sample (g/mi) 

GWP-d 
Weighted 
Emissions 
CO2E (g/mi) 

Heavy-duty (HD) 
vehicles Not specified EPA (2004) 6.857 Not reported Not available  

LNG Transit Bus Arterial cycle This study 11.8 a 1,717 a 1,988 

Garbage Truck 
AQMD 
Compactor 
cycle 

This study 9.9 a 1,689 a 1,917 

Transit Bus Triple Length 
CBD This study 9.5 a 2,495 a 2,714 

Buses (1999 
DDC Series 50G) CBD cycle ERMD (2001) 16.4 b 2,287 c 2,664 

Buses (1999 
DDC Series 50G) NY BUS cycle ERMD (2001) 54.5 b 5,609 c 6,863 

Buses Not specified EPA (2004) 12.416 Not reported  Not 
available 

CNG 

HD vehicles Not specified EPA (2004) 9.629 Not reported  Not 
available 

Advanced HD 
vehicles FTP cycle Browning 

(2004) 0.004 1,588 1,588 

Moderate HD 
vehicles FTP cycle Browning 

(2004) 0.004 1,627 1,627 Diesel 

Uncontrolled HD 
vehicles FTP cycle Browning 

(2004) 0.004 1,765 1,765 

Notes:  a CH4 factors represent chi distributed population. CO2 data do not reflect chi nor normally 
distributed populations.  b We calculated the CH4 mean for the ERMD study as the difference between 
THC and NMHC.  c We calculated the mean for the ERMD study from the reported average of samples 
for 3 buses.  d  GWP-weighted emissions in units of CO2 equivalent grams per mile were estimated by 
weighting CH4 value by GWP value of 23 for methane and adding to CO2 value. For the GWP-weighting, 
diesel vehicles are assumed to produce no CH4 emissions.  Diesel vehicles are known to emit relatively 
low levels of CH4 emissions.  For this analysis, CH4 data are not available because they were not 
collected by WVU for diesel vehicles.  Comparison does not account for differences in N2O emissions.  
Sources: WVU emissions database; EPA (2004): Inventory of U.S. Greenhouse Gas Emissions and 
Sinks: 1990-2002, Table 3-19; ERMD (2001): Emissions Research and Measurement Division (ERMD) of 
Environment Canada, in partnership with the New York City Transit Authority (NYCTA), ERMD Report 
#01-34; and Browning (2004): “Update of Methane and Nitrous Oxide Emission Factors for On-Highway 
Vehicles.”  For full citations, see References section. 
 
 
Table 7 presents the nine CO2 factors produced the WVU data that represented a chi or normal 
distribution, and the corresponding CH4 emissions data from the same sample group even though 
they do not represent a population.  Observations from SAIC’s analysis of CO2 emissions from 
heavy-duty, CNG-, LNG-, and diesel-fueled vehicles provide the following important findings: 

 The only observations of GWP-weighted emissions being greater for natural gas-fueled 
vehicles than for the single diesel-fueled vehicle group, were the two New-York based 
drive cycles.  Based on the limited number of potentially significant results, the available 
data are insufficient to draw any universal conclusions about the benefits of natural gas-
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fueled vehicles relative to diesel-fueled heavy-duty vehicles.  Based on these results, the 
selection of a heavy-duty vehicle fuel type to reduce GWP-weighted GHG emissions 
should continue to be made on a case-by-case basis, and should consider the vehicle 
application and operating conditions.  Still, available data do not always provide 
sufficient information to make these case-by-case decisions.  

 
 
Table 7. Mean CO2 Emissions from Heavy-Duty, CNG-, LNG-, and Diesel-Fueled Vehicles, 
and Corresponding CH4 Emission Rates from Same Vehicle Samples 

Fuel 
Type 

Vehicle 
Type/Control 
Technology 

Drive Cycle 
Mean CO2 
Emissions 

(g/mi) 

Notes on 
Population 
Distribution 
of CO2 Data 

Mean CH4 
Emissions 
from Same 

Sample (g/mi) 

GWP -
Weighted 
Emissions 
CO2E (g/mi)  

 
LNG Transit Bus CBD Cycle 2,374 Chi 11.3 2,634 

Chassis Bus Arterial Cycle 1,937 Normal 10.4 2,177 
Refuse Truck CBD Cycle 2,844 Chi 14.6 3,179 

Refuse Truck 
New York 
Garbage 
Truck Cycle 

6,810 Normal 48.3 7,922 

School Bus CBD Cycle 2,008 Normal 18.5 2,434 

Street 
Sweeper 

NYC Street 
Sweeper 
Cycle 

4,079 Chi 26.2 4,681 

Tractor Truck 
City 
Suburban 
Route 

2,018 Chi 41.7 2,977 

CNG 

Transit Bus Triple Length 
CBD 2,495 Chi 9.5 2,713 

Diesel Refuse Truck WHM Cycle 3,314 Chi Not tested 3,314 
Notes: CH4 values do not reflect chi nor normally distributed populations.  GWP-weighted emission in 
units of CO2 equivalent grams per mile were estimated by weighting CH4 value by GWP value of 23 for 
methane and adding to CO2 value. For the GWP-weighting, diesel vehicles are assumed to produce no 
CH4 emissions.  Diesel vehicles are known to emit relatively low levels of CH4 emissions.  For this 
analysis, CH4 data are not available because they were not collected by WVU for diesel vehicles.  
Sources: This study on behalf of DOT that analyzes data from WVU emissions database. 
 
 
Comparison of Emissions from Select Fuels and Vehicles on CBD Cycle  
 
Tables 8 through 10 provide information on comparative emissions from each fuel type from 
various vehicle types on the CBD drive cycle.  These emission values are provided for 
comparative purposes only, as they were determined to be inconclusive, with few data points and 
high variance in the underlying data.  Nevertheless, these available data suggest that for refuse 
trucks and school buses operating in conditions similar to those represented by the central 
business district driving cycle, total GHG emissions from natural gas-fueled vehicles may be 
equivalent or greater than diesel-fueled vehicles. 
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Table 8. Comparison of Refuse Truck Emissions on CBD Cycle 
Fuel Number of 

Samples 
CO2 Mean 

(g/mi) 
CH4 Mean 

(g/mi) 
GWP -Weighted 

Emissions CO2E (g/mi) 
CNG 165 2,844 14.6 3,180 
Diesel 153 3,223 Not tested 3,223 
LNG 5 2,919 Not tested Not available 
Note: GWP-weighted emission in units of CO2 equivalent grams per mile were estimated by weighting 
CH4 value by GWP value of 23 for methane and adding to CO2 value. For the GWP-weighting, diesel 
vehicles are assumed to produce no CH4 emissions.  Diesel vehicles are known to emit relatively low 
levels of CH4 emissions.  For this analysis, CH4 data are not available because they were not collected by 
WVU for diesel vehicles. 
 
Table 9. Comparison of School Bus Emissions on CBD Cycle 
Fuel Number of 

Samples 
CO2 Mean 

(g/mi) 
CH4 Mean 

(g/mi) 
GWP -Weighted 

Emissions CO2E (g/mi) 
CNG 68 2,008 18.5 2,434 
Diesel 18 2,001 Not tested 2,001 
Note: No LNG vehicle data available.  GWP-weighted emission in units of CO2 equivalent grams per mile 
were estimated by weighting CH4 value by GWP value of 23 for methane and adding to CO2 value. For 
the GWP-weighting, diesel vehicles are assumed to produce no CH4 emissions.  Diesel vehicles are 
known to emit relatively low levels of CH4 emissions.  For this analysis, CH4 data are not available 
because they were not collected by WVU for diesel vehicles. 
 
Table 10. Comparison of Tractor Emissions on CBD Cycle 
Fuel Number of 

Samples 
CO2 Mean 

(g/mi) 
Diesel 8 3,449 
LNG 16 2,559 

Notes: No CNG vehicle data available. CH4 emissions were not sampled. 
 
 
Suggestions for Future Research to Reduce Uncertainty 
 
The literature suggests two different main sources of uncertainty in emission factors. One of 
these sources is the data collection technology (i.e. the device); the other one is the data 
collection technique (i.e. surveying).  To reduce uncertainty, we suggest collecting additional 
vehicle exhaust emissions data based on a sampling plan. 
 
Options to further reduce uncertainty of emission factors include additional emissions testing, 
either using dynamometer test labs or on-board data collection systems (e.g., portable or mobile 
emission monitors).  Most existing emission factors for GHGs and criteria pollutants are based 
on emission tests conducted by dynamometers based on drive cycles that simulate real-world 
operating conditions.  In recent years, on-board emission measurement devices have been 
developed that collect exhaust data through tailpipe chemical sensors with flow monitors linked 
to an on-board electronic data acquisition system.  These devices provide an opportunity to test 
emissions as vehicles drive through traffic and accelerate and decelerate in the actual 
environment.   
 
To characterize GHG emissions from “real-world” driving conditions, and to better understand 
and appropriately use the available GHG emissions data, which until recently have only been 
collected in fixed laboratories using dynamometers, future research could include collecting and 
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comparing GHG emissions data from a sample of road vehicles using two different measurement 
systems: 

• Chassis dynamometers - The dynamometer measures emissions as the vehicle is 
operated over a specified driving cycle, which is intended to represent the on-road 
driving conditions for a certain test case and allow for repeatable conditions, such as 
acceleration, deceleration, steady state for that test case.        

• Portable on-road emissions systems - Not commonly available at this time, a 
portable or mobile system is installed on-board the vehicle and directly measures the 
specific gas(es) using a sensor that penetrates the tailpipe while the vehicle is 
operated on highways.   

Existing labs, such as WVU, running either measurement system would have the capability to 
measure CO2 emissions and Clean Air Act criteria pollutants (NOx, CO, PM).  Off-the-shelf CH4 
and N2O emissions collection equipment is available to incorporate into any existing 
dynamometer lab.  Although off-the-shelf CH4 and N2O portable emissions systems may not be 
readily available, it is likely that labs may have recently incorporated, or are capable of 
incorporating, commercially available CH4 and N2O sensors into available portable emissions 
systems.   

There are many possible variations of vehicle emissions testing projects.  Research would be 
tailored to address the different needs identified by an analysis of the population distribution. 
The following list includes suggestions for filling gaps and further reducing uncertainty of GHG 
emissions from heavy duty vehicles:  

• Testing of N2O and NOx to determine whether there is a correlation for certain 
vehicles, fuel types, and/or driving cycles.  Because NOx is regulated, it is much 
better characterized from different vehicle types and driving conditions.  Previous 
studies of existing data have not identified a consistent relationship between the 
gases, even though they are known to be related to catalyst activity.  If additional 
vehicle testing could uncover a correlation under certain conditions, this would allow 
GHG analysts to take advantage of the wealth of data available on NOx emissions to 
estimate N2O.   

• Testing of CH4 and non-methane hydrocarbons (NMVOC) or total hydrocarbons 
(HC) to better understand the relationship between the two gases.  In absence of 
measured CH4 data, analysts infer methane emissions as the difference between total 
HC and NMVOC, which are regulated and therefore more commonly tested.  Some 
studies have reported estimates of CH4 as a fraction of THC, which have been used 
by inventory agencies. 

• Although CO2 is most accurately estimated based on the carbon content of fuel 
consumed, some researchers and policy analysts might have interest in CO2 per mile. 
This could be used as an indication of energy efficiency of different vehicle types and 
advanced technologies (hybrid fossil-electric) on different drive cycles/real-world 
driving applications (highway freight transport, urban refuse collection).   

• Further research and comparison of CH4 and CO2 emissions from natural gas and 
diesel vehicles, to better learn which applications are better suited to each fuel type 
with regard to fuel efficiency and GHG gas emissions.  Additional emissions data 
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from further testing will help further reduce the uncertainty about the resulting 
emission factors. 

 
Suggestions for Future Statistical Sampling 
 
Among the surveying sources of uncertainty are a vehicle’s type, fuel and engine technology as 
well as its driving conditions.  The literature suggests that vehicle type and use follow 
socioeconomic patterns.  For example, while emission factor uncertainty is highly linked to 
vehicle maintenance; maintenance is highly correlated to income.  In addition, demographic 
factors such as population density, a measure of urbanization, considerably influence emission 
factor estimates. 
 
Minimizing emission factor uncertainty requires large emission databases that would include 
many vehicle types on different driving cycles.  Creating such a database would require 
significant investment, attributed to the high costs of lab testing or portable emission monitoring.  
An alternative statistical tool to reduce costs would be to use survey sampling applied to large 
vehicle databases such as the U.S. Census’s vehicle inventory survey and commuter data from 
the American Community Survey to determine a sample size that would minimize uncertainty 
and cost.  For example, to improve national emission inventories and emissions test data for 
heavy-duty vehicles, population density data and commuter information could be researched to 
help understand what type of driving cycle best fits given areas of the country. Additionally, data 
on vehicle inventories could also be used to determine how different vehicle types are distributed 
across the country.   
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APPENDIX:  GLOSSARY OF STATISTICAL TERMS 
 
This appendix outlines commonly available definitions of statistical concepts that have been used 
in this paper.  The definitions below were obtained from various sources in the statistical 
literature and the internet. 
 

• Bias - In statistics, a deviation of the expected value of a statistical estimate from the 
quantity it estimates.  The word bias has at least two different senses in statistics, one 
with negative connotation referring to something considered prejudiced or the result 
of systematic error introduced into sampling or testing by selecting or encouraging 
one outcome or answer over others, the other referring to something that can at times 
produce results more useful and closer to the truth than an insistence on being 
"unbiased." 

 
• Intra-temporal - Within a sampling period. 

 
• Inter-temporal - Across sampling periods. 

 
• Kurtosis - Kurtosis is a measure of the heaviness or fatness of the tails in a 

distribution, relative to the normal distribution.  A distribution with negative kurtosis 
(such as the uniform distribution) is light-tailed relative to the normal distribution, 
while a distribution with positive kurtosis (such as the Cauchy distribution) is heavy-
tailed relative to the normal distribution.  A fat-tailed distribution has higher-than-
normal chance of a big positive or negative realization (outlier). Kurtosis should not 
be confused with skewness, which measures the fatness of one tail. Kurtosis is 
sometimes referred to as the volatility of volatility. 

 
• Population Distribution - The patterns of settlement and dispersal of data, such as 

emission measurement data. The actual distribution(s) of data for the entire 
population is/are unknown to the researcher.  A population distribution may be 
described as normal, chi-squared, or exponential. 

 
o Normal Distribution - The normal or Gaussian distribution is one of the most 

important probability density functions, not the least because many measurement 
variables have distributions that at least approximate to a normal distribution. It is 
usually described as bell shaped, although its exact characteristics are determined 
by the mean and standard deviation. It arises when the value of a variable is 
determined by a large number of independent processes.  Many statistical tests 
assume that the data come from a normal distribution. Careful review of the 
emission factor literature advises against this assumption, owing to the high 
volatility of emission measurement data. 

 
o Chi-squared distribution - The Chi Square distribution is a mathematical 

distribution that is used directly or indirectly in many tests of significance. The 
most common use of the chi square distribution is to test differences between 
proportions. Although this test is by no means the only test based on the chi 
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square distribution, it has come to be known as the chi square test. The chi square 
distribution has one parameter, its degrees of freedom (df). It has positive 
skewness; the skewness is less with more degrees of freedom. The mean of a chi 
square distribution is its df. The mode is df - 2 and the median is approximately df 
-0 .7. as the dfs augment the chi distribution develops into a normal distribution.  

 
This paper assumes that the emission measurements reflect a chi-squared 
distribution, since few emission measurement observations are used.  As the 
number of observations grows, the influence of un-observed data on emission 
factors would diminish, allowing observed data to describe volatility in emission 
data.  As the degrees of freedom grow the influence of un-observed data 
diminishes.  

 
o Exponential Distribution - An exponential distribution is a skewed probability 

distribution with right tail extending to infinity and having the density function. 
The exponential distribution is an extreme case of a Chi-squared distribution. 

 
The diagram below shows a hypothetical example of how a Chi-squared 
distribution transforms into a normal distribution as the degrees of freedom 
augment. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

• Outlier - A data point (or points) that lie far outside most of the rest of the points in 
the data set. 

 
• Percentile - A ranking scale ranging from a low of 1 to a high of 99 with 50 as the 

median score. A percentile rank indicates the percentage of a reference or norm group 
obtaining scores equal to or less than the test-taker's score. A percentile score does 
not refer to the percentage of questions answered correctly, it indicates the test-taker's 
standing relative to the norm group standard. 

 
• Skewness - Skewness is the lack of symmetry in a distribution in which the values 

are concentrated on one side of the central tendency and trail out on the other side.  
Data from a positively skewed distribution (skewed to the right) have values that are 
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bunched together below the mean, but have a long tail above the mean.  Distributions 
that are forced to be positive, such as annual income, tend to be skewed to the right.  
Data from a negatively skewed distribution (skewed to the left) have values that are 
bunched together above the mean, but have a long tail below the mean. 

 
• Univariate Analysis - Univariate analysis is a data analysis methodology that 

considers only one factor or variable at a time; the analysis of single variables as 
distinct from relationships among variables.  In this paper, univariate analysis tools 
are applied to subsets of emission measurement data to see if different data subsets 
generate significantly different emission factors. Control variables such as fuel type 
and vehicle type are used to define such subsets. 
 
The identification of significantly different emission factors would inform us about 
two important characteristics of the variance in emission measure data: 
 
o Information in the chosen control variables can explain the volatility in emission 

factors; and 
o As a result, multivariate analysis tools could be used to parameterize (measure) 

how control variables influence emission factors. 
 
For example, this paper tests if enough information is available to describe how 
emission factors change with vehicle weight.  This paper concludes that control 
variables can explain volatility in emission factors; however, the data are insufficient 
to define significantly different emission factors and parameterize how control 
variables influence emission factors. 

 
• Volatility - Volatility refers to the degree of fluctuation in a variable.  For example, 

in this paper, volatility refers to the range of fluctuation of emission measurement 
data.  The higher the volatility, the greater the fluctuations across emission 
measurement data.  Regarding emission measurement data, volatility is a function of 
observed and unobserved data such as the control variables outlined in the paper 
(observed) and vehicle maintenance habits (unobserved). 
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