

FEDERAL TRANSIT ADMINISTRATION

Hydrogen & Fuel Cell Bus Initiative Paving the Way Nationally & Internationally

Barbara A. Sisson, P.E.
Associate Administrator for
Research, Demonstration & Innovation

Reason for Transit Interest

- Need to Meet Emissions Standards
- Reduce Operating Cost
 - Fuel efficiency fuel is second largest operating cost
 - Current full size transit buses achieve only 3 4 mpg, less on some routes
 - Reduce maintenance costs
- Consumer Acceptance
 - Smoke and odor free
 - Clean and Quiet

Why Transit Buses

- Fleet Operations
 - Centrally fueled and maintained
 - Professional operators, mechanics, and fuelers
 - Urban stop-and-go duty cycle; fixed route & schedule
 - Less rigorous start-up & roll-out requirements
- Size and Weight of Vehicle
- Federal Support for Capital Purchases
 - Federal funding support
 - Programs to assist introduction of new technologies
- High Visibility/High Impact
 - Operate in densely populated areas
 - Broader public exposure and acceptance

Initiative Vision

Quiet, Zero-Emission, Fuel Efficient Buses Are in Revenue Service Throughout the Nation

Initiative Goal

By 2015, 10% of New U.S. Bus Purchases Will Be Fuel Cell Buses

Initiative Elements

Transit Bus RD&D

- Vehicle Systems
- Enabling Technologies
- II. Transit Hydrogen Infrastructure
 - Demonstrations
 - Facility Guidelines

III. Education & Outreach

- Information Sharing
- Public Education
- Workforce Training

I. Transit Bus RD&D – Vehicle Systems

 Heavy-Duty Fuel Cell Bus

Automotive Based Fuel Cell Hybrid Bus

3. Hydrogen Internal Combustion Engine (ICE) Hybrid Bus

1. Heavy-Duty Fuel Cell Bus

Characteristics

- ≥200 300 kW fuel cell for all power required
- No batteries
- >40-ft. heavy-duty transit bus platform
- ➤ 12-year useful vehicle life
- ➤ High current cost

Heavy-Duty Fuel Cell Bus Activities

- Data Collection & Evaluation of Demonstrations Planned & Underway
- Establish Future Fuel Cell
 Bus Parameters & Technical
 Targets
- RD&D with Multiple Teams

2. Automotive Based Fuel Cell Hybrid Bus

Characteristics

- ≥ 25 75 kW fuel cell for average power required
- Batteries for peak power and regenerative braking
- > 30-ft. transit bus platform
- > 7-10 year useful life
- Moderate current cost

Automotive Based Fuel Cell Hybrid Bus Activities

- RD&D with Multiple Teams
 - Model I Automotive Based Fuel Cell Hybrid Bus
 - Ballard, DaimlerChrysler
 - University of Alabama Birmingham
 - EPA, UPS Delivery van
 - UTC Fuel Cells, ISE Research
 - ThunderPower fuel cell hybrid bus
 - New Haven, EBus
 - Hydrogenics, Enova
 - Hickam Air Force Base
 - Model II Light-duty Fuel Cell Hybrid Bus
- Baseline Data Collection & Evaluation

3. Hydrogen Internal Combustion Engine (ICE) Hybrid Bus

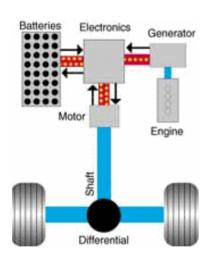
Characteristics

- Hydrogen ICE generator for electrical power
- Batteries to supplement electrical power and for regenerative braking
- ➤ 40-ft. or 30-ft. transit bus platform
- Useful life contingent on vehicle platform 7-12 years
- Low cost accelerate hydrogen infrastructure

Hydrogen ICE Bus Activities

- Demonstrations
 - > Hydrogen ICE Hybrid Bus
 - SunLine Transit, SCAQMD, Ford, New Flyer
 - AC Transit, Van Hool Bus, WestStart-CALSTART
 - Hydrogen/Natural Gas Blend ICE Bus
 - UC Davis, Unitrans
- Data Collection & Evaluation
 - Establish baseline for hydrogen ICE and hydrogen/natural gas blend ICE buses

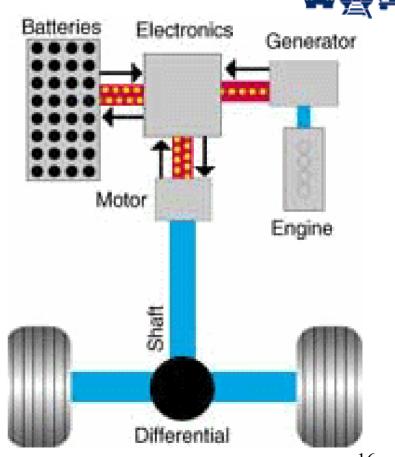
International Fuel Cell Bus Workshop


- FTA led with the American Public Transportation Association, the Electric Drive Transportation Association, & DOE
- Information sharing on status of fuel cell bus demonstrations underway & planned
- Harmonize data collection and evaluation plans for demonstrations underway & planned
- Facilitate collaboration and coordination for RD&D of future fuel cell buses
- Launch International Fuel Cell Bus Working Group

I. Transit Bus RD&D – Enabling Technologies

Electric Drive

Lightweight Bus



Enabling Technologies – Electric Drive

Key component for fuel cell buses

- Energy storage options
 - Batteries
 - Ultracapacitors
 - > Flywheels
- Power electronics & control
- Electrically driven accessories

Electric Drive Activities

- Energy Storage RD&D
 - Nickel hydrogen battery Pioneer Valley Transit, ElectraStor
 - Flywheel WestStart-CALSTART, AFS Trinity
 - Ultracapacitor Electric Fuel, GE
- Power Electronics & Control
 - Advanced power electronics & control systems for fuel cell and hybrid buses
- Electrically Driven Accessories
 - HVAC Systems

Enabling Technologies – Lightweight Bus

Goals

- Reduce propulsion power requirements
- Bus weight reduction
 - Structure
 - Components

Lightweight Bus Activities

- Bus Structure Weight Reduction RD&D
 - Reduce weight of transit bus structures by >1/3
 - Leverage earmarks & DOE effort
- Bus Component RD&D
 - Optimize weight reduction of transit bus components
 - Leverage earmarks

II. Transit Hydrogen Infrastructure

Early Demos and Deployment

- Coordinate and collaborate with DOE
- Safely demonstrate
 - Early hydrogen refueling
 - Shared use of refueling facilities

Transit Hydrogen Infrastructure Activities

- Hydrogen Refueling Demonstrations
 - Hydrogen refueling at transit agencies with shared public use
 - Collaborative effort with DOE, EPA & international programs
- Transit Facility Guidelines
 - Update guidelines for the safe use of hydrogen
 - Collaborative effort with Volpe

III. Education & Outreach

- FTA leadership role in the RD&D of hydrogen fuel cell buses
- Information sharing
- Public education and outreach
- Training

Education & Outreach Activities

- Information Sharing
 - Publicize role of hydrogen & fuel cell buses
 - Collaborate with APTA, industry associations, and researchers
 - US Fuel Cell Bus Working Group
 - International Fuel Cell Bus Working Group
- Public Education on Benefits & Safety of Hydrogen Fuel Cells
 - Use fuel cell buses to provide greater exposure to the general public
 - Collaborate with DOE, EPA, State, Regional, local governments, & international effort
- Training
 - Develop appropriate training programs for transit operators and maintenance personnel