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Abstract: Bird populations are influenced by a variety of factors at both small and large scales that range from the pres-
ence of suitable nesting habitat, predators, and food supplies to climate conditions and land-use patterns. We evaluated the
influences of regional climate and land-use variables on wetland breeding birds in the Canada section of Bird Conservation
Region 11 (CA-BCR11), the Prairie Potholes. We used bird abundance data from the North American Breeding Bird Sur-
vey, land-use data from the Prairie Farm Rehabilitation Administration, and weather data from the National Climatic Data
and Information Archive to model effects of regional environmental variables on bird abundance. Models were constructed
a priori using information from published habitat associations in the literature, and fitting was performed with WinBUGS
using Markov chain Monte Carlo techniques. Both land-use and climate variables contributed to predicting bird abundance
in CA-BCR11, although climate predictors contributed the most to improving model fit. Examination of regional effects of
climate and land use on wetland birds in CA-BCR11 revealed relationships with environmental covariates that are often
overlooked by small-scale habitat studies. Results from these studies can be used to improve conservation and management
planning for regional populations of avifauna.

Résumé : Les populations d’oiseaux sont influence´es par une foule de facteurs, tant a` petite qu’àgrande e´chelle, qui vont
de la présence d’un habitat ade´quat de nidification, de pre´dateurs et de ressources alimentaires jusqu’aux conditions clima-
tiques et aux patrons d’utilisation des terres. Nous e´valuons les influences des variables du climat et de l’utilisation re´gion-
ale des terres sur la reproduction d’oiseaux nichant dans les terres humides dans la re´gion 11 de protection des oiseaux au
Canada (CA-BCR11), soit les mares des prairies. Nous utilisons les donne´es d’abondance des oiseaux de l’Inventaire nord-
américain des oiseaux nicheurs, les donne´es d’utilisation des terres de l’Administration du re´tablissement agricole des prai-
ries et les donne´es climatiques des Archives nationales d’information et de donne´es climatologiques pour e´laborer un mod-
èle des effets des variables environnementales re´gionales sur l’abondance des oiseaux. Nous avons construit des mode`les a
priori à partir de donne´es sur les associations d’habitat dans la litte´rature et nous les avons ajuste´s à l’aide du logiciel Win-
BUGS avec des techniques de Monte Carlo par chaıˆnes de Markov. Tant les variables du climat que de l’utilisation des
terres contribuent a` la prédiction de l’abondance des oiseaux dans la re´gion CA-BCR11, bien que ce soient les variables
climatiques explicatives qui contribuent le plus a` l’amélioration de l’ajustement du mode`le. L’examen des effets re´gionaux
du climat et de l’utilisation des terres dans la re´gion CA-BCR11 montre des relations avec les covariables environnemen-
tales qui sont souvent ignore´es dans les e´tudes d’habitat a` petite échelle. Les re´sultats de nos e´tudes peuvent servir a` amé-
liorer la planification en vue de la conservation et l’ame´nagement des populations re´gionales de la faune aviaire.

[Traduit par la Re´daction]

Introduction

Environmental factors can influence bird populations at a
variety of different spatial scales. Small-scale habitat studies
that focus on microhabitats (e.g., Clark and Weatherhead
1986; Murkin et al. 1997; Vierling 1999) have been the pri-
mary focus for biologists conducting avian habitat studies.
While these investigations provide important data on small-

scale habitat associations, they often overlook influences
that are present at larger scales.

Although results from local habitat studies are important,
researchers have become interested in conducting habitat
analyses at larger scales because planning for conservation
is occurring at regional, national, and continental levels.
The number of habitat studies at larger scales is growing as
a result of the wide availability of readily accessible spatial
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data via the Internet, powerful geographic information sys-
tem (GIS) software, and increased computer processing
speed. Additionally, large-scale data sets such as the North
American Breeding Bird Survey (NABBS) (Sauer et al.
2005), the generalized land cover for the Canadian Prairies
(Ashton 2001), and climate data from the National Climate
Data and Information Archive (Environment Canada 2002)
are freely available to those with Internet access. Modern
personal computers, in conjunction with powerful GIS soft-
ware, have made complex analyses at larger scales feasible
(Greenberg et al. 2002). These technologies have allowed
scientists to collect and analyze data across broad geo-
graphic areas, permitting habitat-related studies at corre-
sponding scales. The use of Bayesian approaches to create
population models also has recently become feasible be-
cause of increases in computer speed (Link and Sauer 2002;
Calder et al. 2003; Thogmartin et al. 2004b). Bayesian ap-
proaches can accommodate nuisance effects that are often
present in large-scale data sets. Nuisance effects can include
overdispersion in count data, observer and year effects asso-
ciated with data collection, and spatial autocorrelation
(Thogmartin et al. 2004b).

Avian communities are highly influenced by habitat pat-
terns in the landscape. Bird distributions and occurrence can
be most heavily influenced by landscape habitat patterns,
specifically habitat features within the landscape matrix
(Saab 1999). Landscape features are particularly important
to Neotropical bird migrants. Landscapes with greater per-
centages of natural habitats can have positive effects on
Neotropical bird abundance, whereas increased landscape di-
versity and edge can have negative effects on abundance
(Flather and Sauer 1996). Landscape-level habitat variables
are also important influences on wetland breeding bird abun-
dance and distribution. Fairbairn and Dinsmore (2001) found
landscape habitat variables to be important predictors of bird
abundance for seven total waterfowl and passerine species.
Additionally, total grassland area and total wetland area
have been shown to be important predictors of wetland bird
occurrence (Naugle et al. 2000, 2001). Mallard (Anas platy-
rhynchos L., 1758) abundance is also affected by landscape
influences, with abundance being positively related to areas
of wetlands and rice and negatively related to areas of or-
chards and urban lands (Newbold and Eadie 2004).

Environmental factors can have different effects on birds,
depending on the scale of the analysis. Red-winged black-
birds (Agelaius phoeniceus (L., 1766)) use cattail density
immediately around the nest for selecting nest sites, while
ignoring this factor at broader scales (Pribil and Picman
1997). Saab (1999) found landscape features to be most im-
portant when evaluating bird–habitat relationships at the
landscape, microhabitat, and macrohabitat scales. Thogmar-
tin et al. (2004b, 2006) noted landscape factors differed in
their influence on cerulean warblers (Dendroica cerulea
(Wilson, 1810)) and grassland birds at varying scales. The
importance of scale in landscape analyses necessitates the
examination of habitat influences at multiple scales so that
important relationships are not overlooked (Urban 2005).

While landscape-level habitat studies have become in-
creasingly common, more recent research has begun to ex-
amine environmental influences at larger extents, including
multiple states or provinces. Because political boundaries

are not ecologically meaningful, biologists often evaluate
multistate bird–environment relationships within one or
more Bird Conservation Regions (BCRs) across political
boundaries. BCRs are ecologically unique areas with similar
avian communities and are used to foster a large-scale ap-
proach to bird conservation and management (North Ameri-
can Bird Conservation Initiative 2005). BCRs have been
shown to be effective strata for analyses of avian population
trends (Sauer et al. 2003). Thogmartin et al. (2004b) mod-
eled cerulean warbler abundance as a function of land use
and climatic influences in the Prairie–Hardwood Transition
BCR (BCR23). BCRs were also effective strata for mapping
predicted abundances of five species of grassland birds as a
function of land-use and climate variables (Thogmartin et al.
2006).

Modern GIS software and computers allow complex spa-
tial habitat models to be fitted for bird populations in BCRs
across North America. We evaluated the influence of large-
scale land-use and climatic variables on wetland breeding
bird populations in the Canadian section of Bird Conserva-
tion Region 11 (CA-BCR11), the Prairie Potholes. We used
bird abundance data from the NABBS, landcover data from
the Prairie Farm and Rehabilitation Administration, and cli-
mate data from the National Climatic Data and Information
Archive to model relative bird abundance as a function of
environmental variables at a 100 000 ha spatial scale in CA-
BCR11. Results from this study will reveal land-use and cli-
matic influences on wetland bird populations at a regional
scale within CA-BCR11.

Methods

Study area
BCR11 covers over 715 000 km2 across five states in the

United States and three Canadian provinces; however, this
study only examined the portion within Canada (Fig. 1) be-
cause of a lack of continuous land-cover data across coun-
tries. The pothole landscape of BCR11 was formed
approximately 12 000 years ago after glaciers melted and
left behind depressions that collected rain and snow melt
(Leitch 1989). Large fluctuations in hydrologic regimes in
BCR11 cause vegetation composition to vary widely. Sub-
mergent vegetation dominates in locations deep enough to
have standing water during the dry season. Central zones
within wetlands that periodically dry contain mid-height
and tall emergents. Vernal potholes primarily support
grasses, sedges, and forbs (Kantrud 1989). Agriculture has
adversely affected the area ecologically with native habitat
destruction and runoff (Euliss et al. 1999). Although the hu-
man population in BCR11 is generally sparse, farms con-
tinue to increase in size and urban areas are expanding
(Leitch 1989). Increases in urbanization and a concomitant
increase in road construction negatively impact the ecology
of BCR11 (Euliss et al. 1999). Before European settlement,
the region consisted of approximately 10% wetland (Mitsch
and Gosselink 2000); however, agricultural practices have
drained over half of the pre-existing wetlands (Leitch
1989). Agriculture-induced sedimentation, large inputs of
nutrients, and agricultural chemicals have heavily impacted
remaining wetlands (Euliss et al. 1999).

The climate of BCR11 is characterized by both precipita-
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tion and temperature extremes, with the region being colder
and wetter to the north and east and warmer and drier to the
west and south (Kantrud 1989). Precipitation amounts vary
across the region, but all locations within BCR11 have a
negative water balance. Temperatures in BCR11 are gener-
ally cold with mean daily temperatures at or below 08C for
5 months of the year. Air temperatures in the winter can
drop below –60 8C and can exceed 408C during the
summer (Euliss et al. 1999).

Historical data sets
This study used data from several pre-existing, large-scale

data sets. Bird abundance data were obtained from NABBS
routes within CA-BCR11 (Sauer et al. 2005). Climate data
for Canada were obtained from the National Climatic Data
and Information Archive (Environment Canada 2002).
Land-cover data for Canada were used from the Prairie
Farm and Rehabilitation Administration generalized land-
cover data set (Ashton 2001). Information from these data
sets was used in conjunction with a hierarchical spatial
count model to model relative bird abundance as a function
of environmental covariates.

The NABBS is a long-term survey effort to monitor bird
population trends within North America. Breeding bird sur-
vey routes are surveyed every year during late May and
June along randomly assigned roadsides across North Amer-
ica. Routes are 39.4 km in length, with 50 stops spaced ap-
proximately every 0.8 km along the route. Each observer
conducts a 3 min point count at each stop and records all
birds seen or heard within a 402 m radius. When possible,
individual routes are surveyed by the same observer each
year, only under suitable weather conditions (i.e., low wind
and minimal precipitation) where bird detection probabilities

are not likely to be affected. This level of consistency mini-
mizes variability in NABBS data, so real variations in trends
can be detected over time. We used NABBS data between
the years 1980 and 2000 because this time frame coincides
with the time when land-cover data were derived from satel-
lite imagery (Ashton 2001). In CA-BCR11, there are 133
routes for which data were used in this study (Fig. 1); data
from 106 routes were used to create spatial models, while
data from 27 randomly selected routes were withheld for
validation.

Land-use information and metrics were derived from the
generalized land-cover data set (GLCD) distributed by the
Prairie Farm and Rehabilitation Administration. Land-use
data from the GLCD represent conditions in Canada in the
early 1990s and are not currently available for other time
periods. The GLCD has a 100 m� 100 m resolution, which
only permits landscape analyses at coarse resolutions. Land-
use patterns were evaluated within a 10 km buffer
(~100 000 ha) surrounding each 39.4 km NABBS route.
Land-use metrics were quantified within each buffer around
each route using ArcGIS1 version 9.1 (Environmental Sys-
tems Research, Inc. 2005) and FRAGSTATS (McGarigal et
al. 2002) (Table 1). Raster algebra was used to multiply the
GLCD reclassifications with each buffer; the resulting grid
contained only land-use data within each buffer surrounding
each route. Land-use metrics within each buffer zone sur-
rounding NABBS routes were calculated using FRAG-
STATS (McGarigal et al. 2002).

Weather data were obtained from 245 recording stations
across BCR11 in both the United States and Canada. Data
for Canada were used with those from the United States as
part of another study to evaluate bird–environment relation-
ships in the United States region of BCR11 (G.M. Forcey,

Fig. 1. Distribution and tesselation of 133 North American Breeding Bird Survey (NABBS) routes in the Canada section of Bird Conserva-
tion Region 11.
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G.M. Linz, W.E. Thogmartin, and W.J. Bleier, unpublished
data). Total precipitation (snowfall combined with rainfall)
for the United States was not provided, so total precipitation
for the United States was calculated as follows: total precip-
itation = rainfall + (0.1� snowfall). This equation approxi-
mates the amount of liquid precipitation as one-tenth of the
amount of snowfall, which is a common conversion factor
(Akinremi et al. 1999). Weather data for Canada were pro-
vided as daily summaries of temperature and precipitation
information. To ensure compatibility between monthly
weather data from the United States and daily data from

Canada, we converted daily information from Canada into
monthly summaries by averaging temperature and summing
precipitation data for each month from 1980 to 2000.

We used the kriging function of the spatial analyst exten-
sion of ArcGIS1 version 9.1 (Environmental Systems Re-
search, Inc. 2005) to create a continuous surface for each
climate variable from 1980 to 2000 over BCR11 (Table 1).
Kriging is a geostatistical method of surface interpolation
that uses information from known points to estimate values
on a grid where information is not known. This allowed us
to estimate the values of climate variables around NABBS

Table 1. A priori environmental variables included in the suites of candidate models for each species.

Type of
variable Variable Variable description Species that variable was modeled

Climate Previous year precipitation Total precipitation from the year prior
to when bird abundance was measured

All species

Previous spring temperature Mean spring temperature from the spring
prior to when bird abundance was measured

All species

Yearly precipitation Total precipitation from the same year bird
abundance was measured

All species

Yearly temperature Mean yearly temperature from the same
year bird abundance was measured

MALL, BWTE, RUDU, PBGR, YHBL

Spring precipitation Total spring precipitation from the same
year that bird abundance was measured

BWTE, RUDU, PBGR, BLTE

Spring temperature Mean spring temperature from the same
year bird abundance was measured

All species

Patch-level
land cover

Cropland (%) Percentage of cropland in the landscape MALL, BWTE, RWBL

Forage (%) Percentage of forage in the landscape MALL, BWTE, NOHA, BLTE, RWBL
Forage largest patch index (%)a Percentage of total landscape consisting

of the largest patch of forage
NOHA

Other land (%) Percentage of ‘‘other’’ area in the landscape
(this class mostly includes developed areas)

YHBL, COGR

Shrubland (%) Percentage of shrubland in the landscape MAWR
Trees (%) Percentage of tree cover in the landscape

(includes deciduous and coniferous trees)
RUDU, BLTE, MAWR, RWBL

Tree-edge density Amount of tree edge per hectare YHBL, COGR
Water (%) Percentage of open water in the landscape MALL, BWTE, RUDU, PBGR, BLTE
Water interspersion and

juxtaposition indexb
Percentage of land-use types that are

adjacent to open water
BWTE, RUDU, PBGR, BLTE

Water largest patch index (%)a Percentage of total landscape consisting
of the largest patch of open water

PBGR, BLTE

Wetland (%) Percentage of vegetated wetland in
the landscape

All species

Wetland interspersion and
juxtaposition indexb

Percentage of land-use types that are
adjacent to vegetated wetland

MALL, RUDU, PBGR, RWBL, YHBL

Wetland largest patch index (%)a Percentage of total landscape consisting
of the largest patch of vegetated wetland

NOHA, BLTE

Landscape-level
land cover

Contagionc Aggregation of different patch types in the
landscape (low contagion indicates many
land uses in the landscape)

MALL, RUDU, PBGR, NOHA,
MAWR, RWBL, YHBL, COGR

Patch richness density Number of different land uses present per
100 ha

MAWR, RWBL, YHBL, COGR

Simpson’s diversity indexd Diversity of land uses in the landscape MALL, BWTE, RWBL, COGR

Note: All covariates were standardized with a mean of 0 and a SD of 1. MALL, mallard (Anas platyrhynchos); BWTE, blue-winged teal (Anas discors);
RUDU, ruddy duck (Oxyura jamaicensis); PBGR, pied-billed grebe (Podilymbus podiceps); NOHA, northern harrier (Circus cyaneus); BLTE, black tern
(Chlidonias niger); MAWR, marsh wren (Cistothorus palustris); RWBL, red-winged blackbird (Agelaius phoeniceus); YHBL, yellow-headed blackbird
(Xanthocephalus xanthocephalus); COGR, common grackle (Quiscalus quiscula).

aLargest patch index equals the area of the largest patch of a particular land use divided by the total landscape area and multiplied by 100.
bInterspersion and juxtaposition index is approximately 0 when a particular land-use type is adjacent to only one other land-use type. Interspersionand

juxtaposition index equals 100 when a particular land-use type is equally adjacent to all other land-use types.
cContagion is approximately 0 when every grid cell is a different land-use type. The contagion index equals 100 when the landscape consists of a single land-

use type. This metric is similar to the interspersion and juxtaposition index except that contagion is based on cell adjacencies and not land-use typeadjacencies.
dSimpson’s diversity index represents the chance that any two grid cells selected at random would be different land-use types.
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routes from data collected at surrounding weather stations.
Grid-cell values within 10 km buffers surrounding each
NABBS route were averaged to compute a value for each
weather variable for each route for each year. Resolution of
climate grids was 1000 m� 1000 m.

Modeling approach
Wetland bird abundance was modeled as a function of

nuisance effects, land-use variables, and climatic influences
using a hierarchical modeling approach within a Bayesian
framework. Hierarchical models are useful for modeling
NABBS data because they acknowledge correlation among
multiple observational units that are present in the survey
design. Spatial correlation is present in count data among
routes, and temporal correlation is present in count data
among years. Spatial correlation is when count similarity is
tied to geographical proximity; temporal correlation occurs
when count similarity is tied to survey chronology. A Baye-
sian approach treats all unknown quantities as random varia-
bles and therefore provides a natural approach for fitting
hierarchical models (Link and Sauer 2002).

We used Poisson regression to model bird abundance as a
function of environmental covariates in CA-BCR11 because
counts are discrete positive values and are often Poisson-
distributed. Models were fitted using Markov chain Monte
Carlo (MCMC) techniques using Gibbs sampling (Link et al.
2002). Gibbs sampling is an algorithm that samples the
posterior distribution of a random variable (Gelman et al.
2004). Three MCMC chains were computed for each simu-
lation with different starting values for each chain to allow
computation of the Gelman–Rubin test for convergence
(Brooks and Gelman 1998). MCMC simulations were run
for 25 000 iterations, including a 20 000 iteration burn in
period required for convergence. Convergence provides a
period where dependence on the prior is minimized and
the data primarily influence the posterior distribution. We
fitted spatial models using WinBUGS version 1.4.1, which
provides a means to run MCMC simulations using Gibbs
sampling (Spiegelhalter et al. 2003).

We used data from 1070 NABBS counts surveyed by 162
observers from 1980 to 2000 to model bird abundance as a
function of environmental covariates in CA-BCR11. The re-
sponse variable in the models is the total number of birds
across the entire route for each year for each species. The
hierarchical model accounted for nuisance effects at three
levels in a hierarchy. Inherent temporal variation in bird
abundance over time was accounted for with a year effect
and a trending term. Two observer effects were included in
the model: one accounted for differences in surveying abil-
ities among observers (Sauer et al. 1994) and the other ef-
fect accounted for inexperience (a first time observer
effect). The first time observer effect is a binary variable
with a value of 0 if it was an observer’s first time surveying
a given route and 1 if the observer had previously surveyed
the route. Inexperienced observers are often less familiar
with species found on their route and less efficient at com-
pleting the survey than more experienced observers (Kendall
et al. 1996). Spatial autocorrelation in counts occurs because
routes that are closer in proximity may have similar habitat
characteristics and concomitantly similar species composi-
tion and abundance. Spatial autocorrelation was accounted

for with a spatial conditional autoregressive (CAR) prior
distribution on the route effect in the model (Banerjee et al.
2004). We derived an adjacency matrix (Lawson et al. 2003)
for NABBS routes within CA-BCR11 by creating a tessella-
tion of NABBS routes within CA-BCR11 and forming an ir-
regular lattice (Hooge and Eichenlaub 1997) (Fig. 1). Spatial
autocorrelation is accounted for when routes share a com-
mon boundary in the tessellation; distances among routes
are not taken into account, although in other formulations
this is possible (Thogmartin et al. 2004b).

One unique aspect of Bayesian analyses is the inclusion
of prior beliefs or information that influences the final out-
come. This prior information can be either vague or specific.
Because little information is known about how environmen-
tal variables (xk) influence wetland birds at the regional
level, vague prior distributions were assigned to parameters
in the model (Link and Sauer 2002). Breeding bird survey
counts (�) occurred across space (s). Year (�k) and observer
(!) effects were given mean zero normal distributions;
beta parameters (�k), spatial effects (Z), and novice ef-
fects (�) were given normal distributions with a mean of 0
and a variance equal to 1000 (Link and Sauer 2002; Thog-
martin et al. 2004b). The final model used was

log�ðsÞ ¼
Pn

k¼1
�kxkðsÞ þ ZkðsÞ þ !kðsÞ þ �IðsÞ þ �kðsÞ. Thogmar-

tin et al. (2004b, 2006) used this hierarchical model to ex-
amine effects of environmental covariates on cerulean
warblers and five grassland bird species. This model did
not include an effect for overdispersion (�k) because the fo-
cal species in our study were not as overdispersed as the
rare species examined by Thogmartin et al. (2004b, 2006).

Remote-sensing technology can measure a large suite of
environmental variables over large geographic regions. We
reviewed published habitat associations and life histories for
wetland birds in this study to determine which environmen-
tal variables would likely have the most effect on abundance
(Table 1). Variables that were thought to be important de-
scriptors of bird abundance were selected a priori. Selecting
variables a priori reduces the chance of finding spurious ef-
fects that can occur when examining a large suite of covari-
ates. Selected variables were used to construct candidate sets
of models for each focal species. Spearman rank correlations
were calculated for environmental covariates; covariates
with a correlation coefficient >0.5 were not included in the
same a priori model.

Life history was evaluated for mallard (Drilling et al.
2002), blue-winged teal (Anas discors L., 1766) (Rohwer et
al. 2002), ruddy duck (Oxyura jamaicensis (Gmelin, 1789))
(Brua 2002), pied-billed grebe (Podilymbus podiceps (L.,
1758)) (Muller and Storer 1999), northern harrier (Circus
cyaneus (L., 1766)) (MacWhirter and Bildstein 1996), black
tern (Chlidonias niger (L., 1758)) (Dunn and Agro 1995),
marsh wren (Cistothorus palustris (Wilson, 1810))
(Kroodsma and Verner 1997), red-winged blackbird (Yasu-
kawa and Searcy 1995), yellow-headed blackbird (Xantho-
cephalus xanthocephalus (Bonaparte, 1826)) (Twedt and
Crawford 1995), and common grackle (Quiscalus quiscula
(L., 1758)) (Peer and Bollinger 1997). This group of species
represented a variety of wetland bird taxa, and their behav-
iors are conducive to being well represented in NABBS.
Habitat descriptions of each species were studied in each
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Table 2. Posterior distributions of explanatory variables in the best subset of models for explaining wetland bird abundance in
the Canada section of Bird Conservation Region 11.

95% credibility interval

Species Variable Meana Lower Upper
Variable
importanceb

Mallard Previous spring temperature 0.228 0.206 0.249 1.000
Previous yearly precipitation 0.141 0.121 0.162 1.000
Cropland area (%) 0.609 0.380 0.828 0.743
Forage area (%) 0.002 –0.328 0.362 0.095
Water area (%) 0.073 –0.198 0.353 0.190
Wetland area (%) 0.314 0.120 0.510 0.596
Wetland interspersion and juxtaposition 0.151 –0.020 0.334 0.202
Contagion –0.136 –0.366 0.073 0.202
Simpson’s diversity –0.098 –0.282 0.123 0.095
Spatial conditional autoregressive 2.678 2.491 2.881 1.000

Blue-winged teal Yearly precipitation 0.150 0.107 0.191 1.000
Yearly temperature 0.413 0.314 0.511 1.000
Water area (%) 0.101 –0.218 0.427 0.726
Wetland area (%) 0.025 –0.347 0.395 0.726
Simpson’s diversity 0.044 –0.229 0.306 0.726
Spatial conditional autoregressive 1.082 0.849 1.299 1.000

Ruddy duck Spring precipitation 0.205 0.134 0.277 1.000
Spring temperature 0.121 0.037 0.203 1.000
Tree area (%) 0.151 –0.544 1.006 0.386
Water area (%) –0.207 –0.963 0.624 0.386
Wetland area (%) 0.064 –0.828 0.831 0.386
Water interspersion and juxtaposition 0.079 –0.555 0.644 0.308
Wetland interspersion and juxtaposition 0.055 –0.474 0.578 0.308
Contagion 0.082 –0.590 0.634 0.308
Spatial conditional autoregressive –1.777 –2.134 –1.435 1.000

Pied-billed grebe Previous spring temperature –0.202 –0.331 –0.077 1.000
Previous yearly precipitation 0.390 0.241 0.538 1.000
Water area (%) 0.127 –0.312 0.577 0.207
Wetland area (%) 0.189 –0.256 0.647 0.483
Water largest patch –0.157 –0.572 0.244 0.276
Water interspersion and juxtaposition –0.114 –0.502 0.276 0.366
Wetland interspersion and juxtaposition 0.267 –0.112 0.627 0.366
Contagion 0.128 –0.260 0.517 0.573
Spatial conditional autoregressive –1.830 –2.256 –1.438 1.000

Northern harrier Previous year spring temperature –0.026 –0.109 0.054 0.776
Previous year precipitation 0.150 0.056 0.244 0.999
Forage largest patch –0.131 –0.314 0.050 0.272
Wetland area (%) 0.050 –0.092 0.191 0.258
Wetland largest patch 0.057 –0.080 0.200 0.237
Contagion 0.019 –0.130 0.173 0.321
Spatial conditional autoregressive 0.195 0.004 0.377 1.000

Black tern Spring temperature 0.252 0.204 0.300 1.000
Yearly precipitation 0.315 0.266 0.363 1.000
Water largest patch –0.103 –0.552 0.298 1.000
Wetland largest patch 0.556 0.132 1.033 1.000
Spatial conditional autoregressive –0.111 –0.419 0.136 1.000

Marsh wren Spring temperature 0.270 0.164 0.376 1.000
Yearly precipitation 0.025 –0.111 0.167 0.540
Shrubland area (%) –0.270 –0.810 0.214 0.200
Water interspersion and juxtaposition –0.123 –0.754 0.510 0.313
Wetland area (%) 0.330 –0.208 0.804 0.313
Contagion –0.926 –1.704 –0.246 1.000
Patch richness density –0.026 –0.664 0.596 0.227
Spatial conditional autoregressive –3.253 –3.856 –2.704 1.000
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species account. Based on this documentation, we selected
environmental variables that would likely be positively or
negatively associated with the abundance of each species.
Variables were combined in different configurations to form
the models in our a priori candidate sets. We standardized
all environmental variables to have a mean of 0 and a SD
of 1. Standardization not only improves MCMC conver-
gence, but also allows comparison of the slopes in the model
to assess the relative importance of each variable (Gilks and
Roberts 1996).

We used the deviance information criterion (DIC) to rank
models relative to one another (Spiegelhalter et al. 2002).
Inference was constrained to models that were within 4 DIC
units of the best model, which approximates a 95% confi-
dence set of best models (Burnham and Anderson 2002,
p. 170). Model weights and variable importance measures
were calculated to assess the relative importance of each
model and variable, respectively. We also modeled null mod-
els (which contained no environmental variables, only nui-
sance variables) to provide a reference point to ascertain the
degree to which environmental variables improved model fit.

After completing analyses of the models identified a pri-
ori, we conducted post hoc analyses to determine if other
models provided a better fit to the data. We evaluated slope
coefficients and 95% Bayesian credibility intervals to deter-
mine the relative strengths of variables that were already de-
termined to be important from models fitted from the a
priori candidate set. We created several additional models
for each species that contained variables whose 95% credi-
bility intervals did not overlap zero as determined in the a
priori model fitting. This allowed us to examine additional
models that may provide a better fit to the data, but that

were not modeled in the a priori candidate set. Models iden-
tified post hoc that had a lower DIC value than the best a
priori model were included in the results.

Model evaluation
Data from 27 NABBS routes in CA-BCR11 were withheld

from model construction so that known abundance infor-
mation from these routes could be compared with esti-
mated abundances generated from the best model.
WinBUGS calculated abundances for routes that were
withheld using prior information, information in the data,
the value of the beta parameters, and nuisance effects
(year, route, observer) in the model. Abundance values cal-
culated from withheld routes were compared with known
information using simple linear regression. Our models
were evaluated using two aspects of model validation: dis-
crimination and calibration. We compared the ability of the
model to predict abundance by comparing the slopes of the
regression line to a 1:1 correspondence line (calibration)
and by examining theR2 values of the regression line (dis-
crimination). All regression analyses were performed using
R (R Development Core Team 2005).

Relative abundance mapping
We created spatial maps of bird abundance across CA-

BCR11 for each focal species in our study. Spatial models
were based on model-averaged beta parameters in each
model (Burnham and Anderson 2002). Data layers in the
GIS were standardized before creating maps of bird abun-
dance because the same covariates were standardized prior
to MCMC simulation. Mapping was performed using a reg-
ular 100 000 ha lattice over CA-BCR11 that corresponded to

Table 2 (concluded).

95% credibility interval

Species Variable Meana Lower Upper
Variable
importanceb

Red-winged blackbird Previous spring temperature 0.034 0.019 0.049 1.000
Previous yearly precipitation 0.029 0.015 0.043 1.000
Forage area (%) 0.059 –0.111 0.222 1.000
Wetland interspersion and juxtaposition 0.028 –0.117 0.173 1.000
Patch richness density –0.064 –0.203 0.063 1.000
Spatial conditional autoregressive 3.708 2.954 3.935 1.000

Yellow-headed blackbird Previous yearly precipitation 0.118 0.088 0.147 1.000
Yearly temperature 0.474 0.397 0.558 1.000
Tree-edge density –0.306 –0.681 0.109 0.390
Wetland area (%) 0.379 0.000 0.721 0.725
Spatial conditional autoregressive 1.620 1.406 1.819 1.000

Common grackle Previous spring temperature 0.157 0.085 0.233 1.000
Previous yearly precipitation –0.015 –0.081 0.052 0.352
Other land area (%) –0.167 –0.514 0.176 1.000
Tree-edge density –0.136 –0.495 0.211 1.000
Wetland area (%) –0.047 –0.316 0.247 0.352
Contagion 0.085 –0.206 0.435 0.208
Simpson’s diversity –0.202 –0.513 0.142 0.393
Spatial conditional autoregressive –0.322 –0.588 –0.071 1.000

aMean values represent model averaged values of the� parameters based on the values of the� parameters in each model and the corresponding
weight (wi) of each model (Burnham and Anderson 2002, p. 152).

bVariable importance is calculated by summing model weights for each model containing the variable of interest. The spatial conditional
autoregressive term always has a value of 1, because it was a priori believed to be important all the time and was included in every candidate model.
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the spatial extent examined in the study. We computed met-
rics for environmental covariates that were in the suite of
best models for each species in each lattice cell. Final maps
of avian abundance had a resolution of 1000 m� 1000 m
(1 km2) and were computed using the raster calculator in
the spatial analyst extension of ArcGIS1 version 9.1 (Envi-
ronmental Systems Research, Inc. 2005).

Results
Environmental covariates substantially improved model fit

for each species compared with the null models that did not
contain environmental variables (Appendix A, Table A1).
Climatic variables contributed the most to improving model
fit, followed by land-use composition variables and land-
scape configuration predictors. All models in the best subset
contained climatic predictors; however, the same was not
true with landscape variables (Table A1). Generally, land-
use and landscape configuration predictors had small to al-
most no effects on wetland breeding birds in CA-BCR11, as
slope coefficients were small and most 95% credibility inter-
vals overlapped zero (Table 2). Spatial structure (spatial
conditional autoregressive variable) had strong effects for
all species except the black tern, and its effect was stronger
than any of the environmental covariates (Table 2). We con-
sidered a variable as having a strong effect if its 95% credi-
bility interval did not overlap zero. Post hoc analyses
revealed models with better fit than a priori models for mal-
lard, northern harrier, marsh wren, and yellow-headed black-
bird (Table A1).

Model selection uncertainty was relatively high for mal-
lard, with five models competing with the best model. The
best model was weighted at 0.406, which was substantially
higher than the next best model in the candidate set (Table
A1). The variables having the strongest influence on mallard
abundance were previous year spring temperature, previous
year yearly precipitation, cropland area, and wetland area; all
of these variables were positively associated with mallard
abundance (Table 2). The mallard relative abundance map
predicted mallards to be moderately abundant across CA-
BCR11, with localized high densities in the central region
(Fig. 2). Only two models were in the best subset for blue-
winged teal, with the best model having a weight of 0.726,
indicating strong support. The other model in the best sub-
set contained only climatic variables and both climatic var-
iables were also found in the best model (Table A1).
Climatic influences were the strongest factors influencing
blue-winged teal abundance; land-use variables had little
effect (Table 2). Blue-winged teal were locally abundant
in the north-central part of CA-BCR11, with lesser num-
bers occurring elsewhere (Fig. 2).

Two models competed with the best model for ruddy
ducks, with all three models weighted almost equally; the
best model weight was 0.386 (Table A1). Spring tempera-
ture and spring precipitation were the only covariates that
had strong effects on ruddy duck abundance. Although other
covariates were in the candidate model set, the strength of
their effects was weak (Table 2). Predicted ruddy duck

abundance was low across CA-BCR11, with localized high
densities expected in the north-central portion of CA-
BCR11 (Fig. 2).

Pied-billed grebes were not strongly affected by environ-
mental covariates, with only previous year precipitation hav-
ing a strong influence on abundance (Table 2). Moderate
model uncertainty existed for pied-billed grebes, with four
models in the best subset. Relative abundance of pied-billed
grebes was predicted to be low across much of CA-BCR11,
with scattered localized concentrations present in the north-
central portion of the region (Fig. 2).

Model selection uncertainty was high for northern har-
riers, with seven models being in the best subset. The top
two models contained only climate predictors and their com-
bined weight was 0.407 (Table A1). Evaluation of model co-
efficients showed that previous year precipitation was the
only variable to have a strong influence on bird abundance
(Table 2). The highest concentrations of northern harrier
abundance occurred in the south-central portion of CA-
BCR11, with lower relative abundance occurring in other
areas (Fig. 2).

There was no model uncertainty for black terns within
CA-BCR11. The best model with spring temperature, yearly
precipitation, water largest patch index, and wetland largest
patch index as covariates had a model weight of 1.0 (Table
A1). Additionally, all covariates except water largest patch
index had strong effects on black tern abundance (Table 2).
The strong effect of wetland largest patch index indicated
some degree of area sensitivity for this species. Localized
areas of high predicted abundance occurred in the north-
central and northwestern portions of CA-BCR11 (Fig. 2).

Three models competed with the best model for predict-
ing marsh wren abundance in CA-BCR11 (Table A1).
Marsh wrens were affected strongly by spring temperature
but not by precipitation (Table 2). Marsh wrens were also
strongly affected by the contagion index in CA-BCR11. Pre-
dicted marsh wren abundance was fairly uniform, with a
strong localized concentration in the eastern region of CA-
BCR11 (Fig. 2).

Model uncertainty was nonexistent for red-winged black-
birds, with the best model weighted at 1.0 (Table A1). Red-
winged blackbirds were strongly influenced by previous
year spring temperature and previous year precipitation
(Table 2). Predicted relative red-winged blackbird abun-
dance was fairly uniform across CA-BCR11, with the lowest
densities occurring in the midwestern portion of the region
(Fig. 2).

Only three models were in the best subset for yellow-
headed blackbirds and the best model had a weight of 0.390
(Table A1). Previous year precipitation, yearly temperature,
and wetland area had strong effects on yellow-headed black-
bird abundance (Table 2). The highest predicted abundances
for yellow-headed blackbirds occurred in the eastern-central
portions of CA-BCR11, with lower abundances predicted to
occur elsewhere (Fig. 2).

Model uncertainty was present in the best subset of the
model for common grackles, with the best model being

Fig. 2. Predicted relative abundances for selected wetland bird species in the Canada section of Bird Conservation Region 11, the Prairie
Potholes. Differences in the color of shaded regions should be treated as differences in relative abundance.
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weighted at 0.393 (Table A1). Previous year spring tem-
perature was the only covariate to have a strong influence
on common grackle abundance (Table 2). The predicted
relative abundance map suggests that common grackles are
most likely to be abundant in the south-central and eastern
regions of CA-BCR11 (Fig. 2).

Model validation
The discrimination component of our model validation

showed that models had poor to good fit (R2 = 0.03–0.47)
depending on the species. Despite good predictions for
some species, the calibration component of our validation
showed that the model both underpredicted and overpre-
dicted bird numbers throughout the range of abundance for
all species. The model tended to underpredict more than
overpredict, and underpredictions were most common at the
lower range of abundance for each species. Some species
(e.g., yellow-headed blackbird) validated well, while others
such as the blue-winged teal had poor fit (Fig. 3).

Discussion
Our results revealed many relationships between environ-

mental variables and wetland bird abundance. Climate pre-
dictors made substantial contributions to improving model
fit for all species. No candidate models in the best subset
lacked climate covariates. Venier et al. (2004) noted that
habitat models with climate variables improved model fit
compared with models without climate covariates. Tempera-
ture and precipitation have also been shown to affect bird
abundance (Cotgreave 1995), as well as their distributions
(Root 1988). Post hoc modeling efforts revealed additional
models in the best subset that would have been overlooked
if our analyses were restricted to a priori modeling. This
underscores the importance of considering information re-
vealed in the a priori analyses in further landscape modeling
efforts.

Climate predictors were also shown to be important when
predicting abundances of cerulean warblers and grassland
birds, although the strength of the effects varied among spe-
cies (Thogmartin et al. 2004b, 2006). Climate variables
strongly affected abundance patterns for all four waterbirds
examined in our study, which concurs with Venier et al.
(2004) who showed that the inclusion of climate variables
can greatly improve model fit. Abundance of all four water-
bird species was positively related to precipitation and tem-
perature variables, except for a negative relationship
between previous year spring temperature and pied-billed
grebe abundance. Positive relationships between climate and
waterbird abundance are expected, as cold temperatures af-
fect nesting success (Hammond and Johnson 1984) and dry
conditions can reduce local waterfowl populations (Bethke
and Nudds 1995). Land-use predictors strongly affected
only mallards; both cropland area and wetland area were
shown to be important explanatory variables. These findings
can be explained by the habitat preferences of mallards,

which require wetland areas for foraging (Krapu et al. 1983,
2000; Miller 2000) and dry upland areas for nesting
(Drilling et al. 2002).

Northern harriers were only strongly affected by previous
year precipitation, while black tern abundance was strongly
influenced by spring temperature, yearly precipitation, and
wetland largest patch index. The influence of previous year
precipitation on northern harrier abundance can be explained
by this bird’s affinity for wetland habitats for breeding (Mac-
Whirter and Bildstein 1996). The tendency of black terns to
nest in semi-permanent ponds (Dunn and Agro 1995) may
explain why current year climate variables have stronger ef-
fects than previous year effects. Ephemeral wetlands are
more affected by recent weather than by weather events in
the past. Black terns in CA-BCR11 appear to be area sensi-
tive, owing to the stronger influence of wetland largest patch
index compared with the total wetland area. This finding
concurs with other studies that showed black terns require
large wetlands of nearly 20 ha (Naugle et al. 2000).

Passerines examined in this study were all strongly influ-
enced by at least one climate variable; land-use and land-
configuration variables contributed relatively less to predicting
songbird abundance. All passerines were positively associ-
ated with either spring temperature, previous year spring
temperature, or yearly temperature. Below average temper-
atures may impact nesting success because of exposure and
reduction in food supplies (Root 1988, Venier et al. 1999,
2004). Positive relationships with precipitation variables are
likely due to the influence of precipitation on wetland
abundance and area. Land-use predictors were only impor-
tant predictors of abundance for marsh wrens. Marsh wrens
were likely influenced by landscape contagion, owing to
their preference for mixed stands of vegetation for nesting
(Kroodsma and Verner 1997).

Discrimination and calibration validation efforts showed
that the ability of the model to predict abundance varied
highly among species. Although some models fit the data
poorly, we believe that mapping the models is useful as
long as the results from model validations are considered
when interpreting the maps. There were five counts for
ruddy ducks and six counts for marsh wrens that were dis-
tant from the main cluster of points. The five outliers for
ruddy ducks were all located on route 129 in Alberta, which
is surrounded by a high proportion of woody vegetation.
Ruddy ducks are not typically associated with woody vege-
tation (Brua 2002); however, our models identified a positive
relationship between ruddy ducks and woody vegetation.
Although this effect was weak (95% Bayesian credible in-
terval for woody vegetation overlapped zero), the dispro-
portionate amount of woody vegetation caused the model
to overpredict abundance for this species. The model over-
predicted marsh wren abundance on six counts on route
207 in Manitoba, which can be attributed to the low conta-
gion index and small shrubland abundance surrounding this
route. The inverse relationship between these variables and

Fig. 3. Simple linear regression plots validating spatial models for predicting bird abundance in the Canada section of Bird Conservation
Region 11 (n = 169,P < 0.01 for each species). The solid line represents the least squares regression line and the broken line represents a
1:1 correspondence line. Observed bird abundances are on they axes and expected bird abundances are on thex axes.
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marsh wren abundance caused the model to overpredict
abundance on this route.

Results of this study show that climate effects on wetland
birds are stronger than almost all effects of land use. Land-
scape composition effects were only strong for mallards and
black terns; landscape configuration variables only had
strong effects on marsh wrens. This could be due to actual
differences in how environmental influences affect birds or
because of the data per se. Because more information is
present in time-series climate data than in static land-use
data, the effects of land use may appear weaker than those
of climate. The greater amount of information in the time-
series data may inflate the relative strength of the effect
compared with the effects of land-use data. If time-series
land-cover data were available, we predict that the fit of
land-use variables to bird abundance would improve. An-
other possibility is that wetland birds are affected by land-
use variables at spatial scales other than the one examined
in this analysis. Other studies (e.g., Thogmartin et al.
2004b, 2006; Forcey 2006) examined the influence of envi-
ronmental covariates at three spatial scales; however, these
studies used land-use data with 30 m resolution, which al-
lowed the authors to examine environmental relationships at
finer scales. Land-use data used in this study had 100 m
resolution, which prevented us from reliably evaluating
spatial scales smaller than ~100 000 ha. At smaller scales
(e.g., 1 000 or 10 000 ha), the larger grid-cell size of the
land-use raster provides too coarse of a representation of
the landscape to be useful for avian habitat modeling. A
final explanation for weak land-use associations with wet-
land birds is because the coarse resolution of the land-use
data prevents a precise representation of the actual land-
scape. These land-use data may be overgeneralized to the
point where they cannot be used to reliably reveal landscape
composition and configuration effects on wetland birds ex-
amined in this study. Classification errors in land-use data
may also exacerbate this problem (Thogmartin et al.
2004a).

A final limitation that may have precluded our ability to
assess wetland bird relationships with environmental covari-
ates involves the availability of spatial data. There are many
environmental variables that may be important to wetland
birds for which large-scale remotely sensed data do not ex-
ist. For example, cattail is a dominant form of vegetation
within wetland habitats in CA-BCR11 and likely influences
the abundance of wetland birds. Water depth is also a likely
factor in habitat suitability of wetland habitats, particular for
waterbirds. Although these factors likely influence wetland
bird habitat suitability, there are no spatial data sets for
these variables over CA-BCR11 that prevents us from ascer-
taining their effects on wetland birds. Errors in our climate
interpolations may also be present in our data and may be
reducing our ability to find climate relationship with wetland
birds. Errors in interpolations would be most pronounced in
areas where data points were scarce and at small scales. Be-
cause of our large sample of weather-recording stations (n =
245), we suggest that large-scale errors over CA-BCR11 are
unlikely and that microvariation in climate variables at small
scales is not relevant for regional-scale modeling efforts.

Continued wetland draining and grassland conversion into
agriculture area will increase concerns regarding wetland

bird populations in CA-BCR11. Hierarchical spatial models
can aid biologists and managers with wetland bird conserva-
tion and management by (i) providing information on how
wetland birds are affected by climate and land-use patterns
and (ii) providing maps of predicted relative abundance
that can suggest locations where conservation and manage-
ment efforts could be focused to affect habitats that favor
(or disfavor) a species of interest. Large-scale spatial mod-
els that include climate predictors may also have application
in predicting the consequences of climate change on pat-
terns in bird abundance. We suggest that our mapped mod-
els of relative abundance be validated with ancillary field
data before being used to make management decisions. De-
spite the need for field validation, our mapped models pro-
vide baseline information on regional bird abundance and
avian–habitat relationships. Wildlife managers can use this
knowledge when determining locations for implementing
management practices.
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Table A1. Explanatory variables from the best subset of models for each bird species in the Canada section of Bird Conservation Region 11.

Species Modela Parametersb DICc DDICd wi
e Evidence ratiof

Mallard Previous spring temperature + previous yearly precipitation + cropland (%) + wetland (%) 186.4 32 993.8 0.0 0.406 1.000
Previous spring temperature + previous yearly precipitation + cropland (%) + wetland interspersion and

juxtaposition + contagion
187.2 32 995.2 1.4 0.202 2.014

Previous spring temperature + previous yearly precipitation + cropland (%) 187.4 32 996.0 2.2 0.135 3.004
Previous spring temperature + previous yearly precipitation + forage (%) + water (%) + wetland (%) 188.1 32 996.7 2.9 0.095 4.263
Previous spring temperature + previous yearly precipitation + water (%) + wetland (%) + Simpson’s diversity 188.2 32 996.7 2.9 0.095 4.263
Previous spring temperature + previous yearly precipitation 187.9 32 997.4 3.6 0.067 6.050
Null 185.8 33 689.3 695.5 0.000 1.06� 10151

Blue-winged teal Yearly precipitation + yearly temperature + water (%) + wetland (%) + Simpson’s diversity 168.0 6 930.7 0.0 0.726 1.000
Yearly precipitation + yearly temperature 168.2 6 932.6 2.0 0.274 2.651
Null 166.0 7 073.9 143.3 0.000 1.30� 1031

Ruddy duck Spring precipitation + spring temperature + tree (%) + water (%) + wetland (%) 123.1 3 303.6 0.0 0.386 1.000
Spring precipitation + spring temperature + water interspersion and juxtaposition + wetland interspersion and

juxtaposition + contagion
122.7 3 304.1 0.5 0.308 1.252

Spring precipitation + spring temperature 123.1 3 304.1 0.5 0.306 1.259
Null 121.6 3 346.3 42.7 121.6 1.89� 109

Pied-billed grebe Previous spring temperature + previous yearly precipitation + water interspersion and juxtaposition +
wetland interspersion and juxtaposition + contagion

101.0 1 633.4 0.0 0.366 1.000

Previous spring temperature + previous yearly precipitation + water largest patch + wetland (%) 101.5 1 634.0 0.6 0.276 1.323
Previous spring temperature + previous yearly precipitation + water (%) + wetland (%) + contagion 101.4 1 634.5 1.1 0.207 1.768
Previous spring temperature + previous yearly precipitation 101.0 1 635.2 1.8 0.151 2.423
Null 99.4 1 673.1 39.7 0.000 4.22� 108

Northern harrier Previous yearly precipitation 100.0 2 630.3 0.0 0.223 1.000
Previous spring temperature + previous yearly precipitation 101.4 2 630.7 0.4 0.184 1.215
Previous spring temperature + previous yearly precipitation + forage largest patch + wetland (%) 101.7 2 631.0 0.8 0.153 1.455
Previous spring temperature + previous yearly precipitation + forage largest patch + wetland largest patch + contagion 102.8 2 631.6 1.3 0.119 1.878
Previous spring temperature + previous yearly precipitation + wetland largest patch 101.0 2 631.6 1.3 0.118 1.887
Previous spring temperature + previous yearly precipitation + wetland (%) + contagion 102.2 2 631.8 1.5 0.104 2.138
Previous spring temperature + previous yearly precipitation + contagion 101.5 2 632.0 1.7 0.097 2.293
Null 101.3 2 642.3 12.1 0.001 4.14� 102

Black tern Spring temperature + yearly precipitation + water largest patch + wetland largest patch 144.2 6 716.8 0.0 1.000 1.000
Null 143.2 7 017.9 301.1 0.000 2.45� 1065

Marsh wren Spring temperature + contagion 95.5 1 554.8 0.0 0.460 1.000
Spring temperature + yearly precipitation + contagion + patch richness density 96.8 1 556.2 1.4 0.227 2.024
Spring temperature + yearly precipitation + shrub (%) + water interspersion and juxtaposition + wetland (%) + contagion 96.3 1 556.4 1.7 0.200 2.305
Spring temperature + yearly precipitation + water interspersion and juxtaposition + wetland (%) + contagion 96.7 1 557.6 2.8 0.113 4.076
Null 96.2 1 587.5 32.8 0.000 6.45� 106

Red-winged
blackbird

Previous spring temperature + previous yearly precipitation + forage (%) + wetland interspersion and
juxtaposition + patch richness density

188.9 11 998.8 0.0 1.000 1.000

Null 186.9 12 037.1 38.3 0.000 2.07� 108

Yellow-headed
blackbird

Previous yearly precipitation + yearly temperature + tree-edge density + wetland (%) 175.6 10 502.3 0.0 0.390 1.000

Previous yearly precipitation + yearly temperature + wetland (%) 175.6 10 502.6 0.3 0.336 1.162
Previous yearly precipitation + yearly temperature 175.8 10 503.0 0.7 0.275 1.419
Null 173.6 10 705.0 202.7 0.000 1.04� 1044

Common grackle Previous spring temperature + other (%) + tree-edge density + Simpson’s diversity 132.2 3 617.0 0.0 0.393 1.000
Previous spring temperature + other (%) + tree-edge density 132.6 3 617.9 0.9 0.255 1.545
Previous spring temperature + previous yearly precipitation + other (%) + tree-edge density + wetland (%) + contagion 133.1 3 618.3 1.3 0.208 1.887
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Table A1 (concluded).

Species Modela Parametersb DICc DDICd wi
e Evidence ratiof

Previous spring temperature + previous yearly precipitation + other (%) + tree-edge density + wetland (%) 133.3 3 619.1 2.0 0.144 2.732
Null 173.6 10 705.0 7 088.0 0.000 Undefined

Note: Only models within 4 DIC units of the best model are included. The null model (a model without any environmental covariates) was included to serve as a comparison with models containing
environmental variables. Models set in boldface type were models identified during post hoc analyses.

aDescriptions of model parameters are found in Table 1.
bThe effective number of parameters is calculated by the posterior mean of the deviance minus the deviance of posterior means.
cDeviance information criterion.
dDDIC is the DIC difference between the best model and the model for which theDDIC is given.
eModel weights (wi) provide a measure of support for the model relative to the others in the table and are calculated as wi ¼ expð�1

2�iÞ
PR

r�1

expð�1
2�rÞ

, where Di and Dr are the DDIC values for each model (Burnham

and Anderson 2002, p. 75).
fEvidence ratio is calculated by dividing thewi for the best model by the wi for the model to which the evidence ratio applies.
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