=
science for a changing world

Prepared in cooperation with the U.S. Department of Energy
DOE/ID-22192

Review of the Transport of Selected
Radionuclides in the Interim Risk
Assessment for the Radioactive
Waste Management Complex,
Waste Area Group 7 Operable
Unit 7-13/14, Idaho National
Engineering and Environmental
Laboratory, Idaho

Yolume 11

USGS Scientific Investigations Report 2005-5026

U.S. Department of the Interior
U.S. Geological Survey






Review of the Transport of Selected
Radionuclides in the Interim Risk Assessment
for the Radioactive Waste Management Complex,
Waste Area Group 7 Operable Unit 7-13/14,
Idaho National Engineering and Environmental
Laboratory, Idaho

Volume 2

By Joseph P. Rousseau, Edward R. Landa, John R. Nimmo, L. DeWayne Cecil, LeRoy L.
Knobel, Pierre D. Glynn, Edward M. Kwicklis, Gary P. Curtis, Kenneth G. Stollenwerk,
Steven R. Anderson, Roy C. Bartholomay, Clifford R. Bossong, and Brennon R. Orr

U.S. GEOLOGICAL SURVEY
Scientific Investigations Report 2005-5026

Prepared in cooperation with the

Idaho Operations Office
U.S. Department of Energy
under Interagency Agreement DE-AI07-971D13556

Idaho Falls, 1daho
February 2005



U.S. DEPARTMENT OF THE INTERIOR
GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY
CHARLES G. GROAT, Director

Any use of trade, product, or firm names in this publication is for descriptive
purposes only and does not constitute endorsement by the U.S. Government.

Additional information can Copies of this report also

be obtained from: are available in PDF format
U.S. Geological Survey which can be viewed using
INEEL, MS 1160 Adobe Acrobat Reader at URL:
P.O. Box 2230

Idaho Falls, ID 83403 http://pubs.water.usgs.gov/sir20055026




i
Figures

Figure 1-1. Location of the Radioactive Waste Management Complex, Idaho National Engineering and

Environmental Laboratory, 1daho .. ... . 1
Figure 2-1. Geologic section A-A’ at the Radioactive Waste Management Complex, Idaho National
Engineering and Environmental Laboratory, Idaho . ......... ... ... . 2

Figure 2-2. Location of sampling sites for the Waste Area Group 7 ground-water monitoring wells,
perched-water wells, and lysimeters at and near the Radioactive Waste Management Complex and

vicinity, Idaho National Engineering and Environmental Laboratory, Idaho.......................... 3
Figure 2-3. Location of selected wells, Idaho National Engineering and Environmental Laboratory and

VICINItY, 1daN0 . . . 4
Figure 4-1. Reaction scheme illustrating the competition between the formation of dissolved species (U022+

and UO,L523" and surface species (SOUO,0H) . . ... v vttt 5
Figure 4-2. Dependence of K,s on (a) total U022+ concentration, (b) pH, and (c) ligand concentration .......... 6

Figure 4-3. Aqueous speciation of Am(11) in the presence of CO, for (a) 107 M Am(lIl) and
1035 atm CO,(g), (b) 10° M Am(lI1) and 103 atm CO,(g), and (c) 107 M Am(111) and

0-25atM COp(g) - -+ v oottt et e 7
Figure 4-4. Computed surface-area-referenced distribution coefficient (K,) values for adsorption of

Am(l11) by quartz, a-alumina, and y-alumina at (a) 10" atm CO,(g), and (b) 102° atm CO4(g). ... ..... 8
Figure 4-5. Aqueous speciation of U(V1) in the presence of CO, for (a) 10" M U(VI) and 1073 atm

CO,(g), (b) 10° M U(VI) and 1073 atm CO,(g), and (c) 10" M U(VI) and 102° atm COx(g) .......... 9
Figure 4-6. Computed surface-area-referenced distribution coefficient (K,) values for adsorption of U(VI) by

ferrihydrite at different partial pressures of CO, (g) and total adsorption site density (St) .............. 10

Figure 4-7. Computed surface-area-referenced distribution coefficient (K,) values for adsorption of
U(VI) by quartz, montmorillonite, goethite, and ferrihydrite at (a) 10735 atm CO,(g), and (b) 10725

110 O 1 () 11
Figure 4-8. Size range of waterborne particles and filterpores .. ......... ... .. i i 12
Figure 5-1. The appearance of a typical adsorption isotherm. . ........ ... ... .. . .. . . i .. 13
Figure 5-2. The effect of surface area and normalization on Np®* sorption .........................o.... 14
Figure 5-3. Behavior of 237Np (initially NpO,™) in rock-water SyStems . . ... ..oovvveret e, 15
Figure 5-4. Distribution ratio (Ry, equivalent to Ky) for Np sorption onto Pomona Basalt from synthetic

ground water in the presence of various concentrations of humicacid. ............................. 16
Figure 5-5. Breakthrough of 3H from interbed packed column . ... ... . 17
Figure 5-6. Breakthrough of 2*Am from interbed packed column ... ..............oooiieiiiuiii., 18
Figure 5-7. Breakthrough of 23°Pu from interbed packed column. . ...............ooueiiiueiian... 19
Figure 5-8. Breakthrough of 233U from interbed packed column .. ..............coviiriiniianiinnn.. 20
Figure 5-9. Breakthrough of 3H from crushed-basalt packedcolumn ......... .. ... . ... . ... 21
Figure 5-10. Breakthrough of 2*!Am from crushed-basalt packed column . ................ccooiiiiii.i... 22
Figure 5-11. Breakthrough of 23°Pu from crushed-basalt packed column. . ...........ouueiiiini... 23
Figure 5-12. Breakthrough of 233U from crushed-basalt packed column . ........ ..o, 24
Figure 5-13. Variation of calcite saturation indices (Sl yite) and °°Sr partitioning (K4) between the

solution and an ion-exchange phase in a one-dimensional column at chemical steady state ............. 25
Figure 5-14. Temporal and spatial changes in 0gy partitioning (K4) between the solution and an

on-exchange phase in a dynamically evolving system . ........ ... .. .. . i 26
Figure 5-15. Fitted reactive transport simulations and experimental breakthrough curves for U(VI) in

columns packed with sedimentary interbed materials. .. ....... .. ... .. . .. 27

Figure 5-16. Simulated breakthrough curves for the transport of one pore volume of 107" M U(VI) in 12
INEEL surface- and ground-water samples for (a) a total site density assuming a constant pH of 8,
and (b) a total site density assumingaconstantpH of8.48. . ....... ... ... .. ... ... .. o 28



iv Review of the transport of selected radionuclides in the Interim Risk Assessment

Figure 5-17. Np agueous concentrations as a function of distance according to PHREEQC simulations of
one-dimensional advective-dispersive transport with a surface and aqueous complexation model.
Simulations used Np aqueous thermodynamic data from the ANSTO database ...................... 29

Figure 5-18. Np aqueous concentrations as a function of distance according to PHREEQC simulations of
one-dimensional advective-dispersive transport with a surface and aqueous complexation model.

Simulations used Np aqueous thermodynamic data from the EQ3/6 database. . ...................... 30
Figure 5-19. Np aqueous concentrations as a function of timestep .......... ... ... .. i .. 31
Figure 5-20. Np aqueous concentrations as a function of distance according to PHREEQC reactive transport

simulations. Np thermodynamic data were taken from the ANSTO database........................ 32
Figure 5-21. Np aqueous concentrations as a function of distance according to PHREEQC reactive transport

simulations. Np thermodynamic data were taken from the EQ3/6 database ......................... 33
Figure 5-22. Np aqueous concentrations as a function of distance according to PHREEQC reactive transport

simulations. Np thermodynamic data were taken from the ANSTO database........................ 34
Figure 5-23. Np aqueous concentrations as a function of distance according to PHREEQC reactive transport

simulations. Np thermodynamic data were taken from the EQ3/6 database ......................... 35

Figure 5-24. Np aqueous concentrations as a function of timestep as simulated by PHREEQC for
mid-column and end-of-column sampling points. Np thermodynamic data were taken from the
ANSTO data base. . . ..o 36
Figure 5-25. Np sorption isotherms calculated from PHREEQC simulations according to various geochemical
conditions (specification or lack thereof of calcite equilibrium: presence or absence of water from well USGS

Figure 5-26. Np sorption isotherms calculated from PHREEQC simulations according to various

geochemical conditions and to the source of Np aqueous thermodynamic data (ANSTO or

EQ3/6 data base) ... ..ot 38
Figure 6-1. Model domain and grid of the Waste Area Group 7 numerical simulator, Radioactive Waste

Management Complex and vicinity, Idaho National Engineering and Environmental Laboratory, Idaho . . .39
Figure 6-2. Variograms for the top elevation (a) and thickness (b) of surficial sediments in the model

domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and Environmental

Laboratory, 1daho. . ... ... o 40
Figure 6-3. VVariograms for the top elevation (a) and thickness (b) of the A-B interbed in the model

domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and Environmental

Laboratory, 1dano. . ... .o e 41
Figure 6-4. Variograms for the top elevation (a) and thickness (b) of the B-C interbed in the model

domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and Environmental

Laboratory, 1daho. . ... ... 42
Figure 6-5. Variograms for the top elevation (a) and thickness (b) of the C-D interbed in the model

domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and Environmental

Laboratory, 1dano. . ... .o e 43
Figure 6-6. Discretization, measured points, and relative confidence in kriged estimates for the top

elevation of the surficial sediments in the vicinity of the Radioactive Waste Management Complex,

Idaho National Engineering and Environmental Laboratory, Idaho ............. ... ... .. ... .. ...... 44
Figure 6-7. Discretization, measured points, and relative confidence in kriged estimates for the top

elevation of the surficial sediments in the Waste Area Group 7 model domain, Radioactive Waste

Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho............. 45
Figure 6-8. Discretization, measured points, and relative confidence in kriged estimates for the thickness

of the surficial sediments in vicinity of the Radioactive Waste Management Complex, Idaho National

Engineering and Environmental Laboratory, Idaho. ........ .. ... ... 46
Figure 6-9. Discretization, measured points, and relative confidence in kriged estimates for the thickness

of the surficial sediments in the Waste Area Group 7 model domain, Radioactive Waste Management

Complex, Idaho National Engineering and Environmental Laboratory, Idaho........................ 47



Figure 6-10. Discretization, measured points, and relative confidence in kriged estimates for the top

elevation of the A-B sedimentary interbed in the vicinity of the Radioactive Waste Management

Complex, Idaho National Engineering and Environmental Laboratory, Idaho........................ 48
Figure 6-11. Discretization, measured points, and relative confidence in kriged estimates for the top

elevation of the A-B sedimentary interbed in the Waste Area Group 7 model domain, Radioactive Waste

Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho............. 49
Figure 6-12. Discretization, measured points, and relative confidence in kriged estimates for the thickness

of the A-B sedimentary interbed in the vicinity of the Radioactive Waste Management Complex,

Idaho National Engineering and Environmental Laboratory, Idaho .. .............................. 50
Figure 6-13. Discretization, measured points, and relative confidence in kriged estimates for the thickness

of the A-B sedimentary interbed in the Waste Area Group 7 model domain, Radioactive Waste Management

Complex, Idaho National Engineering and Environmental Laboratory, Idaho. ....................... 51
Figure 6-14. Discretization, measured points, and relative confidence in kriged estimates for the top

elevation of the B-C sedimentary interbed in the vicinity of the Radioactive Waste Management

Complex, Idaho National Engineering and Environmental Laboratory, Idaho........................ 52
Figure 6-15. Discretization, measured points, and relative confidence in kriged estimates for the top

elevation of the B-C sedimentary interbed in the Waste Area Group 7 model domain, Radioactive Waste

Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho............. 53
Figure 6-16. Discretization, measured points, and relative confidence in kriged estimates for the

thickness of the B-C sedimentary interbed in the vicinity of the Radioactive Waste Management

Complex, Idaho National Engineering and Environmental Laboratory, Idaho. . ...................... 54
Figure 6-17. Discretization, measured points, and relative confidence in kriged estimates for the

thickness of the B-C sedimentary interbed in the Waste Area Group 7 model domain, Radioactive

Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho .. .. ... 55
Figure 6-18. Discretization, measured points, and relative confidence in kriged estimates for the top

elevation of the C-D sedimentary interbed in the vicinity of the Radioactive Waste Management

Complex, Idaho National Engineering and Environmental Laboratory, Idaho. . ...................... 56
Figure 6-19. Discretization, measured points, and relative confidence in kriged estimates for the top

elevation of the C-D sedimentary interbed in the Waste Area Group 7 model domain, Radioactive

Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho .. ... .. 57
Figure 6-20. Discretization, measured points, and relative confidence in kriged estimates for the

thickness of the C-D sedimentary interbed in the vicinity of the Radioactive Waste Management

Complex, Idaho National Engineering and Environmental Laboratory, Idaho. . ...................... 58
Figure 6-21. Discretization, measured points, and relative confidence in kriged estimates for the

thickness of the C-D sedimentary interbed in the Waste Area Group 7 model domain, Radioactive

Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho .. ... .. 59
Figure 6-22. Location of spreading areas, Radioactive Waste Management Complex, and selected

boreholes used in the 1999 tracer monitoring program, Idaho National Engineering and Environmental

Laboratory, 1daho. . ... ... o 60
Figure 6-23. Flow diversions to the spreading areas from January 1965 to January 2000, Idaho
National Engineering and Environmental Laboratory, Idaho . .......... ... .. ... .. ... ... 61

Figure 6-24. Southwestern portion of the Idaho National Engineering and Environmental Laboratory
showing contours on the water table of the Snake River Plain aquifer and inferred directions of
ground-water movement, March 1072, .. ... ... e 62
Figure 6-25. Generalized net increase of the regional water table July 1981 to July 1985 (from Pittman
and others, 1988, fig. 10), Snake River Plain aquifer, Idaho National Engineering and Environmental
Laboratory, 1daho. . . ... 63
Figure 6-26. Water levels in borehole USGS 88 from January 1975 to July 1998, Idaho National Engineering and
Environmental Laboratory, 1daho . ....... ... e 64



vi Review of the transport of selected radionuclides in the Interim Risk Assessment



113°00'
: |

3

Idaho National
~ Engineeringand  ~
~ Environmental

Laboratory
e
Boise

Creek ..

‘
b
3

Mud Caf.“gss’ .
Lake S |

[®) IDAHO 33
Terreton
Idaho National
R Engineering and
: Environmental Laboratory
S Naval ¢
4 Reactors [ :
Facility 4.’
— 4/ —
." Argonne
. f National
- ’%mg:;lre:;d Laboratory-West
Engineering
Center
Us. 29

Tl e L~ Central
v Il;acilities East Bltt
' rea as e
43°30'[—

Radioactive Waste <y

Management Complex Experimental ]

and Subsurface Breeder

Disposal Area Reactor-1 Middle Butte

i)\
Atomic City
.Big Southern Butte —
0 10 20 MILES
| | |
[ T T
0 10 20 KILOMETERS ere
3

Figure 1-1. Location of the Radioactive Waste Management Complex, Idaho National Engineering and
Environmental Laboratory, Idaho



EXPLANATION

BASALT — Basalt-flow group composed
of one or more related flows. Letter, B,
indicates sequence of group from top Location of Section
to bottom of section. Locally includes
cinders and thin layers of sediment "3’|’"5‘ “”’f’"“

CLAY, SILT, SAND, AND GRAVEL — Al% 4 96765 D06 782
e T

76
Major sedimentary interbed between i _\'@:;a 73
=

volcanic flow groups. Locally includes
cinders and basalt rubble

RWMC

Al

— GEOLOGIC CONTACT — Queried where hy el i
uncertain | |
()]
@ WELL — Entry, 89, is local well identifier.

Arrow indicates water level in aquifer
in June, 1988. Water level in well
RWMC not measured

A ) a A
Z (4] o
) S 5 @
= c = o
g 2 g g
FEET B g @ 2
5,100 c§ @ o 3 T
wm 3 = ®
" 2ngs B2 % F 3
2 g #Age gp g A & 8
5,000 mhw : = B i -
B = | B
R e
4900 = r
c c
4,800+ 3
D
4,700 2
E E
4,600 -
F
F
4,500- =
4,400 G ok
! H =
4300 ] ;3 ==

Vertical exaggeration x4
Datum is sea level 1] 500 1000 Feet

0 100 200 300 Meters

Figure 2-1. Geologic section A-A’ at the Radioactive Waste Management Complex, Idaho National
Engineering and Environmental Laboratory, Idaho (modified from Anderson and Lewis, 1989,
p. 25).



~ 7 M14S
L]

4330 —

USGS 87
~7

USGS 89
¢

. WWW 1
NA-89-1

=~ RADIOACTIVE WASTE

MANAGEMENT COMPLEX
(SEE INSET A)

3

USGS 120 M6S
“~UZ98-1
0Z98-2

SPREADING AREAS

EXPLANATION
mes Well--Entry, M6S, is

4308 — the local well identifier

INEEL BOUNDARY

113°03'00” 113°02'16”

INSET A

USGS 96A M3S
76-5, D-06, . PA-03
! “SUscs o8> TW-1.0-02

. «PA-04
USGS'93 77-2  USGS 92 .
‘W23 a5 :\3\/6 _225 PA-01*+ PA-02 .88-02D

RWMC PROD.

4330°00" [—

+89-01D

w-08 USGS 91
76-4A., c 781
76-4

USGS 94-

USGS 117 USGS 95

432947 —

USGS 118
USGS 119

USGS 88 25 5
: 5‘) 'II KILOMETERS

« M4D

o-o

Figure 2-2. Location of sampling sites for the Waste Area Group 7 ground-water monitoring wells,
perched-water wells, and lysimeters at and near the Radioactive Waste Management Complex and
vicinity, Idaho National Engineering and Environmental Laboratory, ldaho.



113°00°

112°30'
oot ‘
<
| _ \
S I
1
L
r—> 0O Terreton
“1
L
il
USGS 19,
D
2
=3
R -‘g[\ |
20 [
Arco Ml |
| O NIR Tes S '
- Mi11S e T
*_ Big Lost River blw. - USGS 112 -
B
43°30' | UsGs 8 | TN \ M125 East But‘te )
USGS 8 ®  eUSGS 127 . Se
USGS 89 USGS 9°RWMC'm1 Ml ddlz‘“ Butte
| USGS 92 |
Atomic 0 : o s
Big | City : '
p 0 5 10 KILOMETERS
Southern %n
Butte
uses's WELL SAMPLED FOR THIS STUDY--Entry, USGS 8, is
site identifier
° SURFACE-WATER SITE SAMPLED FOR THIS STUDY
—— BOUNDARY OF IDAHO NATIONAL ENGINEERING AND
ENVIRONMENTAL LABORATORY

Figure 2-3. Location of selected wells, Idaho National Engineering and Environmental Laboratory
and vicinity, Idaho.



SOUO,OH + 2H+

Figure 4-1. Reaction scheme illustrating the competition between the formation of dissolved species
(UO,2* and UO,L ;23 and surface species (SOUO,OH).
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(a) normalized to the sorbent’s specific surface area (K, = K4/SA) [ml-m-2, milliliter per square

meter; ml-g-1, milliliter per gram].
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Figure 5-3. Behavior of 23’Np (initially NpO,*) in rock-water systems. Rocks studied include

Conasauga (C.) Shale, argillaceous (A.) shale, Westerly (W.) Granite, Sentinel Gap (S.G.) Basalt, and
oxidized S.G. Basalt (pretreated with sodium hypochlorite) (from Bondiette and Francis, 1979).
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others, 1985) [°C, degrees Celsius].
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Figure 5-5. Breakthrough of 3H from interbed packed column (solid diamonds represent data points
and the line represents the model fit). Total 3H recovery was 101.5 percent of the initial amount
added to the column (from Newman and others, 1995).
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Figure 5-6. Breakthrough of 242Am from interbed packed column (solid diamonds represent data
points). Total 242Am recovery was 1.9 percent of the initial amount added to the column (from
Newman and others, 1995).
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Figure 5-7. Breakthrough of 23%Pu from interbed packed column (solid diamonds represent data
points). Total 239Pu recovery was 0.1 percent of the initial amount added to the column (from
Newman and others, 1995).
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Figure 5-8. Breakthrough of 233U from interbed packed column (solid diamonds represent data
points and the line represents the model fit). Total 233U recovery was 90.3 percent of the initial
amount added to the column (from Newman and others, 1995).
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Figure 5-9. Breakthrough of 3H from crushed-basalt packed column (solid diamonds represent
data points and the line represents the model fit). Total 3H recovery was 96.9 percent of the initial
amount added to the column (from Newman and others, 1995).
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Figure 5-10. Breakthrough of 2422Am from crushed-basalt packed column (solid diamonds represent
data points and the line represents the model fit). Total 24LAm recovery was 14 percent of the initial
amount added to the column (from Newman and others, 1995).
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Figure 5-11. Breakthrough of 239Pu from crushed-basalt packed column (solid diamonds represent
data points and the line represents the model fit). Total 23%Pu recovery was 33.5 percent of the initial
amount added to the column (from Newman and others, 1995).
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Figure 5-12. Breakthrough of 233U from crushed-basalt packed column (solid diamonds represent data
points and the line represents the model fit). Total 233U recovery was 89.9 percent of the initial amount
added to the column (from Newman and others, 1995).
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Figure 5-13. Variation of calcite saturation indices (Sl i) and °°Sr partitioning (K,) between the
solution and an ion-exchange phase in a one-dimensional column at chemical steady state (from
Reardon, 1981).
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Figure 5-14. Temporal and spatial changes in 9Sr partitioning (K,) between the solution and an

ion-exchange phase in a dynamically evolving system. After 17 days of transport time, the system
is near chemical steady state (from Reardon, 1981).
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Figure 5-15. Fitted reactive transport simulations and experimental breakthrough curves for U(VI)
in columns packed with sedimentary interbed materials.
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Figure 5-16. Simulated breakthrough curves for the transport of one pore volume of 107 M U(VI)
in 12 INEEL surface- and ground-water samples for (a) a total site density assuming a constant pH
of 8, and (b) a total site density assuming a constant pH of 8.48 [M, molarity].
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Figure 5-17. Np aqueous concentrations as a function of distance according to PHREEQC
simulations of one-dimensional advective-dispersive transport with a surface and aqueous
complexation model. Np infiltration results are provided for different timesteps (labels next to
curves) and for simulations in which equilibrium with calcite was either specified (dashed line) or
not specified (solid line). Simulations used Np agueous thermodynamic data from the ANSTO data
base.
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Figure 5-18. Np aqueous concentrations as a function of distance according to PHREEQC
simulations of one-dimensional advective-dispersive transport with a surface and agueous
complexation model. Np infiltration results are provided for different timesteps (labels next to
curves) and for simulations in which equilibrium with calcite was either specified (dashed line) or
not specified (solid line). Simulations used Np aqueous thermodynamic data from the EQ3/6 data
base.
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Figure 5-19. Np aqueous concentrations as a function of timestep. Np infiltration results identify the
source of Np thermodynamic data used (ANSTO or EQ3/6) and whether calcite equilibrium was
specified throughout the one-dimensional column.
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Figure 5-20. Np aqueous concentrations as a function of distance according to PHREEQC reactive
transport simulations. Np cleanup results are provided for different timesteps (labels next to curves).
Equilibrium with calcite was not specified. Np thermodynamic data were taken from the ANSTO
data base.
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Figure 5-21. Np aqueous concentrations as a function of distance according to PHREEQC reactive
transport simulations. Np cleanup results are provided for different timesteps (labels next to curves).
Equilibrium with calcite was not specified. Np thermodynamic data were taken from the EQ3/6 data
base.
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Figure 5-22. Np aqueous concentrations as a function of distance according to PHREEQC reactive
transport simulations. Np cleanup results are provided for different timesteps (labels next to
curves). Equilibrium with calcite was specified. Np thermodynamic data were taken from the
ANSTO data base.
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Figure 5-23. Np aqueous concentrations as a function of distance according to PHREEQC reactive
transport simulations. Np cleanup results are provided for different timesteps (labels next to curves).
Equilibrium with calcite was specified. Np thermodynamic data were taken from the EQ3/6 data
base.
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Figure 5-24. Np agueous concentrations as a function of timestep as simulated by PHREEQC for
mid-column and end-of-column sampling points. Np cleanup results identify whether calcite
equilibrium was specified throughout the one-dimensional column. Np thermodynamic data were
taken from the ANSTO data base.
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Figure 5-25. Np sorption isotherms calculated from PHREEQC simulations according to various
geochemical conditions (specification or lack thereof of calcite equilibrium; presence or absence
of water from well USGS 92).
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Figure 5-26. Np sorption isotherms calculated from PHREEQC simulations according to various
geochemical conditions (specification or lack thereof of calcite equilibrium; presence or absence of
water from well USGS 92) and to the source of Np aqueous thermodynamic data (ANSTO or

EQ3/6 data base).
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Figure 6-1. Model domain and grid of the Waste Area Group 7 numerical simulator, Radioactive
Waste Management Complex and vicinity, Idaho National Engineering and Environmental
Laboratory, Idaho.
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Figure 6-2. Variograms for the top elevation (a) and thickness (b) of surficial sediments in the
model domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and
Environmental Laboratory, Idaho.
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Figure 6-3. Variograms for the top elevation (a) and thickness (b) of the A-B interbed in the model
domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and

Environmental Laboratory, Idaho.
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Figure 6-4. Variograms for the top elevation (a) and thickness (b) of the B-C interbed in the model
domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and
Environmental Laboratory, Idaho.
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Figure 6-5. Variograms for the top elevation (a) and thickness (b) of the C-D interbed in the model
domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and
Environmental Laboratory, Idaho.
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Figure 6-6. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the surficial sediments in the vicinity of the Radioactive Waste Management Complex,
Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-7. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the surficial sediments in the Waste Area Group 7 model domain, Radioactive Waste
Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-8. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the surficial sediments in vicinity of the Radioactive Waste Management Complex,
Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-9. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the surficial sediments in the Waste Area Group 7 model domain, Radioactive Waste
Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.

47



205,000

204,000

NORTHING, IN METERS

203,000
80,000 81,000 82,000 83,000

EASTING, IN METERS

maximum

Idaho State Plane Coordinate System
East Zone Datum NAD27
Index to kriging confidence

EXPLANATION
== MODEL DOMAIN AND GRID LINES

I AREA OF INEFFECTIVE KRIGING IN THE MODEL DOMAIN
—.— ROAD
x POINT OF MEASUREMENT

Figure 6-10. Discretization, measured points, and relative confidence in kriged estimates for the
top elevation of the A-B sedimentary interbed in the vicinity of the Radioactive Waste
Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-11. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the A-B sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-12. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the A-B sedimentary interbed in the vicinity of the Radioactive Waste Management
Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-13. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the A-B sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-14. Discretization, measured points, and relative confidence in kriged estimates for the
top elevation of the B-C sedimentary interbed in the vicinity of the Radioactive Waste
Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-15. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the B-C sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-16. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the B-C sedimentary interbed in the vicinity of the Radioactive Waste Management
Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-17. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the B-C sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-18. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the C-D sedimentary interbed in the vicinity of the Radioactive Waste Management
Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-19. Discretization, measured points, and relative confidence in kriged estimates for the
top elevation of the C-D sedimentary interbed in the Waste Area Group 7 model domain,
Radioactive Waste Management Complex, Idaho National Engineering and Environmental
Laboratory, Idaho.
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Figure 6-20. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the C-D sedimentary interbed in the vicinity of the Radioactive Waste Management
Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-21. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the C-D sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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boreholes used in the 1999 tracer monitoring program, ldaho National Engineering and
Environmental Laboratory, Idaho.
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Figure 6-23. Flow diversions to the spreading areas from January 1965 to January 2000, Idaho
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