Grand Forks Human Nutrition Research Center Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
 

Research Project: MICRONUTRIENT ROLES IN PHYSIOLOGY AND HEALTH

Location: Grand Forks Human Nutrition Research Center

Title: Endothelial Cell-Derived Nitric Oxide Mobilization is attenuated in Copper-Deficient Rats

Authors
item Falone, J - UNIV OF LOUISVILLE
item Lominadze, D - UNIV OF LOUISVILLE
item Johnson, William
item Schuschke, D - UNIV OF LOUISVILLE

Submitted to: Applied Physiology, Nutrition & Metabolism
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: July 18, 2008
Publication Date: N/A

Interpretive Summary: Experiments with laboratory animals have implicated low dietary copper intake as a potential risk factor for cardiovascular disease. A potential mechanism underlying the detrimental effects of low copper intake on blood pressure centers on decreased production of nitric oxide (NO). NO is responsible for lowering blood pressure by causing blood vessels to relax. The present study used both cultured endothelial cells that line the inside of blood vessels and intact animal blood vessels to determine the effect of copper deficiency on NO production. In both models, copper deficiency reduced NO production by cells and also inhibited the release of NO from the cells. Thus, a way in which copper deficiency can increase the risk for cardiovascular disease is by inhibiting the action of factors produced in cells of blood vessels that cause vascular relaxation. This can lead to hypertension and ultimately to cardiovascular disease.

Technical Abstract: The attenuation of endothelium-dependent nitric oxide (NO)-mediated vasodilation is a consistent finding in both conduit and resistance vessels during dietary Cu deficiency. While the effect is well established, evidence for the mechanism is still circumstantial. This study was designed to determine the relative amount of NO produced in and released from the vascular endothelium. Using the fluorescent NO indicator, DAF-FM, we now demonstrate the effect of a Cu-deficient diet on the production of NO from the endothelium of resistance arterioles. In one group of experiments, control and Cu-chelated lung microvascular endothelial cells (ECs) were used to assay NO production and fluorescence was observed by confocal microscopy. Weanling Sprague-Dawley rats were fed purified diets which were either Cu-adequate (6.3 'g Cu/g diet) or Cu-deficient (0.3'g Cu/g diet) for 4 weeks. In the second series of experiments, first-order arterioles were microsurgically isolated from the rat cremaster muscle, cannulated and pressurized with MOPS-PSS. DAF-FM (5 'M) was added in the lumen of the vessel to measure NO release. Baseline DAF-FM fluorescence was significantly less in Cu-chelated ECs compared to controls. In response to 10-6 M Ach, fluorescent intensity was significantly less in chelated ECs and in the lumen of Cu-deficient arterioles. The results suggest that production and release of NO by the vascular endothelium is inhibited by a restriction of copper. This inhibition may account for the attenuated vasodilation previously reported in Cu-deficient rats.

   

 
Project Team
Lukaski, Henry
Combs, Gerald - Jerry
Nielsen, Forrest - Frosty
Johnson, William - Thomas
Canfield, Wesley
 
Publications
   Publications
 
Related National Programs
  Human Nutrition (107)
 
Related Projects
   ASSESSMENT OF MINERAL LOSSES IN SWEAT DURING PHYSICAL ACTIVITY
   MINERAL NUTRITION RESEARCH
   HEALTH PROMOTION IN AMERICAN INDIAN COMMUNITIES
   DIET AND EXERCISE ON PROTEIN EXPRESSION IN MUSCLE
   MAGNESIUM NUTRITION AND SLEEP BEHAVIOR IN OLDER ADULTS
   GRAND FORKS COMMUNITY-BASED HEALTH AND FITNESS AGENDA
 
 
Last Modified: 11/04/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House