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ABSTRACT We used an over-dispersed Poisson regression with fixed and random effects, fitted by Markov chain Monte Carlo methods, to

model population spatial patterns of relative abundance of American woodcock (Scolopax minor) across its breeding range in the United States.

We predicted North American woodcock Singing Ground Survey counts with a log-linear function of explanatory variables describing habitat,

year effects, and observer effects. The model also included a conditional autoregressive term representing potential correlation between adjacent

route counts. Categories of explanatory habitat variables in the model included land-cover composition, climate, terrain heterogeneity, and

human influence. Woodcock counts were higher in landscapes with more forest, especially aspen (Populus tremuloides) and birch (Betula spp.)

forest, and in locations with a high degree of interspersion among forest, shrubs, and grasslands. Woodcock counts were lower in landscapes with

a high degree of human development. The most noteworthy practical application of this spatial modeling approach was the ability to map

predicted relative abundance. Based on a map of predicted relative abundance derived from the posterior parameter estimates, we identified major

concentrations of woodcock abundance in east-central Minnesota, USA, the intersection of Vermont, USA, New York, USA, and Ontario,

Canada, the upper peninsula of Michigan, USA, and St. Lawrence County, New York. The functional relations we elucidated for the American

woodcock provide a basis for the development of management programs and the model and map may serve to focus management and monitoring

on areas and habitat features important to American woodcock. (JOURNAL OF WILDLIFE MANAGEMENT 71(2):376–382; 2007)
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The realization of conservation goals for many North
American birds requires strategies for managing species
within human-dominated landscapes (Jones and Bock 2002,
Thogmartin et al. 2004b). Kiester et al. (1996:1333)
suggested, ‘‘Biodiversity is largely a matter of real estate.
And as with other real estate, location is everything.’’
Unfortunately for many species, researchers do not ad-
equately understand their distribution and patterns of
abundance in human-dominated landscapes. Predictive
mapping of species abundance over broad areas would
facilitate attainment of conservation goals by focusing
management and monitoring efforts on areas and habitat
features important for their continued persistence (Thog-
martin et al. 2004b).

American woodcock (Scolopax minor) populations have
exhibited consistent declines in the eastern and central
United States since at least the late 1960s (Straw et al.
1994). These declines have been attributed in part to loss of
old field and early successional habitats through urban and
agricultural development (Dwyer et al. 1983, Sauer and
Bortner 1991, Straw et al. 1994); the draining of wetlands
and bottomland hardwood forest are also believed to have
contributed to the decline. These declines and threats to

habitat prompted the United States Shorebird Conservation

Plan (Brown et al. 2001) to list the woodcock as a Species of

High Conservation Concern. The International Association

of Fish and Wildlife Agencies also created a Woodcock

Task Force in 2002 to develop the Woodcock Conservation

Plan to reverse these observed declines.

Fine-scaled studies of woodcock habitat use suggest the

species is positively associated with early successional mesic

forests and wetlands, and is negatively associated with

agricultural and urbanized lands (Kinsley et al. 1980,

Gutzwiller et al. 1983, Hudgins et al. 1985, Keppie and

Whiting 1994, Klute et al. 2002). With this information in

mind, our objectives were 1) to relate remotely sensed

variables of these habitat descriptors against regional annual

counts derived from the North American woodcock Singing

Ground Survey (SGS) to create models of predicted

abundance and 2) to use parameters from these models to

map predicted abundance and associated measures of

uncertainty.

STUDY AREA

We studied woodcock in their primary breeding range in the

United States, which comprised 18 states in the northeast

and north-central United States stretching from Minnesota

to Maine and as far south as Illinois, Indiana, and Virginia.

We did not study patterns in woodcock abundance in

Canada because of disparities in land-cover data, nor did we
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study patterns in areas outside of the northeastern and
midwestern United States because of a lack of survey data.

METHODS

We used SGS route counts as the response in our models.
This survey consisted of 10 stops spaced along 5.4-km
routes situated on randomly selected secondary roads.
Observers counted the number of woodcock heard calling
(peenting) at each stop, and the number of woodcock
counted per route is an index of woodcock in a geographic
area. The dates of surveys coincide with peaks in courtship
behavior of local woodcock.

The SGS counts provided estimates of annual relative
abundance of breeding woodcock to the extent that
detection probability was constant or controlled by the
survey design (Tautin et al. 1983, Sauer and Bortner 1991).
This assumption of constant detection probability is a
largely untested assumption. In reality, a host of factors
likely influenced detection of woodcock, including wood-
cock vocalization rates as they relate to weather and time of
day and increasing urbanization along the survey routes
during the period of study. The survey design controls for
some of these factors (e.g., weather) better than it controls
for others (e.g., urbanization).

We used counts from 1,148 routes collected between 1981
and 2003 in model building and evaluation (this period
roughly coincides with the date for which the environmental
data were relevant, i.e., approx. 1991). For various reasons
counts were not available from all routes in all years and,
thus, the total number of counts (n¼ 9,142) used in model
building is substantially less than the total number
conceivable. Furthermore, we withheld 3,213 counts for
model evaluation.

A unique aspect of the SGS protocol is the cessation of
running routes in areas in which woodcock are considered
absent. Routes for which observers do not hear woodcock for
2 consecutive years enter a constant zero status and are not
run for the subsequent 5 years. If observers hear woodcock on
a constant zero route after the 5-year period, the route reverts
to normal status and is included each year thereafter. Data
from constant zero routes are included in this analysis only for
the years in which observers actually surveyed them (Sauer
and Bortner 1991). The effect of this would be to under-
represent areas of absence (i.e., structural zeroes) and raise the
relative mean abundance for the region. One reviewer (J. A.
Royle, United States Geological Survey, personal communi-
cation) suggested the bias that may result from failing to
include constant zero routes was likely minimal.

We adopted a Bayesian framework for inference and
prediction, implemented with Markov chain Monte Carlo
(MCMC) methods (Gibbs Sampling; Link et al. 2002). The
MCMC is a simulation-based approach to resolving
mathematically intractable calculations such as the hier-
archical spatial count model that we describe here. The
general methods by which predicted abundance was
modeled and mapped were outlined in Thogmartin et al.
(2004b, 2006) with Breeding Bird Survey counts as the

response; briefly, the Thogmartin et al. (2004b, 2006) model
was a spatial extension of the Link and Sauer (2002)
hierarchical Bayesian trend count models, incorporating
potential spatial autocorrelation between survey counts and
remotely sensed environmental covariates. Here we similarly
extend the model of Sauer et al. (unpublished) for trend
estimation in woodcock SGS counts to accommodate spatial
effects. The model had the form

ZðsiÞ ¼ lðsiÞ

þ
Xn
k¼1

cik½ðZðskÞ � lðskÞ� þ xðsiÞ þ cðsiÞ þ eðsiÞ

where Z is the mean of the Poisson distribution of the
predicted counts at location si for route i, l(si) is the large-
scale trend surface that depends on covariates (independent
environmental variables), cik are the spatial dependence
parameters, i, k ¼ 1, . . . , n where the dependence is
symmetric and pair-wise dependence occurs only between
neighboring survey locations (as determined by tessellation;
Thogmartin et al. 2004b), and e(si) are the error terms that
are independent with zero mean and constant variance s2.
Random observer and year effects are x (observer experi-
ence), and c (yr). Ostensibly, as the large-scale trend surface
as determined by environmental covariates increases in
importance in explaining patterns in the counts, the
necessity for spatial dependence between route counts
declines. We assigned diffuse or noninformative priors and
hyper-priors to each parameter to represent an initial null
expectation of the variables and their precision on bird
counts (Appendix).

Environmental covariates derived from a review of the
literature (Keppie and Whiting 1994, Straw et al. 1994)
included forest, shrub, and grass composition, an aggrega-
tion index describing the clumping of forest, shrub and grass
land covers, topographic convergence index, and the date of
the start of the growing season. We derived human land-
cover composition from an aggregated cover type defined as
low-, medium-, or high-density residential areas, trans-
portation, commercial, or industrial areas, and urban grass.
We derived land-cover composition from the National Land
Cover Dataset 1992 (Vogelmann et al. 2001) and the Forest
Resources of the United States Forest Cover Type Dataset
1997 (Zhu and Evans 1994). Forest stand-size and age were
not available to us for our region of interest and, thus, we
did not consider them. We re-sampled the landscape
composition of grass (i.e., coarsened in resolution) to
include only those grass patches �1.2 ha, as fields (especially
openings in forest) of this size may be important roosting
and calling grounds (Sepik and Derleth 1993). The
topographic convergence index, also known as static wetness
potential, is the ln[catchment area/tan(slope angle)], where
slope angle is in degrees (Moore et al. 1991) and is an index
to mesic and xeric conditions resulting from terrain
physiognomy. We hypothesized that moist soil conditions
might prove favorable to earthworm (Family Lumbricidae)
availability and, thus, to woodcock abundance. We used the
30-year mean day of the year marking the start of the
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growing season as an index to the average last day in spring
for frost, which has been associated with the northern limit
of earthworms, an important food source for woodcock
(Keppie and Whiting 1994). We considered another long-
term climate mean, 30-year mean winter precipitation,
which has been associated with the northern boundary to
woodcock occurrence (Keppie and Whiting 1994); however,
we discarded this variable early in the modeling as it was
correlated (r . 0.5) with the start of the growing season but
did not describe the apparent latitudinal long-range trend in
abundance as well as the day of the year marking the start of
the growing season. D. McKenney (Canadian Forestry
Service, personal communication) provided mean climate
conditions for woodcock routes. We considered models with
both aspen (Populus tremuloides) and birch (Betula spp.) and
forest composition together as they were not substantially
correlated (r ¼ 0.16). We also considered models with
woodcock abundance as a curvilinear response to forest
composition, as we believed that woodcock may be reduced
in abundance in landscapes where forest composition was
too great to allow for sufficient open areas for breeding.

A previous study of woodcock at a landscape level
considered individual stops on 96 routes in Pennsylvania
(Klute et al. 2002). In comparison, we considered 1,184
route-level counts. The aggregation of stop counts to the
route has important implications for the minimum reso-
lution of the analysis, namely that the counts were known
only for some subjective area associated with the route and
not for individual stops (stops were not georeferenced).
Thus, because the data could only be minimally resolved to
some area about the route, we assessed each environmental
variable at 3 buffer distances around the routes. Those
buffers translated to scales of approximately 350 (100-m
buffer around routes), 4,000 (1,000-m buffer), and 106,000
ha (10,000-m buffer). We expected this range of spatial
extents to encompass the population responses of woodcock
to landscape factors, realizing that the data resolution
precluded inferences about individual biological response
(e.g., survival and fecundity) to local environmental factors.

We fit and predicted models with WinBUGS 1.4.1
(Spiegelhalter et al. 2003), a statistical package for
conducting Bayesian inference with MCMC. For each
model, we ran the Markov chain until convergence occurred
(15,000 iterations) and an additional 3,000 iterations past
convergence. We used the Gelman–Rubin diagnostic to
evaluate model fit between 3 replicate chains (Brooks and
Gelman 1998, Spiegelhalter et al. 2003), comparing within-
chain and between-chain variability. We guarded against
multicollinearity in the environmental variables by inspect-
ing the multi-chain iteration histories and the Gelman–
Rubin diagnostic plots of the slope parameters.

We employed an information-theoretic perspective to our
modeling by comparing the Deviance Information Criterion
(DIC) between models. DIC is an information criterion
analogous to Akaike’s Information Criterion, with the most
parsimonious model possessing the smallest DIC (Spiegel-
halter et al. 2002). We calculated model weights akin to the

method suggested by Burnham and Anderson (2002) for
Akaike’s Information Criterion weights:

wi ¼
exp �1

2
Di

� �

XR
i¼1

exp � 1

2
Di

� � ;

where Di is the difference between the DIC from model i (of
R models) and the DIC possessed by the most parsimonious
model (the model possessing the minimum DIC). An all-
possible-models approach was not sensible. Akin to
Thogmartin et al. (2004b), we selected backwards from
global models, constructed at each of the 3 spatial scales; each
global model comprised all of the environmental covariates at
a specific scale. We dropped those environmental variables
whose 95% credibility intervals for the model parameters
contained zero. We continued selection in this manner until
all remaining variables had credibility intervals that excluded
zero. We then used the best model within each of the 3 scales
to average the environmental variables across spatial scales
(Burnham and Anderson 2002).

We mapped the statistical models by combining Geo-
graphic Information Systems (ArcGIS 9.0) grid layers of
model variables based upon their model-averaged slope
coefficients. We derived grid layers from regular lattices
with cell sizes coincident with the scales of study (350 ha,
4,000 ha, and 106,000 ha), with the environmental
covariates summarized for each cell within the lattice; this
led to lattices of 1.37 million cells, 118,174 cells, and 4,586
cells, respectively. Because of computational difficulties
associated with mapping environmental covariates at the
finest extent of this lattice (350 ha), we based final maps on
covariates derived for the coarsest extent (106,000 ha),
regardless of the resolution identified during the model
selection process (the wt [slope coeff.] were specific to the
appropriate model, however). We standardized the environ-
mental grid layers before their layering in the ArcGIS
Spatial Analyst map calculator to reflect standardization of
the environmental covariates prior to modeling, which was
done to increase the efficiency of the iteration process (Gilks
and Roberts 1996) and to identify standardized model
parameters.

We evaluated the models in 2 ways. Gelman et al. (1995)
described a goodness-of-fit procedure using a posterior
predictive check whereby parameter sets derived from the
original data are compared to parameter sets derived for a
replicate data set. As in Link and Sauer (2002) and
Thogmartin et al. (2004b), for each of the 9,000 sets of
parameters (3 chains 3 3,000 iterations) sampled by
simulation, we generated a replicate data set following model
specifications. The Gelman et al. (1995) diagnostic com-
pared this replicate data set with the true data set; the model
was suspect if the posterior probability was close to zero or
one. This method may be described as an internal evaluation.
We also assessed the model against independent (or external)
data by regressing observed data against imputed (expected)
values derived from the final mapped model. The observed
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data were data randomly withheld from the modeling process
(n ¼ 2,158) and data collected from 2002 and 2003 (n ¼
1,055). This imputation was consistent with the data and
priors, and was conditional on the values of the model
parameters. We did not model woodcock on their breeding
grounds in Canada because of differences in land-cover data,
but a further test of this model might be to modify it to land-
cover data for Canada and evaluate it against woodcock SGS
counts collected there.

RESULTS

The mean woodcock count for 9,142 surveys was 3.39 (SD¼
4.00) and reflected high premodeling overdispersion. Zeroes
comprised 27% of the counts, the median count was 2, and
the maximum count was 47.

The most plausible model of woodcock abundance was
resolved at the finest spatial extent (350 ha). Composition of
the landscape in forest, shrub, and aspen and birch, and the
topographic convergence index were positively associated with
abundance whereas composition of the landscape in human
land use, the aggregation index, and the date when the
growing season commenced were negatively associated with
abundance (Table 1). As forest, shrub, and grass aggregated in
the landscape, woodcock abundance declined; as these land
covers intermixed, abundance increased. Woodcock abun-
dance increased as the topographic convergence index
increased or as mesic conditions developed in the landscape,
though this variable was the weakest in magnitude relative to
the other environmental covariates. The date when the
growing season began is correlated with latitude, which
reflects a decline in abundance from south to north in the
context of the other parameters. Thus, this climate parameter
appears to dampen the increasing abundance in woodcock
south to north. From a univariate perspective, landscapes with
forest composition of .80% had a mean abundance of 3.15

birds per survey with 95% confidence limits (2.97, 3.33)

versus 3.44 birds per survey with 95% confidence limits (3.35,

3.53) for landscapes with ,80% forest composition;

furthermore, while non-credibly different from zero, the

coefficient for the squared term for the proportion of the

landscape in forest was in the expected direction.

The within-scale averaged models of woodcock abundance

indicated a substantial association with environmental

variables at each of the 3 scales of study (Table 2). The

model parameters fluctuated in relative strength across the

scales but, in general, the date when the growing season

began was the variable with the greatest influence on

abundance, followed by the aggregation index and human

land-use composition (each of which was negatively

associated with abundance). Confidence intervals on the

averaged slope coefficients suggested that contributions

could not be distinguished from zero for the proportion of

the landscape in shrub at any of the 3 scales, proportion of

the landscape in grass at the finest scale, and topographic

convergence index at the intermediate scale.

Estimates of the variability in the random effects are one

means of communicating the importance of these param-

eters in the model. The posterior densities of the standard

deviations of the random effects were greatest for the route

(x̄ ¼ 1.93, 95% CI [1.79, 2.08]), and substantially less for

observer (0.65, [0.60, 0.70]) and year (0.10, [0.07, 0.16]).

The variability associated with year, however, was minimal

compared to that of the model residual variability (e, Poisson

overdispersion) unaccounted for by the other random effects

and the environmental covariates (0.29, [0.27, 0.31]). The

proportion of the variability in the random effects that was

due to spatial clustering (i.e., correlation between routes)

after we accounted for the effects of the environmental

covariates was 0.87 [1.93/(1.93þ 0.29)], indicating a strong

Table 1. Parameter estimates for the best subset of models fitted to 1981–2001 American woodcock Singing Ground Survey route counts from 18 states in
the midwestern and northeastern United States.

Best subset
model Fixed explanatory variablesa

Scale
(ha) Parametersb DICc DDICd wi

e
Evidence

ratiof

1 Forest þ shrub þ aspen � human land use � aggregation index
� growing season þ TCIg

350 2,771.9 33,551.2 0 0.58 1.00

2 Forest þ shrub þ aspen � grass � human land use � aggregation index
� growing season

4,000 2,789.1 33,552.3 1.1 0.34 1.73

3 Forest � forest2 þ shrub þ aspen � grass � human land use
� aggregation index � growing season

4,000 2,797.5 33,556.8 5.6 0.04 16.44

4 Forest þ shrub þ aspen � grass � human land use � aggregation index
� growing season þ TCI

4,000 2,790.1 33,556.9 5.7 0.03 17.29

5 Forest þ shrub þ aspen � grass � human land use � aggregation index
� growing season

106,000 2,768.0 33,560.5 9.3 0.01 104.58

6 Forest þ shrub þ aspen þ human land use � growing season 350 2,798.7 33,560.8 9.6 0.005 121.51
Null Includes only random effects associated with observer, year, and route NA 2,887.4 33,670.9 119.7 0 9.83 E þ 25

a See Table 2 for variable definitions.
b Parameters is the effective no. of parameters and is given by the posterior mean of the deviance minus the deviance of the posterior means (Spiegelhalter

et al. 2003).
c DIC is Deviance Information Criterion.
d DDIC is the difference between the best model and the model of interest.
e wi is the model wt.
f Evidence ratio is the model wt for the best model divided by the wt for the model of interest.
g Topographic convergence index.
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residual effect of spatial correlation not accounted for by the

environmental covariates.

Predicted relative abundance of woodcock peaked in east-

central Minnesota (east of Mille Lacs Lake) and at the

intersection of Vermont, USA, New York, USA, and

Ontario, Canada (Burlington–Plattsburgh–St. Paul-de l’ile-

aux-Noix area; Fig. 1). We predicted smaller areas of peak

density for the upper peninsula of Michigan, USA, and St.

Lawrence County, New York. Predictive precision was a

function of the mean count (Fig. 2), not survey density as

might be expected.

The Gelman et al. (1995) posterior predictive diagnostic

showed good model fit for all candidate models. Data

withheld from model construction and data from the years

2002 and 2003 suggested good correspondence (r2s � 0.73)

relative to the observed counts (Fig. 3).

DISCUSSION

We found the environmental covariates incorporated in the

models largely concurred with our a priori expectations

drawn from fine-scaled studies of woodcock habitat
associations (Kinsley et al. 1980, Gutzwiller et al. 1983,
Hudgins et al. 1985), though the relative strength of the
relations was a novel result. The climate parameter, the date
when the growing season commenced, was the most
important influence on woodcock abundance, followed
closely by the extent to which forest, shrub, and grass land
cover were aggregated. The former is not amenable to
management, but the latter is, as are the other environ-
mental covariates in the model. However, management of
habitat characters may need to be cognizant of overarching
limitations placed on woodcock by climate. The potential
expansion in the breeding distribution of woodcock to the
north and west in recent decades (Smith and Barclay 1978,
Marshall 1982, Keppie et al. 1984) may be as much a
response to changes in climate as it is to changing forest
management practices, if this relationship with the start of
the growing season is correct.

We found shrub land cover was equivocal in its relation to
woodcock abundance, as the variance in the parameter
estimate made it difficult to distinguish from zero despite its
magnitude. It is possible that this uncertain result may be a

Table 2. Parameter estimates and standard deviation averaged within each of 3 scales for hierarchical, spatial count models describing mean American
woodcock abundance across the upper midwestern and northeastern United States, 1981–2001.

Variablea Finest scale (350 ha) SD Medium scale (4,000 ha) SD Coarsest scale (106,000 ha) SD

Intercept 0.019 0.097 0.070 0.113 0.057 0.154
Start of seasonb �0.367 0.166 �0.330 0.122 �0.329 0.159
Aggregation indexc �0.289 0.044 �0.359 0.054 �0.263 0.069
Proportion humand �0.215 0.045 �0.255 0.044 �0.152 0.051
Proportion grass �0.010 0.048 �0.206 0.054 �0.141 0.067
Proportion aspen 0.094 0.037 0.123 0.048 0.201 0.075
TCIe 0.099 0.043 0.002 0.053 NA NA
Proportion shrubf 0.174 0.110 0.170 0.113 0.124 0.140
Proportion forest 0.183 0.049 0.148 0.046 0.087 0.048
Proportion forest2 f NA NA �0.007 0.051 NA NA

a The coeff. for each variable with the highest absolute magnitude is identified in bold.
b Start of season is an index to date of last frost, an important variable relating to earthworm availability.
c Aggregation index is a measure of the extent to which forest, shrub, and grass are clumped in the landscape. Higher values of this variable indicate that

shrub, grass, and forest are not intermixed to a great extent.
d Human land cover is an aggregated cover type defined as low-, medium-, and high-density residential areas, transportation, commercial, and industrial

areas, and urban grass.
e TCI is the topographic convergence index, which estimates flow accumulation and is measured as the upslope contributing area for water runoff divided

by the tangent of the slope in degrees. Higher values of this variable describe drier, higher areas, whereas lower values describe moister, lower areas.
f We did not deem proportion of the landscape in shrub and the squared proportion of forest credible predictors of woodcock abundance and, thus, we did

not include them in preparing the map.

Figure 1. American woodcock abundance (birds/route) predicted for the
upper midwestern and northeastern United States circa 1991, as determined
by a hierarchical Bayesian spatial count model of Singing Ground Survey
counts from 1981–2001.

Figure 2. Posterior standard deviation of expected route-count predictions
from the final model of American woodcock abundance, circa 1991, for the
upper midwestern and northeastern United States. Dot size corresponds to
the relative mean expectation for the period 1981–2001.
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function of how shrub land cover was mapped in the eastern
United States, as Thogmartin et al. (2004a) found
discrepancies in the mapping of rare land covers, including
shrub, in the upper midwestern United States. We also
found with the data we studied that the relationship of
woodcock to forest suggested a curvilinear relationship as
forest composition increased in the landscape but variability
in this relationship at the highest proportions of forest cover
precluded definitive determination of this relationship.

Klute et al. (2002) studied potential correlation between
stop-level occurrences of woodcock and reported that the
scale most appropriate in their study was approximately
1,385 ha (p3 2,1002, as 2,100 m was the most parsimonious
clique size from their study). We found for route-level
counts that the best-performing model was scaled at 350 ha,
but that important contributions were provided at the
intermediate scale (4,000 ha), a scale an order of magnitude
greater. Parameter estimates for some of the environmental
covariates changed from one scale to another, but the
changes in parameter magnitude were relatively small
compared to the observed variability. One potentially
important result, however, was that 3 of the 4 environmental
covariates positively associated with woodcock abundance
had their highest magnitude at the finest scale, whereas 3 of
the 4 variables negatively associated with abundance had
their greatest magnitude at the intermediate scale. Factors
operating at the finer scales might be appropriate first targets
for management, given that this scale is within the reach of
local units of government and nongovernmental conserva-
tion organizations.

Any mapping exercise based on association analyses must be
viewed as limited in its ability to define causal factors
associated with variation in abundance. For example, the

strong association of date of initiation of growing season with

woodcock abundance likely does not reflect a causal relation-
ship with this variable, but instead may be a surrogate for a
biologically important feature (e.g., earthworm availability)
that is not presently well-represented by our remotely sensed
predictors of woodcock abundance. We encourage additional
modeling exercises with better predictor information. For
instance, annual rather than mean climate conditions, forest

stand age and structure, soil characteristics, and increased
thematic and spatial resolution of land cover would provide
further insight into patterns of abundance. Further, we suggest
that it would be useful for woodcock biologists to think in
terms of model sets that incorporate alternative predictions of
how habitat and environmental features influence woodcock
populations. For instance, we could not evaluate the effects of

forest structure in our study, yet manipulating structure via
timber harvest is one of the primary means managers may use
to manage woodcock habitat. Model sets incorporating these
relevant factors can then be used for prediction of the effects of
habitat management, and additional monitoring can then be
used to evaluate the relative value of the alternative models.
This adaptive management approach should further enhance

our understanding of factors influencing woodcock manage-
ment.

MANAGEMENT IMPLICATIONS

The Woodcock Conservation Plan (WCP) is identifying
population deficits by differencing present period estimates

of abundance from estimates obtained for the 1970–1975
period (Kelley 2005). The WCP multiplies this population
deficit by 50 ha to identify the amount of habitat (the habitat
deficit) that must be created to meet the population goal of
the plan. Assuming the map we developed proves accurate
under field scrutiny, researchers could use the map of
predicted abundance to study woodcock over habitat

sustaining varying levels of abundance. This would allow
the development of means that would secure populations in
areas of high abundance and increase populations in areas of
low or medium abundance. Managers can also use this map
to focus monitoring on habitat where woodcock are
predicted to occur in high abundance to identify and counter

threats facing woodcock on their primary breeding grounds.
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Figure 3. Observed American woodcock Singing Ground Survey counts
from the upper midwestern and northeastern United States compared to
expected (predicted) counts (birds/route) from the best model of woodcock
abundance. Observed counts were data withheld from model building
(collected between 1981 and 2001) and data collected for 2002 and 2003.
The bold dashed line is the line of one-to-one correspondence between
observed and predicted counts. We fitted observed versus expected counts
with individual linear least-squares regressions, but they substantially
overlap one another.
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Appendix. Priors and effect type for the main model effects for the model Z(si) ¼ l(si) þ Rn
k¼1cik[Z(sk) � l(sk)]þ xk(s)þ ck(s)þ e(sk).

Variable Definition Effect type Prior distribution (exp value, precisiona)

l Environmental factors Fixed Normal (0.0,1.0E�6)b

Z Spatial relatedness Random Flat (for the CAR-related intercept)c

sSpace ; Gamma (0.5, 0.0005)
x Observer-experience effect Random Normal (0.0, sObserver)

sObserver ; Gamma (0.001, 0.001)
y Yr effect Random Normal (0.0, sYear)

sYear ; Gamma (0.001, 0.001)
e Error Random Normal (0.0, sNoise)

sNoise ; Gamma (0.001, 0.001)

a Precision rather than variance is described, with precision simply 1/variance.
b Essentially a flat or noninformative prior distribution.
c See Thomas et al. (2002) for details regarding flat prior relating to the conditional autoregression implemented in WinBUGS. CAR ¼ conditional

autoregressive.
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