GUIDE TO VOLUME 6B

Volume 6B of the Proposed Conrail Acquisition Final EIS contains the following items:

- List of Appendices.
- Appendix B, "Draft Environmental Impact Statement Correction Letter, Errata, Supplemental Errata and Additional Environmental Information, and Board Notices to Parties of Record."
- Appendix C, "Settlement Agreements and Negotiated Agreements."
- Appendix D, "Agency Consultation."
- Appendix E, "Safety: Highway/Rail At-Grade Crossing Safety Analysis."
- Appendix F, "Safety: Hazardous Materials Transport Analysis."
- Appendix G, "Transportation: Highway/Rail At-Grade Crossing Traffic Delay Analysis."
- Appendix H, "Transportation: Roadway Systems Analysis."
- Appendix I, "Air Quality Analysis."
- Guide to the Final EIS.
- Glossary of Terms.
- List of Acronyms and Abbreviations.
- Contents of the Final EIS.

[THIS PAGE INTENTIONALLY LEFT BLANK]

LIST OF APPENDICES

Appendix A: Comments Received on the Draft Environmental Impact Statement

Appendix B: Draft Environmental Impact Statement Correction Letter, Errata, Supplemental Errata and Additional Environmental Information, and Board Notices to Parties of Record

Appendix C: Settlement Agreements and Negotiated Agreements

Appendix D: Agency Consultation

Appendix E: Safety: Highway/Rail At-grade Crossing Safety Analysis

Appendix F: Safety: Hazardous Materials Transport Analysis

Appendix G: Transportation: Highway/Rail At-grade Crossing Traffic Delay Analysis

Appendix H: Transportation: Roadway Systems Analysis

Appendix I: Air Quality Analysis

Appendix J: Noise Analysis

Appendix K: Cultural Resources Analysis

Appendix L: Natural Resources Analysis

Appendix M: Environmental Justice Analysis

Appendix N: Community Evaluations

Appendix O: EPA Rules on Locomotive Emissions

Appendix P: SEA's Best Management Practices for Construction and Abandonment Activities

Appendix Q: Example Public Outreach Materials

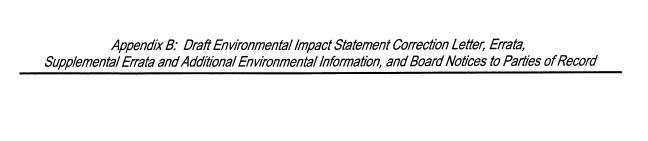
List of Appendices

Appendix R: All Relevant Board Decisions

Appendix S: Index for the Draft Environmental Impact Statement

Appendix T: Final Environmental Impact Statement Rail Line Segments

Appendix U: List of Preparers


APPENDIX B

Draft Environmental Impact Statement
Correction Letter, Errata, Supplemental Errata and
Additional Environmental Information,
and Board Notices to Parties of Record

CONTENTS

		Page
APPI	ENDIX B: DRAFT ENVIRONMENTAL IMPACT STATEMENT	
	CORRECTION LETTER, ERRATA, SUPPLEMENTAL	
	ERRATA AND ADDITIONAL ENVIRONMENTAL INFORMATION,	
	AND BOARD NOTICES TO PARTIES OF RECORD	B-1
	Draft Environmental Impact Statement Correction Letter	
	Draft Environmental Impact Statement Errata	
	Draft Environmental Impact Statement Supplemental Errata	B-41
	Draft Environmental Impact Statement Additional Environmental	
	Information	B-79
	TABLES	
B-1	Distribution of the Correction Letter, Errata, and Supplemental Errata	
B-2	Distribution of the Additional Environmental Information	B-3

[THIS PAGE INTENTIONALLY LEFT BLANK]

APPENDIX B

DRAFT ENVIRONMENTAL IMPACT STATEMENT CORRECTION LETTER, ERRATA, SUPPLEMENTAL ERRATA AND ADDITIONAL ENVIRONMENTAL INFORMATION, AND BOARD NOTICES TO PARTIES OF RECORD

After issuing the Draft Environmental Impact Statement (Draft EIS) on December 29, 1997, the Section of Environmental Analysis (SEA) of the Surface Transportation Board (the Board) issued a Draft EIS Correction Letter to all recipients of the Draft EIS. In this letter, SEA corrected two dates in the procedural schedule included in the Draft EIS and clarified that the Draft EIS is comprised of a separate Executive Summary and six volumes of text divided into nine separate books.

Subsequent to SEA's distribution of the Draft EIS Correction Letter, the Board served two sets of errata to the Draft EIS to facilitate public review of the Draft EIS and to clarify some of the information it contained. On January 12, 1998, the Board served the Draft EIS Errata, which included corrections to references and data discrepancies. On January 21, 1998, the Board served the Draft EIS Supplemental Errata, which addressed errors in the calculations SEA used to analyze traffic delay at highway/rail at-grade crossings. Neither set of errata changed or altered SEA's analysis or preliminary mitigation recommendations.

On February 27, 1998, the Board issued the Draft EIS Additional Environmental Information, which identified 12 rail line segments that may be affected by additional potential impacts associated with the proposed Conrail Acquisition. These additional potential impacts are related to hazardous materials transportation safety, noise, and highway/rail at-grade crossing safety and delay.

SEA distributed the Draft EIS Correction Letter, Errata, and Supplemental Errata to the Parties of Record and to the entities who received the Draft EIS. (See Table B-1.)

SEA distributed the Draft EIS Additional Environmental Information to the Applicants¹, Federal and state agencies, local governmental entities, and interested parties in the communities affected

[&]quot;The Applicants" refers to CSX Corporation and CSX Transportation, Inc. (CSX); Norfolk Southern Corporation and Norfolk Southern Railway Company (NS); and Conrail, Inc., and Consolidated Rail Corporation (Conrail).

by the additional potential impacts associated with the proposed Conrail Acquisition. (See Table B-2.)

This appendix contains the Draft EIS Correction Letter, Errata, Supplemental Errata, and Additional Environmental Information in the order of the dates that the Board served them on the Parties of Record. The Board's notices to the Parties of Record precede the documents.

TABLE B-1
DISTRIBUTION OF THE CORRECTION LETTER,
ERRATA, AND SUPPLEMENTAL ERRATA

	Entity Type			Number
Pu	blic Agencies, Citizens, and Private Interest Gro	oups		2238
_	Academic	Subtotal	4	
_	Applicant	Subtotal	9	
_	Business: Local	Subtotal	8	
_	Business: U.S.	Subtotal	7	
_	Citizen	Subtotal	16	
_	Citizens' Group	Subtotal	1	
_	Environmental Consultant	Subtotal	2	
_	Environmental Organization	Subtotal	9	
_	Federal Agency	Subtotal	165	
_	Governor	Subtotal	4	
_	Law Firm	Subtotal	1	
_	Local Elected Official	Subtotal	705	
_	Local Government	Subtotal	654	
_	Native American	Subtotal	7	
_	Rail Union	Subtotal	24	
_	Railroad	Subtotal	14	
_	Regional Agency	Subtotal	345	
_	Shipper	Subtotal	4	
_	Special Interests Group	Subtotal	15	
_	State Agency	Subtotal	205	

TABLE B-1 DISTRIBUTION OF THE CORRECTION LETTER, ERRATA, AND SUPPLEMENTAL ERRATA

Entity Type			Number
 State Legislator 	Subtotal	9	
STB Environmental Contractor/Sub-contractor	Subtotal	30	
Surface Transportation Board			66
Parties of Record (POR)			312
Members of Congress (MOC)			70
U.S. Senators/Representatives not on POR/MOC List			41
Environmental Justice Community			166
Applicant			75
- CSX	Subtotal	25	
– Conrail	Subtotal	10	
Norfolk Southern	Subtotal	40	
Conrail Acquisition Team			350
Special Request - New Jersey Department of Environment	ronmental Prot	ection	6
TOTAL			3,380

TABLE B-2
DISTRIBUTION OF THE ADDITIONAL ENVIRONMENTAL INFORMATION

	Entity Typ	e	Number
•	Public Agencies, Citizens, and Private Interes	est Groups	216
	- Academic	Subtotal 1	
	- Business: U.S.	Subtotal 63	
	– Citizen	Subtotal 1	
	 Environmental Organization 	Subtotal 1	
	- Federal Agency	Subtotal 5	
	– Law Firm	Subtotal 13	
	Local Elected Official	Subtotal 3	

TABLE B-2 DISTRIBUTION OF THE ADDITIONAL ENVIRONMENTAL INFORMATION

Entity Ty	pe	Number
 Local Government 	Subtotal 13	
- Rail Union	Subtotal 26	
– Railroad	Subtotal 23	
- Regional Agency	Subtotal 18	
– Shipper	Subtotal 8	
Special Interests Group	Subtotal 16	
State Agency	Subtotal 17	
– Utilities	Subtotal 8	
Members of Congress		2
Applicant		3
- CSX	Subtotal 1	
– Conrail	Subtotal 1	
Norfolk Southern	Subtotal 1	
TOTAL		221

Draft Environmental Impact Statement Correction Letter

[THIS PAGE INTENTIONALLY LEFT BLANK]

SURFACE TRANSPORTATION BOARD

STB Finance Docket No. 33388

CSX CORPORATION AND CSX TRANSPORTATION, INC.
NORFOLK SOUTHERN CORPORATION AND
NORFOLK SOUTHERN RAILWAY COMPANY
-- CONTROL AND OPERATING LEASES/AGREEMENTS -CONRAIL INC. AND CONSOLIDATED RAIL CORPORATION

Decision No. 60

Dated: December 23, 1997

NOTICE TO THE PARTIES:

On December 12, 1997, the Board served the Draft Environmental Impact Statement in this proceeding. This is to notify persons who received a copy of the draft EIS that two dates in the procedural schedule were incorrect. In the Tables in the Executive Summary (Table ES-1, pp. ES-7 to ES-8) and in Chapter 1 (Table 1-1, p. 1-9), the dates for filing rebuttals in support of Inconsistent and Responsive Applications and for submitting briefs are incorrect. The correct due dates are: (1) January 14, 1998 for filing of rebuttals in support of Inconsistent and Responsive Applications and (2) February 23, 1998 for all parties to submit briefs.

Additionally, we wish to clarify that the Draft EIS is comprised of a separate Executive Summary and six volumes of text. These six volumes are divided into nine separate books.

Finally, please note that when following the instructions for how and where to file comments, you should include "Room 715" in the address to avoid any delays.

Vernon A. Williams Secretary [THIS PAGE INTENTIONALLY LEFT BLANK]

SURFACE TRANSPORTATION BOARD Washington, DC 20423

Section of Environmental Analysis

December 19, 1997

Re: Finance Docket No. 33388 -- CSX and Norfolk Southern -- Control and Acquisition --

Conrail: Draft Environmental Impact Statement

Dear Interested Parties:

Recently, the Surface Transportation Board's Section of Environmental Analysis (SEA) sent you the Draft Environmental Impact Statement (EIS) for the Proposed Acquisition of Conrail by Norfolk Southern Railroad and CSX Railroad. SEA wants to (1) correct two dates in the procedural schedule included in the Draft EIS and (2) clarify that the Draft EIS is comprised of a separate Executive Summary and six volumes of text. These six volumes are divided into nine separate books.

Specifically, the procedural schedule included in the Executive Summary (Table ES-1, pp. ES-7 to ES-8) and in Chapter 1 (Table 1-1, p. 1-9) of the Draft EIS incorrectly states the due dates for filing rebuttals in support of Inconsistent and Responsive Applications and for submitting briefs to the Board. The correct due dates are: (1) January 14, 1998 for the filing of rebuttals in support of Inconsistent and Responsive Applications and (2) February 23, 1998 for all parties to submit briefs. A corrected copy of the Board's entire Procedural Schedule is enclosed with this letter.

SEA welcomes written comments on all aspects of the Draft EIS as well as suggestions on mitigation measures to address potential environmental impacts that could result from the Proposed Conrail Acquisition. As noted in the Draft EIS, all comments must be submitted by February 2, 1998.

If you have any questions about the Board's Procedural Schedule or would like additional information about the environmental review process, please call SEA's toll-free Environmental Hotline at 1-888-869-1997, or visit our website at http://www.conrailmerger.com.

Sincerely yours,

Elaine K. Kaiser

Environmental Project Director Section of Environmental Analysis

Enclosure

[THIS PAGE INTENTIONALLY LEFT BLANK]

Board's Procedural Schedule and SEA's Environmental Review

DAY	ACTION	DATE
	Applicants filed Preliminary Environmental Report with SEA	May 16, 1997
Day 1	Applicants filed Application and Environmental Report	June 23, 1997
	Board issued Notice of Intent to Prepare an Environmental Impact Statement and Scoping Notice	July 7, 1997
	Public and government agencies filed comments on the Draft Scope of the Environmental Impact Statement	August 6, 1997
Day 60	Other applicants filed descriptions of Inconsistent and Responsive Applications	August 22, 1997
	Applicants filed Preliminary Draft Environmental Assessments for the Seven Separate Connections referenced in Decision No. 9	September 5, 1997
	SEA issued Final Scope of the Environmental Impact Statement	October 1, 1997
Day 100.	Other applicants filed Responsive Environmental Reports and Verified Environmental Statements for any Inconsistent and Responsive Applications	October 1, 1997
	SEA issued Environmental Assessments for the Seven Separate Connections	October 7, 1997
Day 120	Other applicants filed Inconsistent and Responsive Applications	October 21, 1997
	SEA received comments on the Environmental Assessments for the Seven Separate Connections	October 27, 1997
	Board issued Decision requiring Applicants to file Safety Integration Plans	November 3, 1997
Day 150	Board issued Notice of Acceptance of the Inconsistent and Responsive Applications	November 20, 1997
	Board issued Decision allowing Seven Separate Connections to proceed	November 25, 1997
	Applicants filed Safety Integration Plans	December 3, 1997
	SEA issued Draft Environmental Impact Statement to the public	December 12, 1997
Day 175	Responses to the Inconsistent and Responsive Applications and rebuttals in support of Primary Application filed with the Board	December 15, 1997
	EPA published Federal Register notice initiating 45-day comment period on the Draft Environmental Impact Statement	December 19, 1997
Day 205	Rebuttal in support of Inconsistent and Responsive Applications due to Board	January 14, 1998
	Public comments on Draft Environmental Impact Statement due to SEA	February 2, 1998
Day 245	Briefs due, all parties	February 23, 1998
	SEA to issue Final Environmental Impact Statement to the public and the Board	Late-May 1998
Day 346	Board to conduct oral argument	June 4, 1998
Day 350	Board to conduct Voting Conference	June 8, 1998
Day 395	Board to issue final written decision	July 23, 1998
	Administrative Appeals Filing Deadline	August 13, 1998

[THIS PAGE INTENTIONALLY LEFT BLANK]

Draft Environmental Impact Statement Errata

ppiememai Em	ata and Additional Environmental Information, and Board Notices to Parties of Recor
	[THIS PAGE INTENTIONALLY LEFT BLANK]

28788 SEC

SURFACE TRANSPORTATION BOARD

STB Finance Docket No. 33388

CSX CORPORATION AND CSX TRANSPORTATION, INC.
NORFOLK SOUTHERN CORPORATION AND
NORFOLK SOUTHERN RAILWAY COMPANY
-- CONTROL AND OPERATING LEASES/AGREEMENTS -CONRAIL INC. AND CONSOLIDATED RAIL CORPORATION

Decision No. 62

Dated: January 9, 1998

NOTICE TO THE PARTIES:

On December 12, 1997, the Surface Transportation Board (Board) served the Draft Environmental Impact Statement (Draft EIS), prepared by the Board's Section of Environmental Analysis (SEA), regarding potential environmental effects of the proposed acquisition of Conrail, Inc. by Norfolk Southern Railroad and CSX Railroad. The purpose of this notice is to provide you with an Errata to the Draft EIS.

The Draft EIS encompasses more than 3,000 pages and is comprised of a separate Executive Summary and six volumes of text. These six volumes are divided into nine separate books. The Draft EIS addresses potential environmental effects of the Proposed Conrail Acquisition that include safety, transportation, air quality, noise, historic and cultural resources, energy, water resources, biological resources, hazardous materials transport, land use, Native American issues, and environmental justice. The Draft EIS also includes SEA's preliminary recommendations for mitigating the possible environmental effects of the Conrail proposal. SEA is seeking public comment on the Draft EIS. Public comments are due to SEA by February 2, 1998. SEA will consider all public comments in preparing a Final EIS.

SEA prepared the enclosed Errata to the Draft EIS to help facilitate public review of the Draft EIS and clarify some of the information contained in the document. The Errata is not all inclusive. SEA has not included all typographical errors or minor discrepancies. SEA has, however, included those items which will help clarify the meaning of certain text to avoid confusion, such as correcting references in other sections in the Draft EIS and correcting data discrepancies in various sections.

It is important to note that this Errata to the Draft EIS does not change or alter SEA's analysis or preliminary mitigation recommendations, nor do these corrections affect the integrity

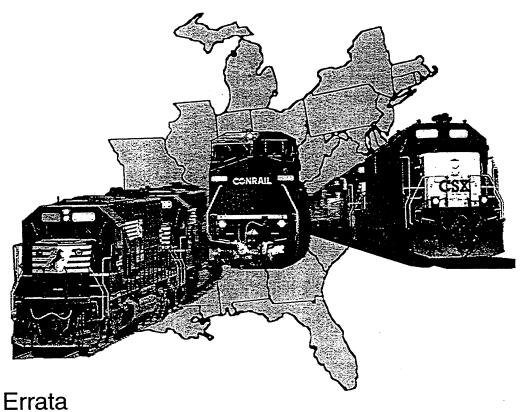
of the information contained in the Draft EIS, the procedural schedule, or the review and comment period for the Draft EIS.

Should you have any questions or comments, please call SEA's toll-free Environmental Hotline at 1-888-869-1997.

Vernon A. Williams Secretary

Comment Date: February 2,1998

DRAFT ENVIRONMENTAL IMPACT STATEMENT


Finance Docket No. 33388

"PROPOSED CONRAIL ACQUISITION"

CSX Corporation and CSX Transportation, Inc.
Norfolk Southern Corporation and
Norfolk Southern Railway Company

Control and Operating Leases/Agreements

Conrail Inc. and Consolidated Rail Corporation

prepared by:

Surface Transportation Board Section of Environmental Analysis

1925 K Street, NW • Washington, DC 20423-0001

Information Contacts:

Elaine K. Kaiser, Chief Section of Environmental Analysis 888-869-1997 Michael J. Dalton Environmental Specialist 888-869-1997 [THIS PAGE INTENTIONALLY LEFT BLANK]

SURFACE TRANSPORTATION BOARD Washington, DC 20423

Section of Environmental Analysis

January 12, 1998

Re: Finance Docket No. 33388 -- CSX and Norfolk Southern -- Control and Acquisition --

Conrail: Errata to the Draft Environmental Impact Statement

Dear Interested Party:

In mid-December, you were mailed a copy of the Draft Environmental Impact Statement (Draft EIS), prepared by the Surface Transportation Board's Section of Environmental Analysis (SEA), regarding potential environmental effects of the proposed acquisition of Conrail, Inc. by Norfolk Southern Railroad and CSX Railroad. The purpose of this letter is to provide you with an Errata to the Draft EIS.

The Draft EIS encompasses more than 3,000 pages and is comprised of a separate Executive Summary and six volumes of text. These six volumes are divided into nine separate books. The Draft EIS addresses potential environmental effects of the Proposed Conrail Acquisition that include safety, transportation, air quality, noise, historic and cultural resources, energy, water resources, biological resources, hazardous materials transport, land use, Native American issues, and environmental justice. The Draft EIS also includes SEA's preliminary recommendations for mitigating the possible environmental effects of the Conrail proposal. SEA is seeking public comment on the Draft EIS. Public comments are due to SEA by February 2, 1998. SEA will consider all public comments in preparing a Final EIS.

SEA prepared the enclosed Errata to the Draft EIS to help facilitate public review of the Draft EIS and clarify some of the information contained in the document. The Errata is not all inclusive, and we have not included all typographical errors or minor discrepancies. We have listed, however, all those items which we believe will help clarify the meaning of certain text to avoid confusion, such as correcting references in other sections in the Draft EIS and correcting data discrepancies in various sections. We have also enclosed several revised tables with the corrected data highlighted.

It is important to note that this Errata to the Draft EIS does not change or alter SEA's analysis or preliminary mitigation recommendations, nor do these corrections affect the integrity of the information contained in the Draft EIS, the procedural schedule, or the review and comment period for the Draft EIS.

Should you have any questions or comments, please call SEA's toll-free Environmental Hotline at 1-888-869-1997. Thank you for your interest and participation in the Draft EIS process.

Sincerely yours,

Elaine K. Kaiser

Environmental Project Director Section of Environmental Analysis

Enclosure

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

Chapter	Section	Subject	Page Number	Paragraph Number ¹	Change
				EXECUTI	EXECUTIVE SUMMARY
ES	ES.1	Introduction	ES-1	3	Change the second sentence to: In addition to freight operations, Amtrak and eight commuter agencies operate over tracks owned by one or more of the Applicants.
ES	ES.1.1	Overview	ES-2	4	To the last bullet item on the page, add Louisiana and Mississippi to the list of states that could be affected by potential environmental impacts.
ES	ES.6.2	Air Quality	ES-22	9	Change first sentence to: SEA evaluated air pollutant emissions on a county-wide basis for all rail line segments, rail yards, and intermodal facilities exceeding the Board's thresholds for air quality analysis.
ES	ES.6.2	Cultural and Historic Resources	ES-23		Change second sentence to: SEA recommends, pending Ohio SHPO concurrence, that the Board require CSX to complete cultural and historic resource documentation (Historic American Building Survey (HABS)/Historic American Engineering Record (HAER) Level II) at the proposed Collinwood Intermodal Facility within 180 days of any Board decision approving the proposed Conrail Acquisition.
ES	ES.6.2	Cultural and Historic Resources	ES-23	S	Change last sentence to: SEA recommends, pending Ohio SHPO concurrence, that the Board require NS to complete cultural and historic resource documentation (HABS/HAER Level II) for the Toledo Pivot Bridge before initiating any construction or removal activities at that site.

¹ Paragraphs are numbered beginning with the first full paragraph on a page, unless otherwise noted. For tables, rows are numbered counting each row starting directly below the table header row.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

Chapter	Section	Subject	Page Number	Paragraph Number ¹	Change
					VOLUME 1
2	2.2	Proposed Action	2-6	8	Change last sentence to: (See Section 1.3.3 for a discussion of the Board's environmental thresholds.)
2	2.7	Comments and Requests for Conditions	2-36	1	There were 100 comments and request for conditions received and accepted by the STB, not 88 as stated in Section 2.7.
3	3.4	Safety	3-9	9	Change second and third sentences to: SEA did so by analyzing the 54 rail line segments with projected increases of eight or more trains per day. Of these 54 segments, 44 contained highway/rail at-grade crossings of public roads.
3	3.4.1	Methods	3-10	-	Change first sentence to: SEA conducted a train-vehicle accident risk analysis for 2,070 highway/rail at-grade crossings on the 54 rail line segments described above.
3	3.8.1	Methods	3-20	2	Change first sentence to: For each additional truck anticipated at the 23 intermodal facilities that SEA studied, SEA assumed that a round-trip would be made and therefore added two truck trips to the average daily traffic volume on affected surrounding roadways.
4	4.3	Passenger Rail	4-12	4	Change last sentence to: These segments are located in the following states: Georgia, Indiana, Maryland, Michigan, New York, North Carolina, Virginia, and the District of Columbia.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

		IVIO			
Chapter	Section	Subject	Page Number	Paragraph Number ¹	Change
4	4.5	Transport of Hazardous Materials	4-17	1	Change the second sentence to: These results are reported in Chapter 5 on a state-by-state basis for 99 rail line segments in the following states: Alabama, Florida, Georgia, Illinois, Indiana, Kentucky, Louisiana, Maryland, Michigan, Missouri, Mississippi, North Carolina, New Jersey, New York, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, and the District of Columbia.
4	4.5	Table 4-6	4-18	Row 2 Column 4	For Rail Line Segment C-376, delete Jefferson County, AL.
4	4.5	Table 4-6	4-18	Row 7 Column 4	For Rail Line Segment C-357, Marlboro County is in SC, not NC
4	4.5	Table 4-6	4-18	Row 10 Column 4	For Rail Line Segments N-082 and N-095, Mahoning and Trumbull Counties are in OH, not PA
4	4.5	Table 4-6	4-18	Row 13 Column 4	For Rail Line Segment C-344, delete Hampton and Jasper Counties, and add Beaufort County.
4	4.5	Table 4-6	4-19	Row 1 Column 4	For Rail Line Segment from Decatur, AL to New Orleans, LA, add the following counties: Morgan, Cullman, Blount, Jefferson, Shelby, Chilton, Autauga, Montgomery, Elmore, Lowndes, Butler and Conecuh.
4	4.5	Table 4-6	4-19	Row 8 Column 3	Add Rail Line Segment C-072 to the list of segments in the Quaker, OH to Willow Creek, IN corridor.
4	4.7.2	Table 4-9	4-34	N/A	Norristown (PA) Connector was omitted from Table 4-9, but should have been included. Information on the Norristown Connector is presented on page 4-37.

B-23

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

Chapter	Section	Subject	Page Number	Paragraph Number'	Change
4	4.12.3	Table 4-17	4-59	Row 2 Column 2	Change Emissions from Netting Analysis for Maryland from 797 to 764.
4	4.12.3	Air Quality	4-60	2	In the last sentence of the paragraph, delete Detroit.
				OA	VOLUME 3
5	5.2	Air Quality	5-8	3	Change last sentence to: Using this approach, SEA analyzed potential air quality impacts by county in 17 states (Alabama, Delaware, Georgia, Illinois, Indiana, Kentucky, Louisiana, Maryland, Michigan, Missouri, New Jersey, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia) and the District of Columbia.
5	5.2	Air Quality	2-8	4	In the first sentence, change 3.11.1 to 3.11.2.
5	5.2	Environmental Justice	5-12	-	Change last sentence to: Using this approach, SEA analyzed potential environmental justice effects by site in 17 states (Alabama, Delaware, Georgia, Illinois, Indiana, Kentucky, Louisiana, Maryland, Michigan, Missouri, New Jersey, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia) and the District of Columbia.
5	5.3	Table 5-2	5-14	Row 8 Column 5	For Rail Line Segment C-373, change potential impacts to "A major key route."
5	5.3	Table 5-2	5-15	Row 2 Column 4	For Rail Line Segment C-376, delete Jefferson County.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

Change		For Rail Line Segment C-346, add Wayne, Long, Liberty, and Chatham counties.	For Rail Line Segment C-011, change preliminary recommended mitigation to: "Railroad shall consult with the County, ILDOT, and community regarding mitigation measures."	Under "Potential Impact" column, for CM-02: 59th Street, Chicago, replace "Truck route impact" with "Noise impact."	Segment C-010 potential impacts should have a footnote indicating that even though the noise levels do not warrant mitigation at this time, the impacts have been included to be considered cumulatively with other potential significant impacts.	Segment N-045 potential impacts should have a footnote indicating that even though the noise levels do not warrant mitigation at this time, the impacts have been included to consider cumulatively with other potential significant impacts.	For Rail Line Segment C-025, add Gibson County.	For Rail Line Segment C-025, add the following crossings: CR 100N, Spring Street, Mulberry Street, and W. John in Gibson County; Stacer Road in Vanderburgh County; and Perry Street and Buntin Street in Knox County.
Paragraph	Number ¹	Row 5 Column 4	Row 3 Column 6	Row 8 Column 5	Row 2 Column 5	Row 3 Column 5	Row 6 Column 4	Row 6 Column 5
Page	Number	5-16	5-18	5-18	5-19	5-19	5-19	5-19
Subject	·	Table 5-2	Table 5-2	Table 5-2	Table 5-2	Table 5-2	Table 5-2	Table 5-2
Section		5.3	5.3	5.3	5.3	5.3	5.3	5.3
Chapter	<u></u>	٠,	5	5	ς,	S	S.	S

PROPOSED CONRAIL ACQUISITION

FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

Change	For Rail Line Segment C-066, add the following crossings: First Road-Smith and Thorn Road in Marshall County; CR 500W and 900W in Noble County; Oak Street in Kosciusko County; CR 875E and 500W in La Porte County; and CR 9 in Elkhart County.	For Rail Line Segment N-045, add the following crossings: 8th Street, 5th Street, and CR 172 in Tippecanoe County, and delete Greenbush Street.	For Rail Line Segment N-046, add the following crossings: CR 250W in Miami County; CR 700N in Tippecanoe County (CR 900N was listed twice).	For Rail Line Segment C-025, change second sentence in Preliminary Recommended Mitigation to: For all others, railroad shall consult with the community and develop mitigation.	For Rail Line Segment N-045, in column 4 add: Warren and Fountain Counties, in column 5 add: All crossings are in Tippecanoe County.	For Rail Line Segment C-021, add the following crossings: Duffey Street and E. 6th Street in Christian County, and W. Moss Avenue in Hopkins County.	For Rail Line Segment C-287, delete Owen County and add Gallatin County.	For Rail Line Segment C-291, delete Boone County.
Paragraph Number¹	Row 2 Column 5	Row 4 Column 5	Row 2 Column 5	Row 2 Column 6	Row 5 Columns 4 &	Row 10 Column 5	Row 2 Column 4	Row 5 Column 4
Page Number	5-20	5-21	5-22	5-23	5-23	5-24	5-25	5-25
Subject	Table 5-2	Table 5-2	Table 5-2	Table 5-2	Table 5-2	Table 5-2	Table 5-2	Table 5-2
Section	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3
Chapter	S	S.	S	S	S	5	S	5

B-26

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

Chapter	Section	Subject	Page Number	Paragraph Number ¹	Change
S	5.3	Table 5-2	5-26	Row 4 Column 4	For Rail Line Segment C-387, add Orleans Parish.
S	5.3	Table 5-2	5-26	Row 8 Column 4	For Rail Line Segment C-034, delete Howard County.
S	5.3	Table 5-2	5-30	Row 5 Column 4	For Rail Line Segment N-065, add Genesee County.
5	5.3	Table 5-2	5-36	Row 2 Column 4	For Rail Line Segment C-206, add Seneca County.
S	5.3	Table 5-2	5-36	Row 9 Column 5	For Rail Line Segment N-073, delete Likens Street.
5	5.3	Table 5-2	5-41	Row 5 & 7 Column 5	Segments N-075 and N-082 should have a footnote indicating that even though the noise levels do not warrant mitigation at this time, the impacts have been included to consider cumulatively with other potential significant impacts.
5	5.3	Table 5-2	5-42	Row 5 Column 5 & 6	For Rail Line Segment C-766, delete Highway/Rail At-Grade Crossing information in the Potential Impact and Preliminary Recommended Mitigation columns.
ري د	5.3	Table 5-2	5-43	Row 3 Column 4	For Rail Line Segment N-095, add Beaver County.
5	5.3	Table 5-2	5-43	Row 5 Column 4	For Rail Line Segment N-216, delete Montgomery and Philadelphia Counties.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

Chapter	Section	Subject	Page Number	Paragraph Number ¹	Change
5	5.3	Table 5-2	5-43	Row 6 Column 4	For Rail Line Segment N-245, delete Broome, Delaware, Sullivan, and Orange Counties and add Pike and Susquehanna Counties.
5	5.3	Table 5-2	5-44	Row 9 Column 4	For Rail Line Segment N-344, delete Hampton County and add Beaufort County.
5	5.3	Table 5-2	5-45	Row 4 Column 4	For Rail Line Segment C-357, add Marlboro County.
S	5.3	Table 5-2	5-45	Row 6 Column 4	For Rail Line Segment C-359, add Bamberg, Richland and Allendale Counties.
5	5.3	Table 5-2	5-45	Row 10 Column 4	For Rail Line Segment C-373, delete Moore County and add Coffee County.
5	5.3	Table 5-2	5-45	Row 12 Column 4	For Rail Line Segment N-392, add Hamblen County.
5	5.3	Table 5-2	5-46	Row 2 Column 4	For Rail Line Segment N-399, delete Hablen County.
\$	5-AL.3	Summary of Analysis	AL-4	1	In the paragraph continued from page AL-3, delete the second bulleted item, "Land Use/Socioeconomics."

Chapter	Section	Subject	Page Number	Paragraph Number ¹	Change
S	5-AL.9	Land Use/ Socioeconomics	AL-11	-	Immediately prior to Section 5-AL.9, add the following: 5-AL.8a LAND USE/SOCIOECONOMICS Native American Issues: Rail Line Segment C-271 traverses the Federally designated Poarch Creek Indian Reservation which is located in southwestern Alabama, approximately 56 miles northeast of Mobile. The City of Atmore is located within the Reservation. The Reservation consists of 229.5 acres and has a total population of 190 people. The Poarch Creek Indians are descended from Creek Indians who have lived in the area since the 1700s. The Reservation contains a tribal center, senior center, fire station, and eighty housing units. There is also an Indian Health Service clinic on the Reservation. Segment C-271 would become a new CSX "Major Key Route" for the transportation of hazardous materials along this line. CSX would increase this to approximately 64,000 carloads/year as a result of the proposed Conrail Acquisition. This would result in an increased potential risk for release of hazardous materials in the event of a train derailment or accident. Mitigation Measures — Mitigation measures for Major Key Routes include: 1) restricting speeds of trains along this segments to 50 mph; 2) upgrading the track to Class 2 or better; 3) installation of wayside defect detectors along rail lines; and, 4) establishing a Hazardous Materials Response Plan which includes accident simulations with local emergency response providers. CSX would coordinate the preparation of the Plan with the Reservation. In additional public outreach and noticing of the EIS availability with regard to the Poarch Creek Indian Reservation and Poarch Creek Band of Indians.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

	Paragraph Number ¹	Delete the first full sentence on page IL-19 (immediately prior to Section 5-IL.9) and replace with: It is SEA's preliminary recommendation that CSX work with METRA to identify and implement measures to avoid delays to METRA commuter trains due to the additional traffic at the 75 th Street Interlocking. SEA recommends that the Board require CSX to report to SEA on the results of the discussion.	Change third sentence to: NS is constructing this connection in anticipation of future markets and, according to the Application, anticipates that approximately six trains per day will run over the new connection.	Row 8, For Lafayette - Tilton (N-045), change the "N" in the "Hazardous Materials" and "Transportation/Safety" columns 5 & 7	Change first sentence to: At-grade crossing safety potential impacts exist at 5 th Street, 7 th Street, 8 th Street, 10 Street, 8 th Street, 10 Street	Add to end of paragraph: It is SEA's preliminary recommendation that NS mitigate traffic safety impacts by upgrading the existing warning devices for this segment.
	Para Nui			Ro Colum		
	Page Number	IL-19	IL-22	IL-74	IL-78	
TINTA	Subject	Passenger Rail	Construction	Table 5-1L-33	Environmental Justice	
	Section	5-IL.8.1	5-1L.10.2	5-IL.17.2	5-1L.17.2	
	Chapter	~	5	5	5	

B•30

Change	Add the following after the third paragraph (as a separate paragraph): SEA has identified this NS rail line segment as resulting in significant hazardous materials transportation effect because the increase in hazardous material carried over this rail line segment would double and increase to over 20,000 car loads per year. The increase, from 10,000 to 46,000 car loads yearly, would require this NS rail line segment to be designated as a hazardous materials "major key route," thus further requiring special safety and mitigation measures, including assistance from NS to communities in formulating emergency response plans. See discussion on hazardous ma terial transport mitigation in the Transportation section of this Draft EIS.	Change to: Because there is no existing commuter rail service on lines affected by the proposed Acquisition in Indiana, SEA has determined that there will be no adverse effects and no mitigation is required.	Change first sentence to: Grade crossing safety potential impacts exist at 5th Street, 7th Street, 8th Street, Roming Street, 4th Street (US 231), Smith Street in Lafayette, Indiana, and at Campbell Crossing in the City of Danville, Illinois (which is proximal to minority and low-income communities).	Add to end of paragraph continued from page IN-79: It is SEA's preliminary recommendation that NS mitigate traffic safety impacts by upgrading the existing warning devices for this segment.	Add Sheffield Avenue to Table 5-IN-45. For Sheffield Avenue, the Average Daily Traffic = 8,030 and Crossing Delay Per Stopped Vehicle = 3.94 (pre-Acquisition) and 4.05 (post-Acquisition). Total Blocked Time Per Day would be the same as the other entries in Table 5-IN-45.
Paragraph Number ¹	ε	4 .	9	-	N/A
Page Number	IL-78	IN-24	1N-79	08-NI	IN-85
Subject	Environmental Justice	Passenger Rail	Environmental Justice	Environmental Justice	Table 5-1N-45
Section	5-IL.17.2	5-IN.8	5-IN.18	5-IN.18	5-IN.20.1
Chapter	W	S	'n	5	5

Chapter	Section	Subject	Page Number	Paragraph Number ¹	Change
\$	5-IN.20.1	Highway/Rail At- Grade Crossings	IN-85	7	Change the second sentence to: It is SEA's preliminary recommendation that CSX and NS shall consult with representatives of the Four Cities Consortium, the Indiana Department of Transportation, and other appropriate parties to address potential traffic delay and safety concerns at the nine highway/rail at-grade crossings in these communities that are listed in Table 5-IN-45.
5	5-MI.5.1	Summary of Potential Effects	9-IM	-	Change second sentence to: SEA notes that one of the rail line segments, Kalamazoo to Porter, Indiana, is owned by Amtrak and dispatched by Conrail.
\$	5-MI.9	Table 5-MI-10	N/A	N/A	The first page of Table 5-MI-10 is attached.
S	5-MI.18	Cumulative Effects	MI-38	3	Delete "Cumulative Effects Mitigation Measures" subsection (third paragraph and heading).
\$	5-NJ.4.1	Table 5-NJ-4	NJ-8	Ņ/A	Change table title to: Estimated Change in Years Between Accidents for Passenger Rail Operations
5	5-NJ.17	Figure 5-NJ-4	N/A	N/A	In the figure inset, the E-Rail and Portside facility locations are transposed. Portside is located to the north of E-Rail (as is shown correctly in the main figure).
S.	5-OH.16.1	Natural Resources	OH-94	S	Change first sentence to: Since SEA determined there are no Federal or state parks, forests, preserves, refuges or sanctuaries within or adjacent to the proposed Collinwood Yard construction site, there would be no impacts to this type of resource.
5	5-OH.16.1	Natural Resources	OH-100	9	Change third sentence to: A National Pollutant Discharge Elimination System stormwater discharge permit may be required if more than five acres of land would be disturbed during construction activities.
જ	5-OH.16.1	Natural Resources	OH-103	4	Change last sentence to: A National Pollutant Discharge Elimination System stormwater discharge permit may be required if more than five acres of land would be disturbed during construction activities.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA

	г					
Change	Change first sentence to: Based on coordination with the U.S. Fish and Wildlife Service and the Ohio Department of Natural Resources, SEA concluded that the Vermilion construction project could affect the bald eagle which is known to occur in Erie County, and the Indiana Bat, which has no historic record within the county.	Change the "N" in the "Transportation/Safety" column to "Y" for the Cleveland-Ashtabula (N-075) and Bellevue-Sandusky Docks (N-085) rail line segments.	At the end of the paragraph, add the following: SEA has identified potential highway/rail at-grade crossing safety impacts at Walter Main Road in the City of Geneva, Ashtabula County. It is SEA's preliminary recommendation that NS mitigate safety impacts by upgrading warning devices at this crossing.	Add the following new paragraph after the Highway/Rail At-Grade Crossing Safety paragraph: Emergency Response - It is SEA's preliminary recommendation that NS consult with the City of Cleveland to reach agreement on measures to minimize or mitigate the effects of increased emergency vehicle delay. Possible mitigation measures could include increasing train speeds, upgrading communications between NS and the emergency dispatch center, or constructing grade separation.	In the last column, change SEA' Proposed Mitigation for Peach Street, Cherry Street, and Raspberry Street to "Relocate to CSX Corridor." (Note: This mitigation is proposed by the Applicants and would mitigate impacts)	Change last sentence to: SEA determined that five crossings would experience significant adverse effects to vehicle delays and four crossings would have significant adverse safety effects.
Paragraph Number¹	1	Row 6 and 8 Column 7	1	3	Rows 4, 5, & 6 Column 6	2
Page Number	OH-105	OH-121	OH-124	OH-150	PA-16	PA-55
Subject	Natural Resources	Table 5-OH-50	Environmental Justice	Emergency Response	Table 5-PA-7	Crossings
Section	5-ОН.16.1	5-OH.18.2	5-OH.18.2	5-OH.20.1	5-PA.6.2	5-PA.16.1
Chapter	5	5	5	જ	S	S

Change	VOLUME 4	Change fourth sentence of the paragraph continued from page 6-1 to: SEA also published legal notices in 198 newspapers with the highest circulation for each of the potentially affected counties.	Change last sentence to: SEA will serve the Final EIS in May 1998, prior to the Board's voting conference, scheduled for June 8, 1998.	Delete from list of communities where SEA has conducted expanded outreach: Marion, OH, West Newton, PA, Nashville, TN.	Delete mitigation # 46 for Ohio.	Change to: NS shall, pending Ohio SHPO concurrence, complete cultural and historic resource documentation (Historic American Building Survey/Historic American Engineering Record Level II) for the Toledo Pivot Bridge before initiating any construction or removal activities at that site.	Change to: CSX shall, pending Ohio SHPO concurrence, complete cultural and historic resource documentation (Historic American Building Survey/Historic American Engineering Record Level II) for the Lake Shore & Michigan Southern (New York Central) Shops District at the Collinwood rail yard in Cleveland, Ohio no later than 180 days following the effective date of any Board final written decision in this proceeding.
Paragraph Number ¹	NOI	-	3	-	Row 5 Column 2	-	
Page Number		6-2	6-4	<i>L</i> -9	7-11	7-18	7-18
Subject		Scoping	Agency and Public Coordination	Public Outreach	Table 7-1	Cultural	Cultural Resources
Section		6.1	6.2	6.2.3	7.2	7.2.3	7.2.3
Chapter		9	9	9	7	7	7

Chapter	Section	Subject	Page Number	Paragraph Number¹	Change
7	7.2.3	Natural Resources	7-18	4	Change to: Before initiating any construction of the proposed rail line connection in Vermilion, Ohio, NS, shall coordinate with the U.S. Fish and Wildlife Service and the Ohio Department of Natural Resources to determine the potential presence of the endangered Indiana Bat and bald eagle. If either species is found to be present and potentially adversely impacted, NS shall proceed with applicable measures to comply with Section 7 of the Endangered Species Act.
7	7.2.4	Areas of Concern	7-20	3	Following the third paragraph, add: 23.a. CSX shall work with METRA to identify and implement measures to avoid delays to METRA commuter trains due to the additional traffic at the 75th Street Interlocking. CSX shall report to SEA on the results of the discussion.
7	7.2.6	Cultural Resources	7-24	4 .	Delete SEA's preliminary recommended mitigation 46 on the South Bend-Dillon Junction Rail Line Segment abandonment. No historic properties were identified along the South Bend to Dillon Junction abandonment, and SEA has requested the Indiana SHPO's concurrence with that finding.
7	7.2.6	Table 7-4	7-31	Row 5 Column 3	Change Rail Line Segment C-066 to C-065.
7	7.2.6	Table 7-5	7-35	Row 1 Column 5	For Rail Line Segment C-295, add Knox County to KY.
7	7.2.6	Table 7-5	7-35	Row 9 Column 5	For Rail Line Segment N-392, add Hamblen County.
7	7.2.6	Table 7-5	7-36	Row 4 Column 5	For Rail Line Segment N-062, delete "NJ: Bergen" and add "NY: Orange, Rockland."

Chapter	Section	Subject	Page Number	Paragraph Number ¹	Change
7	7.2.6	Table 7-5	7-36	Row 9 Column 5	For Rail Line Segment N-065, add Allegany and Genesee County.
L	7.2.6	Table 7-5	7-37	Row 7 Column 5	For Rail Line Segment N-082, add Mahoning County.
7	7.2.6	Table 7-5	7-37	Row 11 Column 5	For Rail Line Segment N-203, add Lehigh County.
7	7.2.6	Table 7-5	7-37	Row 19 Column 5	For Rail Line Segment C-344, change "Berkeley" to "Beaufort."
L	7.2.6	Table 7-5	7-38	Rọw 2 Column 5	For Rail Line Segment N-399, delete Hamblen County.
7	7.2.6	Table 7-6	7-39	Row 5 Column 5	For Rail Line Segment C-351, add York County to South Carolina.
7	7.2.6	Table 7-6	7-40	Row 8 Column 5	For Rail Line Segment C-287, add Boone and Gallatin Counties and delete Owen County.
7	7.2.6	Table 7-6	7-40	Row 12 Column 5	For Rail Line Segment C-037, add Baltimore and Howard Counties.
7	7.2.6	Table 7-7	7-45	Row 4 Column 2	For Rail Line Segment C-030, change Cheverly to Bladensburg.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

For site CM-2, under "Potential Impacts" column, replace "Traffic" with "Noise." Change paragraph to: SEA determined that the five railroad bridges more than 50 years of age along the proposed South Bend to Dillon Junction abandonment are not listed on or eligible for the NRHP. Therefore, SEA concludes, that there are no historic properties on this segment. SEA initiated consultation with the Indiana SHPO and submitted supporting documentation to obtain concurrence with this finding. NS shall take no steps to alter the bridges until the Section 106 Under OH, add Rail Line Segment C-071, CSX, Marion - Ridgeway, which has potential environmental impacts (noise) in the City of Marion. Change DRAFT ENVIRONMENTAL IMPACT STATEMENT ERRATA process has been completed. **VOLUME 6** Paragraph Number¹ Column 5 Column 2 Row 4 Row 2 ~ Page Number 7-47 7-48 35 Resources Table 7-9 Table 7-9 Cultural Subject 3.1.3.6 Section 7.2.6 7.2.6 Abandon. Chapter 7 7

[THIS PAGE INTENTIONALLY LEFT BLANK]

Page 1

Table 5-MI-10 Michigan Highway/Rail At-Grade Crossing Vehicle Delay and Queues

	Level of Service with Mitigation																																										
	Level of Service	В	m	< -			<	4	<	m ·	4	<	<	<	<	٩	٥	١.	۷.	۷,	2	ی ا	مار	, 0	C	٧	٧	B	V	<	∢.	<	,	, 0	<	<	٧	٧	<	٧	٧	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	6.46	12.98	3.12	4.72	5.76	4.47	4.50	4.30	5.21	4.31	3.09	4.97	3.01	3.85	0.27	8.28	6.93	3.23	3.14	6.62	16.37	23.02	17.44	17.56	4.28	4.65	5.38	4.44	4.19	4.22	3.38	3.04	21.25	3,18	3.48	3.14	2.94	2.92	3.11	3.09	8.24	9.41
ulsition	Crossing Delay per stopped veh (min./veh)	3.04	3.89	1.91	2.46	3.00	2.33	2.34	2.24	2.72	2.24	1.89	2.32	1.83	2.18	7.62	3.58	3.74	86.1	1.92	2.77	2.63	2.89	2.80	282	2.21	2.40	2.78	2.29	2.16	2.18	2.03	ş.	4 92	1.93	2.11	1.90	1.78	1.77	1.88	1.87	3.18	3.64
Post Acquisition	Max. No. of Veh. in Queue per Iane	29	21	0	61	31	15	15	12	25	12	2	œ	80	15	6	35	85	2	=	14	14	27	0	۶	=	17	26	14	01	2	2	×	*7	=	19	2	و	9	2	6	91	29
	No. of Vch. Delayed per day	238	173	173	310	384	125	129	101	208	103	164	136	127	126	116	294	319	104	06	6 -	641	502	27.00	357	26	143	222	174	191	129	123	5	104	138	38	212	<u></u>	2	8	92	124	228
	Train Length (feet)	3,000	5,000	2,000	2,000	5,000	5,000	5,000	5,000	\$,000	\$,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	\$,000	6,200	6,200	0,200	2007	5,000	5,000	2,000	2,000	2,000	2,000	2,000	2,000	0000	2,000	900	5,000	2.000	\$.000	2,000	2,000	5,000	2,000
	Train Speed (mph)	35	20	20	9	40	40	40	40	40	40	20	33	S	\$	2	8	8	S,	S	e	9	ę	3 8	2 9	9	6	6	40	40	40	S	S :		2 5	5	S S	8	S S	S S	20	25	25
	Trains per day	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	17.1	15.	2	2	2	15.0	15.0	15.0	12.0	33.1	33.			12/2	15.1	17.1	17.1	17.1	12.1	15.	15.1		12		12	2	2	12	15.1	11.2	11.2
	Level of Service	<	В	<	٧	٧	٧	٧	٧	<	٧	٧	<	<	<	<	4	4	<	<	<	В	В	m	ء ا	4	<	<	<	<	٧	<	<	2	4	1	<		: <	<	<	<	4
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	3.47	7.09	1.65	2.52	3.07	2.39	2.40	2.29	2.78	2.30	1.63	1.42	0.85	2.04	3.39	4.63	4.83	1.71	1.66	3.57	10.29	11.33	14.46	10.97	1 22	1.32	1.53	1.26	1.19	1.20	0.95	98'0	6.22	0.63	900	0.70	0 83	280	0.87	0.87	1.77	2.03
110	Crossing Delay per stopped veh (min./veh)	3.32	4.28	2.07	2.67	3.27	2.54	2.55	2.44	2.96	2.44	2.03	2.54	1.98	2.37	2.87	3.92	4.10	2.14	2.08	3.03	2.56	2.82	3.24	2.73	2.73	2.61	3.03	2.49	2.36	2.38	2.22	2.00	5.43	2.00	2.03	2.06	1 03	19	2.04	2.03	3.50	4.00
Pre Acquisition	Max. No. of Veh. in Queue per lane	31	23	=	20	33	91	17	2	27	13	=	6	8	91	01	39	42	14	12	91	14	21	26	6	6 2	2 6	29	5	2	=	91	6	27	17	71	<u>=</u>		۰	٥	2 2	-	32
Pre.	No. of Veh. Delayed per day	117	98	84	152	881	19	63	30	102	50	80	36	33	62	57	145	157	51	44	59	413	324	605	285	294	32	85	45	42	34	32	<u>8</u> 2	80	60 2	۶ ا	g \$	3	07	2 2	200	24	45
	Train Length (feet)	\$.600	5.600	5,600	9,600	5,600	\$.600	5,600	5,600	5,600	5,600	5,600	2,600	2,600	5,600	2,600	2,600	2,600	2,600	2,600	2,600	000'9	0,000	9,000	6,000	9,000	2,000	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600	000'6	000	200,5	000,0	3000	300	5,600	5,600
	Train Speed (mph)	35	700	20	40	40	40	40	9	40	9	8	35	8	45	30	20	30	20	20	30	40	40	35	8	9	9 9	2 2	9	6	9	20	20	2	2	2	S		2	2 2	3 8	25	25
	Trains per day	5.4	24	<u> </u>	5.4	<u> </u>	Ļ	\$ 4	5.4	2	ㅗ	<u> </u>	Ļ	2.9	5.4	5.4	5.4	5.4	5.4	5.4	5.4	1	H	4	21.9	21.9	2.3	<u> </u>	4	 	<u>Ļ</u>	<u> </u>	2.9	2.9	4	4	4	Ļ	4	27.0	+	÷	H
	ADT	13 431	6 2 2 9	12,650	19.378	23.966	2 800	8.036	6.340	13.007	6.408	12,000	7.637	9.200	8,576	5,800	14,750	16,000	7,649	9,600	5.975	12,330	099'6	16,237	8,510	8,761	2,869	13 746	10,740	1000	8.000	8,917	5,000	11,300	11,370	10,000	000'01	15,434	7,325	6,762	0,830	5,260	10,568
	Number of Roadway Lanes	,		, ₇	4	_	,	100	,	, ,	2		4	4	2	3	2	2	2	2	2	4	2	3	2	7	7	,	,		-	2	2	4	4	3	2		4	4	2	7	2
	Roadway Name	MICHIGAN AVE	MICHIGAN AVE	HELMER RD	MII WALIKEE ST	MICHIGAN AVE	COOPED ST (M-106)	BI ACKETONE ST	STEWADD AVE	N WIGNER CT	WI DWOOD ST	BOBINSON BD	S FLM AVE	FIFTH ST	BURGES	OLIVER ST	MICHIGAN	PARK ST	M-96/DICKMAN RD	MICHIGAN AVE	HARRISON ST	STEWART RD	ELM	FRONT ST	DUNBAR RD.	LAKEWOOD-LUNAPIER	DIXBORO RD	UEDDES KD	M-52	CEFORUE 31.	CROSS ST	GULLEY RD	MONROE ST	CENTRAL	LONYO	JOHN DALY RD	HENRY RUFF RD	MERRIMAN RD	VENOY AVE.	HOWEAVE	HAGGERTY RD	HANNAN KU.	PENNSYLVANIA RD
	Crossing FRA ID	000000	Т	\$45407X	T	Т	Τ.	Т	7497646	Т	242292F	147277111	718C2817	15	Т	Т	Т	Т	Т	\$4\$4\$0D	Т	1	Т		232140T	232129T	545212K	3432131	545241V	2422070	50005045	5451768	545169G	511945J	\$12363H	545178F	545182V	545184J	545186X	545187E		545191U	511027V
	Seg. No.	1	T	071-2	T	T	T	T	071-0	T	071-2	T	T	T	Τ	0017	T	Γ		T			T	Π	C-040	П		N-121	N-121	N-121	N-121	N-121	. i.	N-121	N-121	N-121	N-121	N-121	N-121	N-121	N-121		S-020
	County			Calhoun	T	Jackson	Jackson	Jackson			Jackson	Jackson	Jackson	Jackson	9	T		Kalamazoo	Valamazoo	Valamazoo	Valamazoo	Marga	Monroe	Monroe	Monroe	Monroe	Washtenaw	Washtenaw	Washtenaw	Washtenaw	Washtenaw	Wayne	Wavne	Wayne	Wayne	Wayne	Wayne	Wayne	Wayne	Wayne	Wayne	Wayne	Wayne Wayne

[THIS PAGE INTENTIONALLY LEFT BLANK]

Appendix B: Draft Environmental Impact Statement Correction Letter, Errata,	
Supplemental Errata and Additional Environmental Information, and Board Notices to Parties of Reco	rd

Draft Environmental Impact Statement Supplemental Errata

Appen Ipplemental Errat	dix B: Draft Environmental Impact Statement Correction Letter, Errata, ta and Additional Environmental Information, and Board Notices to Parties of Record
	[THIS PAGE INTENTIONALLY LEFT BLANK]

SERVICE DATE: LATE RELEASE JANUARY 21, 1998

SURFACE TRANSPORTATION BOARD

STB Finance Docket No. 33388

CSX CORPORATION AND CSX TRANSPORTATION, INC.

NORFOLK SOUTHERN CORPORATION AND

NORFOLK SOUTHERN RAILWAY COMPANY

-- CONTROL AND OPERATING LEASES/AGREEMENTS --

CONRAIL INC. AND CONSOLIDATED RAIL CORPORATION

Decision No. 63

Dated: January 21, 1998

NOTICE TO THE PARTIES:

On December 12, 1997, the Surface Transportation Board (Board) served the Draft Environmental Impact Statement (Draft EIS), prepared by the Board's Section of Environmental Analysis (SEA), regarding potential environmental impacts of the proposed acquisition of Conrail, Inc. by Norfolk Southern Railroad and CSX Railroad. On January 12, 1998, SEA issued an Errata to the Draft EIS in an effort to facilitate review of the document, to clarify some of its information, and to correct data discrepancies. The purpose of this notice is to provide you with a Supplemental Errata to the Draft EIS.

During its ongoing analysis, SEA identified an error in the calculations used to determine average daily traffic delay at highway/rail at-grade crossings. This error overstates the average daily traffic delay at highway/rail at-grade crossings. The Supplemental Errata, enclosed with this notice, addresses this issue and provides recalculated values for traffic delay. This Supplemental Errata also describes the resulting changes in SEA's preliminary mitigation recommendations for traffic delay, and related environmental justice analysis.

This Supplemental Errata does not change or alter SEA's analysis, results, or preliminary mitigation recommendations in other environmental impact areas, nor does it affect the integrity of the information contained in the Draft EIS unrelated to traffic delay.

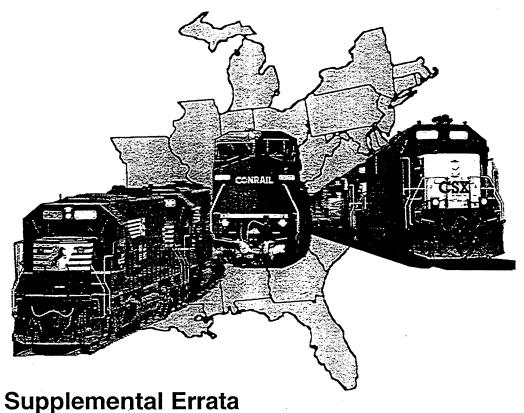
SEA is seeking public comment on the Draft EIS, which it will consider in preparing a Final EIS. Public comments are due to SEA by February 2, 1998. If you have any questions or comments, please call SEA's toll-free Environmental Hotline at 1-888-869-1997.

Vernon A. Williams

Secretary

[THIS PAGE INTENTIONALLY LEFT BLANK]

Comment Date: February 2,1998


DRAFT ENVIRONMENTAL IMPACT STATEMENT

Finance Docket No. 33388

"PROPOSED CONRAIL ACQUISITION"

CSX Corporation and CSX Transportation, Inc.
Norfolk Southern Corporation and
Norfolk Southern Railway Company

Control and Operating Leases/Agreements
Conrail Inc. and Consolidated Rail Corporation

prepared by:

Surface Transportation Board Section of Environmental Analysis

1925 K Street, NW • Washington, DC 20423-0001

Information Contacts:

[THIS PAGE INTENTIONALLY LEFT BLANK]

SURFACE TRANSPORTATION BOARD Washington, DC 20423

Section of Environmental Analysis

January 21, 1998

Re: Finance Docket No. 33388 -- CSX and Norfolk Southern -- Control and Acquisition --

Conrail: Supplemental Errata to the Draft Environmental Impact Statement

Dear Interested Party:

In mid-December, you were mailed a copy of the Draft Environmental Impact Statement (Draft EIS), prepared by the Surface Transportation Board's Section of Environmental Analysis (SEA), regarding potential environmental impacts of the Proposed Acquisition of Conrail by Norfolk Southern Railroad and CSX Railroad. On January 12, 1998, SEA sent an Errata to all interested parties in an effort to facilitate review of the Draft EIS, clarify some of its information, and correct data discrepancies.

During its on-going analysis, SEA identified an error in the calculations used to determine average daily traffic delay at highway/rail at-grade crossings. This error overstates the average daily traffic delay at highway/rail at-grade crossings. The Supplemental Errata enclosed with this letter addresses this issue and provides recalculated values for traffic delay. This Supplemental Errata also describes the resulting changes in SEA's preliminary mitigation recommendations for traffic delay and related environmental justice analysis.

This Supplemental Errata does not change or alter SEA's analysis, results, or preliminary mitigation recommendations in other environmental impact areas, nor does it affect the integrity of the information contained in the Draft EIS unrelated to traffic delay.

SEA is seeking public comment on the Draft EIS, which it will consider in preparing a Final EIS. Public comments are due to SEA by **February 2, 1998**. If you have any questions or comments, please call SEA's toll-free Environmental Hotline at 1-888-869-1997. Thank you for your interest and participation in the Draft EIS process.

Sincerely yours,

Elaine K. Kaiser

Environmental Project Director Section of Environmental Analysis

Sain of Jainer

[THIS PAGE INTENTIONALLY LEFT BLANK]

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Overview

During its ongoing analysis, the Section of Environmental Analysis (SEA) identified an error in the calculation of vehicle crossing delay presented in the Draft Environmental Impact Statement (Draft EIS) This error has the effect of reducing the "Crossing Delay per Stopped Vehicle" and the "Average Delay for all Vehicles" by a factor of approximately two. Correcting this error reduces the impact of the proposed Conrail Acquisition on highway/rail at-grade crossing vehicular delay. The findings, conclusions, and preliminary recommended environmental mitigation presented in this Draft EIS Supplemental Errata supercede the applicable discussions presented in Chapter 5 and Chapter 7 of the Draft EIS.

This Draft EIS Supplemental Errata describes changes to SEA's analysis of highway/rail at-grade crossing delay. This Draft EIS Supplemental Errata also contains changes to tables and text in Chapters 5 and 7 of the Draft EIS, including some changes related to SEA's analysis of potential environmental justice impacts. This Draft EIS Supplemental Errata contains the following tables:

- Table 1 Supplemental Errata.
- Table 2 Comparison of Highway/Rail At-Grade Crossing Delay Mitigation Compares the Draft EIS mitigation with the revised recommended mitigation.
- Table 7-7 (Revised) Preliminary Highway/Rail At-Grade Crossings That May Warrant Traffic Delay Mitigation.
- Revised Highway/Rail At-Grade Crossing Vehicle Delay and Queues Tables in Chapter 5 of the Draft EIS 5-AL-5, 5-GA-6, 5-IL-11, 5-IN-9, 5-KY-8, 5-MD-9, 5-MI-10, 5-NY-9, 5-OH-11, 5-PA-9, 5-TN-7, 5-VA-7, and 5-WV-5.

Supplemental Errata Highway/Rail At-Grade Crossing Delay

The delay calculation in the Draft EIS incorrectly assumed that all vehicles blocked at a crossing would experience delay for the entire time a train passes, including time for the gate closing and opening, plus the dispersal time. The description of Crossing Delay per Stopped Vehicle in the methods discussion in Chapter 3, Section 3.7.1 of the Draft EIS correctly notes that the average amount of time a vehicle would experience delay is half the time it takes for a train to pass, including time for gate closing and opening,

plus the time for vehicles to disperse after the train has passed. The revised analysis presented in this Draft EIS Supplemental Errata correctly assumes that the vehicles experiencing delayare those that arrive while the crossing gate is activated.

The revised equation for determining Crossing Delay per Stopped Vehicle follows. This equation reflects the averaging factor of two (2) and replaces the equation in Appendix C, Section C.4.3, page C-12 of the Draft EIS.

$$D_A = \frac{D_c(Sc/Sc - Sq)}{2}$$

where:

 $D_A = Crossing delay per stopped vehicle, in minutes.$

D_C = Time the train takes to pass the highway/rail at-grade crossing, including time for gate closing and opening, in minutes.

Sc = Vehicle departure rate per minute per lane. The basis for this is a rate of 1,400 vehicles per hour per lane, according to field measurements.

Sq = Vehicle arrival rate per minute per lane. The basis for this is the daily traffic volumes for the roadway.

2 = Factor to account for the average of the minimum and maximum vehicle delay.

The revised traffic delay calculations result in fewer highway/rail at-grade crossings that may warrant mitigation. Using the revised equation for the Crossing Delay per Stopped Vehicle, SEA has revised state-by-state delay tables and Table 7-7, Preliminary Highway/Rail At-Grade Crossings That May Warrant Traffic Delay Mitigation. In addition, SEA has prepared Table 2, which compares the changes in traffic delay mitigation with those in the Draft EIS.

Supplemental Errata Environmental Justice Analysis

The revised traffic delay calculations and mitigation also affect the Environmental Justice analysis. For crossings in Maryland, at Decatur Street, Upshur Street and Annapolis Road on rail line segment C-030 and at Hollins Ferry Road on rail line segment C-032, occur close to environmental justice populations. The crossing delay impacts in the Draft EIS were the only significant effects on these populations. Because these crossings are now below the level of significance for crossing delay and no longer warrant mitigation, potential environmental justice impacts would not occur. These changes are shown in Table 1, Supplemental Errata.

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

Table 1 Supplemental Errata

Page 1 of 4

FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA PROPOSED CONRAIL ACQUISITION

Table 1 Supplemental Errata

Paragraph Number*	Row 6 For Illinois, delete Preliminary Recommended Mitigation No. 10. Column 2	Row 7 For Indiana, delete Preliminary Recommended Mitigation No. 9.	Row 8 For Kentucky, delete Preliminary Recommended Mitigation No. 10 and Column 2 add Preliminary Recommended Mitigation No. 11.	Row 10 For Maryland, delete Preliminary Recommended Mitigation No. 9. Column 2	Row 5 For Ohio, delete Preliminary Recommended Mitigation No. 9. Column 2	Row 6 For Pennsylvania, delete Preliminary Recommended Mitigation No. 11.	3 Delete Preliminary Recommended Mitigation No. 9.
Page Number	7-10	7-10	7-10	7-10	7-11	7-11	7-15
Subject	Table 7-1	Table 7-1	Table 7-1	Table 7-1	Table 7-1	Table 7-1	Transportation: Highway/Rail At- Grade Crossing Delay
Section	7.2	7.2	7.2	7.2	7.2	7.2	7.2.3
Chapter	7	7	7	7	7	7	7

Page 2 of 4

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

Table 1 Supplemental Errata

Г				
	Change	For Preliminary Recommended Mitigation No. 10, delete references to Illinois and Kentucky; change "five separated grade crossings" to "a separated grade crossing"; and delete sub-paragraphs a, c, and d.	For Preliminary Recommended Mitigation No. 11, delete Pennsylvania and add Kentucky ; change" ten" to "nine" highway/rail at-grade crossings; and add "(Revised)" after reference to Table 7-7. In paragraph 2 of Preliminary Recommended Mitigation No. 11, delete first sentence and replace with the following: "Three of the five highway/rail at-grade crossings in Erie, Pennsylvania listed in Table 7-7 (Revised) meet SEA's criteria for mitigation. The two that do not meet the criteria are in such close proximity to those that meet the criteria that they are to be included with those recommended for mitigation. In Lafayette, Indiana, SEA's preliminary determination is that the ten highway/rail at-grade crossings are recommended for mitigation. This is due to the unique conditions in this community with close proximity of these crossings to each other within an urban setting and the resultant effect on traffic delay along these roadways."	Delete rows 1 and 3, Rail Line Segments C-030 and C-032.
~ dp promonent	Paragraph Number ^a	4	1, 2	Rows 1 and 3
'	Page Number	7-15 to 7-16	7-16 to 7-17	7-48
	Subject	Transportation: Highway/Rail At- Grade Crossing Delay	Transportation: Highway/Rail At- Grade Crossing Delay	Table 7-9
	Section	7.2.3	7.2.3	7.2.6
	Chapter	7	7	7

Page 3 of 4

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 1 Supplemental Errata

Chapter	Section	Subject	Page Number	Paragraph Number ^a	Change
7	7.2.6	Table 7-9	7-48	Row 2 Column 1	Add DC for Rail Line Segment C-031.

^a Paragraph numbering begins with the first full paragraph on a page, unless this column notes otherwise. For tables, numbering of rows starts directly below the table header row.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA Comparison of Highway/Rail At-Grade Crossing Delay Mitigation Table 2

Cook Calumet Park C-010 BIXDADWAY-135TH ST. D to E B to D Grade Separation Cook Evergreen Park C-011 95TH ST. D to E C to D C to D C conditation D be Kalb Garrett C-066 RANDOLPH ST. E to D to F G to D G rade Separation Madison Alexandria N-040 S.R.9 3.0 sec. delay* C to D G rade Separation Impleation Alexandria N-040 S.R.9 3.0 sec. delay* C to D G rade Separation Impleation Alexandria N-040 S.R.9 3.0 sec. delay* -3.0 sec. delay* Compleat Laflystte Bypass Impleation Laflystet N-045 MAIN ST. C to D B to C Compleat Laflystte Bypass Impleation Laflystet N-045 STATE STATE C to D B to C Compleat Laflystte Bypass Impleation Laflystet N-045 STATE STATE C to D B to C Compleat Laflystte Bypass Impleation Laflystet	State	County	City Name	Segment Number	Roadway Name	Draft EIS LOS Change	Revised LOS Change	Draft EIS Mitigation	Revised Recommended Mitigation
Cook Calumet Park C-010 BROADWAY-135TH ST. D 10 E C 10 D Grade Separation Cook Bergreen Park C-011 95TH ST. D 10 E C 10 D C 10 D De Kalb Garrett C-066 RANDOLPH ST. E 10 F D 0 F C 10 D Madison Alexandria N-040 S.R.9 > 30 sec. delay* S 20 sec. delay* Consultation Madison Alexandria N-045 FERRY ST. C 10 D B 10 C Consultation Tippecanoe Lafayette N-045 FERRY ST. C 10 D B 10 C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SOUTH ST S.R.26 C 10 D B 10 C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SOUTH ST S.R.26 C 10 D B 10 C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SOUTH ST S.R.26 C 10 D B 10 C Complete Lafayette Bypass Tippecanoe Lafayette N-045 STH ST US S.R.26 C 10 D	11.	Cook	Calumet Park	C-010	DIXIE HWY.	DtoE	B to D	Grade Separation	Consultation
Cook Evergreen Park C-011 95TH ST. D 10 E C 10 D Consultation De Kalb Garrett C-066 RANDOLDH ST. E 10 F D 10 F Grade Separation Madison Alexandria N-040 S.R. 9 >30 sec. delay* Consultation Madison Alexandria N-040 IARRISON ST. C 10 D B 10 C Complete Laffweite Bypass Tippecanoe Laffyeite N-045 GALLMBIA ST. C 10 D B 10 C Complete Laffweite Bypass Tippecanoe Laffyeite N-045 SOUTH ST S.R. 26 C 10 D B 10 C Complete Laffweite Bypass Tippecanoe Laffyeite N-045 SOUTH ST S.R. 26 C 10 D B 10 C Complete Laffweite Bypass Tippecanoe Laffyeite N-046 SOUTH ST S.R. 26 C 10 D B 10 C Complete Laffweite Bypass Tippecanoe Laffyeite N-046 UNDERWOOD ST, B 10 D B 10 C Complete Laffweite Bypass Tippecanoe Laffyeite N-046 UNDERWOOD ST, B 10 D <td>11</td> <td>Cook</td> <td>Calumet Park</td> <td>C-010</td> <td>BROADWAY-135TH ST.</td> <td>D to E</td> <td>BtoD</td> <td>Grade Separation</td> <td>Consultation</td>	11	Cook	Calumet Park	C-010	BROADWAY-135TH ST.	D to E	BtoD	Grade Separation	Consultation
De Kalb Garrett C-066 RANDOLPH ST. E Io F D Io F Grade Separation Madison Alexandria N-040 S.R.9 230 sec. delay* >50 sec. delay* Consultation Madison Alexandria N-040 B.R.9 530 sec. delay* Consultation Tippecanoe Lafayette N-045 FERRY ST. C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SOUTH ST.R. 26 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SUTH ST.R. 26 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SUTH ST.R. 26 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D C conplete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D C complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D C conplete Lafayette Bypass<	11	Cook	Evergreen Park	C-011	95TH ST.	DtoE	CtoD	Consultation	Consultation
Madison Alexandria N-040 S. R. 9 >30 sec. delay* Consultation Madison Alexandria N-040 HARRISON ST. >30 sec. delay* Consultation Tippecance Lafayette N-045 FERRY ST. C to D B to C Complete Lafayette Bypass Tippecance Lafayette N-045 COLUMBIA ST. C to D B to C Complete Lafayette Bypass Tippecance Lafayette N-045 SOUTH ST. R. Z6 C to D B to C Complete Lafayette Bypass Tippecance Lafayette N-045 STH ST. C to D B to C Complete Lafayette Bypass Tippecance Lafayette N-046 UNDER WOOD ST. B to D Complete Lafayette Bypass Tippecance Lafayette N-046 UNDER WOOD ST. B to D Complete Lafayette Bypass Tippecance Lafayette N-046 UNDER WOOD ST. B to D Complete Lafayette Bypass Tippecance Lafayette N-046 UNIDST. B to D C to D Tippecance <td< td=""><td>Z</td><td>De Kalb</td><td>Garrett</td><td>C-066</td><td></td><td>EtoF</td><td>D to F</td><td>Grade Separation</td><td>Grade Separation</td></td<>	Z	De Kalb	Garrett	C-066		EtoF	D to F	Grade Separation	Grade Separation
Machison Alexandria N-040 HARRISON ST. >-30 sec. delay* Consultation Tippecanoe Laftyette N-045 FERRY ST. C to D B to C Complete Laftyette Bypass Tippecanoe Laftyette N-045 COLUMBIA ST. C to D B to C Complete Laftyette Bypass Tippecanoe Laftyette N-045 SOUTH ST.S. 26 C to D B to C Complete Laftyette Bypass Tippecanoe Laftyette N-045 SUTH ST. C to D B to C Complete Laftyette Bypass Tippecanoe Laftyette N-045 STH ST. C to D B to C Complete Laftyette Bypass Tippecanoe Laftyette N-046 UNDERWOOD ST. B to D Complete Laftyette Bypass Tippecanoe Laftyette N-046 UNDERWOOD ST. B to D Complete Laftyette Bypass Tippecanoe Laftyette N-046 UNDERWOOD ST. B to D Complete Laftyette Bypass Tippecanoe Laftyette N-046 UNDERWOOD ST. B to D Complete Laftyette Bypass	Z	Madison	Alexandria	N-040	S. R. 9	>30 sec. delay*	>30 sec. delay*	Consultation	Consultation
Tippecanoe Lafayette N-045 FERRY ST. C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 MAIN ST. C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SOUTH ST. R. 26 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SOUTH ST. R. 231 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 TH ST U. S. 231 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to D C to D B to C Complete Lafayette Bypass <tr< td=""><td>Z</td><td>Madison</td><td>Alexandria</td><td>N-040</td><td>HARRISON ST.</td><td>>30 sec. delay*</td><td>>30 sec. delay*</td><td>Consultation</td><td>Consultation</td></tr<>	Z	Madison	Alexandria	N-040	HARRISON ST.	>30 sec. delay*	>30 sec. delay*	Consultation	Consultation
Tippecanoe Lafiyette N-045 MAIN ST. C to D B to C Complete Lafiyette Bypass Tippecanoe Lafiyette N-045 COLUMBIA ST. C to D B to C Complete Lafiyette Bypass Tippecanoe Lafiyette N-045 SOUTH ST.S.R. 26 C to D B to C Complete Lafiyette Bypass Tippecanoe Lafiyette N-045 9TH ST. C to D B to C Complete Lafiyette Bypass Tippecanoe Lafiyette N-046 UNDER WOOD ST. B to D B to C Complete Lafiyette Bypass Tippecanoe Lafiyette N-046 INTH & SALEM ST. B to D B to C Complete Lafiyette Bypass Tippecanoe Lafiyette N-046 INTH & SALEM ST. B to D B to D B to B Tippecanoe Lafiyette N-046 UNION ST. B to D B to B Complete Lafiyette Bypass Vanderburgh Evansville C-025 W. MARYLAND ST. C to D B to C Complete Lafiyette Bypass Vanderburgh Evansville C-025	Z	Tippecanoe	Lafayette	N-045	FERRY ST.	CtoD	B to C	Complete Lafayette Bypass	Consultation
Tippecanoe Lafayette N-045 COLUMBIA ST. C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 SOUTH ST.R. 26 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to D B to D Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to D Complete Lafayette Bypass Vanderburgh Evansville C-025 W-MARYLAND ST. C to D B to C Constitution Vanderburgh <	Z	Tippecanoe	Lafayette	N-045	MAIN ST.	CtoD	BtoC	Complete Lafayette Bypass	Consultation
Tippecanoe Lafayette N-045 SOUTH ST S.R. 26 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-045 9TH ST. C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNTON ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNTON ST. B to D Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNTON ST. B to D Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNTON ST. B to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. MARYLAND ST. C to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. FRANKLINS T. C	Z	Tippecanoe	Lafayette	N-045	COLUMBIA ST.	CtoD	B to C	Complete Lafayette Bypass	Consultation
Tippecanoe Lafayette N-045 9TH ST. C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 17TH & SALEM ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D Complete Lafayette Bypass Vanderburgh Evansville C-025 W. MARYLAND ST C to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. FRANKLIN ST. C to D B to C Consultation Vanderburgh Evansville C-025 W. FRANKLIN ST. C to D B to B C to D Christian Hopkins C-025 W. NOEL AVE. C t	Z	Tippecanoe	Lafayette	N-045	SOUTH ST S.R. 26	CtoD	B to C	Complete Lafayette Bypass	Consultation
Tippecanoe Lafayette N-045 4TH ST U.S. 231 C to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 18TH ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. MARYLAND ST C to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. MARYLAND ST C to D B to C Consultation Vanderburgh Evansville C-025 W. FRANKLIN ST C to D B to C Consultation Vanderburgh Hopkins G-021 E 9TH ST C to D B to E C to D Christian Hopkins G-025 W. NOEL AVE.	Z	Tippecanoe	Lafayette	N-045	9TH ST.	CtoD	B to C	Complete Lafayette Bypass	Consultation
Tippecanoe Lafayette N-046 UNDERWOOD ST. B to D B to C Complete Lafayette Bypass Tippecanoe Lafayette N-046 18TH ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 17TH & SALEM ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. MARYLAND ST. C to D B to C Consultation Vanderburgh Evansville C-025 W. FRANKLIN ST. C to D B to C Consultation Vanderburgh Evansville C-025 W. FRANKLIN ST. C to D Grade Separation Christian Hopkinsville C-021 W. NOEL AVE. D to E C to D Grade Separation Hopkins Gto D B to B Increase speed 5 mph Increase speed 5 mph Prince George's Hyattsville C-030 UPSHUR ST. C to D B to B Incr	Z	Tippecanoe	Lafayette	N-045		CtoD	B to C	Complete Lafayette Bypass	Consultation
Tippecanoe Lafayette N-046 IRTH ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 17TH & SALEM ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. MARYLAND ST C to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. FRANKLIN ST. C to D B to C Consultation Vanderburgh Evansville C-025 UHO ST. C to D B to C Consultation Vanderburgh Hopkins Madisonville C-021 E TH ST. D to E C to D Grade Separation Hopkins Madisonville C-021 W. NOEL AVE. D to E C to D G to D G to B Increase speed 5 mph Prince George's Hyattsville C-030 HOLLINS FERRY RD. C to D B to B Increase speed 5 mph Prince George's <td>Z</td> <td>Tippecanoe</td> <td>Lafayette</td> <td>N-046</td> <td>UNDERWOOD ST.</td> <td>BtoD</td> <td>B to C</td> <td>Complete Lafayette Bypass</td> <td>Consultation</td>	Z	Tippecanoe	Lafayette	N-046	UNDERWOOD ST.	BtoD	B to C	Complete Lafayette Bypass	Consultation
Tippecanoe Lafayette N-046 17TH & SALEM ST. B to D B to B Complete Lafayette Bypass Tippecanoe Lafayette N-046 UNION ST. B to D B to C Complete Lafayette Bypass Vanderburgh Evansville C-025 W. MARYLAND ST C to D B to C Consultation Vanderburgh Evansville C-025 W. FRANKLIN ST. C to D B to C Consultation Vanderburgh Evansville C-025 OHIO ST. C to D B to C Consultation Christian Hopkinsville C-021 W. NOEL AVE. D to E C to D Grade Separation Hopkins Madisonville C-021 W. NOEL AVE. D to E C to D Grade Separation Baltimore City Baltimore City C-032 HOLLINS FERRY RD. C to D B to B Increase speed 5 mph Prince George's Hyattsville C-030 UPSHUR ST. C to D B to B Increase speed 5 mph	Z	Tippecanoe	Lafayette	N-046	18TH ST.	BtoD	B to C	Complete Lafayette Bypass	Consultation
TippecanoeLafayetteN-046UNION ST.B to DB to CComplete Lafayette BypassVanderburghEvansvilleC-025W. MARYLAND STC to DB to CConsultationVanderburghEvansvilleC-025W. FRANKLIN ST.C to DB to CConsultationChristianHopkinsvilleC-021E 9TH ST.D to EC to DGrade SeparationHopkinsMadisonvilleC-021W. NOEL AVE.D to EC to DGrade SeparationBaltimore CityBaltimore CityC-032HOLLINS FERRY RD.C to DB to BIncrease speed 5 mphPrince George'sHyattsvilleC-030UPSHUR ST.C to DB to BIncrease speed 5 mph	Z	Tippecanoe	Lafayette	N-046	17TH & SALEM ST.	BtoD	B to B	Complete Lafayette Bypass	Consultation
Vanderburgh Evansville C-025 W. MARYLAND ST C to D B to C Increase speed 5 mph Vanderburgh Evansville C-025 W. FRANKLIN ST. C to D B to C Consultation Vanderburgh Evansville C-025 OHIO ST. C to D B to C Consultation Christian Hopkinsville C-021 W. NOEL AVE. D to E C to D Grade Separation Hopkins Madisonville C-031 W. NOEL AVE. D to E C to D Grade Separation Baltimore City Baltimore City C-032 HOLLINS FERRY RD. C to D B to B Increase speed 5 mph Prince George's Hyattsville C-030 UPSHUR ST. C to D B to B Increase speed 5 mph	 <u>z</u>	Tippecanoe	Lafayette	N-046	UNION ST.	BtoD	B to C	Complete Lafayette Bypass	Consultation
VanderburghEvansvilleC-025W. FRANKLIN ST.C to DB to CConsultationVanderburghEvansvilleC-025OHIO ST.C to DB to CConsultationChristianHopkinsvilleC-021W. NOEL AVE.D to EC to DGrade SeparationHopkinsMadisonvilleC-021W. NOEL AVE.D to EC to DG rade SeparationBaltimore CityBaltimore CityC-032HOLLINS FERRY RD.C to DB to BIncrease speed 5 mphPrince George'sHyattsvilleC-030UPSHUR ST.C to DB to BIncrease speed 5 mph	Z	Vanderburgh	Evansville	C-025	W. MARYLAND ST	CtoD	BtoC	Increase speed 5 mph	None - No significant effect
VanderburghEvansvilleC-025OHIO ST.C to DB to CConsultationChristianHopkinsvilleC-021W. NOEL AVE.D to EC to DGrade SeparationHopkinsMadisonvilleC-021W. NOEL AVE.D to EC to DGrade SeparationBaltimore CityBaltimore CityC-032HOLLINS FERRY RD.C to DB to BIncrease speed 5 mphPrince George'sHyattsvilleC-030DECATUR ST.C to DB to BIncrease speed 5 mph	Z	Vanderburgh	Evansville	C-025	W. FRANKLIN ST.	CtoD	BtoC	Consultation	None - No significant effect
ChristianHopkinsvilleC-021W. NOEL AVE.D to BC to DGrade SeparationHopkinsMadisonvilleC-021W. NOEL AVE.D to BC to DGrade SeparationBaltimore CityBaltimore CityC-032HOLLINS FERRY RD.C to DB to BIncrease speed 5 mphPrince George'sHyattsvilleC-030DECATUR ST.C to DB to BIncrease speed 5 mph	Z	Vanderburgh	Evansville	C-025	OHIO ST.	CtoD	B to C	Consultation	None - No significant effect
HopkinsMadisonvilleC-021W. NOEL AVE.D to EC to DB to BIncrease speed 5 mphBaltimore CityC-032HOLLINS FERRY RD.C to DB to BIncrease speed 5 mphPrince George'sHyattsvilleC-030DECATUR ST.C to DB to BIncrease speed 5 mph	KY	Christian	Hopkinsville	C-021	E 9TH ST.	D to E	CtoD	Grade Separation	Consultation
Baltimore CityBaltimore CityC-032HOLLINS FERRY RD.C to DB to BIncrease speed 5 mphPrince George'sHyattsvilleC-030DECATUR ST.C to DB to BIncrease speed 5 mph	KY	Hopkins	Madisonville	C-021	W. NOEL AVE.	D to E	CtoD	Grade Separation	Consultation
Prince George'sHyattsvilleC-030DECATUR ST.C to DB to BIncrease speed 5 mphPrince George'sBladensburgC-030UPSHUR ST.C to DB to BIncrease speed 5 mph	₩ Q	Baltimore City	Baltimore City	C-032	HOLLINS FERRY RD.	CtoD	B to B	Increase speed 5 mph	None - No significant effect
Prince George's Bladensburg C-030 UPSHUR ST. C to D B to B Increase speed 5 mph	MD	Prince George's	Hyattsville	C-030		CtoD	B to B	Increase speed 5 mph	None - No significant effect
	MD	Prince George's	Bladensburg	C-030	UPSHUR ST.	C to D	B to B	Increase speed 5 mph	None - No significant effect

Page 1 of 2

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 2 Comparison of Highway/Rail At-Grade Crossing Delay Mitigation

State	County	City Name	Segment	Roadway Name	Draft EIS LOS Change	Revised LOS Change	Draft EIS Mitigation	Revised Recommended Mitigation
₽ P	Prince George's	Bladensburg	C-030	ANNAPOLIS RD.	C to D	B to C	Increase speed 5 mph	None - No significant effect
HO	Butler	Hamilton	C-063	VINE ST.	E to E	C to D	Consultation	Consultation
HO	Cuyahoga	Brookpark	C-074	HUMMEL RD.	BtoD	A to B	Increase speed 5 mph	None - No significant effect
НО	Cuyahoga	Brookpark	C-074	ENGLE RD.	BtoD	A to C	Increase speed 5 mph	None - No significant effect
ЮН	Hamilton	Cincinnati	C-063	WINTON RD.	E to E	DtoD	Consultation	None - No significant effect
НО	Hamilton	Cincinnati	C-063	MITCHELL AVE.	E to F	DtoD	Consultation	None - No significant effect
НО	Hamilton	Cincinnati	C-063	TOWNSHIP AVE.	E to E	CtoD	Consultation	Consultation
НО	Lorain	Wellington	C-061	MAIN ST.	B to D	A to B	Increase speed 5 mph	None - No significant effect
P.	Eric	Erie	N-070	PEACH ST.	CtoE	BtoC	Reroute to CSX Corridor	Reroute to CSX Corridor
PA	Erie	Brie	N-070	SASSAFRAS ST.	DtoE	BtoD	Reroute to CSX Corridor	Reroute to CSX Corridor
S d	Eric	Eric	N-070	CHERRY ST.	C to E	B to D	Reroute to CSX Corridor	Reroute to CSX Corridor
PA	Erie	Erie	N-070	LIBERTY ST.	CtoE	B to D	Reroute to CSX Corridor	Reroute to CSX Corridor
PA	Erie	Erie	N-070	RASPBERRY ST.	CtoE	BtoC	Reroute to CSX Corridor	Reroute to CSX Corridor
PA	Westmoreland	W. Newton	C-033	MAIN ST.	C to D	BtoC	Consultation	None - No significant effect

^{*} Significant traffic delay impact involves increased delay per stopped vehicle.

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

Preliminary Highway/Rail At-Grade Crossings That May Warrant Traffic Delay Mitigation Table 7-7 (Revised)

		2			,					
		Segment and	t and FRA		Warning	ros	Acquis Tra	Acquisition-Related Train Traffic	elated Tic	Recommended
State	County, City	Crossing	sing ID	Crossing Name	Device Type	Change	Pre-	Pre- Post- Change	hange	Mitigation
긤	Cook, Calumet Park	C-010	163415H	Dixie Hwy.	Gates	B to D	17.0	32.9	15.9	Consultation
	Cook, Calumet Park	C-010	163416P	Broadway - 135 th St.	Gates	В to D	17.0	32.9	15.9	Consultation
	Cook, Evergreen Park	C-011	163433F	95 ^տ Տt.	Gates	C to D	19.5	22.9	3.4	Consultation
Z	De Kalb, Garrett	990-D	155330K	Randolph St.	Gates	D to F	21.4	47.7	26.3	Grade Separation
	Madison, Alexandria	N-040	474600L	SR 9	Flashing lights	>30 sec. delay ^a	2.6	11.8	9.2	Consultation
	Madison, Alexandria	N-040	474601T	Harrison St.	Gates	>30 sec. delay ^a	2.6	11.8	9.2	Consultation
	Tippecanoe, Lafayette	N-045	484295F	Ferry St.	Gates	B to C	23.6	41.0	17.4	Consultation
	Tippecanoe, Lafayette	N-045	484296M	Main St.	Gates	B to C	23.6	41.0	17.4	Consultation
	Tippecanoe, Lafayette	N-045	484298B	Columbia St.	Gates	B to C	23.6	41.0 17.4	17.4	Consultation

Page 1 of 3

FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA PROPOSED CONRAIL ACQUISITION

Preliminary Highway/Rail At-Grade Crossings That May Warrant Traffic Delay Mitigation Table 7-7 (Revised)

		Segmen	Segment and FRA		Warning	ros	Acquis Tra	Acquisition-Related Train Traffic	elated fic	Recommended
State	County, City	Cros	Crossing ID	Crossing Name	Device Type	Change	Pre-	Pre- Post- Change	hange	Mitigation
	Tippecanoe, Lafayette	N-045	484300A	South St., SR 26	Gates	B to C	23.6	41.0	17.4	Consultation
	Tippecanoe, Lafayette	N-045	484301G	9 th St.	Gates	B to C	23.6	41.0	17.4	Consultation
	Tippecanoe, Lafayette	N-045	484309L	4th St., U.S. 231	Gates	B to C	23.6	41.0	17.4	Consultation
	Tippecanoe, Lafayette	N-046	484290W	Underwood St.	Flashing lights	B to C	18.4	40.2	21.8	Consultation
	Tippecanoe, Lafayette	N-046	484292K	18 th St.	Flashing lights	B to C	18.4	40.2	21.8	Consultation
	Tinnecanoe, Lafavette	N-046	484293S	17th & Salem St.	Flashing lights	B to B	18.4	40.2	21.8	Consultation
	Tippecanoe, Lafayette	N-046	484294Y	Union St.	Gates	B to C	18.4	40.2	21.8	Consultation
K K	Christian, Hopkinsville	C-021	345267V	E. 9 th St.	Gates	C to D	23.4	32.7	9.3	Consultation
!	Hopkins, Madisonville	C-021	345331S	W. Noel Ave.	Flashing lights	C to D	23.4	32.7	9.3	Consultation
HO	Butler, Hamilton	C-063	152407K	Vine St.	Gates	C to D	28.2	31.2	3.0	Consultation
	Hamilton, Cincinnati	C-063	152355V	Township Ave.	Gates	C to D	28.2	31.2	3.0	Consultation

Page 2 of 3

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

Table 7-7 (Revised)

	Freilminar	y Hignw	'ay/Kall At	Preliminary Hignway/Kali At-Grade Crossings I nat iyiay warrant I ratiic Delay iyiitigation	I nat May wa	rrant 1 ra	mc Del	ay iviii	gation	
State	County, City	Segmen	Segment and FRA Crossing ID	Crossing Name	Warning Device Type	LOS	Acquis Tra Pre-	Acquisition-Related Train Traffic Pre- Post- Change	elated fic hange	Recommended Mitigation
PA	Erie, Erie	N-070	471901W	Peach St.	Gates	B to C	13.0	25.2 12.2	12.2	Reroute trains to CSX corridor
	Erie, Erie	N-070	471902D	Sassafras St.	Gates	B to D 13.0	13.0	25.2 12.2	12.2	Reroute trains to CSX corridor
	Erie, Erie	N-070	471906F	Cherry St.	Flashing lights	B to D	13.0	25.2 12.2	12.2	Reroute trains to CSX corridor
	Erie, Erie	N-070	471908U	Liberty St.	Flashing lights	B to D 13.0		25.2 12.2	12.2	Reroute trains to CSX corridor
	Erie, Erie	N-070	471911C	Raspberry St.	Flashing lights	B to C	13.0	25.2 12.2	12.2	Reroute trains to CSX corridor

Significant traffic delay involves increased delay per stopped vehicle, which is not related to traffic level of service.

Page 3 of 3

[THIS PAGE INTENTIONALLY LEFT BLANK]

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-AL-5 (Revised)

Alabama

		_	_
	Level of Service with Mitigation		
	Level of Service	Α	Α
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	4.60	2.33
uisition	Crossing Delay per itopped veh (min./veh)	1.85	1.17
Post Acquisition	No. of Max. No. Crossing Avg. Delay Veh. of Veh. in Delay per (All Delayed Queue per stopped veh (All per day lane (min./veh) (sec/veh)	28	=
7	No. of Veh. Delayed per day	246	66
	Train Length (feet)	5,000	5,000
	Train Speed (mph)	30 5,000	12.5 40 5,000
	Trains per day	12.5	12.5
	Level of Trains Train Train Service per day (mph) (feet)	A	Ą
	cvg. Delay er Vehicle (All vehicles) (sec/veh)		1.33
110	No. of Max. No. Crossing Veh. of Veh. in Delay per Delayed Queue per stopped veh per day lane (min./veh)	1.81	1.14
Pre Acquisition	Max. No. of Veh. in Queue per lane		=
Pre,	No. of 1 Veh. c Delayed C per day	142 28	57
	Train Length (feet)	4,869	4,869
	Train Speed (mph)	30 4,869	40
	Trains Train Train Prair Speed Lengt (mph) (feet)	11,820 7.4	7.4
	ADT	11,820	5,909 7.4
	Number of Roadway Lanes	2	2
	Roadway Name		
	Seg. No. FRA ID	725283E	725376Y
	Seg. No.	N-001	N-001
	County	Etowah N-001 725283E	Jefferson N-001 725376Y

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table & CA-6 (Revised)

Table 5-GA-6 (Revised) Georgia

	Level of Service with Mitigation					
	evel of ervice	Α	В	В	В	
	g. Delay r Vehicle (All ehicles)	4.81	8.20	12.17	9.29	
isition	Crossing Delay per topped veh (min./veh)	1.07	1.41	1.60	1.60	
Post Acquisition	Max. No. Crossing of Veh. in Delay per Queue per stopped veh v lane (min./veh)	13	81	12	24	
1	No. of Veh. Delayed per day	298	401	570	545	
	Train Length (feet)	5,000	2,000	5,000	5,000	
	Train Speed (mph)	90	35	25 5,000	35	
	Trains per day	32.9	32.9	32.9	32.9	
	Level of Trains Service per day	V	В	В	В	
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	3.84	6.51	9.63	7.37	
uo	Crossing Delay per opped veh min./veh)	1.05	1.38	1.57	1.56	
Pre Acquisition	No. of Max. No. (Veh. in In Delayed Queue per strength	13	17	12	23	
Pre		242	325	1		
	Train Length (feet)	4.869	4.869	4,869	35 4,869	
	Train Speed (mph)	50	35	25	35	
	Trains per day	27.2	27.2	27.2	7.7	
	ADT	7 976	8 275	0006	11,237 2	
	Number of Roadway ADT Lanes	,	2	4	2	
	Roadway Name	718.1501 3PD CT CP 16	18058V MCDANIEI ST	718062K SR\$4 HENDERSON	718065F SAWTELL AVE	
	Seg. No. FRA ID	710.1501	7180587	718062K	718065F	
		VI 033	N 022	N-023	N-022	
	County	-	Fulton	Fulton	Fulton	

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-IL-11 (Revised) Illinois

	·	_		_				_	_	_		_	_	1	1	_	_	7
	Level of Service with Mitigation	D (b)	D (b)						(q) Q							-		
	Level of Service	Ω	Ω	В	В	၁	၁	၁	Ω	4	4	V	В	B	2	a	2	٩
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	28.78	28.29	09'6	12.45	20.75	19.54	21.09	26.34	1.89	3.42	3.40	5.27	683	6 20	37 61	5,55	10.08
isition	Crossing / Delay per topped veh (min./veh)	2.61	2.56	2.00	1.97	2.70	2.55	2.75	3.43	0.92	1.29	1.42	66.0	1 22	=	3	000	1.31
Post Acquisition	Max. No. Crossing A of Veh. in Delay per Queue per stopped veh lane (min./veh)	31	29	31	11	35	78	36	88	S	5	21	6	8	2		2	,
d	No. of Veh. Delayed per day	1415	999	200	554	1100	905	1727	1778	132	<u>8</u>	216	258	517	017	2001	1003	382
	Train Length (feet)	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6.200	2,000	5.000	5.000	\$ 000	000	000	00015	2,000	2,000
	Train Speed (mph)	20	20	35	25	20	20	20	20	50	35	40	ç	9	3	3	95	30
	Trains per day	32.9	32.9	22.9	22.9	22.9	22.9	22.9	22.9	150	150	150	92				0.1	41.0
	Level of Service	В	B	В	B	J	J	C) <	<	<	-		-		2	B
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	14.04	13.80	7.75	10.03	69.91	15.71	96 91	21.18	1,21	2.19	2 18	205	2.70	27.5	3.44	7.04	5.90
n	Max. No. Crossing of Yeh. in Delay per Queue per stopped veh lane (min./veh)	2.54	2 49	1 95	161	2.63	2.47	2.67	3 33	100	1 26	1 30	0.07	130	07.1	1.09	1.53	1.28
Pre Acquisition	Max. No. of Veh. in Queue per Iane	30	38	3	17	34	28	35	2 2		, 2	200	3	\ <u>!</u>	9	4		7
Pre.	No. of Veh. Delayed per day	711	335	414	057	010	746	1429	1477	7/47	S &	3 =	17.	/ 500	767	757	599	215
	Train Length (feet)	9000	000	000,9	6,000	000,9	6,000	6,000	000,0	0,000	7 860	1,000	4,000	4,809	4,809	4,869	4,869	4,869
	Train Speed (mph)	30	2	3,5	3	3 5	2 5	3 5	3	3	26			2	2	2	30	30
	Trains per day	12.0	2	\$ 01	201	201	201	201	2.61	2.5	0.0	2.0	0.01	777	23.0	23.6	23.6	23.6
	ADT	16 400	30,40	003 (1	10,500	12,200	14,200	27,100	000,72	2,000	00/,	2,000	10,800	5,800	1,100	8,800	15,600	5,600
	Number of Roadway Lanes	ļ	,	1,	7		-	,	•	4	4	7	7	2	2	2	4	4
	Roadway Name		163413H DIALE HW I	163416P BROADWAT-1331H 31	/151 51.	163539B MADISON FAULUS		IIIIH SI	8/1HS1	95TH ST	480328C PONTOON KD	20TH S I			VOORHEES	BOWMAN	MAIN	S.ST.
	Crossing FRA ID		163415H	163416P	163446G /1SI SI	163539B	163423A	163425N	163437H 871HS1	163433F 951HSI	480328C	480327V 201H S1	480056S	479967Y	479854T	479856G	479862K	4798635
	Seg. No.		010-0	010	C-011	110-0				C-011					N-045	N-045	N-045	Γ
	County											Madison	Montgomery	Piatt	Vermilion	Vermilion		

(b) Recommend consultation between railroad and community.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-IN-9 (Revised) Indiana

Γ	٦	ان بو ل	П			П				П			٦	П	7	П		П	٦		П	П	П	٦	Т	٦	T	7	7	٦	П	٦	٦	7	Т	Т	٦
		Level of Service with Mitigation												F (a)																							
		Level of Service	٧	٧	В	γ	В	В	٧	В	В	В	В	Ŀ	В	٧	<	Ą	٧	В	В	Ą	В	В	ပ	ں	ပ	را	ပ	ں	ပ	ပ	ပ	4	V	۷	В
		Avg. Delay per Vehicle (All vehicles) (sec/veh)	1.16	3.59	9.64	3.28	12.39	12.01	4.82	13.08	9.81	9.12	8.82	63.11	7.98	3.14	3.52	3.93	3.31	8.60	19.01	4.66	6.43	5.23	20.07	19.30	20.70	19.67	19.17	17.20	17.15	17.20	19.60	2.10	0.98	1.72	7.55
isition		Crossing Delay per stopped veh (min./veh)	1.14	96'0	1.77	1.93	1.78	1.73	1.01	1.88	1.41	1.28	1.16	3.06	2.43	1.33	1.50	1.67	1.41	1.13	1.64	0.98	1.35	1.10	2.18	2.10	2.25	2.14	2.08	1.87	1.86	1.87	2.13	1.77	1.23	1.64	1.23
Post Acauisition	harrica	Max. No. of Veh. in Queue per	=	8	26	32	26	25	-	29	12	12	=	26	35	8	91	23	12	10	20	6	22	14	27	23	29	25	23	12	12	12	25	19	14	20	4
	`	No. of Veh. Delayed per day	47	158	141	214	869	597	514	208	767	343	379	865	287	135	132	373	86	336	426	218	789	341	919	908	1351	1151	1047	575	562	575	1137	131	20	69	384
		Train Length (feet)	6,200	5,000	5,000	5,000	5,000	5,000	5,000	5,000	2,000	5,000	6,200	6,200	5,000	5,000	5,000	5,000	5,000	6,200	6,200	5,000	5,000	5,000	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200
		Train Speed (mph)	20	20	30	35	30	30	20	30	30	35	20	15	70	30	30	30	30	20	35	50	20	20	25	25	22	25	25	25	25	25	25	30	20	35	20
		Trains per day	6.4	27.3	27.3	9.6	34.9	34.9	34.9	34.9	34.9	40.2	47.7	47.7	11.8	11.8	11.8	11.8	11.8	47.7	30.8	34.9	34.9	34.9	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3	5.0	5.0	5.0	38.6
		Level of Service	<	<	<	Ą	В	В	<	В	В	<	<	Q	٧	٧	<	<	Y	٧	В	4	Ą	4	၁	ں	ပ	اد	ပ	В	В	В	C	Α	Ą	٧	<
		Avg. Delay per Vehicle (All vehicles) (sec/veh)	0.31	1.72	4.61	2.16	6.47	6.27	2.53	6.83	5.12	4.01	3.77	26.69	1.68	99.0	0.74	0.83	0.70	3.68	7.29	2.44	3.38	2.75	15.74	15.13	16.23	15.42	15.03	13.48	13.44	13.48	15.37	0.00	0.00	0.33	4.12
110	711	Crossing Delay per stopped veh (min./veh)	96.0	0.95	1.73	1.89	1.74	1.69	1.00	1.84	1.38	1.26	1.13	2.97	2.37	1.31	1.47	1.64	1.38	1.11	1.60	96'0	1.33	1.08	2.12	2.04	2.19	2.08	2.02	1.82	1.81	1.82	2.07	1.73	1.14	1.60	1.20
Pro Acanisition	Teymon	Max. No. of Veh. in Queue per lane	6	8	26	31	26	24	10	29	12	12	=	25	34	8	16	22	12	10	19	6	21	14	26	23	28	24	22	12	12	12	24	18	13	19	14
Pro	1161	No. of Veh. Delayed per day	L	77	L		340	L	275		L	L	991	L	L	L	L	81		_	L	117	L	182		649	Ц		844	L	453	L	L			13	Ц
		Train Length (feet)	4,869	4,869	4,869	4,869	4,869	4,869	4.869	4,869	4,869	4.869	6,000	000'9	4,869	4,869	4,869	4,869	4,869	9,000	000'9	4,869	4,869	4,869	6,000	0,000	6,000	000'9	9,000	000'9	6,000	9,000	6,000	6,000	5,600	6,000	9000
		Train Speed (mph)	20	20	30	35	30	30	S	30	99	35	20	15	20	30	30	30	8	8	35	05	20	20	25	25	25	25	25	25	25	25	25	30	20	35	20
		Trains per day	2.4	╄	┡	┡	H	╄	19.0	╄	⊢	┝	-	+	2.6	╀	-	┡	┡	H	┝	┾	╄	╀		27.6	\vdash	┙	27.6	┡	┝	+	┝	┝	┡	H	H
		ADT	5.500	5.100	16,330	15,120	11.000	10,290	12.950	12,200	5.070	5,780	0009	5,023	10,481	6,870	6.733	19,025	5.007	5.314	7,929	5,500	19,900	8,600	8,030	10,500	17,600	15,000	13,650	7.500	7,325	7.500	14,820	13,220	7,500	7,880	7,500
		Number of Roadway Lanes	2	2	6	2	2	2	4	2	2	2	2	2	2	4	2	4	2	2	2	2	6	2	7	3	4	4	4	4	4	4	4	4	2	7	2
		Roadway Name	THOMAS RD	MAYSVILLE RD	ANTHONY BLVD	ANTHONY BLVD.	ENGLERD	ARDMORE AVE	NICIN	BROOKLYN AVE.	NITMAN AVE	MAIN ST	SOLITH WAYNE	RANDOLPH ST.	KILGORE	WHITERIVER BLVD.	SICKOIS	NOSTOTILI	JACKSON ST.	CR 7	BROADWAY	BRIANT ST	JEFFERSON ST	LAFONTAIN ST	SHEFFIELD AVE.	HOHMANA AVE.	CALUMET AVE	COLUMBIA AVE	INDIANAPOLIS&SR20	RAII.ROAD AVE	KENNEDY	EUCLID AVE.	STATE ROUTE12	STH AVE	CLARKE RD	ILLINOIS ST	COUNTYLINE RD.
		Crossing FRA ID	512855T	1781961	4782261	478013Y	478240F	478241L	M010871	478237W	478238D	484265N	155320F	155330K	474550K	474552Y	474553F	474565A	474566G	1554201	1474751	W07587A	4782735	478274Y	163620N	163621V	163627L	163632H	163635D	1636378	163638Y	163639F	163643V	\$22912C	522915X	522883U	155632M
		Seg. No.	C-022	N-041	Z-041	N-043	N-044	N-044	N-044	N-044	Z-044	N-0.46	090-1	C-066	N-040	N-040	N-040	070-N	N-040	0.066	0.03	N-044	N-044	N-044	C-023	C-023	C-023	C-023	C-023	C-023	C-023	C-023	C-033	C-024	C-024	C-026	C-027
		County	Allen	Allen	Allen	Allen	Allen	Allen	Allen	Allen	Allen	Carroll	Do Kally	De Kall	Delaware	Delaware	Delaware	Delaware	Delaware	Filthart	Gibeon	Huntington	Huntington	Huntington	Lake	l ake	Lake	Lake	Lake	lake	l ake	l ake	I ake	1 ake	Lake	Lake	Lake

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

Highway/Rail At-Grade Crossing Vehicle Delay and Queues Table 5-IN-9 (Revised) Indiana

	Level of Service with Mitigation			(p)	(p)						(၁)	(3)	(3)	9	<u> </u>	છ	(c)	(c)	(c)	(၁)					Ī	
	Level of Service	В	В	В	В	٧	٧	В	В	В	၁	ပ	၁	ပ	U	၁	၁	၁	В	ပ	ပ	၁	J			٩
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	7.47	10.05	9.58	99.9	2.22	1.56	80.6	10.51	8.80	16.06	17.01	17.61	17.16	15.82	20.49	15.43	15.36	14.21	18.30	17.03	18.31	18.68	100	1.00	77.6
isition	Crossing Delay per Stopped veh (min./veh)	1.22	1.13	2.92	2.03	2.12	1.49	1.20	1.28	1.16	1.70	08.1	1.86	1.81	1.67	2.16	99.1	1.65	1.53	1.97	2.00	2.15	2 19	80 0	0.70	06.1
Post Acquisition	Max. No. of Veh. in Queue per s lane	14	13	48	20	34	13	13	13	=	17	21	24	22	16	33	25	15	6	28	61	25	27	c		717
<u> </u>	No. of Veh. Delayed per day	371	554	393	191	611	46	430	443	376	483	604	675	623	929	952	430	420	489	171	406	1088	-85	100	177	200
	Train Length (feet)	6,200	5,000	5,000	5.000	6,200	6,200	6,200	6,200	6,200	5,000	5,000	5,000	5.000	5.000	5.000	5,000	5,000	5,000	5,000	6,200	6.200	6 200	007	300,0	2,000
	Train Speed (mph)	50	45	70	70	35	35	20	45	20	25	25	25	25	25	25	25	25	25	25	25	25	ķ		3	32
	Trains per day	38.6	60.3	11.8	11.8	5.0	5.0	47.7	47.7	47.7	41.0	0.1	41.0	0	0 4	0.14	40.2	40.2	40.2	40.2	30.8	308	30.8	9	24.5	34.9
	Level of Service	٧	В	<	A	<	4	<	V	<	В	<u></u>	=	2	9	8	B	B	В	=	E	E C		۵.	<	V
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	4.08	8.53	0.67	0.47	0.42	0.30	3.88	4 49	3.76	8 85	9.37	9.71	9 46	8 72	11 29	6.76	6.73	6.23	8 02	9911	12 54	12.70	12.77	2.45	4.85
110	Crossing Delay per stopped veh (min./veh)	1.19	1.23	1.64	1	2.07	1.45	1.17	1.25	1.13	99 1	1 76	1 82	177	163	2.12	1 63	1.62	1 50	1 93	1 94	2 09	22	2.13	0.96	1.47
Pre Acquisition	Max. No. of Veh. in Queue per lane	4	4	27	=	34	13	13	12		-	100	;	15	17	3 2	2	15	0	1,0		*		97	6	20
Pre,	No. of Veh. Delayed per day	207	433	49	20	2	6	188	192	165	27.0	340	280	35.	185	325	193	188	210	345	286	766	900	409	118	270
	Train Length (feet)	000.9	\$ 600	4 869	4 869	000	000.9	000	000,4	000	098 7	4 869	0987	090 7	4 860	7,007	4 869	4 869	0 8 60	0987	,000	000,0	0000	0,000	4,869	4,869
	Train Speed (mph)	9	45	90	9	35	35	Ş	2 2	9	ž	35	35	3/2	3/2	35	25	3/2	3 %	35	57	25	5	25	50	35
	Trains per day	22	43.4	26	2,5	-	-	7 7	7 17	2 2	23.65	23.0	23.0	23.6	25.6	23.0	0.62	18.4	10.1	10.4	10.4	25.5	C.77	22.3	19.0	19.0
	ADT	7.250	7 500	14.351	008 \$	12 600	\$ 296	000	0,000	2012	151	17170	10,0	0,040	068,	0,000	12,000	\$ 430	004,6	2200	000,6	07/5	875,CI	8,180	5,569	9,840
	Number of Roadway Lanes	Ç	,	1	4	4	2	,	,	7	1	7	7	7	7	1	7	,	7	,	7	1	4	2	2	2
	. Roadway Name	CI ABY DO	CALLIMET AVE	CALCIMET AVE	3. K. 9	HARKISON SI.	52286/K WASHINGTON SI		CKUCNEK					COLUMBIA SI	484300A SOUTH ST S.R. 26	91H SI	-+		HISI		_	W. MAKILAND SI	W. FRANKLIN ST	OHIO ST	DAVIS ST	
	Crossing FRA ID	PECCACN	100000	1676776	4/4000L	4 /40011	770877	1,60077	155625N	X879661	1554 /85	484295F	484296M	484298B	184300A	484301G 91HS1	484309L	4842901	484292K	4842938	484294 Y	342846U	342848H	342850J	478292W	478305V
	Seg. No.	Ť	Ť		T	T	T	T		T	1		T	T			T	T		T	1	T		C-025	N-044	П
	County			1	Madison	5					T	- 1	1	Tippecanoe		- 1	- 1	- 1	Т	٦		Vanderburgh	Vanderburgh C-025	Vanderburgh	1	

^{*} Indicates significant effect on crossing delay per stopped vehicle; Level of service not applicable.

 ⁽a) Recommend separated grade crossing.
 (b) Recommend consultation between railroad and community.
 (c) Recommend consultation between railroad and community due to the setting of this crossing in close proximity to others in Lafayette, Tippecanoe County

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-KY-8 (Revised) Kentucky

Highway/Rail At-Grade Crossing Vehicle Delay and Queues

		_		_	_	_	_
	Level of Service with Mitigation		14/0	200		(W) CI	
	Level of Service	В	٢	4	В	٥	
	vg. Delay rr Vehicle (All rehicles) sec/veh)	8.80	1700	£0.07	8.69	P6 96	
usition	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	1.43	, ,	3:1/	141	3 46	2.40
Post Acquisition	Max. No. of Veh. in Queue per lane	91	5	55	21	۲	2
Ì	No. of Veh. Delayed per day	ı	100	- 1	342	١	100
	Train Length (feet)	9 200	300,	0,200	6,200	000	0,200
	Train Speed (mph)	9			40		87
	Trains per day	327		32.7	32.7	, ;;	32.7
	Level of Trains Service per day	ď	,	ပ	В	c	اد
	Avg. Delay per Vehicle (All sehicles) (sec/veh)	00 \$		19.39	16.5	3	18.20
no	Max. No. Crossing Prof. Veh. in Delay per Queue per stopped veh lane (min./veh)	1 30	7::7	3.08	1.38		2.39
Pre Acquisition	Max. No. of Veh. in Queue per lane	1		25	15		24
Pre.	No. of Veh. Delayed per day	130	١	839		١	387
	Train Length (feet)	000	0,000	000'9	9000	2,000	6,000
	Train Speed (mph)	٩	40	25	ę	1	20
	Trains per day		43.4	23.4			23.4
	ADT		7,000	16.000	277 7	200,0	6,098
	Number of Roadway Lanes		7	2	,	7	7
	Roadway Name		345254U SKYLINE DRIVE	245267V FOTH CT	TO TOTAL OTHER	345400X WASHINGTON 51	C-021 345331S W. NOEL AVE
	Crossing FRA 1D		345254U	VCACAL	1077	345400X	345331S
	Seg. No. FRA 1D R	- 1	C-021	1000			C-021
	County		Christian		Christian	Henderson C-021	Honkins

(b) Recommend consultation between railroad and community.

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-MD-9 (Revised) Maryland Highway/Rail At-Grade Crossing Vehicle Delay and Queues

							_		_		_	
	Level of Service with Mitigation											
	Level of Service	В	В	В	В	В	В	В	В	ပ	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	14.18	11.45	8.29	6.03	5.92	12.00	14.63	13.52	17.10	6.64	98'9
uisition	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	1.59	1.42	1.56	1.23	1.30	2.45	2.18	2.01	2.55	1.12	1.16
Post Acquisition	Max. No. Crossing of Veh. in Delay per Stopped veh lane (min./veh)	18	16	24	14	19	39	27	20	39	10	=
	No. of Veh. Delayed per day	\$19	463	504	461	400	1674	448	330	1638	249	295
	Train Length (feet)	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6.200	6,200	6,200	6,200
	Train Speed (mph)	35	40	45	20	55	50	25	25	25	50	8
	Level of Trains Service per day	42.7	42.7	30.8	30.8	30.8	30.8	24.3	24.3	24.3	37.1	37.1
		В	В	В	Y	Υ	В	В	В	В	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	12.48	10.09	60.9	4.44	4.37	8.83	10.65	9.84	12.45	5.69	5.88
011	Max. No. Crossing A of Veh. in Delay per pe gueue per stopped veh lane (min./veh)	1.54	1.39	1.52	1.20	1.27	2.39	2.12	1.96	2.48	1.10	1.13
Pre Acquisition	Max. No. of Veh. in Queue per lane	17	15	23	14	18	38	26	19	38	6	=
Pre,	No. of Veh. Delayed per day	469	418	380	348	302	1263	335	247	1226	219	259
	Train Length (feet)	6,000	0,000	9,000	000'9	000'9	9,000	6,000	6,000	000'9	000'9	000'9
	Train Speed (mph)	35	40	45	20	55	20	25	25	25	20	20
	Trains per day	39.6	39.6	23.8	23.8	23.8	23.8	18.7	18.7	18.7	33.4	33.4
	ADT	696'9	9,000	11,400	11,300	10,500	41,000	8,000	5,900	29,250	5,070	9.000
	Number of Roadway Lanes	2	2	2	3	2	4	2	2	5	2	2
	Roadway Name	HOLLINS FERRY RD	BUSH ST.	40488D FOREST GLEN RD	140507F S SUMMIT AVE	140509U CHESTNUT ST.	140494G RANDOLPH	140253T DECATUR ST	UPSHUR ST	40258C ANNAPOLIS RD	140899J SUNNYSIDE AVE	40905K OUEENSBURY RD
	Crossing FRA ID	140239X	140867D BUSH ST.	140488D	140507F	140509U	140494G	140253T	140257V	140258C	1408991	140905K
	Seg. No.	C-032	C-032	C-003	C-003	C-003	C-003	C-030	C-030	C-030	C-034	C-034
	County	Baltimore City C-032	Baltimore City	Montgomery	Montgomery	ľ	Montgomery C-003	Prince George's C-030	Prince George's C-030	Prince George's C-030	Prince George's C-034	Prince George's C-034

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-MI-10 (Revised) Michigan Highway/Rail At-Grade Crossing Vehicle Delay and Queues

П	Ĩ ŧ ē	П	\neg	Т	٦	٦	П	T	1	T		\neg	٦	7		П		П	٦	1	\neg	T	T	T	П	Т	T	T	٦		П	П	П	П	Γ	П	П	\Box
	Level of Service with Mitigation																																					
	Level of Service	Y	В	4	V	¥	A	Ą	٧	Ą	٧	Ą	٧	Ą	٧	٧	g	В	٧	4	<	ш	m	m	m	n e	4	4	4	٧	Α	Ą	4	٧	<u>_</u>	В	٧	V
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	3.76	6.85	1.65	2.59	3.52	2.40	2.42	2.27	3.01	2.28	1.63	2.56	1.56	2.09	3.24	5.11	5.47	1.73	1.67	3.49	8.64	9.90	12.85	9.44	9.54	2.25	2.53	3.15	2.37	2.18	2.21	1.84	1.59	11.14	11.16	1.68	1.92
uisition	Crossing Delay per stopped veh (min./veh)	1.77	2.05	1.01	1.35	1.83	1.25	1.26	1.18	1.57	1.19	1.00	1.20	0.95	1.18	1.35	2.13	2.29	1.06	1.02	1.46	1.38	1.59	1.85	1.51	1.53	1.16	1.31	1.63	1.22,	1.13	1.14	Ξ	96'0	2.58	2.58	1.02	1.16
Post Acquisition	Max. No. of Veh. in Queue per lane	29	21	01	19	31	15	15	12	25	12	10	8	8	15	6	35	38	13	11	14	14	22	27	19	50	=	17	26	14	01	01	5	8	24	24	=	91
	No. of Veh. Delayed per day	238	173	173	310	384	125	129	101	208	103	164	136	127	126	911	294	319	104	06	119	641	502	938	442	455	95	143	222	174	191	129	123	89	401	410	138	138
	Train Length (feet)	5,000	5,000	5,000	5,000	5,000	2,000	5,000	2,000	5,000	5,000	2,000	2,000	\$,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	6,200	6,200	6,200	6,200	6,200	2,000	\$,000	5,000	5,000	5,000	2,000	5,000	5,000	5.000	5,000	5,000	5,000
	Train Speed (mph)	35	20	20	40	40	40	40	40	40	40	20	35	90	45	30	30	L	L				40	35	9	9	9	9	40	40	40	9	20	8	2	151	20	20
	Trains per day	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.1	17.1	12	2	12	12.0	12.0	12.0	12.0	33.1	33.1	33.1	33.1	33.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	2	2	2	12.1
	Level of Service	Ą	Ą	Υ	Y	Α	Y	Ą	Ą	٧	¥	٧	Ą	٧	Ą	<	4	4	4	<	<	В	В	В	В	В	<	A	<	<	A	<	<	\ 		: <	<	<
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	2.01	3.74	0.87	1.38	1.88	1.28	1.29	1.21	1.60	1.22	98.0	0.73	0.44	=:	1.75	2.76	2.95	0.92	0.88	1.88	5.43	6.22	8.07	5.94	0.00	0.64	0.72	0.89	0.67	0.62	0.63	0.52	0.45	3.27	3.27	0.47	0.54
ш	Crossing Delay per stopped veh (min./veh)	1.93	2.26	1.09	1.47	1.99	1.36	1.37	1.29	1.71	1.29	1.08	1.31	1.03	1.29	1.48	2.34	2.50	1.15	1.10	1.59	1.35	1.55	1.81	1.48	1.49	1.27	1.42	1.77	1.33	1.23	1.24	1.21	1.04	2 85	2.85		1.26
Pre Acquisition	Max. No. of Veh. in Queue per Iane	31	23	=	20	33	91	17	13	27	13	=	6	8	16	2	39	42	14	12	16	14	21	26	16	19	12	61	59	15	2	=	19	Î	1,00	27	12	18
Pre,	No. of Veh. Delayed per day	117	98	84	152	188	130	63	50	102	50	80	36	33	62	57	145	157	51	44	59	413	324	605	285	294	25	37	58	45	42	34	32	<u>.</u>	2 0	601	36	36
	Train Length (feet)	5,600	5,600	2,600	5,600	5,600	5,600	5,600	5.600	5,600	5.600	5,600	5,600	5,600	\$ 600	5,600	\$ 600	\$,600	\$ 600	5,600	5,600	000'9	000'9	000'9	000'9	000'9	5,600	2,600	5.600	5.600	2,600	\$ 600	300,	\$ 600	300,0	3,000	2,000	5,600
	Train Speed (mph)	35	50	50	40	9	9	9	40	9	9	05	35	S	45	9	۶	Ę	Ş	S	30	40	40	35	9	40	40	40	9	40	6	ž Q	\$	\$ 5	3 2	1	2 5	8 8
	Trains per day	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	29	29	5.4	24	7	4	\$ 4	24	5.4	21.9	21.9	21.9	21.9	21.9	2.9	2.9	2.9	29	100	100	2,5	١٥	7.7	2.7	2.9	2.9
	ADT	13.431	6.229	12,650	19.378	23.966	7 800	8.036	6.340	13.007	6.408	12,000	7.637	9,200	8 576	5,800	14 750	16,000	7,640	009 9	5 975	12,330	9,660	16,237	8,510	8,761	5,869	8,880	13.746	10,790	10,000	000	9,000	6,000	300,	11,300	10,000	10,000
	Number of Roadway Lanes	2	2	4	4			2	,	1	,	4	P	-	,	4 6	1	1	1	1		4	-	3	2	2	2	2	ç	-		-	1	1	\ -	4	4 (2
		MICHIGAN AVE	OUTH ST	HELMER RD	MII WALIKEE ST	MICHIGAN AVE	COOPER ST (M. 106)	RI ACKSTONF ST	CTEWARD AVE	N WISNER ST	WII DWOOD ST	ROBINSON RD	e et M AVE	S. ELM AVE.	BIIBGES	DUNUES OI IVER ST	MICHIGAN	MICHIGAIN BABY CT	M OCHICKMANI PID	MICHIGAN AVE	HARRISON ST	STEWART RD	SIEMAN ISS	FRONT ST	DUNBAR RD	LAKEWOOD-LUNAPIER	DIXBORO RD	GEDDES RD	M-52	I BEODGE CT	EOBBECT CT	FURKESI SI	CROSS S1	GULLEY KU	MONROE ST	CENTRAL	LONYO	HENRY RUFF RD
	Crossing FRA ID	54\$380C	5454051	545407X	NV8CSVS	V1702070	797575	245280X	3000375	2422903 \$4\$202E	54520284	1452575	T100212	1197C#C	73012040	2424200		70/4C4C	- 1	2424100	242430D	737148X	232140A	2321461	232140T	232129T	\$45212K	\$45215F	VILCOLD	7142040	2452031	N1/07CbC	545206G	5451768	545169G	5119453	512363H	545178F 545182V
	Seg. No.	N. 120	N-120	N-120	120	N-120	120	N-120	120	071-N	021-11	071-170	12.120	171.17	171-17	071-N	071-170	07I-N	071-17	071-N	071-17	070	200	000	040	070-0	N-121	121.2	121 1	171-17	171-N	N-121	N-121	N-121	N-121	N-121	N-121	N-121
	County	1100	Camoun	Californi	Californ	Jackson	Jackson	Jackson	Jackson	Jackson	Jackson	Jackson	Jackson	Jackson	Jackson	Kalamazoo	Nalamazoo ::	Nalamazoo :	Nalamazoo	Nalamazoo	Nalamazoo	Nalamazoo	Monroe	Monroe	Monroe	Monroe	Wachtenaw	Wachtenaw	Washier an	Washichaw	Washtenaw	Washtenaw	Washtenaw	Wayne	Wayne	Wayne	Wayne	Wayne

1/20/98

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-MI-10 (Revised)

Michigan Highway/Rail At-Grade Crossing Vehicle Delay and Queues

		_	_	_	_	_	_		_	7	_	_	_	_	_	_
	Level of Service with Mitigation					***************************************					***************************************					
	Level of Service	٧	۷	4		4	∢	V		٥	B	В	A			<
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	1.65	1.52	1 40	00.1	1.63	1.62	4 33		3.43	5.46	6.90	4 57	100	50.5	45.2
usuun		1.00	0.92	100	0.71	0.99	86.0	167		70.7	2.11	5.66	177		200	1.28
rost Acquisition	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	01	9	ļ	0	10	6	191	2 8	67	32	45	30		17	71
	No. of Veh. Delayed per day	212	101	60	5	80	92	124	121	877	497	695	186		100	g
	Train Length (feet)	5,000	5.000	900	2,000	5,000	5,000	\$ 000	2,000	5,000	5,000	5,000	9	200	2,000	2,000
	Train Speed (mph)	20	20	9	2	20	50	36	3	25	25	25	36	3	7	35
	Level of Trains Service per day	12.1	12.1		17.7	17.1	12.1	ć	7	11.2	11.2	11.2	-	7	7::	11.2
	1	4	4		٨	<	<			۷	V	٧	1		<	<
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	0.47	0.43		0.42	0.46	0.46	500	0.93	1.13	1.18	1.49		0.99	00.1	0.54
011	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	1.09	66.0		0.99	1.07	1 06		1.84	2.22	2.32	2 93		¥.	1.97	1.40
Pre Acquisition	Max. No. of Veh. in Queue per lane	=	9	,	9	10	0		<u>-</u>	32	35	67		777	23	13
Pre	No. of Veh. Delayed per day	55	36	24	24	21	30		24	45	6	136		31	32	19
	Train Length (feet)	\$ 600	009.5	2,000	5,600	5.600	V 600	2,000	5,600	5,600	5.600	\$ 600	2,000	2,600	5,600	5,600
	Train Speed (mph)	05	S	3	20	9	Ş	S	25	25	25	ķ	24	25	52	35
	Trains per day	20	ì	4:3	5.9	29	,	7.7	2.0	2.0	20	,	7.7	2.0	7.0	2.0
	ADT	15.454	10,7	(75,	6,762	\$ 830	023	2,300	5,742	10.568	23.050	32,226	067,26	7,240	7,676	5,789
	Number of Roadway Lanes	*	,	4	4	,	,	7	7	2	P		4	2	2	2
	. Roadway Name	MEDDINAMI BD	MEKKIMAN NO	545186X VENOY AVE.	545187E HOWE AVE	HANGEBALA HANGEBALA BD	HAGOENI I IO	5451910 HANNAN KD.	511020X INKSTER RD	STID27V PENNSYLVANIA RD	MODITAL INE DI		ALLEN KU	LONDON RD	511039P CHAMPAIGNE	511816U WILL CARLETON DRIVE
	Crossing FRA 1D		5451841	545186X	545187F	1101313	242125n	5451910	S11020X	V750115	3000013	2110323	511033Y	511037B	\$11039P	S11816U
	Seg. No.		N-121	N-12]	N-121		171-11	N-121	S-020	0000	0.00	9-070	S-020	S-020	8-020	S-020
	County		Wayne	Wayne	Wayne	111	wayne	Wayne	Wayne	W	Wayiic	wayne	Wayne	Wayne	Wayne	Wavne

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-NY-9 (Revised)

New York

Highway/Rail At-Grade Crossing Vehicle Delay and Queues

			_,	_,	_
	Level of Service with Mitigation				
	Service	В	В	В	V
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	12.37	6.55	8.43	3.60
nsition	Crossing Delay per topped veh (min./veh)	1.45	1.47	1.15	1.05
Post Acquisition	Max. No. Crossing of Veh. in Delay per Plucate per stopped veh lane (min./veh)	17	70	=	12
	No. of Veh. Delayed per day	529	346	353	211
	Train Length (feet)	6,200	5,000	6,200	5,000
	Train Train Speed Length (mph) (feet)	40	35	20	50
	Trains per day	45.2	25.2	45.9	25.2
	Level of Service	В	Α	В	Α
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	90.6	3.24	6.43	1.79
оп	Crossing Delay per stopped veh (min./veh)	1.34	1.44	1.07	1.03
Pre Acquisition	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	16	19	10	12
Pre.	No. of Veh. Delayed per day	419	175	290	107
	Train Length (feet)	5,600	4,869	5,600	4,869
	Train Speed 1 (mph)	40 5,600	35 4,869	SS	8
	Trains per day	38.7	13.0	40.6	13.0
	ADT	7,450	9,300	5,808	7,363
	Number of Roadway Lanes	2	2	2	2
	Roadway Name	508705Y COOKS CROSSING	LAMPHERE ST.		4-070 471711T LAKE AVE.
	Crossing FRA ID	\$08705Y	471766F	\$20067S	471711T
	Seg. No.	C-054	N-070	C-051	N-070
	County	Albany	Chautanona	Frie	Erie

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-OH-11 (Revised) Ohio

Highway/Rail At-Grade Crossing Vehicle Delay and Queues

	Level of Service with Mitigation																D@																							
	Level of Service	4	∢.	< .	<		<	2 2	V	В	В	В	m	m	m	m	4	V	m m		В	4	m l	m	=	9	ن و	В	В	В	В	В	В	٧	Α	В	В	V	4	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	4.49	4.21	4.77	4.67	3.81	3.33	10.07	3.36	5.14	9.02	5.22	8.41	8.16	10.32	9.95	26.60	4.43	8.18	7.77	5.14	4.89	10.39	5.41	9.83	10.49	16.05	8.17	7.55	7.79	8.34	7.61	5.74	4.92	4.58	10.37	8.79	3.70	4.15	10.89
uisition	Crossing Delay per stopped veh (min./veh)	1.54	1.45	1.64	9.	1.43	15.1	12	86.0	1.15	1.39	1.05	1.43	1.39	1.58	1.52	2.54	1.47	1.87	1.78	1.7	89.1	1.76	1.07	4 5	7	1.62	1.26	1.51	1.29	1.38	1.26	1.23	1.06	86'0	1.37	1.16	10.1	1.05	2.61
Post Acquisition	Max. No. of Veh. in Queue per	16	=	20			57	2	6	9	17	12	9	4	17	13	28	22	24	21	24	71	27	=	2 :	= -	2 02	=	25	13	17	=	16	12	6	19	=	01	6	26
	No. of Veh. Delayed per day	150	215	25	177	408	/77	441	158	199	432	304	7.	304	374	321	613	292	318	270	236	506	591	253	787	070	1246	287	642	300	785	266	439	296	220	640	374	192	176	207
	Train Length (feet)	6,200	6,200	6,200	6,200	0.200	0,200	6 200	5,000	5,000	5,000	5,000	6.200	6,200	6,200	6,200	6,200	2,000	5,000	2,000	6,200	6,200	6,200	5,000	6,200	0.200	6 200	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	6,200	6,200	5,000	5,000	5,000
	Train Speed (mph)	35	32	33	33	9	2 4	Ş	8	35	35	20	우	40	33	33	70	9	25	22	35	35	9	45	8	2	35	35	20	35	35	35	90	20	20	50	20	20	45	13
	Trains per day	13.9	13.9	13.9	13.9	5	515.5	54.5	25.2	25.2	36.6	36.6	3.5	31.2	31.2	31.2	31.2	18.9	18.9	18.9	13.9	13.9	333	34.3	24.2	24.5	47.3	36.6	36.6	34.1	34.1	34.1	34.1	34.1	34.1	47.7	47.7	27.0	27.0	11.7
	Level of Service	<	V	<	<	<	<	2 2	2 <	<	<	٧	=	<u>-</u>	М	В	ပ	<	В	В	<	<	<	4	∢.	∢.	<	<	<	<	4	<	٧	∢	٧	۷	<	<	<	<
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	1.62	1.52	1.72	1.69	86.	77.1	7.74	1.67	2.55	3.08	1.79	7.22	7.01	8.85	8.54	22.71	3.25	6.11	5.81	1.86	1.77	4.11	3.41	2.27	2.42	3.87	2.79	2.59	2.96	3.17	2.89	2.19	1.88	1.75	4.43	3.76	2.06	1.99	1.24
ис	Crossing Delay per stopped veh (min./veh)	1.42	1.34	1.51	1.48	1.34	1.40	1 80	96.0	1.13	1.37	1.03	1.39	1.35	1.54	1.48	2.47	1.60	2.06	1.96	1.63	1.55	1.63	0.98	90.1	E	8:10	1.24	1.49	1.27	1.36	1.24	1.21	1.04	0.97	1.33	1.13	0.99	0.95	2.54
Pre Acquisition	Max. No. of Veh. in Queue per Iane	14	2	81	-	91	77	0 =	6	9	17	12	15	14	17	14	27	24	27	23	23	20	25	92	2	£ .	2 2		25	12	91	Ξ	18	12	6	61	Ξ	01	6	25
Pre,	No. of Veh. Delayed per day	59	84	75	69	160	68	70	80	101	150	106	304	268	329	282	538	197	216	184	92	81	253	175	195	129	120	901	224	116	305	103	170	115	85	280	164	109	93	24
	Train Length (feet)	5,600	5,600	2,600	2,600	2,600	5,600	2,000	4.869	4.869	4,869	4,869	000'9	000,9	000'9	000'9	9000	2,600	2,600	2,600	2,600	2,600	5,600	4,869	2,600	2,600	5,600	4 869	4.869	4.869	4,869	4.869	4,869	4,869	4,869	000'9	000'9	4,869	4,869	4,869
	Train Speed (mph)	35	35	35	35	40	20	40	200	35	35	50	40	40	35	35	20	40	25	25	35	35	40	50	20	20	35	35	20	35	35	35	20	20	50	20	20	50	50	15
	Trains per day	5.9	5.9	5.9	5.9	5.9	5.9	500	13.0	13.0	13.0	13.0	28.2	28.2	28.2	28.2	28.2	11.7	11.7	11.7	5.9	5.9	14.5	26.0	14.5	14.5	13.4	13.0	13.0	13.5	13.5	13.5	13.5	13.5	13.5	21.4	21.4	15.6	15.6	1.4
	ADT	6,200	8,860	7,850	7,300	18,680	12,300	097'/	5.500	5.350	8,000	7,320	7,030	6,210	098'9	5,890	7,030	11,590	8,740	7,430	9,710	8,480	12,030	6,030	10,950	7,240	5,560	\$ 310	15 430	5.970	15.610	2 300	11,320	7.630	5,670	10,120	5,910	6,260	5,330	5,950
	Number of Roadway Lanes	2	4	2	2	~	7	,	7 6	4	2	2	2	2	2	2	2	2	7	7	7	7	2	2	4	7	7	,	,	,	4	7	7	2	2	2	2	2	2	2
	Roadway Name	N. JACKSON ST	MAIN ST.	N. METCALF ST.	COLEST	CABLE RD	EASTTOWN RD	ROUSH CROSSING	BKOADWAT AVE	MAIN AVE	WEST AVE.	BROADWAY AVE.	MUHLHAUSER	SYMMES RD	LAUREL ST	CENTRAL	VINE ST.	TYLERSVILLE RD	CENTRAL	FIRST ST	N SANDUSKY AVE	MANSFIELD ST	MAIN ST	HOPLEY	BAGLEY RD.	COLUMBIA RD	HUMMEL RD	I ONDON PD	DII I F RD	WEST 110 ST	WEST 117 ST	RINTSRD	COLUMBIA RD	DOVER CENTER RD	BRADLEY RD	OTTAWA AVE	U.S. 24	WATER ST.	STATE ST.	SR 101 TIFFIN
	Crossing FRA ID	\$32707Y	532710G	532714J	532719T	532720M	532722B	532703W	323883L 471977T	471983V	1	1		П		152394L	152407K	524698G	Т	524678V	532583H	532588S	L	481561P	524363S	\$24367U	\$23971H	W8/8676	472002V	Т	T	472201T	472245T.	472248N	472252D	142356A	42375E	472306G	472308V	481668S
	Seg. No.	C-062 5:	C-062 5.					T	0.000		Τ	Τ		C-063	C-063	C-063	C-063	N-078						N-073 4			T	C-0/4	T	T	T	T	T	T		T	T	Τ	Γ	П
	County	Allen		Allen	Allen	Allen	Allen	T	Ashtabula	1	T	T					Butler				prd		Γ	Ī	_		П	T	Cuyanoga	Τ	T	T	Τ	Τ	Τ	T				

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-OH-11 (Revised) Ohio

Ohio Highway/Rail At-Grade Crossing Vehicle Delay and Queues

	Level of Service with Mitigation						D (b)																																			
	Level of Service	В	В	В	۵	۵	۵	В	В	В	В	B	В	В	_	B	V	4	V	٧	V	4	V	4	B	В	В	8	В	B	В	В	m	В	В	В	Α	В	٧	В	V	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	7.44	69'8	7.99	31.15	37.86	29.05	10.20	10.13	10.45	10.09	11.38	13.27	9.44	8.31	10.81	4.99	4.35	4.32	4.31	4.57	4.90	4.02	3.65	6.56	11.16	11.17	68.6	10.93	9.82	12.33	10.56	5.53	8.88	8.36	5.72	4.84	5.04	4.88	5.48	4.50	8.82
uisition	Crossing Delay per stopped veh (min./veh)	1.36	1.43	1.45	2.98	3.62	2.78	1.56	1.55	1.60	1.54	1.74	2.03	1.44	1.22	1.58	1.49	1.30	1.29	1.29	1.37	1.47	1.20	1.39	1.22	1.29	1.30	1.15	1.27	1.14	1.43	1.22	1.11	1.37	1.29	1.15	0.97	1.01	0.98	1.10	06'0	1.36
Post Acquisition	Max. No. of Veh. in Queue per lane	61	81	22	44	09	37	16	16	18	91	24	32	=	6	23	21	13	13	13	16	20	8	14	=	17	17	=	16	0	21	14	14	16	13	16	9	10	6	14	5	16
·	No. of Veh. Delayed per day	644	439	523	1902	1301	808	357	346	393	341	764	1396	476	487	630	270	173	167	329	210	258	162	138	229	633	636	406	\$96	392	803	532	366	409	323	801	218	265	227	356	256	399
	Train Length (feet)	5,000	5,000	5,000	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6.200	6,200	6,200	2,000	3,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200	2,000	5,000	5,000	5.000	5,000	2,000	5,000	5,000	5,000	5,000
	Train Speed (mph)	40	35	40	70	20	70	35	35	35	35	33	35	32	33	35	35	35	35	35	35	32	35	40	45	20	80	20	80	20	20	8	S	35	35	20	20	20	20	20	20	35
	Trains per day	34.3	34.3	34.3	31.2	31.2	31.2	31.2	31.2	31.2	31.2	31.2	31.2	31.2	38.6	38.6	18.9	18.9	18.9	18.9	18.9	18.9	18.9	13.9	31.3	54.2	54.2	54.2	54.2	54.2	54.2	54.2	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6
	Level of Service	В	В	В	Δ	Ω	၁	В	В	В	В	В	В	В	m	B	4	٧	٧	٧	4	<	٧	٧	V	В	B	B	B	В	В	В	۷	Α	٧	٧	Α	٧	٧	٧	Ą	Y
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	5.43	5.18	5.82	26.59	32.31	24.80	8.75	8.69	8.97	8.65	9.76	11.38	8.09	8.70	11.32	3.68	3.21	3.19	3.18	3.38	3.62	2.96	1.32	2.24	8.57	8.59	7.60	8.40	7.55	9.47	8.11	1.89	3.03	2.85	1.96	1.66	1.72	1.67	1.88	1.54	3.01
ш	Crossing Delay per stopped veh (min./veh)	1.33	1.27	1.43	2.89	3.52	2.70	1.52	1.51	1.56	1.50	1.70	1.98	1,41	1.33	1.73	1.63	1.42	1.41	1.41	1.49	1.60	1.31	1.29	1.04	1.20	1.20	1.07	1.18	1.06	1.33	1.14	1.09	1.34	1.27	1.13	0.95	66'0	96'0	1.08	0.88	1.33
Pre Acquisition	Max. No. of Veh. in Queue per lane	81	16	22	43	28	36	91	16	18	15	23	31	=	10	56	22	14	14	14	17	21	6	13	6	16	91	2	15	2	20	13	14	16	12	51	8	10	6	41	2	15
Pre,	No. of Veh. Delayed per day	334	295	388	1670	1143	710	314	305	346	300	673	1229	419	467	604	182	117	113	223	142	175	110	54	16	524	526	336	494	324	999	440	128	142	112	279	9/	92	79	124	89	139
	Train Length (feet)	4,869	4,869	4,869	000'9	000'9	6,000	000'9	000'9	6,000	6,000	6,000	6,000	000'9	5,600	5,600	5,600	5,600	5,600	5,600	5,600	5,600	5,600	5,600	2,600	5,600	5,600	2,600	5,600	5,600	5,600	\$,600	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869
	Train Speed (mph)	40	40	40	70	20	20	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	40	20	20	20	20	20	20	20	20	20	35	35	20	30	20	20	20	20	35
	Trains per day	26.0	26.0	26.0	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2	33.9	33.9	11.7	11.7	11.7	11.7	11.7	11.7	11.7	5.9	14.5	48.3	48.3	48.3	48.3	48.3	48.3	48.3	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
	ADT	9,810	8,678	11,424	21,820	14,930	9.270	6,560	6,360	7,210	6,260	14,040	25,630	8,740	8,560	11,060	9,680	6,200	5,980	11,820	7,520	9,270	5,830	6,310	5,100	8,810	8,850	5,650	8,300	5,450	11,170	7,400	8,810	7,580	5,980	19,260	5,230	6,360	5,460	8,570	6,164	7,400
	Number of Roadway Lanes	2	2	2	4	2	2	2	2	2	2	3	4	4	4	2	2	7	7	4	2	2	3	2	2	2	2	2	2	2	2	2	2	2	2	4	2	2	2	2	4	2
	Roadway Name	LINCOLN	WEBER	COOK	WINTON RD	MITCHELL AVE.	TOWNSHIP AVE	SEYMOUR	NORTHBEND	WYOMING AVE	MARION RD	SHARON RD	PRINCETON PIKE	CRESENTVILLE RD.	VINE ST	ВЕЕСН ST	SMALLEY RD	HAUCK RD	KEMPER RD	READING RD	TOWNSHIP AVE	WYOMING ST	MURRAY ST.	MAIN ST.	MAIN ST	LAKE ST SR 528	HOPKINS RD	PELTON RD	ERIE ST	BEIDLER RD-E361ST	E. 305TH ST	LLOYD RD	LAKE ST.	LIBERTY ST	CHESTNUT ST.	MENTOR AVE.	JACKSON ST.	HEISLEY RD	HOPKINS RD	ERIE ST.	RUSH RD	LLOYD RD
	Crossing FRA ID	481472X		1	×	Т	Т	Т	Т	2	1	152376N	152380D				X617428	\$24707D	524712A	524713G	524740D			Π.		523829E			523793Y		523789J	523787V	472017F	Т	П	Т	Т	Γ.	Т	Τ.	_	\Box
	Seg. No.	N-073		L	Γ	C-063	C-063	C-063	C-063	C-063	C-063	C-063	C-063		N-076		N-078	N-078	N-078	N-078	N-078	N-078	N-078	C-062	1				C-060	C-060	C-060	C-060	N-075		Γ		Γ	Γ	T	N-075	N-075	П
	County	Franklin	Franklin	Franklin	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hamilton	Hardin	Huron	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake

1/20/98

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-OH-11 (Revised) Ohio

Highway/Rail At-Grade Crossing Vehicle Delay and Queues

	Level of Service with Mitigation												T															T	I												1
	Level of Service	В	В	В	В	Υ	٧	В	В	B			2	2	3	B	В	<u></u>	8	m	В	¥	m	V	V	4	<	4	1		1	m	<u>_</u>	В	Α	В	¥	4	Ą	<u> </u>	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	10.03	13.93	10.85	10.75	4.75	4.49	7.88	9.55	5.34	7.66	8.34	81.6	10.44	8.47	10.11	5.18	8.18	8.76	10.68	9.34	3.73	5.32	3.50	4.22	3.52	3.44	4.40	3.40	×1.9	641	12.06	6.51	12.24	4.58	89'9	4.15	4.76	3.47	8.06	8:01
tisition	Crossing Delay per stopped veh (min./veh)	1.16	1.36	1.26	1.25	1.02	96.0	1.31	1.58	1.15	1.23	0.99	55.1	28:	1.40	1.48		1.35	1.44	1.56	1.37	1.23	1.41	1.16	1.39	1.16	1.14	24.	1.14	/5:1	200	1.92	1.35	1.95	0.97	1.25	1.01	1.64	1.15	2.05	2.04
Post Acquisition	Max. No. of Veh. in Queue per s	11	13	91	15	11	8	13	23	9	9	2	9	77	2	S	4	15	19	61	10	14	12	=	50	=	0	22		2 2	1=	56	2	27	6	=	10	20	=	71	21
1	No. of Veh. Delayed per day	433	489	583	99\$	260	198	315	556	374	275	417	445	362	32/	364	342	360	449	699	473	187	191	287	264	295	132	288	137	317	361	489	290	1015	202	229	219	189	138	421	206
	Train Length (feet)	6,200	6,200	6,200	6,200	5,000	5,000	\$,000	5,000	5.000	6,200	5,000	0,200	6,200	6.200	2,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	2,000	2,000	2.000	2,000	6,200	5,000	5,000	5,000	5,000	5,000	5,000	6,200	5,000	6,200	6.200
	Train Speed (mph)	90	40	20	90	20	90	35	35	20	9	05	5	200	9	2	20	35	35	30	30	40	30	40	40	40	9	9	9	ક	3 8	25	35	25	20	35	90	35	40	25	25
	Trains per day	54.2	54.2	54.2	54.2	34.1	34.1	34.1	34.1	34.1	33.1	61.5	39.6	23.8	31.8	34.3	34.3	34.3	34.3	34.3	34.3	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.5	21.7	2 2	27.2	27.2	27.2	34.6	30.1	30.1	13.9	18.9	14.2	14.2
	Level of Service	Ą	٧	Ą	Υ	4	Ą	<	٧	<	<		æ	<		B	<	В	В	В	В	٧	٧	Ą	4	V	<	∢.	∢.		<	: <		<	4	В	Υ	٧	٧	<	<
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	2.31	3.19	2.50	2.48	1.81	1.71	2.99	3.63	2.04	4.81	7.64	7.19	4.34	3.64	7.35	3.78	5.95	6.38	7.76	6.79	2.73	3.95	2.57	3.09	2.58	2.53	3.23	2.54	1.79	2.40	3.27	1.77	3.32	3.32	96.9	4.27	1.72	2.55	0.32	0.32
011	Crossing Delay per stopped veh (min./veh)	1.08	1.26	1.17	1.16	1.00	0.95	1.28	1.55	1.13	1.20	1.08	1.31	1.70	1.30	1.45	1.09	1.32	1.41	1.53	1.34	1.34	1.55	1.26	1.52	1.27	1.24	1.58	57:1	1.34	2001	88	133	16.1	0.95	1.37	1.09	1.51	1.25	2.00	1.99
Pre Acquisition	Max. No. of Veh. in Queue per lane	11	12	14	14	=	8	13	23	91	9	=	9	50	4	15	4	15	18	18	10	15	13	12	22	12	=	24		2 3	<u> </u>	25	2	26	8	12	11	18	=	21	20
Pre.	No. of Veh. Delayed per day	107	121	145	140	101	77	122	216	145	177	353	358	164	153	270	254	268	334	497	351	126								\perp	\perp			L					93		8
	Train Length (feet)	2,600	5,600	5,600	5,600	4,869	4,869	4,869	4,869	4,869	000'9	2,600	6,000	2,600	5,600	4,869	4,869	4,869	4,869	4,869	4,869	2,600	2,600	9,600	2,600	5,600	5,600	5,600	2,600	4,869	000,5	4 869	4 869	4,869	4,869	5,600	2,600	5,600	5,600	9,000	000'9
	Train Speed (mph)	90	40	20	20	20	90	35	35	50	40	20	45	30	9	30	50	38	38	30	30	40	30	40	40	40	40	9	40	3	2	3 %	35	25	80	35	20	35	40	25	25
	Trains per day	14.5	14.5	14.5	14.5	13.5	13.5	13.5	13.5	13.5	21.9	48.0	32.6	11.7	-9 9	26.0	26.0	26.0	26.0	26.0	26.0	11.7	11.7	11.7	11.7	11.7	11.7	11.7			C. F.	77	17	7.7	26.0	26.4	26.4	5.9	11.7	9.0	9.0
	ADT	6,020	5,750	8,120	7.870	6,700	5,110	6,270	11,060	9,660	5,290	5,970	7,840	7,698	6,550	6,380	8,770	7,120	8,880	11,740	8,290	7,403	5,110	11,390	10,460	11,700	5,240	11,420	5,420	7,530	0,030	9 330	7 230	19.380	5,270	5,150	6,390	7,800	5,490	12,870	6,288
	Number of Roadway Lanes	2	2	2	2	2	2	2	2	2	4	2	2	2	2	2	2	2	2	3	4	2	2	4	2	4	2	2	2	7	1	7	1	14	2	2	2	2	2	4	2
	Roadway Name	TWNSBRG-ELYRIA RD	MAIN ST	NO. MAIN ST	HERRICK AVE.	AVON CENTER RD	MILLER RD	COLORADO AVE.	OBERLIN AVE.	LEAVITT RD	DIXIE (DETROIT)	OAKDALE AVE	BRIDGE ST	HUBBARD RD	CENTER ST	SILVER	N. MAIN SR 4	BARKS	PROSPECT	BELLEFOUNTAINE	CENTER	WASHINGTON ST	W STEWARD AVE	SELLARS	ALEX BELL RD	ALEX RD	ELM ST	CENTRAL	LINDEN AVE	WATER ST	NO. GAMBLE	MAIN ST	MAIN CT	STATE	US 224	PATTERSON	STOW RD	WASHINGTON	CARLISLE	BOUNDARY (WEST)	INDIANA ST.
	Crossing FRA ID	5185353		Т	1	Τ	Т	Т	1	472293H	232121N	$\overline{}$	\neg				481541D	481530R	481531X	481532E		524622B	1	524638X	524641F		524645H	П	\neg	7	1	718450A	_	1	Т	1		1	Т		155823X
	Seg. No.	C-061	C-061	C-061	C-061	080-2	N-080	080-2	080-N	080-N	C-040	N-077	C-081	N-082	C-071	N-073	N-073	N-073	N-073	N-073	N-073	N-078	N-078	N-078	N-078	N-078	N-078	N-078	N-078	N-079	C-067	C-067	N 070	N-079	N-071	N-084	N-084	C-062	N-078	C-065	C-065
	County	Lorain	Lorain	Lorain	Lorain	lorain	Lorain	lorain	Lorain	Lorain	Lucas	Lucas	Mahoning	Mahoning	Marion	Marion	Marion	Marion	Marion	Marion	Marion	Montgomery	Montgomery	Montgomery	Montgomery	Montgomery	Montgomery	Montgomery	Montgomery	Ottawa	Richland	Kichland	Sandusky	Sandusky	Senera	Stark	Summit	Van Wert	Warren	Wood	Wood

1/20/98

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-OH-11 (Revised)

Highway/Rail At-Grade Crossing Vehicle Delay and Queues

	Level of Service with Service Miligation			
	Level of Service	В	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	7.29	8.28	7.01
ıisition	Crossing Delay per stopped veh (min./veh)	1.86	66.0	1.36
Post Acquisition	No. of Max. No. Crossing Per Vehicle Veh. of Veh. in Delay per (All Delayed Queue per stopped veh (All per day lane (min./veh) (sec/veh)	12	6	13
	No. of Veh. Delayed per day	235	403	241
	Train Train Speed Length (mph) (feet)	25 6,200	2,000	6,200
	Train Speed (mph)	25	90	27.4 40 6,200
	Trains er day	14.2	61.5	27.4
	Level of Trains Service per day	Ψ	В	Y
	Crossing Avg. Delay Delay per Vehicle Le (All Stopped veh vehicles) (min./veh) (sec/veh)	0.29	7.59	4.33
ne	Crossing Delay per stopped veh (min./veh)	1.81	1.07	1.32
Pre Acquisition	Max. No of Veh. i Queue po lane	12	10	12
Pre,	No. of Veh. Delayed per day	10	341	153
	Train Length (fect)	000'9	2,600	000'9
	Train Train Speed Length (mph) (feet)	25	95	40
	Trains per day	9'0	48.0	17.8
	ADT	7,170	5,770	5,600 17.8 40 6,000
	Number of Roadway Lanes	4	2	2
	Roadway Name	LOUISIANA	DROUILLARD	LINCOLNWAY WEST
	Seg. No. FRA ID	155829N	S09855K	228752H
	Seg. No.	C-065	N-077	C-070
	County	Wood	Wood	Wyandot

(b) Recommend consultation between railroad and community.

DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388

Highway/Rail At-Grade Crossing Vehicle Delay and Queues Table 5-PA-9 (Revised) Pennsylvania

	Level of Service with Mitigation																		(p)	D (c)	D(c)	D(c)	(p)							
	Level of Service	В	В	٧	Α	Α	В	В	В	В	B	В	ပ	В	Я	В	В	В	၁	Q	D	Q	၁	<	4	В	ပ	ပ	В	ပ
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	12.80	9.57	4.67	4.78	4.74	9.02	707	9.90	08.9	10.16	8.52	18.64	7.90	7.34	7.02	5.62	60.9	23.13	28.84	26.61	26.52	23.00	3.68	3.55	8.89	18.98	18.75	9.62	15.27
uisition	Crossing Delay per stopped veh (min./veh)	1.60	1.22	1.35	1.38	1.37	1.15	1.42	1.99	1.37	2.04	1.71	3.75	1.59	1.48	1.41	1.26	1.37	2.57	3.20	2.95	2.95	2.55	1.07	1.03	1.31	1.67	1.65	1.22	1.96,
Post Acquisition	Max. No. of Veh. in Queue per lane	81	14	15	91	91	П	91	33	13	æ	26	53	22	81	15	Ξ	16	24	48	01	39	23	13	Ξ	14	91	15	14	26
	No. of Veh. Delayed per day	477	465	206	223	217	360	284	602	241	622	474	973	401	326	278	161	557	834	834	692	1372	405	227	201	361	545	512	475	597
	Train Length (feet)	6,200	5,000	5,000	5,000	5,000	5,000	6,200	6,200	6.200	6,200	6,200	6,200	6,200	6,200	6,200	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	6,200
	Train Speed (mph)	35	40	35	35	35	40	40	40	40	40	40	40	40	40	40	35	35	15	15	15	15	15	20	20	35	25	25	40	30
	Trains per day	38.3	49.1	19.6	9.61	9.61	49.1	26.4	26.4	26.4	26.4	26.4	26.4	26.4	26.4	26.4	25.2	25.2	25.2	25.2	25.2	25.2	25.2	25.2	25.2	38.3	49.1	1.64	1.64	32.8
	Level of Service	В	В	٧	Α	٧	В	В	В	8	В	В	၁	В	В	В	٧	Α	В	В	В	В	В	Υ	<	В	ပ	ပ	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	9.17	9.80	3.15	3.22	2.58	9.24	5.83	8.16	561	8.37	7.03	15.36	6.51	6.05	5.79	2.78	3.02	11.39	14.20	13.10	13.06	11.32	1.83	1.77	7.99	19.78	19.54	9.85	12.22
110	Crossing Delay per stopped veh (min./veh)	1.55	1.33	1.47	1.50	1.34	1.25	1.38	1.94	1.33	66.1	1.67	3.65	1.55	1.44	1.38	1.23	1.34	2.51	3.13	2.89	2.88	2.50	1.05	10.1	1.43	1.84	1.82	1.33	16'1
Pre Acquisition	Max. No. of Veh. in Queue per lane	17	15	17	81	91	12	15	32	13	33	25	52	21	17	15		16	23	47	39	38	23	13	=	15	18	1.1	15	25
Pre,	No. of Veh. Delayed per day	351	437	127	138	120	339	240	509	204	526	401	822	339	276	235	66	282	420	420	349	169	204	115	102	298	517	486	446	490
	Train Length (feet)	000'9	5,600	5,600	5,600	4,869	5,600	6,000	6,000	000'9	000'9	000'9	000'9	000'9	000'9	000'9	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	2,600	5,600	9,600	9,600	000'9
	Train Speed (mph)	35	40	35	35	35	40	40	40	40	40	40	40	40	40	40	35	35	15	15	15	15	15	20	50	35	25	25	40	30
	Trains per day	28.9	42.4	1.1	11.1	1.11	42.4	22.9	22.9	22.9	22.9	22.9	22.9	22.9	677	22.9	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	28.9	42.4	42.4	42.4	27.7
	ADT	7,144	7,106	7,123	7,700	7,501	5,500	6,855	14,510	5.820	14,995	11,425	23,458	9,682	7,862	569'9	5,290	15,000	11,110	11,110	9,220	18,284	5,400	7,940	7,004	6,400	5,760	5,420	7,247	9,195
	Number of Roadway Lanes	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	4	2	2	4	2	2	2	2	2	2	2	2
	Roadway Name	14TH ST.	COLUMBIA AVE.	SLATE HILL	TENTH ST	18TH ST	DERRY RD	MAIN ST.	40646B OAK LANE	ASHLAND AVE	140649W SOUTH AVE	AMOSLAND AVE	SWARTHMORE AVE	FAIRVIEW RD	MEETINGHOUSE RD	NAAMANS RD	ASH ST.	PARADE ST.	PEACH ST.	SASSAFRAS ST.	CHERRY ST.	LIBERTY ST.	RASPBERRY ST.	GREEN GARDEN RD	PITTSBURG RD	MONTGOMERY	FRONT ST-LINCOLN	SEVENTH ST.	RAILROAD ST.	MAIN ST.
	Crossing FRA ID	584865S	592237G	592204U	S92199A	592200S	S692365	140641S	140646B	140647H	140649W	140650R	140652E	140654T	140670C	140672R	471893G	471894N	471901W	471902D	471906F	471908U	471911C	471913R	471915E	503738U	592338T	592341B	592365P	145480R
	Seg. No.	C-082	760-N	N-091	160-N	N-091	N-094	C-084	C-084	C-084	C-084	C-084	C-084	C-084	C-084	C-084	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	C-082	N-094	N-094	N-094	C-033
	County	Beaver	Berks	Cumberland	Cumberland	Cumberland	Dauphin	Delaware	Delaware	Delaware	Delaware		Delaware	Delaware	Delaware	Delaware	Erie	Erie	Erie	Erie	Erie	Erie	Erie	Erie	Erie	Lawrence	Lebanon	Lebanon	Lebanon	Westmoreland

⁽c) Recommend consultation between railroad and community regarding NS mitigation plan (Appendix S).

(d) Recomment consultation between railroad and community regarding NS mitigation plan due to close proximity of this crossing to other crossings in Erie

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-TN-7 (Revised)

Tennessee Highway/Rail At-Grade Crossing Vehicle Delay and Queues

	of with ion	Γ	Τ	Γ	Γ	Τ	
	Level of Service with Mitigation						
	Level of Service	æ	m	H	la la		В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	11.79	12.60	13.03	10.83	9.65	8.42
uisition	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	1.29	1.38	1.43	1.41	1.25	1.37
Post Acquisition	Max. No. of Veh. in Queue per Iane	6	14	91	21	2	13
	No. of Veh. Delayed per day	638	464	532	1386	513	297
	Train Length (fect)	6,200	6,200	6,200	6,200	6,200	6,200
	Train Speed (mph)	40	40	40	20	20	40
	Level of Trains Service per day	48.4	48.4	48.4	48.4	48.4	32.7
		В	В	В	В	В	В
	Avg. Delay per Vehicle (All vchicles) (sec/veh)	9.44	10.09	10.44	8.70	7.75	5.73
on	Crossing Delay per stopped veh (min./veh)	1.26	1.35	1.39	1.37	1.22	1.33
Pre Acquisition	Max. No. of Veh. in Queue per Jane	6	13	15	20	51	13
Pre	No. of Veh. Delayed per day	525	381	437	1141	422	207
	Train Length (feet)	000'9	000'9	6,000	6,000	9,000	000'9
	Train Speed (mph)	40	40	40	50	50	40
	Trains per day (40.8	40.8	40.8	40.8	40.8	23.4
	ADT	8,400	6,100	7,000	21,600	8,000	5,790
	Number of Roadway Lanes	4	2	2	4	2	2
	. Roadway Name	350207W CRAIGHEAD	BERRY RD	DAVIDSON RD	349218M THOMPSON LANE	UNA-ANTIOCH	MAIN ST
		- 1	350208D	348027Y			348124H MAIN ST
	Seg. No.	C-090	C-090	C-090	C-090	C-090	C-021
	County	Davidson	Davidson	Davidson	Davidson	Davidson	Robertson

PROPOSED CONRAIL ACQUISITION FINANCE DOCKET NO. 33388 DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-VA-7 (Revised)

Virginia Highway/Rail At-Grade Crossing Vehicle Delay and Queues

	Level of Service with Mitigation										
	Level of Service					1			-		<
Post Acquisition	Avg. Delay per Vehicle (All vehicles) (sec/veh)	222	4 12	4 44	05 7	807	4.57	2 30	\$05	5.86	4.70
	Crossing Delay per stopped veh (min./veh)	2	=	96 1	2	77	9	1 24	86	09	1.28
	Max. No. of Crossing Veh. in Delay per Queue per stopped veh lane (min./veh)	=	0	=	14	2	=	14	20	26	91
	No. of No. of Veh. Delayed	88	156	156	343	256	194	121	315	414	263
	Train Length (feet)	5,000	6.200	5.000	6 200	6.200	6.200	5.000	6,200	6,200	6,200
	Train Speed (mph)	9	20	35	S	200	8	9	S	80	50
	Trains per day	12.1	23.0	19.9	23	24.8	24.8	12.1	23.0	23.0	23.0
	Level of Service	<	<	V	<	<	4	<	<	<	٨
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	69.0	3.14	2.42	3.43	3.35	3.13	0.74	3.84	4.47	3.58
110	Crossing Delay per stopped veh (min./veh)	1.12	1.10	1.24	1.20	1.21	1.13	1.21	1.34	1.56	1.25
rre Acquismon	Max. No. of Crossing Veh. in Delay per Queue per stopped veh lane (min./veh)	01	01	=	14	14	=	14	61	25	91
rre,	No. of Veh. Delayed per day	28	122	87	268	179	136	38	246	323	206
	Train Length (feet)	4,869	000'9	4,869	000'9	000'9	000'9	4,869	000'9	000'9	000'9
	Train Speed 1 (mph)	40	\$0	35	20	20	20	40	20	50	50
	Trains per day	3.9	18.4	11.3	18.4	17.8	17.8	6.6	18.4	18.4	18.4
	ADT	5,476	5,130	5,315	11,250	7,775	5,910	7,485	10,320	13,570	8,636
	Number of Roadway Lanes	2	2	7	3	2	2	2	2	2	2
	Roadway Name	SR 608	623681B CENTRALIA RD	SR 7	623755R E ATLANTIC ST.	860459F ENGLAND ST.	860437F HUNGARY RD	468699K EAST MAIN ST.	623663D JAHNKE RD	623668M BROAD ROCK RD	623672C WALMSLEY BLVD
	Crossing FRA ID	468135B SR 608	623681B	468599F SR 7	623755R	860459F	860437F	468699K	623663D	623668M	623672C
	Seg. No.	N-100	C-103	N-091	C-103	C-102	C-102	N-100	C-103	C-103	C-103
	County	Augusta	Chesterfield	Clarke	Emporia City	Hanover	Henrico	Page	Richmond City	Richmond City	Richmond City

PROPOSED CONRAIL ACQUISITION
FINANCE DOCKET NO. 33388
DRAFT ENVIRONMENTAL IMPACT STATEMENT SUPPLEMENTAL ERRATA

Table 5-WV-5 (Revised) West Virginia

Highway/Rail At-Grade Crossing Vehicle Delay and Queues

	T =	_	_
	Level of Service wit Mitigation		
	Level of Service	V	•
no	Avg. Delay oer Vehicle (All vehicles) (sec/veh)	4 08	2
iisition	Crossing Delay per topped veh (min./veh)	30	
Post Acquisition	Level of Trains Speed Length Delayed (mph) (feet) per day (min.veh) (sec/veh)	A 19.6 40 5.000 230 17 130 4.08	
7	No. of Veh. Delayed per day	230	-
	Train Length (feet)	5.000	
	Train Speed (mph)	9	
	Trains per day	9.61	
	Level of Service	<	
	No. of Max. No. Crossing Avg. Delay Veh. of Veh. in Delay per (All Delayed Queue per stopped veh vehicles) per day lane (min./veh) (sec/veh)	2.22	
011	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	17 1.28	
re Acquisition	Max. No. of Veh. in Queue per Iane	17	
Pre.	No. of Veh. Delayed per day	128	
	Train Length (feet)	4,869	
	ADT Trains Speed Lengt per day (mph) (feet)	40	
	Trains per day	8,800 11.1	
	ADT	8,800	
	Number of Roadway Lanes	2	
	Roadway Name	R 9	
	rossing RA ID	361D S	
	County Seg. No. FRA ID	fferson N-091 469361D SR 9	
	County	Jefferson	

Appendix B: Draft Environmental Impact Statement Correction Letter, Errata, Supplemental Errata and Additional Environmental Information, and Board Notices to Parties of Reco	ord
Draft Environmental Impact Statement Additional Environmental Information	n

др upplemental E	pendix B: Draft Environmental Impact Statement Correction Letter, Errata, Frrata and Additional Environmental Information, and Board Notices to Parties of Recor
	[THIS PAGE INTENTIONALLY LEFT BLANK]

SURFACE TRANSPORTATION BOARD

STB Finance Docket No. 33388

CSX CORPORATION AND CSX TRANSPORTATION, INC.

NORFOLK SOUTHERN CORPORATION AND

NORFOLK SOUTHERN RAILWAY COMPANY

-- CONTROL AND OPERATING LEASES/AGREEMENTS -
CONRAIL, INC. AND CONSOLIDATED RAIL CORPORATION

Decision No. 69

Dated: February 27, 1998

NOTICE TO THE PARTIES:

On December 12, 1997, the Surface Transportation Board's (Board) Section of Environmental Analysis (SEA) issued a Draft Environmental Impact Statement (Draft EIS) for the Proposed Acquisition of Conrail by Norfolk Southern (NS) and CSX. Comments on the Draft EIS were due February 2, 1998. In its continuing process of evaluation, SEA has identified some additional potential hazardous materials transportation safety, noise, and highway/rail at-grade crossing safety and delay impacts of the Proposed Acquisition. This information was not included in the Draft EIS and is based in part on updated data that was not received until after the Draft EIS was issued. Specifically, (1) on November 24, 1997, CSX advised SEA that it would revise its calculation of the transportation of hazardous materials due to an error in methodology; (2) on December 23, 1997 and February 20, 1998, CSX provided SEA with the revised hazardous materials transportation safety data; and (3) SEA identified sensitive receptors within noise contours using aerial photographs and more precise analytical tools, such as geographic information systems (GIS), that were not available prior to SEA completing the Draft EIS.

SEA's additional analysis has identified four rail line segments with potential hazardous materials transportation safety impacts that SEA did not identify as such in the Draft EIS. In addition, SEA has identified eight rail line segments that now may warrant noise mitigation. Although SEA had identified these segments in the Draft EIS as being potentially affected by noise, SEA did not

recommend noise mitigation for them in the Draft EIS. As a result of the refined analysis described above, SEA has also concluded that 12 additional rail line segments may have high, adverse and disproportionate effects on certain minority or low-income communities as a result of potential effects of hazardous materials transportation safety, noise, and/or highway/rail at-grade crossing safety and delay. A list of affected rail line segments and communities is included with this notice. This new information does not change or alter SEA's prior analysis, results, or preliminary mitigation recommendations in other impact areas, nor does it affect the integrity of the information contained in the Draft EIS.

To ensure that anyone affected by the new information described above has the opportunity to review and comment on it, through this notice SEA is providing an additional 45-day comment period. During this period, affected parties may submit written comments to SEA on the potential environmental effects noted above on their community. Written comments must be submitted to SEA no later than April 15, 1998. SEA will consider any timely comments received in the Final EIS, which is scheduled to be issued in late May 1998. The Board will then consider the entire environmental record, including all public comments, the Draft EIS, and the Final EIS in making its final decision on the Proposed Conrail Acquisition. The Board will hold an open voting conference on June 8, 1998 and intends to issue its final written decision on July 23, 1998.

Information about the Proposed Acquisition and Draft EIS can be found at the Internet web site http://www.conrailmerger.com and SEA's toll-free Environmental Hotline at (888) 869-1997.

Vernon A. Williams Secretary

Surface Transportation Board Section of Environmental Analysis

Draft Environmental Impact Statement Proposed Conrail Acquisition

ADDITIONAL ENVIRONMENTAL INFORMATION

In its continuing process of evaluation, the Surface Transportation Board's Section of Environmental Analysis (SEA) has identified some additional potential hazardous materials transportation safety, noise, and highway/rail at-grade crossing safety and delay impacts associated with the Proposed Conrail Acquisition. SEA has also identified additional minority and low-income populations that may be affected by potential environmental impacts. This information was not available when SEA issued the Draft Environmental Impact Statement (Draft EIS) on December 12, 1997.

- This page directs the reader to the appropriate sections of the Draft EIS that more completely explains SEA's analysis.
- Page 2 of this document includes a table that summarizes the new rail line segments potentially affected by hazardous materials transportation.
- Page 3 of this document includes a table that summarizes the new rail line segments that may warrant noise mitigation.
- Page 4 of the document includes a table that summarizes the new rail line segments with potential impacts on minority and low-income populations.

HELPFUL REFERENCES TO THE DRAFT EIS

New Hazardous Materials Transportation Safety Rail Line Segments

- SEA's hazardous materials transportation analysis and methodology are documented in Chapter 3, Section 3.5 of the Draft EIS, pages 3-12 through 3-14.
- System-wide safety effects of increased hazardous materials transport are documented in Chapter 4, Section 4.5 of the Draft EIS, pages 4-14 through 4-21.
- State-specific hazardous materials transport safety effects are documented in Chapter 5 of the Draft EIS, presented on a state-by-state basis.
- SEA's recommended hazardous materials transportation safety mitigation is presented in Chapter 7 of the Draft EIS on pages 7-12 through 7-14. The new hazardous materials transportation safety rail line segments listed in the table below on Page 2 are new "Key Routes" subject to Recommended Mitigation Nos. 3 (A-C) and 5.

New Rail Line Segments That May Warrant Noise Mitigation

- SEA's noise analysis and methodology are documented in Chapter 3, Section 3.12 of the Draft EIS, pages 3-30 through 3-37.
- State-specific noise effects are documented in Chapter 5 of the Draft EIS.
- SEA's recommended noise mitigation is presented in Chapter 7 of the Draft EIS, page 7-17.

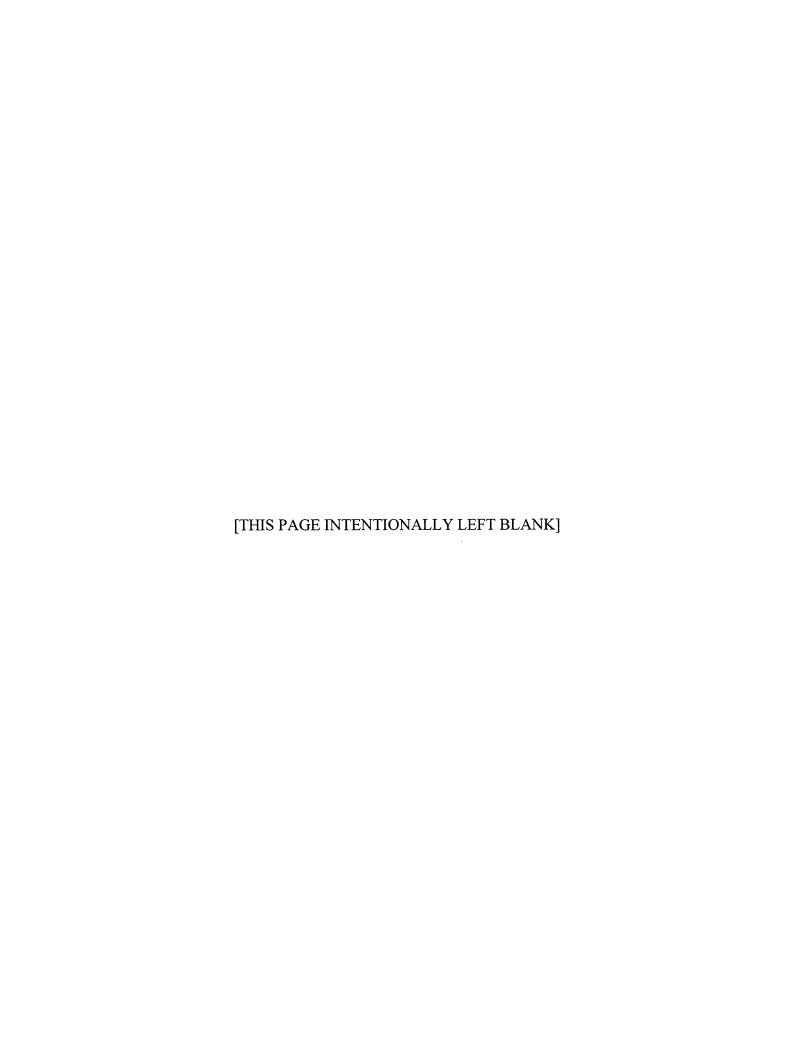
New Rail Line Segments With Potential Impacts on Minority and Low-Income Populations

- SEA's environmental justice analysis and methodology are documented in Chapter 3, Section 3.17 of the Draft EIS, pages 3-48 through 3-52.
- SEA's recommended environmental justice mitigation is presented in Chapter 7 of the Draft EIS, page 7-18.

New Hazardous Materials Transport Safety Segments

State	Site ID	Proposed Owner	Segment	Counties	Est. Annu Rail Carlo	al Haz. Mat. ads
					Pre-Acq.	Post-Acq.
KY OH	C-230	CSX	NJ Cabin, KY to Columbus, OH	KY: Greenup; OH: Franklin, Pickaway, Pike, Ross, Scioto	4,000	10,000
PA	C-767	CSX	CP Newtown Jct., PA to CP Wood, PA	Bucks, Montgomery, Philadelphia	6,000	19,000
NJ PA	C-768	CSX	CP Wood, PA to Trenton, NJ	PA: Bucks; NJ: Mercer	6,000	18,000
ОН	C-065	CSX	Deshler, OH to Toledo, OH	Henry, Wood	365	14,000

New Segments That May Warrant Noise Mitigation


State	Site ID	Proposed Owner	Segment	Counties	Receptors dBA Cont	
•					Pre-Acq.	Post-Acq.
IN	C-026	CSX	Warsaw, IN to Tolleston, IN	Kosciusko, La Porte, Lake, Marshall, Porter, Starke	14	1,129
IN	N-040	NS	Alexandria, IN to Muncie, IN	Delaware, Madison	83	506
NY	N-060	NS	Corning, NY to Geneva, NY	Chemung, Ontario, Schuyler, Steuben, Yates	0	117
ОН	N-085	NS	Bellevue, OH to Sandusky Dock, OH	Erie, Huron	5	58
PA	C-085	CSX	Sinns, PA to Brownsville, PA	Allegheny, Fayette, Westmorland	194	781
VA	N-100	NS	Riverton Jct., VA to Roanoke, VA	Augusta, Botetourt, Buena Vista City, Clarke, Page, Roanoke, Roanoke City, Rockbridge, Rockingham, Warren, Waynesboro City	466	1,560
WV	N-110	NS	Elmore, WV to Deepwater, WV	Fayette, Raleigh, Wyoming	0	248
WV	N-111	NS	Deepwater, WV to Fola Mine, WV	Fayette, Nicholas	37	161

^{*}includes receptors affected by highway/rail at-grade crossings.

New Segments With Potential Impacts on Minority and Low-Income Populations

State	Site ID	Proposed Owner	Segment	Counties	Potential Impact
GA	C-377	CSX	Manchester, GA to LaGrange, GA	Meriwether, Troup	Hazardous Materials Transport
IN	C-026	CSX	Warsaw, IN to Tolleston, IN	Kosciusko, La Porte, Lake, Marshall, Porter, Starke	Noise
IN	N-040	NS	Alexandria, IN to Muncie, IN	Delaware, Madison	Noise
NC TN	N-361	NS	Asheville, NC to Leadvale, TN	NC: Buncomb, Madison; TN: Cocke	Hazardous Materials Transport
NJ	S-032	CSX/NS	PN, NJ to Bayway, NJ	Essex, Union	Hazardous Materials Transport
OH PA NY	N-070	NS	Ashtabula, OH to Buffalo, NY	OH: Ashtabula; PA: Erie; NY: Chutaupua, Erie	Hazardous Materials Transport; Crossing Delay
PA	C-766	CSX	West Falls, PA to CP Newtown Jct., PA	Philadelphia	Hazardous Materials Transport
PA	N-203	NS	Bethlehem, PA to Allentown, PA	Lehigh, Northampton	Hazardous Materials Transport
PA	S-232	CSX/NS	Park Jct., PA to Frankford Jct., PA	Philadelphia	Hazardous Materials Transport
PA NJ	S-233	CSX/NS	Frankford Jct., PA to Camden, NJ	PA: Philadelphia; NJ: Camden	Hazardous Materials Transport
TN	N-406	NS	Frisco, TN to Kingsport, TN	Hawkins, Sullivan	Hazardous Materials Transport
VA	N-432	NS	Poe ML, VA to Petersburg, VA	Petersburg City	Hazardous Materials Transport

APPENDIX C Settlement Agreements and of Negotiated Agreements

CONTENTS

A DDI	CNINIX	C: SETTLEMENT AGREEMENTS AND NEGOTIATED	<u>Page</u>
APPI		EEMENTS	C-1
	C.1	SETTLEMENT AGREEMENTS	
		C.1.1 CSX	
		C.1.2 NS	
	C.2	NEGOTIATED AGREEMENTS	. C-4
		C.2.1 CSX	. C-4
		C.2.2 NS	. C-5
		C.2.3 CSX and NS	. C-5
		ATTACHMENTS	
		ATTACHWENTS	
C-1	SEA	Letter Requesting That NS and CSX Provide a Verified Statement or a	
	Supp	lemental Environmental Report for Settlement Agreements	
	(Febr	ruary 13, 1998)	. C-7
C-2		Letter Requesting Copies of all Settlement Agreements That CSX and NS	
		Reached with Other Railroads or Organizations (March 27, 1998)	
C-3		fied Statement of John H. Friedmann, Strategic Planning Director, NS	C-17
C-4	1.1	lemental Environmental Report of NS Regarding Settlement Agreement	
		Indiana & Ohio Rail System	C-27
C-5		fied Statement of William M. Hart, Vice President of Corporate	
	Deve	elopment, CSX	C-35

Appendix C: Se	ettlement Agreements and Neg	gotiated Agreements
	<u> </u>	
[THIS PAC	GE INTENTIONALLY L	EFT BLANK]
•		-
Proposed Conrail Acquisition	May 1000	Final Environmental Impact Statement

APPENDIX C SETTLEMENT AGREEMENTS AND NEGOTIATED AGREEMENTS

C.1 SETTLEMENT AGREEMENTS

The Section of Environmental Analysis (SEA) of the Surface Transportation Board (The Board) used the Operating Plans and traffic projections from the Primary Application of the proposed Conrail Acquisition to determine which rail line segments, intermodal facilities, and rail yards to analyze in the Draft Environmental Impact Statement (Draft EIS). Following publication of the Draft EIS, SEA determined that certain additional facilities may require analysis, pursuant to Board regulations, because of operating changes that could result from a Settlement Agreement between an Applicant and another railroad, including any Settlement Agreements resulting from previously submitted Inconsistent and Responsive applications.

CSX and NS¹ have entered into 21 Settlement Agreements with freight railroads that could provide the settling party with trackage rights and the right to add trains to affected rail line segments. Railroad activities on the affected rail line segments could exceed the Board's thresholds for environmental analysis as a result of such additional trains.

In a letter dated February 13, 1998, SEA requested that NS and CSX conduct an analysis of operating changes that could result from each Settlement Agreement with another railroad, and provide either a Verified Statement of no significant environmental impacts or a Supplemental Environmental Report. (See Attachment C-1.) In the letter, SEA instructed CSX and NS to provide a Verified Statement of no significant environmental impacts if the implementation of a Settlement Agreement would not exceed the Board's thresholds for environmental analysis when added to those changes proposed in the Primary Application's Operating Plans. SEA further instructed that if the proposed changes would exceed the Board's thresholds for environmental analysis or would result in changes in rail activities that exceeded those thresholds, the Applicants must provide a Supplemental Environmental Report containing detailed environmental information, including an assessment of potential environmental impacts, consistent with the Board's rules at 49 CFR Part 1105.

[&]quot;CSX" refers to CSX Corporation and CSX Transportation, Inc.; "NS" refers to Norfolk Southern Corporation and Norfolk Southern Railway Company.

In a subsequent letter dated March 27, 1998, SEA requested that CSX and NS provide for SEA's review copies of all Settlement Agreements that CSX and NS have reached with other railroads or organizations by April 15, 1998. (See Attachment C-2.)

On March 5, 1998, SEA received from NS the following documents:

- The Verified Statement of John H. Friedmann, describing 11 NS Settlement Agreements with other railroads that would not result in operating changes exceeding the Board's thresholds for environmental analysis when added to those changes proposed in the NS Operating Plan. (See Attachment C-3.)
- A Supplemental Environmental Report regarding the NS Settlement Agreement with the Indiana & Ohio Rail System. (See Attachment C-4.)

SEA reviewed the Supplemental Environmental Report and verified that the NS Settlement Agreement with Indiana & Ohio Rail System would not cause significant environmental impacts.

On March 6, 1998, SEA received from CSX the Verified Statement of William M. Hart, describing the nine CSX Settlement Agreements with other railroads and stating that none of them would result in operating changes exceeding the Board's thresholds for environmental analysis when added to those changes proposed in the CSX Operating Plan. (See Attachment C-5.) SEA reviewed this Verified Statement and concluded that the CSX Settlement Agreement with Louisville & Indiana Railroad involves rail line segments from Louisville, Kentucky-to-Seymour, Indiana, and Seymour, Indiana-to-Indianapolis, Indiana, that would exceed the Board's thresholds. Therefore, SEA analyzed the rail line segments and presents the results of that analysis in Appendix I, "Air Quality Analysis."

In response to its March 27, 1998, letter, SEA received copies of 19 of the 21 Settlement Agreements from CSX and NS. On May 8, 1998, NS informed SEA that NS's Settlement Agreements with the Eastern Shore Railroad and the Maryland and Delaware Railroad were verbal agreements and had not been documented. NS had provided SEA the Verified Statements attesting that the Settlement Agreements with these two railroads would have no significant environmental impacts because the agreements would not result in railroad activities that could exceed the Board's thresholds for environmental analysis.

SEA reviewed the Settlement Agreements it received to confirm the content of the Verified Statements and Supplemental Environmental Report. The following list identifies the parties that have entered into Settlement Agreements with CSX, NS, or both.

C.1.1 CSX

- 1. Buffalo & Pittsburgh Railroad, Inc., Allegheny & Eastern Railroad Inc., Rochester & Southern Railroad, Inc., Pittsburgh & Shawmut Railroad, Inc., and Genesee and Wyoming, Inc.
- 2. Canadian National Railway Company.
- 3. Canadian Pacific Railway Company (and its affiliates Soo Line Railroad Company, Delaware and Hudson Railway Company, and St. Lawrence and Hudson Railway Company).
- 4. Central Railroad Company of Indiana/Central Railroad Company of Indianapolis.
- 5. Chicago, South Shore & South Bend Railroad Company.
- 6. Iowa Interstate Railroad, Inc.
- 7. Louisville & Indiana Railroad.
- 8. Massachusetts Central Railroad Corporation.
- 9. Providence and Worcester Railroad Company.

C.1.2 NS

- 1. Black River and Western Railroad/Belevedere and Delaware River Railroad.
- 2. Buffalo & Pittsburgh Railroad and its affiliates, Allegheny & Eastern Railroad, Rochester & Southern Railroad, and Pittsburgh & Shawmut Railroad.
- 3. Canadian National Railway.
- 4. Canadian Pacific Railway.
- 5. Chicago, South Shore & South Bend Railroad.
- 6. Central Railroad of Indiana and Central Railroad of Indianapolis.
- 7. Eastern Shore Railroad (verbal agreement).
- 8. Illinois Central Railroad.

- 9. Indiana & Ohio Rail System.
- 10. Maryland and Delaware Railroad (verbal agreement).
- 11. Michigan Southern Railroad.
- 12. Nittany and Bald Eagle Railroad and its affiliates, North Shore Railroad, Shamoin Valley Railroad, and Union County Industrial Railroad.

C.2 NEGOTIATED AGREEMENTS

For the purposes of this Final EIS, a Negotiated Agreement is an agreement between CSX, NS, or both and one or more of the communities or other governmental units (including passenger rail service organizations) that is directed at mitigating the potential effects of the proposed Conrail Acquisition.

In its March 27, 1998 letter, SEA requested that CSX and NS provide for SEA's review copies of all Negotiated Agreements that CSX, NS, or both have reached with affected communities or organizations by April 15, 1998.

SEA received copies of 18 Negotiated Agreements that CSX and NS provided. SEA reviewed these Negotiated Agreements and concluded that none would result in additional environmental impacts. This Final EIS does not include the Negotiated Agreements, but the following list identifies the parties that have entered into Negotiated Agreements with CSX, NS, or both.

C.2.1 CSX

- 1. State of Maryland, dated September 24, 1997.
- 2. Commonwealth of Pennsylvania and the City of Philadelphia, dated October 21, 1997.
- 3. City of East Cleveland, dated February 11, 1998.
- 4. Metra (Northeast Illinois Regional Commuter Railroad Corporation), dated February 19, 1998.
- 5. Village of Greenwich and the Board of Huron County, Ohio, dated March 23, 1998.
- 6. City of Newark, Delaware and the University of Delaware, dated May 12, 1998.
- 7. City of Brook Park, Ohio, dated February 17, 1998.

C.2.2 NS

- 1. State of Maryland, dated September 24, 1997.
- 2. Commonwealth of Pennsylvania and the City of Philadelphia, dated October 21, 1997.
- 3. The Toledo-Lucas County Port Authority and Toledo Metropolitan Area Council of Governments, dated February 18, 1998.
- 4. Erie, Pennsylvania, dated April 9, 1998.
- 5. Tilton, Illinois, dated April 14, 1998.
- 6. Bellevue, Ohio, dated April 22, 1998.
- 7. Fremont, Ohio, dated April 15, 1998.
- 8. City of East Cleveland, Ohio, dated April 24, 1998.
- 9. City of Danville, Illinois, dated May 5, 1998.

C.2.3 CSX and NS

- 1. Cities of Brook Park and Olmsted Falls, dated February 24, 1998.
- 2. New Jersey Department of Transportation/New Jersey Transit Corporation, New Jersey, dated March 20, 1998.

Annendiy C: Settler	ment Agreements and Neg	notiated Agreements	
Аррениіх С. Оешен	ment Agreements and Neg	ulated Agreements	
[THIS PAGE I	NTENTIONALLY L	EFT BLANK]	
Proposed Conrail Acquisition	May 1998	Final Environmental Impact State	tement

ATTACHMENT C-1

SEA Letter Requesting That NS and CSX Provide a Verified Statement or a Supplemental Environmental Report for Settlement Agreements (February 13, 1998)

THIS TAGE HALLA	HOWALL LEI		
THIS PAGE INTEN	TIONALI V I FF	T RI ANKI	
		THIS PAGE INTENTIONALLY LEF	THIS PAGE INTENTIONALLY LEFT BLANK]

SURFACE TRANSPORTATION BOARD Washington, DC 20423

Section of Environmental Analysis

February 13, 1998

Bruno Maestri, System Director Environmental Protection Norfolk Southern Corporation 1500 K Street, NW Suite 375 Washington, DC 20005

Peter J. Shudtz General Counsel CSX Transportation 3 Foxmere Drive Richmond, VA 23233

Re: Finance Docket No. 33388 -- CSX and Norfolk Southern -- Control and

Acquisition: Applicant Settlement Agreements with Other Railroads

Dear Messrs. Maestri and Shudtz:

The Applicants' Rebuttal filed with the Board on December 15, 1997 contains a list of 16 railroads with whom either CSX or NS has entered into settlement agreements in connection with the Proposed Conrail Acquisition. Although neither the Board nor SEA has received copies of these agreements, implementation of their terms could cause changes in the Applicants' Operating Plans submitted to the Board on June 23, 1997 with the Primary Application. For example, an agreement between an Applicant and another railroad could result in additional trains over an affected rail line segment.

SEA used the Applicants' original operating plans and traffic projections to determine which segments and yards to analyze in the Draft EIS. Consequently, SEA did not analyze certain facilities that may now require analysis pursuant to Board regulations because of operating changes related to the settlement agreement. Therefore, SEA requests that the Applicants conduct an analysis of operating changes that could result from each settlement agreement with another railroad, including any settlement agreements resulting from Inconsistent or Responsive Applications previously submitted.

If the implementation of a settlement agreement would not result in operating changes that exceed the Board's thresholds for environmental analysis when added to those changes

proposed in the Primary Application's operating plans, the Applicants should provide SEA with a verified statement for that agreement. However, if the changes would exceed the Board's thresholds or result in changes in rail activities that already would exceed those thresholds, the Applicants must provide detailed environmental information regarding the proposed operating changes of any settlement agreement, including an assessment of potential environmental impacts consistent with the Board's rules at 49 CFR Part 1105. If this additional environmental analysis is necessary, the Applicants should provide the information as a Supplemental Environmental Report. In both instances, the Applicants should include the factual basis of the environmental analysis so that SEA is able to confirm the conclusion reached by the Applicants.

The Final EIS will address any potential environmental impacts resulting from the settlement agreements. Therefore, SEA is requesting that the Applicants submit the verified statements and, if necessary, Supplemental Environmental Report to SEA no later than Monday, March 9, 1998.

If you have any questions, please contact Mike Dalton at (202) 565-1530. Thank you for your attention to this matter.

Sincerely yours,

Elaine K. Kaiser

Chief

Section of Environmental Analysis

cc: John Morton, HDR Engineering, Inc.

ATTACHMENT C-2

SEA Letter Requesting Copies of all Settlement Agreements That CSX and NS Have Reached with Other Railroads or Organizations (March 27, 1998)

Annandis Cs. Cattlem	ant Agraements and No	gotiated Agreements	
Appenaix C: Settiem	nent Agreements and Neg	gotiated Agreements	
[THIS PAGE II	NTENTIONALLY I	LEFT BLANK]	
Proposed Conrail Acquisition	May 1009	Final Environmental Impac	et Statement

SURFACE TRANSPORTATION BOARD Washington, DC 20423

Section of Environmental Analysis

March 27, 1998

Peter J. Shudtz General Counsel CSX Transportation 3 Foxmere Drive Richmond, VA 23233

Bruno Maestri System Director, Environmental Protection Norfolk Southern Corporation 1500 K Street, NW Suite 375 Washington, DC 20005

Re: Finance Docket No. 33388 -- CSX and NS -- Control and Acquisition -- Conrail:

Request for Information on Status of Applicant Agreements with Communities,

Environmental Documentation for Settlement Agreements, and Railroad

Activities and Data

Dear Messrs. Shudtz and Maestri:

In completing the Final Environmental Impact Statement (Final EIS) for the proposed Conrail Acquisition, SEA is finalizing its recommended mitigation regarding potential environmental impacts. SEA understands that CSX and NS have negotiated agreements, or are in the process of developing and/or finalizing agreements, with a number of communities and organizations potentially affected by the proposed Acquisition.

Negotiated Agreements with Communities and Organizations

It is important that SEA has a full understanding of the progress and status of any agreements that CSX and NS develop with communities and organizations potentially affected by the proposed Acquisition. Also, SEA recognizes that mutually acceptable agreements entered into by CSX and NS with individual communities and organizations may resolve potential environmental impacts and affect the mitigation that SEA might otherwise recommend to the Board in the Final EIS. However, for SEA to be able to take an agreement into account, SEA must have a copy of each agreement that is reached. SEA understands that, in some cases, the

parties may not want all the terms of an agreement to be made public. In such circumstances, the agreement may be provided to SEA under seal. Accordingly, SEA is requesting that CSX and NS provide, at their earliest convenience and no later than **April 15, 1998**, the following information:

- Copies of all finalized agreements CSX and NS have reached with affected communities or organizations. As noted above, these agreements may be submitted under seal.
- A status report on agreements CSX and NS are currently developing with communities and organizations, including the anticipated dates for executing those agreements, if known, and the general substance of those possible agreements.
- A listing of any voluntary mitigation or measures CSX and NS are willing to implement to address potential environmental impacts in these communities or other affected areas.

For the above information, please note that SEA needs to be advised of interim as well as long-term mitigation measures included in any agreements. In addition, if any agreements are reached after April 15, 1998, CSX and NS should immediately notify SEA and provide copies of these agreements to SEA.

Settlement Agreements/Verified Statements and Supplemental Environmental Reports

SEA requests that CSX and NS ensure that SEA has copies of all Settlement Agreements reached on the merits of the application with other railroads or organizations by **April 15, 1998**. A Settlement Agreement may be submitted under seal if the parties wish to keep the terms of such an agreement confidential. In addition, CSX and NS should ensure that SEA has received, by **April 15, 1998** or sooner, all requisite Verified Statements and Supplemental Environmental Reports for these Settlement Agreements as discussed in my letter dated February 13, 1998. (A copy of the letter is enclosed for your convenience.)

SEA has received the CSX submission dated March 6, 1998, and the NS submission dated March 5, 1998, in response to my letter. However, SEA wants to ensure that it has complete and current copies of all Settlement Agreements as well as all related Verified Statements and Supplemental Environmental Reports. Since SEA plans to include these Verified Statements and Supplemental Environmental Reports in the Final EIS, please submit copies of these documents without the "Administratively Confidential" notation.

Changes in Proposed Activities, Operations, and Data

Because SEA is now in the process of completing the Final EIS for issuance this May, **April 3, 1998** is the last day on which SEA can accept changes to any other proposed activities, operations, or train traffic data. Also, please be sure to provide any additional clarifying information to SEA by **April 3, 1998**.

It is critical that we receive all of the information requested in this letter by the dates specified above so that SEA and the Board can meet the procedural schedule established in this case. If you have any questions or need further clarification regarding this letter, please call Mike Dalton at (202) 565-1530.

Sincerely yours,

Elaine K. Kaiser

Chief

Section of Environmental Analysis

Enclosure

[THIS PAGE INTENTIONALLY LEFT BLANK]

ATTACHMENT C-3

Verified Statement of John H. Friedmann, Strategic Planning Director, NS

Proposed Conrail Acqu	uisition	May 1998	Final Environmental Impact Statem
	[THIS PAGE INT	ENTIONALLY L	LEFT BLANK]
	(TYY)		DDT DI ANIZI

VERIFIED STATEMENT OF

JOHN H. FRIEDMANN

My name is John H. Friedmann. I am a Director, Strategic Planning, of Norfolk Southern Corporation. My office address is Three Commercial Place, Norfolk, Virginia, 23510.

This statement is submitted in response to a letter dated February 13, 1998 from Elaine K. Kaiser, the Chief of the Surface Transportation Board's Section of Environmental Analysis ("SEA"), concerning possible environmental effects of executed settlement agreements between Applicants and other railroads. The letter states, in pertinent part, "If the implementation of a settlement agreement would not result in operating changes that exceed the Board's thresholds for environmental analysis when added to those changes proposed in the Primary Application's operating plans, the Applicants should provide SEA with a verified statement for that agreement."

This statement discusses the settlement agreements that Norfolk Southern ("NS") has executed with certain railroads, listed below, which agreements do not involve substantive operational changes or rail line abandonments or construction projects.

- 1. Black River and Western Railroad/Belevedere and Delaware River Railroad
- 2. Buffalo & Pittsburgh Railroad and its affiliates, Allegheny & Eastern Railroad, Rochester & Southern Railroad, and Pittsburgh & Shawmut Railroad
- 3. Canadian National Railway
- 4. Canadian Pacific Railway
- 5. Chicago, SouthShore & South Bend Railroad

- 6. Central Railroad of Indiana and Central Railroad of Indianapolis
- 7. Eastern Shore Railroad
- 8. Illinois Central Railroad
- 9. Maryland and Delaware Railroad
- 10. Michigan Southern Railroad
- 11. Nittany and Bald Eagle Railroad and its affiliates, the North Shore Railroad, the Shamolin Valley Railroad, and the Union County Industrial Railroad

Black River and Western Railroad/Belevedere and Delaware River Railroad

NS' agreement with these two railroads is essentially a commercial/marketing arrangement, rather than an operational arrangement. The agreement involves a fixed division arrangement for CSX's interchange with these two railroads. The agreement also permits these railroads to participate in NS' fixed division agreement with Canadian Pacific (discussed in greater detail below under CP). The agreement will allow traffic moving in joint-line service to move with the marketing ease of single-line service, but is not expected to result in any operational changes or any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Buffalo & Pittsburgh Railroad and its affiliates, Allegheny & Eastern Railroad, Rochester & Southern Railroad, and Pittsburgh & Shawmut Railroad (hereafter, collectively, the "B&P")

NS' settlement agreement with the B&P involves haulage rights. B&P is granted haulage rights from the B&P system's interchange points with NS at either Erie, PA or Emporium, PA to Silver Springs, NY over NS and/or Conrail lines to be operated by NS post-Transaction. The volume of traffic anticipated to be moved pursuant to this aspect of the haulage agreement is not

expected to require the addition by NS of any trains. Under the agreement, B&P is also granted haulage rights for the Rochester & Southern from Silver Springs, NY to Buffalo, NY over a Conrail line to be operated by NS post-Transaction. This Rochester & Southern traffic already moves today on this route in Canadian Pacific trains (which operate over this Conrail route pursuant to trackage rights). This aspect of the agreement will not result in any increase or decrease in the number of trains operated on this route, it will just shift traffic already moving over the route from CP trains to NS trains. Thus, the NS agreement with B&P is not expected to result in any operational changes or any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Canadian National Railway ("CN")

NS and CSX entered into a letter agreement with CN, in which the three railroads agree to work together to cooperate to minimize delays to operations in the Detroit Shared Assets Area. This agreement is not expected to result in any substantive operational changes or any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Canadian Pacific Railway ("CP")

NS entered into a commercial/marketing agreement with CP. It involves a fixed division arrangement and provides ways for CP cars to move to points in the Northeast, including those on some short-line railroads, on NS trains. This agreement allows CP to obtain extended hauls for its account for traffic that is already moving today. NS does not plan to add trains as a result of this agreement. Thus, the agreement is not expected to result in any substantive operational changes or in any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Chicago, SouthShore & South Bend Railroad ("CSS")

NS has agreed to sell to CSS two existing NS line segments: (1) from Michigan City to Dillon, IN, which line segment would otherwise have been abandoned by NS as part of the Transaction, and (2) from Dillon to Kingsbury, IN. As a result of the sale, CSS will step into NS' shoes as local service provider for shippers and customers on these lines. (A NS local train has heretofore provided such service.) NS' agreement with CSS is therefore not expected to result in any operational changes or in any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Central Railroad of Indiana and Central Railroad of Indianapolis (collectively "Central")

NS has entered into an agreement with Central that is primarily financial, not operational, in nature. The agreement provides that if Central decides to rationalize portions of its system, including abandoning some of its lines and upgrading certain of its remaining lines, NS will make certain financial concessions to Central. Additionally, NS has agreed to provide haulage for Central between Marion and Frankfort, IN (over the Conrail line segment between Marion and Alexandria that will be operated by NS post-Transaction and over the NS line segment between Alexandria and Frankfort). It is anticipated that Central would only take advantage of these haulage rights in the event it does system rationalization and associated line abandonments. If that were to occur, some traffic currently moving over Central's lines would be moved on NS via the above-described haulage arrangement and Central's current interchange with NS would likely shift to a different location. However, Central has not decided whether it will embark on the rationalization plan and Central is itself up for sale (and there is no way to predict what approach new management would take to this issue if Central is sold). Under the circumstances, the agreement with Central is not presently expected to result in any substantive operational

changes or in any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Eastern Shore Railroad ("Eastern Shore")

NS' agreement with Eastern Shore provides that NS will maintain an existing routing for coal over the Eastern Shore. Presently, NS hands off certain coal destined for Conrail to Eastern Shore at Norfolk, VA, and Eastern Shore carries the coal on its lines and delivers it to Conrail at Pocomoke, MD. This agreement assures continuation of this routing even after NS takes over operation post-Transaction of the Conrail line to Pocomoke. Since this agreement simply preserves existing traffic patterns, it is not expected to result in any operational changes or in any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction

Illinois Central Railroad ("IC")

NS' agreement with IC provides for keeping existing commercial gateways open. NS and IC actually entered into this agreement before NS and CSX agreed to jointly apply for control of Conrail (i.e., during the period in 1996 in which NS was attempting, in competition with CSX, to purchase Conrail in its entirety). The operating plan submitted by NS in this proceeding takes into account the IC agreement; it relies on existing gateways with IC being maintained. Thus, the IC agreement is not expected to result in any operational changes or in any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Maryland and Delaware Railroad ("MDDE")

NS has agreed to grant MDDE overhead trackage rights on the current Conrail lines to be operated by NS post-Transaction between local segments on the Delmarva Peninsula in Maryland and Delaware. MDDE is hopeful of generating new business (i.e., attracting business currently utilizing truck transportation), but has no current business that would make use of these trackage rights. The agreement with MDDE is therefore not expected to result in any substantive operational changes and there are no reasonably foreseeable increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Michigan Southern Railroad ("MSR")

NS has entered into a haulage agreement with MSR from the NS-MSR interchanges at White Pigeon, MI and Elkhart, IN to a connection with CSX at Fort Wayne, IN. MSR traffic that will be carried by NS pursuant to this haulage agreement will move on the current Conrail lines to be operated by NS post-Transaction between White Pigeon and Elkhart and between Elkhart and Warsaw, IN, and thence on the current NS line between Warsaw and Ft. Wayne, IN (which line will be operated by CSX post-Transaction and over which NS will operate pursuant to trackage rights). The volume of traffic anticipated to be moved pursuant to this haulage agreement is not expected to require the addition by NS of any trains. The agreement is not expected to result in any substantive operational changes or in any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

Nittany and Bald Eagle Railroad and its affiliates, the North Shore Railroad, the Shamolin Valley Railroad, and the Union County Industrial Railroad (collectively "NBE")

'NS' agreement with NBE would permit NBE to interchange with Canadian Pacific at a point near Sunbury, PA on the Conrail line to be operated by NS post-Transaction. CP currently

operates on that Conrail line pursuant to trackage rights, but CP's trackage rights agreement with Conrail does not permit such interchange with NBE. Thus, NBE interchange traffic, which in any event involves minimal volumes, is today handled by Conrail itself. The NBE-CP interchange is also covered by NS' agreement with CP; NBE is one of the shortlines to which NS is providing CP access by means of a fixed division arrangement. While these agreements will result in accounting/revenue changes for the carriers involved, there will be no actual change in traffic movements on the various lines. Thus, the agreement with NBE is not expected to result in any substantive operational changes or in any increases or decreases in traffic on NS line segments or on Conrail line segments to be operated by NS post-Transaction.

In sum, none of the settlement agreements discussed above are expected to result in operational changes that would meet or exceed the relevant environmental thresholds set forth in the Board's environmental regulations at 49 C.F.R. § 1105.7(e). Moreover, none of the settlement agreements discussed above will involve any new construction projects or the abandonment of any current Conrail or NS lines.

VERIFICATION

I, John H. Friedmann, state under penalty of perjury that I am Director, Strategic Planning, Norfolk Southern Corporation, Norfolk, Virginia. I am authorized to file and verify the foregoing verified statement on behalf of Norfolk Southern. I have carefully examined all the statements in the foregoing verified statement, I have knowledge of the facts and matters stated therein, and all representations set forth therein are true and correct to the best of my knowledge, information and belief.

Executed on February 28, 1998.

John H. Friedmann

ATTACHMENT C-4

Supplemental Environmental Report of NS Regarding Settlement Agreement with Indiana & Ohio Rail System

Proposed Conrail Acquisition	Mav 1998	Final Environmental Impact Statement
ITHIS PAGE I	NTENTIONALLY I	EFT BLANKI
Appendix C: Settlem	nent Agreements and Ne	gotiated Agreements
Appendix C: Settlem	nent Agreements and Ne	gotiated Agreements

SUPPLEMENTAL ENVIRONMENTAL REPORT

OF NORFOLK SOUTHERN

REGARDING SETTLEMENT AGREEMENT

WITH INDIANA & OHIO RAIL SYSTEM

Dated: March 4, 1998

This Supplemental Environmental Report ("SER") is submitted on behalf of Norfolk Southern Corporation and Norfolk Southern Railway Company (collectively "NS") in Finance Docket No. 33388, in order to describe the environmental effects of certain operating changes that are expected to result from a settlement agreement recently entered into between NS and the Indiana & Ohio Rail System ("I&O"). This SER has been prepared in response to a letter dated February 13, 1998, from Elaine K. Kaiser, the Chief of the Surface Transportation Board's Section of Environmental Analysis ("SEA"), concerning possible environmental effects of executed settlement agreements between Applicants and other railroads. The letter states, in pertinent part:

If the implementation of a settlement agreement would not result in operating changes that exceed the Board's thresholds for environmental analysis when added to those changes proposed in the Primary Application's operating plans, the Applicants should provide SEA with a verified statement for that agreement. However, if the changes would exceed the Board's thresholds or result in changes in rail activities that already would exceed those thresholds, the Applicants must provide detailed environmental information regarding the proposed operating changes of any settlement agreement, including an assessment of potential environmental impacts consistent with the Board's rules at 49 CFR Part 1105. If this additional environmental analysis is necessary, the Applicants should provide the information as a Supplemental Environmental Report.

NS has agreed to enter into a trackage rights agreement with the I&O, pursuant to which the I&O is expected to operate an average of four trains per week (0.57 trains per day) over the Conrail Cincinnati line that will be operated by NS post-Transaction, between a point just south of Middletown, OH and Mill, OH, a distance of approximately 17 miles.

I&O currently has overhead trackage rights on the Conrail Cincinnati line between Cincinnati and Springfield, OH via Middletown, OH. These trackage rights, which will continue

Applicants' Environmental Report. The new settlement agreement with I&O will provide I&O with the right to enter and exit the Cincinnati line from a connection with certain I&O trackage just south of Middletown and to run I&O trains south on the Cincinnati line to Mill, OH, where there is another connection to a different part of the I&O system, and thence on to CSX. (I&O presently moves cars between its branch lines near Middletown and CSX by means of an intermediate switch with Conrail near Middletown and thence an interchange with CSX near Middletown.) Based on the volume of traffic that I&O has been moving between Middletown and a CSX connection under the existing arrangements and I&O's projections of reasonably foreseeable operations, it is expected that, for the foreseeable future, I&O will operate an average of four trains in total per week (or, two trains in each direction per week) pursuant to the new trackage rights on the Cincinnati line to be operated by NS post-Transaction. Further, it is expected that these I&O trains operating pursuant to the new trackage rights will carry an estimated 100,000 trailing gross tons per year.

No new connections need to be constructed in order for I&O to utilize the new trackage rights, nor would the exercise of these trackage rights involve any line abandonments.

The approximately 17 miles of the Conrail (to be NS) Cincinnati line between Middletown and Mill affected by the new I&O trackage rights is part of the 48-mile long Dayton to Ivorydale line segment, denominated as segment N-078 in the Draft Environmental Impact Statement ("DEIS"). The DEIS data for this line segment shows base year total daily trains as 11.7 and post-Acquisition total daily trains as 18.9, for a difference of 7.2 trains per day. The DEIS data for this segment also shows base year million gross tons of 24.3 and post-Acquisition million gross tons of 34.9, a percentage increase of 44%. Based on this data, the Dayton to

Ivorydale segment exceeded the thresholds for analysis for air and hazardous materials in the DEIS.

The addition of an average total of four I&O trains per week on this line segment translates into an addition of 0.57 trains per day, which has been rounded up to 0.6 trains per day for this report. Thus, the post-Acquisition total average daily trains will increase from 18.9 to 19.5, and the difference between base year and post-Acquisition total average daily trains will increase from 7.2 to 7.8.

The addition of 100,000 trailing gross tons per year means that the post-Acquisition MGT for this line segment will increase from 34.9 to 35, and the post-Acquisition percentage increase in MGT will remain at 44%.

The estimated change in air quality impacts resulting from the additional I&O train traffic associated with the settlement agreement is presented below. Traffic changes on the Dayton to Ivorydale line segment did not meet STB thresholds for noise impact analysis in the DEIS and would continue to not meet those thresholds even with the additional I&O trackage rights traffic resulting from the settlement agreement. The safety impacts discussion presented in the Applicants' Environmental Report is not affected by the change in traffic resulting from these additional I&O trains on the Dayton to Ivorydale segment. The amount of hazardous materials transported on this segment is not expected to be affected by the agreement.

As mentioned above, projected post-Acquisition traffic changes on the Dayton to Ivorydale segment met the STB thresholds for air quality analysis even before NS entered into its recent agreement with I&O. This SER presents a recalculation of the estimated increases in air emissions resulting from post-Acquisition traffic on this line segment, taking into account the expected tonnage increase from these additional I&O trackage rights trains.

The Dayton to Ivorydale line segment passes through four Ohio counties: Butler, Hamilton, Montgomery and Warren. Montgomery County is classified as attainment for air quality standards. The other three counties are classified as nonattainment for air quality standards. Table 1 below shows the estimated post-Acquisition emissions increases for this line segment previously reported by Applicants and reflected in the DEIS. Table 2 below provides a recalculation of the estimated post-Acquisition emissions increases for this line segment, taking into account the additional I&O traffic resulting from NS' settlement agreement with I&O. As a comparison of these tables shows, the additional I&O traffic makes only very small differences in emissions.

Table 1
Estimated Emissions Increases from Traffic Changes
(without the additional I&O trackage rights traffic)
on the Dayton to Ivorydale, OH Line Segment

	Length in County	Estimated Increases in Emissions (tons per year)					
County	(miles)	NOx	CO	VOC	SO2	PM	Pb
Butler	19.4	77.59	8.49	2.83	4.97	1.94	0.00016
Hamilton	9.5	37.51	4.16	1.39	2.43	0.95	0.000079
Montgomery	15.5	61.19	6.78	2.26	3.97	1.55	0.00013
Warren	3.7	14.61	1.62	0.54	0.95	0.37	0.000031

Table 2
Estimated Emissions Increases from Traffic Changes (including the additional I&O trackage rights traffic) on the Dayton to Ivorydale, OH Line Segment

	Length in County	Estimated Increases in Emissions (tons per year)					
County	(miles)	NOx	CO	VOC	SO2	PM	Pb
Butler	19.4	77.60	8.62	2.88	5.03	1.96	0.00016
Hamilton	9.5	37.92	4.21	1.41	2.46	0.96	0.000080
Montgomery	15.5	61.87	6.87	2.29	4.01	1.56	0.00013
Warren	3.7	14.77	1.64	0.55	0.96	0.37	0.000031

[THIS PAGE INTENTIONALLY LEFT BLANK]

Appendix C: Settlement Agreements and Negotiated Agreements
ATTACHMENT C-5
Verified Statement of William M. Hart, Vice President of Corporate Development, CS

Appendix C: Seti	tlement Agreements and Neg	gotiated Agreements
THIS DAG	E INTENTIONALLY L	FFT RI ANKI
[IIII]	EINTENTIONALLT	EFT BLANK
Proposed Conrail Acquisition	May 1998	Final Environmental Impact Statemen

VERIFIED STATEMENT

OF

WILLIAM M. HART – CORPORATE DEVELOPMENT CSX TRANSPORTATION, INC.

I am William M. Hart, Vice President of Corporate Development for CSX

Transportation, Inc. My educational background and relevant work experience are set forth in my verified statement in the Application, Vol. 2A at 137.

This statement is submitted in response to a letter dated February 13, 1998 from Elaine K. Kaiser, the Chief of the Surface Transportation Board's Section of Environmental Analysis ("SEA"), concerning possible environmental effects of settlements with other railroads. The letter states in pertinent part: "If the implementation of a settlement agreement would not result in operating changes that exceed the Board's thresholds for environmental analysis when added to those changes proposed in the Primary Application's operating plans, the Applicants should provide SEA with a verified statement for that agreement." I address in this statement nine settlement agreements CSXT entered into with other railroads, none of which is expected to result in operating changes that would exceed the Board's three-train-per-day threshold for environmental analysis.

Buffalo & Pittsburgh Railroad (and its affiliates Allegheny & Eastern Railroad, Rochester & Southern Railroad, Pittsburg & Shawmut Railroad, and Genesee and Wyoming, Inc.) ("B&P"). CSXT's Rate and Route Agreement with B&P and its affiliates is dated October 21, 1997. First, the Agreement sets revenue factors for joint line transportation of shipments. It is not possible to predict with any reasonable degree

of confidence the effect an agreement with respect to revenue factors will have on the level of traffic on any particular line segment or at any particular facility. Second, the Agreement provides for the rerouting of freight moving under an existing haulage agreement between a point in Ohio and a point in Pennsylvania to another route, which includes the Conrail Water Level Line (which will be allocated to CSX) between Cleveland and Erie. The amount of freight presently moving under this haulage agreement is less than one train per day and is predicted to continue to be less than one train per day post-Transaction. Accordingly, an increase in the number of trains is not predicted for the Quaker to Ashtabula and Ashtabula to Buffalo/Seneca line segments as a result of this Agreement. Instead, the freight will be hauled on one or more of the approximately 50 CSX trains expected to traverse these line segments between Cleveland and Erie each day, resulting in a de minimis increase in the gross ton miles ("GTMs") predicted to move over these line segments in the CSX Operating Plan.

Canadian National Railway ("CN"). CSXT's Interchange and Through Route

Agreement with CN is dated October 23, 1997. The Agreement provides for a

commercial relationship between CSXT and CN, including procedures for determining

revenue factors for joint line transportation of shipments, including reciprocal switching

rates at Buffalo, NY. The Agreement also provides CN limited direct interchange access

to Seneca Yard in Buffalo. Finally, the Agreement provides for CSXT and CN to

cooperate on certain potential construction projects and trackage rights arrangements over

CN in the Chicago area to further improve operating arrangements in that area. It is not

possible to predict with any reasonable degree of confidence the effect this agreement

will have on the level of traffic on any particular line segment or at any particular facility.

Moreover, CSXT does not presently have any plans to undertake any of the construction projects in the Chicago area identified in the Agreement.

Canadian Pacific Railway (and its affiliates Soo Line Railroad Company,

Delaware and Hudson Railway Company and St. Lawrence and Hudson Railway

Company) ("CP"). CSXT's Rate Making Agreement with CP and its affiliates is dated

October 20, 1997. The Agreement provides for a commercial relationship between CSX

and CP, including by setting revenue factors for joint line transportation of shipments. It

is not possible to predict with any reasonable degree of confidence the effect an

agreement with respect to revenue factors will have on the level of traffic on any

particular line segment or at any particular facility.

Central Railroad Company of Indiana/Central Railroad Company of Indianapolis

(collectively "Central"). CSXT's letter agreement with Central is dated October 21,

1997. The agreement provides for continuation of the present interchange arrangements.

This agreement will thus not result in any operational changes.

Chicago, SouthShore & South Bend Railroad (SouthShore). CSXT's Rate and Route Agreement with SouthShore is dated September 22, 1997. The Agreement provides for continuation of SouthShore's current arrangements with CSXT with respect to interchange points and revenue factors. This Agreement will thus not result in any operational changes.

Iowa Interstate Railroad (Iowa Interstate). CSXT entered into a trackage rights agreement with Iowa Interstate in 1985, and entered into a Supplemental Agreement with Iowa Interstate on January 19, 1998. Pursuant to the Supplemental Agreement, Iowa Interstate has the right to run one additional train in each direction on the CSX New Rock

Subdivision in Illinois between Joliet and Bureau, IL. This line includes the Joliet-Ottawa line segment and a portion of the Ottawa-Henry line segment. No change in traffic is predicted on either of these segments under the CSX Operating Plan. An increase of two trains per day will thus not exceed any threshold for environmental analysis.

Louisville & Indiana Railroad ("L&I"). CSXT entered into a letter agreement with L&I dated August 22, 1997, and subsequently entered into a Trackage Rights

Agreement dated October 21, 1997. The Trackage Rights Agreement provides CSXT trackage rights over L&I's line between Louisville, KY and Indianapolis, IN or between Louisville and Seymour, IN. It is anticipated that the exercise of these trackage rights would affect the post-Transaction traffic levels reported in the CSX Operating Plan as follows:

- 1. A pair of trains that the CSX Operating Plan routes between Cincinnati and Louisville over the CSX line between those cities (Cincinnati-Latonia, Latonia-Worthville, Worthville-Anchorage, and Anchorage-Louisville line segments) will instead operate over the CSX line between Cincinnati and Seymour (part of the CSX Cincinnati-Mitchell line segment) and over the L&I between Seymour and Louisville). The Cincinnati-Mitchell segment was predicted to have a decrease of 6.1 trains per day. The addition of two trains per day will thus result in a 4.1 train per day decrease. No environmental analysis of this line segment is thus required under the Board's regulations.
- 2. A pair of trains (or car loads equivalent to two trains) that the CSX Operating Plan routes between Nashville, TN and Lafayette, IN over the CSX line from Nashville to Terre Haute, IN (Nashville-Amqui, Amqui-Evansville, Evansville-Vincennes and Vincennes-Terre-Haute line segments), over the Conrail line from Terre Haute to Greencastle, and over the CSX line from Greencastle to Lafayette (Greencastle-Crawfordsville and Crawfordsville-Lafayette line segments) will instead be routed over the CSX line from Nashville to Louisville (the Nashville-Amqui and Amqui-Louisville line segments), over the L&I line from Louisville to Indianapolis, over the Conrail line from Indianapolis to Crawfordsville (Indianapolis-Avon, Avon-Clermont and Clermont-Crawfordsville line segments), and over the CSX line from Crawfordsville to Lafayette. This

rerouting will have the following effects on train counts and GTMs on CSX and Conrail line segments:

- a. There will be an increase in GTMs between Amqui and Louisville but there will not be an increase in the number of trains as the freight will be added to trains counted in the Operating Plan. This line segment was predicted to have a decrease of 1.4 trains per day. An increase in tonnage equivalent to two trains will thus not exceed any threshold for environmental analysis on this line segment.
- b. There will be an increase of two trains per day on the Indianapolis-Crawfordsville line. The change in train counts on these line segments taking into account the effect of the rerouting on the predicted changes in the CSX Operating Plan will thus be: (1) a decrease of 2.3 trains per day on the Indianapolis-Avon line segment; (2) an increase of 2.1 trains per day on the Avon-Clermont segment; and (3) an increase of 2.1 trains per day on the Clermont-Crawfordsville line segment. Environmental analysis is thus not required for any of these line segments under the Board's regulations.
- c. There will be a decrease in GTMs on the Amqui-Evansville line segment equivalent to two trains per day. There will be a decrease of two trains per day on the Evansville-Terre Haute and Terre Haute-Greencastle line segments.
- 3. The combined effect of the reroutings described in paragraphs 1 and 2 above on the L&I line will be as follows: Traffic on the L&I line segment from Louisville to Seymour would include four CSXT trains per day, and traffic on the line segment from Seymour to Indianapolis will include two CSXT trains per day. CSXT entered into this trackage rights agreement with L&I, in part, because we predicted that the Transaction would allow CSXT to divert freight from L&I. This agreement makes up for that expected diversion. I thus do not believe that the total level of traffic on either of these line segments will increase by as much as three trains per day as a result of the Agreement with L&I. Moreover, it should be noted that rerouting the pair of trains operating between Cincinnati and Louisville does not result in a net change in traffic in the Louisville areas; the only change is in their precise route through the Louisville area.

The August 22, 1997 letter agreement also contemplates a further trackage rights agreement between CSXT and L&I granting L&I overhead trackage rights over about 4.5 miles of Conrail trackage (to be allocated to CSXT) between L&I's Louisville-Indianapolis line and the Hawthorne Yard in Indianapolis to be used to interchange traffic

from L&I to NS. It is not anticipated that this agreement will result in any operational changes on the Conrail line segments or at Hawthorne Yard. The L&I traffic is currently interchanged with Conrail at MP 4.0 on the Conrail Louisville Secondary and transported via a Conrail local to Hawthorne Yard. The trackage rights agreement would simply allow L&I to make this move using its own power and crews.

Massachusetts Central Railroad. This agreement provides for the sale of a parcel of Conrail property to the Massachusetts Central Railroad. The sale will not result in any operational changes.

Providence & Worcester Railroad ("P&W"). The Agreement sets revenue factors for joint line transportation of shipments. It is not possible to predict with any reasonable degree of confidence the effect an agreement with respect to revenue factors will have on the level of traffic on any particular line segment or at any particular facility.

In sum, none of the agreements discussed above is expected to result in operational changes that would meet or exceed the relevant environmental thresholds set forth in the Board's environmental regulations at 49 C.F.R. § 1105.7(e). Moreover, CSX has no present plans under any of the agreements discussed above to undertake any construction projects or to abandon any current CSX or Conrail lines.

VERIFICATION

William M. Hart

[THIS PAGE INTENTIONALLY LEFT BLANK]

APPENDIX D Agency Consultation

CONTENTS

APPE	ENDIX D: AGENCY CONSULTATION	<u>Page</u> . D-1
	Agency Letters	
	TABLES	
D-1	Consultation With Agencies	. D-1

 Appendix D: Agency Consultation	
[THIS PAGE INTENTIONALLY LEFT BLANK]	

APPENDIX D AGENCY CONSULTATION

This appendix provides a list of the agencies Section of Environmental Analysis (SEA) contacted throughout the data collection and analysis process, including all agency consultation activity that SEA conducted after it prepared the Draft Environmental Impact Statement (Draft EIS). Table D-1 provides the agency name, dates of contact, state of site(s) in question, and major topics related to the technical analysis, such as safety issues, natural resources, and traffic conditions.

In addition, this Appendix also includes copies of 17 letters that agencies in eleven states delivered to SEA after the Draft EIS was completed. These letters follow Table D-1.

TABLE D-1 CONSULTATION WITH AGENCIES

Agency	Dates of Contact	State of Site	Major Topic
Federal			
Advisory Council on Historic Preservation	1/5/98; 1/14/98; 3/27/98	All	Historic properties/Section 106 review of Acquisition-related activities for all States and District of Columbia
Amtrak (National Railroad Passenger Corporation)	8/15/97; 8/19/97; 9/3/97; 9/30/97	All	Passenger Rail – all states.
U.S. Department of the Interior – Bureau of Indian Affairs	3/16/98	PA, OH	Federally-listed Native American Indian Properties.
U.S. Environmental Protection Agency (EPA) – DC	6/3/97	All	Air Quality and NEPA issue.
EPA – Region 2	10/9/97; 9/10/97	NY, NJ	Air Quality Conformity. Natural Resources – Little Ferry and Blasdell sites.
EPA – Region 3	9/16/97	MD	Natural Resources – Hagerstown site.
EPA – Region 3	9/5/97; 9/10/97; 3/26/98	PA	Natural Resources.

	NSULTATION		AGENCIES
Agency	Dates of Contact	State of Site	Major Topic
EPA – Region 5	9/5/97; 9/9/97; 9/10/97; 9/12/97; 9/16/97; 12/16/97	IL, IN, MI, OH	Natural Resources – Willow Creek; Tolleston; Butler; South Bend to Dillon Junction; Ecorse Junction; 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris-Danville; Hagerstown sites. Natural Resources – Collinwood; Willard; Bucyrus; Columbus; Oak Harbor; Vermilion sites. Air Quality and NEPA. Safety Issues. Noise Issues.
Federal Aviation Administration (FAA) – Airports District Office	4/9/98	IL, IN	Status of any master planning and capital improvements related to Gary/Chicago Airport in Gary, Indiana.
FAA – Airports District Office	4/9/98	ОН	Status of any master planning and capital improvements related to Hopkins International Airport in Cleveland, Ohio.
Federal Railroad Administration – Office of Public Affairs	8/4/97; 8/6/97; 9/4/97; 9/8/97; 9/9/97; 9/17/97; 9/19/97	All	Safety Issues.
National Park Service (NPS)	9/9/97	ОН	Natural Resources – Collinwood; Willard; Bucyrus; Columbus; Oak Harbor; Vermilion sites.
NPS – Midwest Branch	9/9/97; 9/10/97; 9/15/98; 4/13/98	IN, MI, IL, OH	Natural Resources – Willow Creek; Tolleston; Butler; South Bend to Dillon Junction; Ecorse sites. Natural Resources – 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris to Danville sites. Historic properties/Section 106 review of Acquisition-related activities in the State.
NPS – Northeast Region	9/10/97	NJ, NY	Natural Resources – Little Ferry and Blasdell sites.
NPS – Northeast Region Natural Resources Conservation	9/10/97; 3/28/98 9/9/97; 9/10/97	PA IN,	Natural Resources - Willow Creek;
Service (NRCS)		NJ, NY	Tolleston; Butler; South Bend to Dillon Junction; Little Ferry sites.
NRCS – East Regional Office	9/9/97	MD	Natural Resources.
NRCS – Harrisonburg Office	3/27/98	PA	Natural Resources.
NRCS – Illinois Office	9/9/97	IL	Natural Resources – 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris-Danville sites.
NRCS – Indianapolis Office	9/9/97	IN	Natural Resources.
NRCS – Wisconsin Office	9/9/97		Natural Resources.

	NSULTATION	*****	HGEIVEIES
Agency	Dates of Contact	State of Site	Major Topic
U.S. Coast Guard – First District	9/26/97	NJ	Navigation – Lehigh Valley Bridge; Newark Bay; New Jersey site.
U.S. Coast Guard – Headquarters, Washington, DC	9/26/97; 10/2/97	DC, PA, VA	Navigation – Anacostia River, DC; Appomattox River; Hopewell, VA; Schuylkill River, PA sites.
U.S. Coast Guard – Ninth District	9/29/97	IN, OH	Navigation – Grand Calumet Hammond, Indiana; Indiana Harbor East Chicago, Indiana; Maumee River Toledo, Ohio; Cuyahoga River, Cleveland, Ohio; Black River Lorain, Ohio sites.
U.S. Army Corps of Engineers (USACE)	9/4/97; 9/5/97	ОН	Natural Resources – Collinwood; Crestline; Greenwich; Sidney; Willard; Bucyrus; Columbus; Oak Harbor; Vermilion sites.
USACE – Philadelphia District	9/9/97	NJ	Natural Resources – Little Ferry site.
USACE – Buffalo District	9/9/97; 1/27/98; 1/28/98	NY, OH	Natural Resources – Blasdell and Gardenville Junction sites. Historic properties/Section 106 review of Acquisition-related activities involving Willard Yard.
USACE - Chicago District	9/10/97; 9/17/97	IL	Natural Resources – Illinois sites; 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris-Danville sites.
USACE – Detroit District	9/9/97	MI	Natural Resources.
USACE – Huntington District	9/5/97		Natural Resources.
USACE – Philadelphia District	9/10/97	PA	Natural Resources.
USACE – Rock Island Office	9/9/97; 9/22/97	IL	Natural Resources – 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris-Danville sites.
U.S. Dept. of Agriculture – National Forest Service (NFS) – Region 9	9/9/97; 9/10/97; 9/11/97; 3/27/98	IL, IN	Natural Resources – 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris to Danville; Willow Creek; Tolleston; Butler; South Bend to Dillon Junction sites.
U.S. Department of Transportation (DOT) – Bureau of Transportation Statistics	4/10/98	All	Safety Issues. Hazardous Materials Information.
U.S. DOT – Research and Special Programs Administration	7/11/97	All	Safety Issues. Hazardous Materials Information.
U.S. DOT – Federal Highway Administration	1/28/98; 2/17/98	All	Traffic Issues.

	NSULTATION	*****	TODITOLES
Agency	Dates of Contact	State of Site	Major Topic
U.S. Fish and Wildlife Service (USFWS) – Region 3 – Bloomington Field Office	9/15/97	IN	Natural Resources- Butler; Tolleston; Willow Creek; Dillon to South Bend sites.
USFWS – Region 5 – Cortland Field Office	9/15/97	NY	Natural Resources – Blasdell and Gardenville Junction sites.
USFWS – Region 3 – East Lansing Field Office	9/15/97	MI	Natural Resources – Ecorse Junction site.
USFWS – Region 5 – Hadley Field Office	9/9/97	MA	Natural Resources.
USFWS – Region 3 – Minneapolis Field Office	9/9/97	MN	Natural Resources.
USFWS – Region 5 – New York City Field Office	9/15/97	NY	Natural Resources.
USFWS – Region 5 – Pleasantville Field Office	9/9/97	NJ	Natural Resources – Little Ferry site.
USFWS – Region 3– Reynoldsburg Field Office	9/9/97; 9/10/97	ОН	Natural Resources – Collinwood; Crestline; Greenwich; Sidney; Willard, Bucyrus; Columbus; Oak Harbor; Vermilion sites.
USFWS – Region 3– Rock Island Field Office	9/9/97; 9/10/97; 3/20/98	IL	Natural Resources – 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris-Danville sites.
USFWS – Region 3– Rock Island Field Office	10/12/97	IL	Threatened and endangered species.
State/Regional			
Delaware Valley Regional Planning Commission	8/25/97; 8/27/97	PA	Traffic – Greenwich and Rutherford Intermodal sites.
Georgia Department of Transportation	7/28/97; 9/9/97	GA	Traffic – Hulsey Yard and Inman Intermodal sites. Land Use.
Illinois Commerce Commission	9/10/97; 9/11/97	IL	Natural Resources – 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris-Danville sites.
Illinois Department of Natural Resources – Coastal Zone Management	9/10/97	IL	Natural Resources – 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris-Danville sites.
Illinois Department of Natural Resources – Office of Water Resources	9/10/97	IL	Natural Resources.
Illinois Department of Transportation	7/28/97; 8/12/97; 8/13/97; 8/28/97	IL	Traffic – 59 th Street; 47 th Street; and Landers Intermodal sites.

CO	NSULTATION	*****	AGENCIES
Agency	Dates of Contact	State of Site	Major Topic
Illinois EPA Office	9/10/97	IL	Natural Resources – 75th Street; Exermont; Lincoln Avenue; Kankakee; Sidney; Tolono; Paris to Danville; Willow Creek; Tolleston; Butler; South Bend to Dillon Junction sites.
Indiana Department of Air Quality	8/29/97	IN	Air Quality issues.
Indiana Department of Environmental Management	8/29/97; 9/9/97	IN	Hazardous Waste Sites – Indiana.
Indiana Department of Natural Resources – Coastal Zone Management Program	9/9/97	IN	Land Use.
Indiana Department of Transportation, Vincennes District Office	3/20/98	MI	Status of any roadway improvements related to the planned January 1999 opening of a Toyota truck assembly plant in Princeton, IL.
Kentucky Transportation Cabinet	7/28/97; 8/14/97	KY	Traffic – Buechel Intermodal site.
Louisiana Department of Transportation and Development	7/28/97; 8/2/97; 8/28/97	LA	Traffic – New Orleans Intermodal site. Land Use.
Maryland Department of Natural Resources	9/15/97	MD	Natural Resources – Hagerstown site.
Maryland Department of the Environment	9/15/97	MD	Natural Resources – Hagerstown site. Hazardous Waste Sites – Hagerstown.
Maryland Department of Transportation	9/15/97	MD	Natural Resources – Hagerstown site.
Maryland Mass Transit Administration (MTA)	8/18/97; 8/28/97; 9/3/97; 9/9/97; 9/18/97	MD	Passenger Commuter Rail – MARC – Baltimore; Washington; Brunswick lines.
Maryland State Clearinghouse	9/15/97	MD	Natural Resources – Hagerstown site.
Maryland Transportation Authority	8/28/97	MD	Traffic – Baltimore E. Lombard Intermodal site.
Massachusetts Bay Transit Authority	8/6/97; 8/18/97; 8/28/97; 9/16/97; 9/5/97	MA	Passenger Commuter Rail – Boston area.
Metro North Commuter Railroad	8/19/97; 8/21/97	NJ, NY	Passenger Commuter Rail – New York City area.
Michigan Area Council of Governments	8/27/97; 8/29/97; 9/23/97; 9/24/97	IN	Land Use – South Bend to Dillon Junction site.
Michigan Department of Natural Resources	9/10/97	MI	Natural Resources – Ecorse Junction site.
Michigan Department of Environmental Quality	8/11/97; 9/2/97	MI	Hazardous Waste Sites – Ecorse Junction.

TABLE D-1 CONSULTATION WITH AGENCIES

	NSULTATION		
Agency	Dates of Contact	State of Site	Major Topic
Michigan Department of Transportation	7/28/97	MI	Traffic – Melvindale Intermodal site. Status of any improvements related to the planning study of a proposed joint-use intermodal facility at Livernois, MI.
Michigan Department of Transportation – Bureau of Urban and Public Transportation	4/17/98	MI	Status of any master planning and capital improvements related to the Dixie Highway underpass construction and consolidation of eastside rail lines in Monroe County, MI.
Mid-Ohio Regional Planning Commission – Transportation Department	8/22/97; 8/27/97; 9/5/97	ОН	Traffic – Bellevue Intermodal site. Land Use – Columbus site. Historic properties/Section 106 review – Cleveland and Columbus areas.
Missouri Department of Transportation	7/29/97; 8/27/97	МО	Traffic – Voltz and Luther Intermodal sites.
Natural Resource Conservation Service Data – Ohio	3/16/98	ОН	Prime farmland.
Natural Resource Conservation Service Data – Pennsylvania	3/16/98	PA	Prime farmland.
New Jersey Bureau of Site Management	8/29/97	NJ	Hazardous Waste Sites – New Jersey.
New Jersey Department of Environmental Protection	9/9/97	NJ	Natural Resources – Little Ferry site.
New Jersey Department of Coastal Zone Management	9/11/97; 9/15/97; 9/16/97; 9/22/97; 9/23/97	NJ	Land Use – Little Ferry site.
New Jersey Department of Transportation	7/29/97	NJ	Traffic data – Little Ferry; South Kearny; and Elizabeth Intermodal sites.
New Jersey Transit Authority	8/13/97; 8/20/97; 9/4/97; 9/10/97	NJ, NY	Passenger Commuter Rail – New York City area; Traffic – Intermodal site.
New York Fish and Wildlife	9/10/97	NY	Natural Resources – Blasdell and Gardenville Junction sites.
New York State Department of Environmental Conservation	9/10/97	NY	Natural Resources – Blasdell and Gardenville Junction sites.
New York State Department of Environmental Conservation	8/11/97; 8/14/97; 8/25/97; 8/26/97; 9/10/97	NY	Hazardous Waste Sites – Blasdell and Gardenville Junction.
Northeastern Ohio Areawide Coordinating Agency	8/27/97	ОН	Land Use.
Ohio Bureau of Underground Storage Tank Information	9/19/97	ОН	Hazardous Waste Sites – All Ohio sites.

	NSULTATION		
Agency	Dates of Contact	State of Site	Major Topic
Ohio Department of Natural Resources	9/5/97; 3/17/98; 3/20/98; 3/31/98	ОН	Natural Resources – Collinwood; Crestline; Greenwich; Sidney; Willard; Bucyrus; Columbus; Oak Harbor; Vermilion sites. Coastal Zone Management Area.
Ohio Department of Natural Resources Office Real Estate and Land Management; Coastal Zone Management	9/2/97; 9/5/97; 9/8/97	ОН	Land Use – Construction at Collinwood Yard; and Vermilion.
Ohio Department of Transportation	8/13/97; 8/27/97; 9/4/97; 9/18/97; 2/25/98	ОН	Traffic – Bellevue; Discovery Park; Toledo Intermodal sites.
Ohio Environmental Protection Agency – Solid and Hazardous Waste Division	9/19/97; 3/9/98	ОН	Hazardous Waste Sites – All Ohio sites. Air Quality issues.
Ohio State Preservation Society	3/20/98	ОН	State-listed Native American Indian properties.
Ohio Turnpike Commission – Division of Engineering	9/12/97	ОН	Land Use.
Pennsylvania Department of Environmental Protection	3/18/98; 3/31/98	PA	Coastal Zone Management Area.
Pennsylvania Department of Environmental Protection – Erie Field Office	3/28/98	PA	Natural Resources.
Pennsylvania Department of Transportation	8/22/97; 9/4/97	PA	Traffic – Pitcairn; Greenwich; Allentown; Rutherford; Morrisville Intermodal sites.
Pennsylvania State Preservation Society	3/20/98	PA	State-listed Native American Indian properties.
South East Michigan Council of Governments	8/15/97; 8/28/97	MI	Traffic – Melvindale Intermodal site.
Southeastern Pennsylvania Transit Authority	8/18/97; 8/20/97; 9/2/97; 9/11/97	PA, DE, NJ	Passenger Rail – Philadelphia area.
Southwestern Pennsylvania Regional Planning Commission	8/25/97; 8/26/97; 3/6/98	PA	Traffic – Pitcairn Intermodal site.
State Historic Preservation Officer (SHPO) – Alabama	7/23/97; 8/20/97	AL	Cultural Resources – Alabama sites.
SHPO – Connecticut	1/6/98	CT	Historic properties/Section 106 review of Acquisition-related activities in the State.
SHPO – Delaware Department of State, Division of Historical and Cultural Affairs	9/29/97; 1/30/98; 2/2/98; 3/23/98, 4/15/98	DE	Historic properties/Section 106 review of Acquisition-related activities in the State.
SHPO – Delaware Department of Justice	2/4/98; 4/15/98	DE	Cultural Resources – Delaware sites.

CONSULTATION WITH AGENCIES				
Адепсу	Dates of Contact	State of Site	Major Topic	
SHPO – Department of Consumer and Regulatory Affairs	9/29/97	DC	Cultural Resources – Washington, D.C. sites.	
SHPO – Florida Division of Historical Resources	8/7/97; 8/8/97; 12/17/97	FL	Cultural Resources – Florida sites.	
SHPO – Georgia Historic Preservation Division	8/7/97; 8/8/97; 9/9/97	GA	Cultural Resources – Georgia sites.	
SHPO – Illinois Historic Preservation Agency	7/16/97; 8/5/97; 8/5/97; 1/13/98; 1/15/98; 2/9/98; 2/26/98; 3/25/98; 4/6/98; 4/8/98; 4/14/98; 4/27/98	ΙL	Historic properties/Section 106 review of Acquisition-related activities in the State.	
SHPO – Indiana Division of Historic Preservation and Archaeology	7/18/97; 7/24/97; 9/19/97; 1/2/98; 2/6/98; 2/10/98	IN	Historic properties/Section 106 review of Acquisition-related activities in the State.	
SHPO – Kentucky Heritage Council	7/23/97; 8/4/97	KY	Cultural Resources – Kentucky sites.	
SHPO – Louisiana Office of Cultural Development	7/14/97; 8/8/97; 8/29/97	LA	Cultural Resources – Louisiana sites.	
SHPO – Maryland Division of Historical and Cultural Programs	2/2/98	MD	Historic properties/Section 106 review of Acquisition-related activities in the Stat.	
SHPO – Massachusetts Historical Commission	9/29/97; 1/13/98	MA	Historic properties/Section 106 review of Acquisition-related activities in the State.	
SHPO – Missouri Division of State Parks, Historic Preservation Program	2/11/98	МО	Historic properties/Section 106 review of Acquisition-related activities in the State.	
SHPO – Mississippi Department of Archives and History	8/15/97; 9/4/97	MS	Cultural Resources – Mississippi sites.	
SHPO – New Jersey Department of Environmental Protection	9/9/97; 12/9/97; 1/29/98	NJ	Cultural Resources – New Jersey sites.	
SHPO – New Jersey Division of Parks and Forestry, Historic Preservation Office	1/13/98; 1/23/98; 1/29/98; 2/9/98	NJ	Cultural Resources – New Jersey sites.	
SHPO – New York Office of Parks, Recreation, and Historic Preservation	1/22/98; 1/27/98; 1/29/98; 2/9/98	NY	Natural Resources and Historic properties issues related to Letchworth State Park and Portageville Bridge.	
SHPO – North Carolina Department of Cultural Resources, Division of Archives and History	7/3/97; 7/15/97; 9/29/97	NC	Cultural Resources – North Carolina sites.	

	NSULTATION		AGENCIES
Agency	Dates of Contact	State of Site	Major Topic
SHPO – Ohio Historical Society	6/10/97; 7/18/97; 7/23/97; 8/5/97; 12/17/97; 12/19/97; 12/17/97; 12/17/97; 12/19/98; 12/24/98; 1/12/98; 1/16/98; 1/22/98; 2/3/98; 2/4/98; 3/6/98; 3/16/98; 4/1/98	ОН	Cultural Resources – Ohio sites. Historic properties/Section 106 review of Acquisition-related activities in the State.
SHPO – Pennsylvania	3/19/98	PA	Cultural Resources - Pennsylvania sites.
SHPO – Pennsylvania Historical and Museum Commission	12/15/98; 3/19/98; 4/2/98; 4/8/98; 4/10/98; 4/13/98	PA	Historic properties/Section 106 review of Acquisition-related activities in the State.
SHPO – Rhode Island Historical Preservation Commission	9/29/97	RI	Cultural Resources – Rhode Island sites.
SHPO – South Carolina Department of Archives and History	1/13/98	SC	Historic properties/Section 106 review of Acquisition-related activities in the State.
SHPO – Tennessee Historical Commission	7/10/97; 8/8/97; 8/22/97	TN	Cultural Resources – Tennessee sites.
SHPO – West Virginia Division of Culture and History	8/8/97	WV	Cultural Resources – West Virginia sites.
Tennessee Department of Transportation – Planning Division	7/28/97; 9/4/97	TN	Land Use.
Tri-County Regional Planning Commission	8/25/97	PA	Traffic – Rutherford Intermodal site.
Virginia Department of Historic Resources	1/21/98; 3/15/98	VA	Historic properties/Section 106 review of Acquisition-related activities in the State.
Virginia Railway Express	8/18/97; 9/4/97	VA	Virginia Railway Express (VRE).
Local			
Alexandria, Mayor's Office	9/22/97	IN	Land Use – Alexandria site.
Alexandria Fire Department	8/11/97	IN	Hazardous Waste Sites.
Alexandria Plan Commission	9/2/97; 9/5/97; 9/8/97; 9/9/97; 9/11/97; 9/15/97; 9/16/97; 9/22/97; 9/29/97; 9/30/97; 10/1/97	IN	Land Use – Alexandria site.

TABLE D-1 CONSULTATION WITH AGENCIES

	NSULTATION		
Agency	Dates of Contact	State of Site	Major Topic
American Medical Response	4/1/98	MI	Emergency Response – Monroe County.
Amherst Hospital	3/30/98	ОН	Emergency Response – Lorain – Oberlin Area.
Ashtabula Fire Department	3/19/98	ОН	Emergency Response – Ashtabula.
Ashtabula Police Department	3/18/98	OH	Emergency Response – Ashtabula.
Avon Lake Police Department	3/16/98	OH	Emergency Response – Avon Lake.
Avon Lake Fire Department	3/17/98	ОН	Emergency Response – Avon Lake.
Baltimore Department of Public Works	8/15/97	MD	Traffic – Baltimore Intermodal sites.
Bellevue Safety Services	3/26/98	ОН	Emergency Response – Bellevue.
Berea Fire Department	3/18/98	ОН	Emergency Response – Berea.
Berea Police Department	3/18/98	ОН	Emergency Response – Berea.
Bergen County Zoning Board	8/27/97; 9/2/97; 9/15/97; 9/16/97; 9/22/97; 9/23/97	NJ	Land Use – Little Ferry site.
Berlin Township Fire Department	2/30/98	ОН	Emergency Response – Berlin Township.
Blasdell Fire Department	9/2/97	NY	Hazardous Waste Sites – Blasdell and Gardenville Junction.
Bucyrus Fire Department	9/9/97	OH	Hazardous Waste Sites – Bucyrus.
Buffalo Department of Environment and Planning	9/8/97	NY	Land Use.
Bureau of Indian Affairs – Minnesota Field Office	10/2/97	MI	Native American Issues.
Butler Planning Commission	9/2/97; 9/3/97	IN	Land Use – Butler site.
Butler Fire Department	8/12/97; 9/15/97	IN	Hazardous Waste Sites – Butler.
Calumet City Fire Department	3/20/98	IL	Emergency Response – Calumet City.
Cash Foundation Hospital	3/19/98	IL	Emergency Response in Champaign.
Champaign County Plan Commission	8/27/97; 8/29/97; 9/2/97; 9/24/97; 10/1/97	IL	Land Use – Tolono; Sidney sites.
Chicago Fire Department	10/6/97	IL	Hazardous Waste Sites – 75 th Street.
Chicago Planning Department	8/27/97; 8/29/97; 9/11/97; 9/22/97	IL	Land Use – 75 th Street site.
Chicago Department of Transportation	8/28/97; 10/1/97	IL	Traffic – 59 th Street; 47 th Street; and Landers Intermodal sites.
Chrisman Mayor's Office	9/16/97; 9/22/97; 9/23/97; 9/24/97; 9/25/97	IL	Land Use – Paris to Danville abandonment.

TABLE D-1 CONSULTATION WITH AGENCIES

CONSULTATION WITH AGENCIES			
Agency	Dates of Contact	State of Site	Major Topic
Cleveland Planning Commission	9/11/97; 9/12/97; 9/15/97; 9/16/97; 9/22/97; 9/23/97; 9/24/97; 9/25/97; 9/26/97	ОН	Land Use – Construction at Collinwood Yard in Cleveland.
Cleveland Fire Department	9/16/97	ОН	Hazardous Waste Sites – Collinwood Yard.
Cleveland Natural History Museum	3/20/98; 3/26/98; 3/31/98	ОН	Determination of Native American Indian lands in Cleveland area.
Clyde Police Department	3/16/98	ОН	Emergency Response – Clyde area.
Columbus Fire Department	9/15/97	ОН	Hazardous Waste Sites - Columbus.
Columbus Planning Commission	9/5/97	OH	Land Use.
Community Care Ambulance Network	3/18/98	ОН	Emergency Response – Ashtabula.
Crawford County Development Board	8/27/97	ОН	Land Use – Bucyrus/Crestline site.
Crestline Fire Department	9/5/97	ОН	Hazardous Waste Sites - Crestline.
Cuyahoga County Planning Department	9/2/97; 9/8/97; 9/9/97; 9/11/97; 9/15/97; 9/16/97	ОН	Land Use – Construction at Collinwood Yard in Cleveland.
Danville Fire Department	3/17/98	IL	Emergency Response – Danville.
Danville Police Department	3/18/98	IL	Emergency Response – Danville.
Dearborn Emergency Response	9/2/97	MI	Hazardous Waste Sites – Ecorse Junction.
Defiance Fire Department	3/16/98	OH	Emergency Response – Defiance.
Defiance Police Department	3/16/98	OH	Emergency Response – Defiance.
DeKalb County (IN) Planning Commission	8/27/97	IN	Land Use – Construction in Butler.
Delaware Valley Regional Planning Commission – Traffic Count Office	8/25/97; 8/27/97; 9/12/97; 9/15/97	PA	Traffic Issues.
Detroit Emergency Management	8/27; 9/2/97	MI	Hazardous Waste Sites – Ecorse Junction.
Detroit Fire Department	8/27/97	MI	Hazardous Waste Sites – Ecorse Junction.
Detroit Planning and Development	9/11/97; 9/12/97; 9/15/97; 9/16/97; 9/22/97; 9/23/97; 9/24/97; 9/25/97; 9/26/97; 9/27/97; 9/30/97	MI	Land Use – Construction at Ecorse Junction in Detroit.
East Chicago EMS	3/20/98	IL	Emergency Response – East Chicago.
East Chicago Fire Department	3/20/98	IL	Emergency Response – East Chicago.
East Chicago Police Department	3/20/98	IL	Emergency Response – East Chicago.

TABLE D-1 CONSULTATION WITH AGENCIES

CONSULTATION WITH AGENCIES				
Agency	Dates of Contact	State of Site	Major Topic	
Edgar County Board	8/27/97; 9/2/97; 9/15/97; 9/23/97; 9/29/97; 9/30/97	IL	Land Use – Paris to Danville site.	
Enrico Fermi Nuclear Plant	3/19/98	MI	Emergency Response – Area around plant (Newport, MI).	
Erie County Department of Environmental Planning	9/8/97	NY	Land Use – Blasdell; Gardenville Junction sites.	
Erie County Department of Planning	8/28/97; 9/2/97	NY	Land Use – Blasdell; Gardenville Junction sites.	
Erie County Planning Commission	9/2/97; 9/5/97	ОН	Land Use – Vermilion site.	
Erie County Sheriff Department	3/19/98	ОН	Emergency Response – Erie County, including Berlin Township, Huron Township.	
Erie Fire Department	3/31/98	ОН	Hazardous Waste Sites.	
Fostoria Mayor's Office	3/16/98	OH	Emergency Response – Fostoria.	
Gary Fire Department of Planning – Zoning Division	8/27/97	IN	Land Use.	
Gary Fire Prevention Department	3/26/98	IN	Emergency Response – Gary.	
Gary Fire Department	8/11/97	IN	Hazardous Waste Sites - Tolleston.	
Georgetown Mayor's Office	9/11/97	IL	Land Use – Paris to Danville abandonment.	
Greenwich (OH) Police Department	3/30/98	ОН	Emergency Response – Greenwich.	
Groton Township Fire Department	3/30/98	ОН	Emergency Response – Groton Township, Oxford Township.	
Hagerstown Department of Planning and Zoning	9/2/97; 9/8/97; 9/9/97; 9/24/97	MD	Land Use – Hagerstown site.	
Hagerstown Department of the Environment	9/15/97	MD	Natural Resources.	
Hagerstown Department of Planning and Zoning	9/2/97; 9/8/97; 9/9/97; 9/15/97; 9/24/97; 9/29/97	MD	Land Use.	
Hagerstown Fire Department	8/11/97	MD	Hazardous Waste Sites – Hagerstown.	
Hammond Fire Department	3/20/98	IN	Emergency Response – Hammond.	
Hanover County EMS	3/17/98	VA	Emergency Response, Hanover County.	
Hanover County Fire Department	3/17/98	VA	Emergency Response, Hanover County.	
Herron Valley Ambulance	4/1/98	MI	Emergency Response – Plymouth Township.	
Hudson County Department of Finance and Administration	9/4/97	NJ	Traffic – South Kearny Intermodal sites.	

	NSULTATION	****	HOLITOILO
Agency	Dates of Contact	State of Site	Major Topic
Huron County Commissioners Office	8/26/97; 9/17/97; 9/19/97	ОН	Land Use – Greenwich Junction site.
Huron County Engineers Office	9/18/97	OH	Traffic – Bellevue Intermodal site.
Huron Fire Department	3/18/98	OH	Emergency Response – Huron.
Jefferson County Public Works	9/5/97	KY	Traffic – Louisville Intermodal site.
Kankakee County Planning Commission	8/27/97; 9/22/97	IL	Land Use – Kankakee site.
Kankakee Planning Department	9/3/97; 9/15/97	IL	Land Use – Kankakee site.
Kansas City Department of Public Works	7/29/97; 8/27/97; 9/10/97	МО	Traffic – Voltz and Luther Intermodal sites.
LaGrange Fire Department	3/16/98	ОН	Emergency Response – Village and Township of LaGrange.
LaGrange Police Department	3/16/98	ОН	Emergency Response, Village of LaGrange.
Lake County Department of Planning	8/27/97	IN	Land Use – Tolleston site.
LaPorte County Planning Commission	8/27/97; 9/23/97; 9/24/97	IN	Land Use – South Bend to Dillon Junction site.
Life Care, Inc.	3/18/98	ОН	Emergency Response, Lorain.
Lorain Police Department	3/19/98	OH	Emergency Response – Lorain.
Lorain Fire Department	3/18/98	ОН	Emergency Response – Lorain.
Lucas County Planning Commission	8/28/97; 9/3/97; 9/9/97; 9/15/97; 9/16/97; 9/18/97; 9/22/97	ОН	Land Use – Toledo to Maumee and Pivot Bridge sites.
Madison County (IN) Planning Commission	8/27/97; 8/28/97	IN	Land Use – Construction in Alexandria; not within his jurisdiction.
Milan Volunteer Fire Department	3/26/98	ОН	Emergency Response – Milan.
Monroe Fire Department	3/19/98	MI	Emergency Response – Monroe.
Monroe County Sheriff Department	3/19/98	MI	Emergency Response – Monroe County.
Monroe Township Fire Department	4/1/98	MI	Emergency Response – Monroe.
New London Fire Department	3/26/98	ОН	Emergency Response – New London.
New London Emergency Ambulance Manager	3/17/98	ОН	Emergency Response – New London area.
New London Police Department	3/17/98	ОН	Emergency Response – New London area.
North Central EMS, Vermilion and Greenwich.	3/30/98	ОН	Emergency Response – Vermilion and Greenwich.
North Central EMS/Berlin Heights	3/16/98	ОН	Emergency Response – Village and Township of Berlin.

CO	CONSULTATION WITH AGENCIES			
Agency	Dates of Contact	State of Site	Major Topic	
Norwalk Fire Department	3/17/98	ОН	Emergency Response - Norwalk.	
Olmsted Falls Fire Department	3/17/98	ОН	Emergency Response – Olmsted Falls.	
Olmsted Falls Police Department	3/17/98	OH	Emergency Response – Olmsted Falls.	
Ottawa County Planning Commission	8/29/97	ОН	Land Use – Oak Harbor site.	
Paris Planning Commission	9/11/97; 9/15/97; 9/17/97	IL	Land Use – Paris to Danville abandonment.	
Plymouth Community Fire District	4/1/98	MI	Emergency Response – Plymouth Township.	
Plymouth Fire Department	3/20/98	MI	Emergency Response – Plymouth.	
Plymouth Police Department	3/20/98	MI	Emergency Response – Plymouth.	
Portage Planning Commission	9/3/97; 9/5/97; 9/8/97; 9/9/97	IN	Land Use – Construction within Portage at Willow Creek site.	
Portage Fire Department	8/11/97	IN	Hazardous Waste Sites – Willow Creek.	
Porter County Planning Commission	8/26/97	IN	Land Use – Construction within Portage at Willow Creek site.	
Providence Hospital	3/16/98; 3/30/98	ОН	Emergency Response, Sandusky.	
River Rouge Community Development	9/11/97; 9/12/97; 9/15/97; 9/24/97	MI	Land Use – Construction at Ecorse Junction in River Rouge.	
Sandusky Fire Department	3/16/98; 3/26/98; 3/30/98	ОН	Emergency Response – Sandusky.	
Sandusky Engineering Department	3/2/98	ОН	Land Use.	
Sandusky Police Department	3/16/98; 3/30/98	ОН	Emergency Response – Sandusky.	
Seneca County	9/29/97; 9/30/97	OH	Land Use.	
Shelby County	8/26/97	OH	Land Use – Sidney site.	
South Bend Fire Department	9/8/97	IN	Hazardous Waste Sites - South Bend.	
St. Clair County – Zoning Office	9/22/97	IL	Land Use.	
St. Joseph County – Area Planning	8/27/97; 9/2/97	IN	Land Use – South Bend to Dillon Junction site.	
St. Louis Board of Public Service	9/10/97; 9/15/97	МО	Traffic – Luther Intermodal site.	
Taylor Fire Department	3/19/98; 4/1/98	MI	Emergency Response - Taylor.	
Taylor Police Department	3/20/98	MI	Emergency Response – Taylor.	
Toledo Fire Department	9/17/97; 9/19/97	ОН	Hazardous Waste Sites – Toledo to Maumee; Pivot Bridge.	
Toledo Metropolitan Area Council of Governments	8/22/97	ОН	Traffic – Toledo Airline Intermodal site.	
Tolono Fire Department	3/19/98	ОН	Emergency Response – Tolono.	
Tolono Police Department	3/19/98	ОН	Emergency Response – Tolono.	

CONSULTATION WITH AGENCIES			
Agency	Dates of Contact	State of Site	Major Topic
Trenton Bureau of Coastal Regulations	9/23/97	NJ	Land Use.
Tri-Community Joint Fire District	3/30/98	ОН	Emergency Response – Greenwich.
Tri-County Regional Planning Commission	8/25/97	PA	Land Use.
Union County Division of Engineering	9/10/97	NJ	Traffic – Elizabeth Intermodal site.
Vermilion County Board	8/27/97; 8/29/97; 9/9/97	IL	Land Use.
Vermilion County Planning Commission	9/2/97; 9/5/97	IL	Land Use.
Vermilion Fire Department	9/15/97	OH	Hazardous Waste Sites - Vermilion.
Vermilion Fire Department	3/26/98	OH	Emergency Response – Vermilion.
Vermilion Police Department	3/16/98; 3/30/98	ОН	Emergency Response – Vermilion.
Village of Blasdell Mayor	9/24/97; 9/30/97; 10/1/97	NY	Land Use – Blasdell site.
Village of Caseyville	8/26/97; 8/27/97; 9/24/97; 9/25/97; 9/26/97; 9/29/97; 10/1/97	IL	Land Use – Exermont site.
Village of Caseyville Fire Department	9/25/97	IL	Hazardous Waste Sites – Exermont.
Village of Dolton Clerk's Office	9/22/97; 9/23/97; 9/24/97; 9/30/97; 10/1/97	IL	Land Use – Lincoln Avenue site.
Village of Grafton Fire Department	3/26/98	ОН	Emergency Response – Grafton.
Village of Grafton Police Department	3/17/98; 3/26/98	ОН	Emergency Response – Grafton.
Village of Greenwich – Mayor	9/29/97; 9/30/97; 10/1/97; 10/6/97	ОН	Land Use – Greenwich site.
Village of Oak Harbor	3/17/98		Emergency Response - Oak Harbor.
Village of Ridgefield Park City Attorney	8/21/97	NJ	Hazardous Waste Sites – NYS&W Fuel Depot.
Village of Ridgefield Park Construction Commission	8/25/97	NJ	Hazardous Waste Sites.
Village of Ridgefield Park Fire Department	8/13/97; 8/25/97	NJ	Hazardous Waste Sites – Little Ferry.

		G	
Agency	Dates of Contact	State of Site	Major Topic
Village of Sidney	9/2/97; 9/9/97; 9/15/97; 9/16/97; 9/22/97; 9/29/97; 9/30/97; 10/1/97	IL	Land Use – Sidney site.
Village of Sidney Fire Department	9/5/97	IL	Hazardous Waste Sites – Sidney.
Village of Tilton Fire Department	3/18/98	IL	Emergency Response – Tilton.
Village of Tilton Mayor	3/18/98	IL	Emergency Response – Tilton.
Village of Tolono	9/9/97	IL	Land Use – Tolono site.
Village of Wellington Fire Department	3/16/98	ОН	Emergency Response – Wellington.
Village of Westville Mayor	9/16/97; 9/22/97; 9/23/97; 9/24/97	IL	Land Use.
Washington County Planning Commission	8/27/97	MD	Land Use – Hagerstown site.
Wayne County Road Department	9/9/97	MI	Traffic – Melvindale Intermodal site.
Wayne County Planning Department	8/29/97; 9/2/97; 9/4/97; 9/8/97	MI	Land Use – Ecorse Junction site.
West Seneca Building Inspector	9/2/97; 9/10/97	NY	Hazardous Waste Sites – Gardenville Junction.
West Seneca Supervisor's Office	9/19/97	NY	Land Use.
West Seneca Police Station	9/3/97; 9/10/97	NY	Hazardous Waste Sites – Gardenville Junction.
West Seneca Fire Department	8/12/97; 9/19/97	NY	Hazardous Waste Sites – Gardenville Junction.
Willard Fire Department	9/15/97; 3/16/98	OH	Hazardous Waste Sites - Willard Yard.
Willard Police Department	3/16/98	ОН	Emergency Response – Willard.
Woodlawn Fire Department	8/27/97	NY	Hazardous Waste Sites – Blasdell.
Woodville Fire Department	9/17/97	ОН	Hazardous Waste Sites - Oak Harbor.
Woodville Fire Department	3/30/98	ОН	Emergency Response – Woodville.

Agency Letters

	A K. D. Anna Canada	14-4'	
·	Appendix D: Agency Consul	tation	
[TH]	S PAGE INTENTIONALLY	LEFT BLANK]	

STATE OF CONNECTICUT

CONNECTICUT HISTORICAL COMMISSION

January 6, 1998

Ms. Elaine K. Kaiser Section of Environmental Analysis Surface Transportation Board Washington, D.C. 20423

CENTRAL ADMINISTRATIVE UN

Subject: Finance Docket No. 33388 CSX and Norfolk Southern

Control and Acquisition - Conrail

ENVIRONMENTAL DOCUMENT

Dear Ms. Kaiser:

The State Historic Preservation Office has reviewed the Environmental Impact Statement prepared concerning the above-named project. This office expects that the proposed undertaking will have no effect on historic, architectural, or archaeological resources listed on or eligible for the National Register of Historic Places. This comment upon our understanding that no changes to rail line segments, rail yards, or intermodal facilities and no new construction projects are proposed within Connecticut.

This office appreciates the opportunity to have reviewed and commented upon the proposed undertaking.

We recommend that the responsible agency provide concerned citizens with the opportunity to review and comment upon the proposed undertaking in accordance with the National Historic Preservation Act of 1966 and the Connecticut Environmental Policy Act.

For further information please contact Dr. David A. Poirier, Staff Archaeologist.

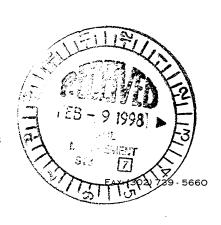
Sincerely

annahan

Director and State Historic

Preservation Officer

STATE OF DELAWARE DEPARTMENT OF STATE DIVISION OF HISTORICAL AND CULTURAL AFFAIRS HISTORIC PRESERVATION OFFICE


15 THE GREEN

DOVER ● DE ● 19901-3611

DOCUMENT

TELEPHONE: (302) 739 - 5685

February 2, 1998

Office of the Secretary Case Control Unit Finance Docket No. 33388 Surface Transportation Board 1925 K Street, NW Washington DC 20423-0001

ATTN: Elaine K. Kaiser, Chief

Environmental Project Director

Environmental Filing

RE: CSX and Norfolk Southern control and acquisition of Conrail; Draft Environmental Impact Statement (DEIS)

Dear Ms. Kaiser:

Attached is the original letter containing the DE SHPO's comments on the DEIS, fax cover sheet, and fax confirmation, regarding the above-referenced. Ten copies of these documents, as well as this letter, are also enclosed.

I would like to add two editorial comments concerning the DEIS. First, it would be helpful if the FEIS contained more detailed maps of the rail segments under consideration. In Delaware, several of the line segments are very close together, making it difficult to identify segment starting/ending points on the small scale maps provided in the DEIS. Second, the DE SHPO's previous correspondence with STB (letter dated October 16, 1998), was not included with other SHPO correspondence in Appendix M of the DEIS.

Thank you for your consideration of these comments. If you have any questions, please do not hesitate to contact me.

Sincerely,

Gwen Davis Archaeologist

Enclosures

cc: Martha Catlin, ACHP

DELAWARE STATE HISTORIC PRESERVATION OFFICE 15 THE GREEN, DOVER, DE 19901 (302) 739-5685 FAX (302) 739-5660

FAX TRANSMITTAL SHEET

To:

Office of the Secretary Case Control Unit Finance Docket No. 33388 Surface Transportation Board 1925 K Street, NW Washington DC 20423-0001

ATTN: Elaine K. Kaiser, Chief

Environmental Project Director

Environmental Filing

From:

Joan N. Larrivee Deputy SHPO

Company:

STB/SEA

Date:

Feb. 2, 1998

Fax Number:

Total Number of Pages including Cover:

(202) 565-9000

Re:

CSX and Norfolk Southern control and acquisition of Conrail; Draft Environmental Impact Statement (DEIS)

Notes/Comments

DE SHPO comments regarding the DEIS. Original with 10 copies will follow ASAP. Any questions, please contact Gwen Davis at number cited above.

(Note: faxed from DAREC/Parks+Rec. office)

MESSAGE CONFIRMATION

02/02/98 19:44 ID=DE STATE PARKS:DOVER CENTRAL OFF

DATE

S,R-TIME '

DISTANT STATION ID

MODE

PAGES

RESULT

02/02

02'26"

202 927 6225

CALLING

Ø5

OΚ

0000

02/02/98

19:40

DE STATE PARKS; DOVER CENTRAL OFF → 912025659000

NO.001

P01

DELAWARE STATE HISTORIC PRESERVATION OFFICE 15 THE GREEN, DOVER, DE 19901 (302) 739-5685 FAX (302) 739-5660

FAX TRANSMITTAL SHEET

To:

Office of the Secretary Case Control Unit Finance Docket No. 33388 Surface Transportation Board 1925 K Street, NW Washington DC 20423-0001

ATTN: Elaine K. Kaiser, Chief

Environmental Project Director

Environmental Filing

From:

Joan N. Larrivee Deputy SHPO

Company: STB/SEA D-22

Date:

Feb. 2, 1998

STATE OF DELAWARE DEPARTMENT OF STATE DIVISION OF HISTORICAL AND CULTURAL AFFAIRS HISTORIC PRESERVATION OFFICE 15 THE GREEN

15 THE GREEN

DOVER • DE • 19901-3611

6 FEB = 9 1998 MAIL MANAGEMENT STB 7739 · 5660

TELEPHONE: (302) 739 - 5685

January 30, 1998

Office of the Secretary
Case Control Unit
Finance Docket No. 33388
Surface Transportation Board
1925 K Street, NW
Washington DC 20423-0001

ATTN: Elaine K. Kaiser, Chief

Environmental Project Director

Environmental Filing

RE: CSX and Norfolk Southern control and acquisition of Conrail; Draft Environmental Impact Statement (DEIS)

Dear Ms. Kaiser:

Thank you for providing us with the DEIS documents. Our comments concern sections relating to compliance with Section 106 of the National Historic Preservation Act, generally, and issues affecting the State of Delaware, specifically. Where relevant, specific sections of the DEIS are cited.

APPROACH TO CULTURAL RESOURCES

In general, the DE SHPO finds the Surface Transportation Board, Section of Environmental Analysis (SEA)'s approach to identifying historic properties, and determining potential impacts thereon, to be inconsistent with Section 106 of the National Historic Preservation Act, and its implementing regulations (36 CFR Part 800).

In a number of locations within the DEIS, SEA indicates that it considers only construction and abandonment activities to be relevant to effects on historic properties. Appendix G (Volume 5A), specifically states that traffic changes for rail segments, rail yards, and intermodal facilities have "little effect" on historic and cultural resources. However, SEA provides no justification for this statement. It could well be argued that an increase of eight (8) trains per day on a line that runs through a historic district would have an effect, as defined in 36 CFR Part 800.9(a), and

Letter to E. Kaiser January 30, 1998 Page 2

Adverse Effects, as defined by 36 CFR Part 800.9(b)(2) and (3), specifically. We recognize that SEA had to develop and apply several criteria to address various environmental effects, such as noise and air quality. Nevertheless, SEA should recognize that even if these thresholds, either for environmental analysis or for significance, are not met by a certain rail segment, it does not necessarily mean that the Criteria of Adverse Effect established under 36 CFR Part 800.9(b) do not apply.

SEA also indicates that the Board is limited to imposing mitigating conditions on the Applicants only in circumstances involving abandonment and new constructions. This is cited as an additional reason for not looking at historic properties in terms of effects from the other three identified activity areas. However, this limitation does not impede the SEA from making recommendations for mitigation on a host of other environmental areas affected by activities that do not relate to abandonment or construction, as evidenced in Volume 4.

Volume 1, Chapter 3, Section 3.13.3 discusses potential mitigation strategies for effects on historic properties. SEA indicated that "typically", the Board will require HABS/HAER documentation for effects on structures. Although this is recognized as a standard mitigation measure, the SEA also should recognize that 36 CFR Part 800 requires that avoidance and minimization alternatives to Adverse Effects also be considered.

The SEA's discussion of "typical" Board requirements for mitigation of archaeological properties also seems to lack consideration of avoidance of resources, and is inconsistent with the Advisory Council's regulations. The DEIS states that the railroad will be required to "cease construction or abandonment salvage activities if significant archaeological resources are identified during salvage of a rail line approved for abandonment or new construction of a rail line. Activities could resume after the railroad contacts the appropriate SHPO regarding identification and evaluation of any artifacts that have been discovered." This is a reversal of the steps required by 36 CFR Part 800.4, and sets all such projects up as 800.11 situations (addresses unanticipated discoveries). Additionally, it appears to entrust the reporting of "significant archaeological resources" to rail construction workers, who may not have the expertise to identify such properties.

DELAWARE

Volume, 3A Chapter 5-DE describes the potential impacts to Delaware. Only four of the nine rail segments met the Board's threshold for environmental analysis. SEA did not find that transportation, energy, hazardous materials/waste sites, natural resources or land use/socioeconomics were relevant technical areas for analysis in Delaware. (This seems to contradict

Letter to E. Kaiser January 30, 1998 Page 3

chart provided in Executive Summary, which indicates that several lines met the threshold for HAZMAT issues). Of the remaining technical areas, SEA found that only Cultural Resources required further study (i.e, compliance w/Section 106 re Shell Pot Bridge). Nevertheless, SEA will also recommend coordination among CSX and concerned groups in the City of Newark regarding existing and future safety concerns, particularly at-grade crossings, despite the fact that the increase in rail traffic was not considered significant by the Board's standards. Volume 4 provides SEA's Preliminary Recommended Environmental Mitigation for these two issues, in comments Numbers 13 and 25, respectively. The DE SHPO concurs that these recommendations are appropriate.

However, in general, the DE SHPO views the Section 106 process to be incomplete for the entire undertaking, not just the Shell Pot Bridge. Specifically, 36 CFR Part 800.4 and 800.5 (identification, evaluation and determination of effects on historic properties), have not been appropriately addressed. Appendix G contains an overview of the SEA's research concerning identification and evaluation of historic properties. SEA identifies steps such as background research, development of historic contexts, application of the National Register of Historic Places criteria, and application of 36 CFR Part 800.9 (criteria of effect). In another section--Volume 3A, Chapter 5-DE--SEA indicates that, apparently through this process, they determined the Shell Pot Bridge to be eligible for the National Register. Note, however, that the DE SHPO has not received any formal Determination of Eligibility for this property. To the best of our knowledge, the only information SEA collected concerning this property is that which we ourselves provided to your consultant, McGinley Hart. Recently, the Delaware Department of Transportation has provided a draft historic context for railroad bridges. This may prove helpful in the formal evaluation of this, and other affected properties in Delaware.

The DE SHPO also provided information concerning other resources or potential resources on/near the Shell Pot Connector, as well as on the main CSX and Amtrak (NEC) lines; information on the latter was sent to the Applicants' consultant, Dames and Moore. We have no indication that the presence of these properties has been taken to account. Neither of the consultants visited our office to acquire complete information on known and potential historic properties in the Area of Potential Effect for the project. In particular, the Northeast Corridor, historically known as the Wilmington Rail Viaduct, is itself an identified historic property, that includes rail lines, bridges, and other related structures. Significant traffic increases are expected on rail segments on the Northeast Corridor. The STB and/or the Applicants will need to formally address affects on this historic property.

Letter to E. Kaiser January 30, 1998 . Page 4

Thank you for your consideration of these comments. If there is any way in which we can assist the STB with fulfilling its Section 106 responsibilities in Delaware, please do not hesitate to contact me, or Gwen Davis, at (302) 739-5685.

Sincerely,

Joan N. Larrivee
Deputy State Historic Preservation Officer

cc: Martha Catlin, ACHP

ENTERED Office of the Secretary

FEB 0 9 100A

Part of Public Record

STATE OF DELAWARE DEPARTMENT OF JUSTICE

FES-S 1998
PLEASE RESPOND TO:

M. JANE BRADY ATTORNEY GENERAL

February 4, 1998

P. O. Box 778
Dover, DE 19903
Ph: (302) 739-4575
Fax: (302) 739-6119

fschranck@smtp.dot.state.de.us

<u>Via Federal Express &</u> <u>Regular Mail</u>

Office of the Secretary Case Control Unit Finance Docket No. 33388 Surface Transportation Board 1925 K Street, NW Washington, DC 20423-0001

Attention: Elaine K. Kaiser Environmental Project Director Environmental Filing

RE: Draft Environmental Impact Statement, Proposed Conrail Acquisition, Comments from the Delaware Department of Transportation (DelDOT)

Dear Ms. Kaiser:

The Delaware Department of Transportation (DelDOT) has reviewed the Draft Environmental Impact Statement (EIS) for the proposed Conrail acquisition by CSX and Norfolk Southern (NS). We find the report clear and concise in some areas of analysis. However, there are several unresolved issues that must be addressed and further detailed. For your records, the Department and State strongly recommend that the Surface Transportation Board's Section of Environmental Analysis (SEA) consider or conditionally accept the following comments and conditions before the final analysis of the EIS may be evaluated.

Specifically, there are several areas:

Air Quality

The Department feels that the determination of air quality impacts in Delaware have been collected and evaluated incorrectly.

Emission estimates within the EIS show that the increased countywide air pollutant emissions will exceed the threshold for New Castle County, Delaware. The assessment also concludes that there will be localized increases in emissions, a concern for many Delawareans. However, the analysis of determining the overall impact with mitigation measures was

evaluated on a regional basis. We feel that impacts with mitigation measures should be determined on a localized basis, since the entire freight operations are a stationary or linear source.

In addition, the EIS in Delaware also states that increases in air pollution are not likely to affect compliance with air quality standards. However, there is no proof or concurrence in this statement or assessment. In order to be consistent with NEPA guidelines, the Department would like to see a concurrence letter from the Delaware Department of Natural Resources and Environmental Control's Air Quality Branch. The letter should state that there will be no impacts to air quality standards in New Castle County and within the State.

Within the evaluation table for Annual NOx Emission Summary in New Castle County, the Department feels that truck diversion will not have immediate decrease of 49.18 annual tons per year. In addition, the denominator that is used to conclude a .61% increase in county NOx emissions is outdated. Specifically, the analysis used to compare and evaluate the Existing County Total NOx emissions comes from a 1995 figure. With such an outdated base figure, the overall percent increase of air pollution may be reaching the 1% threshold. The Department feels that updated information and numbers are necessary to fully determine and summarize the air quality analysis. The applicants "Netting" criteria used is not the best method, since it only dilutes numbers and figures.

In evaluating the air pollution data for Delaware, the anticipated NOx emission from freight rail will be approximately 184.85 annual tons per year. From an overall basis in New Castle County, this amount may be considered significant in Delaware (despite it not exceeding a countywide 1% increase). In Delaware, we consider this additional amount significant due to our smaller and localized region. As a result, the Department further suggests that the SEA should conditionally accept the proposed Conrail acquisition only if proper coordination, permits, and/or concurrence has been obtained from the Delaware Department of Natural Resources and Environmental Control's Air Quality Branch.

Commuter Service and Passenger Rail Service

DelDOT, through the cooperation of SEPTA officials, has contracted for a major commuter line and station in Newark, DE (along the Amtrak's Northeast Corridor). This station and location is key to the multimodal system and the administration's mission in providing alternative transportation choices. The passenger service of SEPTA in Newark to Wilmington and locations further north has been a major regional investment in this State. Future plans not indicated within the EIS assessment are to expand this SEPTA service line and offer service within the Stanton, DE region (i.e. Churchmans Crossing). Why was this not considered?

What is also questionable within the EIS report is that the Department's commuter rail service (SEPTA in Delaware) operates over freight carriers. However, the EIS also mentions that freight carriers operate over regional commuter lines (i.e. DelDOT's new SEPTA contract).

The Department is not sure what to believe and is concerned over the contradictions of these statements. These need clarification.

Overall, will the Conrail acquisition impact the Department's future plans for additional frequency and times for commuter rail service along the Amtrak northeast corridor? The Department would like to know, in writing or in proof, that the Delaware regional commuter service (i.e. the DelDOT - SEPTA contract) will not be impacted currently or into the future. This also includes additional commuter rail service plans to expand service and frequency of times. There is no indication of this within the EIS report.

Cultural Resources

According to the NEPA guidelines, all additional bridges, building facilities, and rail yards that are expected to be improved or updated (as indicated) may be considered a secondary impact. Therefore, an inventory of existing facilities should have been historically evaluated.

Overall, the Department agrees that NS shall undertake no construction or modification of the Shellpot bridge near Wilmington, DE, until completion of the Section 106 process of the National Historic Preservation Act (16 U.S.C. 470f., as amended) and appropriate mitigation measures are identified. However, with this commitment, the Department cautions the interpretation of what is considered "appropriate" mitigation. Over the years, DelDOT's coordination on past and current projects with the Delaware State Historic Preservation Office (DE SHPO) has not always been a give and take process. It is the Department's belief that cultural resource measures obligated by applicants will be extended beyond the most feasible, reasonable, and appropriate measures as desired by the applicants. The DE SHPO has and will require measures that extend beyond the reasonable and feasible thresholds that may seem appropriate under the Section 106 regulations. In sum, the applicants may not adhere to the DE SHPO measures for cultural resource identification, alternative analysis, and appropriate mitigation.

Environmental Justice

The Department would like to know how the applicant obtained information in Delaware for evaluating the social-economic data of land uses and people who live along the rail lines. How did they conduct, collect, or verify the data to determine that minority or a low-income population did not meet the threshold for further environmental justice analysis? It seems that there was no field evaluation or consultation with area representatives, so this evaluation could be incorrectly documented.

The EIS report indicates that a copy of the report has been placed/sent to area locations with high proportions of minority and low income populations. However, the applicants never considered the time, transportation needs, literacy, and ability to understand and interpret such a lengthy, complex, and professional document. By the time an individual or community is aware and can understand the available information and associated impacts, it is after the fact.

4.

Therefore, the Department would like to know in what areas of Delaware's minority and low-income populations was this EIS report made available. Who are the points of contact and were they explained the background of the project? Were they able to explain or understand the associated impacts so they could disseminate information out into their community?

Hazardous Waste

Two rail line segments, Wilsmere to Elsmere (C-084) and Bell to Edgemore (N-010), were determined in the executive summary as exceeding threshold limits in hazardous material. However, within the individual report and analysis for Delaware, there was no discussion or mention of this exceeded threshold. If fact, within the Delaware Summary of Analysis (Vol. 3-A), the applicants determined that the site specific analysis did not apply. The Department questions this analysis due to inaccuracies in indication levels. Will the Conrail acquisition impact hazardous waste threshold limits? The Department does not know because there are two different assessments within the EIS. The Department would like this formal analysis clarified and a response back to the Department before any final EIS decision is reached. In addition, the Department would also like proper time allotted in order to determine and respond to the SEA if there is a hazardous waste threshold limit exceeded in Delaware.

Areas of Special Concern - Newark, DE

The EIS mentions that the increase in freight trains may have minor adverse effects on the public (particularly pedestrian) safety, noise, emergency vehicle response, and hazardous material transport. The EIS determined that the minor increase in train traffic would have only a minor incremental effect on the community. However, this increase will tend to worsen the pre-existing conditions. In fact, they will be aggravated by the increased train traffic.

The Department concurs with the preliminary recommendation that CSX shall consult with local agencies, the University of Delaware, DelDOT, and other appropriate parties to address potential safety concerns regarding the three highway/rail at-grade crossings in Newark. Specifically, CSX shall meet with these parties to negotiate a binding mutual agreement on the implementation and funding allocation for measures to address safety concerns at these crossings. Appropriate measures could include quadrant gates, pedestrian gates and fences, pedestrian overpasses, safety education, or other measures to address pedestrian safety.

At this point, there have been no appropriate alternative mitigation measures by freight carriers that have included consultation with the Department. Since the Department feels that mutual agreements stated above may never be reached before the release of the final EIS, the Department feels that additional measures shall also be included as a developing alternative mitigation.

As an additional provision, there are several overpasses and underpasses that pose as an immediate problem for traffic and pedestrian/bike safety. It is the Department's position

that CSX shall also consult with local agencies, the University of Delaware, DelDOT, and other appropriate parties regarding overpasses and underpasses throughout the Newark, DE. Specifically, one example is located at Casho Mill Road in Newark.

Further Analysis Needed - Cumulative Impacts

It appears that the EIS overlooks the induced, additive, and synergistic impacts of cumulative impacts.

The EIS states that both CSX and NS plan to undertake future facility improvements in Delaware as part of the proposed Conrail acquisition. As it stands, the proposed Conrail acquisition related activity that would meet or exceed the Board's thresholds for environmental analysis in Delaware include increased train operations on a total of four line segments.

However, the Department disagrees with the assessment that there are no intermodal facilities or rail yards that would meet or exceed the Board's thresholds for environmental analysis. The Department requests that the EIS report further analyze and list increases in specific activities at certain intermodal facilities and rail yards.

The EIS also states that Delaware shippers would gain new and more efficient routes and services. Even the Port of Wilmington would gain extended market reach to the midwest and southeast through the expanded CSX and NS networks. As it stands, the proposed Conrail acquisition related changes would be largely limited to changes in train operations on existing rail lines. However, with the extended market outreach expected there are also futures costs and secondary impacts/changes that are brought upon the State's transportation system. This was not addressed in the EIS.

Because the SEA did not take into account the increased freight activity with preventative maintenance provisions, the Department feels that safety operations in both freight and passenger/commuter rail operations in Delaware was inaccurately evaluated. In addition, the SEA did not accurately assess and conclude in estimating the potential risks of an accident.

The Department would like to know how maintenance agreements for safety concerns and operations will be addressed. The safety and increased maintenance concerns are also important factors for passenger operations through Delaware. What will be the future maintenance agreements shared by Amtrak, CSX, NS, and other governing agencies such as DelDOT?

Overall, the Department would like a commitment that maintenance of facilities and infrastructure needs will consider improvements that go beyond replacing in-kind structures or the least expensive options. For example, the overpass at Casho Mill Road in Newark is a one lane overpass that is extremely dangerous and is a safety concern. A longer span bridge is needed to address concerns both for rail service and transportation service along the road. When this bridge is replaced (or any other for this matter) the Department, along with many governing agencies, public officials, and citizens, feels that multimodal needs and the safety

for this bridge should be addressed. This would include the provision of signs, lighting, sidewalks/bike lane additions, drainage, clearance, traffic calming, and/or wider travel lanes.

Within the EIS, the Department would like to know how CSX and NS plan to undertake facility improvements so as not to inhibit potential impacts cause by hazardous waste, traffic flow, multimodal investments and facilities, cultural and historic resources (including bridges and stations), noise, and passenger traffic. Even though the immediate Conrail acquisition may not immediately impact intermodal facilities and rail yards, future actions will. For example, the EIS states that there will be certain facility improvements in the future. How can the SEA properly consider any secondary impacts when CSX and NS appear to be segmenting phases and projects for future actions? There should be a direct correlation with impacts indicated for all anticipated future actions and facility improvements.

As a result, the Department does not concur with the statement that "there will be no intermodal facilities and rail yards that would meet or exceed the Board's thresholds for environmental analysis and there are no new connections or proposed abandonment." The Department believes that a long-range plan for the entire rail network should be established.

In addition, the EIS states that increased freight and operations require rehabilitation of the Shellpot Bridge. However, was there a proper assessment done to ensure that other bridges and high maintenance areas are not easily prone to accelerated safety concerns (i.e. secondary impacts of safety not evaluated)? This would not only include other Delaware rail bridges (underpasses and overpasses), but other freight and intermodal facilities, traffic intersections, sensitive land uses, and anticipated expansion areas as indicated within the EIS.

Realizing that increased freight train activity would increase the probability of a freight train accident, the Department would also like an analysis or evaluation of the increased maintenance program. Specifically, there should be a base line structural analysis of bridges (at underpasses or overpasses, creeks/streams, etc.) and other anticipated maintenance areas. The EIS should discuss these existing base line conditions and how the expected weight and frequency travel consolidation will potentially increase maintenance operations.

As a specific provision in Delaware, the Department would like a commitment from the CSX and NS that they will partner with DelDOT both financially and administratively to determine that:

- On a continual basis, traffic and pedestrian safety at at-grade crossings and at overpasses and underpasses will be improved as reasonably needed or warranted.
- The Department would also like to see a document or special conditions for continual inspection of bridges, rail lines, and safety equipment (gating and lighting, etc.) at grade intersections.
- The SEA should also request a commitment for added maintenance. The Department and State do not expect rail companies to implement a maintenance or replacement program

solely after an accident occurs. We want to ensure that an accident never happens. The Department wants a formal commitment and dedication that maintenance and inspection schedules are implemented on a more frequent basis. These measures should be adopted and concurred before the SEA approves of the acquisition application.

Noise

From the noise appendix table, the Department does not believe the consultants considered or measured sensitive noise receptors within the City of Newark. Noise study impacts in Newark should be considered because there are many sensitive receptors throughout this community.

The Department is also requesting that CSX and NS immediately commit to adopting and allocating funding programs towards implementing the future FRA rules on train horn blowing procedures. This should include a major commitment to instill or retrofit safety features, barriers, lights, and crossing arms, when required.

I hope that the Department's comments and stated positions are clear. If you have any questions or clarification, please contact me at 302-739-4575.

Very truly yours,

Frederick H. Schranck
Deputy Attorney General

FHS/mh

cc:

Honorable Thomas R. Carper, Governor of Delaware Anne Canby, Secretary of Transportation Raymond Harbeson, Chief Engineer Eugene Abbott, Director of Planning Joseph Wutka, Assistant Director of Planning Eli Cooper, Assistant Director of Intermodal Programs Therese Fulmer, Manager, Environmental Studies Michael Hahn, Senior Transportation Planner FIGHIDA DEPARTMENT OF STATE Office of the Secretary Office of International Relations Division of Administrative Services Division of Corporations Division of Cultural Affairs

MEMBER OF THE FLORIDA CABINET
Division of Library & Information Services
Division of Historical Resources
Ringling Museum of Art
Division of Licensing
Division of Elections

CENTRAL ADMINISTRATIVE UNIT FLORIDA DEPARTMENT OF STAT Sandra B. Mortham

Secretary of State

DOCUMENT # 12/31 97 9 38 53 And DIVISION OF HISTORICAL RESOURCE

December 17, 1997

Ms. Elaine K. Kaiser Section of Environmental Analysis Office of the Secretary, Case Control Unit Finance Docket No. 33388 1925 K Street, N.W. Washington, DC 20423-0001

In Roll of To Con Robin D. Jackson Historic Sites Specialist Project File No. 975467

RE: Cultura

Cultural Resource Assessment Request

Surface Transportation Board Finance Docket No. 33388: CSX Corporation and CSX Transportation, Inc. Norfolk Southern Corporation and Norfolk Southern Railway Company - Control and Operating Leases/Agreements - Conrail, Inc. and Consolidated rail Corporation: Final Scope of the Environmental Impact Statement

Florida

Dear Ms. Kaiser:

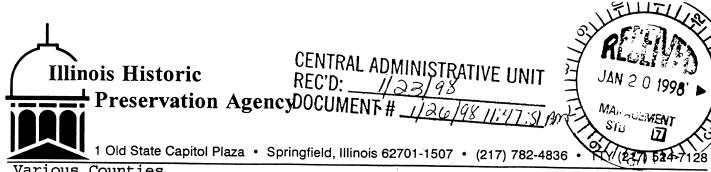
In accordance with the procedures contained in 36 C.F.R., Part 800 ("Protection of Historic Properties"), we have reviewed the referenced project(s) for possible impact to historic properties listed, or eligible for listing, in the <u>National Register of Historic Places</u>. The authority for this procedure is the National Historic Preservation Act of 1966 (Public Law 89-665), as amended.

A review of the Florida Site File indicates that no significant archaeological or historical sites are recorded for or likely to be present within the project area. Furthermore, because of the project location and/or nature it is unlikely that any such sites will be affected. Therefore, it is the opinion of this office that the proposed project will have no effect on historic properties listed, or eligible for listing, in the National Register of Historic Places.

If you have any questions concerning our comments, please do not hesitate to contact us. Your interest in protecting Florida's historic properties is appreciated.

Sincerely,

George W. Percy, Director Division of Historical Resources and State Historic Preservation Officer


GWP/Jri

DIRECTOR'S OFFICE

R.A. Gray Building • 500 South Bronough Street • Tallahassee, Florida 32399-0250 • (850) 488-1480 FAX: (850) 488-3353 • WWW Address http://www.dos. state.fl.us

☐ ARCHAEOLOGICAL RESEARCH (850) 487-2299 • FAX: 414-2207 HISTORIC PRESERVATION (850) 487-2333 • FAX: 922-0496

☐ HISTORICAL MUSEUMS (850) 488-1484 • FAX: 921-2503

Various Counties
STB-CSX and Norfolk-Conrail acquisition
Finance Docket No. 33388
IHPA Log #12062497, 970107004P-S

January 13, 1998

Elaine Kaiser Environmental Project Director Environmental Filing Surface Transportation Board 1925 K Street, NW Washington, DC 20423-0001

ENVIRONMENTAL DOCUMENT

Dear Ms. Kaiser:

Our office has reviewed the Draft Environmental Impact Statement for the Proposed Conrail Acquisition. The statements in Volume 3A of the report regarding cultural resources in Illinois are accurate. We look forward to further consultation regarding the interlocking tower at 75th Street in Chicago and the archaeological investigations at Exermont. If you have any questions, please contact either Ms. Tracey Sculle, Cultural Resources Manager, 217/785-3977 or Mr. Joseph Phillippe, Staff Archaeologist, 217/785-1279.

Anne E. Haaker

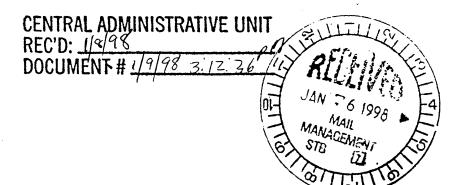
Deputy State Historic Preservation Officer

AEH: TAS

c: Paul McGinley

ENVIRONMENTAL DOCUMENT

INDIANA DEPARTMENT OF NATURAL RESOURCES


LARRY D. MACKLIN, DIRECTOR

Division of Historic Preservation and Archaeology 402 W. Washington St., Room W274 Indianapolis, Indiana 46204 E-mail: dhpa_at_dnrlan@ima.isd.state.in.us (317) 232-1646 (317)232-0693 FAX

January 2, 1998

Vernon A. Williams Secretary Surface Transportation Board 1925 K Street, NW, Suite 700 Washington, D.C. 20423

Dear Mr. Williams:

We have reviewed the Environmental Assessment for the proposed acquisition and control of Conrail at Willow Creek and Alexandria in Madison and Porter counties, Indiana [FINANCE DOCKET #33388]. This review has been conducted pursuant to Section 106 of the National Historic Preservation Act (16 U.S.C. Section 470f) and implementing regulations found at 36 C.F.R. Part 800.

As long as the project remains within areas disturbed by previous construction, no known historic buildings, structures, districts, objects, or archaeological sites listed in or eligible for inclusion in the National Register of Historic Places will be affected by this project. However, if any archaeological artifacts or human remains are uncovered during construction, demolition, or earthmoving activities, state law (Indiana Code 14-21-1-27 and 29) requires that work must stop and that the discovery must be reported to the Division of Historic Preservation and Archaeology within two (2) business days. Additionally, in the event that artifacts or features are discovered during the implementation of the federally assisted project, activity, or program and a plan has not been developed, it is the federal agency's responsibility to contact the Advisory Council on Historic Preservation in accordance with 36 C.F.R. Section 800.11(b)(2). Thank you for your cooperation.

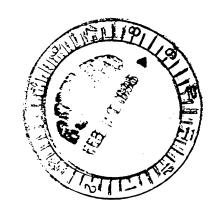
Very truly yours,

for Larry D. Macklin

State Historic Preservation Officer

LDM:SLW:RSW:smg

John Le Can



INDIANA DEPARTMENT OF NATURAL RESOURCES

LARRY D. MACKLIN, DIRECTOR

Division of Historic Preservation and Archaeology 402 W. Washington St., Room W274 Indianapolis, Indiana 46204 E-mail: dhpa_at_dnrlan@ima.isd.state.in.us (317) 232-1646 (317)232-0693 FAX

February 6, 1998

Elaine K. Kaiser, Chief Section of Environmental Analysis Surface Transportation Board Washington, DC 20423

Dear Ms. Kaiser:

We have reviewed the proposed Finance Docket No. 33388--CSX and Norfolk Southern--Control and Acquisition--Conrail; Compliance with Section 106 of the NHPA (request for SHPO review of all acquisition activities in Indiana other than the construction at Willow Creek [CSX] and Alexandria [NS]) County, Indiana. This review has been conducted pursuant to Section 106 of the National Historic Preservation Act (16 U.S.C. Section 470f) and implementing regulations found at 36 C.F.R. Part 800.

In regards to the architectural aspects of the project, the North Liberty Combination Depot is considered to be eligible for inclusion in the National Register of Historic Places because of its architectural and historical significance. It is an outstanding example of a board and batten depot. It is also an important historical resource, because it illustrates the development of the railroad in St. Joseph County. Please refer to the enclosed map for your reference.

Because the North Liberty Combination Depot is within the area of potential effect, it is our responsibility to determine the effect of the proposed rail line abandonment project on the depot. However, we need more information to enable us to evaluate the effect. How will the abandonment affect the use of the depot? Will the depot continue to be used for storage? Will the depot be sold or abandoned? Please explain in detail the proposed future plans for the depot. Once the above requested information is received by our office, the review process will continue. If you have any further questions about the above material, please call Michelle M. Daleiden or Ralph S. Wilcox at (317) 232-1646.

In regards to the archaeological aspects of the project, as long as the South Bend to Dillon Junction rail line abandonment project remains within areas disturbed by previous construction, no known

D-37

Elaine K. Kaiser February 6, 1998 Page 2

archaeological sites listed in or eligible for inclusion in the National Register of Historic Places will be affected by this project. However, if any archaeological artifacts or human remains are uncovered during construction, demolition, or earthmoving activities, state law (Indiana Code 14-21-1-27 and 29) requires that work must stop and that the discovery must be reported to the Division of Historic Preservation and Archaeology within two (2) business days. Additionally, in the event that artifacts or features are discovered during the implementation of the federally assisted project, activity, or program and a plan has not been developed, it is the federal agency's responsibility to contact the Advisory Council on Historic Preservation in accordance with 36 C.F.R. Section 800.11(b)(2).

We concur with the findings of the report for both the **Butler** and **Tolleston** projects. Given the results of the archaeological overviews (Wharton and Skinner, 10/24/97), neither project area is likely to contain significant archaeological resources. As such, no known archaeological sites listed in or eligible for inclusion in the National Register of Historic Places will be affected by this project.

If any archaeological artifacts or human remains are uncovered during construction, federal law and regulations (16 USC 470, et seq.; 36 CFR 800.11, et al.) and, additionally, state law (Indiana Code 14-21-1), require that work must stop and that the discovery must be reported to the Division of Historic Preservation and Archaeology within two (2) business days. If you have any questions about the archaeological aspects of the project, please call Jim Mohow or Dr. Rick Jones at (317) 232-1646. Thank you for your cooperation.

Very truly yours,

Larry D. Macklin

State Historic Preservation Officer

In T. Costello

LDM:SLW:JAM:MMD:RSW:rsw

cc: Richard Starzak, Myra L. Frank & Associates, Inc.

FEB = 5 1998 MAIL
MANAGEMENT
STB

Maryland
Department of
Housing and
Community

Development

Division of Historical and Cultural Programs

100 Community Place Crownsville, Maryland 21032

410-514-7600 1-800-756-0119 Fax: 410-987-4071 Maryland Relay for the Deaf: 1-800-735-2258

http://www.dhcd.state.md.us

Parris N. Glendening Governor

Patricia J. Payne Secretary

Raymond A. Skinner Deputy Secretary Ms. Elaine K. Kaiser, Chief Section of Environmental Analysis Surface Transportation Board 1925 K Street NW Washington, D.C. 20423-0001

> Draft EIS - Proposed Conrail Acquisition CSX Corporation and CSX Transportation, Inc. Norfolk Southern Corporation and Norfolk Southern Railway Company State Clearinghouse No. MD971222-1116

February 2, 1998

Dear Ms. Kaiser:

Re:

Thank you for providing us with a copy of the above-referenced DEIS, for review and comment. The Maryland Historical Trust has reviewed the proposed actions for Maryland to assess their effects on historic properties, pursuant to Section 106 of the National Historic Preservation Act of 1966, as amended.

Maryland components of the undertaking include increased train operations on 13 rail line segments, construction of one rail line connection in Hagerstown, and construction of one intermodal facility in Baltimore. Based on the documentation presented in the DEIS, we concur that implementation of the Maryland actions will have no effect on historic properties, including historic structures and archeological sites, eligible for inclusion in the National Register of Historic Places. Further consultation with the Trust for Section 106 purposes is not needed unless the project scope changes.

If you have questions or require further assistance, please call me at (410) 514-7631.

Sincerely,

Elizabeth J. Cole

Administrator, Archeological Services

EJC/9800040

cc:

Ms. La Verne Gray (MOP)

Mr. Paul McGinley (MHA)

MA - AGEMENT

CENTRAL ADMINISTRATIVE UNIT

DOCUM 1/26/98 12:06:17Pm

The Commonwealth of Massachusetts

William Francis Galvin, Secretary of the Commonwealth Massachusetts Historical Commission

January 13, 1998

Elaine K. Kaiser, Chief Section of Environmental Analysis Surface Transportation Board 1925 K Street, NW Washington, DC 20423-0001

RE:

Proposed Conrail Acquisition by CSX Corporation and Norfolk Southern (NS) Railroads, Statewide, MA Financial Docket No. 33388 (MHC# 19523)

Dear Ms Kaiser:

Thank you for submitting the Draft Environmental Impact Statement (DEIS) (dated December 12, 1997) concerning the proposed Conrail acquisition which was received by the Massachusetts Historical Commission on December 19, 1997. It is understood that the proposed acquisition will involve the operation of various Conrail lines, properties, rail yards and other intermodal facilities. It is also understood that the acquisition will likely result in operating changes including increased freight traffic over rail lines, construction of new rail lines, and abandonments of rail lines.

MHC staff have reviewed the submitted DEIS. At this time the MHC concurs with the preliminary recommendations of the DEIS which established that to date there are no significant impacts identified in the state of Massachusetts. The MHC will expect that as the acquisition project evolves there may be additional changes which will require our continued involvement.

These comments are provided to assist in compliance with Section 106 of the National Historic Preservation Act (36 CFR 800).

If you have questions, please contact Paul Holtz at this office. Thank you for your cooperation.

Sincerely,

Judith B. McDonough **Executive Director**

Massachusetts Historical Commission

udite B. McDonough

State Historic Preservation Officer

CENTRAL ADMINISTRATIVE UNIT REC'D: 2/23/98 DOCUMENT # 2/24/98 7:28:11 Am

STATE OF MISSOURI

Mel Carnahan, Governor • Stephen M. Mahfood, Director

DEPARTMENT OF NATURAL RESOURCES

- DIVISION OF STATE PARKS -

P.O. Box 176 Jefferson City, 65102-0176 (573) 751-2479

873) 751-8656 88 89 89 87 87

11 February 1998

Paul McGinley McGinley, Hart & Associates LLP 77 North Washington Street Boston, Massachussets 02114

Re:

CSX and Norfolk Southern Acquisition (STP) Finance Docket No. 33388, Missouri

Dear Mr. McGinley:

Thank you for submitting information on the above referenced project for our review pursuant to Section 106 of the National Historic Preservation Act (P.L. 89-665, as amended).

Staff of the Historic Preservation Program, Missouri Department of Natural Resources have reviewed the information provided concerning the above referenced project. We have determined that portions of the railroad systems under consideration may be eligible for inclusion in the National Register of Historic Places. However, as the proposed acquisition should have "no effect" on any buildings, structures or objects which may be eligible, we have no objections to the proposed acquisition.

Please be advised that, should future project plans require alteration or demolition, information documenting the proposed projects and photographs and descriptive histories of the affected rail line, should be submitted to this office for further review pursuant to the National Historic Preservation Act (P.L. 89-665, as amended). Based on review of submitted materials, we will determine effect of proposed projects on any eligible properties.

If you have any questions, please write or call Lee Gilleard at 573/751-5367 for information appropriate documentation for railroad systems, or Judith Deel at 573/751-7862.

Sincerely,

HISTORIC PRESERVATION PROGRAM

Claire F. Blackwell Director and Deputy State Historic Preservation Officer

CFB:jd

c Elaine K. Kaiser Tom McCulloch

State of New Jersey

Christine Todd Whitman Governor

Department of Environmental Protection

Robert C. Shinn, Jr.

December 9, 1997

Surface Transportation Board Section of Environmental Analysis 1925 K Street, N.W., Room 504 Washington, DC 20423-0001

RE:

Finance Docket No. 33388 (Sub-No. 38)

CSX Corp. and CSX Transportation, Inc., Norfolk Southern Corp. and Norfolk Southern Railway Company -- Control and Operating Leases/Agreements -- Conrail Inc. and Consolidated Rail Corporation

New Jersey Transit Corporation -- Operating Rights

To Whom It May Concern:

The Office of Program Coordination of the New Jersey Department of Environmental Protection has completed its review of the "Responsive Environmental Report of New Jersey Transit Corporation" (RER; dated November 3, 1997) prepared for the above referenced action. The RER was prepared and filed by New Jersey Transit Corporation to evaluate the potential environmental impacts of the use of the Conrail Bordentown Secondary railroad line between Trenton and Camden, New Jersey for a proposed Light Rail Transit (LRT) system.

The Department has been involved in a number of preapplication meetings with New Jersey Transit Corporation concerning the proposed LRT system. As of the present date, the Department has not participated in "effects consultations" (pursuant to Section 106 of the National Historic Preservation Act) to evaluate potential impacts to historic and cultural resources (see Section VI-I, page 21 of the RER). Given the information currently available to it and that provided in the RER, the Department cannot make a determination that the proposed LRT system will or will not result in significant adverse impacts to the environment. However, as noted in Section I - Executive Summary (pages 4-5) of the RER, a number of State permits will be required for the proposed LRT system. In addition, the proposed project will be subject to a comprehensive environmental assessment process pursuant to the requirements of New Jersey Executive Order No. 215 (copy attached). Any potential significant adverse environmental impacts identified during the regulatory and Executive Order No. 215 review processes must be addressed (i.e. avoided, minimized, or mitigated) by New Jersey Transit Corporation. Therefore, at the present time, the Department does not object to a finding in favor of New Jersey Transit Corporation in the above referenced action.

If you have any questions, I may be contacted at (609) 292-2662.

Lawrence Schmidt

Director

Office of Program Coordination

c. Dorothy Guzzo, Historic Preservation Michael Hogan, Commissioner's Office Kevin M. Sheys, Oppenheimer Wolf & Donnelly [THIS PAGE INTENTIONALLY LEFT BLANK]

Environmental Assessment

[THIS PAGE INTENTIONALLY LEFT BLANK]

State of New Jersey

Christine Todd Whitman Governor

Department of Environmental Protection

Robert C. Shinn, Jr.

Commissioner

Office of Program Coordination PO Box 418 Trenton, NJ 08625-0418 Phone 609-292-2662 Fax 609-777-0942

EXECUTIVE ORDER NO. 215

ENVIRONMENTAL ASSESSMENT

Governor Thomas H. Kean signed the attached Executive Order No. 215 (EO #215) on September 11, 1989. The Executive Order rescinds Governor Cahill's Executive Order No. 53 (1973). EO #215 requires departments, agencies and authorities of the State to prepare and submit to the New Jersey Department of Environmental Protection (NJDEP) an environmental assessment (EA) or environmental impact statement (EIS) (as specified in the Order) in support of major construction projects. Guidelines for the preparation of the EA/EIS are also attached. The objective of this Order is to reduce or eliminate any potential adverse environmental impacts of projects initiated or funded by the State.

Lawrence Schmidt, Director of the NJDEP's Office of Program Coordination (609-292-2662) is responsible for the administration of EO #215. Please contact him or his staff (Ken Koschek or Joel Pecchioli) if you have any questions regarding the Order. The Office of Program Coordination stands ready to meet with agencies to discuss potential projects, determine the scope of an EA/EIS, or to discuss the requirements of EO #215.

All required EA/EIS submissions should be made to Lawrence Schmidt (NJDEP, Office of Program Coordination, PO Box 418, Trenton, NJ 08625-0418) by the agency undertaking or funding the project. Six copies of the document are required. Please note, the review schedule is included in the Order.

[THIS PAGE INTENTIONALLY LEFT BLANK]

STATE OF NEW JERSEY EXECUTIVE DEPARTMENT

EXECUTIVE ORDER NO. 215

WHEREAS, the protection of the environment, which is the subject of a public trust administered by government for the benefit of all citizens, is a primary responsibility of State government; and

WHEREAS, government must not only regulate but also must provide an example in the effort to protect the human environment and the natural resources of the State; and

WHEREAS, the design and location of projects initiated or funded by departments, agencies or authorities of State government may have significant primary and consequential effects on the environment; and

WHEREAS, the protection of the environment, the management of development, and the prudent use of the State's limited land and other resources will be fostered by the proper location and design of projects initiated or funded by departments, agencies or authorities of State government; and

WHEREAS, the potentially adverse environmental impact of projects initiated or funded by departments, agencies or authorities of State government can be substantially reduced or eliminated if that impact is assessed before the approval of such project and agreement reached on the ways and means to ensure environmental compatibility:

NOW, THEREFORE, I, THOMAS H. KEAN, Governor of the State of New Jersey, by virtue of the authority vested in me by the Constitution and by the Statutes of this State, do hereby GRDER AND DIRECT:

1. All departments, agencies and authorities of the State shall prepare and submit to the Department of Environmental Protection an environmental assessment or environmental impact statement, as specified below, in support of major construction projects. Projects directly initiated by departments, agencies, or authorities of the State, as well as projects in which the State departments, agencies or authorities are granting at least 20 percent financial assistance, shall comply with this Order.

For the purpose of determining an appropriate level of review, projects shall be categorized as follows:

a) Level 1 - projects with anticipated construction costs in excess of \$1 million shall be subject to the preparation of an environmental assessment. The assessment shall follow guidelines prepared by the Department of Environmental Protection, attached herewith to this Order. Alternatively,

STATE OF NEW JERSEY
EXECUTIVE DEPARTMENT

environmental assessments prepared to support a "Finding of No Significant Impact" under the National Environmental Policy Act may be substituted for an assessment otherwise required pursuant to the attached Department of Environmental Protection guidelines: or

- \$5 million and land disturbance in excess of five acres shall be subject to the preparation of an environmental impact statement. The statement shall follow guidelines prepared by the Department of Environmental Protection, attached herewith to this Order.
- 2. The assessment or impact statement shall be submitted by the proposing or granting department, agency or authority and reviewed by the Department of Environmental Protection as early in the project planning and design process as possible, but in all cases such submission and the review process which follows must be completed prior to commencing site preparation and/or construction activity on the project. In the case of any project to be funded by a department, agency, or authority of the State, review of the assessment or impact statement must be completed by the Department of Environmental Protection prior to awarding any financial assistance for the commencement of site preparation and/or construction activity.
- 3. Upon receipt of an environmental assessment or impact statement the Department of Environmental Protection shall undertake a review to determine whether the document; unmitted are administratively complete. Within 20 days of receipt, the Department of Environmental Protection shall either certify that the environmental assessment or impact statement is administratively complete and conforms to the guidelines attached herewith to this Order, or specify in writing to the proposing or granting department, agency, or authority that the environmental assessment or impact statement is administratively deficient. If deemed deficient, the proposing or granting department, agency or authority shall correct such deficiency or deficiencies as specified by the Department of Environmental Protection and may resubmit the environmental assessment or impact statement at any time thereafter for review by the Department. Within sixty (60) days of the Department of Environmental Protection's receipt of an environmental assessment or impact statement determined to be administratively complete, the Department shall conclude its review of such

STATE OF NEW JERSEY EXECUTIVE DEPARTMENT

assessment or impact statement. If the Department of Environmental

Protection has not concluded its review of the assessment or impact statement
within this sixty-day period, the project shall be deemed approved.

- 4. Upon concluding its review, the Department of Environmental Protection shall provide a written response to the proposing or granting department, agency or authority. The response shall include the following:
- a) identification of any probable adverse environmental impacts that could be expected from project implementation:
- b) an identification of any Department of Environmental Protection permits or regulatory requirements which will be applicable to the proposed project; and
 - c) recommendations including, but not limited to:
 - approval based on the representations made in the assessment or impact statement;
 - ii) conditional approval, including receipt of permits and/or measures to reduce and/or mitigate the anticipated impacts to an acceptable level;
 - iii) an additional impact assessment on one or more specific environmental consequences;
 - iv) project modification to avoid adverse environmental impacts;
 - v) Eujor restructuring of the project.
- 5. Within thirty (30) days of receiving the Department of Environmental Protection's recommendation(s), the proposing or granting department, agency or authority shall provide the Department of Environmental Protection with a written response either indicating acceptance of the Department of Environmental Protection's recommendation(s) or setting forth those issues remaining in dispute.
- 6. Any dispute regarding implementation of the Department of Environmental Protection's recommendation(s) shall be resolved in good faith through meetings between the Commissioner of Environmental Protection and the Commissioner, Chairman or agency head of the proposing or granting department, agency or authority.

STATE OF NEW JERSEY. EXECUTIVE DEPARTMENT

- 7. Notwithstanding the anticipated construction costs or land disturbance involved, the provisions of this Order shall not apply to the following types of projects:
 - a) maintenance or repair projects;
 - b) facilities or equipment replaced in kind at the same location;
 - c) renovations or rehabilitation of existing buildings;
 - d) expansions or additions of existing buildings provided that the expansion or addition does not increase the building's capacity by more than 25 percent;
 - e) projects subject to review pursuant to the provisions of the Coastal Area Facility Review Act or the Municipal Wastewater Treatment Financing Program;
 - f) projects which will require a full environmental impact statement pursuant to the National Environmental Policy Act:
 - g) projects classified as categorical exclusions pursuant to regulations promulgated in accordance with the National Environmental Policy Act; or
 - h) projects involving loans or tax exempt financing to private sector applicants by departments, agencies or authorities of the State of New Jersey.
- 8. This Order shall not apply to authorities or commissions created pursuant to interstate agreements.
- 9. This order shall not apply to projects previously exempt from Governor Cahill's Executive Order No. 53 (1973) where final plans and specifications have been completed on such projects prior to this Order taking effect.
 - 10. Governor Cahill's Executive Order No. 53 (1973) is hereby rescinded.
 - 11. This Order shall take effect immediately.

GIVEN, under my hand and seal, this

// The day of Section in the Year of Our Lord, one
thousand nine hundred and
eighty-nine, and of the
Independence of the United
States, the two hundred and
fourteenth.

/s/ Thomas H. Kean

GOVERNOR

ATTACHMENT TO EXECUTIVE ORDER NO. 215 GUIDELINES FOR THE PREPARATION OF AN ENVIRONMENTAL IMPACT STATEMENT/ENVIRONMENTAL ASSESSMENT

An environmental impact statement/environmental assessment shall provide all information needed to evaluate the effects of the proposed project upon the environment. The scope of the environmental impact statement (EIS) or environmental assessment (EA) may be jointly agreed upon by the proposing or granting department, agency or authority and the Department of Environmental Protection. In the event mutual agreement is not reached, the form and content of the EIS or EA shall follow these guidelines. If any section is clearly inappropriate to the proposed undertaking, so state as "not applicable."

The EA is a less comprehensive and less rigorous version of the EIS. The level of project description and graphics (site locations, maps, site plans, etc.) should be similar to that which is required in the EIS. However, the description of the existing environment and the level of impact analysis in an EA should be comparatively brief as opposed to the comprehensive descriptions contained in an EIS. Further, all items referenced in a particular category may not be applicable; when such items are not applicable and hence not addressed, the EA should so indicate. The items to be covered in the EA are designated with an asterisk (*) in the left-hand margin.

The environmental impact statement/environmental assessment shall be prepared by the project sponsor or consultant(s) through a systematic interdisciplinary approach that will insure the integrated use of the natural and social sciences and the environmental design arts. The information provided in the statement should clearly identify the authors and their qualifications.

I. A DESCRIPTION OF THE PROPOSED PROJECT

Included in this section will be a comprehensive (*brief) description of the project as outlined in the following categories:

- * A. Identity of the project sponsor.
 - B. Explain the purpose of the proposed project, including a description of the constituency to be served by the project, the services being provided, and the extent of benefits realized by the department, agency or authority and the community within which the project is to be located.
 - C. Describe the regional, municipal and/or neighborhood setting of the project.

- D. Describe the project design and operational features including:
 - *1. a site plan of the project.
 - 2. a description of the construction phase that identifies:
 - a. the development schedule and construction phasing;
 - b. the work force required;
 - c. construction traffic;
 - d. site preparation, including clearing, excavating, filling and cutting, burning, and blasting; and
 - e. precautions taken (noise control, dust control, erosion and sedimentation control, temporary sedimentation control, or temporary sanitation).
 - a description of the operation phase including:
 - a. the capacity of the facility:
 - b. the work force required;
 - c. discharges and emissions (both point sources and non-point sources);
 - d. traffic and access; and
 - e. use of resources.
 - *4. the availability of infrastructure for public sewerage, water, roads, and utilities.
- * E. whenever possible, a listing of licenses, permits and certifications necessary for approval of the project and a description of the status of each.
- II. A DESCRIPTION OF THE ENVIRONMENT PRIOR TO THE IMPLEMENTATION OF THE PROJECT

Include a comprehensive (*brief) description of existing environmental conditions in each of the following areas:

- A. Natural resources of the site and surrounding area describe geological character, soil characteristics, land form (i.e. wetlands, mountains, etc.), hydrological features, and biological resources of the area including endangered species.
- * B. Man-made resources present site land use, adjacent land uses, access and transportation patterns, zoning, population density, and demographics.
- C. Human resources cultural and social factors; park and recreational facilities; aesthetic features; historical, archeological, and architectural aspects of the environment.

III. THE PROBABLE ENVIRONMENTAL IMPACT OF THE PROJECT IF IMPLEMENTED

Identify and describe both primary and secondary environmental impacts, beneficial and adverse, anticipated from the proposed project on all natural, man-made, human, and economic resources during all aspects of site preparation, construction, and operation.

Using the existing environment without the project as a basis for analyzing anticipated impacts, provide the following information:

A. Land:

- *1. discuss the consistency of the proposed action with approved federal, State, regional and local land use plans. Identify instances where land use practices, even though accepted, would pose an environmental problem;
- *2. discuss how the area is currently zoned and the relationship of such zoning to the proposed action;
- *3. discuss how the proposal will encourage or discourage residential, commercial or industrial growth to the extent that it will change the character and economy of the area; and
- *4. discuss whether the proposed action will result in the loss or alteration of any ecologically sensitive lands such as flood plains, steep slopes, and wetlands.

B. Water:

- *1. identify and discuss any potential instance of non-compliance with approved State water quality standards arising from the proposed project, with particular attention to low flow periods;
- *2. discuss whether or not the proposed project will result in increased pollution or turbidity levels within the receiving waterway and, if so, what the effects will be downstream and upstream;
- *3. discuss the beneficial and adverse effects of the proposed action on aquatic biota and habitats:
- *4. discuss the effects that the proposed action will have on ground water quality and quantity and the basis of the determination;
- *5. discuss whether there will be any depletion of water as a result of the proposed action;
- *6. discuss whether there will be any increased incidence of flooding caused by structural obstructions or increased flow due to the proposed project. Include the probable effects in terms of flood levels, channel erosion, velocity, and siltation of stream channels; and
- *7. discuss any cumulative effects.

C. Air:

- 1. as appropriate, perform diffusion modeling of the effect of the proposed action on local and regional air quality. All aspects of the project (including mobile sources) should be given consideration in terms of possible receptor sites of air pollutants directly or indirectly generated from the proposed project. Include a discussion of the cumulative aspects. Discuss present and projected ambient air quality data so that direct comparisons may be made among present air quality, projected air quality, and governing air quality standards;
- discuss whether the project will meet applicable emission standards and regulations contained in the State Air Pollution Control Code;
- 3. if appropriate, discuss precautions taken to prevent odor problems;
- 4. if applicable, discuss precautions taken to prevent the airborne transmission of pathogenic organisms;
- 5. discuss the possible influence of the proposed action on immediate area local receptors; and
- 6. base the evaluation of air quality on complete diffusion climatology, providing adequate references.
- D. Aquatic and Terrestrial Wildlife:
- * 1. discuss any loss (or gain) in habitat and its anticipated effect;
- * 2. discuss the gain/loss of food chain on the aquatic and terrestrial wildlife;
- * 3. discuss the effect of noise, dust, lighting, turbidity, and siltation upon aquatic and terrestrial wildlife from commencement of construction through and including post-construction; and
- * 4. discuss any impacts on endangered plants or animal species.
- E. Social and Economic:
- discuss the socio-economic effects on the community due to any other development projects attributable to, but not part of, the proposed action. Will adequate public services be available to serve this development such as schools, parks, fire, and police protection?; and
 - 2. discuss how the project could affect historic, archaeological, or cultural resources on or eligible for the State Register of Historic Places.

- F. Solid Waste discuss methods for solid waste handling both during construction and subsequent operation.
- G. Aesthetics discuss how the natural or present character of the area will be changed as a result of the proposed action.

IV. METHODS OF MITIGATING ADVERSE ENVIRONMENTAL IMPACTS

- A. Discuss the remedial, protective, and mitigative measures to be taken as part of the proposed project in response to adverse environmental impacts. Mitigating measures refer to those methods used to ensure that the project is brought into compliance with all governing regulations including, but not limited to, air, water quality, noise control, solid waste, radiation, and land-use regulations. The discussion of mitigative measures may include, but not be limited to, the following considerations:
 - 1. site location:
 - 2. air quality through control apparatus and/or controlled combustion process;
 - 3. water quality through treatment of wastewater and/or euthrophication control;
 - 4. erosion and sedimentation control measures;
 - 5. storm water runoff control measures from paved areas;
 - dust control measures;
 - 7. noise control measures;
 - 8. traffic control measures;
 - 9. recycling potential:
 - 10. establishment of buffer zones, selective clearing, and/or landscaping;
 - 11. protective measures for aquatic and terrestrial plants and animals;
 - 12. architectural techniques to blend structures with the surrounding area;
 - 13. monitoring programs for emissions and discharges:
 - 14. contingency plans and emergency procedures;
 - 15. employee education and on-going inspection program.

V. AVOIDANCE OF ADVERSE ENVIRONMENTAL IMPACTS

- * A. Describe in detail those impacts which cannot be reduced to acceptable levels, their implications, and the reasons why the action is being proposed notwithstanding their effect.
- * B. Where abatement measures can reduce adverse impacts to acceptable levels, discuss the effectiveness, costs of the abatement measures, and the basis for considering the adequacy of the determination.

VI. ALTERNATIVES TO THE PROPOSED PROJECT

The analysis of alternatives should be sufficiently detailed and rigorous to permit independent and comparative evaluation of the benefits, costs, and environmental risks of the proposed project and each reasonable alternative.

- A. Include the alternative of taking no action. Also include the alternative of other sites, designs, and operations considered and rejected.
- B. Include alternatives capable of substantially reducing or eliminating any adverse impacts, even at the expense of reducing project objectives.
- C. For each alternative discussed, include reasons why each was not as acceptable as the proposed action.

ENVIRONMENTAL DOCUMENT

State of New Jersey

Christine Todd Whitman Governor

Department of Environmental Protection

Division of Parks and Forestry Historic Preservation Office PO Box 404 Trenton, N.J. 08625-0404

TEL: (609)292-2023

FAX: (609)984-0578

January 29, 1998 HPO-A98-137

C. Shinn, Jr.

Commissioner

CENTRAL ADMINISTRATIVE UNIT REC 214/98 DOCUMENT #214/98 5:00 39

> Ms. Elaine K. Kaiser, Chief **Environmental Analysis Section** Surface Transportation Board 1925 K Street, N.W. Washington, D.C. 20423-0001

RE: Finance Docket No. 33388 **Draft Environmental Impact Statement**

CSX and Norfolk Southern Control and Acquisition of Conrail

National Historic Preservation Act Consultation

Dear Ms. Kaiser:

As Deputy State Historic Preservation Officer for New Jersey, in accordance with 36 CFR Part 800: Protection of Historic properties, as published in the Federal Register on September 2, 1986 (51 FR 31115-31125), I am providing consultation comments for the above referenced Draft Environmental Impact Statement.

SUMMARY: The initial activities proposed by Norfolk Southern Railroad and CSX Railroad as part of the proposed acquisition of Conrail will not have an effect on historic properties. Proposed projects at Elizabeth (Union County) and Flemington Junction (Hunterdon County) may have an effect upon historic resources listed in or eligible for listing in the National Register of Historic Places (NRHP). Additional information regarding the scope of these two proposed projects is needed before an assessment of effect can be completed. Abandonment of right of way and modification or replacement of railroad structures, such as bridges, tunnels, stations, signal and interlocking towers, are the types of activities that have, in the past, effected historic railroad properties in New Jersey and have been the subject of Section 106 consultation.

These comments are in response to your initial letter of October 23, 1997 to Mr. Robert Shinn, Commissioner, Department of Environmental Protection, and the Draft Environmental

Ms. Elaine K. Kaiser HPO-A98-137 January 29, 1998 Page 2 of 3

Impact Statement (DEIS), Finance Docket No. 33388, Proposed Conrail Acquisition, dated December 12, 1997.

Based upon the information in your letter and the DEIS, I concur that, with the possible exception of projects at Elizabeth (Union County) and Flemington Junction (Hunterdon County), the proposed Conrail acquisition will not have an effect on historic properties. My concurrence with this assessment of no effect is based upon the DEIS conclusion that no abandonment of railroad right of way is proposed for within New Jersey and that construction activities associated with changes to existing Conrail New Jersey operations are currently limited to construction of track connections in Ridgefield and Little Ferry (Bergen County).

The Historic Preservation Office is pleased to know that the Environmental Analysis Section has requested additional information regarding the proposed projects at Elizabeth and Flemington Junction and looks forward to participating in further consultation in accordance with Section 106 requirements. Although the shops of the former Central Railroad of New Jersey (CRRNJ) in Elizabeth (Union County) have been demolished, the right of way, yard trackage, and shop site are part of the NRHP eligible CRRNJ Main Line Historic District.

Although the proposed Conrail acquisition, with the two potential exceptions noted above, will not effect historic resources, the historic significance and NRHP eligibility of numerous resources being acquired from Conrail should be acknowledged. Over the past few years the Historic Preservation Office has participated in Section 106 consultation that has identified railroad rights of way eligible for listing in the National Register of Historic Places as linear historic districts. Although not all NRHP eligible or potentially eligible railroad rights of way have been identified, a number of the rights of way evaluated by the SHPO as eligible for the NRHP are among the assets to be transferred from Conrail to Norfolk Southern and CSX. The former Central Railroad of New Jersey right of way from Elizabeth (Union County) to Phillipsburg (Warren County) cited above received a Determination of Eligibility (DOE) from the Keeper of the NRHP on November 30, 1995. Consequently, future activities resulting in substantial alteration or abandonment, either partial or complete, of these rights of way would have an effect on historic properties.

Additionally, as part of survey and planning activity, Section 106 consultation, and the processing of National Register of Historic Places nominations, numerous railroad and related related resources have received SHPO opinions of NRHP eligibility or have been listed in the National Register of Historic Places. These historic resources include bridges (overhead and undergrade), stations (passenger and freight), and other structures associated with railroad operations (signal and interlocking towers, tunnels, and civil engineering features such as cuts and fills). Although many of these historic resources are owned by New Jersey Transit or other public agencies, NRHP eligible bridges and other structures are among the assets being acquired

Ms. Elaine K. Kaiser HPO-A98-137 January 29, 1998 Page 3 of 3

from Conrail. Here also, future activities, such as the substantial alteration or demolition of these bridges, structures or buildings, would have an effect on historic properties.

The Historic Preservation Office hopes that, after recognizing the historic significance and NRHP eligibility of particular railroad resources, continued use and operation will ensure appropriate preservation.

The Historic Preservation Office appreciates having an opportunity to offer these comments on the Draft Environmental Impact Statement as part of the Section 106 consultation process. If you have any questions regarding these comments or the identification and evaluation of railroad related historic resources, please contact HPO staff Charles Scott at (609) 633-2396.

Sincerely,

Dorothy P. Guzzo Deputy State Historic Preservation Officer

DG/CS

Log #98-394 – A98-137

C: NJDEP, Office of Program Coordination

Ohio Historical Center

1982 Velma Avenue Columbus, Ohio 43211-2497 614/297-2300 Fax: 297-2411

ENVIRONMENTAL BOGUMENT

Chief, Section of Environmental Analysis Surface Transportation Board Washington, D.C. 20423

Re: Finance Docket No. 33388 -- CSX and Norfolk Southern -- Control and Acquisition -- CSX Crestline Connector Project, Crawford County, Ohio

Dear Ms. Kaiser,

This is in response to correspondence from your office dated November 26, 1997, providing the additional requested information concerning the Crest Tower. The comments of the Ohio Historic Preservation Office (OHPO) are submitted in accordance with provisions of the National Historic Preservation Act of 1966, as amended (16 U.S.C. 470 [36 CFR 800]); the Surface Transportation Board (STB) serves as the lead federal agency.

The November 26, 1997, correspondence provides a detailed discussion of vibration factors caused by changes from the proposed project. Based on the information presented in the documentation, we concur with your assessment that the proposed Crestline connector project will have no effect on the Crest Tower, a property determined eligible for inclusion in the National Register of Historic Places. We feel that the correspondence makes an important distinction between cosmetic damage and the more serious issues of architectural and structural damage. If there is any cosmetic damage, the data presented in the correspondence supports the conclusion that it will be a long term development that is much more manageable than the effects of any architectural or structural damage. Therefore, this office doesn't object to the proposed construction of the Crestline connector as described in your October 15, 1997, correspondence.

Any questions concerning this matter should be addressed to David Snyder at (614) 297-2470, between the hours of 8 am. to 5 pm. Thank you for your cooperation.

Sincerely,

Mark J. Epstein, Department Head Resource Protection and Review

CENTRAL ADMINISTRATIVE UNIT

DOCUMENT # 12 30 97 2 54 27 PM

MJE:DMS/ds

xc: Carole W. Peter, Dames and Moore

Barbara J. Harris, CSX

Barry Wharton, HDR Engineering, Inc.

Richard Starzak, Myra L. Frank & Associates, Inc.

Laura Henley Dean, ACHP

Ohio Historical Center

1982 Velma Avenue Columbus, Ohio 43211-2497 614/297-2300 Fax: 297-2411

CENTRAL ADMINISTRATIVE UNIT

REC'D: 12/30/97 DOCUMENT# 12/31/97 9.06.08 AM

December 19,

Elaine K. Kaiser Chief, Section of Environmental Analysis Surface Transportation Board Washington, D.C. 20423

ENVIRONMENTAL DOCUMENT

Re: Finance Docket No. 33388 -- CSX and Norfolk Southern -- Control and Acquisition -- Conrail, Ohio

Dear Ms. Kaiser,

This purpose of this letter is to transmit to your office letters from four interested parties submitted to the OHPO in response to the request for public input regarding the above referenced Conrail acquisition project. The correspondence from the interested parties provides information, comments and concerns for historic preservation issues and is submitted under provisions of the National Historic Preservation Act. The comments of the Ohio Historic Preservation Office (OHPO) are submitted in accordance with provisions of the National Historic Preservation Act of 1966, as amended (16 U.S.C. 470 [36 CFR 800]); the Surface Transportation Board (STB) serves as the lead federal agency.

We feel that the comments are helpful and useful, and in several cases provide the important function of extending the range of options for preservation for your consideration. Letters were received for the Norfolk Southern connector, Bucyrus, Crawford County, construction and changes in the Cleveland area, and construction and changes in the Columbus area. We have also received telephone calls regarding this project as a result of requests for public input. I believe that we were able to resolve the questions raised thus far from telephone inquiries.

The letter from the Bucyrus Historical Society has been instrumental in developing the basis for a Memorandum of Agreement for the demolition of the TOC Freight House. It is our expectation that this agreement will be drafted in the near future and submitted to this office for review.

The letter from the Cleveland Landmarks Commission raises preservation concerns for several areas including the Collinwood Yard. It is our opinion that the information and concerns help in establishing a broader context to interpret historic properties and evaluate effects in the Cleveland area. We recommend that additional consideration should be given to this part of the project. The extent of changes in the Collinwood Yard pose problems for resolving preservation concerns, and we feel that working with the Cleveland Landmarks Commission could help in framing the approaches along a broader background.

Ms. Elaine K. Kaiser December 19, 1997 Page 2

The letter regarding the Buckeye Intermodal Terminal Yard makes a request for clarification of the Area of Potential Effects for the project. We recommend revisiting this part of the project to ensure that the area considered encompasses the full range of work and modifications.

Finally, the letter from the Glen Echo resident expresses concern for the preservation of a contributing element to the Glen Echo Historic District. We recommend that specific conditions be imposed to control construction in this area to avoid any impacts to this feature. We also recommend that the construction people contact this office when construction reaches this area so that personnel from this office can have an opportunity to monitor the construction.

Any questions concerning this matter should be addressed to David Snyder at (614) 297-2470, between the hours of 8 am. to 5 pm. Thank you for your cooperation.

Sincerely,

David Snyder, Archaeology Reviews Manager

Resource Protection and Review

David Sugler

DMS/ds

Attachment

xc (without attachment):

Dan Shinn, Burns and McDonnell
Bruno Maestri, NS
Carole Peter, Dames and Moore
Barbara J. Harris, CSXT
Barry Wharton, HDR Engineering, Inc.
Richard Starzak, Myra L. Frank & Associates, Inc.
Laura Henley Dean, ACHP

An association of local governments providing planning, programs and services for the region.

November 14, 1997

Mr. David Snyder

REC'D BY OHFO NOVI 7 1997

Judith W. Stillwell

Review and Compliance Department Ohio Historic Preservation Office 567 East Hudson Street

Chair

Gary Panek Vice Chair

Columbus, OH 43211-1030

Richard A. Browning Secretary

Dear Mr. Snyder:

Bill Habig Executive Director Our agency has had an opportunity to review your letter dated October 30, 1997, concerning the CSX Corporation (CSX) and Norfolk Southern (NS) merger application with regard to the Section 106 Process of the National Historic Preservation Act. We offer the following comments for consideration.

While reviewing these documents, we noticed that there were discrepancies between the project description section and the supporting documentation and analysis. These discrepancies concern references to a new CSX fueling facility that would require acquisition of new right-of-way and construction of a new CSX intermodal facility. These construction projects, although outlined in the project description section of the report, were not discussed further in the analysis that follows.

It was our understanding that CSX would be assuming operations of the Buckeye Intermodal Terminal Yard from Conrail, providing them with a facility previously unavailable in this region. If this is the "new" intermodal yard referenced in the project description, it needs to be clarified. Furthermore, the new right-of-way, its location, historical impacts and other pertinent information need to be expressly addressed.

We look forward to having the above issues incorporated in the National Historic Preservation Act Process. Thank you for the opportunity to comment and participate in the merger proceedings.

Very truly yours,

William C. Habig **Executive Director**

William C. Habie

WCH:jrh

City of Cleveland Michael R. White, Mayor

Cleveland Landmarks Commission

Robert Keiser, Secretary 601 Lakeside Avenue, Room 519 Cleveland, Ohio 44114 216/664-2531

had a de dand NOV 2 4 1997

November 20, 1997,

Mr. David Snyder Review and Compliance Department Ohio Historic Preservation Office 567 East Hudson Street Columbus, Ohio 43211-1030

Dear Mr. Snyder:

The staff of the Landmarks Commission of the City of Cleveland has reviewed the letter dated October 30, 1997, from the Surface Transportation Board regarding the proposed acquisition of Conrail by CSX Corporation (CSX) and Norfolk and Southern Corporation (NS). Attached to the letter was a portion of a draft study prepared by the Board's Section of Environmental Analysis (SEA) purportedly describing the possible effects of the proposed acquisition on historic properties in the Cleveland area.

The SEA's study looked exclusively at the effect of the proposed rail line acquisition on the area surrounding the Collinwood Rail Yards. The Landmarks Commission staff has concluded that the study should have considered the effect of the merger on several additional existing or potential historic districts and individual landmarks within the City of Cleveland along portions of the rail lines routes which are experiencing significant increases in freight rail traffic.

On the basis of data provided by MS and CSX, the City estimates that rail traffic will increase from 114% to 1188% in certain neighborhoods of Cleveland. The rail lines targeted for these increases run through or near seven (7) nationally or locally designated historic districts.

I am enclosing a map that delineates these existing or potential districts as well as individual landmarks within the City of Cleveland that may be affected by the proposed acquisition. I am also enclosing a summary of findings prepared by Cleveland's City Planning Commission which further elaborates the proposed impacts on historic sites within the

Mr. David Snyder Page Two

City. This data was included in the comments on the railroads' application filed by the City of Cleveland with the Surface Transportation Board on October 21, 1997.

There may be additional potential districts affected by the rail line acquisition, particularly in the Forest Hills neighborhood of Cleveland and in adjoining neighborhoods in East Cleveland and Cleveland Heights.

The potential impact of the proposed rail line acquisition on historic areas of Cleveland could be significant and can only be understood with a thorough analysis of all of the affected areas of historic value in Cleveland, not just the area surrounding the Collinwood Rail Yards. We would urge the Ohio Historic Preservation Office to join with us in requesting that the Surface Transportation Board expand the SEA's study to assess the possible effects of the proposed acquisition on all of the existing and potential historic districts and landmarks in the City of Cleveland and adjoining communities which are near the affected rail lines.

Thank you for your consideration of this matter.

Sincerely,

Robert D. Keiser, Secretary Cleveland Landmarks Commission

cc: Sharon Sobol Jordan Hunter Morrison Christopher Warren

IMPACTS OF PROPOSED FREIGHT RAIL CHANGES ON CLEVELAND NEIGHBORHOODS

City Planning Commission

LAND USE AND DEMOGRAPHIC ISSUES

Summary of Findings

The proposed increases in freight rail traffic by Norfolk Southern and CSX would impact residential areas in approximately 13 neighborhoods in the City of Cleveland. Over 60,000 residents live within 1,000 feet of these rail lines. Collectively, the additional trains proposed on two Norfolk Southern lines and one CSX line will increase traffic on these lines from an average of approximately 33 trains per day to approximately 108 trains per day, for an increase of approximately 227% — or a 3-fold increase.

For purposes of the following analysis, the impacted areas have been grouped into 8 clusters of neighborhoods. In 7 of these 8 neighborhood areas, the population within 1,000 feet of the rail lines is characterized by poverty rates above the citywide average and median household incomes below the citywide average. In addition, in 4 of the 8 neighborhood clusters, the proportion of non-whites in the population is over 70%. Therefore, it can be concluded that the proposed increases in freight rail traffic in the City of Cleveland disproportionately impact poor and minority residents.

The CSX line proposed for an increase in freight traffic begins on the east side of Cleveland in the South Collinwood neighborhood, south of the I-90 near East 131st Street, and continues in a southerly and southwesterly direction through the Little Italy, University, Fairfax, Kinsman and South Broadway neighborhoods, before crossing the Cuyahoga River and paralleling I-480 to West 150th Street. The typical increase in traffic proposed for this line is from approximately 7 trains per day to 44 trains per day – for an over 6-fold increase.

One Norfolk Southern line crosses Cleveland in an east-west direction, entering from the west in the Edgewater and Cudell neighborhoods, continuing through the Detroit-Shoreway and Ohio City neighborhoods, crossing the Cuyahoga River through the Industrial Valley, and continuing east through the Kinsman, University/Fairfax and Little Italy neighborhoods, passing through East Cleveland, and then exiting Cleveland through the Euclid-Green and South Collinwood/Nottingham neighborhoods. This line is proposed to increase from approximately 14 trains to 38 trains per day — for a nearly 3-fold increase.

The second Norfolk Southern line proposed for an increase in traffic begins near downtown Cleveland (off of the former Conrail Lakeshore Line) and continues in a southerly and southeasterly direction through the Goodrich (Payne-Sterling), Central, Fairfax, Kinsman, and South Broadway neighborhoods before exiting into Garfield Heights. This line is proposed to increase form approximately 13 trains to 27 trains per day – for a more than 2-fold increase.

NOTE: This analysis is limited to consideration of those rail lines for which a significant increase in traffic is proposed and to those areas in which residential uses are located in close proximity to the rail line. Therefore, the old Conrail Lakeshore Line and the Norfolk Southern line which runs in a southwesterly direction between Cleveland and the City of Brooklyn are excluded from the analysis, because traffic on these lines is not proposed to increase. Similarly, the CSX line running along I-480 is excluded, because it traverses mostly industrial areas or areas that are buffered by I-480.

Historic Districts. The NS and CSX lines targeted for significant increases in freight rail traffic run through or close to 7 nationally or locally designated historic districts in the City of Cleveland. The affected districts include the following:

- Franklin West Clinton Historic District, designated nationally, located in the vicinity of West 74th Street, just north of the NS line through northwest Cleveland,
- Lorain Avenue and Market Square Historic Districts, designated locally and nationally, located generally between West 25th and West 58th Streets, just north of the NS line traversing northwest Cleveland.
- Tremont Historic District, designated locally and nationally, located south of the NS line as it passes to the south of downtown Cleveland.
- Little Italy Historic District, designated locally, located on either side of Mayfield Road, just east of the NS and CSX lines which traverse the University Circle area on Cleveland's central east side.
- Miles Park Historic District, designated locally and nationally, located just east of the CSX and NS lines in the vicinity of East 91st Street, between Harvard and Miles Avenues, near Cleveland's southern boundary with the City of Garfield Heights.
- Prospect Avenue Historic District, designated locally (with individual buildings designated nationally), located just west of the NS line in the vicinity of East 55th Street on Cleveland's near east side.

It should be noted that expenditures of federal funds and certain other federal actions which may affect National Register Historic Districts must be preceded by a Section 106 review. This also applies to areas which have been identified as "potential" historic districts. The Cleveland Landmarks Commission has formally identified a number of potential historic districts, including one large district which directly abuts the NS line in northwest Cleveland. This is the potential *Edgewater Historic District*, located north of the NS line in the northwest corner of Cleveland, bordering the City of Lakewood.

In many cases, these historic districts are the focal points which establish the character and identity of larger neighborhoods. Anything which lessens the desirability of a historic district, thereby lowering property values, works against the goal of preserving the districts and their architectural assets. Consequently, the proposed increases in freight rail traffic – with the associated increases in noise, vibration and safety hazards – threaten the viability of these valued and protected urban districts.

Kathy Mast Kane 2595 Summit Street Columbus OH 43202

November 20, 1997

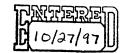
Mr. David Snyder
Review and Compliance Department
Ohio Historic Preservation Office
567 East Hudson Street
Columbus OH 43211-1030

Re: Finance Docket No. 33388 - CSX and Norfolk Southern - Control and Acquisition of Conrail: Section 106 of the National Historic Preservation Act Process in Ohio

Dear Mr. Snyder:

I am writing in response to the October 30, 1997 letter soliciting comments from the community. I am a resident of the Glen Echo neighborhood which runs adjacent to the railroad where the proposed construction is to take place. This neighborhood was listed in the National Register of Historic Places on October 24, 1997. The historic district is bounded by the Glen Echo Ravine on the north, Indianola Ave. on the west, Hudson Street on the south and the alley running parallel to the western edge of the railroad tracks on the east. If construction is to occur between the existing tracks, as stated, the only resource directly impacted by the work may be a c. 1860? coursed stone round-arched culvert which spans Slate Run in the ravine. It is located on the western edge of the tracks' embankment where it crosses the creek. (See pages 7-2, 7-15, 7-22 in "Glen Echo Historic District" National Register nomination.) Furthermore, because the ravine, city park and many outbuildings are contributing features in the historic district, and because the construction site abuts the eastern boundary of the district, I am concerned about the deposit of any debris or sedimentation created by the construction into the area. Please consider these issues as the project is reviewed.

Thank you for the opportunity to comment.


Sincerely,

Kathy Mast Kane

Glen Echo Historic District resident

xc: Chairperson, University Area Commission

United States Department of the Interior National Park Service

National Register of Historic Places Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Eulletin 16A). Complete each item by marking "x" in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

Name of Property			
historic name <u>GLEN ECHO HISTORIC</u>	DISTRICT		
other names/site number <u>Glen Echo Par</u> and Indianola	rcels (partial), Indian a Park View Addition 2	nola Park View Add	ition (partial)
2. Location			
street & number Roughly bounded by G Indianola Avenue and city or town Columbus state Ohio code Cit	Hudson Street	N/N	A 🔁 vicinity
3. State/Federal Agency Certification			
As the designated authority under the National Firequest for determination of eligibility meets thistoric Flaces and meets the procedural and procedural meets of does not meet the National Register of nationally statewide of locally. (See the National Register of nationally of statewide of locally. (See the National Register of nationally of statewide of locally. (See the National Register of nationally of statewide of locally.) Signature of certifying official/Title of local procedure of state of Federal agency and bureau In my opinion, the property of meets of does not comments.)	the documentation standards for regi- rofessional requirements set forth in 3 ter criteria. I recommend that this pro- continuation sheet for additional commend Therefore Sopt. 1 Cate Office OH SHPO	istering properties in the Natio 36 CFR Part 60. In my opinio sperty be considered significat ments.)	onal Register of n. the property
Signature of certifying official/Title State or Federal agency and bureau	Care		
The state of the s			
4. National Park Service Certification			
I hereby certify that the property is: entered in the National Register. See continuation sheet.	Signature of the Keep	er	Date of Action
datermined eligible for the National Register See continuation sheet.			
determined not eligible for the National Register. removed from the National			
Register.			
Cither, (excitain)			
	D-71		

National Register of Historic Places Continuation Sheet

		7		
Section	number	/	Page	7
000	···a···ibc		1 age	

GLEN ECHO HISTORIC DISTRICT Columbus, Franklin County, OH

district. Bridges for cars span the ravine in two locations within the district and a coursed stone culvert for the railroad spans the creek at the tracks. Use at the southwest corner of the district was converted from residential to commercial in 1916, with the existing commercial structure dating from 1926 (Photo #10, noncontributing). "Developers realized the commercial potential of land bordering major streets or streetcar lines,... and sometimes permitted commercial or apartment buildings on the major streets while reserving the interior lots for single family use..." (Burgess, p.48).

THE RAVINE

The Glen Echo Run (formerly Slate Run), is one of several major streams running westerly into the Olentangy River, creating scenic natural ravines on Columbus' north side. The ravine's cliffs are shale and its banks are wooded. The Glen Echo Ravine extends east of the district to just east of I-71 and west of the district to the Olentangy River. The stream serves as a major stormwater drainage way for the area channeling the flow to the river. The ravine is "composed of Ohio and Olentangy shale bedrock.... The shales are covered by a thin mantle of glacial till. The ravine soils which are derived from this material are subject to severe erosion without vegetative or other controls." (The Ravine Quarterly, pp.1,4.) Because of this serious erosion problem, gabions (wire mesh filled with stone) were installed c.1975, primarily along the creek bed. They are compatible with the original stone retaining walls (Photo #102).

THE PARK

A part of the Glen Echo ravine was delineated as a park "reserved for future disposition" in the original plats for the subdivision recorded July, 1909. The park was dedicated to the City in July, 1912. The 3.9 acre park is minimally improved. The Indianola Avenue Eridge, built in 1914, spans Parkview Drive and the Glen Echo Run (Photos #15,16). It anchors the west end of the park and its Classical Revival style contributes to the aesthetics of the district. Other remnants of early 20th century improvements in the park include stone retaining walls alon the creek bed, and stone wall "traffic barriers" along the east end of

National Register of Historic Places Continuation Sheet

Section number 7 Page 15

GLEN ECHO HISTORIC DISTRICT Columbus, Franklin County, OH

Glen Echo Ravine Culvert - A coursed stone, round arched culvert over Glen Echo Ravine at west side of Conrail Railroad crossing and eastern edge of district boundary. Date unknown, but railroad was extended north from Columbus in 1851. (Photo #120)

NONCONTRIBUTING BUILDINGS

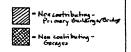
There are 59 noncontributing buildings/structures in the Glen Echo Historic District. There are five noncontributing houses, one noncontributing apartment building, one noncontributing commercial building, one noncontributing bridge, and 51 noncontributing garages.

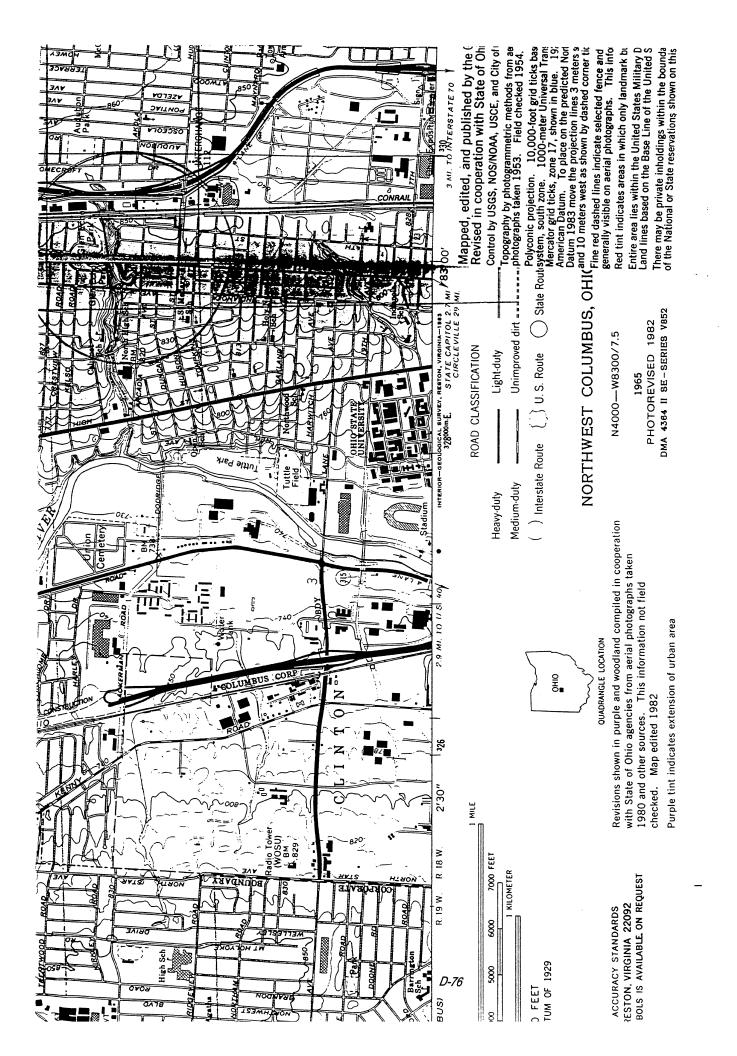
The following buildings are considered noncontributing to the Glen Echo Historic District due to construction dates outside of the period of significance, the use of modern construction materials, incompatible styling and/or degree of alteration. These buildings do not detract from the overall integrity of the district.

- 1. 350 Hudson Street: A 1 story "modern broad front" commercial building constructed in 1926 as an A & P gracery store. The building has brick bearing wall construction covered in stude with a corpeled parapet. Storefront entries on Indianola Avenue and Hudson Street have been altered with blue glazed brick c.1960. This building is at the southwest corner of the district. (Photo #10)
- 2. 2636 Indianola Ave.: A 2 story L-shaped brick eight-unit apartment building (1957). These lots were undeveloped from the time they were platted until construction of these apartments. (See Photo #14)
- 3. 2546 Glen Echo Drive: A 1 story residence (c.1960). A house built on this lot c.1911-12 was torn down c.1951. (Photo #115
- 4. 2593 Glen Echo Drive: A 1 1/2 story residence (c.1951). A house built on this lot c.1914 was torn down c.1951. (Photo #119)
- 5. 2650 Glen Echo Drive: A 2-story residence (c.1970). This lot was undeveloped from the time it was platted until construction of this house.

National Register of Historic Places Continuation Sheet

Section number 7 Page 22


GLEN ECHO HISTORIC DISTRICT Columbus, Franklin County, OH


	Former	Circa	Non-	Garage
Photo #	Address Address	Date Notes	Cont.	(C/NC)
GLEN EC	HO DRIVE Continued			
110	2578	1912-13		C
112	2581 2582	1913 1915		NC
	2583	1915		С
	2586	1911-12		С
	2587	1914		
	2592	1915	3.50	C
	2593 2597-2599	1951 1916	NC	C
	2598	1916		C
	2604	1915		С
114	2607	1913-1916		
	2608	1914		С
	2611 2612	1923 1918		С
	2617	1916		NC NC
	2621-2629	1926 4-unit Apts		110
	2650	1970	NO	
	2653	1915		NC
21	2663	1917		
GLEN EC	HO RAVINE			
120	Culvert	1860 Structure		
17	City Park	1912 Site		

Glen Echo Historic District Columbus, Franklin County, Ohio (Contributing & Non contributing)

Mr. David Snyder Review and Compliance Dept. Ohio Historic Preservation Office 567 E. Hudson St. Columbus, Ohio 43211-1031

Re: Finance Docket No. 33388 - CSX and Norfolk Southern - Control and Acquisition of Conrail: Section 106 of the National Preservation Act Process in Ohio

Dear Mr. Snyder:

We are in receipt of correspondence from Ms. Elaine K. Kaiser, Chief, Section of Environmental Analysis of the SURFACE TRANSPORTATION BOARD, Washington, D.C. The subject is the National Register structure known as the T.& O.C. Railroad Depot, located at 715 E. Rensselaer St. here in Bucyrus. We, the Bucyrus Historical Society, are owners of the building, while the ground beneath is currently owned by Conrail.

We are writing to you at the suggestion of Ms. Kaiser, since we are intensely interested in rehabilitation and possible restoration of this historic structure, which we understand boasts unique construction as far as R.R. stations are concerned. We have established a special BUCYRUS HISTORICAL SOCIETY STATION FUND to help launch our efforts toward stabilization of the structure (now in deplorable condition) and to further resurrect it for the appreciation of the public. We have no plans for commercialization of the building.

We estimate the stabilization effort (i.e. roof, spouting and drainage restoration) will require approx. \$25,000. Some estimates for meaningful (total?) restoration run from \$250,000 to \$500,000, but we feel these figures are based on complete work by restoration experts and, at least at this time, we do not feel this is a realistic goal.

We do, however, have numerous offers of assistance, both from professional people and local "do-it-yourselfers", all of whom are eager to get inside and do their thing. After a review of the qualifications of those involved, I believe we can actually rehabilitate the building and make it available for Historical Society and community use ... after we get the basic roof/gutter/drainage stabilization completed ... for well under the high-end restoration estimates. I believe \$100,000 (above the initial \$25,000), along with our volunteer force, would go a long way toward

D-78

bringing this historic building back to a condition of respectability.

And since the station is located in a rather neglected area of our community, we feel an added advantage connected with restoration would be an automatic upgrading of the area, to our entire community's benefit. Some people in the area have already expressed enthusiastic approval of our announced efforts.

We are enclosing a copy of a rather lengthy proposal we have just submitted to our local Bucyrus Area Community Foundation, on the possibility they might be able to financially support our efforts. We have also contacted local industries and financial institutions, as well as private individuals. In the face of numerous fund drives now going on in Bucyrus, our efforts have not met with great success.

A verbal discussion with a representative of Norfolk & Southern, here in Bucyrus for survey work regarding the proposed spur line from the north-south N&S to the east-west line nearby, made it clear that they, too, appreciated the historic value of the depot building, and assured us their tentative plans for the spur would not affect our property. They also indicated a possibility that grading and landscape work for the building might be included in their activities, and even a further possibility that the firm might make some restoration funds available.

We are soliciting your attention to this project, and offer our assistance in bringing you up-to-date on any information we might have.

Sincerely,

Ben Anslow, Jr.

Chrmn, BUCYRUS HISTORICAL SOCIETY STATION FUND

enc. (3 pgs.)

cc: Elaine K. Kaiser, SURFACE TRANSPORTATION BOARD Dr. John Kurtz, Pres., BUCYRUS HISTORICAL SOCIETY Atty. Richard Cory, Treas., BUCYRUS HISTORICAL SOCIETY

Please direct any reply to: Ben Anslow, Jr.
1090 Mary Ann Lane
Bucyrus, Ohio 44820
Tel. (419) 562-8057

BUCYRUS HISTORICAL SOCIETY

202 S. WALNUT ST. -

BUCYRUS, OHIO 44820

Oct. 17, 1997

BUCYRUS AREA COMMUNITY FOUNDATION 231 S. Poplar St., P.O. Box 387 Bucyrus, Ohio 44820

Att: Mr. John Bridges, Exec. Secy.

This is in response to your letter of March 14, 1997, with which you enclosed guidelines and miscellaneous details regarding application for a grant in 1998.

Following is a recap of our project, present status, short-term and long-term needs, as best we can ascertain at the present:

PROJECT:

Restoration of the Bucyrus T.& O.C. Railroad Depot on E. Rensselaer St. Built in 1892, the building is of brick-and-stone construction, and stands on ground currently owned by Conrail. We are assuming the surviving owner will be Norfolk and Southern, not CSX. The Historical Society owns the building, and we have just received real estate tax exempt status from the State of Ohio. The building is on the National Register of Historic Places, and we believe it merits the sincere efforts, not only by our Society, but the Bucyrus community as a whole, to stabilize the property and work toward rehabilitation of this historic landmark.

FINANCE:

Estimates for complete restoration (in our minds not a practical aim) run between \$250,000 and \$500,000. Our immediate aim is for stabilization as quickly as possible. This means repair of the slate roof (not replacement) and complete replacement the spouting and drainage arrangement. Our estimate for this necessary work is \$20,000 to \$25,000.

We currently have a bank account of \$1,800. We have written to a number of local industries and the five financial institutions for help to achieve this immediate goal, and any assistance from the Community Foundation, however small, would be of great help. We hope to make this a local effort if at all possible, at least in our immediate stabilization program, since we feel immediacy is extremely important.

D-80

BUILDING STATUS: The structure is in admittedly deplorable condition, not having been meaningfully maintained since having been acquired by the Telegraph Forum in approx. 1952. It was donated to the Histor cal Society by Richard Hord, who took possession in the 1960's

We have been advised by a restoration expert from Marion, Ohio however, that the building is definitely restorable and, in hi words, "should be restored."

We have also received great encouragement from the Bucyrus Cit Council, the Ohio Historical Society, Congressman Michael Oxle and, just this week, the United States Surface Transportation Board.

The latter, incidentally, has acknowledged the historic significance of the building. A planned spur line from the north-south Norfolk and SouthernLine to the east-west (CSX?) line would deliberately bypass the depot building while taking out the T.& O.C. freight depot across Rensselaer St. There is even a good possibility N&S will supply landscape and grading to enhance the property, and have even suggested the possibili of some funds for the restoration project.

We would be happy to share with you our correspondence from these various sources, and walk you through the facility if you like.

The building once contained a number of fine stained glass windows, three of which remain. Five additional ones have been promised, and we feel some others will be available.

WORK STATUS: We have been offered assistance by a number of individuals and groups, including the Bucyrus Jaycees, garden clubs, railroad clubs, several artisans (stained glass and wood restoration), an electrician and several others experienced in building repa

Until the building is stabilized, however (roof and spouting/drainage), we are reluctant to turn anyone loose inside regard less of their enthusiasm for the project. Quite frankly, unless we can reach our stabilization goal (\$25,000), we will not proceed on the project. Much to the loss of our community we believe. The stabilization work would be done on a contract basis with qualified builders.

We are confident that, once these important preliminary repair are accomplished, we can successfully follow through with rehabilitation of both the exterior and interior with our volunteer work force and a figure well under the high-end estimate for total restoration. While a qualified quotation would be hard to obtain, our "qualified guess" would be under \$100,000, to make the structure habitable and useful for the communi

USES:

We find it difficult to put a finger on specific uses for a rehabilitated T.& O.C. Railroad Station. We have no intention to put it to a commercial use (i.e. restaurant, shops, etc.). We see it as an ideal place for community involvement, historical events and activities, railroad club headquarters (there a two such clubs in Bucyrus), garden club functions, youth meeti and activities, etc.

The important thing now, as we see it, is to "stop the rot" as quickly as possible and to make this community prize something we will be able to point to with pride, both to our own citize

and to visitors as well.

MISC.

Be advised that, although the Bucyrus Historical Society now owns this building, funds for restoration will not be taken from society funds, since the society itself is barely self-supporting. All restoration monies must be raised from outside efforts.

The Bucyrus Historical Society was founded in 1969, and operates in the Scroggs House at 202 S. Walnut St., Bucyrus, Ohio 44820 The telephone number is (419) 562-6386.

Below is a listing of current officers and some board members:

Dr. John Kurtz, Pres., 714 S. Walnut St., Bucyrus, Ohio 44820 Atty. Richard Cory, Treas., 1080 Mary Ann La., " " " Richard Zahn, V. Pres., 811 Rogers St., " " " " " Martha Ann Lown, 1006 Woodlawn Ave.(Secy.) " " " Ben Anslow, Jr., 1090 Mary Ann La. (Committee Chairman, Bucyrus Historical Society STATION FUND)

James Starner, Board Mmbr., 4338 Stetzer Rd., " " " Joan Carver, 1100 Mary Ann La. (Board Mmbr.), " " "

The Bucyrus Historical Society board is made up of approx. 24 local men and women.

NOTE:

The <u>Bucyrus Historical/Station Fund</u> is a separately established committee with responsibility for funding and direction of the rehabilitation efforts connected to the T.& O.C. Depot. No funds may come directly from the society itself, since the Bucy Historical Society is itself barely self supporting. The socie does, however, hold ownership of the depot building, and it is covered on the society's all-inclusive liability insurance poli

The Station Fund Committee is, of course, responsible to the Historical Society, and society board members vote on any major decisions regarding the depot project.

The BUCYRUS HISTORICAL SOCIETY STATION FUND carries a separate deposit and checking account at First Federal Savings & Loan in Bucyrus, Acct. No. 241270233 - 016023969400 - 9996. It is administered by Richard Cory, Treas. and Ben Anslow, Jr., Station Fund Committee Chairman. Present balance is approx. \$1,800.

The Bucyrus Historical Society, a tax-exempt organization, carr a Federal I.D. No. 23-7032428.

We will be most happy to supply you with any additional information you ma require to aid you in making a favorable decision regarding this most wort while community project. We can also walk any of your representatives through the facility, if you so desire.

Bon Anglow In

cc: Richard Cory, Treas.
John Kurtz, Pres.

ENVIKUNMENTAL DOCUMENT

1982 Velma Avenue Columbus, Ohio 43211-2497 (614) 297-2300

CENTRAL ADMINISTRATIVE UNIT

Fax: 297-2411

REC'D: 12/30/97 DOCUMENT# ∠

December 24, 1997

Elaine K. Kaiser Chief, Section of Environmental Analysis Surface Transportation Board Washington, D.C. 20423

Re: Finance Docket No. 33388 -- CSX and Norfolk Southern -- Control and Acquisition --Conrail, Ohio

Dear Ms. Kaiser,

The purpose of this letter is to provide additional comments in response to correspondence from your office dated October 15, 1997 (received October 20) regarding the above referenced Conrail acquisition project, with additional information provided during a meeting on October 17, 1997. The correspondence provides a compilation of information and reports of identification level survey, evaluation, and assessment of effects for the Conrail acquisition project. The comments of the Ohio Historic Preservation Office (OHPO) are submitted in accordance with provisions of the National Historic Preservation Act of 1966, as amended (16 U.S.C. 470 [36 CFR 800]); the Surface Transportation Board (STB) serves as the lead federal agency.

This letter provides comments on project components not specifically addressed in our comments of October 28, October 30, October 31, December 17, and December 19, 1997. Correspondence from your office includes preliminary reporting of identification survey efforts including the four documents titled: (1) "Results of the Ongoing Phase I Archaeological Survey of Proposed Railroad Construction of Connections between Conrail and Norfolk Southern Lines in Erie, Franklin, and Ottawa Counties, Ohio, and two Proposed Railroad Yard Expansions in Cuyahoga, Huron, and Seneca Counties, Ohio" by Dawn Herr, John F. Schweikart, and Jeffrey Darbee, October 10, 1997; (2) "Historic Property Report for Proposed Construction for CSX/Conrail Railroad Consolidation in Sidney, Shelby County, Ohio" by Janet L. Friedman and Geoffrey Henry, October 4, 1997; (3) "Historic Property Report for Proposed Construction for CSX/Conrail Railroad Consolidation in Greenwich, Huron County, Ohio" by Janet L. Friedman and Geoffrey Henry, October 9, 1997; and (4) "Historic Property Report for Proposed Construction for CSX/Conrail Railroad Consolidation in Crestline, Jackson Township, Crawford County, Ohio" by Janet L. Friedman and Geoffrey Henry, October 8, 1997. The correspondence also includes extensive documentation on the Toledo Pivot Bridge, and the Bucyrus T&OC Depot and Freight House properties. The comprehensive coverage and the detailed information presented, including completed inventory forms with supporting documentation and photographs, have been very helpful in completing our review of this information.

Ms. Elaine K. Kaiser December 24, 1997 Page 2

The discussion of the Area of Potential Effects (APE) for the different classes of construction in this project was helpful. We feel that the usage was thorough and helped to organize identification efforts. We note that many of the concerns presented to this office reflect public views of more extensive impacts than considered under the APE. We recommend that at least in the Cleveland area you should consider expanding the area encompassed under the APE. Expansions might also be considered in the Toledo and Columbus areas. In these metropolitan areas the project extends past several historic districts, and the increases in rail traffic and other changes resulting from this project could have impacts on the setting and other defining characteristics of these historic districts.

Based on the information presented in the report, we concur with the recommendations to complete the work at the Willard Yard. It is our understanding that the work includes wetland mitigation that might include construction of a wetland in another area. Coordination with this office is recommended to determine if survey is needed in the wetland mitigation area.

Based on the information presented in the report on the Collinwood Yard, we concur that the yard is eligible for inclusion in the National Register of Historic Places. We note that there have been several significant changes in this yard that are not directly under jurisdiction of this project. We are concerned about the demolition of structures that offer unusual opportunities for adaptive reuse. It is our understanding that at least two contributing elements to the Collinwood Yard property are still intact, the Quaker Tower and the Fueling Tower. We concur with your recommendations for recordation of significant structures in the Collinwood Yard. We strongly recommend that the Cleveland Landmarks Society be involved in reviewing the recordation plans and results for the Collinwood Yard. We also recommend that you consider concerns expressed by the Cleveland Landmarks Society and discuss possible treatment alternatives with this organization.

Based on the information presented, we concur with your recommendations that the four properties (three bridges and 1 culvert) along the Toledo-Maumee Rail Line abandonment are not eligible for inclusion in the National Register of Historic Places.

We concur that the Toledo Pivot bridge is eligible for inclusion in the National Register of Historic Places. Documentation should include detailed recordation of the engineering components, and we recommend further consultation with this office concerning documentation requirements for this adverse effect.

We concur that the section proposed for work between Weber and Hudson streets in Columbus has been extensively disturbed and no additional archaeological investigations are needed. However, as noted in our December 19, 1997, letter, this project area appears to

Ms. Elaine K. Kaiser December 24, 1997 Page 3

include a contributing element to the Glen Echo Historic District and care is needed to avoid impacts. We strongly recommend further review of the proposed work in Columbus to ensure that eligible or listed properties are not impacted.

Based on the information presented in the report, we concur with the recommendations to complete the work at Oak Harbor. Also, we concur with your findings that no property eligible for inclusion or included in the National Register of Historic Places will be affected by the proposed construction at Vermilion.

Additional coordination for some components of this project is recommended, however coordination with this office has been completed for several components and we don't object to construction being initiated in these areas. Please don't hesitate to contact this office if you have any questions about coordination needs for any of the components or if you feel that clarification or specific comments on a particular component would be helpful. Any questions concerning this matter should be addressed to David Snyder at (614) 297-2470, between the hours of 8 am. to 5 pm. Thank you for your cooperation.

Sincerely,

David Snyder, Archaeology Reviews Manager Resource Protection and Review

David Snyder

DMS/ds

xc: Dan Shinn, Burns and McDonnell
Bruno Maestri, NS
Carole Peter, Dames and Moore
Barbara J. Harris, CSXT
Barry Wharton, HDR Engineering, Inc.
Richard Starzak, Myra L. Frank & Associates, Inc.
Laura Henley Dean, ACHP

Commonwealth of Pennsylvania

Pennsylvania Historical and Museum Commission

Bureau for Historic Preservation Post Office Box 1026 Harrisburg, Pennsylvania 17108-1026

DOCUMENT # 3/27/98 11:55:03 AM

March 19, 1998

Elaine Kaiser Surface Transportation Board 1925 K Street, NW Washington, DC 20423-0001

TO EXPEDITE REVIEW USE BHP REFERENCE NUMBER

Re: ER 97-0776-042-Q

Proposed Conrail Acquisition

STB Docket No. 33388

Evaluation of Conrail Yards

Dear Ms. Kaiser:

The Bureau for Historic Preservation (the State Historic Preservation Office) has reviewed the above named project in accordance with Section 106 of the National Historic Preservation Act of 1966, as amended in 1980 and 1992, and the regulations (36 CFR Part 800) of the Advisory Council on Historic Preservation. These requirements include consideration of the project's potential effect upon both historic and archaeological resources.

We disagree with the findings of the consultant concerning the National Register eligibility of the following railroad yards. It is the opinion of the State Historic Preservation Officer that the following properties are eligible for listing in the National Register of Historic Places:

- 1. Greenwich Yard, 6, 44 and 138 Pattison, Philadelphia: Although there are few buildings left at the Greenwich Yard, it appears that the function of this yard focused on switching and sorting of rail traffic. Therefore, since most of the pre 1960 trackage remains, this yard appears to possess sufficient integrity to reflect its historical significance as the link between the Pennsylvania Railroad, the Philadelphia Naval Shipyard and the port facilities. This resource meets National Register criterion A and C for transportation and engineering. We agree with the boundaries selected for this resource.
- 2. Morrisville Yard, Lower Morrisville Road, Morrisville, Bucks County: This yard is significant for its association with the Trenton Cut-Off and meets National Register criteria A and C for transportation and engineering. Although there are few buildings left at the yard, those that remain have sufficient integrity to reflect the

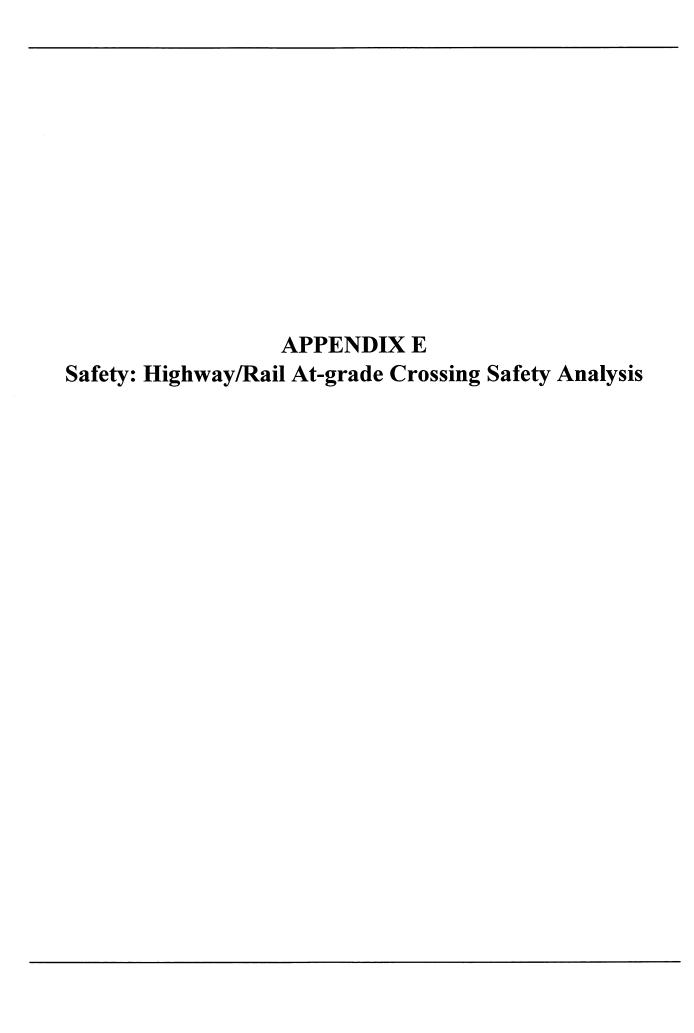
Page 2 E. Kaiser March 19, 1998

function of the yard. We agree with the boundaries identified for this resource.

We concur with the findings of the consultant that the following resources are not eligible for the National Register of Historic Places due to a loss of integrity.

- 3. Allentown Yard, River Drive and Lehigh Canal, Allentown, Lehigh County
- 4. Harrisburg Yard, N. 7th and Industrial Road, Harrisburg, Dauphin County
- 5. Pitcairn Yard, Wall & Turtle Creek, Monroeville and Lower Versailles Township, Allegheny County
- 6. Rutherford Railroad Yards, Swatara Township, Dauphin County
- 7. Snyder Avenue Yard, 12 East Snyder Avenue, Philadelphia

If you need further information in this matter please consult Susan Zacher at (717) 783-9920.


Sincerely,

Brenda Barrett

Director

cc: Thomas Lingel, McGinley, Hark & Associates BB/smz

[THIS PAGE INTENTIONALLY LEFT BLANK]

CONTENTS

APPI	ENDIX E: SAFETY: HIGHWAY/RAIL AT-GRADE CROSSING SAFETY	<u>Page</u>
	ANALYSIS	. E-1
	ATTACHMENTS	
E-1	Illinois Highway/Rail At-grade Crossing Accident Frequency	. E-3
E-2	Indiana Highway/Rail At-grade Crossing Accident Frequency	. E-9
E-3	Maryland Highway/Rail At-grade Crossing Accident Frequency	
E-4	Michigan Highway/Rail At-grade Crossing Accident Frequency	E-27
E-5	New York Highway/Rail At-grade Crossing Accident Frequency	E-31
E-6	Ohio Highway/Rail At-grade Crossing Accident Frequency	E-35
E-7	Pennsylvania Highway/Rail At-grade Crossing Accident Frequency	E-61
E-8	Virginia Highway/Rail At-grade Crossing Accident Frequency	E-67
E-9	West Virginia Highway/Rail At-grade Crossing Accident Frequency	E-73

Appendix E: Safety	y: Highway/Rail At-grade Cro	ossing Safety Analysis
[THIS PAG	E INTENTIONALLY	LEFT BLANK]

APPENDIX E SAFETY: HIGHWAY/RAIL AT-GRADE CROSSING SAFETY ANALYSIS

The Section of Environmental Analysis (SEA) of the Surface Transportation Board (the Board) revised its analysis of highway/rail at-grade crossing safety based on refined data that SEA obtained after preparing the Draft Environmental Impact Statement (Draft EIS). In the Draft EIS, SEA recommended mitigation measures to upgrade warning devices at highway/rail at-grade crossings according to crossing descriptions in the Federal Railroad Administration's database. For the Final Environmental Impact Statement (Final EIS), SEA obtained refined data on roadway descriptions, roadway traffic volumes, warning device types, train speeds, and accident histories from the Federal Railroad Administration, state and local departments of transportation, and persons commenting on the Draft EIS, and by making site visits.

SEA's revised analysis of highway/rail at-grade crossing safety for the Final EIS relied on the same methods presented in the Draft EIS, Appendix B, "Safety," Section B.4.3, "Analysis Methods for Safety Effects at Highway/Rail At-grade Crossings."

In some instances, SEA obtained refined data for the Final EIS indicating that the state or local jurisdiction had upgraded the warning device at a highway/rail at-grade crossing from what SEA had reported in the Draft EIS. In such instances, SEA performed revised analysis using accident data from the time of installation through 1995 for warning devices installed between 1991 and 1995. For warning devices installed after 1995 or on undetermined dates, SEA used accident data from 1991 through 1995 and analyzed these highway/rail at-grade crossings based on the warning devices reported in the Draft EIS. If SEA determined that a warning or safety device it recommended in the Draft EIS was already in place or no longer needed, SEA rescinded the proposed mitigation measures.

Attachments E-1 through E-9 provide the results of SEA's revised analysis, including descriptions of the refined data for specific highway/rail at-grade crossings.

Appendix E: Safety: Highway/Rail At-grade Crossing Safety Analysis
[THIS PAGE INTENTIONALLY LEFT BLANK]
Proposed Consoil Acquisition May 1009 Final Environmental Impact Statemen

ATTACHMENT E-1

Illinois Highway/Rail At-grade Crossing Accident Frequency

 ppendix E: Safety: Highway/Rail At-grade Crossing Safety A	nalysis
[THIS PAGE INTENTIONALLY LEFT BLAN	K]

Page 1 of 3

ATTACHMENT E-1 ILLINOIS HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

												Post
Rail Line			Warning	· · · · · · · · · · · · · · · · · · ·	Number of Roadway	Maximum	Pre-	Post	Kelevant Accident	Pre-	Post	Acquisition With
Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acc	History	Acquisition	Acquisition	Mitigation
N-033	479895X	MAPLE	Gate	150	2	09	22.7	39.0	1	0.0503	0.0562	
N-033	479896E MAIN	MAIN	Gate	3,900	4	09	22.7	39.0	0	0.0364	0.0435	
N-033	479897L	479897L ELLEN ST	Flasher	275	2	09	22.7	39.0	0	0.0241	0.0303	
N-033	479898T TR 312	TR 312	Passive	109	2	09	22.7	39.0	0	0.0394	0.0489	
N-033	479900S CH 13	CH 13	Flasher	250	2	09	22.7	39.0	0	0.0234	0.0294	
N-033	479902F	TR 304	Passive	59	2	09	22.7	39.0	0	0.0330	0.0414	
N-033	479903M	TR 286	Flasher	59	2	09	22.7	39.0	0	0.0190	0.0252	
N-033	479905B	TR 274	Passive	65	2	09	22.7	39.0	0	0.0330	0.0414	
N-033	479910X	DAVID ST/SR 522	Gate	009	2	09	22.7	39.0	0	0.0186	0.0231	
N-033	479911E	DAVID ST/S. DODD St.	Flasher	950	2	09	22.7	39.0	0	0.0360	0.0440	
N-033	479913T TR 236	TR 236	Flasher	59	2	09	22.7	39.0	0	0.0140	0.0179	
N-033	479915G TR 230	TR 230	Passive	59	2	09	22.7	39.0	0	0.0330	0.0414	
N-033	479916N	479916N TWP RD. 220	Flasher	100	2	09	22.7	39.0	0	0.0169	0.0216	
N-033	479917V	HARRISON	Gate	750	2	09	22.7	39.0	1	0.0624	0.0708	
N-033	479919J	ILL 130/ SR 130	Gate	6,400	2	9	22.7	39.0	1	0.0859	0.0980	
N-033	479920D	TR 198	Passive	109	2	60	22.7	39.0	0	0.0394	0.0489	
N-033	479921K	TR 182	Passive	109	2	09	22.7	39.0	0	0.0394	0.0489	
N-033	479923Y	TR 255	Passive	86	2	09	22.7	39.0	0	0.0372	0.0463	
N-033	479925M TR 154	TR 154	Gate	375	2	60	22.7	39.0	0	0.0165	0.0206	
N-033	479927B	479927B BOURNE ST	Gate	1,550	2	40	22.7	39.0	0	0.0260	0.0318	
N-033	479930J	TR 134D	Gate	100	2	09	22.7	39.0	0	0.0157	0.0202	
N-033	479933E	TR 126H	Gate	159	2	09	22.7	39.0	1	0.0506	0.0567	
N-033	479935T	TR112-A	Passive	90	2	09	22.7	39.0	0	0.0314	0.0396	
N-033	479937G	TR 94	Gate	68	2	09	22.7	39.0	0	0.0139	0.0178	
N-033	479938N	CENTER	Gate	125	2	09	22.7	39.0	0	0.0124	0.0156	
N-033	479940P	MILLS	Gate	008	2	09	22.7	39.0	0	0.0200	0.0248	
N-033	479945Y	TR 58	Passive	68	2	09	22.7	39.0	0	0.0372	0.0463	
N-033	479946F	TR 44A	Passive	6\$	2	09	22.7	39.0	0	0.0330	0.0414	
N-033	479949B	TR34A	Passive	65	2	09	22.7	39.0	1	0.0923	0.1075	
N-033	479950V FAS532	FAS532	Flasher	300	2	09	22.7	39.0	0	0.0249	0.0311	
N-033	479951C TR267A	TR267A	Gate	125	2	09	22.7	39.0	0	0.0167	0.0215	
N-033	479952J	SANDFORD	Gate	150	2	09	22.7	39.0	0	0.0130	0.0163	
C-010	163412M ROLI	ROLL	Passive	200	2	15	17.0	32.9	0	0.0645	0.0791	
010	AKATYTTATTO TICIACOL											

ATTACHMENT E-1 ILLINOIS HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

								Freight	Freight Trains		Acc	Accidents Per Year	sar
								D					Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-			Pre-	Post	With
County	Segment	FRA ID	FRA ID Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition 0.1176	Acquisition 0.1358	MINGATION
COOK	010	103415H	163415H DIALE HW I/WESTERIN	Calle	7.250	† C	2 6	17.0	32.0	- -	0.0446	0.0543	
MACON	C-010 N-033	479171C	TR 95	Flasher	100	2 2	8 9	22.7	39.0		0.0639	0.0735	
MACON	N-033	479173R CR 52	CR 52	Flasher	700	2	09	22.7	39.0	0	0.0379	0.0462	
MACON	N-033	479174X	CEN TER ST.	Flasher	20	2	09	22.7	39.0	0	0.0157	0.0200	
MACON	N-033	479176L		Flasher	550	2	09	22.7	39.0	2	0.1471	0.1677	0.009 (a)
PIATT	N-033	479156A	_	Passive	79	2	09	22.7	39.0	0	0.0359	0.0449	
PIATT	N-033	479157G	SR 7	Gate	009	2	09	22.7	39.0	0	0.0213	0.0263	
PIATT	N-033	479160P	TR 28	Passive	59	2	09	22.7	39.0	0	0.0332	0.0417	
PIATT	N-033	479162D TR 20	TR 20	Passive	59	2	99	22.7	39.0		0.0926	0.1079	
PIATT	N-033	479164S	TR 14	Passive	59	2	09	22.7	39.0	0	0.0332	0.0417	
PIATT	N-033	479165Y	JACKSON ST	Gate	1,600	2	99	22.7	39.0	0	0.0270	0.0329	
PIATT	N-033	479166F	MONROE	Flasher	629	2	09	22.7	39.0	-	0.0948	0.1095	
PIATT	N-033	479168U	JEFFERSON	Flasher	608	2	09	22.7	39.0	0	0.0396	0.0480	
PIATT	N-033	479169B	LINCOLN	Flasher	829	2	09	22.7	39.0	0	0.0403	0.0488	
PIATT	N-033	479956L	TR 178	Passive	100	2	09	22.7	39.0	0	0.0384	0.0478	
PIATT	N-033	479957T	TR 145	Passive	59	2	09	22.7	39.0	2	0.1516	0.1736	0.0250
PIATT	N-033	479958A	479958A FAS1530	Passive	90	2	09	22.7	39.0	0	0.0314	0.0396	
PIATT	N-033	479960B TR 124A	TR 124A	Flasher	90	2	09	22.7	39.0	0	0.0131	0.0169	
PIATT	N-033	479962P	TR 104	Passive	59	2	09	22.7	39.0	0	0.0330	0.0414	
PIATT	N-033	479964D	TR 92	Passive	59	2	09	22.7	39.0	1	0.0923	0.1075	
PIATT	N-033	479965K	CHAMPAIGN	Flasher	409	2	09	22.7	39.0	0	0.0320	0.0395	
PIATT	N-033	479966S	PIATT	Flasher	759	2	09	22.7	39.0	0	0.0387	0.0471	
PIATT	N-033	479967Y	MACON	Gate	5,800	2	09	22.7	39.0	0	0.0359	0.0430	
PIATT	N-033	479969M	479969M SANGAMON/MORGAN	Flasher	006	2	45	22.7	39.0	0	0.0407	0.0493	
VERMILION	N-033	479872R	479872R ROSS LANE	Passive	100	2	09	22.7	39.0	_	0.1021	0.1189	
VERMILION	N-033	479874E	VERMILLION	Gate	400	2	09	22.7	39.0	0	0.0170	0.0211	
VERMILION	N-033	479875L	PARIS	Gate	2,250	2	09	22.7	39.0	0	0.0258	0.0315	
VERMILION	N-033	479876T	SANDUSKY	Gate	1,259	2	09	22.7	39.0	0	0.0224	0.0276	
VERMILION	N-033	479879N	TR 218	Passive	59	2	09	22.7	39.0	0	0.0330	0.0414	
VERMILION	N-033	479880H	TR 158	Passive	19	2	09	22.7	39.0	0	0.0359	0.0449	
VERMILION	N-033	479882W TR 126	TR 126	Gate	450	2	09	22.7	39.0	0	0.0247	0.0318	
VERMILION	N-033	479883D	479883D TR108-A	Passive	65	2	09	22.7	39.0	0	0.0330	0.0414	
VERMILION	N-033	479884K TR 84-A	TR 84-A	Passive	59	2	09	22.7	39.0	0	0.0330	0.0414	

Page 3 of 3

ATTACHMENT E-1 ILLINOIS HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

								Freight	Freight Trains		Acc	Accidents Per Year	ear
										•			Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Segment FRA ID Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition Acquisition	History	Acquisition	Acquisition	Mitigation
VERMILION	N-033	479886Y	479886Y MAIN ST.	Gate	4,050	2	09	22.7	39.0	1	0.0801	0.0914	
VERMILION	N-033	479889U TR 54	TR 54	Passive	150	2	09	22.7	39.0	0	0.0430	0.0530	
VERMILION	N-033	479891V TR 32	TR 32	Passive	59	2	09	22.7	39.0	0	0.0330	0.0414	
VERMILION	N-033	479892C TR 24	TR 24	Passive	50	2	09	22.7	39.0	0	0.0314	0.0396	
VERMILION	N-033	479893J TR 12	TR 12	Passive	59	2	09	22.7	39.0	0	0.0330	0.0414	
VERMILION	N-045	479843F	479843F ST LINE	Flasher	509	2	09	23.6	41.0	0	0.0301	0.0374	
VERMILION	N-045		479844M POLAND	Flasher	225	2	09	23.6	41.0	0	0.0229	0.0290	
VERMILION	N-045	479847H TR448	TR448	Passive	159	2	09	23.6	41.0	0	0.0444	0.0548	
VERMILION	N-045	479848P	479848P CAMPBELL XING/TR 450	Passive	100	2	09	23.6	41.0	2	0.1674	0.1925	0.0305 (a)
VERMILION	1		479854T VOORHEES	Gate	11,100	2	09	23.6	41.0	1	0.1019	0.1160	
VERMILION			479855A PRIES ST	Gate	59	2	09	23.6	41.0	0	0.0118	0.0149	
VERMILION	N-045	479856G	479856G BOWMAN ST.	Gate	8,800	2	09	23.6	41.0	0	0.0592	0.0743	
VERMILION	N-045	479857N	479857N MARTIN ST	Flasher	559	2	99	23.6	41.0	0	0.0358	0.0440	
VERMILION	N-045	479859C	479859C WMS/WILLIAM ST.	Gate	4,900	2	30	23.6	41.0	1	0.0901	0.1029	
VERMILION	N-045	479861D	479861D VAN BUREN	Gate	1,150	2	30	23.6	41.0	0	0.0252	0.0310	
VERMILION	N-045	479862K MAIN	MAIN	Gate	15,600	4	30	23.6	41.0	-	0.1231	0.1384	
VERMILION	N-045	479863S S.ST.	S.ST.	Gate	5,600	4	30	23.6	41.0	_	0.1063	0.1207	
VERMILION	N-045	479864Y THIRD	THIRD	Gate	1,100	2	30	23.6	41.0	0	0.0250	0.0307	
VERMILION	N-045	479867U 14TH	14TH	Gate	2,550	2	30	23.6	41.0	0	0.0304	0.0369	

(a) Mitigation already in place

[THIS PAGE INTENTIONALLY LEFT BLANK]

ATTACHMENT E-2

Indiana Highway/Rail At-grade Crossing Accident Frequency

Proposed Conrail Acquisition		May 1998	Final Environmental Impact Statement
[7	THIS PAGE INTE	NTIONALLY LEF	T BLANK]

Page 1 of 11

ATTACHMENT E-2 INDIANA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

								Freight	Freight Trains		Ac	Accidents Per Year	ear
						Jo not min				Delevant			Post
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acq	History	Acquisition	۶	Mitigation
ALLEN	C-020	532833T	ADAMS CENTER RD.	Gate	4,000	2	09	5.9	13.9		0.0656	0.0804	
ALLEN	C-020	532834A	LINKER CR-MEYR RD	Gate	3,300	2	09	5.9	13.9	0	0.0205	0.0285	
ALLEN	C-022	532855T	THOMAS ROAD	Gate	5,500	2	09	2.4	6.4	0	0.0141	0.0209	
ALLEN	C-062	532805P	STATE LINE RD	Flasher	750	2	09	5.9	13.9	0	0.0193	0.0280	
ALLEN	C-062	532806W	MORGAN RD	Passive	250	2	09	6.5	13.9	0	0.0290	0.0418	
ALLEN	C-062	532809S	LORTIE RD.	Passive	250	2	09	5.9	13.9	0	0.0461	0.0629	
ALLEN	C-062	532810L	OHIO ST.	Gate	300	2	09	6.5	13.9	0	0.0091	0.0132	
ALLEN	C-062	532811T	MAIN ST. SR 101	Gate	2,600	2	09	5.9	13.9	0	0.0163	0.0229	
ALLEN	C-062	532812A	WASHINGTON ST.	Flasher	1,350	2	09	5.9	13.9	0	0.0237	0.0337	
ALLEN	C-062	532813G	SNYDER RD.	Passive	250	2	09	5.9	13.9	0	0.0290	0.0418	
ALLEN	C-062	532814N	HOFFMAN RD	Passive	250	2	09	5.9	13.9	0	0.0290	0.0418	
ALLEN	C-062	532815V	532815V GROTRIAN RD	Passive	250	2	09	5.9	13.9	0	0.0290	0.0418	
ALLEN	C-062	532816C	WILSON RD	Passive	250	2	09	5.9	13.9	0	0.0290	0.0418	
ALLEN	C-062	532817J	FACKLER RD	Passive	250	2	99	5.9	13.9	0	0.0290	0.0418	
ALLEN	C-062	532818R	GARADOT RD	Passive	250	2	09	5.9	13.9	0	0.0290	0.0418	
ALLEN	C-062	532819X	HOUK RD.	Passive	250	2	99	5.9	13.9	0	0.0290	0.0418	
ALLEN	C-062	532820S	WASHINGTON ST.	Passive	250	2	09	5.9	13.9	0	0.0290	0.0418	
ALLEN	C-062	532821Y	FRANKE RD.	Gate	750	2	09	5.9	13.9	0	0.0117	0.0167	
ALLEN	C-062	532824U	TILLMAN RD	Gate	750	2	09	5.9	13.9	0	0.0117	0.0167	
ALLEN	C-062	532825B	MINNICH RD.	Gate	2,000	2	09	5.9	13.9	0	0.0152	0.0214	
ALLEN	C-062	532829D	532829D PAULDING RD	Passive	300	2	09	5.9	13.9	0	0.0307	0.0439	
ALLEN	C-062	532830X	HARTZELL RD.	Gate	2,250	2	09	5.9	13.9	0	0.0157	0.0221	
ALLEN	N-041	478176H	LEO RD	Gate	2,900	2	09	13.6	27.3	0	0.0223	0.0291	
ALLEN	N-041	478180X	HURSHTOWN RD	Flasher	250	2	09	13.6	27.3	0	0.0185	0.0251	
ALLEN	N-041	478182L	SPRINGFIELDCENTER	Passive	250	2	09	13.6	27.3	1	0.1048	0.1273	
ALLEN	N-041	478183T	ROTH RD	Gate	1,700	2	09	13.6	27.3	1	0.0621	0.0730	
ALLEN	N-041	478185G	STATE ST	Gate	4,400	2	09	13.6	27.3	0	0.0247	0.0320	
ALLEN	N-041	478186N	ANTWERP RD	Passive	250	2	09	13.6	27.3	-	0.1048	0.1273	
ALLEN	N-041	478188C	NOTESTINE RD	Passive	800	2	09	13.6	27.3	2	0.2679	0.3083	0.0286
ALLEN	N-041	478192S	RICKER RD	Passive	250	2	09	13.6	27.3	0	0.0399	0.0524	
ALLEN	N-041	478196U	478196U MAYSVILLE RD	Gate	5,100	2	09	13.6	27.3	0	0.0256	0.0330	
ALLEN	N-041	478197B	DOTY RD	Flasher	200	2	09	13.6	27.3	0	0.0308	0.0431	
ALLEN	N-041	478200G	478200G IRVING RD	Passive	250	2	09	13.6	27.3	0	0.0399	0.0524	
ALLEN	N-041	478202V	STELLHORN ROAD	Gate	2,800	2	09	13.6	27.3	0	0.0221	0.0288	
ALLEN	N-041	478203C	SCHWARTZ ROAD	Passive	250	2	09	13.6	27.3	0	0.0605	0.0756	
ALLEN	N-041	478205R	478205R PARENT ROAD	Passive	250	2	09	13.6	27.3	0	0.0605	0.0756	

ATTACHMENT E-2 INDIANA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

								Freight Trains	Trains		Acc	Accidents Per Year	ear
					,	Number of				Relevant			Post Acquisition
County	Rail Line Segment FRA ID	FRA ID	Street Name	Warning Device	ADT		Maximum Speed	Pre- Acquisition	Post Acquisition		Pre- Acquisition	Post Acquisition	With Mitigation
ALLEN	N-041	478208L	NORTH RIVER ROAD	Passive	300	2	09	13.6	27.3	_	0.0631	0.0783	
ALLEN	N-041	478210M	LANDIN ROAD	Flasher	12,950	4	09	13.6	27.3	0	0.0734	0.0856	
ALLEN	N-041	478211U	478211U PARROT RD./ROSE AVE.	Flasher	3,745	2	09	13.6	27.3	0	0.0442	0.0558	
ALLEN	N-041	478212B	WEST STREET	Passive	360	2	50	13.6	27.3	0	0.0627	0.0779	
ALLEN	N-041	478213H	CLEMENT ST MAIN	Passive	575	2	50	13.6	27.3	0	9690.0	0.0851	
ALLEN	N-041	478214P	HARTZELL ROAD	Flasher	4,710	2	50	13.6	27.3	-	0.1125	0.1339	
ALLEN	N-041	478216D	478216D ESTELLA AVE	Flasher	2,600	2	50	13.6	27.3	2	0.1738	0.2042	0.0393
ALLEN	N-041	478218S		Gate	3,000	2	09	13.6	27.3	-	0.0746	0.0884	
ALLEN	N-041	478223N		Gate	2,080	2	30	13.6	27.3	0	0.0243	0.0315	
ALLEN	N-041	478224V		Flasher	700	2	30	13.6	27.3	0	0.0315	0.0412	
ALLEN	N-041	478225C	FLETCHER AVE	Gate	760	2	30	13.6	27.3	0	0.0190	0.0249	
ALLEN	N-041	478226J	ANTHONY BLVD	Gate	16,330	2	30	13.6	27.3	2	0.1544	0.1793	(b)
ALLEN	N-041	478227R	478227R WINTER ST	Gate	710	2	30	13.6	27.3	0	0.0186	0.0245	
ALLEN	N-044	478237W	478237W BROOKLYN AVE	Gate	12,200	2	30	19.0	34.9	_	0.1001	0.1155	
ALLEN	N-044	478238D	NUTTMAN AVE	Gate	5,070	2	30	19.0	34.9	0	0.0338	0.0415	
ALLEN	N-044	478240E	ENGLE ROAD	Flasher	11,000	2	30	19.0	34.9	-	0.1457	0.1654	0.0739
ALLEN	N-044	478241L	ARDMORE AVE	Gate	10,290	2	30	19.0	34.9	0	0.0352	0.0431	
ALLEN	N-044	478243A	SMITH ROAD	Flasher	3,500	2	09	19.0	34.9	-	0.1173	0.1362	
ALLEN	N-044	478248J	ELLISON RD	Gate	2,200	2	09	19.0	34.9	0	0.0248	0.0310	
ALLEN	N-044	478249R	478249R HOMESTEAD ROAD	Gate	750	2	09	19.0	34.9	0	0.0210	0.0269	
ALLEN	N-044	478250K	AMBER ROAD	Passive	250	2	09	19.0	34.9	0	0.0473	0.0592	
ALLEN	N-044	478251S	ABOITE ROAD	Gate	200	2	09	19.0	34.9	0	0.0171	0.0219	
CARROLL	N-046	342069P	MARKET ST	Gate	200	2	25	18.4	40.2	-	0.0508	0.090.0	
CARROLL	N-046	342072X	WASHINGTON STREET	Gate	500	2	25	18.4	40.2	0	0.0169	0.0231	
CARROLL	N-046	342074L	342074L UNION ST	Gate	100	2	25	18.4	40.2	0	0.0111	0.0154	
CARROLL	N-046	342077G		Gate	100	2	25	18.4	40.2	0	0.0111	0.0154	
CARROLL	N-046	342080P	WILSON STREET	Gate	650	2	25	18.4	40.2	-	0.0594	0.0712	
CARROLL	N-046	484245C	CR 150E	Passive	250	2	09	18.4	40.2	0	0.0673	0.0847	
CARROLL	N-046	484246J	WASHINGTON ST/ CR 100E	Passive	100	2	09	18.4	40.2	-	0.1308	0.1604	0.0645
CARROLL	N-046	484247R	MADISON	Flasher	100	2	09	18.4	40.2	1	0.0554	0.0671	
CARROLL	N-046	484248X	484248X MERIDIAN LINE 000	Passive	100	2	09	18.4	40.2	-	0.1308	0.1604	0.0100
CARROLL	N-046	484249E	CR 100W	Passive	100	2	09	18.4	40.2	0	0.0544	0.0708	
CARROLL	N-046	484250Y	OAK ST.	Passive	100	2	09	18.4	40.2	0	0.0544	0.0708	
CARROLL	N-046	484251F	WALNUT ST	Passive	100	2	09	18.4	40.2	0	0.0544	0.0708	
CARROLL	N-046	484252M	484252M CR 600 N	Passive	250	2	09	18.4	40.2	0	0.0673	0.0847	
CARROLL	N-046	484253U	484253U CR 400 W	Passive	250	2	09	18.4	40.2	0	0.0454	0.0607	

E-12

Page 3 of 11

ATTACHMENT E-2 INDIANA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

								Freigh	Freight Trains		Ac	Accidents Per Year	ear
													Post
	Rail Line			Warning		Number of Roadway	Maximum	Pre-	Post	Relevant Accident	Pre-	Post	Acquisition With
County	Segment	Segment FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	_	Acquisition	Acquisition	Mitigation
CARROLL	N-046		484254B CR 500 N	Passive	250	2	09	18.4	40.2	0	0.0673	0.0847	
CARROLL	N-046	484256P	CR 550 W	Passive	100	2	09	18.4	40.2	0	0.0544	0.0708	
CARROLL	N-046	484258D	SR 218	Gate	1,760	2	99	18.4	40.2	0	0.0224	0.0301	
CARROLL	N-046	484263A	MONROE & WABASH	Gate	350	2	35	18.4	40.2	0	0.0149	0.0205	
CARROLL	N-046	484264G	484264G FRANKLIN ST	Gate	200	2	35	18.4	40.2	1	0.0563	0.0671	
CARROLL	N-046	484265N	484265N MAIN ST	Gate	5,780	2	35	18.4	40.2	0	0.0297	0.0391	
CARROLL	N-046	484266V	FALLEN SPRINGS	Passive	250	2	09	18.4	40.2	0	0.0454	0.0607	
CASS	N-046	484215K	CO.RD. 1100E.	Passive	74	2	09	18.4	40.2	0	0.0504	0.0664	
CASS	N-046	484216S	CEDAR ST.	Passive	351	2	99	18.4	40.2	1	0.1633	0.1947	0.0413
CASS	N-046	484217Y	CO.RD. 950E.	Passive	62	2	99	18.4	40.2	0	0.0481	0.0638	
CASS	N-046	484219M	484219M CO.RD.800E.	Passive	50	2	09	18.4	40.2	0	0.0455	0.0607	
CASS	N-046	484223C	CO.RD.600E	Gate	1,445	2	60	18.4	40.2	0	0.0214	0.0288	
CASS	N-046	484227E	POTTAWATOMIE RD.	Gate	164	2	09	18.4	40.2	0	0.0122	0.0169	
CASS	N-046	484229T	18TH ST	Flasher	3,000	2	99	18.4	40.2	2	0.1763	0.2109	0.0240
CASS	N-046	484237K	CR 175 WEST	Passive	89	2	99	18.4	40.2	0	0.0493	0.0651	
CASS	N-046	484238S	CO.RD.300S	Passive	58	2	09	18.4	40.2	0	0.0299	0.0417	
CASS	N-046	484239Y	CO.RD.325W	Passive	50	2	09	18.4	40.2	0	0.0286	0.0401	
CASS	N-046	484241A	CLYMERSMAINST400W	Passive	50	2	09	18.4	40.2	0	0.0455	0.0607	
CASS	N-046	484242G	CO.RD.400S	Passive	50	2	09	18.4	40.2	0	0.0455	0.0607	
CASS	N-046	484243N	CO.RD.500W	Passive	50	2	09	18.4	40.2	0	0.0417	0.0561	
CASS	N-046	484244V	CORD 500S/CR 1000N	Passive	50	2	9	18.4	40.2	0	0.0455	0.0607	
CASS	N-046	534061S	KING ST.	Passive	50	2	25	18.4	40.2	0	0.0383	0.0522	
DE KALB	C-066	155285T	STATE LINE ROAD	Flasher	192	2	99	21.4	47.7	0	0.0212	0.0299	
DE KALB	C-066	155288N	CR 75	Passive	93	2	09	21.4	47.7	0	0.0378	0.0520	
DE KALB	C-066	155289V	CENTER RD - CR 60	Passive	6	2	99	21.4	47.7	-	0.1019	0.1276	
DE KALB	C-066	155290P	SR 101	Gate	450	2	09	21.4	47.7	0	0.0199	0.0272	
DE KALB	C-066	155292D	CR 218	Passive	50	2	09	21.4	47.7	0	0.0496	0.0659	
DE KALB	C-066	155295Y	CR 63	Gate	297	2	09	21.4	47.7	0	0.0157	0.0217	
DE KALB	C-066	155297M	155297M FIRST ST	Gate	1,068	2	09	21.4	47.7	0	0.0217	0.0295	
DE KALB	C-066	155298U	THIRD ST.	Passive	250	2	09	21.4	47.7	0	0.0722	0.0902	
DE KALB	C-066	155299B	SPENCERVILLE ROAD	Flasher	300	2	99	21.4	47.7	0	0.0247	0.0344	
DE KALB	C-066	155301A	C.R.58	Passive	73	2	09	21.4	47.7	0	0.0353	0.0489	
DE KALB	C-066	155302G	CO. RD. 55	Passive	86	2	09	21.4	47.7	0	0.0374	0.0515	
DE KALB	C-066	155304V	LANCASTER RD	Flasher	135	2	09	21.4	47.7	0	0.0188	0.0266	
DE KALB	C-066	155305C	CR 179	Passive	50	2	09	21.4	47.7	0	0.0316	0.0442	
DE KALB	C-066	155306J CR 49	CR 49	Passive	81	2	09	21.4	47.7	-	0.0984	0.1234	

ATTACHMENT E-2 INDIANA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

								Freight Trains	Trains		Ac	Accidents Per Year	ear
						Number of				Relevant			Post Acquisition
County	Rail Line	FRA ID	Street Name	Warning	ADT		Maximum	Pre- Post	Post Acquisition	Accident History	Pre- Acquisition	Post Acquisition	With
DE KALB	C-066		PROSSER RD	Passive	74	2	09	21.4	47.7	0	0.0354	0.0491	0
DE KALB	C-066	155314B	_	Passive	50	2	09	21.4	47.7	0	0.0316	0.0442	
DE KALB	C-066	155315H	HOOK ROAD	Gate	650	2	09	21.4	47.7	0	0.0192	0.0263	
DE KALB	C-066	155318D	MAGGINS ROAD	Gate	182	2	09	21.4	47.7	0	0.0165	0.0234	
DE KALB	C-066	155319K	(CEMETERYRD)CR29	Flasher	230	2	09	21.4	47.7	0	0.0226	0.0317	
DE KALB	C-066	155320E	SOUTH WAYNE	Gate	6,000	2	09	21.4	47.7	0	0.0326	0.0428	
DE KALB	C-066	155322T	AUBURN DR	Flasher	1,721	2	50	21.4	47.7	-	0.1046	0.1284	
DE KALB	C-066	155323A	WEST ST.	Passive	50	2	50	21.4	47.7	-	0.1174	0.1461	
DE KALB	C-066	155326V	CR 19	Gate	370	2	09	21.4	47.7	0	0.0190	0.0260	
DE KALB	C-066	155329R	TAYLOR ROAD	Flasher	2,500	2	09	21.4	47.7	0	0.0535	0.0677	
DE KALB	C-066	155330K	155330K RANDOLPH	Gate	5,023	2	20	21.4	47.7	0	0.0358	0.0465	
DE KALB	C-066	533179D	FIFTH ST	Passive	750	2	10	21.4	47.7	0	0.0731	0.0910	
DE KALB	N-041	478149L	BROADWAY	Gate	1,782	2	09	13.6	27.3	0	0.0198	0.0259	
DE KALB	N-041	478150F	CORD221	Flasher	64	2	09	13.6	27.3	0	0.0150	0.0215	
DE KALB	N-041	478152U	CORD 46	Passive	68	2	09	13.6	27.3	0	0.0295	0.0398	
DE KALB	N-041	478153B	C.R. 36	Passive	52	2	09	13.6	27.3	0	0.0250	0.0341	
DE KALB	N-041	478154H	C.R. 63	Gate	176	2	09	13.6	27.3	0	0.0108	0.0145	
DE KALB	N-041	478157D	CR 40	Gate	520	2	09	13.6	27.3	0	0.0144	0.0192	
DE KALB	N-041	478159S	CR 36	Passive	164	2	09	13.6	27.3	0	0.0354	0.0470	
DE KALB	N-041	478160L	ST HWY8	Gate	501	2	09	13.6	27.3	0	0.0143	0.0190	
DE KALB	N-041	478161T	CR59	Gate	340	2	09	13.6	27.3	0	0.0129	0.0172	
DE KALB	N-041	478164N	CR 32	Passive	126	2	09	13.6	27.3	0	0.0327	0.0438	
DE KALB	N-041	478170S	CORD 98	Passive	64	2	09	13.6	27.3	0	0.0267	0.0362	
DE KALB	N-041	478171Y	CR 60	Gate	320	2	09	13.6	27.3	0	0.0127	0.0169	
DE KALB	N-041	478173M CR 10	CR 10	Passive	84	2	09	13.6	27.3	0	0.0290	0.0391	
DE KALB	N-041	478174U	AUBURN ST.	Gate	630	2	09	13.6	27.3	0	0.0152	0.0201	
DE KALB	N-041	478175B	COUNTYLINEROAD	Gate	148	2	09	13.6	27.3	0	0.0103	0.0139	
DELAWARE	N-040	474547C	COUNCIL ST.	Gate	550	2	20	2.6	11.8	0	0.0076	0.0144	
DELAWARE	N-040	474549R	474549R ELLIOTT ST.	Gate	3,064	2	20	2.6	11.8	0	0.0115	0.0172	
DELAWARE	N-040	474550K	KILGORE	Flasher	10,481	2	20	2.6	11.8	-	0.0777	0.1070	
DELAWARE	N-040	474552Y	474552Y WHITERIVER BLVD.	Gate	6,870	4	30	2.6	11.8	0	0.0193	0.0338	
DELAWARE	N-040	474553F	474553F NICKOLS	Flasher	6,733	2	30	2.6	11.8	0	0.0288	0.0504	
DELAWARE	N-040	474561X	474561X GODMAN AVE.	Flasher	550	2	30	2.6	11.8	0	0.0119	0.0235	
DELAWARE	N-040	474562E	HUTCHINSON ST.	Flasher	550	2	30	2.6	11.8	0	0.0119	0.0235	
DELAWARE	N-040	474563L	CELIA AVE.	Passive	550	2	30	2.6	11.8	0	0.0347	0.0618	
DELAWARE	N-040	474564T	474564T MANNING AVE	Passive	550	2	30	2.6	11.8		0.0955	0.1442	

E-14

Page 5 of 11

							Freign	Freight Irains		AC	Accidents rei Teal	ear
										-		Post
Doil Line			Warning		Number of	Maximim	Pre.	Post	Relevant Accident	Pre-	Post	Acquisition With
Segmen	Segment FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition Acquisition		Acquisition	Acc	Mitigation
N-040	474565A	TILLOTSON	Gate	19,025		30	2.6	11.8	0	0.0248	0.0419	
N-040	474566G	JACKSON ST.	Gate	5,007	2	30	2.6	11.8	0	0.0138	0.0251	
N-040	474567N	JACKSON ST.	Flasher	2,492		30	2.6	11.8	0	0.0206	0.0382	
N-040		474568V CORD300W MORRISON	Gate	4,800		30	2.6	11.8	0	0.0137	0.0249	
N-040	474569C	SHERWOOD DR.	Passive	105		30	2.6	11.8	-	0.0705	0.1057	
N-040	474572K	CO RD 500 W	Gate	2,077		09	2.6	11.8	0	0.0109	0.0203	
N-040	474573S	JACKSON PIKE	Gate	1,030	7	09	2.6	11.8	0	0.0000	0.0170	
N-040	474575F	WEST ST.	Passive	80		09	2.6	11.8	0	0.0233	0.0445	
N-040		474576M CO RD 600 W	Gate	1,617		09	2.6	11.8	0	0.0102	0.0190	
N-040		474577U CO RD 150 N	Flasher	250	7	09	2.6	11.8	0	0.0088	0.0178	
N-040	474578B	CO RD 700 W	Passive	121	2	09	2.6	11.8	0	0.0266	0.0497	
N-040	474580C	CO RD 800 W	Passive	50	2	09	2.6	11.8	_	0.0691	0.1034	
N-040	474581J	CO RD 850 W	Passive	196		09	2.6	11.8	0	0.0308	0.0561	
N-040	474584E	CO RD 925 W	Passive	56		09	2.6	11.8	0	0.0208	0.0404	
N-040	474585L	CO RD 950 W	Passive	63	2	49	2.6	11.8	0	0.0201	0.0391	
C-066	155417B	C.R. 11	Passive	259		09	21.4	47.7	0	0.0727	0.0907	
C-066	155419P	CR 9	Passive	431	2	09	21.4	47.7	-	0.1778	0.2099	0.0746
C-066	155420J	CR 7	Flasher	5,314		09	21.4	47.7	0	0.0574	0.0718	
C-066	155421R	JACKSON ST	Flasher	1,750		09	21.4	47.7	0	0.0429	0.0562	
C-066	155424L	MADISON	Gate	804		09	21.4	47.7	0	0.0203	0.0276	
C-066	155426A	NAPPANEE ST	Flasher	1,305	2	09	21.4	47.7	٥	0.0394	0.0522	
C-066	155427G	WILLIAMS ST	Gate	207		09	21.4	47.7	٥	0.0173	0.0246	
C-066		155431W TOMAHAWK	Passive	661		09	21.4	47.7	0	0.0870	0.1044	
N-045	484327J		Passive	65		09	23.6	41.0	-	0.0950	0.1111	
N-045	484328R	CR 1500 N.	Gate	50	2	09	23.6	41.0	0	0.0098	0.0125	
N-045	484332F	650 E	Flasher	50		09	23.6	41.0	0	0.0134	0.0173	
N-045	484334U	CR 1400 N.	Gate	300		09	23.6	41.0	٥	0.0159	0.0199	
N-045	484337P	MARKET ST 500 E	Gate	230		09	23.6	41.0	٥	0.0148	0.0186	
N-045	484341E	CR 375 E.	Passive	50	2	09	23.6	41.0	0	0.0319	0.0404	
N-045	484342L	CR 325 E.	Passive	50	2	09	23.6	41.0	0	0.0319	0.0404	
N-045	484344A	, 250 E	Passive	50	2	09	23.6	41.0	0	0.0319	0.0404	
N-045		PERRY ST	Gate	620		35	23.6	41.0	0	0.0191	0.0237	
N-044		CR 1100 N	Passive	95		09	19.0	34.9	0	0.0557	0.0685	
N-044	478256B	LAFAYETTE CENTER RD.	Gate	1,250		09	19.0	34.9	0	0.0216	0.0273	
HUNTINGTON N-044		478257H STATION RD	Gate	448	2	09	19.0	34.9	0	0.0166	0.0213	
N-044		478259W N MAYHON RD/ CR 158	Gate	337		09	19.0	34.9	0	0.0155	0.0198	

Page 6 of 11

								Freight	Freight Trains		Ac	Accidents Per Year	ear
													Post
	;					Number of		ŝ	Š	Relevant	į	ģ	Acquisition
	Kail Line Segment	FRA ID	Street Name	warning Device	ADT	Koadway	Maximum	Fre- Acquisition	Fost Acquisition	Accident	Fre- Acquisition	rost Acquisition	with
HUNTINGTON	N-044	478262E	_	Passive	250	2	09	19.0			0.0473		
HUNTINGTON	N-044	478263L	SIMPSON ROAD	Flasher	452	2	09	19.0	34.9	0	0.0270	0.0345	
HUNTINGTON	N-044	478264T	OLD FT. WAYNE RD	Passive	50	2	09	19.0	34.9	0	0.0473	0.0593	
HUNTINGTON	N-044	478265A		Gate	550	2	09	19.0	34.9	0	0.0175	0.0224	
HUNTINGTON	N-044	478266G	478266G BROADWAY	Gate	2,000		09	19.0	34.9	1	0.0704	0.0815	
HUNTINGTON	N-044	478267N	GRAYSTONE AVE	Gate	1,375		09	19.0	34.9	0	0.0221	0.0279	
HUNTINGTON	N-044	478269C	CONDIT ST	Gate	2,150	2	99	19.0	34.9	0	0.0246	0.0309	
HUNTINGTON	N-044	478270W	478270W BRIANT ST	Flasher	5,500		09	19.0	34.9	2	0.1851	0.2120	0.0495
HUNTINGTON	N-044	478271D	478271D BYRON ST.	Flasher	2,300		99	19.0	34.9	_	0.1077	0.1258	
HUNTINGTON	N-044	478272K	WARREN ST	Gate	2,225		09	19.0	34.9	0	0.0248	0.0311	
HUNTINGTON	N-044	478273S	JEFFERSON ST	Gate	19,900	2	09	19.0	34.9	0	0.0405	0.0490	
HUNTINGTON	N-044	478274Y	LAFONTAIN ST	Flasher	8,600		09	19.0	34.9	0	0.0620	0.0730	
HUNTINGTON	N-044	478275F	HITZFIELD ST	Passive	75	2	99	19.0	34.9	0	0.0338	0.0436	
HUNTINGTON	N-044	478278B	RANGELWE RD (CR 17)	Passive	156	2	09	19.0	34.9	0	0.0627	0.0760	
HUNTINGTON	N-044	478280C	C.R. 700W	Passive	95	2	99	19.0	34.9	0	0.0557	0.0685	
HUNTINGTON	N-044	478281J		Flasher	750	2	09	19.0	34.9	0	0.0318	0.0402	
HUNTINGTON	N-044	478282R	MAIN ST	Gate	1,551	2	09	19.0	34.9	0	0.0227	0.0287	
HUNTINGTON	N-044	478283X	SNOWDEN ST	Flasher	250	2	09	19.0	34.9	0	0.0221	0.0286	
KOSCIUSKO	C-066	155385X		Gate	789	2	09	21.4	47.7	0	0.0253	0.0357	
KOSCIUSKO	C-066	155387L	CR 900E	Gate	346	2	09	21.4	47.7	0	0.0185	0.0259	
KOSCIUSKO	C-066	155388T		Passive	1,010	2	09	21.4	47.7	0	0.0934	0.1103	
KOSCIUSKO	C-066	155389A	WARNER ROAD	Flasher	250	2	- 09	21.4	47.7	0	0.0272	0.0375	
KOSCIUSKO	C-066	155390U	EAST SHORE DRIVE	Gate	873	2	09	21.4	47.7	0	0.0235	0.0317	
KOSCIUSKO	C-066	155391B	SEVENTH ST-FRONT	Flasher	250	2	99	21.4	47.7	2	0.1262	0.1530	0.0512
KOSCIUSKO	C-066	155392H	HUNTINGTON STREET	Gate	2,763		09	21.4	47.7	2	0.1337	0.1592	(p)
KOSCIUSKO	C-066	155394W	155394W MAIN\SYR-WEB	Flasher	2,215		09	21.4	47.7	2	0.1904	0.2271	0.0716
KOSCIUSKO	C-066	155395D	155395D OAK ST	Passive	250	2	09	21.4	47.7	-	0.1629	0.1952	0.0482
KOSCIUSKO	C-066	155400X	300E	Passive	08	2	09	21.4	47.7	1	0.0898	0.1126	
KOSCIUSKO	C-066	155404A	150 E	Passive	0\$	2	09	21.4	47.7	0	0.0316	0.0442	
KOSCIUSKO	C-066	155406N	155406N OLD SR 15	Gate	1,156		09	21.4	47.7	0	0.0315	0.0440	
KOSCIUSKO	C-066	155408C	80W	Passive	0\$		09	21.4	47.7	0	0.0496	0.0659	
KOSCIUSKO	C-066	155410D	75W	Passive	90	2	09	21.4	47.7	0	0.0316	0.0442	
KOSCIUSKO	C-066	155411K	. 200 W	Passive	150	2	09	21.4	47.7	0	0.0432	0.0585	
KOSCIUSKO	C-066	155414F	300 W	Passive	82	2	09	21.4	47.7	0	0.0561	0.0732	
KOSCIUSKO	C-066	155415N	155415M GRAVELTON	Passive	285	2	09	21.4	47.7	0	0.0512	0.0678	
KOSCILISKO	990-O	155416U	155416U CR 400W	Flasher	143	2	09	21.4	47.7	0	0.0191	0.0271	

Page 7 of 11

								Freight Trains	Trains		Acc	Accidents Per Year	ear
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment FRA ID	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
LA PORTE	C-066		CR 875 E	Passive	137	7	00	21.4	4/./	-	0.0207	0.170	0.0130
LA PORTE	C-066	155485C		Passive	S	7	90	21.4	47.7	0	0.0300	0.0430	
LA PORTE	C-066	155487R		Passive	174	2	09	21.4	47.7	0	0.0653	0.0830	
LA PORTE	C-066	155490Y	RANGE RD.	Flasher	300	2	09	21.4	47.7	-	0.0787	0.0978	
LA PORTE	C-066	155492M SR 39	SR 39	Gate	1,770	2	09	21.4	47.7	0	0.0269	0.0359	
LA PORTE	C-066	155494B	LONG LANE	Flasher	533	2	09	21.4	47.7	0	0.0340	0.0458	
LA PORTE	C-066	155495H	WATER ST.	Gate	909	2	09	21.4	47.7	0	0.0206	0.0280	
LA PORTE	C-066	155496P	500W	Passive	152	2	09	21.4	47.7	-	0.1462	0.1779	0.0437
LA PORTE	C-066	155497W 600 W	M 009	Gate	593	2	09	21.4	47.7	0	0.0205	0.0279	
LA PORTE	C-066	155498D 700 W	700 W	Passive	121	2	09	21.4	47.7	0	0.0596	0.0770	
LA PORTE	C-066	155499K	800W	Passive	118	2	09	21.4	47.7	0	0.0593	0.0767	
LA PORTE	C-066	155600G 900 W	M 006	Passive	133	2	09	21.4	47.7	0	0.0610	0.0785	
LA PORTE	C-066	155601N US 421	US 421	Gate	4,470	2	09	21.4	47.7	0	0.0294	0.0389	
LA PORTE	C-066	155603C	CR 1100W	Passive	292	2	09	21.4	47.7	0	0.0725	0.0904	
LAKE	C-027	155632M	COUNTYLINE RD.	Flasher	7,500	2	09	20.1	34.6	1	0.1358	0.1534	0.0741
LAKE	C-027	155633U	155633U HOBART RD	Flasher	3,000	2	09	20.1	34.6	4	0.3112	0.3499	0.0537
LAKE	C-027	155636P	HOWARD ST	Flasher	750	2	09	20.1	34.6	-	0.0848	0.0982	
LAKE	C-027	155637W	155637W LAKE STREET	Gate	1,184	4	09	20.1	34.6	4	0.2182	0.2426	(b)
LAKE	C-027	155645N	CLARK RD.	Flasher	7,250	2	09	20.1	34.6	1	0.1489	0.1666	0.0522
MADISON	N-040	474586T	CO LINE RD 1000	Gate	271	2	49	2.6	11.8	0	0.0054	0.0119	
MADISON	N-040	474587A	CO RD 900 N	Passive	98	2	49	2.6	11.8	0	0.0222	0.0427	
MADISON	N-040	474588G	474588G MAIN ST	Passive	82	2	49	2.6	11.8	0	0.0219	0.0421	
MADISON	N-040	474592W	CO.RD 400 E	Passive	124	2	49	2.6	11.8	0	0.0249	0.0471	
MADISON	N-040	474594K	CO RD 300 E	Passive	107	2	49	2.6	11.8	0	0.0238	0.0453	
MADISON	N-040	474596Y	CO RD 1000 N	Gate	461	2	09	2.6	11.8	0	0.0087	0.0171	
MADISON	N-040	474597F	CO RD 200E	Flasher	417	2	09	2.6	11.8	0	0.0107	0.0214	
MADISON	N-040	474598M	474598M CO RD 100 E	Passive	619	2	09	2.6	11.8	-	0.1101	0.1638	0.0097
MADISON	N-040	474599U	CLARK AVE	Gate	921	2	49	2.6	11.8	0	0.0100	0.0193	
MADISON	N-040	474600L	S. R. 9	Gate	14,351	2	49	2.6	11.8	0	0.0182	0.0321	
MADISON	N-040	474601T	HARRISON ST.	Flasher	5,899	2	49	2.6	11.8	0	0.0276	0.0487	
MARSHALL	C-066	155435Y	BEECH ST	Passive	245	2	09	21.4	47.7	0	0.0703	0.0882	
MARSHALL	C-066	155440V	DOGWOOD RD.	Gate	605	2	99	21.4	47.7	0	0.0305	0.0443	
MARSHALL	C-066	155443R	CENTER ST.	Flasher	250	2	09	21.4	47.7	0	0.0267	0.0368	
MARSHALL	C-066	155446L	BOWEN ST	Gate	2,580	2	09	21.4	47.7	0	0.0294	0.0389	
MARSHALL	C-066	155449G	MIAMI ROAD	Gate	400	2	09	21.4	47.7	0	0.0164	0.0226	
MARSHALL	C-066	155454D	155454D JARRAH RD	Passive	20	2	09	21.4	47.7	0	0.0306	0.0430	

								Freight	Freight Trains		Acı	Accidents Per Year	ear
										Delegat			Post
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-		With
County	Segment FRA ID	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	₹	Mitigation
MARSHALL	C-066	155455K	KING RD.	Passive	250	2	09	21.4	47.7	0	0.0706	0.0885	
MARSHALL	C-066	155456S	LINDEN RD	Passive	200	2	09	21.4	47.7	0	0.0454	0.0611	
MARSHALL	C-066	155458F	MAPLE RD	Passive	100	2	09	21.4	47.7	0	0.0375	0.0516	
MARSHALL	C-066	155464J	PINE RD	Passive	200	2	09	21.4	47.7	0	0.0673	0.0852	
MARSHALL	C-066	155465R	FIRST RD. SMITH	Passive	300	2	09	21.4	47.7	1	0.1650	0.1973	0.0652
MARSHALL	C-066	155466X	QUINCE RD	Passive	200	2	09	21.4	47.7	0	0.0454	0.0611	
MARSHALL	C-066	155471U	REDWOOD RD.	Passive	200	2	09	21.4	47.7	-	0.1147	0.1429	
MARSHALL	C-066	155473H	SYCAMORE RD.	Passive	250	2	09	21.4	47.7	0	0.0706	0.0885	
MARSHALL	C-066	155476D		Passive	200	2	09	21.4	47.7	-1	0.1541	0.1862	0.0708
MARSHALL	C-066	155477K	ULE RD.	Passive	200	2	09	21.4	47.7	0	0.0673	0.0852	
MIAMI	N-044	478323T	CR 75	Passive	50	2	09	19.0	34.9	0	0.0473	0.0593	
MIAMI	N-044	478325G		Passive	70	2	09	19.0	34.9	0	0.0517	0.0641	
MIAMI	N-044	478327V	PAW PAW PIKE	Passive	860	2	09	19.0	34.9	0	0.0883	0.1016	
IWIWI	N-044	478329J	COUNTRY CLUB RD	Passive	150	2	09	19.0	34.9	0	0.0621	0.0754	
MIAMI	N-044	478330D	CO RD 240 E	Passive	420	2	09	19.0	34.9	0	0.0774	0.0910	
MIAMI	N-044	478334F	CHILI ST	Gate	4,342	2	09	19.0	34.9	0	0.0331	0.0407	
MIAMI	N-044	478335M	478335M WATER ST	Gate	3,000	2	09	19.0	34.9	0	0.0300	0.0372	
MIAMI	N-044	478336U	TIPPECANOE ST	Passive	3,000	2	09	19.0	34.9	0	0.1066	0.1184	
MIAMI	N-046	484209G	CO RD 250W	Passive	165	2	09	18.4	40.2	-	0.1423	0.1730	0.1541
NOBLE	C-066	155341X	155341X C.R. 1100E	Passive	155	2	09	21.4	47.7	0	0.0436	0.0590	
NOBLE	C-066	155345A	900 E	Passive	250	2	09	21.4	47.7	0	0.0722	0.0902	
NOBLE	990-O	155349C	700E	Passive	125	2	09	21.4	47.7	0	0.0620	0.0796	
NOBLE	C-066	155350W 100N	100N	Flasher	333	2	09	21.4	47.7	0	0.0256	0.0355	
NOBLE	C-066	155353S	600 E	Passive	75	2	09	21.4	47.7	0	0.0549	0.0719	
NOBLE	C-066	155355F	500E	Flasher	442	2	09	21.4	47.7	0	0.0281	0.0387	
NOBLE	C-066	155362R		Gate	670	2	09	21.4	47.7	0	0.0220	0.0298	
NOBLE	C-066	155363X	ORANGE ST.	Gate	2,066	2	09	21.4	47.7	_	0.0787	0.0956	
NOBLE	990-O	155365L	YORK ST.	Passive	200	2	09	21.4	47.7	0	0.0689	0.0868	
NOBLE	C-066	155371P	450 W	Passive	50	2	09	21.4	47.7	0	0.0496	0.0659	
NOBLE	C-066	155372W	155372W CR 500W	Passive	86	2	09	21.4	47.7	-	0.1384	0.1696	0.0408
NOBLE	C-066	155374K	155374K 600 W & 300N	Passive	437	2	09	21.4	47.7	0	0.0807	0.0985	
NOBLE	C-066	155375S CLARK	CLARK	Flasher	353	2	09	21.4	47.7	0	0.0261	0.0362	
NOBLE	C-066	155378M	155378M SPARTA LAKE RD	Passive	117	2	09	21.4	47.7	0	0.0611	0.0786	
NOBLE	C-066	155380N	900 W	Passive	523	2	09	21.4	47.7	-	0.1831	0.2149	0.0557
NOBLE	C-066	155381V	155381V MAIN ST-JEFFERSON	Gate	1,654	2	09	21.4	47.7	0	0.0242	0.0326	
NOBLE	C-066	155383J 1025 W	1025 W	Passive	222	2	09	21.4	47.7	0	0.0727	0.0907	

Page 9 of 11

Number of Roadway Maximum Roadway Maximum Roadway Maximum So				Freight Trains	ins		Acc	Accidents Per Year	ear
Rail Line Rail Line Particle Number of Code					,				Post
Segment FRA ID Street Name Device ADT Lanes Speed C-066 155504R 100 EAST Gal 2 60 C-066 155504R 100 NORTH Passive 254 2 60 C-066 155504R 100 NORTH Passive 254 2 60 C-066 15561A 100 NORTH Passive 254 2 60 C-066 15561A 100 NORTH Passive 256 2 60 C-066 15561A 100 NORTH Passive 266 2 60 C-066 15562A 100 NORTH Passive 260 2 60 C-066	Warning	Number of Roadway	Maximum		Post	Relevant Accident	Pre-	Post	Acquisition With
C-066 155384R 1075 W Passive 50 2 60 C-066 15560SR 600 EAST Flasher 69 2 60 C-066 15560SR 600 EAST 60 2 60 C-066 15560JM 3UMAN RD Passive 355 2 60 C-066 15560JM SUMAN RD Passive 226 2 60 C-066 15561JM TRATEBAS RD Gate 254 60 60 C-066 15561JM TRATEBAS RD Gate 254 60 60 C-066 15561JM TRATEBAS RD Gate 560 2 60 C-066 15561JM MREIDAN RD Gate 510 2 60 C-066 15561JM MREIDAN RD Gate 510 2 60 C-066 15561JM MRCOLL RD Gate 510 2 60 C-066 15562JM MRCOLL RD RASOSA <t< th=""><th></th><th></th><th>Speed</th><th>Acquisition Acq</th><th>Acquisition</th><th>History</th><th>Acquisition</th><th>Acquisition</th><th>Mitigation</th></t<>			Speed	Acquisition Acq	Acquisition	History	Acquisition	Acquisition	Mitigation
C-066 155605R 600 EAST Flasher 69 2 60 C-066 155602L 400 E 60 2 60 C-066 155602L 400 E 2 60 C-066 155602L 400 E 2 60 C-066 155612B MANDER RD Cast 234 2 60 C-066 155612B MANDER RD Cast 234 2 60 C-066 155612B MANDER RD Cast 360 2 60 C-066 155613H TRATEBAS RD Cast 360 2 60 C-066 155613Y MANDER RD Cast 360 2 60 C-066 155617Y MANDER RD Cast 360 2 60 C-066 155617Y MCOCKER Cast 360 2 60 C-066 155617Y MCOCKER Cast 360 2 60 C-066 15562A <td>Passive</td> <td></td> <td>09</td> <td></td> <td>47.7</td> <td>0</td> <td>0.0316</td> <td>0.0442</td> <td></td>	Passive		09		47.7	0	0.0316	0.0442	
C-066 155608L 400 E Gate 560 2 60 C-066 155609T 700 NORTH Passive 50 2 60 C-066 15561BM SUMAN RD Passive 254 2 60 C-066 15561BH MANDER RD Passive 254 2 60 C-066 155613H TRATEBAS RD Passive 254 2 60 C-066 155613W 900 N Gate 3600 2 60 C-066 155617K MERIDAN RD Passive 254 2 60 C-066 155627P MERIDAN RD Gate 513 2 60 C-066 155627A MCCOLLAR Gate 5800 2 60 C-066 155627R POWACCOLLAR Gate 5400 2 60 C-066 155627R MCCOLLAR Gate 5400 2 60 C-066 155627R MCCOLLAR	Flasher		09		47.7	0	0.0143	0.0206	
C-066 15560PT 700 NORTH Passive 555 2 60 C-066 155610M SIJAAN RDD Passive 226 2 60 C-066 155612B MANDER RD. Passive 254 2 60 C-066 155612W MANDER RD. Gate 480 2 60 C-066 155612W MERIDAN RD Gate 480 2 60 C-066 155617K MERIDAN RD Gate 5160 2 60 C-066 155617R 100W Gate 1,626 2 60 C-066 155621A 200 W Gate 1,626 2 60 C-066 155621A 200 W Gate 1,626 2 60 C-066 155621A MCCOOL RD. Gate 2,000 2 60 C-066 155621A MCCOOL RD. Gate 2,000 2 60 C-066 155621A MCCOOL RD. <			09		47.7	1	0.0587	0.0707	
C-066 155610M SUMAN RD Passive 355 2 60 C-066 155612B MANDER RD Gate 226 2 60 C-066 155612M MANDER RD Passive 254 2 60 C-066 155613W 900.N Gate 3,600 2 60 C-066 155619Y 100W Gate 150 60 60 C-066 155619Y 100W Gate 150 60 60 C-066 1556207 150 W Gate 1,50 2 60 C-066 155621A 100W Gate 1,50 2 60 C-066 15562AV MCCOOL RD Gate 1,50 2 60 C-066 15562AV MCCOOL RD Gate 5,00 2 60 C-066 15562AV MCCOOL RD Gate 5,00 2 60 C-066 15562AV MCCOOL RD Gate <td< td=""><td>Passive</td><td></td><td>09</td><td></td><td>47.7</td><td>0</td><td>0.0303</td><td>0.0426</td><td></td></td<>	Passive		09		47.7	0	0.0303	0.0426	
C-066 155612B MANDER RD. Gate 226 2 60 C-066 155613H TRATEBAS RD. Passive 254 2 60 C-066 155613H MRONA Gate 3,600 2 60 C-066 155617K MRONA Passive 266 2 60 C-066 155617K 100W Gate 513 2 60 C-066 155620T 150 W Gate 5100 2 60 C-066 155621A 100W Gate 5,000 2 60 C-066 155622H MCCOCALRA Gate 5,000 2 60 C-066 15562AN MCLOOLRER Gate 5,000 2 60 C-066 15562AN MULLOW CREEK RD Gate 5,000 2 60 C-066 15562AN MULLOW CREEK RD Gate 5,000 2 60 C-066 15562AN MULLOW CREEK RD			09		47.7	0	0.0755	0.0934	
C-066 155613H TRATEBAS RD. Passive 254 2 60 C-066 155615W 900 N. Gate 480 2 60 C-066 155617K MERIDAN RD Gate 3,600 2 60 C-066 155619Y 100W Passive 513 2 60 C-066 155620Y 150 W Gate 1,626 2 60 C-066 155620Y ROW Gate 6,800 2 60 C-066 155621A MCCOCI, RD. Gate 6,800 2 60 C-066 155621A MCCOCI, RD. Flasher 3,000 2 60 C-066 155621A MCCOCI, RD. Flasher 3,000 2 60 C-066 155627R MLLOW CREEK RD Gate 6,477 2 40 C-066 155628R WILLOW CREEK RD Gate 5,43 2 60 C-066 155479Y ADAMS ST<			09		47.7	0	0.0196	0.0278	
C-066 155615W 900 N. Gate 480 2 60 C-066 155617K MERIDAN RD Gate 3600 2 60 C-066 155617Y 100W Gate 1562 2 60 C-066 155620Y 150W Gate 150 2 60 C-066 155621A 200 W Gate 2,000 2 60 C-066 155621A CROCKER Gate 2,000 2 60 C-066 155621A MCCOOL RD. Gate 2,000 2 60 C-066 155627B PORTANGE AVE Flasher 750 2 60 C-066 155627B PORTANGE AVE Gate 5,000 2 60 C-066 155627B PORTANGE AVE Gate 5,000 2 60 C-066 155627B PORTANGE AVE Gate 5,000 2 60 C-066 155627B PORTANGE AVE <	Passive		09		47.7	0	0.0704	0.0883	
C-066 155617K MERIDAN RD Gate 3,600 2 60 C-066 155619Y 100W Passive 266 2 60 C-066 155619Y 100W Gate 513 2 60 C-066 155621A 200W Gate 1,600 2 60 C-066 15562A1 MCCOL RD. Gate 6,000 2 60 C-066 15562A1 MCCOL RD. Gate 6,000 2 60 C-066 15562A1 MCCOL RD. Flasher 3,000 2 60 C-066 1556A1 PORTAGE AVE Flasher 3,000 2 60 C-066 1556A1 PORTAGE RD Gate 6,477 2 60 C-066 1554B1 SR 104 Gate 5,942 2 60 C-066 1554B1 SR 104 Gate 5,942 2 60 C-066 1554B1 SR 104 SR 104 <td></td> <td></td> <td>09</td> <td></td> <td>47.7</td> <td>3</td> <td>0.1465</td> <td>0.1707</td> <td>(b)</td>			09		47.7	3	0.1465	0.1707	(b)
C-066 155619Y 100W Passive 266 2 60 C-066 155620T 150 W Gate 513 2 60 C-066 155620A 150 W Gate 1,626 2 60 C-066 15562A MCOCKERR Gate 2,000 2 60 C-066 15562A MCOCKERR Gate 2,000 2 60 C-066 15562A MCOCKERR Gate 2,000 2 60 C-066 15562A MLLOW CREEK RD Gate 6,477 2 40 C-066 15562B WILLOW CREEK RD Gate 6,477 2 60 C-066 155479Y ADAMS ST Gate 6,477 2 60 C-066 155481A RN 104 Passive 5,942 2 60 C-066 155481A ROPLAR RD Gate 5,942 2 5 C-066 155481A ROPLAR RD Gat			09		47.7	0	0.0314	0.0414	
C-066 155620T 150 W Gate 513 2 60 C-066 155621A 200 W Gate 1,626 2 60 C-066 155621A 200 W Gate 1,626 2 60 C-066 155624V MCCOOL RD. Gate 2,000 2 60 C-066 155624V MCCOOL RD. Flasher 750 2 60 C-066 155624V MCCOOL RD. Flasher 3,000 2 60 C-066 155628X WILLOWCREEK RD Gate 6,477 2 40 C-066 155628X WILLOWCREEK RD Gate 5,447 2 60 C-066 155481A SR 104 Gate 1,330 2 60 C-066 155481A SR 104 Gate 1,330 2 60 DE N-046 484295F FERRY ST Gate 1,624 2 5 DE N-046 484298B			09		47.7	0	0.0711	0.0890	
C-066 155621A 200 W Gate 1,626 2 60 C-066 155624V CCOCKER Gate 5,800 2 60 C-066 155624V MCCOOL RD. Gate 2,000 2 60 C-066 155624V MCCOOL RD. Flasher 3,000 2 60 C-066 155628V PORTAGE AVE Flasher 3,000 2 60 C-066 155628X JULLOW CREEK RD Gate 6,477 2 40 C-066 155438X JULLOW CREEK RD Gate 5,63 2 60 C-066 15549Y ADAMS ST Gate 1,330 2 60 C-066 15548X JOHAR RD Passive 50 2 60 DE N-046 484295F FERRY ST Gate 1,654 2 5 DE N-046 484296M MAIN ST Gate 7,654 2 5 DE <td< td=""><td></td><td></td><td>09</td><td></td><td>47.7</td><td>0</td><td>0.0197</td><td>0.0269</td><td></td></td<>			09		47.7	0	0.0197	0.0269	
C-066 155623N CROCKER Gate 6,800 2 60 C-066 155624V MCCOOL RD. Gate 2,000 2 60 C-066 15562AV MCCOOL RD. Gate 2,000 2 60 C-066 15562R HAMSTROM Flasher 3,000 2 60 C-066 15562R WILLOWCREEK RD Gate 6,477 2 40 C-066 15562RS WILLOWCREEK RD Gate 6,477 2 60 C-066 15543RS LIBERTY-MICHIGAN Gate 1,390 2 60 C-066 155481A ADAMS ST Gate 1,330 2 60 DE N-046 484295M MAIN ST Gate 1,554 2 50 DE N-046 484295M MAIN ST Flasher 7,654 2 25 DE N-046 484390A 11TH ST Flasher 2,622 2 25			09		47.7	0	0.0262	0.0350	
C-066 155624V MCCOOL RD. Gate 2,000 2 60 C-066 155625J HAMSTROM Flasher 750 2 60 C-066 155627R PORTAGE AVE Flasher 3,000 2 60 C-066 155628X WILLOW CREEK RD Gate 6,477 2 40 C-066 155478X LIBERTY-MICHIGAN Gate 5,942 2 60 C-066 155478X LIBERTY-MICHIGAN Gate 5,942 2 60 C-066 155438A ADAMS ST Gate 5,942 2 60 C-066 155438A ADAMS ST Gate 6,121 2 60 DE N-046 484295F FERRY ST Gate 6,121 2 25 DE N-046 484296M MAIN ST Gate 7,630 3 25 DE N-046 484208M COLUMBIA ST Gate 7,890 3 25			09		47.7	0	0.0362	0.0469	
C-066 155626J HAMSTROM Flasher 750 2 60 C-066 155628X WILLOW CREEK RD Gate 6,477 2 40 C-066 155628X WILLOW CREEK RD Gate 5,942 2 60 C-066 155478S LIBERTY-MICHIGAN Gate 5,942 2 60 C-066 155481A ADAMS ST Gate 963 2 60 C-066 155481A SR 104 Gate 1,330 2 60 C-066 155483N POPLAR RD Passive 50 2 60 C-066 155483N POPLAR RD Gate 7,654 2 50 DE N-046 484209F FERRY ST Gate 7,654 2 55 DE N-046 484209F ITH ST Flasher 7,654 2 55 DE N-046 484209H IOTH ST Cate 8,546 3 25			09		47.7	0	0.0275	0.0366	
C-066 155627R PORTAGE AVE Flasher 3,000 2 60 C-066 155628X WILLOW CREEK RD Gate 6,477 2 40 C-066 155478S LIBERTY-MICHIGAN Gate 5,942 2 60 C-066 155481A SR 104 Gate 963 2 60 C-066 155481A SR 104 Gate 1,330 2 60 C-066 155483N POPLAR RD Passive 50 2 60 DE N-046 484295F FERRY ST Gate 7,654 2 5 DE N-046 484295F FERRY ST Gate 7,654 2 5 DE N-046 484296M MAIN ST Gate 7,654 2 5 DE N-046 484297U HTH ST Gate 8,346 3 2 DE N-046 484290H HOTH ST Gate 7,890 3 2			09		47.7	0	0.0325	0.0440	
C-066 I55628X WILLOW CREEK RD Gate 6,477 2 40 C-066 I55478S LIBERTY-MICHIGAN Gate 5,942 2 60 C-066 I5548S LIBERTY-MICHIGAN Gate 963 2 60 C-066 I55481A SR 104 Gate 1,330 2 60 DE C-066 I55483N POPLAR RD Passive 50 2 60 DE N-046 484295F FERRY ST Gate 7,654 2 25 DE N-046 484297U I1TH ST Gate 7,654 2 25 DE N-046 484297U I1TH ST Gate 8,546 3 25 DE N-046 484299U I0TH ST Gate 8,546 3 25 DE N-046 484300A SOUTH ST S.R. 26 Gate 2,622 2 25 DE N-046 484301D 9TH ST Flasher	Flasher		09		47.7	-	0.1154	0.1404	
C-066 155478S LIBERTY-MICHIGAN Gate 5,942 2 60 C-066 155479Y ADAMS ST Gate 963 2 60 C-066 155481A SR 104 Gate 1,330 2 60 C-066 155481A SR 104 Gate 1,330 2 60 DE N-046 484295F FERRY ST Gate 6,121 2 5 DE N-046 484296M MAIN ST Gate 7,654 2 25 DE N-046 484299H IOTH ST Gate 8,346 3 25 DE N-046 484299H IOTH ST Gate 7,890 3 25 DE N-046 484300A SOUTH ST.R. 26 Gate 8,565 2 25 DE N-046 48430G SITH ST. Flasher 1,375 2 25 DE N-046 48430G NOWING ST Flasher 1,471 <td>Gate</td> <td></td> <td>40</td> <td></td> <td>47.7</td> <td>-</td> <td>0.0844</td> <td>0.1024</td> <td></td>	Gate		40		47.7	-	0.0844	0.1024	
C-066 155479Y ADAMS ST Gate 963 2 60 C-066 155481A SR 104 Gate 1,330 2 60 C-066 155483N POPLAR RD Passive 50 2 60 DE N-046 484295F FERRY ST Gate 7,654 2 25 DE N-046 484290M MAIN ST Gate 7,654 2 25 DE N-046 484299M MAIN ST Gate 7,654 2 25 DE N-046 484299H 10TH ST Gate 7,890 3 25 DE N-046 484299H 10TH ST Gate 7,890 3 25 DE N-046 484300A SOUTH ST Gate 8,565 2 25 DE N-046 484302N STH ST Flasher 2,522 2 25 DE N-046 484306R ROMIG ST Flasher	Gate		09		47.7	0	0.0354	0.0460	
C-066 155481A SR 104 Gate 1,330 2 60 DE C-066 155483N POPLAR RD Passive 50 2 60 DE N-046 484295F FERRY ST Gate 6,121 2 25 DE N-046 484296M MAIN ST Gate 7,654 2 25 DE N-046 484299B COLUMBIA ST Gate 8,546 3 25 DE N-046 484299B IOTH ST Flasher 7,890 3 25 DE N-046 484300A SOUTH ST & Gate 8,565 2 25 DE N-046 484301D 9TH ST Flasher 1,375 2 25 DE N-046 484302N 8TH ST Flasher 1,471 2 25 DE N-046 484304C NEW YORK ST Flasher 1,471 2 25 DE N-046 484306R ROMIG ST<			09		47.7	0	0.0249	0.0350	
C. 066 155483N POPLAR RD Passive 50 2 60 DE N.046 484295F FERRY ST Gate 6,121 2 25 DE N.046 484296M MAIN ST Gate 7,654 2 25 DE N.046 484299U 11TH ST Gate 8,546 3 25 DE N.046 484299H 10TH ST Gate 7,890 3 25 DE N.046 484300A SOUTH ST S.R. 26 Gate 8,565 2 25 DE N.046 484301D 9TH ST Flasher 1,375 2 25 DE N.046 484302N 8TH ST Flasher 252 2 25 DE N.046 484304C NEW YORK ST Flasher 1,471 2 25 DE N.046 484306R ROMIG ST Flasher 1,471 2 25 DE N.046 484306R			09		47.7	0	0.0222	0.0301	
N-046 484295F FERRY ST Gate 6,121 2 25 N-046 484296M MAIN ST Gate 7,654 2 25 N-046 484299B COLUMBIA ST Gate 8,546 3 25 N-046 484299H 10TH ST Gate 7,890 3 25 N-046 484300A SOUTH ST S.R. 26 Gate 8,565 2 25 N-046 48430CA SOUTH ST Passive 289 2 25 N-046 48430ZA TH ST Flasher 1,375 2 25 N-046 48430AZ NEW YORK ST Flasher 982 2 25 N-046 48430G NEW YORK ST Flasher 1,471 2 25 N-046 48430G NEW YORK ST Flasher 1,471 2 25 N-046 48430G TINGLE AVE Flasher 1,471 2 25 N-046 48430G T	Passive		09		47.7	0	0.0306	0.0430	
N-046 484296M MAIN ST Gate 7,654 2 25 N-046 484297U 11TH ST Flasher 730 2 25 N-046 484298B COLUMBIA ST Gate 8,546 3 25 N-046 484299H 10TH ST Gate 7,890 3 25 N-046 484300A SOUTH ST S.R. 26 Gate 8,565 2 25 N-046 48430D STH ST Passive 289 2 25 N-046 48430ZN TTH ST Flasher 1,375 2 25 N-046 48430AV NEW YORK ST Flasher 982 2 25 N-046 48430G NEW YORK ST Flasher 1,471 2 25 N-046 48430G ROMIG ST Flasher 1,471 2 25 N-046 48430G TINGLE AVE Flasher 1,471 2 25 N-046 48430G TH ST			25		40.2	0	0.0338	0.0439	
N-046 484297U ITTH ST Flasher 730 2 25 N-046 484298B COLUMBIA ST Gate 8,546 3 25 N-046 484299H 10TH ST Gate 7,890 3 25 N-046 484301G 9TH ST Gate 8,565 2 25 N-046 484301G 9TH ST Passive 289 2 25 N-046 484303V 7TH ST Flasher 1,375 2 25 N-046 484304C NEW YORK ST Flasher 982 2 25 N-046 484306R ROMIG ST Flasher 1,471 2 25 N-046 484307X LINGLE AVE Flasher 1,471 2 25 N-046 484308E 5TH ST Passive 209 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 4TH ST U.			25		40.2	0	0.0355	0.0459	
N-046 484298B COLUMBIA ST Gate 8,546 3 25 N-046 484299H 10TH ST Flasher 2,622 2 25 N-046 484300A SOUTH ST.R. 26 Gate 7,890 3 25 N-046 484301Q 9TH ST Passive 289 2 25 N-046 484303V 7TH ST Flasher 1,375 2 25 N-046 484304C NEW YORK ST Flasher 982 2 25 N-046 484306R ROMIG ST Flasher 982 2 25 N-046 484307X LINGLE AVE Flasher 1,471 2 25 N-046 484308E 5TH ST Passive 209 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L			25	-	40.2	-	0.0913	0.1124	
N-046 484299H 10TH ST Flasher 2,622 2 25 N-046 484300A SOUTH ST S.R. 26 Gate 7,890 3 25 N-046 484301G 9TH ST Gate 8,565 2 25 N-046 484302N 8TH ST Flasher 1,375 2 25 N-046 484304C NEW YORK ST Flasher 252 2 25 N-046 484304C NEW YORK ST Flasher 982 2 25 N-046 484307X LINGLE AVE Flasher 1,471 2 25 N-046 484308E 5TH ST Passive 209 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 4TH ST U.S. 231 Flasher 3,823 2 25	Gate		25		40.2	0	0.0402	0.0513	
N-046 484300A SOUTH ST S.R. 26 Gate 7,890 3 25 N-046 48430LG 9TH ST Gate 8,565 2 25 N-046 484302N 8TH ST 25 2 25 N-046 484304C NEW YORK ST Flasher 252 2 25 N-046 484306R ROMIG ST Flasher 982 2 25 N-046 484306R ROMIG ST Flasher 1,471 2 25 N-046 484308E 5TH ST Passive 209 2 25 N-046 484308E 5TH ST Gate 12,060 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 3RD ST Flasher 3823 2 25	\dashv		25	-	40.2	-	0.1191	0.1437	
N-046 484301G 9TH ST Gate 8,565 2 25 N-046 484302N 8TH ST Passive 289 2 25 N-046 484303V 7TH ST Flasher 1,375 2 25 N-046 484304C NEW YORK ST Flasher 982 2 25 N-046 484306R ROMIG ST Flasher 1,471 2 25 N-046 484308F 5TH ST Passive 209 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 3RD ST Flasher 3823 2 25	Gate		25		40.2	0	0.0396	0.0505	
N-046 484302N 8TH ST. Passive 289 2 25 N-046 484303V 7TH ST. Flasher 1,375 2 25 N-046 484304C NEW YORK ST. Flasher 252 2 25 N-046 484306R ROMIG ST Flasher 982 2 25 N-046 484307X LINGLE AVE Flasher 1,471 2 25 N-046 484308E 5TH ST Gate 12,060 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 3RD ST 57 57			25		40.2	-	0.0923	0.1112	
N-046 484303V 7TH ST. Flasher 1,375 2 25 N-046 484304C NEW YORK ST. Flasher 252 2 25 N-046 484306R ROMIG ST Flasher 982 2 25 N-046 484307X LINGLE AVE Flasher 1,471 2 25 N-046 484308E 5TH ST Gate 12,060 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 3RD ST Flasher 3823 2 25	Passive		25		40.2	3	0.2993	0.3567	0.0884
N-046 484304C NEW YORK ST. Flasher 252 2 25 N-046 484306R ROMIG ST Flasher 982 2 25 N-046 484307X LINGLE AVE Flasher 1,471 2 25 N-046 484308E 5TH ST Cate 209 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 3RD ST Flasher 3823 2 55	_		25		40.2	3	0.2280	0.2717	0.0296
N-046 484306R ROMIG ST Flasher 982 2 25 N-046 484307X LINGLE AVE Flasher 1,471 2 25 N-046 484308E 5TH ST 25 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 3RD ST Flasher 3,823 2 25			25		40.2	0	0.0251	0.0346	
N-046 484307X LINGLE AVE Flasher 1,471 2 25 N-046 484308E 5TH ST 209 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25	Flasher		25		40.2	3	0.2145	0.2563	0.0177
N-046 484308E 5TH ST Passive 209 2 25 N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25 N-046 484310F 3RD ST Flasher 3,823 2 25	_		25		40.2	-	0.1059	0.1292	
N-046 484309L 4TH ST U.S. 231 Gate 12,060 2 25	Passive		25		40.2	2	0.2076	0.2504	0.0364
N_046 484310F 3BD CT Flasher 3 823 2 25	Gate		25		40.2	2	0.1554	0.1837	(b)
2 C2000 101CTOL 01CTOL	Flasher 3,	823 2	25	18.4	40.2	0	0.0558	0.0698	

								Freight Trains	Trains		Acı	Accidents Per Year	ear
													Post
	Rail I ine			Warning	F	Number of	Maximim	Pre-	Post	Relevant Accident	Pre-	Post	Acquisition With
County	Segment FRA ID	FRA ID	Street Name	Device	ADT			ion	Acq	History	Acquisition	Acc	Mitigation
TIPPECANOE	N-046	484311M	484311M SMITH ST	Flasher	996	2	25	18.4	40.2	2	0.1554	0.1873	0.0538
TIPPECANOE		484318K	CR 500 W.	Passive	108	2	50	23.6	41.0	0	0.0376	0.0471	
TIPPECANOE	N-045	484319S	CR 400 S	Passive	264	2	50	23.6	41.0	1	0.1598	0.1820	0.0245
TIPPECANOE	N-045	484320L	CR 575 W.	Passive	6	2	50	23.6	41.0	0	0.0561	0.0677	
TIPPECANOE	N-045	484322A		Gate	1,433	2	50	23.6	41.0	0	0.0235	0.0290	
TIPPECANOE	N-045	484323G	CO 172	Passive	127	2	50	23.6	41.0	2	0.2215	0.2524	0.0456
TIPPECANOE	N-045	484324N	484324N CR 900W	Passive	50	2	50	23.6	41.0	1	0.0869	0.1015	
TIPPECANOE	N-046	484267C	CR 900 N.	Passive	1,188	2	50	18.4	40.2	2	0.2941	0.3382	0.0184
TIPPECANOE	N-046	484268J	CR 800 N.	Passive	20	2	50	18.4	40.2	0	0.0268	0.0378	
TIPPECANOE	N-046	484269R	CR 700 N.	Passive	237	2	50	18.4	40.2	1	0.1473	0.1783	0.0182
TIPPECANOE	N-046	484270K	CR 1000 E.	Passive	52	2	50	18.4	40.2	0	0.0271	0.0382	
TIPPECANOE	N-046	484271S	CR 600 N	Passive	19	2	50	18.4	40.2	-	0.0843	0.1049	
TIPPECANOE	N-046	484272Y	CR 900 E.	Flasher	486	2	50	18.4	40.2	0	0.0267	0.0366	
TIPPECANOE	N-046	484275U	484275U MAIN ST CR 750 E.	Flasher	523	2	50	18.4	40.2	0	0.0274	0.0374	
TIPPECANOE	N-046	484278P	CR 625 E	Passive	72	2	50	18.4	40.2	0	0.0300	0.0418	
TIPPECANOE	N-046	484279W	484279W CR 400 N	Passive	80	2	50	18.4	40.2	0	0.0309	0.0431	
TIPPECANOE	N-046	484282E	CR 500 E	Passive	427	2	50	18.4	40.2	-	0.1629	0.1944	0.0217
TIPPECANOE	N-046	484284T	HEATH RD CR 300N.	Flasher	2,463	2	50	18.4	40.2	0	0.0440	0.0570	
TIPPECANOE	N-046	484285A	CR 400 E	Gate	1,939	2	50	18.4	40.2	0	0.0338	0.0485	
TIPPECANOE	N-046	484290W	484290W UNDERWOOD ST	Flasher	5,557	2	25	18.4	40.2	0	0.0610	0.0751	
TIPPECANOE	N-046	484291D	GREENBUSH ST	Flasher	2,000	2	25	18.4	40.2	4	0.3094	0.3656	0.0626
TIPPECANOE	N-046	484292K	18TH	Flasher	5,430	2	25	18.4	40.2	8	0.6712	0.7754	0.0413
TIPPECANOE	N-046	484293S	17TH & SALEM ST.	Flasher	6,323	2	25	18.4	40.2	9	0.5310	0.6127	0.0620
TIPPECANOE	N-046	484294Y	UNION ST	Gate	9,955	2	25	18.4	40.2	3	0.2083	0.2445	(b)
WABASH	N-044	478286T	CR 250	Passive	200	2	09	19.0	34.9	0	0.0663	0.0797	
WABASH	N-044	478288G	CR 167	Passive	200	2	09	19.0	34.9	0	0.0446	0.0561	
WABASH	N-044	478289N	CR 500 E	Passive	200	2	09	19.0	34.9	0	0.0663	0.0797	
WABASH	N-044	478292W	478292W DAVIS ST	Gate	5,569	2	09	19.0	34.9	0	0.0307	0.0380	
WABASH	N-044	478301T	EAST ST	Gate	750	2	40	19.0	34.9	0	0.0190	0.0241	
WABASH	N-044	478302A	SPRING ST	Gate	750	2	40	19.0	34.9	0	0.0190	0.0241	
WABASH	N-044	478303G	ALLEN ST	Gate	1,000	2	40	19.0	34.9	0	0.0204	0.0259	
WABASH	N-044	478304N	478304N HUNTINGTON ST	Gate	750	2	40	19.0	34.9	0	0.0190	0.0241	
WABASH	N-044	478305V	WABASH ST	Gate	9,840	2	40	19.0	34.9	0	0.0349	0.0428	
WABASH	N-044	478306C	MIAMI ST	Flasher	1,000	2	40	19.0	34.9	0	0.0348	0.0437	
WABASH	N-044	478307J	CASS ST	Gate	4,459	2	40	19.0	34.9	0	0.0292	0.0363	
WABASH	N-044	478308R	478308R CARROLL ST	Gate	750	2	40	19.0	34.9	0	0.0190	0.0241	

Page 11 of 11

INDIANA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY **ATTACHMENT E-2**

								Freight	Freight Trains		Ac	Accidents Per Year	ear
						Number of				Relevant			Post Acquisition
	Rail Line			Warning			Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Segment FRA ID Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition Acquisition	History	Acquisition	Acquisition	Mitigation
WABASH	N-044	478309X	478309X FISHER ST	Flasher	750	2	40	19.0	34.9	0	0.0318	0.0402	
WABASH	N-044	478310S	478310S COMSTOCK ST	Flasher	750	2	40	19.0	34.9	0	0.0318	0.0402	
WABASH	N-044	478311Y	478311Y THORNE ST	Flasher	750	2	40	19.0	34.9	0	0.0318	0.0402	
WABASH	N-044	478312F	478312F BOND ST	Flasher	750	2	40	19.0	34.9	_	0.0849	0.1001	
WABASH	N-044	478313M	478313M OLIVE ST	Passive	250	2	09	19.0	34.9	2	0.2469	0.2821	0.0218
WABASH	N-044	478314U	478314U WOLF ROAD	Flasher	1,800	2	09	19.0	34.9	4	0.2849	0.3259	0.0353 (a)
WABASH	N-044	478316H	478316H CR 500W	Passive	200	2	09	19.0	34.9	0	0.0564	0.0693	
WABASH	N-044	478319D	478319D BRIDGE ST	Flasher	454	2	09	19.0	34.9	0	0.0270	0.0346	
WARREN	N-045	484347V	484347V RIVER RD (CR 165)	Passive	90	2	40	23.6	41.0	0	0.0449	0.0553	
WARREN	N-045	484351K	484351K FOURTH ST EX. (CR 88)	Flasher	553	2	09	23.6	41.0	0	0.0309	0.0383	
WARREN	N-045		484352S MONROE ST.	Gate	3,780	2	35	23.6	41.0	0	0.0478	0.0616	
WARREN	N-045	484355M	484355M CR 100 W	Passive	345	2	09	23.6	41.0	0	0.0543	0.0657	
WARREN	N-045	484356U	484356U CR 175 W	Passive	109	2	09	23.6	41.0	-	0.1050	0.1226	
WARREN	N-045	484357B	484357B TOWER RD (CR 84)	Passive	120	2	09	23.6	41.0	0	0.0411	0.0510	
WARREN	N-045	484358H	484358H HIGH ST IND 263	Gate	4,699	2	09	23.6	41.0	0	0.0311	0.0377	
WARREN	N-045	484362X	484362X CR 450 S	Flasher	413	2	09	23.6	41.0	0	0.0281	0.0351	
WARREN	N-045		484363E CR 775 W	Passive	112	2	09	23.6	41.0	1	0.1055	0.1232	
WARREN	N-045	484364L	N-045 484364L CR 600 S	Passive	128	2	09	23.6	41.0	0	0.0418	0.0519	
WARREN	N-045	1	484365T CR 875 W(JACKSONVILLE RD.)	Gate	291	2	09	23.6	41.0	0	0.0157	0.0197	
WARREN	N-045	484367G	484367G CR 1000 W	Passive	6 <i>L</i>	2	09	23.6	41.0	1	0.0987	0.1153	
WARREN	N-045	484420R	N-045 484420R WASHINGTON ST	Flasher	998	2	09	23.6	41.0	1	0.0917	0.1063	
(a) Mitigation already in place	ady in place												

(a) Mitigation already in place
(b) Effectiveness of 4-quadrant gates, median barriers, or corridor analysis is not quantifiable

[THIS PAGE INTENTIONALLY LEFT BLANK]

ATTACHMENT E-3

Maryland Highway/Rail At-grade Crossing Accident Frequency

Proposed Conrail Acquisition	May 1998	Final Environmental Impact Statement
[THIS PAGE	E INTENTIONALLY L	EFT BLANK]
Appendix E: Safety:	Highway/Rail At-grade Cros	sing Satety Analysis
	11' 1	sis a Osfata Anglasia

ATTACHMENT E-3
MARYLAND HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

								Freight	Freight Trains		A,	Accidents Per Year	ar
													Post
						Number of				Relevant			Acquisition
	Rail Line	-		Warning		Roadway	Roadway Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Segment FRA ID Street Name	Device	ADT	Lanes	Speed	Acquisition Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
FREDERICK	C-036	140608S	C-036 140608S MAPLE AVE	Gate	006	2	09	33.3	41.6	0	0.0273	0.0296	
WASHINGTON	N-091	469316J	N-091 469316J RENCH RD	Flasher	675	2	50	11.1	9.61	0	0.0249	0.0315	
WASHINGTON	N-091	469320Y	N-091 469320Y COLLEGE RD	Flasher	475	2	50	11.1	9.61	0	0.0220	0.0281	
WASHINGTON	N-091	469321F	N-091 469321F LAPPANS RD.	Flasher	3,375	2	50	11.1	19.6	1	0.1012	0.1174	0.0136 (a)
WASHINGTON	N-091	469323U	N-091 469323U JORDAN RD	Flasher	400	2	50	11.1	19.6	0	0.0208	0.0266	
WASHINGTON	N-091	469324B	N-091 469324B SPIELMAN RD	Flasher	575	2	45	11.1	19.6	0	0.0233	0.0296	
WASHINGTON	N-091	469327W	N-091 469327W TOMMY TOWN RD	Flasher	75	2	35	11.1	19.6	0	0.0113	0.0148	
WASHINGTON	N-091	469329K	N-091 469329K TAYLORS LANDING	Flasher	175	2	45	11.1	19.6	0	0.0155	0.0200	
WASHINGTON	N-091	469332T	N-091 469332T MONDEL RD	Flasher	125	2	45	11.1	19.6	0	0.0135	0.0175	
WASHINGTON	N-091	534883D	N-091 534883D REIFF CHURCH RD	Passive	325	2	30	11.1	9.61	2	0.2044	0.2348	0.0077
WASHINGTON	N-091	534884K	N-091 534884K NORTH ST	Gate	850	2	30	11.1	19.6	0	0.0162	0.0204	
WASHINGTON	N-091	N-091 534886Y MAIN ST	MAIN ST	Gate	1,143	2	30	11.1	19.6	0	0.0175	0.0219	
WASHINGTON		534887F	N-091 534887F SHAWLEY DR	Passive	200	2	30	11.1	19.6	0	0.0470	0.0580	0.0325
(a) Mitigation already in place	adv in place												

(a) Mitigation already in place

[THIS PAGE INTENTIONALLY LEFT BLANK]

ATTACHMENT E-4

Michigan Highway/Rail At-grade Crossing Accident Frequency

Appendix E: Safety:	Highway/Rail At-grade Cr	rossing Safety Analysis
[THIS PAGE	EINTENTIONALLY	LEFT BLANK]
Proposed Conrail Acquisition	May 1998	Final Environmental Impact Statement

								Freight Trains	Trains		A	Accidents Per Year	ar
													Post
						Number of				Relevant			rost Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	Segment FRA ID		Device	ADT	Lanes	Speed	Acquisition	Acquisition Acquisition	History	Acquisition	Acquisition	Mitigation
MONROE	C-040	232123C		Flasher	1,446	2	45	21.9	33.1	0	0.0492	0.0565	
MONROE	C-040	232124J	STERNS RD.	Gate	2,047	2	45	21.9	33.1	0	0.0301	0.0348	
MONROE	C-040	232126X	WASHINGTON-ERIE	Gate	2,130	2	45	21.9	33.1	0	0.0303	0.0351	
MONROE	C-040	232129T	LAKEWOOD-LUNAPIER	Gate	8,761	2	45	21.9	33.1	0	0.0412	0.0469	
MONROE	C-040	232131U	RAUCH RD	Gate	480	2	45	21.9	33.1	0	0.0263	0.0314	
MONROE	C-040	232132B	WOOD RD	Passive	96	2	45	21.9	33.1	0	0.0366	0.0434	
MONROE	C-040	232133H	STEIN RD	Gate	141	2	45	21.9	33.1	0	0.0156	0.0185	
MONROE	C-040	232134P	SWARTZ	Gate	700	2	45	21.9	33.1	0	0.0233	0.0273	
MONROE	C-040	232135W	232135W S OTTER CREEK RD	Gate	3,600	2	45	21.9	33.1	0	0.0341	0.0393	
MONROE	C-040	232136D	N OTTER CREEK RD	Gate	524	2	45	21.9	33.1	0	0.0217	0.0255	
MONROE	C-040	232139Y	ALBAIN RD.	Gate	3,168	2	45	21.9	33.1	0	0.0332	0.0382	
MONROE	C-040	232140T	232140T DUNBAR RD.	Gate	8,510	2	45	21.9	33.1	-	0.1005	0.1108	
MONROE	C-040	232142G	232142G SEVENTH ST.	Gate	3,950	2	45	21.9	33.1	-	0.0895	0.0989	
MONROE	C-040	232146J	FRONT ST	Gate	16,237	2	35	21.9	33.1	0	0.0465	0.0526	
MONROE	C-040	232147R	ELM	Gate	13,000	2	45	21.9	33.1	0	0.0446	0.0505	
MONROE	C-040	232148X	STEWART RD	Gate	12,330	4	45	21.9	33.1	0	0.0529	0.0592	
MONROE	C-040	232151F	HURD RD	Passive	132	2	45	21.9	33.1	0	0.0386	0.0457	
MONROE	C-040	232152M	232152M HEISS RD	Gate	631	2	45	21.9	33.1	0	0.0227	0.0267	
MONROE	C-040	232153U	STOMPMIER RD	Passive	477	2	45	21.9	33.1	0	0.0797	0.0800	
MONROE	C-040	232154B	STEINER RD	Passive	246	2	45	21.9	33.1	0	0.0697	0.0789	
MONROE	C-040	232155H	S STONEY CREEK RD	Gate	1,561	2	45	21.9	33.1	0	0.0282	0.0328	
MONROE	C-040	232156P	N STONEY CREEK RD	Passive	256	2	45	21.9	33.1	0	0.0479	0.0559	
MONROE	C-040	232157W	232157W LABO RD	Gate	942	2	45	21.9	33.1	0	0.0251	0.0293	
MONROE	C-040	232158D		Gate	380	2	45	21.9	33.1	0	0.0201	0.0236	
MONROE	C-040	232161L	ASH ST	Gate	90	2	45	21.9	33.1	0	0.0177	0.0213	
MONROE	S-020	511813Y		Passive	20	2	25	2.0	11.2	0	0.0080	0.0186	
MONROE	S-020	511814F	GRAFTON	Flasher	2,047	2	25	2.0	11.2	0	0.0171	0.0353	
MONROE	S-020	511815M	NEWBURG	Passive	226	2	25	2.0	11.2	0	0.0229	0.0474	
WAYNE	S-020	511011Y	PARK ST.	Flasher	200	2	25	2.0	11.2	0	0.0101	0.0223	
WAYNE	S-020	511013M	N. HURON RIVER DR	Flasher	4,119	2	25	2.0	11.2	0	0.0219	0.0433	
WAYNE	S-020	511015B	VAN HORN RD	Flasher	069	2	25	2.0	11.2	0	0.0114	0.0248	
WAYNE	S-020	\$11016H	MIDDLEBELT RD	Flasher	2,926	2	25	2.0	11.2	0	0.0194	0.0393	
WAYNE	S-020	511017P	GRIX RD	Passive	200	2	25	2.0	11.2	0	0.0129	0.0289	
WAYNE	S-020	511018W	511018W WEST RD	Flasher	827	2	25	2.0	11.2	0	0.0123	0.0264	
WAYNE	S-020	511020X	INKSTER RD	Flasher	5,742	2	25	2.0	11.2	0	0.0245	0.0475	
WAYNE	S-020	511021E		Passive	2,500	2	25	2.0	11.2	0	0.0293	0.0578	

								Freight	Freight Trains		Ac	Accidents Per Year	ır
													Post
					<u> </u>	Number of				Relevant			Acquisition
	Rail Line	4		Warning		Roadway	Roadway Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	Segment FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
WAYNE	S-020	S-020 511022L KING RD	KING RD	Flasher	837	2	25	2.0	11.2	0	0.0123	0.0265	
WAYNE	S-020	S-020 511024A SIBLEY	SIBLEY	Flasher	8,663	2	25	2.0	11.2	0	0.0281	0.0529	
WAYNE	S-020	511026N	S-020 511026N BAILEY RD	Passive	50	2	25	2.0	11.2	0	0.0080	0.0186	
WAYNE	S-020	511027V	S-020 511027V PENNSYLVANIA RD	Flasher	9,649	2	25	2.0	11.2	2	0.1312	0.1968	0.0078
WAYNE	S-020		511029J RACHO RD	Flasher	4,000	2	25	2.0	11.2	0	0.0217	0.0430	
WAYNE	S-020		511031K SUPERIOR RD	Passive	3,224	2	25	2.0	11.2	0	0.0316	0.0614	
WAYNE	S-020	511032S	S-020 511032S NORTHLINE RD	Flasher	23,050	4	25	2.0	11.2	0	0.0491	0.0791	
WAYNE	S-020	511033Y	S-020 511033Y ALLEN RD	Flasher	28,033	4	25	2.0	11.2	0	0.0516	0.0818	
WAYNE	S-020	511035M	S-020 511035M REECK RD.	Passive	1,000	2	25	2.0	11.2	0	0.0360	0.0678	
WAYNE	S-020	511037B	S-020 511037B LONDON RD	Flasher	7,240	2	25	2.0	11.2	0	0.0265	0.0505	
WAYNE	S-020	511039P	S-020 511039P CHAMPAIGNE	Flasher	7,676	4	25	2.0	11.2	1	0.0923	0.1421	
WAYNE	S-020	511816U	S-020 511816U WILL CARLETON DR	Flasher	5,789	2	25	2.0	11.2	0	0.0246	0.0476	

ATTACHMENT E-5

New York Highway/Rail At-grade Crossing Accident Frequency

Appendix E.	: Safety: Highway/Rail At-grade (Crossing Safety Analysis	
	J	y and y	
[THIS	PAGE INTENTIONALLY	/ LEFT BLANK]	
	_		
Proposed Conrail Acquisition	May 1998	Final Environmental Imna	at Ctataman

								Freight Trains	Trains		Acc	Accidents Per Year	ar
													Post
	Deil I inc			11/2-11-11	· ·	Number of		D	Done	Relevant	ů.	Doct	Acquisition
County	Segment	Segment FRA ID	Street Name	Warning	ADT		Speed	rre- Acquisition	Acq	History	Acquisition	rost Acquisition	Witigation
CHAUTAUQUA	N-070	471743Y	ALLEGHENY ROAD	Gate	1,575	2	09	13.0	25.1	0	0.0194	0.0251	
CHAUTAUQUA	N-070	471744F	471744F HANFORD	Gate	644	2	09	13.0	25.1	0	0.0155	0.0202	
CHAUTAUQUA	N-070	471750J	471750J CENTER RD/E. SHERIDAN RD.	Gate	431	2	09	13.0	25.1	0	0.0139	0.0182	
CHAUTAUQUA	N-070	471755T	NEWELL ROAD	Gate	2,000	2	09	13.0	25.1	0	0.0206	0.0266	
CHAUTAUQUA	N-070	471756A	WERLE ROAD	Gate	169	2	09	13.0	25.1	0	0.0108	0.0143	
СНАUTAUQUA	N-070	471757G	471757G MIDDLE ROAD	Gate	1,765	2	09	13.0	25.1	0	0.0200	0.0258	
CHAUTAUQUA	N-070	471758N	471758N ROBERT ROAD	Gate	4,757	2	40	13.0	25.1	0	0.0255	0.0324	
CHAUTAUQUA	N-070	471759V	471759V TOWNSEND STREET	Gate	294	2	40	13.0	25.1	0	0.0126	0.0165	
CHAUTAUQUA	N-070	471760P	471760P NEVINS STREET	Gate	338	2	40	13.0	25.1	1	0.0503	0.0577	
CHAUTAUQUA	N-070	471761W	471761W HOYT STREET	Gate	192	2	40	13.0	25.1	0	0.0112	0.0148	
CHAUTAUQUA	N-070	471762D	471762D LORD STREET	Gate	290	2	40	13.0	25.1	0	0.0125	0.0165	
CHAUTAUQUA	N-070	471763K	471763K FRANKLIN STREET	Gate	1,572	2	40	13.0	25.1	0	0.0194	0.0251	
CHAUTAUQUA	N-070	471764S	471764S LINCOLN STREET	Gate	793	2	40	13.0	25.1	0	0.0163	0.0213	
CHAUTAUQUA	N-070	471765Y	KING STREET	Gate	695	2	40	13.0	25.1	0	0.0158	0.0206	
CHAUTAUQUA	N-070	471766F	471766F LAMPHERE STREET	Gate	9,300	2	40	13.0	25.1	0	0.0298	0.0375	
CHAUTAUQUA	N-070	471767M	471767M MAIN STREET	Gate	2,778	2	40	13.0	25.1	0	0.0224	0.0287	
CHAUTAUQUA	N-070	471772J	TEMPLE ROAD	Gate	416	2	09	13.0	25.1	0	0.0138	0.0181	
CHAUTAUQUA	N-070	471774X	471774X VAN BUREN ROAD	Gate	509	2	09	13.0	25.1	0	0.0145	0.0190	
CHAUTAUQUA	N-070	471775E	BERRY RD.	Gate	589	2	09	13.0	25.1	0	0.0151	0.0197	
CHAUTAUQUA	N-070	471776L	471776L LAKE ROAD	Gate	212	2	09	13.0	25.1	0	0.0115	0.0152	
CHAUTAUQUA	N-070	471778A	471778A MARTIN ROAD	Gate	57	2	09	13.0	25.1	0	0.0098	0.0132	
CHAUTAUQUA	N-070	471782P	471782P CENTRAL AVENUE	Gate	509	2	40	13.0	25.1	0	0.0145	0.0190	
CHAUTAUQUA	N-070	471783W	471783W MATHEWS ROAD	Gate	197	2	09	13.0	25.1	0	0.0113	0.0149	
CHAUTAUQUA	N-070	471784D	PECOR STREET	Gate	339	2	09	13.0	25.1	1	0.0503	0.0577	
CHAUTAUQUA	N-070	471785K	471785K ONTHANK ROAD	Passive	134	2	09	13.0	25.1	0	0.0524	0.0659	
CHAUTAUQUA	N-070	471786S	471786S WALKER ROAD	Gate	259	2	09	13.0	25.1	0	0.0121	0.0160	
CHAUTAUQUA	N-070	471788F	471788F EAST FOREST ROAD	Passive	50	2	09	13.0	25.1	0	0.0249	0.0335	
CHAUTAUQUA	N-070	471791N	471791N PRATT ROAD	Gate	268	2	09	13.0	25.1	0	0.0123	0.0161	
CHAUTAUQUA	N-070	471794J	MCKINLEY ROAD	Gate	655	2	09	13.0	25.1	0	0.0155	0.0203	
CHAUTAUQUA	N-070	471796X	EAST PEARL STREET	Gate	425	2	09	13.0	25.1	0	0.0139	0.0182	
CHAUTAUQUA	N-070	471797E	WEST PEARL STREET	Gate	240	2	09	13.0	25.1	0	0.0119	0.0157	
CHAUTAUQUA	N-070	471799T	FRANKLIN STREET	Flasher	250	2	50	13.0	25.1	0	0.0185	0.0247	
CHAUTAUQUA	N-070	471802Y	NORTH GALE STREET	Gate	750	2	09	13.0	25.1	0	0.0161	0.0210	
CHAUTAUQUA	N-070	471803F	WALKER ROAD	Gate	117	2	09	13.0	25.1	0	0.0098	0.0130	
CHAUTAUQUA	N-070	471804M	471804M LIGHT ROAD	Passive	50	2	09	13.0	25.1	0	0.0403	0.0521	
CHAUTAUQUA	N-070		471805U ROGERVILLE ROAD	Gate	97	2	09	13.0	25.1	0	0.0093	0.0124	

								Freight Trains	Trains		Acc	Accidents Per Year	sar
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Segment FRA ID Street Name	Device	ADT	Lanes	Speed	Acquisition Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
CHAUTAUOUA	N-070	471814T	CEMETARY RD.	Gate	250	2	09	13.0	25.1	0	0.0120	0.0159	
CHAUTAUOUA	N-070	471815A	471815A KLONDYKE ROAD	Flasher	88	2	09	13.0	25.1	0	0.0126	0.0172	
CHAUTAUOUA	N-070	471818V	471818V SO. BROCKWAY ROAD	Gate	304	2	09	13.0	25.1	0	0.0127	0.0167	
CHAUTAUQUA	N-070	471821D	471821D SHAVER STREET	Gate	361	2	09	13.0	25.1	1	0.0507	0.0582	
CHAUTAUQUA	N-070	471822K	471822K STATE STREET	Gate	520	2	09	13.0	25.1	0	0.0146	0.0191	
CHAUTAUQUA	N-070	1	471823S GOODRICK STREET	Flasher	328	2	09	13.0	25.1	-	0.0644	0.0765	
CHAUTAUQUA	N-070		471824Y MAPLE AVENUE	Flasher	378	2	09	13.0	25.1	0	0.0214	0.0284	
CHAUTAUQUA	N-070	471825F	LOOMIS STREET	Passive	154	2	09	13.0	25.1	1	0.0960	0.1156	0.0137
CHAUTAUQUA		471853J	471853J PHILLIPS ROAD	Gate	82	2	09	13.0	25.1	0	0.0089	0.0118	
CHAUTAUQUA	N-070	471858T	STATION ROAD	Flasher	231	2	09	13.0	25.1	1	0.0601	0.0711	
ERIE	N-061	519388C		Passive	50	2	10	0.0	11.4	0	0.0010	0.0313	
ERIE	N-061	\$19511Y	WILLETT ROAD	Flasher	269	2	10	0.0	11.4	0	0.0003	0.0193	
ERIE	N-070	471711T	N-070 471711T LAKE AVENUE	Gate	7,363	2	9	13.0	25.1	1	0.0777	0.0911	
ERIE	N-070		471713G BAYVIEW ROAD	Gate	1,023	2	60	13.0	25.1	0	0.0174	0.0226	
ERIE	N-070		471716C ROGERS ROAD	Gate	3,398	2	09	13.0	25.1	1	0.0692	0.0810	
ERIE	N-070	471717J	N-070 4717171 CLOVERBANK ROAD	Gate	1,791	2	09	13.0	25.1	0	0.0201	0.0259	
ERIE	N-070		471719X PLEASANT AVENUE	Gate	1,193	2	9	13.0	25.1	0	0.0181	0.0235	
ERIE	N-070	471721Y	N-070 471721Y LAKE VIEW ROAD	Gate	3,265	2	99	13.0	25.1	0	0.0233	0.0298	
ERIE	N-070		471722F NORTH CREEK ROAD	Gate	648	2	60	13.0	25.1	0	0.0155	0.0202	
ERIE	N-070		N-070 471726H STURGEON PT. RD.	Gate	3,000	2	60	13.0	25.1	0	0.0228	0.0292	
ERIE	N-070	471727P	471727P BURNS ROAD	Gate	750	2	09	13.0	25.1	0	0.0161	0.0210	
ERIE	N-070	471728W	N-070 471728W EVAN CTR EDEN RD	Gate	3,283	2	09	13.0	25.1	0	0.0233	0.0298	
ERIE	N-070		471729D GOWANS ROAD	Gate	406	2	99	13.0	25.1	0	0.0137	0.0180	
ERIE	N-070	471733T	N-070 471733T CAIN ROAD	Gate	358	2	09	13.0	25.1	0	0.0132	0.0174	
ERIE	N-070	471739J	N-070 471739J ERIE ROAD	Flasher	750	2	09	13.0	25.1	0	0.0270	0.0352	

ATTACHMENT E-6

Ohio Highway/Rail At-grade Crossing Accident Frequency

[THIS PAGE INTENTIONALLY LEFT BLANK]
[THIS PAGE INTENTIONALLY LEFT BLANK]
Appendix E: Safety: Highway/Rail At-grade Crossing Safety Analysis

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
								D					1
						Number of				Relevant			Post Acquisition
	Rail Line			Warning			Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
ALLEN	C-062	532685B	BENTLEY ROAD	Passive	160	2	50	6.5	13.9	0	0.0385	0.0538	
ALLEN	C-062	532686Н	532686H PEVEE ROAD	Passive	160	2	20	5.9	13.9	0	0.0385	0.0538	
ALLEN	C-062	532688W	532688W LAFAYETTE ROAD	Passive	570	2	50	6.5	13.9	2	0.2064	0.2530	0.0346(a)
ALLEN	C-062	532689D	SHRIDER ROAD	Passive	20	2	50	6.5	13.9	0	0.0273	0.0395	
ALLEN	C-062	532690X	VINT RD	Passive	20	2	50	5.9	13.9	0	0.0273	0.0395	
ALLEN	C-062	532691E	PHLLPS RD	Passive	360	2	50	5.9	13.9	0	0.0480	0.0651	
ALLEN	C-062	532692L	S.HIGH ST	Flasher	920	2	50	6.5	13.9	0	0.0208	0.0299	
ALLEN	C-062	532693T	CHURCH ST	Flasher	50	2	50	5.9	13.9	0	0.0070	0.0106	
ALLEN	C-062	532694A	WASHINGTON ST.	Flasher	1,150	2	50	5.9	13.9	0	0.0224	0.0321	
ALLEN	C-062	532695G	RUMBAUGH ROAD	Passive	450	2	50	5.9	13.9	0	0.0509	0.0684	
ALLEN	C-062	532696N	532696N FISHER ROAD	Passive	20	2	50	5.9	13.9	0	0.0273	0.0395	
ALLEN	C-062	532697V	MCCLURE CROSSING	Gate	280	2	50	5.9	13.9	0	0.0119	0.0178	
ALLEN	C-062	532698C	532698C COOL ROAD	Passive	520	2	50	5.9	13.9	0	0.0528	0.0706	
ALLEN	C-062	5326991	THAYER ROAD	Passive	460	2	50	5.9	13.9	0	0.0512	0.0687	
ALLEN	C-062	532700B	FETTER RD	Gate	950	2	50	5.9	13.9	0	0.0125	0.0178	
ALLEN	C-062	532701H	532701H METZGER ROAD	Passive	150	2	50	5.9	13.9	0	0.0378	0.0529	
ALLEN	C-062	532703W	532703W ROUSH CROSSING	Gate	7,260	2	50	5.9	13.9	0	0.0211	0.0292	
ALLEN	C-062	532706S	N. PINE ST.	Flasher	2,720	2	35	5.9	13.9	0	0.0299	0.0416	
ALLEN	C-062	532707Y	N. JACKSON ST	Gate	6,200	2	35	5.9	13.9	0	0.0236	0.0324	
ALLEN	C-062	532710G	532710G MAIN ST.	Gate	8,860	4	35	5.9	13.9	0	0.0279	0.0377	
ALLEN	C-062	532711N	N ELIZABETH ST	Flasher	3,390	2	35	5.9	13.9	0	0.0321	0.0443	
ALLEN	C-062	532712V	532712V N. WEST ST.	Flasher	3,450	2	35	5.9	13.9	0	0.0322	0.0445	
ALLEN	C-062	532713C	532713C N MCDONEL ST.	Flasher	2,790	2	35	5.9	13.9	0	0.0349	0.0477	
ALLEN	C-062	532714J	N. METCALF ST.	Gate	7,850	2	35	5.9	13.9	0	0.0215	0.0297	
ALLEN	C-062	532715R	N. BAXTER ST	Flasher	2,420	2	35	5.9	13.9	0	0.0288	0.0402	
ALLEN	C-062	532719T	COLEST	Gate	7,300	2	35	5.9	13.9	0	0.0211	0.0292	
ALLEN	C-062	532720M	532720M CABLE ROAD	Gate	18,680	4	20	5.9	13.9	0	0.0331	0.0440	
ALLEN	C-062	532721U	532721U HARTZLER RD	Passive	240	2	50	5.9	13.9	0	0.0431	0.0593	
ALLEN	C-062	532722B	532722B EASTTOWN ROAD	Gate	12,300		09	5.9	13.9	-	0.0757	0.0930	
ALLEN	C-062	532723H	532723H EAST ROAD	Gate	3,810		50	5.9	13.9	0	0.0179	0.0251	
ALLEN	C-062	532724P	532724P BATY ROAD	Gate	2,140	2	50	5.9	13.9	0	0.0155	0.0218	
ALLEN	C-062	532726D	532726D DUTCH НОГГОМ	Flasher	4,810	2	50	5.9	13.9	0	0.0357	0.0487	
ALLEN	C-062	532727K	532727K PIQUAD RD	Flasher	2,420	2	50	5.9	13.9	0	0.0288	0.0402	
ALLEN	C-062	532728S	532728S OLD WAPAK ROAD	Gate	240	2	50	5.9	13.9	2	0.0937	0.1082	
ALLEN	C-062	532730T	532730T KEMP ROAD	Gate	500	2	50	5.9	13.9	1	0.0457	0.0540	
ALLEN	C-062	532733N		Passive	330	2	50	5.9	13.9	-	0.1175	0.1479	
ALLEN	C-062	532735C	REDD ROAD	Passive	110	2	50	5.9	13.9	0	0.0346	0.0489	
ALLEN	C-062	532736J	STATE RD	Passive	700	2	50	5.9	13.9	0	0.0568	0.0750	
ALLEN	C-062	532737R	532737R OLD DELPHOS RD	Flasher	530	2	50	5.9	13.9	0	0.0171	0.0249	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
						Number of				Relevant			Fost Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
ALLEN	C-062		532738X DEFIANCE TRAIL	Passive	320	2	90	5.9	13.9	0	0.0466	0.0634	
ALLEN	C-062	532739E	BAUGH RD	Passive	50	2	50	5.9	13.9	0	0.0273	0.0395	
ALLEN	C-062	532740Y	PELTIER RD	Passive	08	2	50	5.9	13.9	0	0.0314	0.0449	
ALLEN	C-062	532741F	LEHMAN RD.	Passive	1,400	2	50	5.9	13.9	0	0.0667	0.0856	
ALLEN	C-062	532743U		Flasher	2,900	2	50	5.9	13.9	0	0.0305	0.0424	
ALLEN	C-062	532744B	FRANKLIN ST	Flasher	3,520	2	40	5.9	13.9	0	0.0325	0.0448	
ALLEN	C-062	532745H	S MAIN ST	Gate	3,240	4	40	5.9	13.9	0	0.0219	0.0302	
ASHTABULA	N-070	471951A	THOMPSON ROAD	Passive	50	2	09	13.0	25.1	0	0.0244	0.0328	
ASHTABULA	N-070	471952G	WOODWORTH ROAD	Passive	320	2	09	13.0	25.1	0	0.0635	0.0779	
ASHTABULA	N-070	471953N	HARBOR STREET	Gate	2,970	2	09	13.0	25.1	0	0.0223	0.0286	
ASHTABULA	N-070	471956J	SANDUSKY STREET	Gate	820	2	09	13.0	25.1	0	0.0167	0.0217	
ASHTABULA	N-070	471957R		Gate	4,270	2	20	13.0	25.1	0	0.0243	0.0311	
ASHTABULA	N-070	471958X		Gate	2,290	2	20	13.0	25.1	0	0.0209	0.0269	
_	N-070	471960Y	PARISH BOULEVARD	Gate	2,590	2	09	13.0	25.1	0	0.0222	0.0288	
ASHTABULA	N-070	471961F	GORE ROAD	Gate	810	2	09	13.0	25.1	0	0.0160	0.0209	
	N-070	471964B	NO AMBOY RD	Gate	740	2	09	13.0	25.1	5	0.0981	0.1114	
ASHTABULA	N-070	471968D	471968D REED ROAD	Gate	390	2	09	13.0	25.1	0	0.0183	0.0248	
ASHTABULA	N-070	471972T	LAKE STREET	Gate	5,500	2	09	13.0	25.1	0	0.0259	0.0329	
ASHTABULA	N-070	471973A	471973A INIRMARY ROAD	Gate	390	2	9	13.0	25.1	0	0.0132	0.0174	
ASHTABULA	N-070	471975N	BLAKE ROAD	Gate	1,480	2	09	13.0	25.1	0	0.0187	0.0243	
ASHTABULA	N-070	471979R	STATE AVENUE	Gate	380	2	35	13.0	25.1	٥	0.0133	0.0175	
ASHTABULA	N-070	471980K	DWIGHT AVENUE	Flasher	180	2	35	13.0	25.1	0	0.0162	0.0218	
ASHTABULA	N-070	471983Y		Gate	5,350	4	35	13.0	25.1	0	0.0522	0.0708	
ASHTABULA	N-070	471984F		Gate	4,290	2	35	13.0	25.1	0	0.0244	0.0311	
ASHTABULA	N-075	471985U	471985U GARY AVENUE	Gate	810	2	35	13.0	36.6	0	0.0226	0.0367	
ASHTABULA	N-075	471986B	JEFFERSON AVENUE	Flasher	1,180	2	35	13.0	36.6	0	0.0309	0.0457	
ASHTABULA	N-075	471988P	WEST 52ND STREET	Flasher	2,590	2	35	13.0	36.6	-	0.0985	0.1287	
ASHTABULA	N-075	471989W	WEST AVENUE	Gate	8,000	2	35	13.0	36.6	0	0.0286	0.0411	
ASHTABULA	N-075	471990R	NATHAN AVENUE	Flasher	1,310	2	35	13.0	36.6	-	0.0852	0.1124	
ASHTABULA	N-075	471991X	471991X SAMUEL AVENUE	Flasher	300	2	09	13.0	36.6	0	0.0195	0.0304	
ASHTABULA	N-075	471992E	471992E WOODMAN AVENUE	Gate	4,330	2	09	13.0	36.6	-	0.0708	0.0909	
ASHTABULA	N-075	471993L	SANBORNE ROAD	Flasher	096	2	09	13.0	36.6	-	0.0798	0.1054	
ASHTABULA	N-075	471997N		Gate	4,930	2	9	13.0	36.6	0	0.0252	0.0366	
ASHTABULA	N-075	471998V	DEPOT ROAD	Flasher	340	2	09	13.0	36.6	-	0.0644	0.0846	
ASHTABULA	N-075	4720013	BROWN ROAD	Passive	170	2	09	13.0	36.6	0	0.0547	0.0767	
ASHTABULA	N-075	472004E	MYERS ROAD	Gate	740	2	09	13.0	36.6	0	0.0157	0.0237	
ASHTABULA	N-075	472005L		Gate	2,020	2	09	13.0	36.6	٥	0.0202	0.0301	
ASHTABULA	N-075	472007A		Gate	2,110	2	09	13.0	36.6	0	0.0300	0.0485	
ASHTABULA	N-075	472008G	472008G BROADWAY AVENUE	Gate	7,320	2	09	13.0	36.6	0	0.0277	0.0398	

Relevant History Pre-Post Acquisition Acquisition 6 0 0.0432 0.0479 6 0 0.0162 0.0538 6 0 0.0162 0.0538 6 0 0.0162 0.0263 8 0 0.0203 0.0264 8 0 0.0237 0.0287 8 0 0.0237 0.0285 8 0 0.0225 0.0285 8 0 0.0256 0.0285 8 0 0.0256 0.0285 8 0 0.0256 0.0285 8 0 0.0256 0.0285 8 0 0.0256 0.0285 8 0 0.0256 0.0285 8 0 0.0256 0.0285 8 0 0.0263 0.0285 8 0 0.0263 0.0285 8 0 0.0205 0.0285 9 0									Freigh	Freight Trains		Acc	Accidents Per Year	ear
County Radial Line Name of Lanes Appear														1
County Rand Fract Front Prop. Front Prop. OCIDITS OCIDITS<						, .	Number of				Relevant			Fost Acquisition
County ANTITY Lame Speed Acquality Apple (Apple) Apple (Apple		Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
Maintailaria Maria 472001H URISTAIRIA Maintailaria Mai	County	Segment			Device	ADT	Lanes	Speed	Acquisition		History	Acquisition	Acquisition	Mitigation
Maintauli, M. 1979 472011P MEST FREET Cade 260 130 366 1 0.00543 0.0053 Maintauli, M. 1979 472011P MEST FREET Cade 260 260 130 366 1 0.00543 Maintauli, M. 1979 472011P MEST FREET Cade 260 2 2 0 117 238 0 0.0073 Maintauli, M. 1979 472011P MAINTER MAIN	ASHTABULA	N-075	472009N	EAGLE AVENUE	Flasher	1,400	2	09	13.0	36.6	0	0.0326	0.0479	
ASHITABULA NORZ 900100 Colate 250 2 60 130 366 0 0.0050 ASHITABULA NOR73 472011PW WALTERALINE Pessive 250 2 60 130 366 0 0.0050 0.00767 ASHITABULA NOR73 472011PW WALTER ALINE ALINE BALL Case 1380 1 2.38 0 0.0030 0.00767 ASHITABULA NOR25 503106A CAMSON RD Case 1.30 2 40 11.7 2.38 0 0.0030 0.0077 ASHITABULA NOR25 503110A MACHER DAMORGAN ROAD Passive 2.90 2 40 11.7 2.38 0 0.0030 0.0073 ASHITABULA NOR25 503110A MACHER DAMORGAN ROAD Passive 2.90 2 40 11.7 2.38 0 0.0326 ASHITABULA NOR25 503110A MACHER RD Passive 2.90 2 40 11.7 2.38 0 0.0236 ASHITABULA NOR25 503110A MACHER RD Passive 2.90 2	ASHTABULA	N-075	472010H	CHESTNUT STREET	Gate	120	2	09	13.0	36.6	1	0.0442	0.0538	
ASHITABULA NOR2 SOLOGA 150 3.66 11.0 3.66 11.0 1.0	ASHTABULA	N-075	472011P		Gate	260	2	09	13.0	36.6	0	0.0162	0.0263	
ASHITABULA NAGE 500.001 FARITABULA NAGE 500.001 FARITABULA ANGE 500.001 FARITABULA ANGE 500.001 FARITABULA NAGE 500.001 FARITABULA NAGE 500.000 CARSON RD Coll 1 23.8 0 0.0218 ASHITABULA NAGE 500.106A CARSON RD Gate 250 2 40 11.7 23.8 0 0.0203 ASHITABULA NAGE 500.110W RIGA Fassive 70 2 40 11.7 23.8 0 0.0205 ASHITABULA NAGE 500.116W RIGHT Passive 70 2 40 11.7 23.8 0 0.0205 ASHITABULA NAGE 500.116W RIGHT Passive 70 2 40 11.7 23.8 0 0.0205 ASHITABULA NAGE 500.116W RIGHT Passive 50 2 40 11.7 23.8 0 0.0205 ASHITABULA NAGE 500.110W R	ASHTABULA	N-075	472012W	WALTER MAIN RD	Passive	230	2	09	13.0	36.6	1	0.1388	0.1794	0.0329(a)
ASHITABULA Norga 500 100 Activated Flasher 250 2 40 11.7 23.8 0 0.0130 ASHITABULA Norga 500 100 Activated 240 2 40 11.7 23.8 0 0.0130 ASHITABULA Norga 500 1000 MIN SRICH Passive 240 11.7 23.8 0 0.0130 ASHITABULA Norga 500 1100 MIN SRICH Passive 500 2 40 11.7 23.8 0 0.0205 ASHITABULA Norga 500 1104 MINCHIRA Passive 500 2 40 11.7 23.8 0 0.0205 ASHITABULA Norga 500 1104 MINCHIRA Passive 500 2 40 11.7 23.8 0 0.0205 ASHITABULA Norga 500 1104 MINCHIRA Passive 500 2 40 11.7 23.8 0 0.0205 ASHITABULA Norga 500 1104 Passive 50 2 40 <td>ASHTABULA</td> <td>N-082</td> <td>502651A</td> <td>STATE</td> <td>Gate</td> <td>1,380</td> <td>2</td> <td>30</td> <td>11.7</td> <td>23.8</td> <td>0</td> <td>0.0203</td> <td>0.0267</td> <td></td>	ASHTABULA	N-082	502651A	STATE	Gate	1,380	2	30	11.7	23.8	0	0.0203	0.0267	
ASHITABULA NAORZ SOTORIAN CARGONROD Case 220 2 40 11.7 21.8 0 0.0330 ASHITABULA NAORZ 203113M MEANEY RDAMORGAN ROAD Pessiv 240 1.17 21.8 0 0.0320 ASHITABULA NAORZ 203113M SRIFGT Pessiv 20 40 11.7 21.8 0 0.0220 ASHITABULA NAORZ 203114M MEACH RD Pessiv 70 40 11.7 21.8 0 0.0220 ASHITABULA NAORZ 203114G POVER RD Pessiv 250 2 40 11.7 21.8 0 0.0220 ASHITABULA NAORZ 203116F POVER RD Pessiv 250 2 40 11.7 21.8 0 0.0220 ASHITABULA NAORZ 203110F POVER RD Pessiv 250 2 40 11.7 23.8 0 0.0220 ASHITABULA NAORZ 20312N NACONTALLE RI Pessiv 2 40 <	ASHTABULA	N-082	503107T	РГУМОUТН	Flasher	290	2	30	11.7	23.8	0	0.0218	0.0294	
ASHITABULA NA022 20110B MARCHERDAN ROAN Peasive 240 2 4 11.7 21.8 0 0.0237 ASHITABULA NA022 50114B MARCHERD Peasive 10.0 2 40 11.7 21.8 0 0.0203 ASHITABULA NA022 50114B MARCHERD Peasive 50 4 11.7 21.8 0 0.0203 ASHITABULA NA022 50116R CLAY RID Peasive 50 4 11.7 21.8 0 0.0203 ASHITABULA NA022 50116R CLAY RID Peasive 250 2 40 11.7 21.8 0 0.0203 ASHITABULA NA022 50110R FOUNDER RID Peasive 250 2 40 11.7 21.8 0 0.0203 ASHITABULA NA022 50110R MARIAN RD Peasive 50 2 40 11.7 21.8 0 0.0203 ASHITABULA NA022 50110R MARIAN RD Peasive 50 2 <t< td=""><td>ASHTABULA</td><td>N-082</td><td>503108A</td><td>CARSON RD</td><td>Gate</td><td>250</td><td>2</td><td>40</td><td>11.7</td><td>23.8</td><td>0</td><td>0.0130</td><td>0.0175</td><td></td></t<>	ASHTABULA	N-082	503108A	CARSON RD	Gate	250	2	40	11.7	23.8	0	0.0130	0.0175	
ASHITABULA NOR22 Statist ABULA ANORE STATIST ABU	ASHTABULA	N-082	503110B		Passive	240	2	40	11.7	23.8	0	0.0530	0.0677	
ASHITABULA NOGES S0114D AARCHER RD Presive 750 2 40 11.7 23.8 0 0.0229 ASHITABULA NOGES 50314D MARCHER RD Presive 70 2 40 11.7 23.8 0 0.0229 ASHITABULA NOGES 503116S CLAYRD Pressive 40 11.7 23.8 0 0.0229 ASHITABULA NOGES 503119M FOOTVILLE RI Pressive 250 2 40 11.7 23.8 0 0.0256 ASHITABULA NOGES 503112M ANRIARRAN RD Pressive 50 2 40 11.7 23.8 0 0.0256 ASHITABULA NOGES 50312M ANRIARRAN RD Pressive 50 2 40 11.7 23.8 0 0.0255 ASHITABULA NOGES 50312M ANRIARRAN RD Pressive 50 2 40 11.7 23.8 0 0.0255 <	ASHTABULA	N-082	503113W	SR167	Flasher	1,050	2	40	11.7	23.8	0	0.0287	0.0380	
ASHTABULA NoR2 503116S INTCICLER Passive 70 2 40 11.7 23.8 0 0.0203 ASHTABULA NoAR2 503116S CLAY RD Passive 400 2 40 11.7 23.8 0 0.0203 ASHTABULA NoAR2 503117S LDEMARK RD Passive 250 2 40 11.7 23.8 0 0.0256 ASHTABULA NoAR2 50310M FOVULLE RI Passive 20 40 11.7 23.8 0 0.0256 ASHTABULA NoAR2 50310M ENAMARIA RD Passive 60 2 40 11.7 23.8 0 0.0256 ASHTABULA NoAR2 50312M MARADILLE RDAMANN RD Passive 50 2 40 11.7 23.8 0 0.0256 ASHTABULA NoAR2 50312A LORODWORTH RD Passive 50 2 40 11.7 23.8 0 0.0256 <	ASHTABULA	N-082	503114D	MARCH RD	Passive	50	2	40	11.7	23.8	0	0.0205	0.0285	
ASHTABULA NoR2 503117Y S.DEMARRAD Passive 50 2 40 11.7 23.8 0 0.0236 ASHTABULA N-082 503118T S.DEMARRAD Passive 40 11.7 23.8 0 0.0256 ASHTABULA N-082 503119K PROTYILLE RI Plastive 20 40 11.7 23.8 0 0.0256 ASHTABULA N-082 503120G SR 193 Passive 50 2 40 11.7 23.8 0 0.0254 ASHTABULA N-082 503120F SR 192 Passive 50 2 40 11.7 23.8 0 0.0254 ASHTABULA N-082 503124D US Passive 50 2 40 11.7 23.8 0 0.0255 ASHTABULA N-082 503124D US CARATRAD A 11.7 23.8 0 0.0254 ASHTABULA N-082 503124D WODDWORTHIRD <td>ASHTABULA</td> <td>N-082</td> <td>503115K</td> <td></td> <td>Passive</td> <td>70</td> <td>2</td> <td>40</td> <td>11.7</td> <td>23.8</td> <td>0</td> <td>0.0229</td> <td>0.0316</td> <td></td>	ASHTABULA	N-082	503115K		Passive	70	2	40	11.7	23.8	0	0.0229	0.0316	
ASHTABULA NOR2 50117Y Benanker RD Passive 400 2 40 11.7 23.8 0 0.0590 ASHTABULA NOR2 503118F TOWER BD Fassive 230 40 11.7 23.8 0 0.02564 ASHTABULA NOR2 503120G SR 193 Fassive 500 2 40 11.7 23.8 0 0.02564 ASHTABULA NOR2 503120V AYEBS RD Fassive 60 2 40 11.7 23.8 0 0.0205 ASHTABULA NOR2 50312V AYEBS RD Fassive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA NOR2 50312V AYEBS RD Fassive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA NOR2 50312V AYEB MCDOMORTH RD Fassive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA NOR2 50312V AYEB MCDANDRN	ASHTABULA	N-082	503116S		Passive	50	2	40	11.7	23.8	0	0.0205	0.0285	
ASHITABULA NORZ 503119M FOWER RD Passive 250 2 40 11.7 23.8 0 0.0256 ASHITABULA N.082 503119M FOOVELLE RI Flasher 820 2 40 11.7 23.8 0 0.0256 ASHITABULA N.082 503120A RR 193 Flasher 60 2 40 11.7 23.8 0 0.0256 ASHITABULA N.082 50312DA AYFIRS RD Passive 50 2 40 11.7 23.8 0 0.0256 ASHITABULA N.082 50312A AYFIRS RD Passive 50 2 40 11.7 23.8 0 0.0205 ASHITABULA N.082 50312A MADVILLE RD/MANN RD Passive 50 2 40 11.7 23.8 0 0.0205 ASHITABULA N.082 50312A MADVILLE RD/MANN RD Passive 50 2 40 11.7 23.8 0 <td< td=""><td>ASHTABULA</td><td>N-082</td><td>503117Y</td><td>S. DENMARK RD</td><td>Passive</td><td>400</td><td>2</td><td>40</td><td>11.7</td><td>23.8</td><td>0</td><td>0.0590</td><td>0.0743</td><td></td></td<>	ASHTABULA	N-082	503117Y	S. DENMARK RD	Passive	400	2	40	11.7	23.8	0	0.0590	0.0743	
ASHTABULA NoR2 50119M FOOTVILLE RI Flasher 820 2 40 11.7 23.8 0 0.0264 ASHTABULA No.622 503120G SR193B Plasher 930 2 40 11.7 23.8 0 0.0267 ASHTABULA No.62 503120I ANERITABULA No.62 503121N MARRIAN ND Passive 50 2 40 11.7 23.8 0 0.0263 ASHTABULA No.62 503124J US6 Flasher 50 2 40 11.7 23.8 0 0.0263 ASHTABULA No.62 503124V MODDENLILE RDAANN ND Passive 50 2 40 11.7 23.8 0 0.0263 ASHTABULA No.62 503125K WOODWOKHILE RDAANN ND Passive 50 2 40 11.7 23.8 0 0.0263 ASHTABULA No.62 503125K WOODWOKHILE RDAANN ND Passive 60 2 <	ASHTABULA	N-082	503118F	TOWER RD	Passive	250	2	40	11.7	23.8	0	0.0526	0.0673	
ASHTABULA No.082 50120G SR 193 Flasher 930 2 40 11.7 23.8 0 0.0276 ASHTABULA No.082 50312NI MARRIAN RD Passive 60 2 40 11.7 23.8 0 0.0205 ASHTABULA No.082 50312AI UNGENTILLE RDMANN RD Passive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA No.082 50312AI UNDGWORTH RD Passive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA No.082 50312AI UNDDRWORTH RD Passive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA No.082 50312AI UNDRWOOD RD Passive 50 2 40 11.7 23.8 0 0.0373 ASHTABULA No.082 544585T WATH ST Gate 1,260 2 40 11.7 23.8 0 0.0373	ASHTABULA	N-082	503119M	FOOTVILLE RI	Flasher	820	2	40	11.7	23.8	0	0.0264	0.0353	
ASHTABULA N-082 50312IN MARRIANRD Passive 60 2 40 11.7 23.8 0 0.0353 ASHTABULA N-082 50312XI AYERS RD Passive 50 2 40 11.7 23.8 0 0.0263 ASHTABULA N-082 503123XI RODGEVILLE RDAMANN RD Passive 50 2 40 11.7 23.8 0 0.0263 ASHTABULA N-082 50312XI RODGOEVILLE RDAMANN RD Passive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA N-082 50312XI WODDONORTH RD Passive 6 2 40 11.7 23.8 0 0.0205 ASHTABULA N-082 54458ZK W 54TH ST. Gate 1,460 2 2 40 11.7 23.8 0 0.0206 ASHTABULA N-082 54458ZK W 54TH ST. Gate 1,560 2 40 11.7 23.8		N-082	503120G	SR 193	Flasher	930	2	40	11.7	23.8	0	0.0276	0.0366	
ASHTABULA N-082 503122V AYERS RD Passive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA N-082 503124 USG Fasive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA N-082 503124 MOODGWULLE RD/MANN RD Passive 50 2 40 11.7 23.8 0 0.0205 ASHTABULA N-082 503126 WOODGWULLE RD/US 322) Gate 1,266 2 40 11.7 23.8 0 0.0205 ASHTABULA N-082 503128 UNDEWOOD RD Passive 60 2 40 11.7 23.8 0 0.0205 ASHTABULA N-082 544595L WS4THST Gate 1,266 2 40 11.7 23.8 0 0.0205 ASHTABULA N-082 544595L WS4THST Gate 1,360 2 40 11.7 23.8 0 0.0205		N-082	503121N	MARRIAN RD	Passive	09	2	40	11.7	23.8	0	0.0357	0.0477	
N-082 503124J US 6 Flasher 810 2 40 11.7 23.8 0 0.0205 N-082 503127R DODGEVILLE RD/MANN RD Passive 50 2 40 11.7 23.8 0 0.0205 N-082 50312R WODDWORTH RD Passive 60 2 40 11.7 23.8 0 0.0205 N-082 50312R UNDERWOOD RD Passive 60 2 40 11.7 23.8 0 0.0205 N-082 50312R UNDERWOOD RD Passive 60 2 40 11.7 23.8 0 0.0205 N-082 544582K W 54TH ST. Gate 1,810 2 40 11.7 23.8 0 0.0206 N-082 544592L W 52TH ST. Flasher 2,50 2 40 11.7 23.8 0 0.0206 N-082 544592L W 52TH ST. Flasher 3,50 2 40	_	N-082	503122V		Passive	50	2	40	11.7	23.8	0	0.0205	0.0285	
N-082 503125R DODGEVILLE RDMANN RD Passive 50 2 40 11.7 23.8 0 0.0205 N-082 503126X WOODWORTH RD Passive 50 2 40 11.7 23.8 0 0.0205 N-082 503128L WNDEWOORTH RD Passive 60 2 40 11.7 23.8 0 0.0205 N-082 503128L UNDERWOOD RD Passive 60 2 2 40 11.7 23.8 0 0.0206 N-082 544592L W 54TH ST. Gate 1,810 2 20 11.7 23.8 0 0.0206 N-082 544592L W 54TH ST. Gate 1,810 2 2 40 11.7 23.8 0 0.0206 N-082 544592L W 54TH ST. Gate 1,800 2 2 40 11.7 23.8 0 0.0206 N-082 544591L W 54TH ST. Flasher <td>ASHTABULA</td> <td>N-082</td> <td>503124J</td> <td>US 6</td> <td>Flasher</td> <td>810</td> <td>2</td> <td>40</td> <td>11.7</td> <td>23.8</td> <td>0</td> <td>0.0263</td> <td>0.0351</td> <td></td>	ASHTABULA	N-082	503124J	US 6	Flasher	810	2	40	11.7	23.8	0	0.0263	0.0351	
N-082 503126X WOODWORTH RD Passive 50 2 40 11.7 23.8 0 0.0205 N-082 50312TE MEADVILLE RD (US 322) Gate 1,260 2 40 11.7 23.8 0 0.0174 N-082 54312RL UNDERWOOD RD Passive 66 2 40 11.7 23.8 0 0.0174 N-082 544582L W 54TH ST Gate 1,810 2 2 11.7 23.8 0 0.0232 N-082 544595L W 5ATH ST Gate 1,810 2 25 11.7 23.8 0 0.0232 N-082 544908Y WEST 32ND ST Flasher 2,397 2 25 11.7 23.8 0 0.0467 C-062 532581D MALLEY Gate 3,50 2 40 5.9 13.9 0 0.0111 C-062 532581D MALLEY Flasher 3,70 2 40	ASHTABULA	N-082	503125R	DODGEVILLE RD/MAN	Passive	20	2	40	11.7	23.8	0	0.0205	0.0285	
N -082 503127E MEADVILLE RD (US 322) Gate 1,260 2 40 11.7 23.8 0 0.0174 N N-082 503128L UNDERWOOD RD Passive 60 2 40 11.7 23.8 0 0.03657 N N-082 544592K W 54TH ST Gate 1,460 2 2 11.7 23.8 0 0.0206 N N-082 544592K W 52DD ST Gate 1,810 2 2 11.7 23.8 0 0.0232 N N-082 544592K W 52DD ST Gate 1,810 2 40 5.9 13.9 0 0.0232 N N-082 532580M LNEY Gate 3,260 2 40 5.9 13.9 0 0.0499 C-062 532581B MALLEY Flasher 9,710 2 40 5.9 13.9 0 0.0499 C-062 532583W ALLEY Flasher 9,710 2 40	ASHTABULA	N-082	503126X	WOODWORTH RD	Passive	20	2	40	11.7	23.8	0	0.0205	0.0285	
N-082 503128L UNDERWOOD RD Passive 60 2 40 11.7 23.8 0 0.0357 A N-082 544882K W 54TH ST. Gate 1,460 2 20 11.7 23.8 0 0.0206 A N-082 544908T W S713DN ST Flasher 3,297 2 40 5.9 11.7 23.8 0 0.0467 A N-082 544908T WEST 32ND ST Flasher 3,297 2 40 5.9 13.9 0 0.0467 C-062 53288D LANEST Flasher 1,60 1 40 5.9 13.9 0 0.0499 C-062 53288D ALLEY Flasher 1,60 1 40 5.9 13.9 0 0.0499 C-062 532884P ALLEY Flasher 1,20 1 40 5.9 13.9 0 0.0499 C-062 532884P ALLEY Flasher	ASHTABULA	N-082	503127E		Gate	1,260	2	40	11.7	23.8	0	0.0174	0.0231	
N -082 544582K W 54TH ST. Gate 1,460 2 20 11.7 23.8 0 0.0205 N -082 544595L W 52ND ST Gate 1,810 2 25 11.7 23.8 0 0.0232 N -082 544908Y WEST 32ND ST Flasher 2,397 2 25 11.7 23.8 0 0.0467 C-062 532580M LANE ST Gate 3,260 2 40 5.9 13.9 0 0.011 C-062 532581A WALLEY Flasher 3,700 2 40 5.9 13.9 0 0.011 C-062 532584B ALLEY Flasher 3,700 2 40 5.9 13.9 0 0.0499 C-062 532584B POPLAR ST Flasher 3,700 2 40 5.9 13.9 0 0.0499 C-062 532584B POPLAR ST Flasher 3,70 2 60 5.9	ASHTABULA	N-082	503128L		Passive	09	2	40	11.7	23.8	0	0.0357	0.0477	
A N-082 544595L W 52ND ST Gate 1,810 2 25 11.7 23.8 0 0.0232 A N-082 544908Y WEST 32ND ST Flasher 2,397 2 25 11.7 23.8 0 0.0467 C-062 532580M LANE ST Flasher 3,500 2 40 5.9 13.9 0 0.0497 C-062 532581B MLLEY Flasher 160 1 40 5.9 13.9 0 0.0499 C-062 532583H NSANDUSKY AVE Flasher 9,710 2 40 5.9 13.9 0 0.0499 C-062 532583H NANDUSKY AVE Flasher 9,710 2 40 5.9 13.9 0 0.0499 C-062 532584P ALLEY Flasher 2,90 2 40 5.9 13.9 0 0.0499 C-062 532587 SPARS ST Flasher 5,90	ASHTABULA	N-082	544582K		Gate	1,460	2	20	11.7	23.8	0	0.0206	0.0270	
A N-082 544908Y WEST 32ND ST Flasher 2,397 2 25 11.7 23.8 0 0.0467 C-062 532580M LANE ST Gate 3,250 2 40 5.9 13.9 0 0.0217 C-062 532581U WALNUT ST. Flasher 160 1 40 5.9 13.9 0 0.0499 C-062 532582B ALLEY Flasher 160 1 40 5.9 13.9 0 0.0499 C-062 532583H NSANDUSKY AVE Flasher 120 1 40 5.9 13.9 0 0.0499 C-062 532584P ALLEY Flasher 120 1 40 5.9 13.9 0 0.0499 C-062 532584P ALLEY Flasher 2,990 2 40 5.9 13.9 0 0.0499 C-062 532584K SEARS ST Flasher 570 2 40	ASHTABULA	N-082	544595L		Gate	1,810	2	25	11.7	23.8	0	0.0232	0.0307	
C-062 532580M LANE ST Gate 3,250 2 40 5.9 13.9 0 0.0217 C-062 532581U WALNUT ST. Flasher 3,960 2 40 5.9 13.9 0 0.0388 C-062 532581B ALLEY Flasher 9,710 2 40 5.9 13.9 0 0.0111 C-062 532583H ALLEY Flasher 9,710 2 40 5.9 13.9 0 0.0499 C-062 532584P ALLEY Flasher 3,770 2 40 5.9 13.9 0 0.0099 C-062 532584P ALLEY Flasher 2,990 2 40 5.9 13.9 0 0.0499 C-062 532587K SEARS ST Flasher 570 2 60 5.9 13.9 0 0.0481 C-062 532588 MANSFIELD ST Flasher 8,480 2 40 5.9	ASHTABULA	N-082	544908Y	WEST 32ND ST	Flasher	2,397	2	25	11.7	23.8	0	0.0467	0.0626	
C-062 532581U WALNUT ST. Flasher 3,960 2 40 5.9 13.9 0 0.0388 C-062 532582B ALLEY Flasher 160 1 40 5.9 13.9 0 0.0499 C-062 532583H NSANDUSKY AVE Flasher 9,710 2 40 5.9 13.9 0 0.0499 C-062 532583H ALLEY Flasher 3,770 2 40 5.9 13.9 0 0.0499 C-062 532585W POPLAR ST Flasher 2,990 2 40 5.9 13.9 0 0.0499 C-062 532587K SEARS ST Flasher 570 2 60 5.9 13.9 0 0.0481 C-062 532588S MANSFIELD ST Flasher 8,480 2 40 5.9 13.9 0 0.0491 C-062 532581A MCCRACKEN Flasher 8,480 2 40 <	CRAWFORD	C-062	532580M	LANE ST	Gate	3,250	2	40	5.9	13.9	0	0.0217	0.0300	
C-062 532582B ALLEY Flasher 160 1 40 5.9 13.9 0 0.0111 C-062 532583H NSANDUSKY AVE Flasher 9,710 2 40 5.9 13.9 0 0.0499 C-062 532584P ALLEY Flasher 3,770 2 40 5.9 13.9 0 0.0099 C-062 532585W POPLAR ST Flasher 2,990 2 40 5.9 13.9 0 0.0099 C-062 532587K SEARS ST Flasher 570 2 60 5.9 13.9 0 0.0481 C-062 532587K SEARS ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 532588S MANSFIELD ST Flasher 8,480 2 60 5.9 13.9 0 0.0101 C-062 532591A SIMMS CR. Passsive 70 2 60 5	CRAWFORD	C-062	532581U	WALNUT ST.	Flasher	3,960	2	40	5.9	13.9	0	0.0388	0.0523	
C-062 532583H N SANDUSKY AVE Flasher 9,710 2 40 5.9 13.9 0 0.0499 C-062 532584P ALLEY Flasher 120 1 40 5.9 13.9 0 0.0099 C-062 532585W POPLAR ST Flasher 2,990 2 40 5.9 13.9 0 0.0056 C-062 532587K SEARS ST Flasher 570 2 60 5.9 13.9 0 0.0481 C-062 532587K SEARS ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 532587K MANSFIELD ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 532581A MCCRACKEN Gate 350 2 60 5.9 13.9 0 0.0101 C-062 532591A SIMMS CR. Passive 160 2 60 5	CRAWFORD	C-062	532582B	ALLEY	Flasher	160	-	40	5.9	13.9	0	0.0111	0.0165	
C-062 532584P ALLEY Flasher 120 1 40 5.9 13.9 0 0.0099 C-062 53258SW POPLAR ST Flasher 3,770 2 40 5.9 13.9 1 0.0966 C-062 53258SW SPRING ST Flasher 2,990 2 40 5.9 13.9 0 0.0357 C-062 53258TK SEARS ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 53258DA MANSFIELD ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 53259DA MCCRACKEN Gate 350 2 60 5.9 13.9 0 0.0101 C-062 53259DA SIMMS CR. Passive 70 2 60 5.9 13.9 0 0.0408 C-062 53259DA GIENVILLECR Passive 70 2 60 5.9 </td <td>CRAWFORD</td> <td>C-062</td> <td>532583H</td> <td>N SANDUSKY AVE</td> <td>Flasher</td> <td>9,710</td> <td>2</td> <td>40</td> <td>5.9</td> <td>13.9</td> <td>0</td> <td>0.0499</td> <td>0.0647</td> <td></td>	CRAWFORD	C-062	532583H	N SANDUSKY AVE	Flasher	9,710	2	40	5.9	13.9	0	0.0499	0.0647	
C-062 53258SW POPLAR ST Flasher 3,770 2 40 5.9 13.9 1 0.0966 C-062 53258GD SPRING ST Flasher 2,990 2 40 5.9 13.9 0 0.0357 C-062 53258TK SEARS ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 53258DA MANSFIELD ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 53259DA MCCRACKEN Gate 350 2 60 5.9 13.9 0 0.0101 C-062 53259DA SIMMS CR. Passive 70 2 60 5.9 13.9 0 0.0408 C-062 53259DA GLENVILLECR Passive 160 2 60 5.9 13.9 0 0.0408 C-062 53259DA GLENVILLES Passive 70 2 60	CRAWFORD	C-062	532584P	ALLEY	Flasher	120	1	40	5.9	13.9	0	0.0099	0.0149	
C-062 53258GD SPRING ST Flasher 2,990 2 40 5.9 13.9 0 0.0357 C-062 53258TK SEARS ST Flasher 570 2 60 5.9 13.9 0 0.0481 C-062 53258RS MANSFIELD ST Flasher 8,480 2 60 5.9 13.9 0 0.0481 C-062 532591A MCCRACKEN Gate 350 2 60 5.9 13.9 0 0.0101 C-062 532591A SIMMS CR. Passive 160 2 60 5.9 13.9 0 0.0408 C-062 532594V GLENVILLE CR Passive 160 2 60 5.9 13.9 0 0.0408 C-062 532594V GLENVILLE CR Passive 70 2 60 5.9 13.9 0 0.0408 C-062 532596V STRIBG CR-KNANUSS Passive 70 2 60	CRAWFORD	C-062	532585W	POPLAR ST	Flasher	3,770	2	40	5.9	13.9	1	9960.0	0.1207	
C-062 532587K SEARS ST Flasher 570 2 60 5.9 13.9 1 0.0650 C-062 532588S MANSFIELD ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 532591A MCCRACKEN Gate 350 2 60 5.9 13.9 0 0.0101 C-062 532591A SIMMS CR. Passive 70 2 60 5.9 13.9 0 0.0408 C-062 532594V GLENVILLECR Passive 70 2 60 5.9 13.9 0 0.0408 C-062 532594V GLENVILLECR Passive 70 2 60 5.9 13.9 0 0.0408	CRAWFORD	C-062	532586D	SPRING ST	Flasher	2,990	2	40	5.9	13.9	0	0.0357	0.0486	
C-062 53258RS MANSFIELD ST Flasher 8,480 2 40 5.9 13.9 0 0.0481 C-062 532590T MCCRACKEN Gate 350 2 60 5.9 13.9 0 0.0101 C-062 532591A SIMMS CR. Passive 70 2 60 5.9 13.9 0 0.0408 C-062 532594V GLENVILLECR Passive 160 2 60 5.9 13.9 0 0.0408 C-062 532596J STRIEB CR-KNAUSS Passive 70 2 60 5.9 13.9 0 0.0408	CRAWFORD	C-062	532587K		Flasher	570	2	09	5.9	13.9	1	0.0650	0.0813	
C-062 532590T MCCRACKEN Gate 350 2 60 5.9 13.9 0 0.0101 C-062 532591A SIMMS CR. Passive 70 2 60 5.9 13.9 0 0.0322 C-062 532594V GLENVILLE CR Passive 160 2 60 5.9 13.9 0 0.0408 C-062 532596J STRIEB CR-KNAUSS Passive 70 2 60 5.9 13.9 0 0.0408	CRAWFORD	C-062	532588S	MANSFIELD ST	Flasher	8,480	2	40	5.9	13.9	0	0.0481	0.0628	
C-062 532591A SIMMS CR. Passive 70 2 60 5.9 13.9 0 0.0322 C-062 532594V GLENVILLE CR Passive 160 2 60 5.9 13.9 0 0.0408 C-062 532596J STRIEB CR-KNAUSS Passive 70 2 60 5.9 13.9 0 0.0322	CRAWFORD	C-062	532590T	MCCRACKEN	Gate	350	2	09	5.9	13.9	0	0.0101	0.0147	
C-062 532594V GLENVILLE CR Passive 160 2 60 5.9 13.9 0 0.0408 C-062 532596J STRIEB CR-KNAUSS Passive 70 2 60 5.9 13.9 0 0.0322	CRAWFORD	C-062	532591A	SIMMS CR.	Passive	70	2	09	5.9	13.9	0	0.0322	0.0458	
C-062 532596J STRIEB CR-KNAUSS Passive 70 2 60 5.9 13.9 0 0.0322	CRAWFORD	C-062	532594V	GLENVILLE CR	Passive	160	2	09	5.9	13.9	0	0.0408	0.0566	
	CRAWFORD	C-062	532596J	STRIEB CR-KNAUSS	Passive	70	2	09	5.9	13.9	0	0.0322	0.0458	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
CRAWFORD	C-062	532597R	MARION-MELMORE RD	Flasher	440	2	09	5.9	13.9	0	0.0189	0.0274	
CRAWFORD	C-064	502674G		Gate	3,840	2	09	6.5	14.5	0	0.0245	0.0329	
CRAWFORD	C-064	502676V	ALBRIGHT	Passive	180	2	09	6.5	14.5	0	0.0445	0.0600	
CRAWFORD	C-064	502677C	LOWER LEESVILLE	Flasher	970	2	09	6.5	14.5	0	0.0262	0.0362	
CRAWFORD	C-064	502679R	OLENTANGY RD	Passive	70	2	09	6.5	14.5	0	0.0341	0.0474	
CRAWFORD	C-064	502680K	MAIN ST	Flasher	1.890	2	09	6.5	14.5	0	0.0325	0.0439	
CRAWFORD	C-064	5026818	BECK RD	Passive	80	2	09	6.5	14.5	0	0.0349	0.0483	
CRAWFORD	C-064	502682Y	BIDDLE RD	Passive	170	2	09	6.5	14.5	2	0.1781	0.2175	0.0105(a)
CRAWFORD	C-064	502683F	CRESTLINE RD	Gate	740	2	09	6.5	14.5	0	0.0139	0.0193	
CRAWFORD	C-064	502684M		Gate	3.030	2	09	6.5	14.5	0	0.0176	0.0241	
CRAWFORD	C-064	502685U	502685U WILEY ST	Flasher	1.440	2	30	6.5	14.5	0	0.0341	0.0459	
CRAWFORD	C-064	502686B	THOMAN ST	Flasher	3.520	2	30	6.5	14.5	0	0.0397	0.0525	
CRAWFORD	C-064	502852R		Flasher	150	2	09	6.5	14.5	0	0.0135	0.0195	
CRAWFORD	C-067	518441H		Gate	1.670	2	50	14.5	30.1	0	0.0229	0.0301	
	C-067	518443W	518443W MAIN ST	Gate	12.030	2	50	14.5	30.1	0	0.0371	0.0470	
CRAWFORD	C-067	518445K	WASHINGTON	Gate	480	2	09	14.5	30.1	2	0.0972	0.1120	
	N-071	481570N		Flasher	2.770	2	09	26.0	34.5		0.1212	0.1300	
CRAWFORD	N-071	481572C		Passive	06	2	60	26.0	34.5	_	0.1421	0.1529	0.0130
CRAWFORD	N-071	4815733	CARRELL	Passive	70	2	- 09	26.0	34.5	0	0.0571	0.0630	
CRAWFORD	N-071	481574R		Passive	50	2	09	26.0	34.5	0	0.0338	0.0381	
CRAWFORD	N-071	481575X	BRANDYWINE	Passive	220	2	9	26.0	34.5	0	0.0738	0.0801	
CRAWFORD	N-071	481576E	HIEBER	Passive	09	2	09	26.0	34.5	0	0.0356	0.0401	
CRAWFORD	N-071	481578T		Passive	50	2	09	26.0	34.5	0	0.0338	0.0381	
CRAWFORD	N-071	481579A		Gate	270	2	99	26.0	34.5	0	0.0235	0.0269	
CRAWFORD	N-071	481580U	BROKEN SWORD	Passive	20	2	- 09	26.0	34.5	0	0.0338	0.0381	
CRAWFORD	N-071	481581B	CAREY	Passive	100	2	09	26.0	34.5	0	0.0621	0.0682	
CRAWFORD	N-071	481582H	ORR	Passive	20	2	09	26.0	34.5	0	0.0526	0.0582	
CRAWFORD	N-071	481584W	481584W CHATFIELD	Passive	300	2	50	26.0	34.5		0.1685	0.1799	0.0331(a)
CRAWFORD	N-071	481585D	481585D WASHINGTON/GLADY RD	Passive	70	7	50	26.0	34.5	0	0.0543	0.090.0	
CRAWFORD	N-071	481587S	NEW WASHINGTON	Flasher	540	2	09	26.0	34.5		0.0371	0.0413	
CRAWFORD	N-071	481590A	ALBAUGH	Passive	510	2	09	26.0	34.5	0	0.0865	0.0928	
CRAWFORD	N-071	481592N	CRWFRD-SNECA COU	Passive	160	2	09	26.0	34.5	0	0.0690	0.0753	
CRAWFORD	N-073	481551J	MONNETTE	Gate	470	2	09	26.0	34.3	0	0.0188	0.0210	
CRAWFORD	N-073	481552R	DALLAS TWP 115	Passive	70	2	09	26.0	34.3	-	0.1358	0.1461	
CRAWFORD	N-073	481553X	DALLAS TWP 96	Passive	50	2	09	26.0	34.3	0	0.0526	0.0581	
CRAWFORD	N-073	481554E	CALDWELL	Passive	90	2	09	26.0	34.3	-	0.1421	0.1527	0.013(a)
CRAWFORD	N-073	481556T	MT ZION	Gate	360	2	09	26.0	34.3	0	0.0247	0.0281	
CRAWFORD	N-073	481557A	SR 98	Gate	2,360	2	09	26.0	34.3	0	0.0435	0.0495	
CRAWFORD	N-073	481558G BEAI	BEAL	Gate	220	2	09	26.0	34.3	-	0.0613	0.0654	

										,			Post
	Rail Line			Warning		Number of Roadway	Maximum	Pre-	Post	Relevant Accident	Pre-	Post	Acquisition With
County		FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
CRAWFORD	N-073	481559N	CHARLOTTE	Gate	3,890	2	09	26.0	34.3	0	0.0364	0.0405	
CRAWFORD	П	481560H	481560H SOUTHERN	Gate	4,300	2	09	26.0	34.3	0	0.0362	0.0402	
CRAWFORD	N-073	481561P	HOPLEY	Gate	6,030	2	09	26.0	34.3	1	0.1513	0.1675	(q)
CRAWFORD	N-073	481562W	OAKWOOD	Flasher	290	2	09	26.0	34.3	0	0.0263	0.0295	
CRAWFORD	N-073	481563D	481563D WOODLAWN	Flasher	1,851	2	09	26.0	34.3	1	0.1110	0.1192	
CRAWFORD	N-073	481564K	WARREN	Flasher	1,059		09	26.0	34.3	0	0.0395	0.0437	
CRAWFORD	N-073	481565S	RENNSLAER	Flasher	287	2	09	26.0	34.3	0	0.0262	0.0294	
CUYAHOGA	C-061	524363S	BAGLEY RD.	Gate	17,135		09	14.5	53.0	0	0.0489	0.0689	
CUYAHOGA	C-061	524364Y	WEST RD	Gate	1,480	2	09	14.5	53.0	0	0.0233	0.0374	
CUYAHOGA	C-061		COLUMBIA RD	Gate	9,500		09	14.5	53.0	-	0.0889	0.1206	
CUYAHOGA	C-061	524368B	SPRAGUE	Flasher	966	2	9	14.5	53.0	0	0.0369	0.0578	
CUYAHOGA	C-074	523971H	HUMMEL ROAD	Gate	5,560	2	40	13.4	45.3	0	0.0312	0.0469	
CUYAHOGA	C-074	523973W	523973W ENGLE ROAD	Gate	15,100		40	13.4	45.3	0	0.0471	0.0656	
CUYAHOGA	C-074	523975K	HOLLAND ROAD	Gate	4,340	2	30	13.4	45.3	0	0.0288	0.0437	
CUYAHOGA	C-074	523977Y	FRONT ST	Gate	10,613	2	30	13.4	45.3	0	0.0401	0.0578	
CUYAHOGA	N-075	4720891	CHARDON ROAD	Gate	4,770	4	09	13.0	36.6	0	0.0369	0.0512	
CUYAHOGA	N-075	472093Y	DILLE ROAD	Gate	15,430	2	09	13.0	36.6	0	0.0386	0.0531	
CUYAHOGA	N-075	472097B	WAYSIDE ROAD	Gate	3,770	2	35	13.0	36.6	0	0.0282	0.0406	
CUYAHOGA	N-075		LONDON ROAD	Gate	5,310	2	35	13.0	36.6	0	0.0305	0.0435	
CUYAHOGA			WEST 110 STREET	Gate	5,970		35	13.5	34.1	0	0.0310	0.0426	
CUYAHOGA		472188G	WEST 111 STREET	Flasher	1,520		35	13.5	34.1	0	0.0398	0.0548	
CUYAHOGA	N-080	472189N	WEST 112 ST	Gate	750	2	35	13.5	34.1	0	0.0268	0.0411	
CUYAHOGA	N-080		WEST 114 STREET	Flasher	370	2	35	13.5	34.1	0	0.0255	0.0371	
CUYAHOGA	N-080	472191P	WEST 116 STREET	Flasher	2,570		35	13.5	34.1	0	0.0462	0.0621	
CUYAHOGA	N-080		WEST 117 STREET	Gate	15,610		35	13.5	34.1	_	0.1106	0.1356	
CUYAHOGA	N-080		HIRD AVE	Gate	2,180		35	13.5	34.1	-	0.0658	0.0821	
CUYAHOGA	N-080	472195S	FRY	Flasher	770		35	13.5	34.1	0	0.0324	0.0458	
CUYAHOGA	N-080	472196Y	BEACH AVENUE	Flasher	700		35	13.5	34.1	-	0.0843	0.1081	
CUYAHOGA	080-N	472197F	COVE AVENUE	Gate	2,920		35	13.5	34.1	0	0.0232	0.0328	
CUYAHOGA	080-N	472198M	THOREAU AVENUE	Flasher	480		35	13.5	34.1	0	0.0278	0.0401	
CUYAHOGA	080-N	472199U	NICHOLSON AVENUE	Gate	4,080	2	35	13.5	34.1	0	0.0307	0.0431	
CUYAHOGA	080-N	472200L	GIEL AVENUE	Gate	1,990		35	13.5	34.1	0	0.0240	0.0338	
CUYAHOGA	080-N	472201T	BUNTS RD	Gate	5,300		35	13.5	34.1	0	0.0302	0.0416	
CUYAHOGA	080-N	472202A	MANOR PARK	Flasher	1,930	2	35	13.5	34.1	0	0.0427	0.0581	
CUYAHOGA	080-N	472203G	472203G MARLOWE AVENUE	Flasher	1,460		35	13.5	34.1	0	0.0393	0.0542	
CUYAHOGA	N-080	472204N	472204N BELLE AVENUE	Gate	4,030		35	13.5	34.1	-	0.0779	0.0976	
CUYAHOGA	N-080	472205V	ST.CHARLES AVENUE	Flasher	1,090		35	13.5	34.1	0	0.0361	0.0503	
CUYAHOGA	N-080	472206C	472206C WARREN ROAD	Gate	3,000	2	35	13.5	34.1	0	0.0265	0.0369	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
						Number of		_		Relevant			Post Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	Segment FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
CUYAHOGA	N-080	472208R	GLADYS AVENUE	Flasher	006	2	35	13.5	34.1	0	0.0340	0.0478	
CUYAHOGA	080-N	472209X	ANDREWS AVENUE	Gate	1,040	2	35	13.5	34.1	2	0.1069	0.1296	
CUYAHOGA	080-N	472210S	LAKELAND AVENUE	Flasher	1,380	2	35	13.5	34.1	0	0.0387	0.0535	
CUYAHOGA	080-N	472212F	BROCKLEY AVENUE	Flasher	1,120	2	35	13.5	34.1	0	0.0364	0.0507	
CUYAHOGA	080-N	472213M	472213M CRANFORD AVENUE	Flasher	1,070	2	35	13.5	34.1	0	0.0359	0.0501	
CUYAHOGA	N-080	472214U	472214U WESTLAKE AVE	Flasher	720	2	35	13.5	34.1	1	0.0848	0.1087	
CUYAHOGA	080-N	472215B	HALL AVENUE	Flasher	029	2	35	13.5	34.1	0	0.0310	0.0441	
CUYAHOGA	N-080	472216H	472216H ETHEL AVENUE	Flasher	096	2	35	13.5	34.1	1	0.0902	0.1153	
CUYAHOGA	080-N	472217P	472217P EDWARDS AVENUE	Flasher	1,150	2	35	13.5	34.1	-	0.0937	0.1196	
CUYAHOGA	080-N	472218W	472218W BONNIEVIEW AVENUE	Flasher	1,330	2	35	13.5	34.1	-	0.0966	0.1231	
CUYAHOGA	080-N	472219D	472219D GRANGER AVENUE	Flasher	1,880		35	13.5	34.1	0	0.0423	0.0577	
CUYAHOGA	N-080	472230D	WEBB ROAD	Flasher	2,350		35	13.5	34.1	0	0.0451	0.0608	
CUYAHOGA	080-N	472237B	472237B LINDA STREET	Gate	2,090	2	35	13.5	34.1	0	0.0243	0.0341	
CUYAHOGA	N-080	472239P	MORRWOOD STREET	Gate	096	2	35	13.5	34.1	0	0.0209	0.0298	
CUYAHOGA	N-080	472240J	WAGER ROAD	Gate	4,520	2	35	13.5	34.1	0	0.0303	0.0417	
CUYAHOGA	080-N	472241R	ELMWOOD ROAD	Gate	2,340	2	35	13.5	34.1	0	0.0260	0.0363	
CUYAHOGA	N-080	472245T	COLUMBIA ROAD	Gate	11,320	2	09	13.5	34.1	1	0.0936	0.1165	
CUYAHOGA	N-080	472248N	472248N DOVER CENTER ROAD	Gate	7,630	2	09	13.5	34.1	0	0.0340	0.0462	
CUYAHOGA	080-N	472249V	CAHOON ROAD	Flasher	3,110	2	09	13.5	34.1	1	0.1171	0.1463	
CUYAHOGA	N-080	472250P	BASSETT ROAD	Gate	240	2	09	13.5	34.1	0	0.0147	0.0214	
CUYAHOGA	080-N	472252D	472252D BRADLEY ROAD	Gate	5,670	2	09	13.5	34.1	0	0.0319	0.0436	-
CUYAHOGA	N-081	524190E	EAST 26TH ST	Gate	3,500	2	40	12.5	29.7	0	0.0271	0.0369	
CUYAHOGA	N-081	524223P	524223P BESSEMER	Gate	2,680	2	40	12.5	29.7	1	0.0739	0.0912	
CUYAHOGA	N-081	524226K	AETNA	Gate	2,560		40	12.5	29.7	0	0.0259	0.0354	
DEFIANCE	C-066	142343Y	142343Y SNYDER	Passive	110	2	09	21.4	47.7	0	0.0592	0.0766	
DEFIANCE	C-066	142345M HARRIS	HARRIS	Passive	230	2	09	21.4	47.7	0	0.0699	0.0878	
DEFIANCE	C-066	142348H HIRE	HIRE	Gate	2,920	2	09	21.4	47.7	0	0.0305	0.0403	
DEFIANCE	C-066	142352X	142352X SQUIER ST	Flasher	1,280	2	09	21.4	47.7	0	0.0443	0.0577	
DEFIANCE	C-066	142356A	142356A OTTAWA AVE	Gate	10,120	2	09	21.4	47.7	0	0.0503	0.0671	
DEFIANCE	C-066	142366F	142366F JACKSON ST	Flasher	700	2	09	21.4	47.7	2	0.1392	0.1690	0.0245(a)
DEFIANCE	C-066	142367M		Gate	4,460		35	21.4	47.7	0	0.0299	0.0395	
DEFIANCE	C-066	142368U	ATLANTIC DR	Gate	1,110		35	21.4	47.7	0	0.0232	0.0319	
DEFIANCE	C-066	142370V	KROUSE RD	Passive	422	2	09	21.4	47.7	0	0.0790	0.0969	
DEFIANCE	C-066	142374X	ASHWOOD RD	Passive	100		09	21.4	47.7	0	0.0579	0.0751	
DEFIANCE	C-066	142375E	US 24	Gate	8,434		79	21.4	47.7	0	0.0555	0.0798	
DEFIANCE	C-066	142377T	TITTLE RD	Passive	20	2	09	21.4	47.7	0	0.0309	0.0433	
DEFIANCE	C-066	142379G		Passive	20	2	09	21.4	47.7	0	0.0309	0.0433	
DEFIANCE	C-066	142381H	THE BEND RD	Flasher	480	2	09	21.4	47.7	0	0.0331	0.0448	
DEFIANCE	C-066	142382P	DELAWARE ST	Flasher	530	2	09	21.4	47.7	0	0.0294	0.0403	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
				-		7V				Dologont			Post
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
DEFIANCE	C-066	142385K	COY RD	Passive	20	2	09	21.4	47.7	0	0.0309	0.0433	
DEFIANCE	C-066		HARRISON AVENUE	Gate	3,090	2	35	21.4	47.7	0	0.0383	0.0523	
DEFIANCE	C-066	1	BEHNFEDT RD	Passive	09	2	09	21.4	47.7	0	0.0510	0.0675	
DEFIANCE	C-066	142388F	OPENLANDER RD	Gate	120	2	09	21.4	47.7	0	0.0191	0.0277	
DEFIANCE	C-066	142389M	142389M WILLIAMS CNTR RD	Passive	51	2	09	21.4	47.7	0	0.0826	0.1256	
DEFIANCE	C-066	142390G	FARMER MARK RD	Flasher	480	2	09	21.4	47.7	0	0.0331	0.0448	
DEFIANCE	C-066	142392V	WONDERLY RD	Passive	09	2	09	21.4	47.7	0	0.0535	0.0703	
DEFIANCE	C-066	142394J	BREININER	Passive	110	2	09	21.4	47.7	0	0.0592	0.0766	
DEFIANCE	C-066	142396X	ROSEDALE RD	Passive	110	2	09	21.4	47.7	0	0.0592	0.0766	
DEFIANCE	C-066	142398L	CICERO	Passive	50	2	09	21.4	47.7	0	0.0486	0.0648	
DEFIANCE	C-066	142402Y	LAKE RD	Passive	70	2	09	21.4	47.7	0	0.0530	0.0698	
DEFIANCE	080-N	472211Y	472211Y SUMMIT AVENUE	Flasher	1,570	2	35	13.5	34.1	0	0.0402	0.0552	
DELAWARE	N-073	481481W	481481W ORANGE ROAD	Gate	290	2	09	26.0	34.3	0	0.0210	0.0238	
DELAWARE	N-073	481482D	481482D FRANKLIN	Passive	50	2	09	26.0	34.3	0	0.0526	0.0581	
DELAWARE	N-073	481483K	LEWIS CENTER	Flasher	744	2	09	26.0	34.3	0	0.0355	0.0395	
DELAWARE	N-073	481485Y	481485Y SHANNON ROAD	Gate	460	2	09	26.0	34.3	0	0.0187	0.0209	
DELAWARE	N-073	481487M	481487M PEACHBLOW ROAD	Passive	460	2	09	26.0	34.3	0	0.0850	0.0912	
DELAWARE	N-073	481488U	CHESIRE ROAD	Gate	590	2	09	26.0	34.3	0	0.0206	0.0230	
DELAWARE	N-073	481490V	481490V BERLIN ROAD	Passive	330	2	09	26.0	34.3	-	0.1768	0.1880	0.0369(a)
DELAWARE	N-073		HORSESHOE ROAD	Gate	1,290	2	09	26.0	34.3	0	0.0241	0.0268	
DELAWARE	N-073	481503U	PENRY	Passive	100	2	09	26.0	34.3	0	0.0621	0.0681	
DELAWARE	N-073	481504B WILLEY	WILLEY	Passive	09	2	09	26.0	34.3	0	0.0550	0.0607	
DELAWARE	N-073		TROUTMAN	Passive	70	2	09	26.0	34.3	0	0.0571	0.0629	
DELAWARE	N-073	481506P	RADNOR	Flasher	380	2	09	26.0	34.3	0	0.0287	0.0322	
DELAWARE	N-073			Gate	420	2	09	26.0	34.3	0	0.0263	0.0299	
ERIE	N-072	472313S	RISDEN ROAD	Gate	390	2	09	15.6	27.0	1	0.0546	0.0616	
ERIE	N-072	472315F	BARNES ROAD	Passive	340	2	09	15.6	27.0	0	0.0717	0.0840	
ERIE	N-072	472316M		Passive	110	2	09	15.6	27.0	0	0.0555	0.0670	
ERIE	N-072	472318B	JOPPA ROAD	Gate	270	2	09	15.6	27.0	0	0.0140	0.0176	
ERIE	N-072		FRAILEY RD	Gate	290	2	09	15.6	27.0	0	0.0195	0.0252	
ERIE	N-072		DARROW RD	Gate	570	2	09	15.6	27.0	0	0.0238	0.0307	
ERIE	N-072	472322R	SMOKEY ROAD/ TR80	Gate	100	2	09	15.6	27.0	2	0.0816	0.0890	
ERIE	N-072	472323X	STATE ROUTE 61	Flasher	2,430	2	09	15.6	27.0	0	0.0429	0.0518	
ERIE	N-072	472325L	BARROWS ROAD	Flasher	160	2	09	15.6	27.0	0	0.0301	0.0374	
ERIE	N-072	472328G	JEFFRIES ROAD	Gate	270	2	09	15.6	27.0	0	0.0140	0.0175	
ERIE	N-072	472329N	WEIKEL ROAD	Passive	110	2	09	15.6	27.0	0	0.0553	0.0668	
ERIE	N-072	472334K	472334K HOOVER ROAD	Passive	140	2	09	15.6	27.0	0	0.0587	0.0704	
ERIE	N-072	472341V	STRECKER ROAD	Flasher	420	2	09	15.6	27.0	0	0.0247	0.0311	
ERIE	N-072	472344R	472344R THOMAS ROAD	Passive	130	2	09	15.6	27.0	0	0.0576	0.0693	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
						Number of				Relevant			Fost Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
ERIE	N-072		472345X RANSOM RD	Gate	250	2	09	15.6	27.0	0	0.0187	0.0242	
ERIE	N-072	472348T	PATTEN TRACT ROAD	Gate	540	2	09	15.6	27.0	1	0.0612	0.0695	
ERIE	N-072	472351B	472351B STATE ROUTE 99	Gate	2,300	2	25	15.6	27.0	1	0.0750	0.0857	
ERIE	080-N	472306G	472306G WATER STREET	Gate	6,260		09	13.5	34.1	0	0.0289	0.0400	
ERIE	080-N	472308V	STATE STREET	Gate	5,330		09	13.5	34.1	1	0.0770	0.0964	
ERIE	080-N	472312K	COEN ROAD/ 147	Gate	420	2	09	13.5	34.1	1	0.0535	0.0657	
ERIE	080-N	876686J	DOUGLAS ST	Gate	100	2	09	13.5	34.1	0	0.0101	0.0150	
ERIE	N-085	Τ.	POTTER	Passive	310	2	35	1.4	12.9	0	0.0239	0.0589	
ERIE	N-085	481643W KNAUS	KNAUS	Passive	08	2	35	1.4	12.9	0	0.0154	0.0415	
ERIE	N-085	481646S	BRAGG	Passive	20	2	35	1.4	12.9	1	0.0566	0.0984	
ERIE	N-085		STRECKER RD	Passive	170	2	35	1.4	12.9	2	0.1172	0.1979	0.0151(a)
ERIE	N-085	481649M	481649M BILLINGS	Passive	160	2	35	1.4	12.9	0	0.0193	0.0500	
ERIE	N-085	481651N	PORTLAND RD	Gate	510		35	1.4	12.9	0	0.0071	0.0192	
ERIE	N-085	481653C	481653C MAPLE AVE.	Passive	08		35	1.4	12.9	0	0.0154	0.0415	
ERIE	N-085	481657E	MASON	Passive	160	2	35	1.4	12.9	0	0.0315	0.0720	
ERIE	N-085	481659T	BRADSHAR	Passive	130		35	1.4	12.9	-	0.0643	0.1152	0.0130
ERIE	N-085	481660M	481660M SKADDEN/ CR 42	Passive	800		35	1.4	12.9	1	0.0887	0.1602	0.0254
ERIE	N-085	481665W	481665W BOGART	Flasher	3,900		15	1.4	12.9	0	0.0184	0.0449	
ERIE	N-085	481668S	SR 101 TIFFIN	Gate	5,950		15	1.4	12.9	0	0.0135	0.0317	
ERIE	N-085	481669Y	VENICE	Gate	4,400		15	1.4	12.9	0	0.0126	0.0299	
ERIE	N-085	481670T	OLDS	Gate	1,140		15	1.4	12.9	1	0.0425	0.0658	
ERIE	N-085	481671A	MONROE	Gate	3,630		15	1.4	12.9	0	0.0119	0.0286	
FRANKLIN	N-073	481467B	WEBER	Gate	8,678	2	45	26.0	34.3	0	0.0415	0.0453	
FRANKLIN	N-073	481470J	COOK	Flasher	11,424		45	26.0	34.3	1	0.1679	0.1767	
FRANKLIN	N-073	481472X	481472X LINCOLN	Gate	9,810		45	26.0	34.3	0	0.0425	0.0464	
FRANKLIN	N-073	481474L	481474L SHROCK	Gate	1,856		09	26.0	34.3	0	0.0304	0.0336	
FRANKLIN	N-073	481475T	GALENA-WRTHNGTON	Gate	1,255	2	09	26.0	34.3	-	0.0769	0.0822	
FRANKLIN	N-073	481476A	WILSON BRIDGE	Gate	1,950		09	26.0	34.3	0	0.0320	0.0354	
FRANKLIN	N-073	481478N PARK	PARK	Gate	399		09	26.0	34.3	0	0.0211	0.0235	
HARDIN	C-062	532646K	COUNTY LINE RD.	Passive	250	2	40	5.9	13.9	0	0.0412	0.0570	
HARDIN	C-062	532647S	LOUISA ST	Passive	100		40	5.9	13.9	0	0.0316	0.0451	
HARDIN	C-062	532648Y	MARY ST.	Gate	550	2	40	5.9	13.9	0	0.0108	0.0154	
HARDIN	C-062	532649F	GORMLY ST.	Gate	1,370		40	5.9	13.9	0	0.0137	0.0195	
HARDIN	C-062	532650A	DAVIS ST	Passive	310		40	5.9	13.9	0	0.0437	0.0600	
HARDIN	C-062	532651G	MARTIN ST SR 37	Flasher	2,190		40	5.9	13.9	0	0.0283	0.0396	
HARDIN	C-062	532652N	CAMPBELL ST.	Passive	240	2	40	5.9	13.9	0	0.0407	0.0564	
HARDIN	C-062	532653V	BERLIN CR	Passive	110		40	5.9	13.9	0	0.0315	0.0450	
HARDIN	C-062	532655J	PATTERSON RD	Passive	100		40	5.9	13.9	0	0.0316	0.0451	
HARDIN	C-062	532658E	532658E GROAT CR.	Passive	70	2	40	5.9	13.9	0	0.0284	0.0409	

Page 9 of 24

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
						Number of				Relevant			Post Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-		Accident	Pre-	Post	With
County	Segment		Street Name	Device	ADT	Lanes	Speed	Acquisition	Acq	History	Acquisition	Acquisition	Mitigation
HARDIN	C-062	532659L	WYKES CR.	Passive	50	2	40	5.9	13.9	0	0.0256	0.0372	
HARDIN	C-062	532662U		Flasher	580	2	40	5.9	13.9	0	0.0176	0.0257	
HARDIN	C-062	532663B		Gate	4,730	2	40	5.9	13.9	0	0.0189	0.0264	
HARDIN	C-062	532664H	CHERRY ST.	Flasher	210	2	40	5.9	13.9	0	0.0121	0.0181	
HARDIN	C-062	532665P	TOWNSHIP ROAD	Passive	280	2	40	5.9	13.9	0	0.0425	0.0586	
HARDIN	C-062	532667D	532667D HOPPS RD.	Passive	50	2	40	5.9	13.9	0	0.0256	0.0372	
HARDIN	C-062	532669S	WAYNE ST.	Flasher	80	2	40	5.9	13.9	0	0.0084	0.0127	
HARDIN	1	532670L		Gate	390	2	40	5.9	13.9	0	8600.0	0.0141	
HARDIN	l	532671T		Passive	80	2	50	5.9	13.9	0	0.0314	0.0449	
HARDIN	C-062	532673G	TRAVERSE PIKE	Passive	50	2	50	5.9	13.9	0	0.0273	0.0395	
HARDIN	C-062	532675V	PETERSON CRSR81	Gate	610	2	50	5.9	13.9	0	0.0111	0.0159	
HARDIN	C-062	532676C		Passive	310	2	50	5.9	13.9	0	0.0462	0.0630	
HARDIN	C-062	532677J	VAN ATTA RD	Passive	200	2	50	5.9	13.9	0	0.0410	0.0568	
HARDIN	C-062	532678R	JOHNSON ST	Gate	1,630	2	50	5.9	13.9	0	0.0144	0.0204	
HARDIN	C-062	532679X	MAIN ST.	Gate	6,310	2	50	5.9	13.9	1	0.0635	0.0777	
HARDIN	C-062	532680S	GILBERT ST	Gate	1,050	2	50	5.9	13.9	0	0.0128	0.0182	
HARDIN	C-062	532681Y	KLINGLER ROAD	Passive	420	2	50	5.9	13.9	0	0.0500	0.0674	
HARDIN	C-062	532682F	ST. PAUL ROAD	Passive	150	2	50	5.9	13.9	1	0.1010	0.1282	
HARDIN	C-062	532684U	COUNTY LINE ROAD	Passive	290	2	50	5.9	13.9	0	0.0454	0.0620	
HARDIN	C-071	518370N		Gate	1,080	2	09	16.1	31.8	0	0.0218	0.0283	
HARDIN	C-071	518371V	TR 179	Passive	50	2	09	16.1	31.8	0	0.0438	0.0567	
HARDIN	C-071	518372C	TR 197	Passive	160	2	09	16.1	31.8	0	0.0589	0.0735	
HARDIN	C-071	518373J	W MANSFIELD RD	Gate	260	2	09	16.1	31.8	0	0.0191	0.0258	
HARDIN	C-071	518376E	MAIN ST	Gate	4,610	2	09	16.1	31.8	0	0.0305	0.0387	
HARDIN	C-071	518379A		Gate	270	2	09	16.1	31.8	0	0.0191	0.0259	
HARDIN	C-071	518381B	BORDAN ROAD	Passive	50	2	09	16.1	31.8	0	0.0438	0.0567	
HARDIN	C-071	518382H	518382H MARSH ROAD	Passive	270	2	09	16.1	31.8	-	0.1525	0.1796	0.0330
HARDIN	C-071	518384W	518384W MITCHELL RD/ TR 217	Passive	09	2	09	16.1	31.8	0	0.0460	0.0592	
HENRY	C-065	155755Y	MAIN ST.	Flasher	3,010	2	50	9.0	14.2	1	0.0486	0.1054	0.0241
HENRY	C-065	155757M	155757M MAPLE ST.	Flasher	1,120	2	50	0.6	14.2	0	0.0079	0.0321	
HENRY	C-065		ELM ST.	Passive	400	2	20	9.0	14.2	0	0.0193	0.0671	
HENRY	C-065	155760V	NORTH ST.	Passive	1,150	2	50	9.0	14.2	0	0.0270	0.0831	0.0195
HENRY	C-065		CRE	Passive	09	2	50	9.0	14.2	0	0.0102	0.0419	
HENRY	C-065	155762J	HNRY-WOOD CO LNRD	Passive	220	2	50	9.0	14.2	0	0.0158	0.0586	
HENRY	C-066	142303B		Gate	1,000	2	9	21.4	47.7	0	0.0260	0.0354	
HENRY	C-066	142304H	_	Flasher	200	2	09	21.4	47.7	1	0.0732	0.0909	
HENRY	C-066	142305P	TWP D	Passive	70	2	09	21.4	47.7	0	0.0540	0.0709	
HENRY	C-066	142306W	142306W SR 65/18	Gate	870	2	09	21.4	47.7	0	0.0286	0.0399	
HENRY	C-066	142307D CR 5	CR 5	Passive	50	2	09	21.4	47.7	0	0.0496	0.0659	

Warning Device Passive Passive Gate Passive Passive Flasher Flasher Flasher Flasher Flasher Flasher Flasher		Number of					£		Post Acquisition With
Warning Device Passive Passive Gate Passive Passive Flasher Flasher Flasher Flasher Flasher Flasher Flasher Flasher	101					Relevant	\$		With
Device Passive Passive Gate Passive Passive Passive Flasher Flasher Flasher Flasher Passive Passive	- -	_	Maximum	Pre-	Post	Accident	Pre-	Post	
Passive Passive Gate Passive Passive Flasher Flasher Flasher Flasher Passive Passive	50	Lanes	ē	Acquisition	Acc	History	Acquisition	Acquisition	Mitigation
Passive Gate Passive Passive Flasher Flasher Flasher Passive Passive	000	2	09	21.4	47.7	0	0.0496	0.0659	
Gate Passive Passive Flasher Flasher Flasher Flasher Passive	720	2	09	21.4	47.7	0	0.0703	0.0882	
Passive Passive Flasher Flasher Flasher Passive Passive	70	2	09	21.4	47.7	0	0.0158	0.0228	
Passive Flasher Flasher Flasher Passive Passive	90	2	09	21.4	47.7	0	0.0496	0.0659	
Flasher Flasher Flasher Passive Passive	110	2	09	21.4	47.7	0	0.0602	0.0777	
Flasher Flasher Passive Passive	1,133	2	09	21.4	47.7	0	0.0378	0.0503	
Flasher Passive Passive	1,828	2	09	21.4	47.7	0	0.0434	0.0568	
Passive Passive	1,860	2	09	21.4	47.7	1	0.1063	0.1303	
Passive	95	2	09	21.4	47.7	0	0.0496	0.0659	
	90	2	09	21.4	47.7	0	0.0496	0.0659	
Fassive	130	2	09	21.4	47.7	0	0.0626	0.0802	
Gate	280	2	09	21.4	47.7	-	0.0547	0.0654	
Flasher	130	2	09	21.4	47.7	0	0.0216	0.0315	
Flasher	1,980	2	09	21.4	47.7	1	0.1077	0.1319	
Flasher	2,130	2	09	21.4	47.7	0	0.0453	0.0589	
Passive	230	2	09	21.4	47.7	1	0.1607	0.1930	0.0224(a)
Passive	80	2	09	21.4	47.7	0	0.0558	0.0729	
Passive	160	2	09	21.4	47.7	0	0.0656	0.0834	
Passive	90	2	09	21.4	47.7	0	0.0574	0.0746	
Flasher	230	2	09	21.4	47.7	0	0.0226	0.0317	
Flasher	200	2	09	14.5	53.0	0	0.0181	0.0316	
Passive	80	2	09	14.5	53.0	0	0.0483	0.0752	
Gate	790	2	09	14.5	53.0	0	0.0172	0.0286	
Passive	50	2	09	14.5	53.0	0	0.0425	0.0682	
Gate	3,720	2	09	14.5	53.0	0	0.0258	0.0411	
	130	2	09	14.5	53.0	-	0.1312	0.1816	0.0192
GREENWICH E TWNLN Passive	09	2	09	14.5	53.0	0	0.0447	0.0709	
Gate	3,610	2	09	14.5	53.0	0	0.0305	0.0511	
N. MAIN ST (SR 60) Gate	3,870	2	09	14.5	53.0	0	0.0310	0.0520	
Flasher	510	2	09	14.5	53.0	0	0.0250	0.0419	
CHENANGO RD Passive	140	2	09	14.5	53.0	0	0.0556	0.0837	
NEW LONDON SEC RD Passive	220	2	09	14.5	53.0	0	0.0619	9060.0	
Passive	150	2	09	14.5	53.0	0	0.0566	0.0848	
Passive	70	2	09	14.5	30.1	0	0.0466	0.0609	
PLYMOUTH EAST RD Flasher	80	2	09	14.5	30.1	0	0.0130	0.0182	
518480Y GREENWICH-MILAN Passive	100	2	09	14.5	30.1	0	0.0511	0.0661	
Gate	5,100	2	09	14.5	30.1	0	0.0273	0.0355	
	1,390	2	09	14.5	30.1	0	0.0213	0.0285	
Flasher	200	2	09	32.5	55.2	0	0.0299	0.0369	
518480Y GREENWICH-MILA 518481F MAIN ST 518482M TOWNSEND ST. 142119N KNIFFIN ST		Passive Gate Gate Flasher	Passive 100 Gate 5,100 Gate 1,390 Flasher 200	Passive 100 2 Gate 5,100 2 Gate 1,390 2 Flasher 200 2	Passive 100 2 60 Gate 5,100 2 60 Gate 1,390 2 60 Flasher 200 2 60	Passive 100 2 60 14.5 Gate 5,100 2 60 14.5 Gate 1,390 2 60 14.5 Flasher 200 2 60 14.5	Passive 100 2 60 14.5 30.1 Gate 5,100 2 60 14.5 30.1 Gate 1,390 2 60 14.5 30.1 Flasher 200 2 60 32.5 55.2	Passive 100 2 60 14.5 30.1 0 Gate 5,100 2 60 14.5 30.1 0 Gate 1,390 2 60 14.5 30.1 0 Flasher 200 2 60 32.5 55.2 0	Passive 100 2 60 14.5 30.1 0 0.0511 Gate 5,100 2 60 14.5 30.1 0 0.0273 Gate 1,390 2 60 14.5 30.1 0 0.0213 Flasher 200 2 60 32.5 55.2 0 0.0299

							Freigh	Freight Trains		ACC	Accidents Per Year	ear
					Nhon of				Rolovant			Post
Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition		Acquisition	Acquisition	Mitigation
HURON C-068	142120H	UNION ST	Flasher	80	2	40	32.5	55.2	0	0.0220	0.0276	
	142123D	MILAN-GREENWCH RD	Passive	099	2	09	32.5	55.2	1	0.2053	0.2255	0.0354(a)
HURON C-068	142124K	LANE	Passive	50	2	09	32.5	55.2	0	0.0374	0.0464	
		EDWARDS	Passive	140	2	09	32.5	55.2	0	0.0723	0.0841	
HURON C-068	142126Y	OLD STATE RD.	Passive	150	2	09	32.5	55.2	0	0.0733	0.0852	
HURON C-068	142127F	BOUGHTONVILLE RD	Passive	250	2	09	32.5	55.2	0	0.0810	0.0929	
HURON C-068	142129U	NEW STATE RD.	Passive	440	2	09	32.5	55.2	0	0.0896	0.1012	
HURON C-068	142135X	PERU CENTER	Gate	710	2	09	32.5	55.2	0	0.0260	0.0316	
HURON C-068	142137L		Gate	220	2	09	32.5	55.2	0	0.0262	0.0333	
HURON C-068	142139A	FIRST ST.	Gate	1,280	2	09	32.5	55.2	0	0.0298	0.0359	
HURON C-075	142142H	142142H SECTION LINE ROAD	Gate	890	2	50	32.5	54.0	I	0.0754	0.0853	
HURON C-075	142144W	142144W DANIELS RD	Passive	09	2	09	32.5	54.0	0	0.0592	0.0700	
HURON C-075	142145D WULTZ	WULTZ	Passive	20	2	09	32.5	54.0	1	0.0993	0.1147	
HURON N-079	473665B	SOUTHWEST ST.	Gate	2,250	2	20	1.7	27.2	0	0.0174	0.0285	
HURON N-085	472356K	MONROE STREET	Passive	1,760	2	25	1.4	12.9	0	0.0367	0.0795	
HURON N-085	481638A	S BUCKEYE(CENTER)	Gate	029	2	15	1.4	12.9	0	0.0085	0.0226	
HURON N-085		GOODRICH	Gate	029	2	20	1.4	12.9	0	0.0077	0.0208	
N-075	472013D	COUNTY LINE RD	Gate	2,810	2	09	13.0	36.6	0	0.0321	0.0517	
N-075	472015S	BATES ROAD	Gate	510	2	09	13.0	36.6	0	0.0144	0.0219	
N-075	472017F	LAKE STREET	Flasher	8,810	2	09	13.0	36.6	0	0.0549	0.0733	
N-075	472018M	472018M DAYTON ROAD	Flasher	890	2	09	13.0	36.6	0	0.0282	0.0422	
N-075	4720233	WOOD ROAD	Gate	101	2	09	13.0	36.6	1	0.0434	0.0526	
N-075	472024R	TOWNLINE ROAD	Gate	1,120	2	09	13.0	36.6	0	0.0174	0.0262	
N-075	472025X	472025X DAVIS ROAD	Gate	025	2	09	13.0	36.6	0	0.0146	0.0223	
N-075	472026E	MAIN STREET	Flasher	1,190	2	09	13.0	36.6	-	0.0835	0.1102	
N-075	472027L	MAPLE	Flasher	450	2	09	13.0	36.6	0	0.0224	0.0345	
N-075	472028T	SHEPARD ROAD	Gate	1,360	2	09	13.0	36.6	0	0.0183	0.0274	
N-075	472029A	BAKER ROAD	Passive	50		09	13.0	36.6	0	0.0132	0.0218	
N-075	472030U	LANE ROAD	Gate	1,250		09	13.0	36.6	0	0.0179	0.0269	
N-075	472031B	PARK ROAD	Flasher	1,090		09	13.0	36.6	0	0.0301	0.0447	
N-075	472032H		Gate	3,590	2	99	13.0	36.6	0	0.0350	0.0567	
N-075	472033P	RIVERSIDE DRIVE	Flasher	1,830	2	09	13.0	36.6	0	0.0354	0.0514	
N-075	472035D	BANK ST	Gate	2,320	2	30	13.0	36.6	0	0.0308	0.0499	
N-075	472036K	STATE STREET	Gate	2,990		30	13.0	36.6	0	0.0332	0.0537	
N-075	472039F	LIBERTY ST	Gate	7,580	2	35	13.0	36.6	0	0.0279	0.0401	
N-075	472040A	CHESTNUT STREET	Gate	5,980	2	35	13.0	36.6	0	0.0264	0.0381	
N-075	472044C		Gate	19,260		09	13.0	36.6	0	0.0344	0.0482	
N-075	472045J	JACKSON STREET	Gate	5,230		09	13.0	36.6	0	0.0339	0.0526	
N-075		472046R HEISLEY ROAD	Gate	14,200	2	09	13.0	36.6	0	0.0328	0.0462	

								Freight	Freight Trains		Acc	Accidents Per Year	ear
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
LAKE	N-075	472048E	HOPKINS ROAD	Gate	5,460	2	9	13.0	36.6	0	0.0263	0.0381	
LAKE	N-075	472050F	STATION ST	Gate	2,100	2	09	13.0	36.6	0	0.0302	0.0487	
LAKE	N-075	472051M	472051M MAPLE STREET	Flasher	870	2	09	13.0	36.6	0	0.0284	0.0424	
LAKE	N-075	472052U	472052U HART STREET	Gate	2,850	2	09	13.0	36.6	0	0.0294	0.0459	
LAKE	N-075	472055P	PELTON STREET	Gate	4,380	2	09	13.0	36.6	0	0.0250	0.0364	
LAKE	N-075	472056W	472056W ERIE STREET	Gate	8,570	2	09	13.0	36.6	0	0.0292	0.0418	
LAKE	N-075	472060L	CHURCH STREET	Flasher	260	2	50	13.0	36.6	0	0.0188	0.0294	
LAKE	N-075	472062A	472062A BEILDER ROAD	Flasher	2,965	2	09	13.0	36.6	0	0.0414	0.0585	
LAKE	N-075	472064N	RUSH ROAD	Gate	6,164	4	09	13.0	36.6	0	0.0312	0.0441	
LAKE	N-075	472068R	LLOYD ROAD	Gate	7,400	2	35	13.0	36.6	0	0.0283	0.0406	
LAKE	N-075	472070S	DEPOT ROAD	Flasher	20	2	35	13.0	36.6	_	0.0461	0.0577	
LAKE	N-075	472263R	PATTERSON DRIVE	Gate	250	2	09	13.0	36.6	-	0.0485	0.0602	
LORAIN	C-061	518498J	GORE-ORPHANAGE RD	Passive	20	2	9	14.5	53.0	0	0.0441	0.0702	
LORAIN	C-061	518499R	BURSLEY RD	Passive	110	2	09	14.5	53.0	0	0.0542	0.0821	
LORAIN	C-061	518501P	STATE ST	Gate	1,070	2	99	14.5	53.0	0	0.0221	0.0357	
LORAIN	C-061	518502W	518502W GRIGGS RD	Gate	140	2	- 60	14.5	53.0	0	0.0181	0.0332	
LORAIN	C-061	518503D		Passive	50	2	09	14.5	53.0	0	0.0276	0.0478	
LORAIN	C-061	518504K	QUARRY RD	Flasher	230	2	99	14.5	53.0	0	0.0230	0.0390	
LORAIN	C-061	518506Y	518506Y JONES RD	Flasher	230	2	09	14.5	53.0	0	0.0230	0.0390	
LORAIN	C-061	518507F	PITTS RD	Passive	220	2	09	14.5	53.0	2	0.2320	0.3068	0.0246(a)
LORAIN	C-061	518508M	518508M MAGYAR	Flasher	300	2	09	14.5	53.0	0	0.0250	0.0418	
LORAIN	C-061	518509U	518509U HERRICK AVE.	Gate	7,870	2	09	14.5	53.0	0	0.0347	0.0525	
LORAIN	C-061	518510N	518510N NO. MAIN ST	Gate	8,120	2	09	14.5	53.0	0	0.0341	0.0517	
LORAIN	C-061	518511V	BARKER ST	Gate	099	2	09	14.5	53.0	0	0.0206	0.0347	
LORAIN	C-061	518512C	518512C HAWLEY RD	Flasher	140	2	09	14.5	53.0	-	0.0616	0.0866	
LORAIN	C-061	518513J	PECK-WADSWORTH RD	Flasher	08	2	09	14.5	53.0	0	0.0154	0.0273	
LORAIN	C-061	518514R		Gate	310	2	09	14.5	53.0	-	0.0679	0.0963	
LORAIN	C-061	518515X		Gate	1,120	2	09	14.5	53.0	0	0.0188	0.0310	
LORAIN	C-061	518518T	WHITEHEAD ST	Gate	270	2	09	14.5	53.0	-	0.0621	0.0863	
LORAIN	C-061	518519A	518519A WHITNEY	Flasher	70	2	09	14.5	53.0	-	0.0541	0.0748	
LORAIN	C-061	518520U	S. CENTER ST.	Gate	2,550	2	09	14.5	53.0	0	0.0262	0.0413	
LORAIN	C-061	518521B	E. MAIN ST	Gate	2,660	2	99	14.5	53.0	0	0.0264	0.0417	
LORAIN	C-061	518522H	WHEELER RD	Flasher	160	2	99	14.5	53.0	-	0.0632	0.0891	
LORAIN	C-061	518523P	BIGGS RD	Flasher	09	2	60	14.5	53.0	1	0.0527	0.0724	
LORAIN	C-061	518527S	INDIAN-HOLLOW RD	Gate	1,910	2	99	14.5	53.0	0	0.0244	0.0389	
LORAIN	C-061	518529F	CROOK RD	Flasher	170	2	09	14.5	53.0	0	0.0202	0.0348	
LORAIN	C-061	518530A	MAIN ST	Gate	5,750	2	50	14.5	53.0	0	0.0320	0.0490	
LORAIN	C-061	518531G	518531G ELM ST	Flasher	1,050	2	09	14.5	53.0	0	0.0370	0.0578	
LORAIN	C-061	518532N	518532N AVON-BELDEN	Gate	4,450	2	09	14.5	53.0	0	0.0264	0.0417	

Warning
Device ADT
Gate
Flasher
Gate 6,020
Gate
Gate 1,010
Gate 1,420
Flasher
Gate
Gate
Gate 4,410
Gate 5,110
Gate 2,490
Gate 2,160
Gate 1,797
Gate 1,660
Gate 3,520
Gate 3,483
Gate 6,270
Gate 3,700
+
7
Gate 9,660
Gate 3,230 Flasher 5,290
╁
Gate 5.970

Gate 7,698
r
Gate
Passive
Passive
Flasher

								Freight	Freight Trains		Acc	Accidents Per Year	ear
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acc	History	Acquisition	Acquisition	Mitigation
MARION	C-070	228733D	W. NEFF ST.	Flasher	930	2	50	17.8	27.4	0	0.0331	0.0391	
MARION	C-070	228734K	N. CENTER ST.	Passive	09	2	20	17.8	27.4	0	0.0458	0.0540	
MARION	C-070	228735S	WEST	Passive	20	2	50	17.8	27.4	0	0.0436	0.0516	
MARION	C-070	228736Y	COUNTY LINE ROAD	Passive	120	2	50	17.8	27.4	0	0.0548	0.0637	
MARION	C-071	518385D	MARION-HARDIN RD	Passive	20	2	09	16.1	31.8	0	0.0454	0.0586	
MARION	C-071	518387S	LARUE-MT. VICTORY	Flasher	570	2	09	16.1	31.8	0	0.0269	0.0354	
MARION	C-071	518388Y	WINNEMAC RD	Passive	20	2	09	16.1	31.8	0	0.0274	0.0369	
MARION	C-071	518389F	FRONT ST	Flasher	200	2	09	16.1	31.8	0	0.0258	0.0340	
MARION	C-071	518390A		Flasher	1,700	2	09	16.1	31.8	0	0.0380	0.0485	
MARION	C-071	518391G	SECTION ST.	Flasher	750	2	09	16.1	31.8	4	0.2346	0.2727	0.0113(a)
MARION	C-071	518392N	DRY LANE RD	Passive	110	2	09	16.1	31.8	0	0.0538	0.0679	
MARION	C-071	518393V	DECLIFF RD.	Passive	140	2	09	16.1	31.8	0	0.0570	0.0715	
MARION	C-071	518396R	MAIN ST	Flasher	092	2	09	16.1	31.8	0	0.0296	0.0387	
MARION	C-071	518397X	SO. CAREY	Passive	550	2	09	16.1	31.8	0	0.0771	0.0923	
F MARION	C-071	518398E	SR 95	Gate	2,000	2	09	16.1	31.8	0	0.0223	0.0289	
_	C-071	518407B	ESPYVILLE RD	Passive	06	2	09	16.1	31.8	0	0.0511	0.0650	
MARION	C-071	518410J	UPR SANDSKY PRSPT	Passive	910	2	09	16.1	31.8	-	0.1855	0.2125	0.0516(a)
MARION	C-071	518413E	CAMPBELL	Gate	4,070	2	09	16.1	31.8	1	0.0806	0.0952	
MARION	C-071	518415T		Gate	6,550	2	50	16.1	31.8	0	0.0333	0.0419	
MARION	N-073	481515N	SR 47	Flasher	1,390	2	09	26.0	34.3	1	0.1046	0.1125	
MARION	N-073	481516V	MAIN	Flasher	069	2	09	26.0	34.3	0	0.0347	0.0386	
MARION	N-073	481518J	KLINGLE	Passive	130	2	09	26.0	34.3	0	0.0659	0.0720	
MARION	N-073	481520K	ВЕТНІЕНЕМ	Gate	340	2	60	26.0	34.3	-	0.0827	0.0895	
MARION	N-073	481521S	WOLFINGER	Passive	130	2	09	26.0	34.3	0	0.0659	0.0720	
MARION	N-073	481522Y	NEWMAN CRDNGTN	Passive	230	2	09	26.0	34.3	0	0.0744	9080.0	
MARION	N-073	481524M	481524M BENZLER LUST	Gate	170	2	09	26.0	34.3	-	0.0529	0.0561	
MARION	N-073	481525U	481525U OWENS	Gate	066	2	09	26.0	34.3	0	0.0233	0.0260	
MARION	N-073	481526B	SUMMERLOT HFFMAN	Gate	1,390	2	09	26.0	34.3	0	0.0246	0.0273	
MARION	N-073	481529W	MARION CARDINGTON	Gate	1,110	2	09	26.0	34.3	0	0.0233	0.0259	
MARION	N-073	481530R BARKS	BARKS	Gate	7,120	2	35	26.0	34.3	0	0.0398	0.0436	
MARION	N-073	481531X	PROSPECT	Gate	8,880	2	35	26.0	34.3	0	0.0417	0.0455	
MARION	N-073	481532E	BELLEFOUNTAINE	Gate	11,740	3	30	26.0	34.3	-	0.1139	0.1213	
MARION	N-073	481533L	DARIUS	Gate	1,140	2	30	26.0	34.3	0	0.0265	0.0294	
MARION	N-073	481535A	COLUMBIA	Gate	75	2	30	26.0	34.3	0	0.0174	0.0198	
MARION	N-073	481536G	481536G CENTER	Gate	8,290	4	30	26.0	34.3	0	0.0504	0.0547	
MARION	N-073	481538V	SILVER	Gate	6,380	2	30	26.0	34.3	0	0.0389	0.0426	
MARION	N-073	481539C	481539C FAIRGROUND	Gate	1,850	2	30	26.0	34.3	0	0.0297	0.0328	
MARION	N-073	481540W	481540W WILLIAMSPORT	Gate	700	2	09	26.0	34.3	٥	0.0236	0.0262	
MARION	N-073	481541D	481541D N. MAIN SR 4	Gate	8,770	2	09	26.0	34.3	-	0.1017	0.1085	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
								0					1
						Number of				Relevant			Post Acquisition
	 Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
MARION	N-073	481542K	LIKENS	Gate	970	2	09	26.0	34.3	2	0.1236	0.1313	
MARION	N-073		LINN-HIPSHER	Gate	320	2	09	26.0	34.3	0	0.0249	0.0282	
MARION	N-073			Passive	100	2	09	26.0	34.3	0	0.0621	0.0681	
MARION	N-073		GALION-MARSEILLES	Passive	140	2	09	26.0	34.3	1	0.1536	0.1646	0.0269
MARION	N-073	481547U	SCOTT TWP RD-190	Passive	130	2	09	26.0	34.3	1	0.1516	0.1625	0.0262
MARION	N-073	481548B	481548B MORRAL KIRKPATRCK	Passive	210	2	09	26.0	34.3	0	0.0731	0.0793	
MARION	N-073	481550C	COUNTY LINE	Passive	20	2	09	26.0	34.3	0	0.0526	0.0581	
OTTAWA	N-077	509390B	509390B BENTON ROAD	Passive	190	2	09	48.0	61.5	0	0.0861	0.0917	
OTTAWA	N-077	509391H	509391H PORTAGE RD	Gate	280	2	09	48.0	61.5	0	0.0324	0.0361	
OTTAWA	N-077	509392P	VOGEL RD	Passive	09	2	09	48.0	61.5	0	0.0466	0.0512	
OTTAWA	N-077	509393W	509393W BENTON-TARRO RD	Gate	740	2	09	48.0	61.5	0	0.0331	0.0363	
OTTAWA	N-077	509394D	509394D LICKERT	Gate	360	2	09	48.0	61.5	-	0.0734	0.0780	
OTTAWA	N-077	509395K	ROCKY RIDGE	Gate	160	2	09	48.0	61.5	-	0.0822	0.0874	
OTTAWA	N-077	\$96860S	WEST	Passive	06	2	- 09	48.0	61.5	0	0.0748	0.0803	
OTTAWA	N-077	509397Y	SR 590 LIMESTONE	Gate	029	2	09	48.0	61.5	2	0.1314	0.1387	
OTTAWA	N-077	509400E	TRUE RD	Gate	180	2	09	48.0	61.5	0	0.0319	0.0358	
OTTAWA	N-077	509401L	TWP 21 STANGE	Gate	200	2	09	48.0	61.5	-	0.0673	0.0713	
OTTAWA	N-077	509402T		Gate	810	2	09	48.0	61.5	0	0.0323	0.0353	
OTTAWA	N-077	509403A	TOUSSIANT NORTH	Gate	50	2	09	48.0	61.5	0	0.0214	0.0240	
OTTAWA	N-077	509404G	JAMES	Passive	130	2	09	48.0	61.5	0	0.0804	0.0859	
OTTAWA	N-077	509405N	ELLISTON-BENTON	Flasher	400	2	09	48.0	61.5	0	0.0431	0.0471	
OTTAWA	V-077	509406V	NISSEN RD	Gate	370	2	09	48.0	61.5	0	0.0341	0.0379	
OTTAWA	N-077	509407C	LENTZ-OPFER	Passive	130	2	09	48.0	61.5	0	0.0804	0.0859	
OTTAWA	N-077	509408J		Gate	440	2	09	48.0	61.5	0	0.0271	0.0297	
OTTAWA	N-077	509409R	WILLISTON RD	Flasher	460	2	09	48.0	61.5	0	0.0448	0.0489	
OTTAWA	N-077	509410K	GENOA-CLAY RD	Gate	2,560		09	48.0	61.5	0	0.0400	0.0434	
OTTAWA	N-077	509411S	(TROWBRDG)BOLANDR	Gate	930	2	09	48.0	61.5	0	0.0322	0.0351	
OTTAWA	N-077	509412Y	REIMAN	Passive	180	2	09	48.0	61.5	0	0.0853	0.0909	
OTTAWA	N-077	509413F	BILLMAN RD	Gate	210		09	48.0	61.5	0	0.0293	0.0326	
OTTAWA	N-077	509415U	509415U FOSTORIA RD	Gate	1,490		09	48.0	61.5	0	0.0357	0.0389	
OTTAWA	020-N	473745U	473745U BLOOM RD.	Passive	100	2	55	7.7	27.2	0	0.0387	0.0624	
OTTAWA	6L0-N	473747H	ELMORE EAST RD	Passive	200	2	55	7.7	27.2	0	0.0468	0.0726	
OTTAWA	N-079	473750R	CULLMAN (TWP 107)	Passive	100	2	55	7.7	27.2	0	0.0387	0.0624	
OTTAWA	640-N	473752E	473752E PORTAGE RIVER RD	Passive	930		55	7.7	27.2	0	0.0679	0.0959	
OTTAWA	620-N	473754T	473754T WATER ST	Gate	7,530	2	35	7.7	27.2	0	0.0236	0.0373	
RICHLAND	C-067	518446S	518446S BEAM RD	Passive	720		09	14.5	30.1	-	0.1733	0.2026	0.0256(a)
RICHLAND	C-067	518448F	THRUSH RD	Passive	50		09	14.5	30.1	0	0.0413	0.0548	
RICHLAND	C-067	518449M	518449M HOOK RD	Passive	100	2	09	14.5	30.1	0	0.0498	0.0645	
RICHLAND	C-067	518450G	518450G FINNEGAN RD	Passive	70		09	14.5	30.1	0	0.0453	0.0594	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
													Post
	Rail Line			Warning		Number of Roadway	Maximum	Pre-	Post	Relevant Accident	Pre-	Post	Acquisition With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
RICHL AND	C-067	518451N		Passive	350	2	09	14.5	30.1	0	0.0672	0.0833	
RICHLAND	C-067	518452V	GERMAN-STTLMNT RD	Flasher	700	2	09	14.5	30.1	0	0.0323	0.0427	
RICHLAND	C-067	518454J	STENTZ RD	Passive	120	2	09	14.5	30.1	0	0.0535	0.0688	
RICHLAND	C-067	518455R	HUMMEL RD	Passive	009	2	09	14.5	30.1	0	0.0768	0.0931	
RICHLAND	C-067	518456X	MAIN ST	Flasher	8,700		09	14.5	30.1	-	0.1428	0.1665	0.0663(a)
RICHLAND	C-067	518458L	NO. GAMBLE	Gate	7,630		09	14.5	30.1	0	0.0300	0.0387	
RICHLAND	C-067	518459T	SMILEY	Flasher	3,420		09	14.5	30.1	0	0.0511	0.0639	
RICHLAND	C-067	518460M	NO.BROADWAY	Gate	3,520		09	14.5	30.1	-	0.0784	0.0936	
RICHLAND	C-067	518461U		Gate	089	2	09	14.5	30.1	0	0.0211	0.0292	
RICHL'AND	C-067	518462B		Passive	460	2	09	14.5	30.1	0	0.0735	0.0899	
RICHL, AND	C-067	518464P	BISTLINE	Passive	08		09	14.5	30.1	0	0.0489	0.0636	
RICHLAND	C-067	518465W		Passive	1,000		09	14.5	30.1	2	0.2877	0.3295	0.0538(a)
RICHLAND	C-067	518466D		Passive	8		09	14.5	30.1	0	0.0322	0.0437	
RICHL AND	C-067	518468S	BOWMAN RD	Flasher	1,440		09	14.5	30.1	0	0.0406	0.0523	
RICHL AND	C-067	518472G	518472G MAIN ST	Gate	2,530		09	14.5	30.1	0	0.0265	0.0345	
RICHLAND	C-067	518473N	NOBLE RD	Passive	120		09	14.5	30.1	0	0.0350	0.0472	
RICHLAND	C-067	518474V	MALONE RD	Passive	50		09	14.5	30.1	0	0.0269	0.0371	
RICHLAND	C-067	518475C	518475C PLANKTOWN	Passive	260		09	14.5	30.1	0	0.0651	0.0812	
RICHLAND	C-067	518476J	BASE LINE RD	Passive	200		09	14.5	30.1	-	0.1432	0.1719	0.0297(a)
SANDUSKY	N-071	481635E	SANDUSKY CO. 305	Passive	70	2	15	26.0	34.5	0	0.0456	0.0509	
SANDUSKY	04-N	473667P	YORK ST	Passive	450	2	20	7.7	27.2	0	0.0479	0.0738	
SANDUSKY	N-079	473668W	473668W KILBOURNE	Gate	9,330		15	7.7	27.2	2	0.1183	0.1551	(b)
SANDUSKY	N-079	473669D	473669D MT. PLEASANT RD.	Gate	1,870	2	20	7.7	27.2	0	0.0177	0.0290	
SANDUSKY	04-N	473671E	CR. 302	Passive	400		20	7.7	27.2	0	0.0489	0.0752	
SANDUSKY	N-079	473672L		Flasher	1,390	2	50	7.7	27.2	-	0.0760	0.1066	
SANDUSKY	620-N	473673T	CR 292	Passive	330		50	7.7	27.2	-	0.1264	0.1745	0.0308
SANDUSKY	N-079	473678C	_	Passive	140		50	7.7	27.2	0	0.0413	0.0658	
SANDUSKY	N-079	473679J	COBLEY RD	Passive	120		50	7.7	27.2	0	0.0396	0.0635	
SANDUSKY	N-079	473680D CR175	CR175	Gate	710		50	7.7	27.2	0	0.0170	0.0302	
SANDUSKY	N-079	473681K	_	Passive	250	2	50	7.7	27.2	0	0.0483	0.0744	
SANDUSKY	N-079	473683Y	EAST ST	Passive	410		30	7.7	27.2	0	0.0493	0.0756	
SANDUSKY	N-079	473684F	DUANE ST	Flasher	1,800		30	7.7	27.2	0	0.0292	0.0470	
SANDUSKY	620-N	473685M	473685M CHURCH ST	Flasher	610	2	30	7.7	27.2	0	0.0202	0.0344	
SANDUSKY	N-079	473686U	MAPLE ST.	Flasher	3,180		30	7.7	27.2	0	0.0349	0.0546	
SANDUSKY	N-079	473687B		Flasher	7,230		30	7.7	27.2	0	0.0444	0.0660	
SANDUSKY	N-079	473688H	VINE ST.	Flasher	830		30	7.7	27.2	0	0.0225	0.0377	
SANDUSKY	N-079	473690J	\neg	Gate	720		30	7.7	27.2	-	0.0502	0.0659	
SANDUSKY	N-079	473691R		Passive	250		30	7.7	27.2	0	0.0432	0.0682	
SANDUSKY	N-079	473692X	AMANDA ST	Flasher	1,230	2	30	7.7	27.2	0	0.0257	0.0423	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
						Number of				Relevant			Post
	Rail I ine			Warning		Roadway	Maximim	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRAID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acq	History	Acquisition	Acquisition	Mitigation
SANDUSKY	N-079	473693E	SPRING ST.	Gate	1,280	2	30	7.7	27.2	0	0.0151	0.0249	
SANDUSKY	04-N	473696A	473696A WOODLAND	Flasher	4,220	2	50	1.7	27.2	0	0.0380	0.0585	
SANDUSKY	04-N	473697G	CR 236	Passive	740	2	50	7.7	27.2	0	0.0631	6060'0	
SANDUSKY	N-079	473698N	CR 224	Passive	20	2	50	L'L	27.2	0	0.0307	0.0514	
SANDUSKY	04-01	473700M CR 220	CR 220	Passive	06	2	50	L'L	27.2	0	0.0365	0.0594	
SANDUSKY	N-079	473702B	CR 212	Passive	250	2	50	1.7	27.2	0	0.0483	0.0744	
SANDUSKY	620-N	473703H	E STATE ST	Flasher	1,350	2	50	7.7	27.2	0	0.0265	0.0434	
SANDUSKY	N-079	473704P	CR 198	Gate	740	2	50	7.7	27.2	-	0.0503	0.0661	
SANDUSKY	N-079	473705W	473705W FINEFROCK RD	Gate	670	2	50	7.7	27.2	2	0.0868	0.1091	
SANDUSKY	020-N	473706D	SMITH RD	Gate	1,240	2	50	7.7	27.2	0	0.0149	0.0247	
SANDUSKY	620-N	473707K	BUCHANAN ST	Flasher	2,140	2	40	7.7	27.2	0	0.0308	0.0493	
SANDUSKY	6L0-N	473709Y	HAYES AVE	Gate	2,743	4	30	7.7	27.2	0	0.0233	0.0369	
SANDUSKY	640-N	473711A	STATE	Gate	19,380	4	30	1.7	27.2	0	0.0365	0.0541	
SANDUSKY	6/0-N	473716J	NORTH ST	Passive	08	2	35	1.7	27.2	-	0.0908	0.1293	
SANDUSKY	04-N	473717R	SAND ST	Passive	70	2	35	1.7	27.2	0	0.0309	0.0518	
SANDUSKY	620-N	473719E	PORT CLINTON (SR 53)	Gate	2,710	2	35	L'L	27.2	0	0.0183	0.0297	
SANDUSKY	020-N	473726P	FANGBONER ROAD	Passive	210	2	50	7.7	27.2	1	0.1160	0.1622	0.0260
SANDUSKY	N-079	473728D	CR. 89	Passive	540	2	50	7.7	27.2	0	0.0586	0.0861	
SANDUSKY	N-079	473730E	LINDSEY RD	Passive	50	2	50	7.7	27.2	0	0.0184	0.0329	
SANDUSKY	620-N	473731L	SR. 19	Flasher	3,470	2	50	7.7	27.2	0	0.0358	0.0558	
SANDUSKY	620-N	473734G	CR127	Passive	170	2	50	7.7	27.2	0	0.0436	9890.0	
SANDUSKY	6L0-N	473739R	CR 143	Passive	80	2	50	7.7	27.2	0	0.0353	0.0578	
SANDUSKY	620-N	473740K	CR 153	Passive	130	2	50	7.7	27.2	0	0.0405	0.0647	
SANDUSKY	020-N	473742Y	CR 89	Passive	20	2	50	7.7	27.2	0	0.0184	0.0329	
SENECA	C-070	228770F	TR 240	Passive	06	2	50	17.8	27.4	0	0.0510	0.0596	
SENECA	C-070	228772U	CO000000	Passive	310	2	50	17.8	27.4	0	0.0683	0.0778	
SENECA	C-070	228773B	TWP 0560	Passive	50	2	50	17.8	27.4	1	0.1136	0.1281	
SENECA	C-070	228774H	MAIN STREET	Passive	180	2	50	17.8	27.4	1	0.1442	0.1609	0.0256
SENECA	C-070	228775P	TWP 0960	Passive	50	2	50	17.8	27.4	0	0.0448	0.0529	
SENECA	C-070	228776W	TWP 0100	Passive	50	2	50	17.8	27.4	0	0.0448	0.0529	
SENECA	C-070	228778K	050 2240	Gate	3,530	2	50	17.8	27.4	_	0.0769	0.0854	
SENECA	C-070	228779S	TWP 0108	Passive	08	2	50	17.8	27.4	0	0.0507	0.0593	
SENECA	C-070	228780L	TWP 0180	Passive	200	2	50	17.8	27.4	-	0.1469	0.1638	0.0151
SENECA	C-070	228781T	TWP 0112	Passive	350	2	50	17.8	27.4	0	0.0701	0.0797	
SENECA	C-070	228784N	228784N COLUMBUS AVE	Gate	1,270	2	35	17.8	27.4	0	0.0240	0.0283	
SENECA	C-070	228786C	NORTH STREET	Gate	1,070	2	35	17.8	27.4	0	0.0274	0.0327	
SENECA	C-070	228787J	FREMONT STREET	Gate	1,900		35	17.8	27.4	0	0.0265	0.0310	
SENECA	C-070	228788R	228788R SANDUSKY STREET	Gate	1,610	2	35	17.8	27.4	0	0.0254	0.0299	
SENECA	C-070	228789X	228789X HIGH STREET	Gate	820	2	35	17.8	27.4	-	0.0657	0.0728	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acc	History	Acquisition	Acquisition	Mitigation
SENECA	C-075	142149F	TR 1046	Passive	100	2	09	32.5	54.0	0	0.0682	0.0795	
SENECA	C-075	142154C	SANDUSKY COLUMBIA	Gate	3,360	2	09	32.5	54.0		0.0944	0.1066	
SENECA	C-075	142155J	TR 81G	Passive	250	2	09	32.5	54.0	0	0.0820	0.0934	
SENECA	C-075	142160F	TR 106	Passive	10	2	09	32.5	54.0	0	0.0630	0.0741	
SENECA	C-075	142161M	TR 79N	Passive	10	2	09	32.5	54.0	0	0.0630	0.0741	
SENECA	C-075	142164H	TR 181	Passive	09	2	09	32.5	54.0	0	0.0608	0.0718	
SENECA	C-075	142165P	MUD ROAD	Passive	20	2	09	32.5	54.0	0	0.0381	0.0468	
SENECA	C-075	142166W	142166W LIBERTY ST. (TR 181D)	Gate	160	2	09	32.5	54.0	1	0.0599	0.0673	
SENECA	C-075	142169S	142169S BROADWAY STREET	Passive	20	2	09	32.5	54.0	0	0.0582	0.0690	
SENECA	C-075	142170L	KILBOURN STREET	Gate	1,190	2	09	32.5	54.0	0	0.0298	0.0357	
SENECA	C-075	142172A	CR 43	Passive	150	2	09	32.5	54.0	0	0.0743	0.0857	
SENECA	C-075	142177J	CR 17	Passive	08	2	09	32.5	54.0	0	0.0649	0.0761	
SENECA	C-075	142178R	142178R GILLICK ROAD	Passive	110	2	09	32.5	54.0	1	0.1582	0.1786	0.0185(a)
SENECA	C-075	142179X	MORRISON ROAD	Passive	300	2	09	32.5	54.0	-	0.1856	0.2059	0.0268(a)
SENECA	C-075	142180S	TR 153	Gate	1,050	2	09	32.5	54.0	0	0.0290	0.0348	
SENECA	C-075	142181Y		Passive	540	2	09	32.5	54.0	1	0.2016	0.2213	0.0332(a)
SENECA	C-075	142183M	142183M PERRY ST	Gate	3,249	2	- 09	32.5	54.0	0	0.0372	0.0440	
SENECA	C-075	142184U	MARKET ST	Gate	3,899	2	09	32.5	54.0	0	0.0387	0.0456	
SENECA	C-075	142185B	142185B CLINTON AVENUE	Flasher	437	4	35	32.5	54.0	0	0.0494	0.0582	
SENECA	C-075	142189D	NORTH MONROE	Gate	418	2	35	32.5	54.0	0	0.0233	0.0283	
SENECA	C-075	142193T	NELSON ST	Gate	1,710	2	09	32.5	54.0	0	0.0324	0.0386	
SENECA	C-075	142195G	TR 121A	Passive	260	2	09	32.5	54.0	0	0.0826	0.0940	
SENECA	C-075	142198C	TR 31	Passive	50	2	09	32.5	54.0	0	0.0582	0.0690	
SENECA	C-075	142200B	TR 109Q	Gate	280	2	09	32.5	54.0	0	0.0288	0.0361	
SENECA	C-075	142206S	BEECH ST	Gate	1,630	2	09	32.5	54.0	0	0.0320	0.0382	
SENECA	C-075	142210G	CR 101	Passive	120	2	09	32.5	54.0	0	0.0709	0.0823	
SENECA	C-075	142213C	CR 5	Passive	110	2	09	32.5	54.0	0	0.0696	0.0809	
SENECA	C-075	142215R	TR 57	Passive	20	2	09	32.5	54.0	0	0.0582	0.0690	
SENECA	C-075	142216X	TR 57	Passive	09	2	09	32.5	54.0	0	0.0608	0.0718	
SENECA	C-075	142230T	TR 43	Passive	70	2	09	32.5	54.0	0	0.0630	0.0741	
SENECA	C-075	142232G	COLUMBUS AVENUE	Gate	2,750	2	09	32.5	54.0	0	0.0359	0.0426	
SENECA	C-075	142233N	LEWIS ST	Passive	100	2	09	32.5	54.0	0	0.0682	0.0795	
SENECA	C-075	142234V	POPLAR ST	Gate	1,900	2	09	32.5	54.0	1	0.0860	0.0973	
SENECA	C-075	142235C		Gate	2,290	2	09	32.5	54.0	0	0.0342	0.0407	
SENECA	N-071	4815953	TWP 44	Passive	06	2	09	26.0	34.5	0	0.0606	0.0667	
SENECA	N-071	481599L	C 8	Passive	120	2	09	26.0	34.5	0	0.0648	0.0709	
SENECA	N-071	481602S	CENTER SCHOOL	Passive	100	2	09	26.0	34.5	0	0.0621	0.0682	
SENECA	N-071	481603Y	TIFFIN	Gate	770	2	09	26.0	34.5	0	0.0276	0.0312	
SENECA	N-071	481604F	TWP 88	Passive	110	2	09	26.0	34.5	0	0.0635	0.0696	

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
SENECA	N-071	481606U	US 224	Gate	5,270	2	09	26.0	34.5	0	0.0464	0.0522	
SENECA	N-071	481607B	LEMON ST.	Gate	470	2	09	26.0	34.5	0	0.0267	0.0305	
SENECA	N-071	481610J	TWP 104	Passive	160	2	09	26.0	34.5	0	0.0690	0.0753	
SENECA	N-071	481614L	4 & SENECA CO 36	Flasher	3,330	2	09	26.0	34.5	0	0.0540	0.0589	
SENECA	N-071	481616A	TWP 8	Passive	110	2	09	26.0	34.5	0	0.0635	9690.0	
SENECA	N-071	481617G SR162	SR162	Gate	200	2	09	26.0	34.5	0	0.0300	0.0342	
SENECA	N-071	481618N	TWP 122	Passive	20	2	09	26.0	34.5	0	0.0526	0.0582	
SENECA	N-071	481619V	TWP 124	Passive	50	2	09	26.0	34.5	1	0.1276	0.1378	
SENECA	N-071	481620P	T-126	Passive	50	2	09	26.0	34.5	0	0.0526	0.0582	
SENECA	N-071	481621W	481621W SENECA CO 24	Passive	06	2	09	26.0	34.5	0	0.0606	0.0667	
SENECA	N-071	481622D T-136	T-136	Passive	20	2	09	26.0	34.5	0	0.0526	0.0582	
SENECA	N-071	481623K	CO-46	Passive	270	2	09	26.0	34.5	0	0.0769	0.0832	
SENECA	N-071		CO 32	Passive	100	2	09	26.0	34.5	0	0.0621	0.0682	
SENECA	N-071		T-178	Passive	330	2	09	0.92	34.5	0	0.0799	0.0863	
SENECA	N-071	481627M T-199	T-199	Passive	50	2	09	0.92	34.5	0	0.0526	0.0582	
SENECA	N-071	481630V MAIN	MAIN	Flasher	950	2	09	0.92	34.5	1	0.0966	0.1042	
SENECA	N-071	481631C CO-34	CO-34	Passive	710	2	09	26.0	34.5	0	0.0916	0.0978	
SENECA	N-071	481634X	COUNTY LINE ROAD	Gate	230	2	09	26.0	34.5	0	0.0197	0.0224	
TRUMBULL	N-082	503129T	WAKEFIELD CRK RD	Passive	06	2	40	11.7	23.8	0	0.0402	0.0530	
TRUMBULL	N-082	503130M SR 87	SR 87	Gate	1,180	2	40	11.7	23.8	0	0.0172	0.0228	
TRUMBULL	N-082	503131U	GARDNER BARCLAY	Passive	220	2	40	11.7	23.8	0	0.0511	0.0655	
TRUMBULL	N-082	503132B	SR 88	Gate	2,050	2	40	11.7	23.8	0	0.0198	0.0260	
TRUMBULL	N-082	503133H	503133H BRADLEY-BROWNLEE	Gate	530	2	40	11.7	23.8	0	0.0174	0.0239	
TRUMBULL	N-082	503134P	503134P CORLAND HULL RD	Passive	120	2	40	11.7	23.8	1	0.1113	0.1354	
TRUMBULL	N-082	503135W	503135W DAVIS PECK RD	Passive	280	2	40	11.7	23.8	0	0.0543	0.0691	
TRUMBULL	N-082	503136D	503136D FISHER CORINTH RD	Passive	120	2	40	11.7	23.8	0	0.0435	0.0569	
TRUMBULL	N-082	503138S	SR 305	Gate	2,150	2	40	11.7	23.8	0	0.0200	0.0263	
TRUMBULL	N-082	544717N	544717N LOGAN GATE RD	Flasher	2,165	2	40	11.7	23.8	0	0.0414	0.0529	
TRUMBULL	N-082	544718V SR 304	SR 304	Gate	3,438	2	40	11.7	23.8	0	0.0225	0.0294	
TRUMBULL	N-082	544719C	544719C LEWIS-SEIFERT	Flasher	096	2	40	11.7	23.8	0	0.0279	0.0370	
TRUMBULL	N-082	544720W	544720W BELL WICK RD	Flasher	1,012	2	40	11.7	23.8	0	0.0284	0.0376	
TRUMBULL	N-082	544721D	544721D MT. EVERT	Gate	069	2	40	11.7	23.8	0	0.0171	0.0227	
TRUMBULL	N-082	544729H	544729H WARREN SHARON RD	Flasher	2,925	2	40	11.7	23.8	2	0.1581	0.1873	0.0307(a)
TRUMBULL	N-082	544731J	544731J AMY BOIL RD	Passive	20	2	40	11.7	23.8	-	0.0700	0.0845	
TRUMBULL	N-082	544732R	544732R KINGS GRAVE RD	Gate	550	2	40	11.7	23.8	0	0.0141	0.0188	
VAN WERT	C-062	532746P	532746P CANAL ST.	Flasher	820	2	40	5.9	13.9	0	0.0234	0.0334	
VAN WERT	C-062	532747W	532747W JEFFERSON ST	Flasher	1,200	2	40	5.9	13.9	0	0.0228	0.0325	
VAN WERT	C-062	532748D	532748D S. CLAY ST	Gate	1,050	2	40	5.9	13.9	0	0.0128	0.0182	
VAN WERT	C-062	532749K	532749K S BREDICK ST.	Flasher	1,490	2	40	5.9	13.9	0	0.0245	0.0348	

								Freight	Freight Trains		Acc	Accidents Per Year	ar
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FKA IID	Street Name	Device	3 \$30	Lanes	peeds	Acquisinon 5 0	Acquisition	HISTORY	Acquisition	O 0227	Mitigation
VAN WERT	C-062	532751L		Passive	180	7 7	9	5.9	13.9	0	0.0375	0.0526	
VAN WERT	C-062	532754G	BOCKEY RD.	Passive	200	2	40	5.9	13.9	0	0.0387	0.0540	
VAN WERT	C-062	532755N	CONVERSE RD.	Passive	130	2	40	5.9	13.9	0	0.0341	0.0483	
VAN WERT	C-062	532756V	MIDDLEPOINT RD.	Passive	280	2	40	5.9	13.9	0	0.0425	0.0586	
VAN WERT	C-062	532757C	MAIN ST	Flasher	170	2	40	5.9	13.9	0	0.0112	0.0167	
VAN WERT	C-062	532758J	ADAMS ST	Flasher	086	2	40	5.9	13.9	0	0.0212	0.0305	
VAN WERT	C-062	532759R	MASON ST	Flasher	340	2	40	5.9	13.9	0	0.0145	0.0214	
VAN WERT	C-062			Passive	410	2	40	5.9	13.9	0	0.0471	0.0640	
VAN WERT	C-062	532761S	RINGWALD RD.	Passive	160	2	40	5.9	13.9	0	0.0363	0.0510	
VAN WERT	C-062		CHENOWITH RD.	Passive	06	2	40	5.9	13.9	0	0.0306	0.0438	
VAN WERT	C-062	532763F	GAMBLE RD.	Passive	08	2	40	5.9	13.9	0	0.0295	0.0424	
VAN WERT	C-062	532764M	HOAGLIN CENTER RD	Passive	260	2	40	5.9	13.9	0	0.0416	0.0575	
VAN WERT	C-062	532766B	GILLAND RD	Passive	09	2	40	5.9	13.9	0	0.0270	0.0392	
LAN WERT	C-062	532767H	532767H MENDON RD.	Passive	410	2	40	5.9	13.9	0	0.0471	0.0640	
VAN WERT	C-062	532768P	WAYNE ST	Gate	3,510	2	40	5.9	13.9	0	0.0176	0.0246	
VAN WERT	C-062	S32769W	532769W VINE ST	Flasher	230	2	40	5.9	13.9	0	0.0126	0.0187	
VAN WERT	C-062	532770R	FRANKLIN ST	Flasher	1,050	2	40	5.9	13.9	0	0.0217	0.0312	
VAN WERT	C-062	532771X	CHESTNUT ST.	Flasher	420	2	40	5.9	13.9	0	0.0157	0.0230	
VAN WERT	C-062	532772E	_	Flasher	1,010	2	40	5.9	13.9	0	0.0214	0.0308	
VAN WERT	C-062	532773L	N. TYLER ST	Flasher	290	2	40	5.9	13.9	0	0.0177	0.0258	
VAN WERT	C-062	532774T	HARRISON ST.	Flasher	620	2	40	5.9	13.9	0	0.0181	0.0263	
VAN WERT	C-062	532775A	CHERRY ST	Passive	200	2	40	5.9	13.9	0	0.0540	0.0719	
VAN WERT	C-062	532776G	WALNUT ST	Flasher	1,150	2	40	5.9	13.9	0	0.0224	0.0321	
VAN WERT	C-062	532778V	MARKET ST.	Flasher	2,310	2	40	5.9	13.9	0	0.0441	0.0686	
VAN WERT	C-062	532779C		Gate	7,800	2	40	5.9	13.9	0	0.0215	0.0296	
VAN WERT	C-062	532780W		Flasher	1,710	2	40	5.9	13.9	0	0.0257	0.0363	
VAN WERT	C-062	532781D	N. SHANNON ST	Flasher	100	2	40	5.9	13.9	0	0.0092	0.0138	
VAN WERT	C-062	532782K		Flasher	1,030	2	40	5.9	13.9	0	0.0216	0.0310	
VAN WERT	C-062	532783S	BURT ST.	Flasher	2,450	2	40	5.9	13.9		0.0798	0.1004	
VAN WERT	C-062	532784Y		Flasher	029	2	40	5.9	13.9	0	0.0186	0.0269	
VAN WERT	C-062	532785F	JOHN BROWN RD.	Gate	1,980	2	40	5.9	13.9	0	0.0154	0.0218	
VAN WERT	C-062	532788B	LIBERTY UNION RD.	Passive	130	2	40	5.9	13.9	0	0.0341	0.0483	
VAN WERT	C-062	532789H		Passive	160	2	40	5.9	13.9	0	0.0363	0.0510	
VAN WERT	C-062	532790C		Passive	09	2	40	5.9	13.9	0	0.0270	0.0392	
VAN WERT	C-062	532791J	ALT RT. US 30	Gate	1,590	2	40	5.9	13.9	0	0.0143	0.0202	
VAN WERT	C-062	532792R		Passive	20	2	40	5.9	13.9	0	0.0256	0.0372	
VAN WERT	C-062	532794E		Gate	1,650	2	40	5.9	13.9	0	0.0144	0.0204	
VAN WERT	C-062	532795L	TULLY ST.	Gate	1,070	2	40	5.9	13.9	0	0.0129	0.0183	

Page 20 of 24

								Freigh	Freight Trains		Acc	Accidents Per Year	ear
						N.m.hon of				Dolovant			Post
	 Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
VAN WERT	C-062		532797A PAYNE RD	Passive	130	2	40	5.9	13.9	0	0.0341	0.0483	
VAN WERT	C-062	532798G	SHANER CR	Passive	50	2	40	5.9	13.9	0	0.0151	0.0228	
VAN WERT	C-062	532799N	LARE CR	Passive	80	2	40	5.9	13.9	0	0.0295	0.0424	
VAN WERT	C-062	532800F	MENTZER ROAD	Passive	90	2	40	5.9	13.9	0	0.0306	0.0438	
VAN WERT	C-062	532802U	532802U MENTZER CURCH CR.	Passive	20	2	40	5.9	13.9	0	0.0256	0.0372	
VAN WERT	C-062	532803B	CLEM CR-SPONSELLR	Passive	20	2	40	5.9	13.9	0	0.0256	0.0372	
VAN WERT	C-062	532804H	DIOXON CAVETT	Passive	110	2	40	5.9	13.9	0	0.0325	0.0463	
WOOD	C-065	155763R	155763R CYGNET RD	Passive	50	2	50	9.0	14.2	0	9600.0	0.0403	
WOOD	C-065	155764X		Passive	50	2	20	9.0	14.2	0	9600.0	0.0403	
WOOD	C-065		BAYS RD.	Passive	88	2	20	9.0	14.2	0	0.0117	0.0470	
WOOD	C-065	155767T	CUSTAR RD.	Flasher	230	2	50	9.0	14.2	0	0.0043	0.0190	
WOOD	C-065	155768A	155768A MAIN ST.	Flasher	1,380	2	50	9.0	14.2	0	0.0086	0.0345	
WOOD	C-065	155770B	155770B DEFIANCE	Flasher	360	2	50	9.0	14.2	0	0.0051	0.0222	
WOOD	C-065	155771H	155771H RAILROAD ST.	Passive	100	2	50	9.0	14.2	0	0.0122	0.0486	
WOOD	C-065	155772P	SOUTH ST.	Passive	50	2	50	9.0	14.2	0	9600.0	0.0403	
WOOD	C-065	155773W	155773W SUGAR ST.	Passive	110	2	50	9.0	14.2	0	0.0126	0.0498	
WOOD	C-065	155774D	155774D MILTON RD	Passive	110	2	50	9.0	14.2	0	0.0126	0.0498	
WOOD	C-065	155775K	MAPLEWOOD RD.	Passive	50	2	50	9.0	14.2	0	9600'0	0.0403	
WOOD	C-065	155776S	155776S PORTAGE RD.	Passive	120	2	50	9.0	14.2	0	0.0130	0.0509	
WOOD	C-065	155778F	WESTON RD.	Passive	268	2	20	9.0	14.2	0	0.0170	0.0619	
WOOD	C-065	155779M	TAYLOR	Flasher	570	2	50	9.0	14.2	0	0.0061	0.0260	
WOOD	C-065	155780G	MAIN	Flasher	1,260	2	20	9.0	14.2	0	0.0083	0.0335	
WOOD	C-065	155781N	WALNUT ST.	Flasher	650	2	50	9.0	14.2	0	0.0065	0.0271	
WOOD	C-065	155782V	OAK ST	Passive	710	2	50	9.0	14.2	0	0.0201	0.0510	
WOOD	C-065	155784J	EULER RD.	Flasher	130	2	20	9.0	14.2	0	0.0034	0.0155	
WOOD	C-065		OTSEGO RD	Gate	1,660	2	50	9.0	14.2	0	0.0058	0.0209	
WOOD	C-065	155788L	WILLOW RD	Passive	20	2	20	9.0	14.2	0	9600.0	0.0403	
WOOD	C-065	155789T	RANGE LINE RD.	Passive	623	2	50	9.0	14.2	0	0.0224	0.0744	0.0278
WOOD	C-065	155790M	POE RD.	Passive	240	2	20	9.0	14.2	0	0.0164	0.0603	
WOOD	C-065	155791U	LONG JUDSON RD.	Passive	80	2	50	9.0	14.2	0	0.0113	0.0458	
WOOD	C-065	155792B	TULLER RD.	Passive	160	2	50	9.0	14.2	0	0.0143	0.0547	
WOOD	C-065	155793H	TULLER RD.	Passive	09		50	9.0	14.2	0	0.0103	0.0424	
WOOD	C-065	155794P	KELLOGG RD	Passive	1,510		50	9.0	14.2	0	0.0295	0.0878	0.0218
WOOD	C-065	US5795W	155795W LINCOLN ST.	Passive	126	2	50	9.0	14.2	0	0.0132	0.0516	
WOOD	C-065	155796D	WALL ST. & BROAD	Flasher	280	2	50	9.0	14.2	0	0.0046	0.0204	
WOOD	C-065	155797K	MAIN	Flasher	480	2	50	9.0	14.2	0	0.0057	0.0245	
WOOD	C-065	155798S		Passive	540	2	50	9.0	14.2	0	0.0214	0.0722	0.0263
WOOD	C-065	155799Y	TONTOGANY RD	Passive	1,612	2	20	9.0	14.2	0	0.0301	0.0888	0.0394
WOOD	C-065	155800R	155800R HANNAH	Passive	70	2	50	9.0	14.2	0	0.0108	0.0442	

								Freight	Freight Trains		Acc	Accidents Per Year	ar
***************************************						Number of				Relevant			Post Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
WOOD	C-065	155801X		Passive	110	2	50	9.0	14.2	0	0.0126	0.0498	
WOOD	C-065	155804T	MIDDLETOWN PIKE	Passive	069	2	50	9.0	14.2	_	0.0746	0.1696	0.0288
WOOD	C-065	155805A	FINDLAY ST.	Flasher	2,010	2	50	9.0	14.2	0	0.0100	0.0387	
WOOD	C-065	155806G	MAIN ST.	Flasher	240	2	50	9.0	14.2	0	0.0044	0.0193	
WOOD	C-065	155807N	CHURCH RD.	Passive	130	2	50	9.0	14.2	0	0.0134	0.0520	
WOOD	C-065	155808V	KINGS RD	Passive	220	2	50	9.0	14.2	0	0.0159	0.0591	
WOOD	C-065	155809C	OVITT RD	Passive	150	2	50	9.0	14.2	0	0.0140	0.0539	
WOOD	C-065	155810W	155810W REITZ RD	Passive	310	2	50	9.0	14.2	0	0.0179	0.0640	
WOOD	C-065	155811D		Passive	120	2	50	9.0	14.2	0	0.0130	0.0509	
WOOD	C-065	155812K	FIRE POINT RD.	Passive	029	2	50	9.0	14.2	0	0.0229	0.0755	0.0285
WOOD	C-065	155814Y	ROACHTON RD.	Passive	2,239	2	50	9.0	14.2	0	0.0332	0.0938	0.0445
WOOD	C-065	155815F	FORT MEIGS RD	Passive	430	2	50	9.0	14.2	0	0.0199	0.0688	
WOOD	C-065	155818B	ECKEL JCT RD	Passive	1,160	2	50	9.0	14.2	0	0.0272	0.0838	0.0349
WOOD	C-065	155819H	ECKEL RD	Passive	570	2	50	9.0	14.2	0	0.0218	0.0730	0.0269
GOOM L	C-065	155820C	ECKEL RD	Passive	160	2	50	9.0	14.2	0	0.0239	0.0774	0.0299
000M 58	C-065	155821J	W. BOUNDARY ST.	Gate	12,870	4	25	9.0	14.2	_	0.0506	0.1015	(
WOOD	C-065	155822R	MULBERRY ST.	Passive	340	2	25	9.0	14.2	0	0.0155	0.0579	
WOOD	C-065	155823X		Gate	6,288	2	25	9.0	14.2	0	0.0084	0.0288	
WOOD	C-065	155825L	CHERRY ST	Passive	360	2	25	9.0	14.2	0	0.0158	0.0587	
WOOD	C-065	155827A	WALNUT ST	Flasher	1,690	2	25	9.0	14.2	0	0.0093	0.0367	
WOOD	C-065	155829N	LOUISIANA AVE.	Gate	7,170	4	25	9.0	14.2	0	0.0119	0.0401	
WOOD	C-065	155830H	ELM ST.	Flasher	3,750	2	25	9.0	14.2	0	0.0126	0.0462	
WOOD	C-065	155831P	LOCUST ST	Flasher	1,200	2	25	9.0	14.2	0	0.0082	0.0330	
WOOD	C-065	155832W	155832W MAPLE ST.	Passive	370	2	25	9.0	14.2	0	0.0159	0.0591	
WOOD	C-065	155833D	HICKORY ST	Passive	580	2	25	9.0	14.2	0	0.0185	0.0656	
WOOD	C-065	155834K	E.BOUNDARY ST.	Flasher	4,420	2	25	9.0	14.2	0	0.0134	0.0483	
WOOD	C-065	155835S	HUFFORD RD	Passive	069	2	30	9.0	14.2	0	0.0203	0.0697	
WOOD	C-065	155837F	WHITE RD	Passive	630	2	30	9.0	14.2	0	0.0197	0.0683	
WOOD	C-065	155838M	FORD RD.	Passive	1,960	2	30	9.0	14.2	0	0.0282	0.0855	0.0206
WOOD	C-065	155839U	BATES RD	Passive	940	2	30	9.0	14.2	0	0.0224	0.0743	0.0157
WOOD	C-065	155840N	SCHRICK RD.	Passive	1,370	2	20	9.0	14.2	0	0.0236	0.0768	0.0295
WOOD	C-065	155841V	LIME CITY RD	Gate	4,060	2	20	9.0	14.2	0	0.0074	0.0260	
WOOD	C-065	155842C	GLENWOOD RD.	Flasher	1,460	2	20	9.0	14.2	0	0.0088	0.0349	
WOOD	N-077	509417H	MAIN	Gate	1,110	2	09	48.0	61.5	0	0.0507	0.0566	
WOOD	V-077	509418P	CHERRY	Gate	310	2	09	48.0	61.5	0	0.0335	0.0374	
WOOD	N-077	509419W	509419W BRADNER	Flasher	830	2	09	48.0	61.5	0	0.0525	0.0568	
WOOD	V-077	509420R		Passive	366	2	09	48.0	61.5	0	0.0960	0.1014	
WOOD	V-077	509421X	MATTHEWS RD	Passive	77	2	09	48.0	61.5	0	0.0724	0.0780	
WOOD	N-077	509422E	509422E PEMBERVILLE	Gate	1,141	2	09	48.0	61.5	0	0.0337	0.0367	

Rail Line Rail Line Warning WOOD N-077 5094231. WALBRIDGE Gate WOOD N-077 5094247. LAMOYNE RD Gate WOOD N-077 5094247. LAMOYNE RD Gate WOOD N-077 509854D WALBS Gate WOOD N-077 509855K DROUILLARD Gate WYANDOT C-062 532601D AVERS ST Flasher WYANDOT C-062 532602K MALEY-MORISON Passive WYANDOT C-062 532603B BOUGI-AS RD Passive WYANDOT C-062 532603B BOUGI-AS RD Passive WYANDOT C-062 532604B BOUGI-AS RD Passive WYANDOT C-062 532610G ROCK RUN CROSSING Passive WYANDOT C-062 532610G SECKRRING RD Passive WYANDOT C-062 532610G SECKRRING RD Passive WYANDOT C-062 532620A <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>J4</th>									J4
County Segment FRA ID Street Name WOOD N-077 509423L WALBRIDGE WOOD N-077 509424T LAMOYNE RD WOOD N-077 509824D WALES WOOD N-077 509824D WALES WOOD N-077 509825K DROUILLARD WYANDOT C-062 532601B RADROT LINE ROAD WYANDOT C-062 532602K MALEY-MORRISON WYANDOT C-062 532603K BALEY-MORRISON WYANDOT C-062 532606K EDENVILLE ROAD WYANDOT C-062 532608B DOUGLAS RD. WYANDOT C-062 532608B SANDUSKY ST WYANDOT C-062 532618G S.ANDUSKY ST WYANDOT C-062 532618G S.ANDUSKY ST WYANDOT C-062 532624K S.WARNDL ST WYANDOT C-062 532628 WHITE RD WYANDOT C-062 53263D WIGHET RD									Fost
County Segment PRA ID Segment Street Name WOOD N-077 509423L WALBRIDGE WOOD N-077 509424T LAMOYNE RD WOOD N-077 509854D WALBRIDGE WOOD N-077 509854D WALBR WOOD N-077 509855K DROUTY LINE ROAD WYANDOT C-062 532601B AYERS ST WYANDOT C-062 532603B ALLEY-MORRISON WYANDOT C-062 532608B DOUGLAS RD WYANDOT C-062 532608B DOUGLAS RD WYANDOT C-062 532610A BENEWYLLE ROAD WYANDOT C-062 532610A BENEWYLL RD WYANDOT C-062 532619A SANDUSKY ST WYANDOT C-062 532620B SEVENTH ST WYANDOT C-062 532624K SWARDOLE ST WYANDOT C-062 532624K SWARDOLE ST WYANDOT C-062 532624 WHITE RD	Woming	Number of	Maximum	Dro	Doet	Relevant	Dro	Post	Acquisition
WOOD N-077 5094231 WALBRIDGE WOOD N-077 509424T LAMOYNE RD WOOD N-077 509854D WALES WOOD N-077 509854D WALES WOOD N-077 509855K DROUILARD WYANDOT C-062 532601D AYERS ST WYANDOT C-062 532603K MALEY-MORRISON WYANDOT C-062 532608B DOUGIAS RD WYANDOT C-062 532608B DOUGIAS RD WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532610R S. SANDUSKY ST WYANDOT C-062 532619N S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532629V BUHTE RD WYANDOT C-062 532630N MIGRET RD WYANDOT C-062 532630N MIGRET RD	Device	ADT Lanes		Acquisition	Acq	History	Acquisition	Acquisition	Mitigation
WOOD N-077 509424T LAMOYNE RD WOOD N-077 509854D WALES WOOD N-077 509855K DROUILLARD WYANDOT C-062 532601D AYERS ST WYANDOT C-062 532605F GOODBREAD ST. WYANDOT C-062 532605F GOODBREAD ST. WYANDOT C-062 532605B DOUGLAS RD WYANDOT C-062 532608B DOUGLAS RD WYANDOT C-062 532608B DOUGLAS RD WYANDOT C-062 532619C ROCK RUN CROSSING WYANDOT C-062 532619D S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532623W WHITE RD WYANDOT C-062 532630N WIGRET RD WYANDOT C-062 532630N WIGRET RD <tr< th=""><th>Gate</th><th>6</th><th>09</th><th>48.0</th><th></th><th>0</th><th>0.0428</th><th>0.0463</th><th></th></tr<>	Gate	6	09	48.0		0	0.0428	0.0463	
WOOD N-077 509854D WALES WOOD N-077 509855K DROUILLARD WYANDOT C-062 532599E COUNTY LINE ROAD WYANDOT C-062 532602K MAIN ST WYANDOT C-062 532603F GOODBREAD ST WYANDOT C-062 532608H EDENVILLE ROAD WYANDOT C-062 532608H EDENVILLE ROAD WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532610A RESERVIOR RD WYANDOT C-062 532610A SANDUSKY ST WYANDOT C-062 532610A SANDUSKY ST WYANDOT C-062 532620H SENDUSKY ST WYANDOT C-062 532630 WILL RD WYANDOT C-062 532632 WILL RD <	Gate	2,650 2	09	48.0	61.5	0	0.0403	0.0437	
WOOD N-077 509855K DROUILLARD WYANDOT C-062 532599E COUNTY LINE ROAD WYANDOT C-062 532603K MAIN ST WYANDOT C-062 532603F GOODBREAD ST. WYANDOT C-062 532603F GOODBREAD ST. WYANDOT C-062 532608B DOUGLAS RD. WYANDOT C-062 532601C ROCK RUN CROSSING WYANDOT C-062 53261D ROCK RUN CROSSING WYANDOT C-062 53261D ROCK RUN CROSSING WYANDOT C-062 53261D RESERVIOR RD WYANDOT C-062 53262D SADIDUSKY ST WYANDOT C-062 53262D SEVENTH ST WYANDOT C-062 53262D SADIDUSKY ST WYANDOT C-062 53262A WHITE RD WYANDOT C-062 53262A WHITE RD WYANDOT C-062 53263A WILL RD WYANDOT C-062 53263B WILL RD	Gate	2,890 2	09	48.0	61.5	0	0.0409	0.0443	
WYANDOT C-062 532599E COUNTY LINE ROAD WYANDOT C-062 532601D AYERS ST WYANDOT C-062 532603K MAIN ST WYANDOT C-062 532604E EDENVILLE ROAD WYANDOT C-062 532604B EDENVILLE ROAD WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532610C SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532620K SENTH ST WYANDOT C-062 532620W WHITE RD WYANDOT C-062 532630 MIGRET RD WYANDOT C-062 532630 MIGRET RD WYANDOT C-062 532630	Gate	5,770 2	09	48.0	61.5	0	0.0469	0.0505	
WYANDOT C-062 532601D AYERS ST WYANDOT C-062 532602K MAIN ST WYANDOT C-062 532603B ALLEY-MORRISON WYANDOT C-062 532608B BOUGLAS RD WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532619A S. FIFTH ST WYANDOT C-062 532619B S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532622W EIGHTH ST WYANDOT C-062 532622W EIGHTH ST WYANDOT C-062 532623W BIGHET RD WYANDOT C-062 532630 MILL RD WYANDOT C-062 532630 MIGRET RD WYANDOT C-062 532630 MIGRET RD WYANDOT C-062 532630 MIGRET RD		80 2	50	5.9	13.9	0	0.0314	0.0449	
WYANDOT C-062 532602K MAIN ST WYANDOT C-062 532603S ALLEY-MORRISON WYANDOT C-062 532603E GOODBREAD ST. WYANDOT C-062 532608B DOUGLAS RD. WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532613A WILLIAMS CR. WYANDOT C-062 532619B SANDUSKY ST WYANDOT C-062 532619B SANDUSKY ST WYANDOT C-062 532619B SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532624K SWARPOLE ST WYANDOT C-062 532625 TOWNSHIP ROAD WYANDOT C-062 532630 WILL RD WYANDOT C-062 532630 WILL RD WYANDOT C-062 532630 WILL RD WYANDOT C-062 532634 WHITE RD WYANDOT C-062 532635 WAYANDOT	Flasher	200 2	50	5.9	13.9	0	0.0119	0.0178	
WYANDOT C-062 532603F GLLEY-MORRISON WYANDOT C-062 532606M EDENVILLE ROAD WYANDOT C-062 532606M EDENVILLE ROAD WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532613X WILLIAMS CR. WYANDOT C-062 532619N S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532623W EIGHTH ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532624W EVENTH ST WYANDOT C-062 532625W EIGHTH ST WYANDOT C-062 532625W EIGHTH ST WYANDOT C-062 532625W EIGHTH ST WYANDOT C-062 532635 TOWNSHIP ROAD WYANDOT C-062 532635 TOWNSHIP ROAD WYANDOT C-062 532635 KRAUS RD WYANDOT C-062 532633 RANDALER R	Flasher		50	5.9	13.9	0	0.0343	0.0469	
WYANDOT C-062 532605F GOODBREAD ST. WYANDOT C-062 532606M EDENVILLE ROAD WYANDOT C-062 532608B DOUGLAS RD. WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532613X WILLIAMS CR. WYANDOT C-062 532619A S.ANDUSKY ST WYANDOT C-062 532619N S.ANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532624K S.WARPOLE ST WYANDOT C-062 532629 WHITE RD WYANDOT C-062 532639 WUBLIC ALLEY WYANDOT C-062 532649U LILES CR. WYANDOT C-062 532649U LILES CR. <td>Passive</td> <td></td> <td>50</td> <td>5.9</td> <td>13.9</td> <td>0</td> <td>0.0273</td> <td>0.0395</td> <td></td>	Passive		50	5.9	13.9	0	0.0273	0.0395	
WYANDOT C-062 532606M EDENVILLE ROAD WYANDOT C-062 532608B DOUGLAS RD. WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532613X WILLIAMS CR. WYANDOT C-062 532619A S.ANDUSKY ST WYANDOT C-062 532619N S.ANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532624K S.WARPOLE ST WYANDOT C-062 532624K S.WARPOLE ST WYANDOT C-062 532639 WHITE RD WYANDOT C-062 532639 WHITE RD WYANDOT C-062 532639 WHILR RD WYANDOT C-062 532639 WUBLIC ALLEY WYANDOT C-062 532649 WILLS R	Passive	250 2	50	5.9	13.9	0	0.0436	0.0599	
WYANDOT C-062 532608B DOUGILAS RD. WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532613X WILLIAMS CR. WYANDOT C-062 532619A S. FIFTH ST WYANDOT C-062 532619N S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532625 TOWNSHIP ROAD WYANDOT C-062 532635 TOWNSHIP ROAD WYANDOT C-062 532635 WHITE RD WYANDOT C-062 532639 WILL RD WYANDOT C-062 532635 KRAUS RD WYANDOT C-062 532639 PUBLIC ALLEY WYANDOT C-062 532649 HULLES CR. WYANDOT C-062 532649 HULLES RD	Passive		50	5.9	13.9	0	0.0326	0.0464	
WYANDOT C-062 532610C ROCK RUN CROSSING WYANDOT C-062 532613X WILLIAMS CR. WYANDOT C-062 532617A RESERVIOR RD WYANDOT C-062 532619N S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532620K EIGHTH ST WYANDOT C-062 532620K EIGHTH ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532629 WHITE RD WYANDOT C-062 532639 WHITE RD WYANDOT C-062 532639 WHITE RD WYANDOT C-062 532639 WHILR RD WYANDOT C-062 532639 WAIL RD WYANDOT C-062 532639 WAIL RD WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B HELLER RD	Passive		50	5.9	13.9	0	0.0326	0.0464	
WYANDOT C-062 532613A WILLIAMS CR. WYANDOT C-062 532617A RESERVIOR RD WYANDOT C-062 532619N S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532620K EIGHTH ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532629K WHITE RD WYANDOT C-062 532639 WHITE RD WYANDOT C-062 532639 WHIL RD WYANDOT C-062 532639 WILL RD WYANDOT C-062 532639 WAIL RD WYANDOT C-062 532639 PUBLIC ALLEY WYANDOT C-062 532649 HELLER RD WYANDOT C-062 532649 HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B HELLER RD			50	5.9	13.9	0	0.0314	0.0449	
WYANDOT C-062 532617A RESERVIOR RD WYANDOT C-062 532618G S. FIFTH ST WYANDOT C-062 532620H SEANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532623W EIGHTH ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532624 S. WARPOLE ST WYANDOT C-062 532629 WHITE RD WYANDOT C-062 532630 WILL RD WYANDOT C-062 532639 WILL RD WYANDOT C-062 532639 PUBLIC ALLEY WYANDOT C-062 532639 PUBLIC ALLEY WYANDOT C-062 532649 LILES CR. WYANDOT C-062 532649 HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B WYANDOT	Passive	190 2	50	5.9	13.9	0	0.0404	0.0561	
WYANDOT C-062 532618G S. FIFTH ST WYANDOT C-062 532619N S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532622W EIGHTH ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532624 S. WARPOLE ST WYANDOT C-062 532629 WHITE RD WYANDOT C-062 532630 WHIL RD WYANDOT C-062 532630 WILL RD WYANDOT C-062 532639 WILL RD WYANDOT C-062 532639 PUBLIC ALLEY WYANDOT C-062 532649 PUBLIC ALLEY WYANDOT C-062 532640 LILES CR. WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B WYANDOT	Passive	340 2	40	5.9	13.9	0	0.0448	0.0613	
WYANDOT C-062 532619N S. SANDUSKY ST WYANDOT C-062 532620H SEVENTH ST WYANDOT C-062 532622W EIGHTH ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532625S TOWNSHIP ROAD WYANDOT C-062 532629V WHITE RD WYANDOT C-062 532639V WHILL RD WYANDOT C-062 532639V WHILL RD WYANDOT C-062 532639 MIGRET RD (CR 53) WYANDOT C-062 532639 MAIN ST. WYANDOT C-062 532639 PUBLIC ALLEY WYANDOT C-062 532649 HELLER RD WYANDOT C-062 532641B WYANDOT STREET WYANDOT C-070 228742C WYANDOT STREET	Flasher		40	5.9	13.9	0	0.0182	0.0264	
WYANDOT C-062 532620W EICHTH ST WYANDOT C-062 532622W EICHTH ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532626Y WHITE RD WYANDOT C-062 532630 WHILL RD WYANDOT C-062 532630 WILL RD WYANDOT C-062 532630 MIGRET RD (CR 53) WYANDOT C-062 532635 KRAUS RD WYANDOT C-062 532630 PUBLIC ALLEY WYANDOT C-062 532630 LILES CR. WYANDOT C-062 532640 LILES CR. WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-070 228737F TWPO 125 WYANDOT C-070 228740N SEARS WYANDOT C-070 228740N REARS WY	Gate	4,080 2	40	5.9	13.9	0	0.0182	0.0255	
WYANDOT C-062 532622W EIGHTH ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532624K S. WARPOLE ST WYANDOT C-062 532625Y WHITE RD WYANDOT C-062 532629U WHILL RD WYANDOT C-062 532639U WHILR RD WYANDOT C-062 532639I MIGRET RD (CR 53) WYANDOT C-062 532635X KRAUS RD WYANDOT C-062 532639A PUBLIC ALLEY WYANDOT C-062 532649B HELLER RD WYANDOT C-062 532649B HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-062 532641B HELLER RD WYANDOT C-070 228737F TWPO 125 WYANDOT C-070 228740N SEARS WYANDOT C-070 228741V TR 62 WYANDOT C-070 228741V TR 62 <t< td=""><td>Flasher</td><td></td><td>40</td><td>5.9</td><td>13.9</td><td>1</td><td>0.0734</td><td>0.0923</td><td></td></t<>	Flasher		40	5.9	13.9	1	0.0734	0.0923	
C-062 532623D HAZEL ST. C-062 532624K S. WARPOLE ST C-062 532625S TOWNSHIP ROAD C-062 532625V WHITE RD C-062 532629U WILL RD C-062 532630 MIGRET RD (CR 53) C-062 532630 MIGRET RD. C-062 53263SY KRAUS RD. C-062 53263SY KRAUS RD. C-062 532639 PUBLIC ALLEY C-062 532649U LILES CR. C-062 532649U HELLER RD C-062 532649U MISS. C-070 228737F TWPO 125 C-070 228737F TWPO 125 C-070 228740V SEARS C-070 228741V TR 65 C-070 228741V TR 65	Gate	4,350 2	40	5.9	13.9	0	0.0185	0.0259	
C-062 532624K S. WARPOLE ST C-062 532625S TOWNSHIP ROAD C-062 532626Y WHITE RD C-062 532629U WILL RD C-062 532630N MIGRET RD (CR 53) C-062 532630N MIGRET RD (CR 53) C-062 532635X KRAUS RD. C-062 532635X KRAUS RD. C-062 532639T MAIN ST. C-062 532630 ILLES CR. C-062 532640 ILLES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 2287340 WAANDOT STREET C-070 228740N SEARS C-070 228741V TR 65	Flasher	760 2	40	5.9	13.9	0	0.0194	0.0281	
C-062 5326258 TOWNSHIP ROAD C-062 532626Y WHITE RD C-062 532629U WILL RD C-062 532630 MIGRET RD (CR 53) C-062 532630 MIGRET RD. C-062 532635 KRAUS RD. C-062 532638 MAIN ST. C-062 532638 HUBLIC ALLEY C-062 532640 LILES CR. C-062 532641B HELLER RD C-062 532645 ANGLING RD C-070 228737 TWO 125 C-070 228737 TWANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228741V TR 65	Flasher	2,230 2	40	5.9	13.9	0	0.0280	0.0393	
C-062 532626Y WHITE RD C-062 532629U WILL RD C-062 532630N MIGRET RD (CR 53) C-062 532633I GAMBER RD. C-062 53263SY KRAUS RD. C-062 53263SY KRAUS RD. C-062 53263SY MAIN ST. C-062 53263O ILLES CR. C-062 532640U ILLES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 228737F TWPO 125 C-070 228740N SEARS C-070 228741V TR 65 C-070 228741V TR 65	Passive	210 2	40	5.9	13.9	0	0.0392	0.0546	
C-062 532629U WILL RD C-062 532630N MIGRET RD (CR 53) C-062 532633 GAMBER RD. C-062 532638T MAIN ST. C-062 532639A PUBLIC ALLEY C-062 532640U LILES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 228730U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive		40	5.9	13.9	0	0.0397	0.0553	
C-062 532630N MIGRET RD (CR 53) C-062 532633J GAMBER RD. C-062 532638X KRAUS RD. C-062 532638T MAIN ST. C-062 532640U LILES CR. C-062 532640U LILES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 228730U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive	70 2	40	5.9	13.9	0	0.0284	0.0409	
C-062 532633J GAMBER RD. C-062 532635X KRAUS RD. C-062 532638T MAIN ST. C-062 532640U LILES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-062 532645D ANGLING RD C-070 22873T TWPO 125 C-070 22873V WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228741 TR 65	Passive	130 2	40	5.9	13.9	0	0.0341	0.0483	
C-062 532635X KRAUS RD. C-062 532638T MAIN ST. C-062 532640U LILES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-062 532645D ANGLING RD C-070 22873T TWPO 125 C-070 228739U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive	80 2	40	5.9	13.9	0	0.0295	0.0424	
C-062 532638T MAIN ST. C-062 532639A PUBLIC ALLEY C-062 532640U LILES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 228739U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive		40	5.9	13.9	0	0.0306	0.0438	
C-062 532639A PUBLIC ALLEY C-062 532640U LILES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 228739U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Flasher		40	5.9	13.9	0	0.0210	0.0302	
C-062 532640U LILES CR. C-062 532641B HELLER RD C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 228739U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive	50 2	40	5.9	13.9	0	0.0256	0.0372	
C-062 532641B HELLER RD C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 228739U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive		40	5.9	13.9	0	0.0270	0.0392	
C-062 532645D ANGLING RD C-070 228737F TWPO 125 C-070 228739U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive		40	5.9	13.9	0	0.0270	0.0392	
C-070 228737F TWPO 125 C-070 228739U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive		40	5.9	13.9	0	0.0256	0.0372	
C-070 228739U WYANDOT STREET C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Passive	160 2	50	17.8	27.4	0	0.0587	0.0679	
C-070 228740N SEARS C-070 228741V TR 65 C-070 228742C TR 62	Flasher	970 2	50	17.8	27.4	0	0.0340	0.0401	
C-070 228741V TR 65 C-070 228742C TR 62	Gate	1,000	50	17.8	27.4	0	0.0199	0.0236	
C-070 228742C TR 62	Passive		50	17.8	27.4	0	0.0436	0.0516	
C-070 2287/31 CB 58	Passive	50 2	50	17.8	27.4	0	0.0273	0.0331	
C-070 2287433 CN 38	Passive		50	17.8	27.4	0	0.0510	0.0596	
C-070 228744R SR67	Flasher	1,820 2	50	17.8	27.4	0	0.0406	0.0473	
WYANDOT C-070 228745X CR 57 Passive	Passive	250 2	50	17.8	27.4	0	0.0651	0.0746	

OHIO HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY ATTACHMENT E-6

					•							
												Post
				z	Number of				Relevant			Acquisition
Rail Line	Line		Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County Segn	nent FRA II	Segment FRA ID Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
WYANDOT C-0	70 228747	C-070 228747L O'DONNEL ST.	Flasher	20	2	50	17.8	27.4	0	0.0162	0.0202	
	70 228748	C-070 228748T W. HICKS ST.	Passive	20	2	50	17.8	27.4	1	0.1115	0.1258	
WYANDOT C-0	70 228749	C-070 228749A W. JOHNSON ST.	Flasher	750	2	50	17.8	27.4	0	0.0309	0.0367	
WYANDOT C-0	70 228750	C-070 228750U W. WYANDOT ST.	Passive	160	2	50	17.8	27.4	3	0.2986	0.3297	0.0134(a)
WYANDOT C-0	70 228751	C-070 228751B W. WALKER ST.	Passive	140	2	50	17.8	27.4	0	0.0569	0.0659	
WYANDOT C-0	C-070 228752	228752H US 30	Gate	5,600	2	50	17.8	27.4	0	0.0301	0.0351	
WYANDOT C-0	C-070 228754	228754W CR 49	Passive	440	2	50	17.8	27.4	0	0.0735	0.0832	
WYANDOT C-0	C-070 228756	228756K C004700	Passive	290	2	50	17.8	27.4	0	0.0673	0.0768	
WYANDOT C-0	C-070 228757	228757S TWP 0440	Passive	300	2	50	17.8	27.4	0	0.0678	0.0773	
WYANDOT C-0	C-070 228759	228759F TR 42	Passive	280	2	50	17.8	27.4	-	0.1532	0.1703	0.0291(a)
WYANDOT C-0	70 228761	C-070 228761G C000400	Passive	140	2	50	17.8	27.4	0	0.0569	0.0659	
WYANDOT C-0	70 228762	C-070 228762N TWP0103	Passive	640	2	50	17.8	27.4	0	0.0792	0.0889	
WYANDOT C-0	70 228763	C-070 228763V TWP0980	Passive	089	2	50	17.8	27.4	0	0.0801	0.0898	
WYANDOT C-0	70 228764	C-070 228764C FINDLAY STREET	Gate	4,090	2	50	17.8	27.4	0	0.0315	0.0366	
WYANDOT C-0	70 228765	C-070 228765J PATTERSON STREET	Flasher	1,450	2	50	17.8	27.4	0	0.0434	0.0504	
WYANDOT C-0	70 228766	C-070 228766R US02300	Gate	4,490	2	50	17.8	27.4	0	0.0321	0.0373	
WYANDOT C-0	70 228765	C-070 228769L C000300	Passive	170	2	50	17.8	27.4	0	9090.0	0.0699	
(a) Mitigation already in place	n place	(a) Mitigation already in place	eldeffitaens ton si									

ATTACHMENT E-7

Pennsylvania Highway/Rail At-grade Crossing Accident Frequency

Appendix	κ Ε: Safety: Highway	/Rail At-grade Cros	sing Safety Analysis	
ГТН	IIS PAGE INTEN	JTIONALLY LI	FFT BLANKI	
	ISTAIGE HALL	VIIOWEET E		
Proposed Conneil Association		May 1000		tal Impact Statement

Page 1 of 4

ATTACHMENT E-7 PENNSYLVANIA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

												Post
Rail Line			Warning		Number of Roadway	Maximum	Pre-	Post	Relevant Accident	Pre-	Post	Acquisition With
	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acq		Acquisition	Acquisition	Mitigation
	584831X	LENORA ST	Passive	590	2	30	6.82	38.3	0	0.0838	0.0901	
5	584834T	BROADWAY ST	Gate	480	2	30	28.9	38.3	1	0.0690	0.0738	
12	584835A	MULBERRY	Gate	480	2	30	6'87	38.3	0	0.0234	0.0261	
10		MILL ST	Gate	940	2	30	28.9	38.3	0	0.0275	0.0305	
12		MAIN STREET	Gate	720	2	30	28.9	38.3	0	0.0258	0.0287	
15		WATTST	Gate	480	2	30	28.9	38.3	0	0.0234	0.0261	
15		THORN ST	Gate	480	2	30	28.9	38.3	0	0.0234	0.0261	
45	_	HARRISON ST.	Flasher	590	2	35	1.5	10.8	0	0.0117	0.0281	
12	$\overline{}$	LONG ST	Passive	1,180	2	35	1.5	10.8	0	0.0374	0.0755	
15		LOCUST STREET	Passive	100	2	10	1.5	10.8	0	0.0084	0.0220	
10	_	CHURCH ST	Passive	940		10	1.5	10.8	0	0.0300	0.0644	
10	84767B	584767B PARK ALLEY	Passive	240	2	10	1.5	10.8	0	0.0195	0.0460	
15	584769P	MILL STREET	Passive	1,410	2	10	1.5	10.8	0	0.0339	0.0703	
5		MARKET ST	Passive	1,180		10	1.5	10.8	0	0.0321	0.0677	
5	84771R	584771R PLUM STREET	Passive	1,300		10	1.5	10.8	0	0.0331	0.0691	
5	584772X	STRAWBERRY ALLEY	Passive	1,070		10	1.5	10.8	0	0.0312	0.0663	
5	84774L	584774L BAYARD STREET	Passive	1,070		10	1.5	10.8	0	0.0312	0.0663	
5	584775T	MULBERRY ALLEY	Passive	098		10	1.5	10.8	0	0.0292	0.0631	
C-085 5	584786F	KERR STREET	Passive	90		35	1.5	10.8	0	0.0138	0.0343	
C-085 5	584791C	MAIN STREET	Passive	230		35	1.5	10.8	0	0.0134	0.0334	
C-086 5	584654V	1ST STREET	Flasher	240	2	35	30.8	40.2		0.0858	0.0922	
	584655C	2ND STREET	Passive	240	7	35	30.8	40.2	0	0.0746	9080.0	
		CLARA STREET	Passive	240	7	30	30.8	40.2	0	0.0731	0.0790	
C-086 5	584664B	3RD STREET	Passive	290		35	30.8	40.2	0	0.0883	0.0942	
	84667W	584667W 6TH STREET	Gate	480	7	35	30.8	40.2	0	0.0247	0.0274	
Т	584668D	7TH STREET	Gate	820	2	35	30.8	40.2	0	0.0281	0.0309	
C-086 5	584669K	8TH STREET	Gate	480		35	30.8	40.2	0	0.0247	0.0274	
	584671L	11TH STREET	Flasher	290	2	35	30.8	40.2	-	0.1038	0.1114	
C-086 5	584674G	LOCUST STREET	Gate	001		25	30.8	40.2	0	0.0167	0.0186	
C-086 5	584679R	HAMILTON STREET	Passive	2,360		25	30.8	40.2	0	0.1056	0.1110	
	584681S	RIVER ST	Gate	250		25	30.8	40.2	-	0.0648	0690'0	
	_	14TH STREET	Gate	7,144		40	28.9	38.3	1	0.1038	0.1110	
C-082 5	584879A	6TH AVE	Flasher	100		40	28.9	38.3	0	0.0231	0.0261	
N-091 5	592199A	TENTH ST	Gate	7,700		40	11.1	19.6	0	0.0318	0.0387	
Г		18TH ST.	Gate	7,501	2	40	11.1	19.6	0	0.0316	0.0385	
T		SLATE HILL	Flasher	7,123	2	40	11.1	19.6	0	0.0568	0.0669	
N-091 5	592207P	ROSSMOYNE ROAD	Gate	2,356		40	11.1	19.6	0	0.0235	0.0291	
N-091 5	V27226	592272V WINDING HILL RD	Gate	384		40	11.1	19.6	0	0.0149	0.0188	
Т												

Page 2 of 4

ATTACHMENT E-7
PENNSYLVANIA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

	5		Ę.						I		Γ								1	I		7	7		\neg	1	Т	_		1	\neg										П	_
ear	Post Acquisition	With	Mitigation			(q)			0.0213								0.0115																									
Accidents Per Year		Post	Acquisition	0.0200	0.0475	0.1376	0.0223	0.0189	0.1891	0.0416	0.0422	0.0950	0.0112	0.0221	0.0541	0.0150	0.1441	0.0306	0.0172	0.0256	0.0145	0.0144	0.0276	0.0264	0.0151	0.0172	0.0198	0.0210	0.0455	0.0205	0.0228	0.0177	0.0193	0.0209	0.0193	0.0514	0.0228	0.0146	0.0205	0.0194	0.0237	0.0297
Acc		Pre-	Acquisition	0.0159	0.0378	0.1218	0.0178	0.0149	0.1663	0.0335	0.0333	0.0815	0.0088	0.0176	0.0435	0.0118	0.1235	0.0236	0.0136	0.0206	0.0114	0.0113	0.0212	0.0206	0.0119	0.0136	0.0153	0.0167	0.0360	0.0156	0.0164	0.0132	0.0148	0.0160	0.0148	0.0454	0.0175	0.0110	0.0157	0.0144	0.0177	0.0232
	Relevant	Accident	History	0	0	2	0	0	-	0	0	-	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Trains		Post	Acquisition	19.6	19.6	9.61	19.6	9.61	19.6	19.6	19.6	19.6	9.61	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	9.61	19.6	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1
Freight Trains		Pre-	Acquisition	11.1	11.1	11.1	11.1	11.1	11.1	1.11	11.1	1.11	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
		Maximum	Speed	40	40	40	40	50	40	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	50	20	09	09	09	09	09	09	09	09	09	09	09
	Number of		Lanes	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
			ADT	496	70	3,684	770	350	1,070	1,070	50	720	20	1,154	110	250	190	70	256	1,270	218	128	20	240	256	256	110	641	50	650	100	160	540	740	540	140	1,043	180	989	220	220	3,180
		Warning	Device	Gate	Passive	Gate	Gate	Gate	Passive	Flasher	Passive	Flasher	Gate	Gate	Passive	Gate	Passive	Passive	Gate	Gate	Gate	Gate	Passive	Flasher	Gate	Gate	Flasher	Gate	Passive	Gate	Flasher	Gate	Gate	Gate	Gate	Gate	Gate	Gate	Gate	Gate	Flasher	Gate
			Street Name	WILLIAMS GROVE	SHEAFFER	YORK ROAD/SR 74	CREEK ROAD	LEIDIGS DR	CRISWALL	RACE	TANGER	CHESTNUT	MT VIEW	PINE ROAD	STUARTS	MOORS MILL ROAD	MILL	SHEAFFER	HUNTSDALE	592526H PINE GROVE RD	592528W LONGSDORF ROAD	HAYS GROVE	QUARRY HILL	592538C HIGH MOUNTAIN	592540D FURNACE HOLLOW RD	HAMMOND	KELSO	LEES CROSS ROADS	592546U REESE/GOODHEART RD	471859A GULF ROAD	471861B BORT ROAD	REMINGTON ROAD	LOOMIS STREET	WASHINGTON STREET	SMEDLEY STREET	CEMETERY ROAD	471874C WILLIAMS ROAD	SPENCER ROAD	STATION ROAD	KING ROAD	471878E DAVIDSON ROAD	471881M WALBRIDGE ROAD
			FRA ID	592288S	592289Y	592290T	592292G	592293N	592295C			592309Н	592311J	592313X	592317A	592319N	592320H MILL		592524U	592526Н	592528W		592533T	592538C	592540D			592544F	592546U	471859A	471861B		471867S	471868Y	471869F	471872N	471874C	4718753	471876R	471877X	471878E	471881M
		Rail Line	Segment	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	020-N
			County	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	CUMBERLAND	ERIE	ERIE	ERIE	ERIE	ERIE	ERIE	ERIE	ERIE	ERIE	ERIE	ERIE	ERIE	ERIE

Page 3 of 4

ATTACHMENT E-7 PENNSYLVANIA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

							_						Post
						Number of				Relevant			Aconisition
	Rail Line			Warning			Maximim	Pre-	Post	Accident	Pre-	Post	With
County		FRA ID	Street Name	Device	ADT		Speed	Acquisition	Acquisition		Acquisition	Acquisition	Mitigation
ERIE	N-070	471886W	471886W DOWNING AVENUE	Gate	1,220	2	09	13.0	25.1	0	0.0182	0.0237	
ERIE	N-070	471893G	ASH STREET	Flasher	5,290	2	35	13.0	25.1	0	0.0486	0.0599	
ERIE	N-070	471894N	PARADE STREET	Gate	15,000	4	35	13.0	25.1	0	0.0408	0.0501	
ERIE	N-070	471896C	GERMAN STREET	Flasher	740	2	35	13.0	25.1	0	0.0269	0.0351	
ERIE	N-070	471898R	471898R HOLLAND STREET	Flasher	4,299	2	35	13.0	25.1	0	0.0460	0.0570	
ERIE	N-070	471901W	471901W PEACH STREET	Gate	11,110	2	15	13.0	25.1	2	0.1345	0.1552	(p)
ERIE	N-070	471902D	471902D SASSAFRAS STREET	Gate	11,110	2	15	13.0	25.1	1	0.0828	0.0971	
ERIE	N-070	471903K	MYRTLE STREET	Flasher	740	2	15	13.0	25.1	0	0.0269	0.0351	
ERIE	N-070	471904S	CHESTNUT STREET	Flasher	1,380	2	15	13.0	25.1	0	0.0329	0.0422	
ERIE	N-070	471905Y	WALNUT STREET	Gate	320	2	15	13.0	25.1	0	0.0129	0.0169	
ERIE	N-070	471906F	CHERRY STREET	Flasher	9,220	2	15	13.0	25.1	3	0.2738	0.3136	0.0507
ERIE	N-070	471907M	471907M POPLAR STREET	Flasher	370	2	15	13.0	25.1	1	0.0660	0.0785	
ERIE	N-070	471908U	LIBERTY STREET	Gate	18,284	4	15	13.0	25.1	0	0.0425	0.0519	
ERIE	N-070	471909B	PLUM STREET	Flasher	280	2	15	13.0	25.1	0	0.0248	0.0326	
ERIE	N-070	471910V	471910V CASCADE STREET	Flasher	1,580	2	15	13.0	25.1	_	0.0895	0.1068	
ERIE	N-070	471911C	RASPBERRY STREET	Flasher	5,400	2	15	13.0	25.1	2	0.1826	0.2120	0.0408
ERIE	N-070	471912J	CRANBERRY STREET	Flasher	840	2	15	13.0	25.1	-	0.0782	0.0935	
ERIE	N-070	471913R	471913R GREEN GARDEN ROAD	Gate	7,940	2	09	13.0	25.1	-	0.0787	0.0923	
ERIE	N-070	471915E	PITTSBURG ROAD	Gate	7,004	2	09	13.0	25.1	0	0.0280	0.0354	
ERIE	N-070	471920B	TOWNLINE ROAD	Gate	280	2	09	13.0	25.1	0	0.0151	0.0197	
ERIE	N-070	471921H	MANCHESTER ROAD	Gate	1,060	2	09	13.0	25.1	0	0.0224	0.0299	
ERIE	N-070	471922P	471922P OLD DUTCH ROAD	Flasher	450	2	09	13.0	25.1	0	0.0332	0.0465	
ERIE	N-070	471923W	471923W EATON ROAD	Flasher	220	2	09	13.0	25.1	0	0.0248	0.0348	
ERIE		471925K	BLAIR ROAD	Gate	08	2	09	13.0	25.1	0	0.0107	0.0145	
ERIE	N-070	471926S	FAIRPLAIN ROAD	Passive	20	2	09	13.0	25.1	0	0.0403	0.0522	
ERIE	N-070	471930G	471930G HAGERTY ROAD	Gate	320	2	09	13.0	25.1	0	0.0143	0.0190	
ERIE	N-070	471931N		Gate	320	2	09	13.0	25.1	0	0.0129	0.0169	
ERIE		471937E	TANNERY ROAD	Flasher	80	2	09	13.0	25.1	0	0.0122	0.0166	
ERIE	\neg	471939T	471939T MIDDLE RD/TOWLINE RD	Flasher	8	2	99	13.0	25.1	0	0.0152	0.0211	
ERIE	N-070	471940M	471940M LUCAS ROAD	Passive	100	2	09	13.0	25.1	2	0.1462	0.1722	0.0202
ERIE		471941U	MILLS RD/HAPPY VALLEY	Flasher	160	2	09	13.0	25.1	0	0.0158	0.0212	
ERIE	N-070	471942B	471942B DEPOT ROAD	Flasher	629	2	09	13.0	25.1	0	0.0255	0.0334	
ERIE	Г	471943H	471943H SCOTT ROAD	Passive	08	2	09	13.0	25.1	0	0.0459	0.0586	
ERIE	N-070	471944P	NASH ROAD	Gate	100	2	09	13.0	25.1	0	0.0124	0.0169	
ERIE	N-070	471948S	471948S CRAYTON ROAD	Passive	343	2	09	13.0	25.1	0	0.0656	0.0801	
ERIE	N-070	471949Y	471949Y RUDO ROAD	Passive	80	2	09	13.0	25.1	0	0.0289	0.0384	
FAYETTE	C-085	584816V	MILLER ST.	Passive	330	2	10	1.5	10.8	0	0.0216	0.0500	
FAYETTE	C-085	584817C	584817C MORGAN ST	Flasher	540	2	10	1.5	10.8	0	0.0094	0.0233	
FRANKLIN	N-091	534606U	534606U CRESSLER	Passive	100	2	30	11.1	19.6	0	0.0404	0.0505	

PENNSYLVANIA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY ATTACHMENT E-7

								Freight	Freight Trains		Acc	Accidents Per Year	ear
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Segment FRA ID Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition Acquisition	History	Acquisition	Acquisition	Mitigation
FRANKLIN	N-091	534607B	534607B POSSUM HOLLOW RD	Passive	160	2	30	11.1	19.6	0	0.0459	0.0568	
FRANKLIN	N-091	535145R	535145R KRINER ROAD	Flasher	4,890	2	30	11.1	19.6	0	0.0453	0.0548	
FRANKLIN	N-091	535146X	535146X GUILFRD SPRNGS RD	Passive	770	2	30	11.1	9.61	2	0.2358	0.2683	0.0302
FRANKLIN	N-091	535148L	535148L LIGHT HOUSE RD.	Passive	160	2	30	11.1	9.61	0	0.0443	0.0550	
FRANKLIN	N-091	535150M	535150M OVERCASH ROAD	Passive	220	2	30	11.1	19.6	0	0.0482	0.0594	
FRANKLIN	N-091	535151U	535151U ALLEMAN	Passive	390	2	30	11.1	19.6	1	0.1333	0.1547	0.0235
FRANKLIN	N-091	535152B T 452	T 452	Passive	100	2	30	11.1	19.6	0	0.0389	0.0488	
FRANKLIN	N-091	535153H	535153H LRA 230	Flasher	2,173	2	30	11.1	19.6		0.0921	0.1073	
FRANKLIN	N-091	535154P	535154P COLORADO	Flasher	450	2	30	11.1	19.6	0	0.0214	0.0273	
FRANKLIN	N-091	535159Y	N-091 535159Y MASON ROAD	Passive	220	2	30	11.1	19.6	0	0.0482	0.0594	
FRANKLIN	N-091	535162G	535162G MILNOR ROAD	Passive	427	2	30	11.1	19.6	0	0.0581	0.0702	
FRANKLIN	N-091	535163N	N-091 535163N HAYES ROAD	Passive	160	2	30	11.1	19.6	4	0.3221	0.3676	0.0175
FRANKLIN	N-091	535178D	535178D MASON DIXON RD	Flasher	1,345	2	30	11.1	19.6	0	0.0313	0.0390	
LAWRENCE	N-095	145826R	N-095 145826R FOURTH ST	Gate	1,770	2	09	12.6	17.7	0	0.0292	0.0342	
LAWRENCE	N-095	145830F	N-095 145830F ROCK POINT XING	Passive	110	2	09	12.6	17.7	0	0.0321	0.0372	
LAWRENCE	N-095	145833B	N-095 145833B JOHNSON XING	Passive	20	2	09	12.6	17.7	0	0.0252	0.0294	
LAWRENCE	N-095	145835P	N-095 145835P EDGEMORE XING	Flasher	280	2	9	12.6	17.7	0	0.0290	0.0333	
LAWRENCE	N-095	503738U	N-095 503738U MONTGOMERY	Gate	6,400	2	40	12.6	17.7	0	0.0307	0.0347	
(a) Mitigation already in place	ready in plac	بو											

(a) Mitigation already in place(b) Effectiveness of 4-quadrant gates, median barriers, or corridor analysis is not quantifiable(c) Relocate to CSX corridor

ATTACHMENT E-8

Virginia Highway/Rail At-grade Crossing Accident Frequency

Appendix E: Safety:	Highway/Rail At-grade Cro	ossing Safety Analysis
[THIS PAGE	E INTENTIONALLY	LEFT BLANK]
Proposed Conrail Acquisition	May 1998	Final Environmental Impact Statement

Page 1 of 3

ATTACHMENT E-8
VIRGINIA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

							Freign	Freight I rains		AC	Accidents Fer Year	ear
					Number of				Relevant			Post
Rail	Rail Line		Warning	· · · · · · · · · · · · · · · · · · ·	Roadway	Maximum	Pre-			Pre-	Post	With
County Segn	Segment FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
AUGUSTA N-100	100 468075U	U 2ND ST/SR 256	Flasher	1,457	2	50	3.9	12.1	0	0.0203	0.0327	
AUGUSTA N-100	100 468085A	A SR 616	Flasher	55	2	50	3.9	12.1	0	0.0076	0.0137	
	N-100 468086G	G SR 628	Flasher	113	2	50	3.9	12.1	0	6200.0	0.0135	
			Gate	982	2	20	3.9	12.1	0	0.0106	0.0169	
	1		Flasher	50	2	20	3.9	12.1	0	0.0057	0.0100	
	N-100 468101G		Gate	902	2	20	3.9	12.1	0	0.0097	0.0156	
-			Gate	2.570	2	20	3.9	12.1	0	0.0137	0.0216	
			Flasher	009	2	50	3.9	12.1	0	0.0148	0.0245	
		_	Gate	2,366	2	50	3.9	12.1	0	0.0134	0.0212	
		V SR 635	Flasher	133	2	50	3.9	12.1	0	0.0084	0.0144	
AUGUSTA N-100	100 468127J	1	Flasher	78	2	50	3.9	12.1	0	8900'0	0.0118	
AUGUSTA N-1	N-100 468135B	B SR 608	Gate	11,050	2	90	3.9	12.1	0	0.0199	0.0305	
	N-100 468137P	P SR 909	Flasher	1,441	2	50	3.9	12.1	0	0.0203	0.0326	
AUGUSTA N-100	100 468139D	D SR 656	Flasher	920	2	50	3.9	12.1	-	0.0588	0.0785	
AUGUSTA N-1	N-100 468143T	T WILDA RD	Gate	79	2	50	3.9	12.1	0	0.0049	0.0081	
AUGUSTA N-100		468146N SR 658	Flasher	20	2	50	3.9	12.1	0	0.0057	0.0100	
AUGUSTA N-1	N-100 468149J	J SR 662	Flasher	982	2	50	3.9	12.1	0	0.0163	0.0268	
AUGUSTA N-1	N-100 468150D	D FARM X-ING	Passive	327	2	45	3.9	12.1	0	0.0386	0.0594	
AUGUSTA N-1	N-100 468153Y	Y SR 666	Flasher	434	2	45	3.9	12.1	0	0.0131	0.0219	
	N-100 468159P	P SR 1212	Passive	90	2	45	3.9	12.1	0	0.0128	0.0221	
AUGUSTA N-1	N-100 468161R	R SR 702	Passive	90	2	45	3.9	12.1	1	0.0560	0.0727	
BOTETOURT N-1	N-100 468224T	T SR 614	Flasher	387	2	35	3.9	12.1	0	0.0155	0.0272	
	N-100 468230	468230W BRIDGE ST.	Flasher	325	2	35	3.9	12.1	0	0.0118	0.0198	
BOTETOURT N-1	N-100 468232K	K PINE ST	Gate	325	2	40	3.9	12.1	0	0.0097	0.0162	
BOTETOURT N-1	N-100 468233S	S STATION RD. (SR 1313)	Gate	550	2	40	3.9	12.1	0	0.0119	0.0200	
BOTETOURT N-1	N-100 468236	468236M SR 617	Gate	512	2	50	3.9	12.1	1	0.0428	0.0526	
BOTETOURT N-1	N-100 4682371	468237U SR 625	Flasher	444	2	40	3.9	12.1	0	0.0132	0.0221	
BOTETOURT N-1	N-100 468239H	H SR 640	Gate	801	2	50	3.9	12.1	0	0.0100	0.0161	
BOTETOURT N-1	N-100 468244E	E SR 640	Gate	211	2	40	3.9	12.1	0	0.0069	0.0113	
-	N-100 468248G	G SR 784	Passive	51	2	30	3.9	12.1	0	0.0199	0.0332	
-	N-100 468250H		Gate	181	2	30	3.9	12.1	0	0.0066	0.0108	
BOTETOURT N-1	N-100 468253D	D SR 645	Passive	50	2	30	3.9	12.1	0	0.0115	0.0200	
BOTETOURT N-1	N-100 468256Y	Y SR 763	Passive	71	2	30	3.9	12.1	0	0.0221	0.0366	
	N-100 468264R	R SR 640	Gate	227	2	30	3.9	12.1	0	0.0071	0.0115	
BOTETOURT N-1	N-100 468269A	A SR 716	Gate	418	2	40	3.9	12.1	0	0.0084	0.0136	
BOTETOURT N-1	N-100 468270U	U MOUNTAIN AVENUE	Gate	321	2	40	3.9	12.1	0	0.0078	0.0126	
BOTETOURT N-1	N-100 468271B	B BOONE DR	Passive	150	2	40	3.9	12.1	0	0.0298	0.0476	
BOTETOURT N-1	N-100 468272H	H BLUE RIDGE ROAD	Flasher	521	2	40	3.9	12.1	0	0.0140	0.0233	
DOTETOTIOT N. 1	2100076 001 14	G SB 654	Gate	4 930	2	50	3.9	12.1	0	0.0162	0.0253	

Page 2 of 3

ATTACHMENT E-8 VIRGINIA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

		tion h	tion																																						
ear	Post	Acquisition With	Mitigation			(q)																																			
Accidents Per Year		Post	Acquisition	0.0125	0.0220	0.1301	0.0215	0.0462	0.0134	0.0125	0.0236	0.0531	0.0128	0.0140	0.0210	0.0209	0.0103	0.0098	0.0245	0.0254	0.0156	0.0281	0.0594	0.0270	0.0297	0.0106	0.0511	0.0106	0.0109	0.0241	0.0168	0.0164	0.0224	0.0205	0.0411	0.0123	0.0206	0.0330	0.0193	0.0368	0.0382
Acc		Pre-	Acquisition	0.0077	0.0170	0.1154	0.0171	0.0367	0.0105	0.0098	0.0189	0.0475	0.0100	0.0110	0.0121	0.0125	0.0063	0900'0	0.0143	0.0149	0.0091	0.0172	0.0408	0.0164	0.0176	0.0065	0.0324	0.0061	0.0067	0.0154	0.0105	0.0102	0.0134	0.0130	0.0252	0.0076	0.0123	0.0198	0.0114	0.0223	0.0232
		Relevant Accident	History	0	0	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Freight I rains		Post	Acquisition	12.1	19.6	19.6	19.6	19.6	19.6	19.6	19.6	9.61	19.6	19.6	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1
rreignt		Pre-	Acquisition	3.9	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
		Maximum		30	50	40	50	50	50	50	20	50	50	50	30	45	40	35	40	50	40	50	50	50	50	50	. 50	50	. 50	50	50	50	50	40	40	45	45	30	45	45	40
		Number of Roadway	Lanes	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	,
			ADT	307	431	3,900	1,072	50	169	130	1,579	216	130	185	58	381	150	126	77	20	166	904	12,660	800	117	169	160	59	183	4,045	955	828	463	2,101	87	175	361	50	301	53	29
		Warning	Device	Gate	Gate	Gate	Gate	Passive	Gate	Gate	Gate	Gate	Gate	Gate	Passive	Flasher	Gate	Gate	Passive	Passive	Flasher	Flasher	Flasher	Flasher	Passive	Gate	Passive	Flasher	Gate	Gate	Gate	Gate	Flasher	Gate	Passive	Gate	Flasher	Passive	Flasher	Passive	Paccive
			Street Name	SR 640	468598Y BOOM RD (SR 615)	SR 7	468600X JOSEPHINE ST. (SR 614)	SR 680	BROWNTOWN RD (SR 620)	468610D OLD CHAPEL AVE (SR 617)	MAIN ST	468618H DEPOT ROAD (SR 628)	F.LOFTON RD (SR 627)	SR 644	ST 664	SR 662	SR 661	SR 611	SR 611	SR 611	SR 658	468696P WALLACE AV	EAST MAIN ST.	CAVE ST/CAMPBELL	SR 629	SR 633	SR 632	SR 631	SR 624	MAIN ST. (US 24)	SR 622	SR 723	SR 621	SHADWELL DR.	CARLOS DR.	SR 56	SR 608	SR 709	SR 710	SR 714	SB 805
			FRA ID	468247A SR 640	468598Y	468599F	468600X	468601E	468609J	468610D	468611K	468618H	468621R	468623E	468670M ST 664	468676D SR 662	468679Y	468680T	468684V	468686J	468689E	468696P	468699K	468700C	468706T SR 629	468708G SR 633	468710H	468711P SR 631	468714K	468715S	468716Y SR 622	468717F	468718M SR 621	468284C	468286R	468166A	468171W SR 608	468173K SR 709	468175Y	468177M SR 714	308 90 BUO1891
		Rail Line		N-100	N-091	N-091	N-091	N-091		N-091	N-091	N-091	N-091	N-091	N-100	N-100		N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100		N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100	N-100
			County	BUCHANAN	CLARKE	CLARKE	CLARKE	CLARKE	CLARKE	CLARKE	CLARKE	CLARKE	CLARKE	CLARKE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	PAGE	ROANOKE	ROANOKE	ROCKBRIDGE	ROCKBRIDGE	ROCKBRIDGE	ROCKBRIDGE	ROCKBRIDGE	ROCKBRIDGE

ATTACHMENT E-8
VIRGINIA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

								Freight Trains	Trains		Acc	Accidents Per Year	ar
													Post
						Number of				Relevant			Acquisition
	Rail Line			Warning		Roadway	Maximum	Pre-	Post	Accident	Pre-	Post	With
County	Segment	FRA ID	Street Name	Device	ADT	Lanes	Speed	Acquisition	Acquisition	History	Acquisition	Acquisition	Mitigation
ROCKBRIDGE	N-100	468196S	FACTORY ST	Flasher	1,060	2	40	3.9	12.1	0	0.0182	0.0296	
ROCKBRIDGE	N-100		21ST STREET	Flasher	200	2	40	3.9	12.1	0	0.0098	0.0167	
ROCKBRIDGE	N-100	468198F	10TH ST	Gate	2,000	2	40	3.9	12.1	0	0.0128	0.0203	
ROCKBRIDGE	N-100	468205N SR 1101	SR 1101	Gate	820	2	50	3.9	12.1	0	0.0101	0.0162	
ROCKBRIDGE	N-100	468206V SR 684	SR 684	Gate	1,308	2	50	3.9	12.1	0	0.0138	0.0227	
ROCKINGHAM	N-100	468067C SR 708	SR 708	Gate	214	2	50	3.9	12.1	0	0.0070	0.0113	
ROCKINGHAM	N-100	468070K	SR 955	Gate	28	2	50	3.9	12.1	0	0.0048	0.0079	
ROCKINGHAM	N-100	468072Y SR 659	SR 659	Gate	2,177	2	50	3.9	12.1	0	0.0134	0.0213	
ROCKINGHAM	N-100	468074M SR 256	SR 256	Gate	3,325	2	50	3.9	12.1	0	0.0147	0.0230	
ROCKINGHAM	N-100	468744C	468744C COUNTY RD	Gate	237	2	40	3.9	12.1	0	0.0072	0.0117	
ROCKINGHAM	N-100	468745J SR 884	SR 884	Gate	203	2	40	3.9	12.1	0	0.0069	0.0112	
ROCKINGHAM	N-100	468750F SR-1706	SR-1706	Gate	2,436	2	50	3.9	12.1	0	0.0143	0.0225	
ROCKINGHAM	N-100	468751M	468751M ELK RUN	Gate	3,550	2	50	3.9	12.1	0	0.0149	0.0234	
ROCKINGHAM	N-100	468753B	MARSHALL AVE.	Gate	535	2	50	3.9	12.1	0	0600.0	0.0145	
ROCKINGHAM	N-100	468754H SR 1709	SR 1709	Passive	84	2	50	3.9	12.1	0	0.0266	0.0431	
ROCKINGHAM	N-100		SR 642	Gate	225	2	50	3.9	12.1	0	0.0071	0.0115	
ROCKINGHAM	N-100	468767J SR 649	SR 649	Gate	1,353	2	50	3.9	12.1	0	0.0115	0.0184	
WARREN	N-091	468628N	468628N ASHBY STN RD.	Gate	122	2	50	11.1	19.6	0	8600.0	0.0125	
WARREN	N-091	468631W	468631W FAIRGROUNDS RD (SR	Flasher	1,313	2	50	11.1	19.6	٥	0.0313	0.0391	,
WARREN	N-091	468634S	ROCKLAND ROAD	Flasher	700	2	20	11.1	19.6	2	0.1222	0.1399	0.0163
WARREN	N-100		468656S MAIN ST. (SR 622)	Flasher	58	2	35	3.9	12.1	0	0.0061	0.0105	
WARREN	N-100	1	468657Y SPANGLER LANE	Flasher	50	2	35	3.9	12.1	0	0.0057	0.0100	
WARREN	N-100	468660G SR 613	SR 613	Gate	1,009	2	35	3.9	12.1	0	0.0107	0.0171	
WARREN	N-100	714417V		Passive	28	2	25	3.9	12.1	0	0.0130	0.0225	
WARREN	N-100	714419J		Gate	1,972	2	35	3.9	12.1	2	6980:0	0.1063	
WARREN	N-100	714423Y	MANASSAS AVE	Gate	815	2	35	3.9	12.1	-	0.0450	0.0559	
WARREN	N-100	714424F	714424F MANASSAS AVE	Passive	50	2	35	3.9	12.1	0	0.0204	0.0340	
WAYNESBORO	I	N-100 468109L 7TH ST	7TH ST	Gate	2,500	2	25	3.9	12.1	0	0.0136	0.0214	
4.7 7.00	of A graden	nt cotos mo	ere or corridor	nalysis is not quantifiable	ifiable								

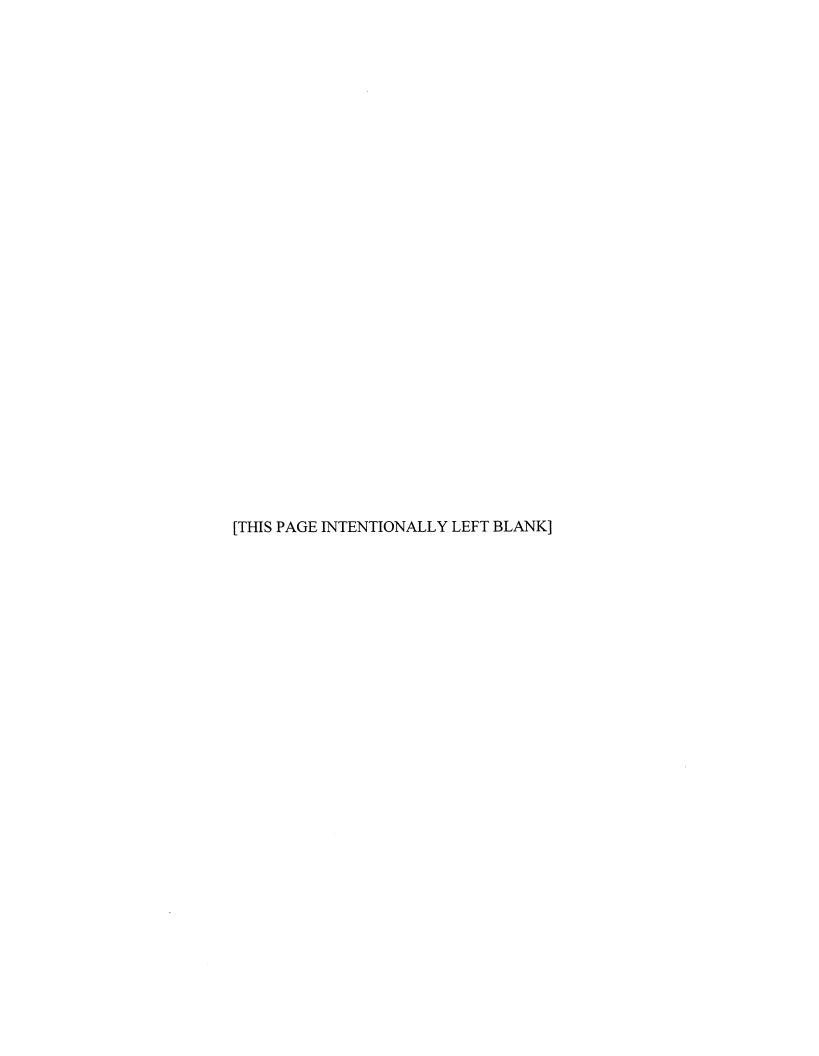
(b) Effectiveness of 4-quadrant gates, median barriers, or corridor analysis is not quantifiable

[THIS PAGE INTENTIONALLY LEFT BLANK]

ATTACHMENT E-9

West Virginia Highway/Rail At-grade Crossing Accident Frequency

[THIS PAGE INTENTIONALLY LEFT BLANK]	
[THIS PAGE INTENTIONALLY LEFT BLANK]	
Appendix E: Safety: Highway/Rail At-grade Crossing Safety Analysis	


Page 1 of 1

ATTACHMENT E-9
WEST VIRGINIA HIGHWAY/RAIL AT-GRADE CROSSING ACCIDENT FREQUENCY

		tion		tion															
ear	Post	Acquisition	With	Mitigation															
Accidents Per Year			Post	Acquisition	0.0240	0.0268	0.0129	0.0477	0.0094	0.0187	0.0686	0.0560	0.0114	0.0368	0.0263	0.0155	0.0148	0.0290	0.0148
Acc			Pre-	Acquisition	0.0192	0.0215	0.0101	0.0432	0.0073	0.0144	0.0602	0.0431	0.0089	0.0287	0.0211	0.0122	0.0116	0.0224	0.0116
		Relevant	Accident	History	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0
Trains			Post	Acquisition	9.61	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	19.6	9.61
Freight Trains			Pre-	Acquisition Acquisition	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1
			Maximum	Speed	45	45	90	50	50	50	35	50	50	50	50	50	50	50	50
		Number of	Roadway	Lanes	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
				ADT	1,700	2,700	150	100	90	150	1,600	8,800	\$6	2,900	2,700	300	250	50	250
			Warning	Device	Gate	Gate	Gate	Gate	Gate	Flasher	Gate	Gate	Gate	Gate	Gate	Gate	Gate	Passive	Gate
				Segment FRA ID Street Name	HIGH	GERMAN	N-091 469348P MORGAN-GROVE	N-091 469350R GARDNER'S-LANE	SR 16/3	N-091 469355A LUTHER JONES (SR 14)	SR 20	SR 9	N-091 469362K CRANES-LANE	SR 51	N-091 469369H SUMMIT-POINT-PIKE	N-091 469373X WHEATLAND RD.	N-091 469375L WITHER/LARLE (SR 19)	N-091 469378G PUBLIC XING	N-091 469380H DARK LANE W
				FRA ID	N-091 469342Y HIGH	N-091 469343F GERMAN	469348P	469350R	N-091 469354T SR 16/3	469355A	N-091 469358V SR 20	N-091 469361D SR 9	469362K	N-091 469366M SR 51	469369H	469373X	469375L	469378G	469380H
			Rail Line	Segment	N-091	N-091	N-091	N-091	N-091	N-091	N-091	7-091	N-091	N-091	N-091	N-091	N-091	N-091	N-091
				County	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON	JEFFERSON

[THIS PAGE INTENTIONALLY LEFT BLANK]

Ca fatav	APPENDIX F	
Salety	: Hazardous Materials Transport Analysis	

CONTENTS

APP]	ENDIX F: SAFETY: HAZARDOUS MATERIALS TRANSPORT ANALYSIS	<u>Page</u> . F-1
	ATTACHMENTS	
F-1	Comparison of CSX Hazardous Materials Transport Data Used in the Draft EIS and Final EIS	. F - 3
F-2	All Rail Line Segments with a Projected Increase in Hazardous Materials	
	Transported	F-11
F-3	New Key Route and Major Key Route Rail Line Segments	
F-4	Accident Predictions for Rail Line Segments with a Projected Increase in	
	Hazardous Materials Transported	F-21

	Appendix F: Safety: Ha	nzardous Materials Tra	nsport Analysis	
	[THIS PAGE INTE	NTIONALLY LEI	FT BLANK]	
Proposed Conrail Acquis	cition	Mav 1998	Final Environmental Impact Sta	tomont

APPENDIX F SAFETY: HAZARDOUS MATERIALS TRANSPORT ANALYSIS

The Section of Environmental Analysis (SEA) of the Surface Transportation Board (the Board) revised its analysis of hazardous materials transport from the material presented in the Draft Environmental Impact Statement (Draft EIS) to reflect revised data provided by CSX Corporation and CSX Transportation, Inc. (CSX). This Final Environmental Impact Statement (Final EIS) presents the revised analysis. Attachment F-1 compares the data in the Draft EIS with the revised CSX data incorporated in the Final EIS and identifies the changes in proposed operation that meet the criteria of significance.

In its revised analysis, SEA determined that the amount of hazardous materials transported would increase on 247 rail line segments as a result of the proposed Conrail Acquisition. The results of this analysis indicate a system-wide increase in hazardous materials car-miles¹ of 1.9 percent. Attachment F-2 identifies the 247 rail line segments that would be subject to this increase.

Based on the new data provided by CSX, SEA revised its designations of key routes and major key routes for the proposed Conrail Acquisition. For purposes of this Final EIS, SEA defines key routes as those rail line segments that carry 10,000 or more carloads of hazardous materials annually. In addition, for the purposes of this Final EIS, SEA defines major key routes as those rail line segments where the volume of hazardous materials carried would at least double and would exceed an annual volume of 20,000 carloads of hazardous materials as a result of the proposed Conrail Acquisition. Attachment F-3 identifies the new key routes and major key routes that would result from the proposed Conrail Acquisition, as determined through SEA's revised analysis.

Attachment F-4 presents the data for the change in risk of hazardous materials release resulting from freight train accidents for those rail line segments that would have an increases in hazardous materials transported as a result of the proposed Conrail Acquisition.

_

A car-mile is one rail car carried one mile. The system-wide value is calculated by adding the products of the annual numbers of carloads transported on each segment and the length of that segment for each segment in the system.

Appendix F: Safety: Hazardous Materials Transport Analysis
[THIS PAGE INTENTIONALLY LEFT BLANK]

ATTACHMENT F-1

Comparison of CSX Hazardous Materials Transport Data Used in the Draft EIS and Final EIS

 Appendix F: Safety: Hazardous Materials Transport Analysis
TOTAL DA OF DATE MANAGEMENT OF THE PARTY OF
[THIS PAGE INTENTIONALLY LEFT BLANK]

ATTACHMENT F-1 COMPARISON OF CSX HAZARDOUS MATERIALS TRANSPORT DATA USED IN THE DRAFT EIS AND FINAL EIS

Concerning Part London September Par								1 2	l poo	u		_		all steD	od in Draf	EIS I		F		Change in Operation Meeting	Operation for Sign	n Meeting ficance	_
Control Cont								ı		al Els	-	T		Data O			l	T			5		
1 1 1 1 1 1 1 1 1 1		ow o	ıership	Rail Line S	egment Description		Estimated An		zardous				Estimated Annu:	al Carloads of Ha Material	zardous								
Column C	Site	Pre Acq. (1995)	1	Between	And	Le i					l	New Major Key toute	Pre Acq.							New New Crease Longin New azMat Ro			
10 10 10 10 10 10 10 10					1 F			П	246	-	╬	, [21 000	29,000	38%	-	╟	 	╟			-	┞
Column C	00-0	5 8	50		\neg				30%	× ×	-	Ė	21,000	29,000	38%	\ \ *		T					
1	200.0	_	Т		DC Foldinac Iana				86	< ×		T	12,000	17,000	42%	· ×							<u> </u>
1 1 1 1 1 1 1 1 1 1	3	_	Т		II Rive Island .ict	L	l		-5%	+		T	23.000	21,000	%6-				-				
1 1 1 1 1 1 1 1 1 1	3	_	T	Blue Island .lct	1 59th Street	! =			1000%	×		Ī	0	7,000	1000%	×							
Column C	5	XS	SSS	\dagger		L			41%	×		Ī	24,000	47,000	%96	×							
Color Colo	C-023	CSX	CSX		1				%0				21,000	32,000	25%	×			×				
Color Colo	C-025	XSS	Π	T	_				40%	×			21,000	44,000	110%	×		×				<u> </u>	
19 19 19 19 19 19 19 19	C-027	csx		r	_				%69	×			17,000	40,000	135%	×		×				×	-
Column C	C-030			П					10%	×	-		21,000	26,000	24%	×					1	+	1
19 19 19 19 19 19 19 19	C-031	CSX							200%	×	×		3,000	17,000	467%	×	×	1			+	+	
No. Control Control	C-032	CSX	ı	1	MD Relay				15%	×			14,000	18,000	29%	×	1		>	1	+	+	+
Column C	C-033	XSS	CSX	and	$\overline{}$				-2170	 	,	T	10,000	10,000	140%	4,		 -	<			ł	
Column C	0.034	-	CSX	1					0,111	×	×	Ť	12,000	17,000	20%	<	1	<u> </u>				+	+
CASIS CASIS <th< td=""><td>C-036</td><td>+</td><td>Т</td><td>2</td><td></td><td></td><td></td><td></td><td>89%</td><td>×</td><td>×</td><td>Ť</td><td>10,000</td><td>21,000</td><td>110%</td><td>×</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td></th<>	C-036	+	Т	2					89%	×	×	Ť	10,000	21,000	110%	×		×					
CASIS CASIS <th< td=""><td>3</td><td>+</td><td></td><td></td><td></td><td></td><td>L</td><td></td><td>62%</td><td>×</td><td>-</td><td>L</td><td>14,000</td><td>31,000</td><td>121%</td><td>×</td><td></td><td>×</td><td></td><td></td><td></td><td>_</td><td></td></th<>	3	+					L		62%	×	-	L	14,000	31,000	121%	×		×				_	
Cost Cost <th< td=""><td>3</td><td>+</td><td></td><td>t</td><td></td><td></td><td></td><td></td><td>21%</td><td>×</td><td></td><td>l</td><td>33,000</td><td>41,000</td><td>24%</td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	3	+		t					21%	×		l	33,000	41,000	24%	×							
CASE CRAS CRAS <th< td=""><td>C-052</td><td>-</td><td>l</td><td>h</td><td></td><td></td><td></td><td></td><td>-15%</td><td></td><td>H</td><td></td><td>2,000</td><td>20,000</td><td>186%</td><td>×</td><td>×</td><td>×</td><td>×</td><td></td><td>×</td><td>~</td><td></td></th<>	C-052	-	l	h					-15%		H		2,000	20,000	186%	×	×	×	×		×	~	
CASE CASE <th< td=""><td>C-053</td><td>ш</td><td></td><td>П</td><td></td><td></td><td></td><td></td><td>21%</td><td>×</td><td>1</td><td></td><td>23,000</td><td>28,000</td><td>25%</td><td>×</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>+</td></th<>	C-053	ш		П					21%	×	1		23,000	28,000	25%	×		1					+
CASIS CASIS MATINITIALISM CASIS CASIS CASIS MATINITIALISM CASIS CASIS CASIS MATINITIALISM CASIS CASIS CASIS CASIS MATINITIALISM CASIS	_	-	- 1	7					21%	×	-		34,000	41,000	21%	×,	\dagger	<u> </u>		1			+
COSK COSK <th< td=""><td>_</td><td>-</td><td>Т</td><td></td><td>OH Quaker</td><td></td><td></td><td></td><td>10%</td><td>× ,</td><td></td><td>,</td><td>39,000</td><td>24,000</td><td>210%</td><td>< ×</td><td>t</td><td><u> </u></td><td>-</td><td></td><td>+</td><td></td><td>-</td></th<>	_	-	Т		OH Quaker				10%	× ,		,	39,000	24,000	210%	< ×	t	<u> </u>	-		+		-
CSM CSM <td>190-0</td> <td>+</td> <td>Т</td> <td>Ī</td> <td>OH Greenwan</td> <td></td> <td></td> <td></td> <td>32%</td> <td>< ×</td> <td>1</td> <td>\ \</td> <td>23,000</td> <td>43 000</td> <td>87%</td> <td>< ×</td> <td>t</td> <td><u>_</u></td> <td>\mid</td> <td></td> <td> </td> <td></td> <td>+</td>	190-0	+	Т	Ī	OH Greenwan				32%	< ×	1	\ \	23,000	43 000	87%	< ×	t	<u>_</u>	\mid				+
CSK CSK <td>900</td> <td>+</td> <td>Τ</td> <td>Ī</td> <td>OH Toledo</td> <td>L</td> <td></td> <td></td> <td>1000%</td> <td>×</td> <td>×</td> <td>l</td> <td>10,000</td> <td>28,000</td> <td>180%</td> <td>×</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td>	900	+	Τ	Ī	OH Toledo	L			1000%	×	×	l	10,000	28,000	180%	×		×					
CR CSS Maternal Maternal Cestine OH 21 16,000 29/96 X A 16,000 639,000 23% No. X	0.066	+	XSS			L			113%	×		×	17,000	50,000	194%	×		×					
CSK Market OH 41 100 61 100 41 100 61 100 100 41 100 100 41 100 100 41 100 41 100 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41 100 41	C-067	-				Ш			%0				16,000	21,000	31%	×			×				+
CSK CSK Markey OH Short OH Short OH OH Short OH S	C-068	ш	1		OH Willard				224%	×	1	×	18,000	000'69	283%	×		×			1		+
CSX Marind OH Fostboard CSX Marind OH Fostboard A	C-069	-	- 1						925%	×	×	×	2,000	44,000	780%	× :	× ;	<u> </u>			+	+	+
CR CSX Maintell OH AH	C-070	-	XSS						%/90	×	<u></u>	<u> </u>	32,000	34,000	3%	Y	4	<		+	1		t
CRA CSX Columnation OH Mayleid 0H 03 of 4,000 1000% X <td>0.07</td> <td>+</td> <td>Т</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1000%</td> <td>×</td> <td> </td> <td>_ *</td> <td>07,500</td> <td>44 000</td> <td>1000%</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td>H</td>	0.07	+	Т						1000%	×		_ *	07,500	44 000	1000%	×	×	×					H
CR CSX Short OH Befeta OH 4 0.00 39.00 37.00 44.00 700% X	2073	5 8	Т		OH Mayfield				1000%	×	×		0	44,000	1000%	×	×	×					
CSX CSX Willard CH 37 18000 13000 54,000 200% X	C-074	-	Г		OH Berea				815%	×	×	×	5,000	44,000	780%	×	×	×					
CSX CSX Fleaded PA 4 6 600 65000 10000 5.000 10000 5.000 10000 5.000 10000 5.000 10000 5.000 10000 5.000 10000 2.000 10000 1.000	C-075		CSX						139%	×		×	18,000	54,000	200%	×	1	×	1				1
CSX CSX New Castle PA No. Holl of Signature 16,000 12,000 25% X X X X X X A	C-080	-			PA Belmont				1000%	×			1,000	5,000	400%	×	1	<u> </u>	,				+
CSX CSX Name of the color PA 51 10,000 12,000 420,00 <td>C-081</td> <td>XSS</td> <td></td> <td>1</td> <td>PA Youngstown</td> <td></td> <td></td> <td>١</td> <td>%0</td> <td></td> <td>+</td> <td>T</td> <td>8,000</td> <td>12,000</td> <td>30%</td> <td>× ,</td> <td><</td> <td>T</td> <td></td> <td></td> <td></td> <td></td> <td>$\frac{1}{1}$</td>	C-081	XSS		1	PA Youngstown			١	%0		+	T	8,000	12,000	30%	× ,	<	T					$\frac{1}{1}$
CSX CSX Sinns PA Family and strains PA Family and strains <t< td=""><td>C-082</td><td>× 20</td><td></td><td>Ì</td><td>DA Mélemere</td><td></td><td></td><td></td><td>45%</td><td>,</td><td></td><td>T</td><td>12,000</td><td>17,000</td><td>42%</td><td>\ \</td><td>-</td><td>T</td><td>+</td><td></td><td></td><td></td><td>-</td></t<>	C-082	× 20		Ì	DA Mélemere				45%	,		T	12,000	17,000	42%	\ \	-	T	+				-
CSX CSX Amplia TN 16 34,000 47,000 38% x 36,000 71,000 26,000 24% x A CSX CSX <td< td=""><td>80.0</td><td>+</td><td>Т</td><td>T</td><td></td><td></td><td>L</td><td></td><td>-27%</td><td>+</td><td></td><td></td><td>16,000</td><td>18,000</td><td>13%</td><td>×</td><td></td><td><u> </u></td><td>×</td><td></td><td></td><td></td><td></td></td<>	80.0	+	Т	T			L		-27%	+			16,000	18,000	13%	×		<u> </u>	×				
CSX CSX <td>000</td> <td>+-</td> <td>XSX</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>38%</td> <td>×</td> <td></td> <td></td> <td>36,000</td> <td>71,000</td> <td>%26</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	000	+-	XSX						38%	×			36,000	71,000	%26	×							
CSX CSX Fredericksburg VA Potomac Yard VA 49 20,000 22,000 56,000 24% X A A A A A A A A A A A A B C C C C C C C C A <th< td=""><td>2 0</td><td>٠.</td><td>CSX</td><td>7</td><td></td><td></td><td></td><td></td><td>2%</td><td>×</td><td></td><td></td><td>21,000</td><td>26,000</td><td>24%</td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	2 0	٠.	CSX	7					2%	×			21,000	26,000	24%	×							
CSX CSX Richmond VA Doswell VA 24 000 22,000 24% X X X CSX CSX CSX Park Jct PA 44 15,000 12,000 15,000 13,000 145% X <	C-101	-	CSX						10%	×	1		21,000	26,000	24%	×	1	 	-				+
CSX CSX S. Richmond VA Weldon NC 82 23,000 23,000 25% x X	C-102	Н	CSX						2%	×	1		21,000	26,000	24%	×	+						+
CSX CSX Park Jet PA 4 15,000 12,000 13,000 13,000 13,000 15,000	C-103		CSX					İ	%0				24,000	30,000	25%	×			×	1	1		+
CSX CSX Milestrate DE Baltimore MD 68 11,000 15,000 18,000 50% x X	C-200	Н	CSX						-20%		+		16,000	13,000	-19%		1	<u> </u>			+		+
CSX CSX <td>C-201</td> <td>SS</td> <td>CSX</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>45%</td> <td>×</td> <td></td> <td></td> <td>12,000</td> <td>18,000</td> <td>%00</td> <td>×</td> <td>1</td> <td>$\frac{1}{1}$</td> <td>,</td> <td></td> <td>1</td> <td>1</td> <td>+</td>	C-201	SS	CSX						45%	×			12,000	18,000	%00	×	1	$\frac{1}{1}$,		1	1	+
CSX CSX <td>C-202</td> <td>-</td> <td>SS</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>-25%</td> <td>1</td> <td>+</td> <td>T</td> <td>000,71</td> <td>18,000</td> <td>0,0</td> <td>×</td> <td>+</td> <td>T</td> <td><</td> <td></td> <td></td> <td>1</td> <td></td>	C-202	-	SS	2					-25%	1	+	T	000,71	18,000	0,0	×	+	T	<			1	
CSX CSX <td>C-203</td> <td>+</td> <td>š</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>25.7%</td> <td></td> <td></td> <td>Ī</td> <td>17,000</td> <td>000,82</td> <td>65%</td> <td>×</td> <td>t</td> <td>T</td> <td>×</td> <td></td> <td></td> <td><u> </u></td> <td></td>	C-203	+	š	1					25.7%			Ī	17,000	000,82	65%	×	t	T	×			<u> </u>	
CSA CSA <td>200</td> <td>+</td> <td></td> <td>I M</td> <td></td> <td></td> <td></td> <td></td> <td>24%</td> <td>*</td> <td></td> <td>l</td> <td>18,000</td> <td>35,000</td> <td>94%</td> <td>(×</td> <td>l</td> <td>T</td> <td>+</td> <td></td> <td></td> <td></td> <td></td>	200	+		I M					24%	*		l	18,000	35,000	94%	(×	l	T	+				
CSX CSX Sterling OH Lester OH 16 0 0 - 1,000 1,000 0 - A X	200	+	1	T			L		75%	×		Ī	12,000	26,000	117%	×		×				^	
CSX CSX Detroit MI Plymouth MI 25 8,000 7,000 -13% R X <	C-212	-											1,000	1,000	%0								
CSX	C-214	_			MI Plymouth			7,00	-13%				8,000	13,000	93%	×	×		×		×	-	
	C-215	_	П		MI Grand Rapids	Ц			-100%		-	Ī	5,000	2,000	-90%		1	\exists	-	-	1	-	4

ATTACHMENT F-1 COMPARISON OF CSX HAZARDOUS MATERIALS TRANSPORT DATA USED IN THE DRAFT EIS AND FINAL EIS

Print Ang. Part Ang. Par					Data Ut	Data Used in Final El	al EIS			-	Data Used in Draft	n Draft EIS				Chang	Change in Operation Meeting Criteria for Significance	gnificance	,
12 14 14 15 15 15 15 15 15	Rail Line Segmen	nt Description		Estimated Ann	ual Carloads of Hax Material	ardous			Estir	Estimated Annual Carloads of Hazardous Material	ads of Hazardo	sn.							
Color CSK CSK Signium MI Finit MI Color CSK CSK Signium MI Finit MI CSK CSK CSK Finit MI Model MI Model MI CSK CSK Finit MI Model MI Model MI CSK CSK Finit MI Model MI Model MI CSK CSK Finit MI Model MI CSK CSK CSK Finit MI Model MI CSK CSK CSK CSK Finit MI Model MI CSK	Between	And	Length (ml.)					l		Pre Acq. Post Acq.	Acq. Change	Increase in Hazardous Materiais	n New s Key : Route	New Major Key Route	No Longer an Incr. in HazMat	New Increase in HazMat	No Longer a New Key Route	Added L New a Key a Route	No Longer a Major Key Route
Case		int	IJĹ			%/9	-	$\ \cdot\ $				Ш	$\ \cdot\ $						
C232 CSK CSK CSK Mobile MI Wikker <	Σ		L			18%	×		 		21,000 7	75% x							
6.231 CSK CSK Mowme MI Physonal MI Physonal MI Physonal MI Physonal MI Carbon 230,000 45% X Cere CSK CSK CSK CSK Physonal Ph	Т	E	L			18%	×												
CATA CONTRICTORY CASK Abmount MI 8 H MORE 14 0000 20000 45% X X X CATA CONTRICTORY CATA CONTRICTORY MI 18 H MANDER MI 18 H MANDER MI MI MANDER	Σ					8%	×											1	
CA23 CSK VSK SK S	Σ					43%	×	1	<u> </u>		-	l							1
Ca12 CSK Gramman OH 34 20000 2000 35 Ca12 CSK	Σ					43%	×	1	<u> </u> 		- 1	× %0						1	1
CATA CATA <th< td=""><td>딩</td><td></td><td></td><td></td><td></td><td>10%</td><td>×</td><td></td><td><u> </u></td><td>1</td><td>1</td><td>1</td><td>\downarrow</td><td></td><td></td><td></td><td></td><td>†</td><td>1</td></th<>	딩					10%	×		<u> </u>	1	1	1	\downarrow					†	1
CATA CATA <th< td=""><td>5 8</td><td></td><td></td><td></td><td></td><td>0,00</td><td>×</td><td>1</td><td><u> </u> T</td><td></td><td>1</td><td></td><td></td><td>1</td><td>></td><td></td><td></td><td></td><td>İ</td></th<>	5 8					0,00	×	1	<u> </u> T		1			1	>				İ
CASA CASA <th< td=""><td>5 6</td><td></td><td></td><td>1</td><td></td><td>200.</td><td></td><td></td><td><u> </u> T</td><td>ŀ</td><td></td><td>١</td><td>+</td><td></td><td>< ></td><td></td><td></td><td></td><td>T</td></th<>	5 6			1		200.			<u> </u> T	ŀ		١	+		< >				T
CASA COSA COSA <th< td=""><td>5 3</td><td></td><td></td><td></td><td>ı</td><td>257%</td><td>,</td><td>+</td><td><u> </u> T</td><td></td><td></td><td>7 %V</td><td><u> </u></td><td>,</td><td><</td><td></td><td></td><td>+</td><td>l</td></th<>	5 3				ı	257%	,	+	<u> </u> T			7 %V	<u> </u>	,	<			+	l
CORN CORN MUCCENT NY Columniate OH 150 4000 150N X X C231 CSS CSS Muncentral OH 102 2000 100N X X C231 CSS	5 5			L		200%	+	ł	<u> </u> T			١	< >						İ
CSM CSM CSM Cyclement OH Challentes OH Challentes OH Comment CHORN C230 CSM CSM Hempform VA Cale CSM <	5 ≥	Sile				150%	×	(×	<u> </u> 				-			×		×	
C231 CSK CSK Reverse Jeff WA Sidense Jeff WA Sidense Jeff WA Sidense Jeff WA Sidense Jeff WA Sidense WA Sidens	된			L		-100%	+		L		1	%0	_						
CSM CSM <td>\$</td> <td></td> <td>%0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	\$											%0							
C231 CSK STABRING WW 410 6 000 6	K K			L		%0			<u> </u>			× %0	L		×				
C231 CSK CSK Stability Legistration WW 429 6 000	*					33%	×												
C231 CSX CSX Barbourswile WW Hullington WW 1 6,000 6,000 6,00 6,00 C231 CSX Hullington WW 1 16,000 17,000 6% x C232 CSX Kenova WW Big Sandy-Lct WW 1 16,000 17,000 6% x C230 CSX Kenova WW Big Sandy-Lct WW 1 16,000 17,000 6% x C231 CSX RASI Russell KY RASI CSX RASI Russell KY CSX	8			L		%0						× %0			×				
c231 CSX Kest Name W 8 15,000 17,000 6% x C238 CSX Keen Name W Big Sandy Jct WY 1 16,000 17,000 6% x C231 CSX SSX Revision Jct KY 15 27,000 27,000 19% x C241 CSX Rissand Jct KY 11 23,000 27,000 19% x C241 CSX CSX Rissand Lot KY Rissand KY 11 15,000 13% x C241 CSX CSX Un/updristed KY 17 15,000 13% x C241 CSX CSX Un/updristed KY 17 15,000 13% x C241 CSX CSX Un/updristed WY 46 5,000 40% x C241 CSX CSX MW MW 21 10,000 40% x <td>≩</td> <td></td> <td></td> <td></td> <td></td> <td>%0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\downarrow</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td>	≩					%0							\downarrow		×				
C238 CSX CSX <td>N N</td> <td></td> <td></td> <td></td> <td></td> <td>%9</td> <td>×</td> <td></td> <td><u> </u></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	N N					%9	×		<u> </u>		-		-						
CSX CSX Ashland KY 6 27,000 27,000 VA CSX CSX Ashland KY 14 23,000 24,000 VA CSX CSX Nuclabin KY 14 23,000 24,000 VA CSX CSX Nuclabin KY 12 53,000 43,000 13,000 CSX CSX CMM-belland MY VA 18 5,000 4,000 13,000 CSX CSX CMM-belland MY VA 46 5,000 4,000 13,000 CSX CSX CMM-belland MY 46 5,000 4,000 120% CSX CSX CSX MX LIC 5,000 4,000 120% CSX CSX GSX CSX MX LI 8,000 3,000 40% CSX CSX GSX CSX MY 18 5,000 3,000 40%	}	İ			١	%9	×		<u> </u> 		ı	25% x	+		,			+	
CSX CSX No. 1 No. 1 4 27,000 24,000 40% X CSX CSX CSX Nusselland KY 121 15,000 24,000 -20% CSX CSX Nuviginal C WM MX-Lord WW 26 5,000 4,000 -20% CSX CSX WW MX-Lord WW 26 5,000 4,000 -20% CSX CSX WW GSX CSX MX-Lord WW 26 5,000 -40% CSX CSX MX-Lord WW 26 5,000 -40% -40% CSX CSX Berkeley Jct WW 27 5,000 -40% -40% CSX CSX Berkeley Jct WW 45 12,000 -40% -40% CSX CSX Berkeley Jct WW 46 5,000 -40% -40% CSX CSX Berkelesbug WW 46 <td< td=""><td>¥ 3</td><td></td><td></td><td></td><td></td><td>° è</td><td></td><td></td><td> </td><td></td><td>1</td><td></td><td>1</td><td>\int</td><td></td><td></td><td></td><td></td><td></td></td<>	¥ 3					° è			 		1		1	\int					
CSX CSX Nutselled KY Covingen CSW CSW <th< td=""><td>23</td><td></td><td>ľ</td><td>\perp</td><td></td><td>808</td><td>,</td><td></td><td><u> </u></td><td></td><td>28,000</td><td>17% ×</td><td>+</td><td></td><td><</td><td></td><td></td><td></td><td>T</td></th<>	23		ľ	\perp		808	,		<u> </u>		28,000	17% ×	+		<				T
CSX CSX Cumberland MD Windfailac WM 28 5,000 4,000 -20% CSX CSX Windfailac WW MRJct WW 46 5,000 -20% CSX CSX MW CSX CSX CSX CSX CSX CSX Berkelsbug WW Short Line Jath WW 21 5,000 -40% CSX CSX Berkelsbug WW Short Line Jath WW 21 5,000 -40% CSX CSX Berkelsbug WW Hurlington WW 12,000 -3000 -40% CSX CSX Parkersbug WW Hurlington WW 15,000 3,000 20% X CSX CSX Monon IN Lafavette IN 3000 20% X CSX CSX Mindtone IN 1000 3,000 20% X CSX CSX Mindtone <td< td=""><td>₹</td><td></td><td></td><td></td><td></td><td>-13%</td><td></td><td></td><td><u> </u></td><td></td><td>l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	₹					-13%			<u> </u>		l								
CSX CSX W virginia C WV MK.Lct WW 26 5,000 4,000 -20% CSX CSX CSX Grafton WV 26 5,000 -3,000 -40% CSX CSX Grafton WV 21 5,000 3,000 -40% CSX CSX Grafton WV Short Line Jct WV 21 5,000 3,000 -40% CSX CSX GSX CSX Parkersburg WV Huntington WV 51 12,000 3,000 -40% CSX CSX Parkersburg WV Huntington WV 52 1,000 3,000 20% X CSX CSX Parkersburg WV Huntington NV 1100 3,000 20% X CSX CSX CSX Huntington NV Huntington NV 1100 3,000 20% X CSX CSX Huntington	QW					-20%				2,000	7,000 4	40% x			×				
CSX CSX MM Left WW Grafiton WW 26 5,000 3,000 -200% CSX CSX Grafiton WW Graficon 3,000 -40% -60% CSX CSX Berkeley Jet WW Short Line Jet WW 21 5,000 3,000 -40% CSX CSX Berkeley Jet WW Short Line Jet WW 51 5,000 3,000 -40% CSX CSX Berkeley Jet WW Short Line Jet WW 51 5,000 3,000 -40% CSX CSX CSX Parkersburg WW Humingon HW 15 1,000 3,000 -17% CSX CSX CSX Manon IN Monon HN 19 1,000 3,000 200% X CSX CSX CSX Lafayette IN Amonon IN 1,000 3,000 200% X CSX CSX	≩					-20%												1	
CSX CSX Gereloy Let WV Servicine Let WV 2 5,000 3,000 40% CSX CSX Berkelsburg WV Servicine Let WV 56 5,000 3,000 40% CSX CSX Berkelsburg WV Brookyn Jet WV 56 5,000 3,000 40% CSX CSX Parkersburg WV Hundrigton NV H	≩				ŀ	-50%			<u> </u>		- 1		-		×			+	
CSX CSX Berkeley Jct WV Short Line Jct WV 55 12,000 3,000 40% CSX CSX Parkersburg VV Brootkyn Jct WV 56 12,000 8,000 3300 40% CSX CSX Parkersburg VV Hurington VV 119 12,000 10,000 17% CSX CSX Manster IN Lafayette IN 62 1,000 3,000 200% x CSX CSX Mannel IN Crawfordsville IN 29 1,000 5,000 5,000 x CSX CSX Mitchel IN Vincennes IN 89 1,000 5,000 10,000 10,000 CSX CSX Mitchel IN Noncennes II 68 1,000 10,000 12% x CSX CSX Mitchel IN Michangolis IN 62 1,000 5,000 6,00 5,000 10,000 CSX CSX Salem II 1 Danville II 1 166 17,000 19,000 12% x CSX CSX Salem II 1 Danville II 1 167 13,000 19,000 12% x CSX CSX Salem II 1 Danville II 1 166 17,000 19,000 12% x CSX CSX Danville II 1 Decatur AL 1 18 22,000 32,000 45% x CSX CSX Balem II 1 Decatur AL 1 18 22,000 32,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 51 18,000 12,000 45% x CSX CSX Balem II 1 Perchade IN 67 18,000 120,000 45% x CSX CSX Balem II 1 Perchade IN 67 18,000 120,000 45% x CSX CSX Balem II 1 Perchade IN 67 18,000 100,00% x CSX CSX Mandgonery AL Flomation AL 110 32,000 100,00% x CSX CSX Mandgonery AL Flomation AL 110 00,00 10,000 10,	≩	1				-40%			<u> </u>		- 1		\downarrow		× ;			+	
CSX CSX <td>≩</td> <td></td> <td></td> <td></td> <td></td> <td>-40%</td> <td></td> <td>+</td> <td> </td> <td></td> <td>000,7</td> <td></td> <td>_</td> <td>1</td> <td>< ></td> <td></td> <td></td> <td>+</td> <td></td>	≩					-40%		+	 		000,7		_	1	< >			+	
CSA CSA <td>3</td> <td>Ī</td> <td></td> <td></td> <td></td> <td>236%</td> <td></td> <td></td> <td> </td> <td>1</td> <td>1</td> <td>7 ×</td> <td>+</td> <td>1</td> <td>< ×</td> <td></td> <td></td> <td>$\frac{1}{1}$</td> <td>T</td>	3	Ī				236%			 	1	1	7 ×	+	1	< ×			$\frac{1}{1}$	T
CSX CSX Munster IN Monon IN 62 1,000 3,000 200% x CSX CSX CSX CSX Monon IN Caradycate IN 30 1,000 3,000 200% x CSX CSX CSX Hamilton IN Caradycatesile IN 29 1,000 3,000 200% x CSX CSX CSX Hamilton IN Indianapolisis IN 1000 3,000 200% x CSX	}					-17%			L			67% x			×			-	
CSX CSX Monon IN Lafayette IN 29 1,000 3,000 200% x CSX CSX CSX Lafayette IN CSM 1,000 5,000 500% x CSX CSX CSX Hamiltonia IN Michell IN 69 1,000 6,000 500% x CSX CSX Milchell IN Milchell	Z					200%	×				l								
CSX CSX Lafayette IN Crawfordsvile IN 29 1,000 3,000 500% x CSX CSX CSX Michael IN Michael IN 600 6,000 6,000 500% x CSX CSX Michael IN Michael IL 79 1,000 6,000 670% x CSX CSX CSX American IL 600 71% x C 62% x C C 22% x X C CSX CSX CSX CSX D 1000 1000 60% x C C X C X X C X X X X X	Z					200%	×												
CSX CSX Hamilton OH Inclanapolis IN 99 1,000 6,000 6,000 x CSX CSX Winchenes IN Wincennes IN 62 1,000 -1,000 CSX CSX Vincennes IN Silem IL 79 17,000 -1,000 CSX CSX Salem IL Extlusis IL 68 13,000 -5,000 -17% CSX CSX CSX Dan/line IL Denville IL Terre Haute IN 57 18,000 12,000 6% x CSX CSX CSX CSX Inningham AL 18 22,000 32,000 45% x CSX CSX CSX CSX Inningham AL 11 22,000 32,000 45% x CSX CSX CSX Inningham AL 11 22,000 32,000 45% x	Z	<u>e</u>				200%	×		<u> </u>		- 1						1	1	
CSX CSX Minichael IN Vincentes IN Salem Note of the control of	동					200%	×		 		- 1	× %0	+	1					1
CSX CSX Salem IL Figure 17,000 5,000 62% CSX CSX Salem IL Extrusts IL Figure 15,000 62% X CSX CSX CSX CSX CSX CSX X X CSX CSX CSX Internetation IN Vincentes IN 46,000 22,000 45% X CSX CSX CSX Internetation AL 116 22,000 32,000 45% X CSX CSX CSX Internetation AL 116 22,000 32,000 45% X CSX CSX Decatur AL Black Creek AL 41 12 22,000 32,000 45% X CSX CSX Black Creek AL 12 22,000 33,000 44% X CSX CSX Black Creek AL 14 16 22,000 <t< td=""><td>2 2</td><td>nes</td><td>1</td><td></td><td></td><td>-100%</td><td></td><td></td><td><u> </u></td><td></td><td></td><td>3%</td><td>+</td><td></td><td></td><td></td><td>l</td><td></td><td></td></t<>	2 2	nes	1			-100%			<u> </u>			3%	+				l		
CSX CSX <td>N =</td> <td>Of Louis</td> <td>1</td> <td>L</td> <td></td> <td>7009</td> <td></td> <td></td> <td>L</td> <td></td> <td>1</td> <td>8%</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td>Ī</td>	N =	Of Louis	1	L		7009			L		1	8%	-					l	Ī
CSX CSX Danville 1.1. Terre Haute IN. 57 18,000 19,000 6% x CSX CSX CSX Lerre Haute IN. The Decadur IN. 54 18,000 22,000 22,00 22,00 45% x CSX CSX CSX Decadur Al. Black Creek Al. 18 22,000 32,000 45% x CSX CSX CSX CSX Black Creek Al. 18 22,000 32,000 45% x CSX CSX CSX Black Creek Al. 18 22,000 32,000 45% x CSX CSX CSX Black Creek Al. 12 28,000 45% x CSX CSX CSX Parkwood Al. 12 28,000 44% x CSX CSX CSX Mulchorage KY Winchorage KY Y 95 0	! =	anville				12%	×		<u></u>		1	× × ×	-					-	
CSX CSX Terr Haute IN Vincennes IN 64 18,000 22,000 22% x CSX	<u></u>	erre Haute				%9	×				32,000 6								
CSX CSX Nashwile TN Decetur AI 118 22,000 32,000 45% x CSX CSX <t< td=""><td>z</td><td></td><td></td><td></td><td></td><td>25%</td><td>×</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>	z					25%	×						_					1	
CSX CSX Decentur AL Black Creek AL 89 22,000 32,000 45% x CSX CSX CSX CSX Black Creek AL 15 22,000 32,000 45% x CSX CSX Black Creek AL 15 22,000 32,000 45% x CSX CSX Blanchigham AL 15 28,000 40,000 43% x CSX CSX CSX CSX CSX All T10 23,000 28% x CSX CSX CSX Archorage KY Winchester KY 7 1,000 1,000 7% CSX CSX Latonia KY Los 1,000 1,000 60% x CSX CSX CSX Los Archorage KY 11,000 16,000 60% x CSX CSX Latonia KY Archorage KY Arc	Z.					45%	×		_		- 1		4	Ţ		×			
CSX CSX Black Chr AL Blamingham AL 5 22,000 43,000 43% x CSX CSX CSX Blamingham AL 12 28,000 40,000 43% x CSX CSX CSX Parkwood AL 12 28,000 43% x CSX CSX Monigomery AL 87 16,000 23,000 28% x CSX CSX Monigomery AL 87 110 32,000 44% x CSX CSX Monigomery AL 87 10 1,000 1000 CSX CSX Lafonia KY Lobar 1,000 1,000 0% x CSX CSX Lafonia KY And 13 11,000 16,000 60% x CSX CSX Lobar Lobar 11,000 16,000 16,000 10,000 10,000 10,000 10,0	AL					45%	×			1	- 1		+	×				+	×,
CSX CSX <td>¥.</td> <td></td> <td></td> <td></td> <td></td> <td>45%</td> <td>×</td> <td>1</td> <td><u> </u></td> <td></td> <td>- 1</td> <td>x ,</td> <td>+</td> <td>×,</td> <td></td> <td></td> <td></td> <td></td> <td></td>	¥.					45%	×	1	<u> </u>		- 1	x ,	+	×,					
CSX CSX Anchorage Kr Winchester Kr 95 1000 45,000 45% x CSX CSX Anchorage Kr Miniguities Kr 95 1,000 45,000 45% x CSX CSX Anchorage Kr Minchester Kr 95 1,000 1000% x CSX CSX Latoria Kr Lothair Kr 2 1,000 10,000 0% x CSX CSX CSX Latoria Kr Lothair Kr 13 1,000 15,000 55% x CSX CSX Louisville Kr Anchorage Kr 13 1,000 15,000 55% x CSX CSX Louisville Kr Annua Tr 173 1,000 15,000 36% x	4					4570	,		<u> </u>		- 1		,	<,			>		< ×
CSX CSX Archorage KY Indianation KY 2 1,000 1000% x CSX CSX Archorage KY Archorage KY 13 11,000 16,000 56% x CSX CSX CSX Archorage KY 13 11,000 15,000 36% x CSX CSX Latonia KY Archorage KY 13 11,000 15,000 36% x CSX CSX Louisville KY Annau TN 173 11,000 15,000 36% x	₹ ₹					7077	< >		 			3%	< ×	< ×			×		(×
CSX CSX N Hazard KY Lothalir KY 2 1,000 1,000 0% X CSX CSX Lafonia KY Anchorage KY 86 10,000 16,000 60% x CSX CSX Louisville KY 13 11,000 17,000 55% x CSX CSX Louisville KY Annual TN 13 11,000 15,000 36% x	į Ž			25,00		1000%	< ×		<u> </u> -		2,000 1000%		-						
CSX CSX Latoria KY Archorage KY 86 10,000 16,000 60% x CSX CSX Latoria KY 73 11,000 15,000 55% x CSX CSX Louisville KY Annual TN 73 11,000 15,000 36% x	₹			L	1,000	%0									×				
CSX CSX Anchorage KY Louisville KY 13 11,000 17,000 55% x CSX Louisville KY Amqui TN 173 11,000 15,000 36% x	≩				16,000	%09	×			11,000				×				1	×
CSX CSX Louisville KY Amqui TN 173 11,000 15,000 36% x					12,000	25%	×				- 1		-	×				+	× ;
, , , , , , , , , , , , , , , , , , ,					15,000	36%	×	+	<u> </u>		-	127% X	\downarrow	×				\dagger	<

Page 2 of 6

ATTACHMENT F-1 COMPARISON OF CSX HAZARDOUS MATERIALS TRANSPORT DATA USED IN THE DRAFT EIS AND FINAL EIS

Mail Line Beginner Mail								Daí	Data Used in F	Final EIS				Data Us	Data Used in Draft	r EIS				Change Crite	Change in Operation Meeting Criteria for Significance	on Meetir nificance	б	
1		ð	nership	Rail Line S	egment Description		Estimated	Annual Carloads	of Hazardous				Estimated Annu	al Carloads of Ha Material	zardous									
Column C	Site		i	Between	And			Post Acq.	Change		l	New Wajor Key toute	Pre Acq.	Post Acq.						New Increase Lo in Ni HazMat	No Au Longera N New Key I Route R	Added Lo New a h Key h Route Ru	No Longer a Major Key Route	New Major Key Route
1,000, 1,000,	1 2	4 ⊢	XSS	Covington	15	¥	1 180		I ∟			, <u> </u>	18.000	37.000	106%	×		 				$\ \cdot\ $	×	
Color Colo	C-292	4	š		$\overline{}$		L	ŀ	1			Γ	8,000	13,000	93%	×	×		×		×			
CASE CASE <th< td=""><td>C-293</td><td>⊢</td><td>CSX</td><td></td><td></td><td></td><td></td><td></td><td>il</td><td></td><td></td><td></td><td>2,000</td><td>12,000</td><td>140%</td><td>×</td><td>×</td><td></td><td></td><td></td><td>×</td><td></td><td>1</td><td></td></th<>	C-293	⊢	CSX						il				2,000	12,000	140%	×	×				×		1	
CAST CAST <th< td=""><td>C-294</td><td>Щ</td><td>CSX</td><td></td><td></td><td></td><td></td><td></td><td>- 1</td><td>-</td><td></td><td></td><td>2,000</td><td>12,000</td><td>140%</td><td>×</td><td>×</td><td>7</td><td></td><td></td><td>×</td><td></td><td></td><td></td></th<>	C-294	Щ	CSX						- 1	-			2,000	12,000	140%	×	×	7			×			
CSS CSS CSS CATHER AND BOARD	C-295		csx						- 1				000'9	12,000	100%	×	×				×	1		
CASI CASI <th< td=""><td>C-296</td><td>_</td><td>csx</td><td>wille</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>22,000</td><td>33,000</td><td>20%</td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	C-296	_	csx	wille									22,000	33,000	20%	×								
CASIS CASIS <th< td=""><td>C-297</td><td></td><td>csx</td><td></td><td></td><td></td><td></td><td></td><td>- 1</td><td></td><td></td><td></td><td>000'9</td><td>000'6</td><td>20%</td><td>×</td><td></td><td>7</td><td>1</td><td></td><td></td><td></td><td></td><td></td></th<>	C-297		csx						- 1				000'9	000'6	20%	×		7	1					
18. 18. 18. 18. 18. 18. 18. 18. 18. 18.	C-298		CSX		=			1	- 1	1	1		14,000	28,000	100%	×		×					×	
CASIS CASIS <th< td=""><td>C-317</td><td></td><td>csx</td><td></td><td>- 1</td><td></td><td></td><td></td><td>- 1</td><td></td><td></td><td></td><td>2,000</td><td>2,000</td><td>%0</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	C-317		csx		- 1				- 1				2,000	2,000	%0		1							
Case Case	C-318	_	CSX	1	- 1				- 1			T	2,000	2,000	%								+	
Color Colo	C-320		CSX	1	- 1				- 1			1	3,000	3,000	%			T		1		+	†	
Color Colo	C-321	_	CSX						- 1				3,000	3,000	%							1	1	Ì
CASH CASK CASK <th< td=""><td>C-322</td><td>_</td><td>csx</td><td></td><td></td><td></td><td></td><td></td><td>- 1</td><td></td><td></td><td>1</td><td>8,000</td><td>8,000</td><td>%</td><td></td><td>+</td><td></td><td> </td><td></td><td></td><td>+</td><td>†</td><td></td></th<>	C-322	_	csx						- 1			1	8,000	8,000	%		+					+	†	
CSM CSK CSK <td>C-323</td> <td>_</td> <td>CSX</td> <td></td> <td></td> <td></td> <td></td> <td>ı</td> <td>- 1</td> <td></td> <td></td> <td>1</td> <td>8,000</td> <td>000'6</td> <td>13%</td> <td>×</td> <td></td> <td>1</td> <td>× ;</td> <td></td> <td></td> <td>+</td> <td></td> <td></td>	C-323	_	CSX					ı	- 1			1	8,000	000'6	13%	×		1	× ;			+		
Color Colo	C-324	_	CSX						- 1		-	1	2,000	9	20%	×	+	T	×			+	1	l
CSM CSM <td>C-330</td> <td>_</td> <td>csx</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 1</td> <td>×</td> <td></td> <td></td> <td>7,000</td> <td>8,000</td> <td>14%</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>1</td> <td></td>	C-330	_	csx						- 1	×			7,000	8,000	14%	×						+	1	
CASH CASK CASK <th< td=""><td>C-331</td><td>_</td><td>CSX</td><td></td><td></td><td></td><td></td><td></td><td>- 1</td><td></td><td></td><td>1</td><td>10,000</td><td>11,000</td><td>%</td><td>×</td><td></td><td></td><td>×</td><td></td><td></td><td>1</td><td>1</td><td></td></th<>	C-331	_	CSX						- 1			1	10,000	11,000	%	×			×			1	1	
CASH CASH VARINGE AND 27,000	C-333		CSX	poo				ŀ	- 1				9	000'9	%0		+		1	+	1	+	1	
CAST CSK CSK CASK C	C-33	_	CSX						- 1				24,000	31,000	29%	×	1	Ť	1					
CAST CSK CSK <td>C-335</td> <td>_</td> <td>CSX</td> <td></td> <td>NC Contentnea</td> <td></td> <td></td> <td></td> <td>- 1</td> <td></td> <td></td> <td>T</td> <td>18,000</td> <td>30,000</td> <td>%/9</td> <td>×</td> <td>1</td> <td>T</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td>	C-335	_	CSX		NC Contentnea				- 1			T	18,000	30,000	%/9	×	1	T	+					
CASA CSA CSA <td>C-33</td> <td>_</td> <td>CSX</td> <td></td> <td>NC Selma</td> <td></td> <td></td> <td></td> <td>- 1</td> <td></td> <td>+</td> <td></td> <td>18,000</td> <td>32,000</td> <td>%8<i>)</i></td> <td>×</td> <td></td> <td>Ť</td> <td>1</td> <td></td> <td></td> <td>+</td> <td>\dagger</td> <td>ļ</td>	C-33	_	CSX		NC Selma				- 1		+		18,000	32,000	%8 <i>)</i>	×		Ť	1			+	\dagger	ļ
CASA CSK Experimental on CT Frequencies NC 31 19000 7200 178 X <td></td> <td>- 1</td> <td>CSX</td> <td></td> <td>NC Fayetteville</td> <td></td> <td></td> <td></td> <td>- 1</td> <td></td> <td>+</td> <td>İ</td> <td>20,000</td> <td>32,000</td> <td>200</td> <td>× :</td> <td>\dagger</td> <td>İ</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>+</td> <td></td>		- 1	CSX		NC Fayetteville				- 1		+	İ	20,000	32,000	200	× :	\dagger	İ	1			1	+	
CAST CRAY ""><td></td><td>- 1</td><td>CSX</td><td></td><td>NC Pembroke</td><td></td><td></td><td></td><td>- 1</td><td></td><td>-</td><td>T</td><td>2000</td><td>33,000</td><td>02.0</td><td>× ;</td><td>1,</td><td>T</td><td></td><td></td><td>></td><td></td><td></td><td></td></th<>		- 1	CSX		NC Pembroke				- 1		-	T	2000	33,000	02.0	× ;	1,	T			>			
CSX CSX <td></td> <td>_</td> <td>3</td> <td></td> <td>NC Dillon</td> <td></td> <td></td> <td>ı</td> <td>1</td> <td></td> <td></td> <td>Ţ</td> <td>1,000</td> <td>14 000</td> <td>40% 40%</td> <td>< ×</td> <td>\ \</td> <td>T</td> <td>×</td> <td>-</td> <td>\ <</td> <td></td> <td></td> <td></td>		_	3		NC Dillon			ı	1			Ţ	1,000	14 000	40% 40%	< ×	\ \	T	×	-	\ <			
CSX CSX <td>3</td> <td>_</td> <td>1</td> <td></td> <td>SOLD SOLD SOLD SOLD SOLD SOLD SOLD SOLD</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>l</td> <td>000 8</td> <td>13,000</td> <td>%89</td> <td>*</td> <td>×</td> <td></td> <td>×</td> <td></td> <td>×</td> <td></td> <td></td> <td></td>	3	_	1		SOLD SOLD SOLD SOLD SOLD SOLD SOLD SOLD				1			l	000 8	13,000	%89	*	×		×		×			
CSX CSX Sistephen SC Sale but but but but but but but but but but	3 3	_	X X X X X X X X X X X X X X X X X X X		SC Carlo				1				10,000	13,000	30%	×			×					
CSX CSX Ashley-Jet SC Vermassee SC Fig BODD 15,000 16,000 15,000	5	4	XXX		SC Ashley Ict				1				0006	13,000	44%	×	×		×		×			
CSK CSK CSK CSK CSK Vermassee SC Gavarruth GA 47 7 000 6 000 13 000 13 000 17 00 7 00 7 0 CSK	3	+	XSS		SC Yemassee				ı		×		0006	16.000	78%	×	×							
CSX CSX Savannah GA Jesup GA Je	3	_	CSX		SC Savannah				1				8,000	13,000	989	×	×		×		×			
CSX CSX Pasup GA Maybricoss GA Maybricoss GA Maybricoss GA Maybricoss GA Maybricoss GA Maybricoss GA	0.346	1	CSX		GA Jesup	L			1			Ī	10,000	17,000	%02	×			×					
CSX CSX CSX CSX Permittroke NC 81 14000 13000 -17% 14000 1800 28% x PROPRIED CSX CSX CSX CSX CSX Hamilet NC Permittroble NC 53 26,000 25,000 35,00 -4% x PROPRIED CSX X <t< td=""><td>0.347</td><td></td><td>CSX</td><td></td><td>GA Wavcross</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>9'000</td><td>10,000</td><td>%29</td><td>×</td><td>×</td><td></td><td>×</td><td></td><td>×</td><td></td><td></td><td></td></t<>	0.347		CSX		GA Wavcross							_	9'000	10,000	%29	×	×		×		×			
CSX CSX Hamlet NC Pembroke NC 34 26.00 35.00 <td>0.348</td> <td></td> <td>csx</td> <td>9</td> <td>NC Wilmington</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>14,000</td> <td>18,000</td> <td>73%</td> <td>×</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.348		csx	9	NC Wilmington						-		14,000	18,000	73%	×			×					
CSK CSX Hamlet NG G53 26 000 35% x ABOUTO 60 000 131% x X CSX CSX Monroe NG Clinion 27 000 23% x 14 000 49 000 137% x X CSX CSX Afthens SG 14 000 27 000 23% x 14 000 28% x X CSX CSX Afthens SG Afthens GA Afthens GA 14 000 27 000 28% x X 17 000 49 000 14 00 X X X X 17 000 49 000 14 00 X <t< td=""><td>C-349</td><td></td><td>CSX</td><td></td><td>NC Pembroke</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27,000</td><td>39,000</td><td>44%</td><td>×</td><td></td><td></td><td>×</td><td></td><td></td><td></td><td>1</td><td></td></t<>	C-349		CSX		NC Pembroke								27,000	39,000	44%	×			×				1	
CSX CSX Monroe NC Clinton SC 92 14,000 27,000 49,000 250,00 X X CSX CSX CSX CSX CSX CSX CRentwood SC 22 16,000 27,000 29% x 14,000 49,000 180% x x x CSX GSX GSX GARINA GA All 21,000 27,000 27,000 27,000 27,000 27,000 31,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 17,000 16,000 17,000 16,000 17,000 16,000 17,000	C-350	_	csx		NC Monroe								26,000	000'09	131%	×	1	×					×	
CSX CSX Clinton SC Greenwood SC 2200 27000 27000 27000 51000 51000 51300 51000 51300 5100	C-351		csx		NC Clinton				- 1	1		7	14,000	49,000	250%	×		×				+	×:	
CSX CSX Greenwood SC Albens GA 81 21,000 27,000 51,000 143% X X CSX CSX CSX Alfarlers GA Albens GA Albens GA 21,000 27,000 23% X Albens X </td <td>C-352</td> <td>_</td> <td>csx</td> <td></td> <td>SC Greenwood</td> <td></td> <td></td> <td></td> <td>- 1</td> <td>1</td> <td></td> <td>Ī</td> <td>17,000</td> <td>49,000</td> <td>188%</td> <td>×</td> <td></td> <td>×</td> <td></td> <td></td> <td>1</td> <td>+</td> <td>\ \ !</td> <td></td>	C-352	_	csx		SC Greenwood				- 1	1		Ī	17,000	49,000	188%	×		×			1	+	\ \ !	
CSX CSX Athents GA Adjanta GA 700 27,000 27,000 57,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 51,000 50,000 7	C-353	_	csx		SC Athens				- 1	1			21,000	51,000	143%	×		×	1	1		+	< ;	
CSX CSX Affanita GA Lagrange GA A1000 27,000 24,000 5,000 48,000 28,000	C-354		CSX		GA Atlanta			1		1		T	22,000	000,14	132%	×		×	1		,	+	\	į
CSX CSX CSX Hagerage GA Annoadronely AL 100 £2,000 £3,000	C-356	-	Š		GA Lagrange							Ţ	2,000	40,000	20001	\	,	\ \ !		1	<,		,	
CSX CSX CSX Manual NC Mobile SC 100 4,000 6,000 12,000 <t< td=""><td>C-356</td><td>-</td><td>CSX</td><td>9</td><td>GA Montgomery</td><td></td><td></td><td>1</td><td>-</td><td>1</td><td>1</td><td>T</td><td>7,000</td><td>45,000</td><td>2000</td><td>۷,</td><td>,</td><td> </td><td>+</td><td></td><td>,</td><td>1</td><td>,</td><td></td></t<>	C-356	-	CSX	9	GA Montgomery			1	-	1	1	T	7,000	45,000	2000	۷,	,	 	+		,	1	,	
CSX CSX Mobile SC Columbia SC Tourbila SC TOURDIA X X	C-357	-	XSS		NC Mcbee				- 1			T	4,000	000,21	200%	×	× :	Ť		+	<>	1	t	
CSX CSX <td>C-358</td> <td>_</td> <td>CSX</td> <td></td> <td>SC Columbia</td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td>T</td> <td>000'6</td> <td>12,000</td> <td>140%</td> <td>×</td> <td>×</td> <td>İ</td> <td> </td> <td></td> <td></td> <td> </td> <td>†</td> <td></td>	C-358	_	CSX		SC Columbia					×		T	000'6	12,000	140%	×	×	İ	 				†	
CSX CSX Fairfax SC Savennah GA 62 5,000 -20% 5,000 5,000 6,000 20% x A CSX <t< td=""><td>C-359</td><td></td><td>CSX</td><td>a</td><td>SC Fairfax</td><td></td><td></td><td></td><td>- 1</td><td></td><td></td><td></td><td>9,000</td><td>12,000</td><td>%00L</td><td>×</td><td>×</td><td>İ</td><td>\</td><td></td><td>\ <</td><td></td><td>\dagger</td><td></td></t<>	C-359		CSX	a	SC Fairfax				- 1				9,000	12,000	%00L	×	×	İ	\		\ <		\dagger	
CSX CSX <td>C-360</td> <td></td> <td>CSX</td> <td>,</td> <td>SC Savannah</td> <td></td> <td></td> <td></td> <td>- 1</td> <td></td> <td></td> <td></td> <td>2,000</td> <td>9'000</td> <td>20%</td> <td>×</td> <td>1</td> <td>1</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td>	C-360		CSX	,	SC Savannah				- 1				2,000	9'000	20%	×	1	1	×					
CSX CSX Dillon SC 74 1000 -100% -100% -100% -100% -100% X -100 -100% -100 -100% -100 -100% -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100	C-361	_	CSX		NC Dillon								2,000	000'6	80%	×			×			1		
CSX CSX Remount SC Charleston SC 10 4,000 6,000 6,000 5,000 25% x A CSX <	C-362	_	CSX		SC Andrews				١.				1,000	2,000	100%	×			×					
CSX CSX Camak GA Atlenta GA 126 3000 2,000 -33% 9 5,000 6,70% x A CSX CSX CSX CSX Fairfax GA 28 6,000 4,000 -33% 9 6,000 6,000 67% x P CSX CSX Fairfax GA 28 6,000 4,000 -33% 6,000 <t< td=""><td>C-365</td><td>_</td><td>CSX</td><td>-</td><td>SC Charleston</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4,000</td><td>2,000</td><td>25%</td><td>×</td><td></td><td></td><td>×</td><td></td><td></td><td></td><td>1</td><td></td></t<>	C-365	_	CSX	-	SC Charleston								4,000	2,000	25%	×			×				1	
CSX CSX Augusta GA Camek 48 3000 2,000 -33% 9 6,000	C-366	_	CSX		GA Atlanta								3,000	2,000	%29	×			×					
CSX CSX Robbins SC Augusta GA 28 6,000 4,000 -33% 6,000 6,000 6,000 6,000 6% 9% 8 CSX CSX Fairfax SC 29 6,000 4,000 -33% 6,000 6,000 6,000 0% 8 CSX CSX CSX Nemassee SC 31 0 - 1,000 1,000 90% 8 CSX CSX Mashwinie TN 117 7,000 6,000 -14% 1,000 1,000 9% N	C-367		CSX		GA Camak				1				3,000	5,000	%29	×			×					
CSX CSX Fairfax SC Robbins SC 29 6,000 4,000 -33% 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 7,000 9,000 29% x CSX CSX CSX Mashville TN Miceralia TN 117 7,000 6,000 1,000 9,000 29% x P	38.5	_	CSX		SC Augusta				1		-		9'000	000'9	%0									
CSX CSX Yemassee SC Fairflax SC 31 0 - 1,000 1,000 1,000 0% A CSX CSX Mckenzie TN Misenzie TN 116 6,000 -17% 7,000 9,000 29% x X CSX CSX Nashville TN Mckenzie TN 117 7,000 6,000 -14% 1,000 1,000 0% N	2.36	\perp	CSX		SC Robbins	L			ŀ		-	Ī	9'000	000'9	%0									
CSX CSX Mickerzie TN Memphis TN 116 6,000 5,000 -17% 7,000 9,000 29% x CSX CSX Nashville TN Mickerzie TN 117 7,000 6,000 -14% 1,000 1,000 0%	C-370	_	CSX		SC Fairfax								1,000	1,000	%0									
CSX CSX Nashville TN Mckenzie TN 117 7,000 6,000 -14% 100 1,000 1,000	C-371	_	CSX		TN Memphis	L							7,000	000'6	29%	×			×					
	C-372		CSX		TN Mckenzie						\dashv	Ī	1,000	1,000	%0		7	Ī			1	1	-	1

ATTACHMENT F-1 COMPARISON OF CSX HAZARDOUS MATERIALS TRANSPORT DATA USED IN THE DRAFT EIS AND FINAL EIS

Ownership Rail Line Segment Description And Length (1984) Fire Act Between A. Challancoga TN Length (25X) CSX Sieverscon A. Challancoga TN 39 (25X) CSX Sieverscon A. Challancoga TN 39 (25X) CSX Sieverscon A. Challancoga TN Control	Data L	Data Used in Final EIS		1	Data Used in Draft	aft EIS			S. C.	Change in Operation meeting Criteria for Significance	ion meeting nificance	_
Site Pre Act Post Act Destroyen President	Estimated Annual Carloads of Hazardous Material	izardous		Estimated Annual Carloads of Hazardous Material	ads of Hazardous							
CONTROL CSK CSK CSK Mashville TIN Stevenson AL Chattanooga TIN 39 2-37 CSK CSK CSK CSK CARAILAROOGA TIN 39 2-37 CSK CSK CSK CSK CSK CSK ARAILAROOGA AL 142 2-38 CSK CSK CSK CSK ARAILAROOGA AL 142 C-38 CSK CSK JESUN GA AG 46 C-38 CSK CSK JESUN GA FA AG C-38 CSK CSK JESUN GA FA AG C-38 CSK CSK DA FA AG AG C-38 CSK CSK DA FA AG AG C-38 CSK CSK CSK CSK AG FA AG C-38 CSK CSK CSK CSK CSK	Pre Acq. Post Acq.	Change Hazardous Route	New Major Key Route	Pre Acq. Post Acq.	Acq. Change	Increase in Hazardous Materiais	New Key Route	New Major Key Route	No New Longer Increase an Incr. in in HazMat	No Longer a New Key Route	Added Longer New a Major Key Key Route Route	ger New gjer Major ajor Key sy Route
CASK CSK CSK CSK CSK CSK CSK CSK CSK CSK CASK CSK CASK CSK CASK CSK CASK CS	11,000	%6-			Н	×] []	×			-
CSM CSX Chattanooga TN Cartersville GA 87 C37 CSX CSX Liggrange GA Lagrange CSS CSS Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange GA Lagrange CA Lagrange GA Lagrange<		%6-		12,000	16,000 33%	×		l	×			
CSX CSX CSX LOSA CAPA Hardenge GA Parkwood AL 142 C378 CSX CSX Wardcross GA Inomasvile GA	11,000	%6-			П	×			×			-
CSX CSX CSX Manchester GA Indicated GA 45 C380 CSX CSX Thomasville GA Montgomeny AL 210 C381 CSX Jesup GA Montgomeny AL 210 C381 CSX Jesup GA Montgomeny AL 210 C382 CSX Jesup GA Montgomeny AL 101 C382 CSX CSX CARIAThonochee FL Chattahonochee FL 161 C386 CSX CSX CANDAL AL Mobile AL 163 C386 CSX CSX CANDAL AL Mobile AL 141 C386 CSX CSX CANDAL AL Mobile AL 141 C386 CSX CSX CANDAL AL Mobile AL 141 C386 CSX CSX Mole AL Mobile <	8'000	×			- 1	×	×	×			×	
CSX CSX CSX CSX CSX Mayoross GAA Informasville GA Antigomeny GA 105 C931 CSX CSX Jackspornile FL Batkhon GA FAkston GA 64 C938 CSX CSX Jackspornile FL Batkhon FL 161 C938 CSX CSX Batkhon FL FR 161 C938 CSX CSX Pornsacola FL FR 161 C939 CSX CSX Pornsacola FL Fornsacola FL FR C939 CSX CSX Fornsacola FL FR 143 C939 CSX CSX Mayoross GA FR 143 C939 CSX CSX FR FL Balkhan FL 17 C939 CSX CSX FR Balkhan FL 17 17 C930 CSX	2,000	100% x x			- 1	×	×	İ	,			+
CSX CSX CSX Long between CSX CSX Long between CSX CSX Jecksonville FL Baldwin FL 189 C382 CSX CSX Jacksonville FL Baldwin FL 189 C383 CSX CSX Baldwin FL CRA 189 C384 CSX CSX Baldwin FL 189 C384 CSX CSX Robinston AL AS C385 CSX CSX Robinston AL AS C386 CSX CSX Monitor AL AS C386 CSX CSX Monitor AL AS C386 CSX CSX Monitor AL AS C386 CSX CSX Callahan FL Starken FL 220 C386 CSX CSX Callahan FL Starken FL 122 C387 CSX CSX <td< td=""><td>3,000</td><td></td><td></td><td></td><td>-</td><td>×</td><td></td><td>T</td><td>×</td><td>,</td><td></td><td>1</td></td<>	3,000				-	×		T	×	,		1
CSM CSM Jacksopmille CA Fonston CA De C383 CSX CSX Jacksomille CA FI 161 C384 CSX CSX CSX CSX CSX FI 161 C385 CSX CSX Pensacola FI 161 163 C386 CSX CSX Pensacola AI 69 163 C386 CSX CSX Fonston AI Mobile AI 69 C386 CSX CSX Mobile AI Mobile AI 413 C386 CSX CSX Viaycross AI AI 413 C386 CSX CSX Viaycross AI AI AI AI C387 CSX CSX CSX CSX CSX CSX AI AI AI AI AI AI AI AI AI AI AI AI AI	2,000	x %0c		İ	1	×	×	Ť		<		+
C-38 CSX CSX Bankmine FL Charant C-384 CSX CSX CSX CSX Bankmine FL Tonathinochee FL 161 C-384 CSX CSX CSX Pomaton AL 43 C-385 CSX CSX Fomaton AL Mobile AL 143 C-387 CSX Folkston AL Mobile AL New Orleans LA 143 C-389 CSX CSX Folkston FL 21 22 C-389 CSX CSX Folkston FL 143 35 C-389 CSX CSX Folkston FL 141 21 C-389 CSX CSX Flant City FL Ucela Yard FL 17 C-391 CSX CSX Slarke FL 14 21 C-392 CSX CSX Slarke FL 17 17	2,000	100%			1			Ť				-
C438 C5X <td>4,000</td> <td>100%</td> <td></td> <td></td> <td>1</td> <td>,</td> <td></td> <td>T</td> <td>×</td> <td></td> <td>1</td> <td>1</td>	4,000	100%			1	,		T	×		1	1
C184 C2A C3A <td>47,000</td> <td>0.61</td> <td>Ī</td> <td></td> <td>24,000</td> <td>,</td> <td></td> <td>Ī</td> <td>\ <\></td> <td></td> <td></td> <td>1</td>	47,000	0.61	Ī		24,000	,		Ī	\ <\>			1
C387 C500 <th< td=""><td>000,71</td><td>15%</td><td>Ī</td><td></td><td>1</td><td>< ></td><td></td><td>İ</td><td><×</td><td></td><td></td><td>ŀ</td></th<>	000,71	15%	Ī		1	< >		İ	<×			ŀ
C5X C5X C5X Mobile Al. Mobile C386 C5X C5X Mobile Al. Al. Al. Al. Al. C5X C5X Rolkston GA Foktston GA Al.	7000		Ī		-	,		Ϊ,	4		^	1
C38 C3A C3A C3A Module C3A Module C3A Module C3A Module C3A C3B C3A	45,000		Ī		-	,		,			(×	+
C38 C3A <td>45,000</td> <td>X070</td> <td></td> <td></td> <td>-</td> <td>,</td> <td></td> <td><u> </u></td> <td><u> </u></td> <td></td> <td></td> <td>+</td>	45,000	X070			-	,		<u> </u>	<u> </u>			+
2.93 CSX CSX CABRIAND CA CA CSX CSX CSA	000,62	% 7-	Ī			γ,			\ \}	T		1
C939 CSX CSX CSX Ballwin FL Stanke FL 126 C939 CSX CSX Slarke FL Vivis FL 176 C340 CSX	32,000	0,77-	Ī		- 1	,		İ	\ \ \			+
C939 CSX CSX CSX Stanke FL 126 2939 CSX CSX Stanke FL 176 2939 CSX CSX Plant City FL 176 2930 CSX CSX Lakelahan FL 176 2410 CSX CSX Lakelahan FL 176 2417 CSX CSX Lakelahan FL 176 2417 CSX CSX Jolet 16m 17 16 2417 CSX CSX Jolet 11 Cheaning 11 15 2418 CSX CSX Jolet 11 Cheaning 11 15 2420 CSX CSX Jolet 11 Cheaning 11 15 2430 CSX CSX Jolet 11 Cheaning 11 15 2440 CSX CSX Port Hawen MI Gradel 11 15	000,62	%07-	Ī		-	۷,		İ	<hr/>			+
C939 CSX CSX Plant City FL Use Somming FL 120 C939 CSX CSX Plant City FL Jacksonwille FL 16 C410 CSX CSX Unrishm FL Jacksonwille FL 16 C410 CSX CSX Unrishm FL Plant City FL 16 C410 CSX CSX Winston IL Clearing IL 15 C410 CSX CSX John Full IL Clearing IL 16 C411 CSX CSX John Full IL Clearing IL 16 C411 CSX CSX John Fargo III 46 6 C412 CSX CSX Porthum IN Belle River INI 17 C413 CSX CSX Porthum IN Belle River INI 17 C413 CSX CSX Porthum <td>000,72</td> <td>0.00</td> <td>Ī</td> <td>١</td> <td></td> <td>,</td> <td></td> <td>Ì</td> <td>< ×</td> <td></td> <td></td> <td>t</td>	000,72	0.00	Ī	١		,		Ì	< ×			t
C949 CSX CSAN	2,000	800	Ī				İ	Ī	4			T
C402 CSX CSX Landard FL Date Softmen FL 40 C403 CSX CSX Ministon FL Plant City FL 5 C410 CSX CSX Joint Le Island Jct IL Cheaning IL 45 C424 CSX CSX Joint Markegon MI 20 1 45 C435 CSX CSX Grand Haven MI Grand Haven MI 13 C435 CSX CSX GSX GSX GSX GSX GSX C434 CSX CSX CAPATHAR ON A 8 C435 CSX CSX CSX CAPATHAR ON A 8 C436 CSX CSX CSX Newark ON A 8 C434 CSX CSX CSX Newark ON A 8 C444 CSX CSX Newark NO Emer<	000'	%0						Ī				l
CSX CSX Winston FL Plant City FL 6 CSX CSX CSX LI Cleaning IL 15 CSX CSX LOSX Joilet IL Cleaning IL 15 CSX CSX LOSX Clanth Awen MI Boll 13 13 CSX CSX CSX CSX Cox	16,000	%0	l	İ		×		Ī	×			
CSX CSX Blue island Jct I. Cleaning II. 16 CSX CSX Joliet II. Cleaning II. 45 CSX CSX Joliet II. Granthawa II. 45 CSX CSX Grand Haven MI Grandhaven MI 13 CSX CSX Grand Haven MI Belle River MI 15 CSX CSX Chatham ON 53 A CSX CSX Chatham ON 53 A CSX CSX CAPA A 41 CSX CSX CAPA A 41 CSX CSX CSX CAPA A 41 CSX CSX CSX Newbert A A 41 CSX CSX CSX Valachidge GA Burnswick GA 53 CSX CSX CSX Valachama AI Mostem A 41 CSX CSX Mondigen AI Mostem <td< td=""><td>000 6</td><td>%0</td><td></td><td></td><td>l</td><td></td><td>×</td><td></td><td>×</td><td>×</td><td></td><td></td></td<>	000 6	%0			l		×		×	×		
CSX CSX CSX User I. Otheway II. 45 CSX <td></td> <td>25% x</td> <td></td> <td>5,000</td> <td>8,000 60%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		25% x		5,000	8,000 60%							
CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CRAH Laven MI GRAH Laven MI 13 CSX CSX CRAH Lavon MI Belle River ON 7 CSX CSX CRAH Lavon ON Fargon ON 7 CSX CSX CSX Norbath ON SA B CSX CSX CSX Norbath NA B B CSX CSX CSX Rocky Mit CF T 38 CSX CSX Rocky Mit CF MA B B CSX CSX Rocky Mit CF Marketen NA A B CSX CSX Montgonery AL B A B B CSX CSX Montgonery AL Montgonery AL B B CSX CSX Montgonery AL Mo	14,000	%0							×			+
CSX CSX Grand Haven MI Muskegon MI 13 CSX CSX Ciradhun ON Fargo ON 7 CSX CSX Ciradhun ON Fargo ON 7 CSX CSX CSX Newafr ON 63 CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX Mitchell NV Doe Run NV 4 CSX CSX Mitchell NV Doe Run NV 4 CSX CSX Mitchell NV	0	-			- 1	١		Ī	×			+
CSX CSX CSX COTHUNON MII 10 CSX CSX Chathan ON Fargo ON 63 CSX CSX Chathan ON Sarria ON 63 CSX CSX CSX CSX CSX CSX CSX CSX CSX Veldon NC Frankin NA 41 CSX CSX Veldon NC Frankin NC 32 CSX CSX CSX Walycross GA Burnswick GA 63 CSX CSX Walycross GA Burnswick GA 63 CSX CSX Walycross GA Burnswick GA 63 CSX CSX Walycross GA Burnswick GA 63 CSX CSX Walycross GA Burnswick GA 63 CSX CSX Milchell IN Lounellen FL <t< td=""><td>0</td><td>-</td><td>Ī</td><td>0 00 0</td><td>1,000 1000%</td><td>×</td><td></td><td>Ť</td><td>×</td><td></td><td>1</td><td>+</td></t<>	0	-	Ī	0 00 0	1,000 1000%	×		Ť	×		1	+
CSX CSX CSX CSX CSX CSX CNathalm ON 37 CSX CSX Chathalm ON Sanib CSX CSX CSX Weldon VA 4 CSX CSX Varientond VA Bellwood VA 31 CSX CSX Varientond VA Parmele NC 32 CSX CSX CSX Valentores GA Barnswick GA 38 CSX CSX CSX Valentores GA Mestern Jot AI 61 CSX CSX CSX Montgomery AL Mestern Jot AI 61 CSX CSX CSX Montgomery AL Mestern Jot AI 61 CSX CSX CSX Mitchell IN Louisville AI 67 CSX CSX Mitchell IN Medison AI AI CSX <td>000',</td> <td>%0</td> <td>Ī</td> <td>ŀ</td> <td>- 1</td> <td>l</td> <td></td> <td>T</td> <td>></td> <td></td> <td></td> <td>\dagger</td>	000',	%0	Ī	ŀ	- 1	l		T	>			\dagger
CSX CSX CSX CSX CSX CSX CSX Newarm OH 35 CSX CSX CSX Newarm VA Belwood VA 41 CSX CSX CSX Rocky Mt Parmele NC Parmele NC 38 CSX CSX CSX Parmele NC Fine 41 CSX CSX CSX Parmele NC 44 51 CSX CSX CSX Montgorner AL Western John AL 61 CSX CSX Montgorner AL Montgorner AL 61 CSX CSX Mitchell NA Tallahassee FL 43 CSX CSX Mitchell NA Tallahassee FL 43 CSX CSX Mitchell NA Tallahassee FL 43 CSX CSX Mitchell NA De Run KY		%0	Ī	ŀ	- 1			Ī	<>			
CSX CSX CSX CSX CSX CSX Nentannod VA 41 CSX CSX CSX NeckyMt NC Franklin VA 41 CSX CSX CSX Panmele NC 32 CSX CSX Panmele NC 32 CSX CSX Panmele NC 63 CSX CSX Montgonnery AL Mystemood AL 61 CSX CSX Sema AL Mystemood AL 61 CSX CSX Sema AL Mystemood AL 61 CSX CSX Sema AL Mystemood AL 61 CSX CSX Sema AL Mystemood AL 61 CSX CSX Whatestar NV Madison NV 22 CSX CSX Winsten FL Likeland FL 19 <t< td=""><td>onn's</td><td>0.0</td><td>Ť</td><td></td><td></td><td>< ></td><td></td><td>T</td><td><×</td><td></td><td></td><td></td></t<>	onn's	0.0	Ť			< >		T	<×			
CSX CSX CSX CSX CSX CSX CSX Weldon NG 74 CSX CSX Parmele NG 32 CSX CSX Valvalcross GA Burnswick GA 63 CSX CSX Walycross GA Burnswick GA 63 CSX CSX CSX Mary Barbridge GA H 61 CSX CSX CSX Sehma AL Mestern Lct AL 67 CSX CSX CSX Sehma AL Myrthewood AL 67 CSX CSX CSX Long Branch KV 67 7 CSX CSX Long Branch KV Doe Run KY 67 CSX CSX Long Branch KY Medison KY 4 CSX CSX Valuation KY 67 7 CSX CSX Whatesta KY		%0	Ī		1			T				-
CSX CSX Rocky Mt NC Parmele NC 32 CSX CSX Verycrost NA Parmele NC Bin CSX CSX Verycrost CS Remnele NC Bin CSX CSX Montgomery AL Westlern Jot AL 61 CSX CSX Sehma AL Mitchell N 67 CSX CSX Sehma AL Mitchell N 67 CSX CSX Long Branch KY Dec Run KY 4 CSX CSX Long Branch KY Dec Run KY 4 CSX CSX Long Branch KY Dec Run KY 4 CSX CSX Sproul WV Madison WY 22 CSX CSX Vinsten FL Dunnellon FL 19 CSX CSX Vinsten FL Ladelland FL	1000	%0			1	×		Ī	×			
CSX CSX Parmele NC Einer NC 38 CSX CSX CSX Montgornes GA Barunswick GA 63 CSX CSX CSX Montgorner GA Tallahassee FL 43 CSX CSX CSX Mitchell IN Lounselle FL 43 CSX CSX Mitchell IN Lounselle KY 61 CSX CSX Mitchell IN Lounselle KY 4 CSX CSX Long Branch KY Done Run KY 4 CSX CSX Long Branch KY Done Run KY 4 CSX CSX Sproul WM Madison WW 4 4 CSX CSX Sproul KY Dumelon KY 4 CSX CSX Wiss FL Lakeland FL 19 CSX CSX Winston	13,000	%0			1				×		_	
CSX CSX Mayoross GA Brunswick GA 63 CSX CSX Bindinden AL 61 61 CSX CSX Selma AL Mayaremood AL 61 CSX CSX Selma AL Mytlewood AL 61 CSX CSX Mitchell IN Louisville KY 67 CSX CSX WM Marietta OH CM 27 CSX CSX VINA Marietta OH CM 27 CSX CSX VINA Marietta VIN AL 4 CSX CSX VINS FL Lakeland FL 19 CSX CSX VMINSON FL Lakeland FL 19 CSX CSX VMINSON FL Green Bay FL 4 CSX CSX Adricola FL Green Bay FL 4 CSX Adricola	13,000	%0			ı	×			×			
CSX CSX Montgomery AL Western Jct AL 61 CSX CSX CSX Selman GA Tallahassee FL 43 CSX CSX Selman AL Myrtlewood AV 67 CSX CSX CSX Long Branch KV 1 7 CSX CSX CSX Long Branch KV Doe Run KY 4 CSX CSX Long Branch KV Doe Run KY 4 CSX CSX Long Branch KV Doe Run KY 4 CSX CSX Long Marietta KY Doe Run KY 4 CSX CSX Long Marietta KY Dunellon FL 19 CSX CSX Viris FL Lakeland FL 19 CSX CSX Viris FL Indicate FL 19 CSX CSX Adricola FL<	L	%0		2,000								
CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX Mitchell AL 61 61 CSX CSX Mitchell IN Loughwood AL 61 67 CSX CSX Mitchell IN Loughson KY 67 CSX CSX Manietta OH RY 47 CSX CSX Manietta KY Dunnellon FL 47 CSX CSX Vins FL Lakeland FL 19 CSX CSX Vinston FL Induberry FL 12 CSX CSX Vinston FL Indeedny FL 19 CSX CSX Vinston FL Green Bay FL 4 CSX CSX Verman Yard FL Green Bay FL 6 CSX CSX Apricola FL Green Bay F	0	-				×			×			-
CSX CSK interest Al. Myrtlewood Al. 6f1 CSX CSX interest In Jouiswise KY 67 CSX CSX Long Branch KY 67 CSX CSX Long Branch KY Doe CSX CSX W Marietta CH 27 CSX CSX Sproul WY 22 CSX CSX Newberry FL Durnellon FL 47 CSX CSX Vinsten FL Lakeland FL 19 CSX CSX Vinsten FL Libreland FL 19 CSX CSX Vinsten FL Libreland FL 19 CSX CSX Adricola FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 6 CSX CSX Agricola FL Recen Bay FL 6 CSX CSX	000'9 000'9	0%			- 1	×		Ī	×			
CSX CSX Michell IN Louisville KY 67 CSX CSX Long Branch KN Doe Run KY 67 CSX CSX Valuatierta OH Relief OH 27 CSX CSX CSX Navalenta KY Madison WY 22 CSX CSX CSX Navalenta FL Dunnellon FL 47 CSX CSX CSX Winston FL Lakeland FL 19 CSX CSX CSX Munston FL Lakeland FL 19 CSX CSX CSX Achan FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 4 CSX CSX Agricola FL Battern FL 6 CSX CSX Agricola FL Battern FL 6 CSX <	0	-			-			Ī				
CSX CSX Long Branch KY 1 CSX CSX Long Branch KY 27 CSX CSX Sproul WV Madison WV 22 CSX CSX Sproul WV Madison WV 22 CSX CSX Sproul KY 4 4 CSX CSX Ninston FL Lakeland FL 19 CSX CSX Winston FL Green Bay FL 4 CSX CSX Adricola FL Green Bay FL 4 CSX CSX Adricola FL Green Bay FL 6 CSX CSX Adricola FL Rockland Jct FL 6 CR CSX Columbus OH Hockland OH 1 CR CSX Columbus OH Hockland OH 3 CR CSX Columbus OH <td></td> <td>-83%</td> <td></td> <td></td> <td>2,000 -67%</td> <td></td> <td></td> <td>Ì</td> <td></td> <td></td> <td></td> <td>+</td>		-83%			2,000 -67%			Ì				+
CSX CSX W Marietta OH Relief OH 27 CSX CSX CSX Movberty W Madison WV 22 CSX CSX N Hazard KY Dunnellon FL 47 CSX CSX Viris FL Lakeland FL 19 CSX CSX Viris FL Itakeland FL 19 CSX CSX Viris FL Itakeland FL 19 CSX CSX Achan FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 6 CSX CSX Agricola FL Green Bay FL 6 CSX CSX Agricola FL Button FL 6 CSX CSX Agricola FL Button FL <t< td=""><td>2,000</td><td>%0</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td> </td><td></td><td>1</td><td>+</td></t<>	2,000	%0			-						1	+
CSX CSX Sproul VVV Madison VVV 22 CSX CSX NA Hazard KV LA CS CSX Nawberry FL Durnellon FL 47 CSX CSX Vinise FL Lakeland FL 19 CSX CSX CSX Achan FL Mulberry FL 19 CSX CSX Achan FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 4 CSX CSX Agricola FL Sulform FL 6 CSX CSX Agricola FL RAMAGINA FL 6 CSX CSX Agricola FL ROM 1 6 CR CSX CSX Agricola PL ROM 1 CR CSX Columbus OH Hocking OH 1 CR <t< td=""><td>0</td><td>-</td><td></td><td></td><td>-</td><td>×</td><td></td><td>Ī</td><td>×</td><td></td><td>-</td><td>+</td></t<>	0	-			-	×		Ī	×		-	+
CSX CSX CSX Very Language FL Duanne RY 4 CSX CSX Newberry FL Lakeland FL 19 CSX CSX Viris FL 19 FL 19 CSX CSX CSX Achan FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 6 CSX CSX Agricola FL Green Bay FL 6 CSX CSX Agricola FL Green Bay FL 6 CSX CSX Agricola FL Revision Columbus OH 1 CR CSX Columbus OH Hockland OH 1 CR CSX Columbus OH Galon OH 3 CR CSX Casinon OH A		-						İ	,	,	1	
CSX CSX Newberry FL Dunnellon FL 47 CSX CSX Viris FL Lakeland FL 19 CSX CSX Vinis FL Lakeland FL 19 CSX CSX Vinis FL 17 12 CSX CSX Achan FL 16 14 4 CSX CSX Agricola FL Sutton FL 4 CSX CSX Veroman Yard FL Sutton FL 6 CSX CSX Agricola FL Rockfand Jct FL 8 CR CSX Agricola FL Rockfand Jct FL 8 CR CSX Columbus OH Hocking OH 1 CR CSX Costumbus OH Macking OH 23	0			1	1	×	×	Ī		<	1	+
CSX CSX Vits F.L. Lakeland F.L. 19 CSX CSX Winston F.L. Mulberry F.L. 12 CSX CSX Achan F.L. Green Bay F.L. 4 CSX CSX Agricola F.L. Green Bay F.L. 4 CSX CSX Veoman Yard F.L. Button F.L. 6 CSX CSX Agricola F.L. Rockland Jct F.L. 6 CR CSX Columbus OH Hocking OH 1 CR CSX Columbus OH Gallon OH 3 CR CSX CSX CSX	0					×		Ī			Ī	+
CSX CSX Munistry FL 12 CSX CSX Achan FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 4 CSX CSX Agricola FL Green Bay FL 6 CSX CSX Agricola FL Sufficial FL 6 CR CSX Agricola FL Reckland LF FL 6 CR CSX Columbus OH 1 1 CR CSX Crestine OH 6 1 CR CSX Calcambus OH 3 CR CSX Calcambus OH 33	21,000	%0			1	×		Ť				+
CSX CSX Actnan FL Green Bay FL 4 CSX CSX Agricola FL State Bay FL 4 CSX CSX Yeoman Yard FL State Bay FL 5 CSX CSX Agricola FL Rockland Jct FL 6 CR CSX Columbus OH Hocking OH 1 CR CSX Crestifine OH Galon OH 33 CR CSX Crestifine OH Advision OH 23	19,000	0%	Ī			Υ,		Ī	<>			
CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX Agricola FL SULTON FL 6 CSX CSX Agricola FL Rockland Jct FL 8 CR CSX Agricola CH Hocking OH 1 CR CSX Crestine OH Galion OH 3 CR CSX Galion OH Marion OH 33	0000	0.00	Ī			*		Ī				+
CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX CSX Columbus CH Hocking CH 1 CR CSX Columbus CH Hocking CH 1 CR CSX Creatine CH Galion CH 3 CR CSX Calion CH Marion CH 3	2,000	%0	Ī		1			Ť				+
CR CSX Columbus OH Hocking OH 1 CR CSX Columbus OH Galion OH 3 CR CSX Crestine OH Galion OH 3	0000	780	Ī					Ī				Ŧ
CR CSX Crestine OH Gallon OH 23	2,000	80		ŀ	ł			Ī				+
CO COX Casume OH Marion OH 23	2000	%89	İ		1,000			Ī				
	32,000	20%						Ī				
CSA Gallori On Mariori On 23		30%	Ī	43,000	33,000			Ť		ļ	-	l

Page 4 of 6

ATTACHMENT F-1 COMPARISON OF CSX HAZARDOUS MATERIALS TRANSPORT DATA USED IN THE DRAFT EIS AND FINAL EIS

Part Part	Pre Acq. (1885) Post Acq. (1885) Post Acq. (1885) Post Acq. (1885) Post Acq. Post	" 위의 행위 등	ent Description		Estimated Annu:	Carloa	rdous		L	l		arinade of Haz	-	ŀ	ŀ	I			,		
	Pa Acq. Pa Acq. Pa Acq. Pa Acq. Pa Acq.	때 위의 했다.								Est	mated Annual C		ardous	_							
	Pre Acq. Pre Acq.	Between OH Carson IN IN IN IN IN IN IN IN IN IN IN IN IN				Material		+	+	<u> </u>	Mat	erial			+	<u> </u>	ŀ	-	-	-	-
Color Colo	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	derson IN polis IN castle IN daute IN	And	Length (mi.)																	
Column C	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	derson IN polis IN castle IN daute IN				22 000	-50%				43 000	25,000	-42%		$\ \cdot\ $	L [-		
15. 15.	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Z Z Z Z =	Ī	L		1	-58%				52,000	25,000	-52%		H	<u>L</u>					
19 19 19 19 19 19 19 19	88 88 88 88 88 88 88 88 88 88 88 88 88	Z Z Z =		L		1	-44%			<u> </u> 	52,000	35,000	-33%								
Columentation No. Statementation No.	83 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Z Z =		L		1	-57%				54,000	28,000	-48%				l				
Column C	\$6.50 \text{\te}\text{\texict{\texititt{\text{\text{\texict{\texititt{\text{\texicr{\texititt{\texititt{\tert{\ti}\texititt{\texititt{\texititt{\texitt{\texititt{\ti	Z =		L		i	-57%				54,000	28,000	-48%								
Column C	\$6.50 \text{\te\tint{\text{\text{\text{\text{\text{\texitil\text{\text{\text{\tetx}\text{\text{\text{\text{\text{\text{\text{\text{\text{\	-				1	-26%				20,000	27,000	-46%								
Column C	88888888888888888888888888888888888888	_				ł	-55%				44,000	24,000	-45%								
Column Column No. Column		1				1 1	-85%				27,000	t I	-78%								
Color Colo	\$25 \text{25} \t	Z					%000	×			0		1000%	×							
Color Colo	\$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ont	sville				%000	×			0		1000%	×							
Color Colo	20	НО					.100%				5,000		-100%								
Color Color Marchelle Color	200	НО	Marysville				.100%				14,000		-93%								
Color Colo	8	e S	Darby				.100%			 	14,000	- 1	-93%		1	 			1		1
CRIST CRIST Manufacture CRIST Manufacture CRIST		동	Mounds		0	0				1	0	- 1	1000%	×	-		×				
CASIS Mellifolds NY DEMONSTRATE NY DE	C C C C C C C C C C C C C C C C C C C	동	Scioto		\perp	- 1	.			1	0	- 1	20001	×	\dagger	1 T	<u> </u>		1	1	-
CHI COSTS DEFECT CHI CASTS CASTS		N.	Draw Draw			- 1	%OL	× :	$\frac{1}{1}$	<u> </u>	000,04	- 1	0,01	× ,	+	1			1		1
Color Colo	S S S S S S S S S S S S S S S S S S S	Ž			1	- 1	%0.	×	1	 	40,000	- 1	%CI	× :	+	1	+		1		
CH CSSI, Mellocamental NA 10 <td>CR CS CS CS CS CS CS CS CS CS CS CS CS CS</td> <td>Ž</td> <td></td> <td></td> <td></td> <td>- 1</td> <td>%00</td> <td>× ;</td> <td></td> <td> </td> <td>43,000</td> <td>- 1</td> <td>2,00</td> <td>× ,</td> <td>+</td> <td><u> </u></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td>	CR CS CS CS CS CS CS CS CS CS CS CS CS CS	Ž				- 1	%00	× ;		 	43,000	- 1	2,00	× ,	+	<u> </u>	1		1	1	
CRS. CSSM Controlled	CS SS SS	2			1	-	200%	× ,		 	000,04	- 1	1500/	۷,	,	1 T		>			1
CRIST CSSM Strengted No. Microbrough MA 1 (1) 6 (1) 00 (XXX	≧ 2	Dak		_	- 1	400%	\ \		 	000'4		233%	,		Ţ,		(×		×	1
CRIST (STROMENDAM IN MACHINECTHOR) MA 12		5 2	Framinoham				800	1		 	000,4	1	25%	< >	<	<u> </u>	\ <			-	-
CR CSS Windlesselbord MA 91 600 1900 100 <t< td=""><td>XSC</td><td>MA</td><td>Westhorn</td><td></td><td>L</td><td>000 6</td><td>13%</td><td>*</td><td></td><td>T</td><td>000 6</td><td>1</td><td>%0</td><td></td><td>ŀ</td><td><u>L</u></td><td>+</td><td>×</td><td>-</td><td>-</td><td>L</td></t<>	XSC	MA	Westhorn		L	000 6	13%	*		T	000 6	1	%0		ŀ	<u>L</u>	+	×	-	-	L
CR CSS Synthetised MA 19000 15,000	CR CSX	WA	Worcester			0006	13%	×			0006	1	%0		H	<u> </u>		×			L
CR CSKS Springled MAX Selection	CR CSX	MA	Palmer			10,000	%0				10,000		10%	×	-		×				
CR CSX Westelled NA Belleik NA Bill NA Bill NA CSM NA NA CSM NA <td>CR CSX</td> <td>MA</td> <td>Westfield</td> <td></td> <td></td> <td>15,000</td> <td>%0</td> <td></td> <td></td> <td></td> <td>15,000</td> <td>1 1</td> <td>%/</td> <td>×</td> <td>Н</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td>	CR CSX	MA	Westfield			15,000	%0				15,000	1 1	%/	×	Н		×				
CR CSM Symbols Name Name A 4000 29% x A 4000 23% x A <	CR CSX	MA	Selkirk			10,000	-17%				13,000		8%	×			×				
CR CSX Synetuse NY Synetuse NY Objectiv	CR CSX	λN	Syracuse			40,000	8%	×			48,000		23%	×							
CR CSX Sylvacuse of T NY Salabay NY CSX Sylvacuse of T NY Salabay NY CSX Sylvacuse of T NY Printed of T Salabay NY CSX Sylvacuse of T NY Printed of T Salabay NY Printed of T Salabay NY Printed of T Salabay NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY Printed of T NY NY Printed of T NY NY NY NY NY NY NY NY NY NY NY NY NY NY NY NY N	CR	ž	t			40,000	29%	×			31,000	- 1	35%	×							
CR CSX Johnson NY Factor A 30000 22/80 X A 30000 25/80	CK	Ż				39,000	7,500	×	+	 	31,000	- 1	29%	× ;	+	<u> </u>			-		-
CR CSX Faltport NY C12 250 A	CK	Ž				39,000	0,77	× ;		 	32,000	- 1	%C7	χ,	-	<u>I</u>			1		1
CR CSX Reductive from the control of th	300	2 3				39,000	27070	,		<u> </u> T	30,000	- 1	2070	,		T	+		-	-	-
CR CSX Fronting NY 44,000 2% X 44,000 52,000 16% X CR CSX Fronting NY bit and the companies NY 12 2000 17,000 15,000 2000 100% X X CR CSX Bernott NY MY 21 2000 1500 2000 100% X X X CR CSX Bernott NY Companies 1000 100% X	XXX	2				000,000	27%	< >	<u> </u>	L T	31,000	39,000	26%	< >	+	L					L
CR CSX CP59 NV CP22 NV 12 COM 1000 1000 NV	CR	ž				44 000	2%	*		<u> </u>	44 000	52,000	18%	×	ŀ						
CR CSX Black Rock NY NY California Falls NY NY California Falls NY NY California Falls NY NY California Falls NY NY NY NY NY NY NY NY NY NY NY NY NY NY NY NY	CR	×				1				L	13,000	0	-100%		+	L	-			-	
CR CSX Fairport NV Genesse July NV 14 1,000 1,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 1,0	CR CSX	tock	a Falls			ı	-15%				20,000	22,000	10%	×	-	L	×				
CR CSX Genesee Jct NY Chill 1,000 1	CR CSX	ž				i	%0				1,000	2,000	100%	×		L	×				
CR CSX Syracuse NY 64 7000 0% 4 7000 8000 14% x A A CR CSX Woodard NY 84 6,000 8,000 13% x A A A A A A A A A A A A A B C B A A A A A A A A B A<	CR CSX	ž					%0				1,000	2,000	100%	×			×				
CR CSX Woodard NY 84 8,000 8,000 9,000 13% x X R CR CSX Newburgh NY 45 21,000 29,000 34,000 48% x R	CR CSX	ž				ł	%0				7,000	8,000	14%	*	1		×				
CR CSX Ridgefield Heights NJ Vest Action 29,000 38% x 21,000 31,000 48% x P CR CSX Parkburgh NY 80 21,000 23,000 35,000 36,000 38% x R 22,000 33,000 56% x X R	CR CSX	ž				- 1	%0				8,000	000'6	13%	×			×				
CR CSX Newburgh NY 80 21,000 350,000	CR CSX	3	Newburgh				38%	×			21,000	31,000	48%	×	1	 					4
CR CSX Park Jet PA 1 22,000 56% x x Assistant and the park Jet PA 4 1 22,000 35,000 56% x x Assistant and the park Jet PA 4 1 22,000 36,000 56% x x <td>CR CSX</td> <td>ż</td> <td>Selkirk</td> <td></td> <td></td> <td>- 1</td> <td>38%</td> <td>×</td> <td></td> <td>_ _</td> <td>21,000</td> <td>31,000</td> <td>48%</td> <td>×</td> <td>+</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CR CSX	ż	Selkirk			- 1	38%	×		_ _	21,000	31,000	48%	×	+	<u> </u>					
CR CSX Hearmont PA 1 23,000 57% x x 5,000 37,000 67% x <th< td=""><td>CR CSX</td><td>Ā</td><td>Belmont</td><td></td><td>22,000</td><td>- 1</td><td>20%</td><td>×</td><td></td><td></td><td>22,000</td><td>35,000</td><td>29%</td><td>×</td><td>1</td><td>$\frac{1}{1}$</td><td></td><td></td><td></td><td>4</td><td></td></th<>	CR CSX	Ā	Belmont		22,000	- 1	20%	×			22,000	35,000	29%	×	1	$\frac{1}{1}$				4	
CR CSX West Falls PA 4 6,000 19,000 20,000 300% x <t< td=""><td>CR CSX</td><td>PA</td><td>West Falls</td><td></td><td></td><td>- 1</td><td>21%</td><td>×</td><td></td><td></td><td>23,000</td><td>37,000</td><td>61%</td><td>×</td><td>+</td><td> </td><td></td><td></td><td></td><td>-</td><td>-</td></t<>	CR CSX	PA	West Falls			- 1	21%	×			23,000	37,000	61%	×	+	 				-	-
CR CSX CP Newtown Lct PA 21 6,000 19,000 27% x x X <th< td=""><td>CR</td><td>A</td><td></td><td></td><td></td><td>- 1</td><td>280%</td><td>×</td><td>×</td><td></td><td>5,000</td><td>20,000</td><td>300%</td><td>×</td><td>\dashv</td><td></td><td></td><td></td><td>-</td><td>×</td><td>_</td></th<>	CR	A				- 1	280%	×	×		5,000	20,000	300%	×	\dashv				-	×	_
CR CSX CPWood PA Trenton NJ 6 6,000 16,000 200% x x X <t< td=""><td>CR CSX</td><td>A</td><td></td><td></td><td></td><td>- 1</td><td>217%</td><td>×</td><td>×</td><td></td><td>20,000</td><td>19,000</td><td>-2%</td><td></td><td>+</td><td> </td><td></td><td>×</td><td>×</td><td></td><td></td></t<>	CR CSX	A				- 1	217%	×	×		20,000	19,000	-2%		+	 		×	×		
CR CSX Trenton NJ Port Reading NJ 25 7,000 157% x <t< td=""><td>CR CSX</td><td>A</td><td></td><td></td><td></td><td>- 1</td><td>200%</td><td>×</td><td>×</td><td><u> </u></td><td>0</td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>×</td><td>×</td><td>-</td><td></td></t<>	CR CSX	A				- 1	200%	×	×	<u> </u>	0				+			×	×	-	
NS Alexandria IN Muncie IN America	CR CSX	2				- 1	157%	×	×	 	7,000		186%	×	×	×	+			<u> </u>	
NS NS Alexandra VA 22 2,000 6,000 200% x <td>NS NS</td> <td>Z</td> <td></td> <td></td> <td></td> <td>- 1</td> <td>%000</td> <td>×</td> <td>×</td> <td><u> </u></td> <td>2,000</td> <td></td> <td>200%</td> <td>×</td> <td>-</td> <td> </td> <td> </td> <td> </td> <td><u> </u></td> <td></td> <td></td>	NS NS	Z				- 1	%000	×	×	<u> </u>	2,000		200%	×	-	 			<u> </u>		
ANTK AMTK Baltimore MD 29 0 4,000 1000% x 0 3,000 1000% x AMTK AMTK AMTK AMTK Bwie MD 8 0 4,000 1000% x 0 3,000 1000% x CR SWHRED Delray MI Trenfon MI 10 2,000 3,000	NS NS	≸	sas			- 1	200%	×		_ _	0		1000%	×	×	_ 	1	×			1
Mit Awrit Ways MID Tention MID 10 2,000 3,000 50% X 3,000 3,000 0,000 0 0 0 0 0 0 0 0 0 0 0	AMTK AMTK	MD				- 1	%000	×		<u> </u> 	0		1000%	×	+	 T					1
CR SHARED Delray MI Irenton MI 10 2,000 3,000 50% x 3,000 0.00%	AMTK AMTK					- 1	%000	×		1	0		1000%	×	+	 T	+	,	-		1
	CR SHARED					- 1	%000	×			3,000		%0		+	<u>Т</u>		, v		,	

ATTACHMENT F-1 COMPARISON OF CSX HAZARDOUS MATERIALS TRANSPORT DATA USED IN THE DRAFT EIS AND FINAL EIS

			_									_		
		New Major Key Route												
eeting nce		No Longer a Major Key Route												
ration M. ignifica		Added New Key Route								Ī				
Change in Operation Meeting Criteria for Significance		New No Increase Longera in New Key HazMat												
Chan		New Increase in HazMat								×				
		No Longer an Incr. in HazMat										×	×	
		New Major Key Route												
		New Key Route												
aft EIS		Increase in Hazardous Materials	×	×	×	X	X	x	x		X	×	×	
Data Used in Draft EIS	zardous	Change	48%	100%	93%	%62	86%	%29	18%	-20%	19%	10%	%6	%0
Data Us	Estimated Annual Carloads of Hazardous Material	Post Acq.	31,000	2,000	27,000	25,000	26,000	2,000	20,000	4,000	31,000	11,000	12,000	12,000
	Estimated Annu:	Pre Acq.	21,000	1,000	14,000	14,000	14,000	3,000	17,000	2,000	26,000	10,000	11,000	12,000
		New Major Key Route		Ī	Γ									
		New Key P	ŀ	-										
Si		increase in Ne Hazardous R Materiais F	×	×	×	×	×	×	×	×	×			
Data Used in Final EIS			38%	%(71%	71%	%62		35%	25%	50%	%0	%0	%0
u Used i	Hazardou	Change	IL	۲	L				L					
Data	iual Carloads of Hazardous Material	Post Acq.	29 000	2,000	24,000	24,000	25,000	5,000	23,000	5,000				11,000
	Estimated Ann	Pre Acq.	21 000	0	14,000	14,000	14,000	2,000	17,000	4,000	25,000	10,000	11,000	11,000
	<u> </u>	Length (ml.)	9	3	4	2	F	F	က	16	22	9	9	6
			Z	2	2	3	2	2	2	2	3	ΡA	2	2
	Rail Line Segment Description	And	N.I. Ridnefield Hts	DOOM LN	CP Green	NJ Croxton	NJ Oak Island	NJ Croxton	North Bergen	NJ Port Reading	Boundbrook	Lester	NJ Paulsboro	NJ Woodbury
	e Segme		2	2	2	3	3	3	3	2	3	PA	3	3
	Rail Line	Between	J Bernen	Qc Qc	Nave	Nave	Green	Часк	Croxton	Pt Reading Jct	¥	astwick	Voodbury	Cooper
	rship	Post Acq.	SHABED IN Bernen	SHARED PD	SHARED	SHARED	SHARED Green	SHARED Hack	SHARED Croxton	SHARED F	SHARED NK	SHARED Eastwick	SHARED Woodbury	SHARED COODER
	Ownership	Pre Acq. F	9	╁	⊢	⊢	⊢	⊢	8	8	8	8	8	CR
		Site o	1000	8-218	S-220	S-221	S-222	\$-223	S-224	S-229	S-230	S-234	S-235	S-237
			_		_	_		_		_		_	_	

ATTACHMENT F-2

All Rail Line Segments with a Projected Increase in Hazardous Materials Transported

Proposed Conrail Acqui	· · · · ·	May 1998	Final Environmental Impa	at Ctataman
				, • ,
	[THIS PAGE INT	ENTIONALLY I	LEFT BLANK]	

	Γ					Т		Passe	nger & Fr	eight Tra	in Data	Fre	ight Rail	Data		.*	Freight R	ail Data			
	Owi	nership			ent Description	1			Pre Ac	quisition				ross Tons		d Annual C		128	247	46	19
Site ID	Pre Acq.	Post Acq.	(247 S Between	Segm	ents Total) And		Length (mL)	Psgr. Trains	Freight Trains	Freight Trains	Change	Pre Acq.	Post Acq.	Percent Change	Haz Pre Acq.	Post Acq.	Percent Change	Current Key Route 1	n 2 3	-	2 s
C-267	CSX	CSX	Decatur	AL	Black Creek	AL	89	0.0	22.5	23.8	1.3	38.4	59.5	55%	22,000	32,000	45%	х	х		
C-268	CSX	CSX	Black Crk	AL	Birmingham	AL	5	0.0	33.7	31.0	-2.7	48.9	67.2	37%	22,000	32,000	45%	X	X	 	<u> </u>
C-269	CSX	CSX	Birmingham	AL AL	Parkwood	AL AL	12 87	0.0	32.8 14.1	30.7 14.3	-2.1 0.2	48.8 23.1	67.2 28.5	38% 23%	28,000 18,000	40,000 23,000	43% 28%	X	X	-	┼
C-270 C-271	CSX	CSX	Parkwood Montgomery	AL	Montgomery Flomaton	AL	110	0.0	16.1	18.0	1.9	23.1	33.7	46%	32,000	46,000	44%	X	x		t
C-386	CSX	CSX	Flomaton	AL	Mobile	AL	59	0.8	25.1	25.8	0.7	38.4	47.6	24%	45,000	61,000		Х	х		
N-001	NS	NS	Attalla	AL	Norris Yard	AL	48	0.0	7.4	12.5	5.1	21.9	25.2		10,000			Х	х	<u> </u>	
N-412	NS	NS	Demopolis	AL	Marion Jct	AL	38	0.0	2.0	2.0	0.0	1.5	1.5	0%	20,000		(a) 28%	х	X	-	├
N-337 C-387	NS CSX	NS CSX	Norris Yd Mobile	AL	Austell New Orleans	GA LA	142 143	2.0 0.8	19.1 20.6	14.5 22.7	-4.6 2.1	37.7 23.4	33.6 34.6	-11% 48%	32,000 45,000	41,000 54,000		X	 ^		
N-343	NS	NS	Burstal	AL		MS	140	2.0	16.2	16.2	0.0	31.7	36.0	14%	33,000	34,000		х	х		
N-397	NS	NS	Wilson	AL	Memphis	TN	144	0.0	14.8	16.5	1.7	33.4	36.7	10%	19,000	20,000	5%	Х	х		
				L To		_	1,017								L			<u> </u>	<u> </u>		₩
C-001	CR	CSX	Anacostia Washington			DC MD	43	0.0 20.0	19.3 23.8	28.6 30.8	9.3 7.0	40. <u>3</u> 37.8	45.2 56.0	12% 48%	21,000 11,000	26,000 12,000		x	X	-	\vdash
C-003	CSX	CSX	Virginia Ave	DC		VA	6	44.5	17.9	28.6	10.7	40.3	47.7	18%	20,000		-	1-	X	1	\vdash
0-002		00.1		C To			52														
N-010	CR	NS	Bell		Edgemoor	DE	1	0.0		11.8	6.8	5.1	13.5	165%	4,000			_	X	ļ	₩
C-201	CSX	CSX	Wilsmere			MD	68	0.0		26.8	-0.1	44.0	50.4	14% 74%	11,000			1	X	├	+-
S-001	MT	AMTK	Davis D	E To		MD	21 90	73.0	4.5	12.4	7.9	25.8	44.8	/4%	15,000	17,000	15%	 	 ^-	\vdash	+-
C-356	csx	CSX	Lagrange		Montgomery	AL	100	0.0	11.9	11.2	-0.7	17.3	18.6	7%	22,000	24,000	9%	х	х		
C-376	CSX	CSX	Lagrange	GA		AL	142	0.0	13.5	13.5	0.0	24.1	29.1	21%	8,000	17,000			X	х	\Box
C-380	CSX	CSX	Thomasville	GA		AL	210	0.0		6.2	-1.7	10.6	10.5	0%	2,000		50%	 	X		├
N-379	NS	NS	Valdosta	GA		FL GA	42	0.0		38.3	-1.6 -1.1	6.7 81.8	79.3		22,000			X	x	-	\vdash
C-296 C-297	CSX	CSX	Cartersville Atlanta	GA GA		GA	46 78	0.0			-2.6	35.3	34.2		5,000			1	x	 	\vdash
C-298	CSX	CSX	Manchester	GA		GA	203	0.0		26.0	-1.9	52.6	57.3	9%	13,000		+	х	х		
C-354	CSX	CSX	Athens	GA		GA	69	0.0		21.0	2.3	32.9	37.5		22,000			X	х		1
C-355	CSX	CSX	Atlanta	GA		GA	70	0.0		16.5	1.2	23.0		10%	21,000	+		X	X	-	\vdash
C-377	CSX	CSX	Manchester	GA		GA GA	45	0.0		11.6 40.4	-0.4 7.1	20.5 67.5	22.8 81.4		7,000 32,000		+	x	X	X	+
N-020 N-022	NS NS	NS NS	Howell Spring	GA	Spring Scherer Coal	GA	65	0.0		-	5.7	60.8	67.7				+	x	X	†	\vdash
N-331	NS	NS	Cohutta	GA		GA	108	0.0		36.5	3.7	66.4	71.0		17,000		+	X	х		
N-332	NS	NS	Austell	GA	Howell	GA	16	2.0		50.4	0.7	97.7	101.4		48,000			X	X	<u> </u>	₩
N-333	NS	NS	Scherer Coal	GA	Macon Jct	GA	20	0.0		27.4	5.5	42.7	50.6		31,000			X	X X	├	+
N-334 N-335	NS NS	NS NS	Macon Jct C of G Jct		Brosnan Yd Langdale Yd	GA GA	146	0.0	-	40.0 16.5	3.0	72.6 24.2	75.0 27.1					x	X	+	+-
N-333	No	143		A To		UA	1,363	- V.O	15.5	10.5	1.2			12/0	20,000	27,000	1	1			1
C-011	csx	CSX	Blue Island Jct	IL	59th Street	IL	15	0.0	19.5	22.9	3.4	27.0	37.0		C	,			х		
C-263	CSX	CSX	Dolton	IL	Danville	IL	106	0.0			1.4	31.3		+	17,000	 		X	X	-	₩
C-417	CSX	CSX	Blue Island Jct	ᄪ	Clearing	ᄑ	15	0.0			0.4	35.2	36.9 4.0	+				X	X	₩	+-
C-476 N-033	CSX NS	CSX NS	Chrisman Tilton	IL	Decatur Decatur	IL IL	69 71	0.0		39.0	0.3 16.3	3.7 29.2	47.9		10,000	+		X	x	1	+-
N-312	_	NS	Kankakee	IL	Streator	īL	49	0.0				8.3							х		
N-490	NS	NS	Gibson City	IL	Bement	IL	41	0.0										,	х		
N-492	NS	NS	Decatur	IL	Taylorville	ᄪ	30	0.0			7.0	16.0		-				 	X	-	+
N-499 C-264	NS CSX	NS CSX	Calumet Danville	止止	Landers Terre Haute	IL IN	8 57	0.0		18.0		32.7 40.3	0.4 51.6	+	15,000			X	 ^	<u> </u>	+
N-477	NS	NS	Decatur	正	Moberly	мо	209	0.0				15.9			3,000				X		仜
				L To	tal		670													lacksquare	Ţ
C-475	CSX	CSX	Hillsdale		Chrisman	IL	16	0.0		+	0.3	3.7	4.0					<u> </u>	X	┼	 ,,
N-045	_	NS	Lafayette Jct	IN		IL IN	49 53	0.0					53.6 78.4						x	+	X
C-025	CSX	CSX	Vincennes Willow Creek		Evansville Pine Jct	IN	12					34.2							x		T
C-254		CSX	Munster	IN		IN	62	1.4							1,000	3,000			х		
C-255		CSX	Monon		Lafayette	IN	30												х	1	┿
C-256		CSX	Lafayette		Crawfordsville	IN	29	1.4										+	X	 	+
C-265 C-676		CSX	Terre Haute Avon	IN	Vincennes Clermont	IN IN	54 4									3,000		\ ^	X	+-	+
C-677		CSX	Clermont	IN		IN	34	1.4				11.8				3,000		<u> </u>	X	1	
C-693		CSX	Willow Creek	IN		IN	13	0.0	9.6	13.4	3.8	21.3	26.5	24%	4,000	5,000	25%	6	Х		
N-040		NS	Alexandria	IN		IN	16											.	X	X	+
N-041		NS	Butler		Ft Wayne	IN	28		+			16.8							X	X	X X
N-044 N-046		NS NS	Ft Wayne Peru		Peru Lafavette Jct	IN IN	53	0.0				+		+					T X	-	x
N-305		NS	Goshen	IN		IN	99	0.0	+										X		Ï
N-485		NS	Muncie		Ivorydale	OH	106	0.0	20.6	20.5	-0.1	34.4	40.9	19%	15,000	24,000	60%	6 X	х	\Box	
C-021	CSX	CSX	Evansville		Amqui	TN	137	0.0	23.4	32.7	9.3	48.3	73.8	53%	22,000	31,000	41%	6 X	X	+-	
0.00-	10000	0077		N To			848	-	27.3	26.1	-1.2	53.7	52.7	-2%	5,000	7,000	40%		x	+	+-
C-295 C-241		CSX	Corbin Russell		Cartersville NJ Cabin	GA KY	263 19	0.0		+				+					$\frac{\lambda}{x}$	+	+
C-272		CSX	Anchorage		Winchester	KY	95									1,000			X		
U-2/2		CSX	Latonia		Anchorage	KY	86	0.0	15.0	10.7	-4.3	31.0	27.0	-13%	10,000	16,000	60%		х		
C-272	CSX	0011																		1	1
	CSX	CSX	Anchorage Covington	KY	Louisville Latonia	KY KY	13								-				X X		+-

								Passe	nger & F	reight Tra	in Data	Fre	ight Rai	Data			Freight R	all Data			
	Ow	nership	Rail Line S	Segme	nt Description			1 4330		quisition	III Data	Annual	Million (Fross Tons	Estimated	d Annual C		128	247	94	5
	-	петэшр	(247 :	Segmo	ents Total)				TTCAC	quisidon	,	1	ranspor	ted	Haz	ardous Ma	terial			4	\vdash
Site ID	Pre Acq.	Post Acq.	Between		And		Length (mi.)	Psgr. Trains	Freight Trains	Freight Trains	Change	Pre Acq.	Post Acq.	Percent Change	Pre Acq.	Post Acq.	Percent Change	Current Key Route Segments		New Key Route	New Major Key Route
C-294 N-415	CSX NS	CSX NS	Sinks Louisville	KY	Corbin SJ Jct	KY	35 87	0.0	22.9 13.7	21.6 11.2	-1.3 -2.5	40.6 24.8	41.4 23.3	2% -6%	5,000 14,000			х	X		\vdash
C-230	CSX	CSX	NJ Cabin	KY	Columbus	OH	53	0.0		11.4	-0.3	40.2	41.9		4,000				x	x	\vdash
C-289	CSX	CSX	Louisville	KY	Amqui	TN	173	0.0		17.4	-1.4	35.4	32.1	-9%	11,000			х	х		
N-327	NS	NS	SJ Jct			TN	144	0.0	37.9	35.0	-2.9	71.5	71.2	0%	34,000	38,000	12%	X	X		\vdash
N-346	NS	NS	Oliver Jct	Y To	Oliver Yd	LA	1,025	0.0	15.0	18.1	3.1	28.6	30.6	7%	38,000	39,000	3%	х	х		$\vdash\vdash$
1,0,0	110	1,12		A Tot			2		15.0	1911	511			.,,	50,000						
C-721	CR	CSX	Framingham		Westboro	MA	12	14.0		14.4	-0.9	20.6	24.6		8,000	9,000		L	X		$oldsymbol{\sqcup}$
C-722	CR	CSX	Westboro	MA IA To		MA	23	14.0	15.3	14.4	-0.9	23.6	25.6	9%	8,000	9,000	13%	 	X	-	$\vdash\vdash\vdash$
C-030	CSX	CSX	Alexandria Jct	MD	Benning	DC	6	0.0	18.7	24.3	5.6	40.3	51.3	27%	20,000	22,000	10%	х	х		
C-031	CSX	CSX	Alexandria Jct	MD	Washington	DC	5	22.0		30.8	6.9	34.5	56.1	63%	2,000			Х	Х	х	
C-035	CR	CSX	Landover	MD	Anacostia Relay	DC MD	5 7	0.0 22.0	3.4 39.6	9.1 42.7	5.7 3.1	5.0 63.7	10.9 70.5		13,000	.,	 	<u> </u>	X	<u> </u>	\vdash
C-032 C-034	CSX	CSX	Baltimore Jessup	MD	Alexandria Jct	MD	17	22.0	33.4	37.1	3.7	48.0	69.7	45%	9,000	19,000			x	x	\vdash
C-037	CSX	CSX	Relay	MD	Jessup	MD	7	22.0		37.0	3.9	45.8	57.8		9,000				Х	х	
S-010	MT		Baltimore	MD	Bowie	MD	29	117.0		7.7	5.3	24.7	36.7	49%	0		 		X	-	\vdash
S-011 S-238	MT	AMTK AMTK	Bowie Perryville	MD	Landover Baltimore	MD	32	117.0 88.0		9.3 15.6	6.1	28.5 41.9	43.0 44.9		2,000				X	-	\vdash
		AHIR		ID To			117	33.0	17.3	15.6	1.3				2,000	4,000	10076		L		
N-476	NS	NS	Oakwood	MI	Butler	IN	107	0.0		17.3	2.1	18.3	22.5	23%	6,000				х		
C-218	CSX	CSX	Saginaw	MI	Flint	MI	29	0.0		12.2	2.2	10.3	12.1	18%	3,000			x	X	ļ	$\vdash\vdash$
C-219 C-220	CSX	CSX	Flint Holly	MI	Holly Wixom	MI	28 20	0.0		14.0 12.5	1.2	14.5 14.5	17.8 17.4		11,000		+	X	X	\vdash	\vdash
C-221	CSX	CSX	Wixom	MI	Plymouth	MI	12	0.0		12.9	0.7	16.3	18.5	14%	12,000			Х	Х		
C-222	CSX	CSX	Plymouth	MI	Wayne	MI	8	0.0		26.5	2.9	51.0	53.0		14,000			Х	Х		
C-223 S-020	CSX	CSX SHARED	Wayne Carleton	MI	Carleton Ecorse	MI	15 20	0.0		24.8 11.2	2.0 9.2	44.0 0.5	57.4 14.5	† 	14,000			х	x	-	
S-209	CR	SHARED		MI	Trenton	MI	10	0.0		16.5	1.7	27.9	24.0		2,000	-			X	 	
C-040	CSX	CSX	Carleton	MI	Toledo	ОН	26	0.0	21.9	33.1	11.2	40.0	64.2	61%	13,000	21,000	62%	х	Х	L	
N-478	NS	NS	Moberly	II To	CA Jct	МО	275 94	0,0	18.6	25.9	7.3	27.7	39.4	42%	6,000	10,000	67%	x	х	х	\vdash
N-478	NS	NS NS	CA Jct	MO		MO	31	0.0		31.3	1.3	50.8	56.3	11%	6,000		•	 ^ -	x	<u> </u>	\vdash
				IO To			125														
C-330	CSX	CSX	Charlotte		Bostic	NC	73	0.0		7.6	0.0	15.3	16.9		6,000			ļ	X	ļ	\vdash
C-334 C-335	CSX	CSX	Weldon Rocky Mt	NC	Rocky Mt Contentnea	NC NC	37 19	10.0 10.0		25.5 22.1	5.9 2.5	49.9 50.3	55.9 53.2		23,000 17,000			X	X	\vdash	\vdash
C-336	CSX	CSX	Contentnea	NC	Selma	NC	22	10.0		21.0	2.8	44.4	45.1	2%	17,000			x	X		
C-337	CSX	CSX	Selma	NC	Fayetteville	NC	49	6.0		21.6	1.2	44.8	45.0		19,000			Х	Х	<u> </u>	\Box
C-338 C-350	CSX	CSX	Fayetteville Hamlet	NC NC	Pembroke Monroe	NC NC	31 53	6.0 0.0		22.2	0.1 2.6	43.9 41.5	45.4 43.1		19,000 26,000			X	X X	<u> </u>	\vdash
N-319	NS	NS	Greensboro	NC	Linwood	NC	41	6.0		18.3	-1.9	32.4	38.2		21,000			x	X	 	\vdash
N-347	NS	NS	Greensboro		Raleigh Yd	NC	83	4.0		5.1	0.1	10.3	10.2		11,000			Х	Х		
N-353	NS	NS	Goldsboro	NC	New Bern	NC	58	0.0			0.0	0.1	0.1		0				X	 	\vdash
N-360 C-339	NS CSX	NS CSX	Salisbury Pembroke	NC NC	Asheville Dillon	NC SC	142 21	6.0		5.4 17.2	-1.2 1.5	16.7 22.8	14.8 28.2		8,000 6,000				 ↑	X	\vdash
C-351	CSX	CSX	Monroe	NC	Clinton	SC	92	0.0	13.1	15.6	2.5	22.5	28.9	29%	14,000	27,000	93%	х	х		
C-357	CSX	CSX	Hamlet	_	Mcbee	SC	50	2.0		3.3	-0.1	5.2	5.6		4,000				X	 ,,	$\vdash \vdash$
N-361	NS	NS	Asheville	IC To	Leadvale	TN	74 845	0.0	8.4	7.6	-0.8	23.2	22.1	-5%	8,000	11,000	38%		X	X	\vdash
C-769	CR	CSX	Trenton		Port Reading	NJ	25	0.0	15.7	11.4	-4.3	17.0	15.6	-8%	7,000	18,000	157%		х	x	
N-209	CR	NS	Oak Island		E Rail T V	NJ	6	0.0			4.8	15.1	18.4		13,000				X	_	\Box
S-030 S-032	MT CR	AMTK SHARED			Union Bayway	NJ NJ	9	277.0 0.0			7.6 5.3	58.6 10.0			6,000 10,000			 	X	├	х
S-032 S-033	MT	AMTK			Midway	NJ	22	189.0				41.4	58.4		6,000				X	L	
S-212	CR	SHARED	N Bergen	NJ	Ridgefield Hts	NJ	6	0.0	23.1	22.1	-1.0	40.5	42.1	4%	21,000	29,000	38%	х	х		\Box
S-217					PD	NJ	6	0.0			1.7	7.0	10.3		6,000			_	X	 -	$\vdash \vdash$
S-218 S-220					Wood CP Green	NJ NJ	3				-2.0	3.6 25.2			14,000				X	\vdash	\vdash
S-221	CR	SHARED			Croxton	NJ	2	0.0			-3.0	25.2	25.1		14,000		71%		х		
S-222	CR	SHARED			Oak Island	NJ	1						27.9		14,000				X	lacksquare	\Box
S-223 S-224	CR CR	SHARED			Croxton North Bergen	NJ	3	0.0		8.2 19.2	-9.5 0.1	17.2 25.1	8.3 28.4		2,000 17,000			 	X X		$\vdash\vdash\vdash$
S-229	CR		Pt Reading Jct		Port Reading	NJ	16	0.0			1.7	5.5			4,000				x	L	
S-230	CR	SHARED	NK	NJ	Boundbrook	NJ	22	56.0	36.0	25.5	-10.5	46.4	42.7	-8%	25,000	30,000	20%		х		
S-231	CR	SHARED	Boundbrook		Pt Reading Jct	NJ	3	0.0			-6.8	44.2	45.5		29,000			-	X	<u> </u>	\vdash
C-758 S-031	CR MT	CSX	Ridgefield Heights Midway		Newburgh Morrisville	NY PA	45 17	0.0 175.0		24.8 11.0	7.6	40.5 37.2	48.4 54.2		21,000 3,000			X	X	 	\vdash
				J To		Ë	198							1,576		5,000			L		
C-051	CR	CSX	Chili	NY	Frontier	NY	51	7.1		-	5.3	79.7	92.1		33,000			Х	Х		\Box
C-053	CR	CSX	Hoffmans		Utica	NY NY	66	7.4		44.8		76.2	88.8		33,000			X	X	\vdash	\vdash
C-054 C-687	CR CR	CSX	Selkirk Buffalo		Hoffmans Draw	NY	25	0.0 2.0		45.2 58.5	6.5 2.7	78.5 91.8	88.4 110.0	+	33,000 40,000				X	\vdash	$\vdash \vdash$
C-688	CR	CSX	Draw	NY	Buff Crk Jct	NY	1	2.0	55.8	52.5	-3.3	97.3	101.3	4%	40,000	44,000	10%	х	х		
C-689	CR	CSX	Buff Crk Jct	NY	Buff Seneca	NY	3	2.0	55.8	52.5	-3.3	103.8			43,000			X	X	1	\Box
C-735	CR	CSX	Utica	NY	Syracuse	NY	51	9.0	36.9	43.4	6.5	77.5	88.5	14%	37,000	40,000	8%	L X	X_		1

								Passe	nger & Fi	eight Tra	in Data		ight Rail				Freight R	ail Data			\Box
	Own	nership		_	ent Description				Pre Ac	quisition			Million C Transpor	ross Tons		d Annual C ardous Ma		128	247	46	19
Site ID	Pre Acq.	Post Acq.	Between		ents Total) And		Length (ml.)	Psgr. Trains	Freight Trains	Freight Trains	Change	Pre Acq.	Post Acq.	Percent Change	Pre Acq.	Post Acq.	Percent Change	Current Key Route Segments	Increase in Hazardous Materials	New Key Route	New Major Key Route
C-736	CR	CSX	Syracuse		Syracuse Jct	NY	6	9.0	40.0	46.6	6.6	81.8	89.3	9%	31,000	40,000	29%	X	X	├─	
C-737	CR	CSX	Syracuse Jct		Solvay Lyons	NY NY	42	9.0 9.0	38.2 39.5	44.8 44.8	6.6 5.3	80.1 79.7	91.1 91.1	14% 14%	31,000 32,000	39,000 39,000	26%	X	X	\vdash	
C-738 C-739	CR CR	CSX	Solvay Lyons	_	Fairport	NY	23	9.0	39.8	45.1	5.3	79.7	90.9	14%	32,000	39,000	22%	x	x	\vdash	
C-740	CR	CSX	Fairport		Rochester	NY	11	9.0	31.8	36.5	4.7	66.0	72.8	10%	29,000	36,000	24%	х	х		
C-741	CR	CSX	Rochester	NY	Chili	NY	13	9.0	33.4	36.9	3.5	69.0	76.0	10%	30,000	38,000		X	X	₩	
C-742	CR	CSX	Frontier	NY	Buffalo	NY	4	9.0	52.8 22.2	49.5	-3.3	100.6	98.0 48.0	-3% 13%	43,000 21,000	44,000 29,000	2% 38%	X	X X	₩	-
C-759 N-061	CR CR	CSX NS	Newburgh Ebenezer Jct	NY NY	Selkirk Buffalo	NY NY	80 6	0.0	0.0	23.4 11.4	1.2	42.4 0.0	18.7	(a)	21,000		(a)		 x	x	-
N-062	CR	NS	Suffern	NY	Campbell Hall	NY	35	18.0	4.7	4.7	0.0	8.2	11.3	38%	0		(a)		х	х	
N-063	CR	NS	Campbell Hall	_	Port Jervis	NY	30	18.0	7.9	9.0	1.1	14.4	17.6	22%	0				х	X	
N-065	CR	NS	Corning	NY	Buffalo	NY	128	0.0	13.6	20.6	7.0	22.8	29.0	27% 27%	2,000			-	X	X	-
N-245 N-246	CR CR	NS NS	Port Jervis Binghamton	NY NY	Binghamton Waverly	NY NY	126 42	0.0	7.9 13.0	9.0 19.9	1.1 6.9	11.5 19.1	14.6 28.0	47%	0				X	x	_
N-247	CR	NS	Waverly	NY	Corning	NY	36	0.0	16.4	21.4	5.0	22.5	31.1	38%	0				х	x	
N-473	NS	NS	Buffalo	NY	Black Rock	NY	7	0.0	10.6	5.1	-5.5	14.3	6.0	-58%	0				х		
C-690	CR	CSX	Buff Seneca	NY	Ashtabula	OH	123	2.0	50.1	49.6	-0.5	102.6	100.2	-2%	40,000			X	X	x	x
N-070	NS	NS	Buffalo Fw	Y To	Ashtabula	OH	128	0.0	13.0	25.1	12.1	19.6	42.7	118%	8,000	26,000	225%	1	 ^- -	┢	-
C-066	CSX	CSX	Deshler	ОН		IN	174	2.0	21.4	47.7	26.3	44.6	94.1	111%	16,000	34,000	113%	x	х		х
C-258	CSX	CSX	Hamilton	ОН	Indianapolis	IN	99	0.9	3.0	5.0	2.0	6.0	8.0	34%	1,000	6,000	500%		х	\perp	\Box
C-290	CSX	CSX	Cincinnati	ОН	Covington	KY	6	0.9	35.9	33.6		75.8	81.0	7%	33,000			X	X	₩	<u> </u>
N-326 C-060	NS CR	NS CSX	Cincinnati Ashtabula	OH		OH	112 47	0.0 2.0		28.0 53.0	-3.0 4.7	53.7 102.8	55.9 107.8	4% 5%	22,000 39,000		+	X	X X	\vdash	\vdash
C-060	CR	CSX	Berea	OH		OH	47	0.0		53.0	38.5	30.9	107.8	250%	16,000		+	x	x	†	x
C-063	CSX	CSX	Cincinnati	ОН		ОН	21	1.0		31.2	3.0	55.3	64.1	16%	22,000			Х	х		
C-065	CSX	CSX	Deshler	OH		OH	36	0.0			13.6	0.3		15913%	0			 	X	X	
C-068	CSX	CSX	Greenwich	OH		OH	12 9	2.0 0.0		55.2 43.8	22.7 27.4	55.8 26.0		96% 267%	17,000			X	X X	x	X
C-069 C-070	CR CSX	CSX	Marcy Marion	OH	Short Fostoria	OH	40	0.0	+	27.4	9.6	40.0		56%	3,000			-	X	T X	x
C-072	CR	CSX	Mayfield	OH		OH	6	0.0		43.8	40.4	9.0			0				х	х	х
C-073	CR	CSX	Quaker	ОН		ОН	3	0.0		43.8	37.0	9.0			0			ļ	х	X	X
C-074	CR	CSX	Short	OH		OH	4	0.0		45.3	31.9	15.0	101.6		4,000			X	X X	X	X
C-075 C-205	CSX	CSX	Willard Sterling	OH	Fostoria Greenwich	OH	37 37	2.0 2.0		54.0 32.9	21.5 0.4	55.8 54.8	109.8 62.1	13%	17,000			x	T X	+-	 ^
C-206	CSX	CSX	Fostoria	ОН		ОН	26	2.0				61.0			12,000			x	х	二	
C-224	CSX	CSX	Hamilton	ОН		OH	34	0.0		26.5	1.1	49.9	50.4					x	X	↓	igspace
C-225	CSX	CSX	Dayton	OH		OH	37	0.0		24.6 37.4	2.0 4.1	44.3 66.7	62.8 79.3		20,000 7,000			X	X X	x	x
C-228 C-229	CSX	CSX	Fostoria Columbus	OH	Toledo Marion	OH	29	0.0		17.4	-0.4	40.0			4,000		+-	:	x	x	1
N-071	NS	NS	Bucyrus	OH		ОН	34	0.0				58.3			13,000			х	х		
N-072	NS	NS	Vermilion	ОН		ОН	26	0.0	+			30.6						X	X	X	\perp
N-073	NS	NS	Fairgrounds		Bucyrus	OH	61 7	0.0			8.3 2.2	54.2 0.7	76.3		13,000	 		X	X	+	\vdash
N-074 N-075	CR NS	NS NS	Cleveland Ashtabula	OH		OH	50	0.0				19.9						x	x	x	х
N-076	NS	NS	Ivorydale	ОН		ОН	6	0.0				49.6	+					x	х		
N-078	CR	NS	Dayton		Ivorydale	ОН	48	0.0		19.5		24.3	35.0					<u> </u>	<u> </u>	+	\vdash
N-079	NS NS	NS NS	Oak Harbor Cleveland	OH	Bellevue Vermilion	OH	27 37	0.0		27.2 34.1	19.5 20.6	17.2 25.5			3,000 9,000			x	X	X	x
N-080 N-081	CR	NS	White	OH		OH	11	2.0		29.7		25.9						X	X	†	x
N-082	CR	NS	Youngstown	ОН		ОН	59	0.0			+	31.0							Х	Х	
N-084	CR	NS	Alliance		White	OH	46	2.0				57.5					+	-	X	+	┼
N-287	CR	NS	Columbus	H To	Charleston	wv	185	0.0	4.1	3.4	-0.7	9.5	8.7	-8%	7,000	8,000	14%		 ^	+-	
C-084	CSX	CSX	RG		Wilsmere	DE	26	0.0	22.9	26.4	3.5	39.7	49.0	23%	11,000	16,000	45%		х		
S-040		AMTK	Arsenal	PA	Davis	DE	25	131.0										_	X		
C-768		CSX	CP Wood		Trenton	NJ	6	48.0											X	X	+
S-233 N-095	CR CR	SHAREL	Phil Frankfort Rochester		Camden Youngstown	NJ OH	39	0.0						+					T X	^	+-
C-080		CSX	Field		Belmont	PA	4				+	11.2				5,000			X		
C-083	CR	CSX	RG		Field	PA	2									6,000			Х	\perp	
C-764		CSX	Park Jct	_	Belmont	PA	1	0.0											X	┼	┼
C-765		CSX	Belmont		West Falls	PA	1 4	0.0								-			X X	x	+
C-766 C-767		CSX	West Falls CP Newtown Jct		CP Newtown Jct CP Wood	PA PA	21	48.0			+								X	X	
N-093		NS	Harrisburg		Shocks	PA	22	0.0	2.2	6.0	3.8	2.8	6.8	143%	. (1,000	(a)		х		
N-203	CR	NS	Bethlehem	-	Allentown	PA	3												X	X	+
N-204	_	NS	Allentown		Burn Banding Balt Ist	PA	2												X	x	+-
N-216 N-223		NS NS	Reading Zoo	_	Reading Belt Jct Arsenal	PA PA	2	0.0								+		_	X	 ^	+
N-225		NS	Eastwick		Marcus Hook	PA	12	0.0						+					X		
S-041	MT	AMTK	Morrisville	PA	Zoo	PA	29	145.0	3.4	7.1	3.7	32.9							Х	\perp	\perp
S-042		SHAREI			Field	PA	5											_	X	+-	+
S-232	CR	SHAREI	Park Jct	PA To	Phil Frankfort	PA	216	0.0	7.8	10.7	2.9	13.5	17.2	2 27%	8,000	11,000	38%	╫	X	X	+
C-353	CSX	CSX	Greenwood		Athens	GA	81	0.0	16.1	18.8	2.7	28.3	30.6	8%	21,000	27,000	29%	6 X	х	工	
N-359		NS	Columbia		Millen	GA												6	x		

1 1								Passe	nger & Fi	reight Tra	in Data	Fre	ight Rail	Data			Freight R	au Data			
ı I	Own	nership			nt Description ents Total)				Pre Ac	quisition			ИШоп G	ross Tons		Annual Cardous Mai		128	247	46	19
I Site IDI	Pre Acq.	Post Acq.	Between	egme	And		Length (mi.)	Psgr. Trains	Freight Trains	Freight Trains	Change	Pre Acq.	Post Acq.	Percent Change		Post Acq.	Percent Change	Current Key Route Segments	5 2 2	New Key Route	New Major Key Route
C-344	CSX	CSX	Ashley Jct	SC	Yemassee	SC	54	6.0	16.7	20.6	3.9	32.4	37.9	17%	8,000	10,000	25%		х	Х	
C-352	CSX	CSX	Clinton	SC	Greenwood	SC	28	0.0	17.1	19.6	2.5	28.3	30.1	7%	16,000	27,000	69%	Х	х		<u> </u>
C-358	CSX	CSX	Mcbee	SC	Columbia	SC	108	2.0	4.4	4.4	0.0	5.4	5.9	9%	4,000	6,000	50%		X_		$\perp \perp$
			SC	C Tot	al		406														\vdash
C-266	CSX	CSX	Nashville		Decatur	AL	118	0.0		23.4	1.7	41.1	60.4	47%	22,000	32,000	45%	x	X	<u> </u>	-
	NS	NS	Wauhatchie	TN	Attalla	AL	82	0.0		11.9	5.4	20.1	23.4	16%	10,000	13,000	30%	X	X	L	$oldsymbol{\sqcup}$
N-395	NS	NS	Wauhatchie	TN	Sheffield	AL	154	0.0		10.8	0.6	24.7	29.4	19%	10,000	14,000	40%	X	х	L	$oldsymbol{\sqcup}$
N-330	NS	NS	Ooltewah	TN	Cohutta	GA	12	0.0		33.4	5.5	52.2	59.0	13%	16,000	20,000	25%	x	x		$oldsymbol{\sqcup}$
C-090	CSX	CSX	Amqui	TN	Nashville	TN	16	0.0		48.4	7.6	80.1	104.1	30%	34,000	47,000	38%	х	x		\vdash
N-328	NS	NS	Harriman	TN	Citico Jct	TN	74	0.0		28.1	1.5	51.6	53.6	4%	21,000	24,000	14%	X	х		$\vdash \vdash$
	NS	NS	Citico Jct	TN	Ooltewah	TN	12	0.0	37.0	44.0	7.0	69.4	82.1	18%	29,000	37,000	28%	x	X		\vdash
N-340	NS	NS	Citico Jct	TN	Chattanooga	TN	2	0.0	63.2	55.7	-7.5	116.6	111.6	-4%	43,000	54,000	26%	X	х		$oldsymbol{ol}}}}}}}}}}}}}}}}}$
N-386	NS	NS	Bulls Gap	TN	New Line	TN	16	0.0		17.7	-0.5	39.3	49.3	25%	16,000	23,000	44%	x	x		
N-387	NS	NS	New Line	TN	Sevier Yd	TN	32	0.0		21.1	-0.8	48.1	60.0	25%	24,000	35,000	46%	x	x		$ldsymbol{ol}}}}}}}}}}}}}$
N-388	NS	NS	Sevier Yd	TN	Cleveland	TN	88	0.0	15.1	17.1	2.0	35.0	44.7	28%	11,000	18,000	64%	X	х		
N-389	NS	NS	Cleveland	TN	Ooltewah	TN	14	0.0	9.2	12.6	3.4	17.1	28.8	68%	12,000	19,000	58%	х	х		$oldsymbol{oldsymbol{oldsymbol{\sqcup}}}$
N-392	NS	NS	New Line	TN	Leadvale	TN	11	0.0	4.9	5.7	0.8	11.4	10.7	-6%	9,000	12,000	33%	Х	х	x	$oldsymbol{\perp}$
N-393	NS	NS	Harriman	TN	Sevier Yd	TN	58	0.0	15.6	9.4	-6.2	26.0	23.1	-11%	13,000	14,000	8%	X	X		\perp
N-399	NS	NS	Bulls Gap	TN	Frisco	TN	41	0.0	18.0	12.1	-5.9	40.0	38.8	-3%	8,000	13,000	63%	Х	х	X	
			T	N To	tai		730												<u> </u>		\perp
N-385	NS	NS	Walton	VA	Bulls Gap	ľ	187	0.0	8.6	10.3	1.7	12.7	23.2	83%	6,000	9,000	50%		х	L	\perp
C-100	CSX	CSX	Doswell	VA	Fredericksburg	VA	37	18.0	16.2	22.8	6.6	40.7	52.0	28%	21,000	22,000	5%		x	<u> </u>	\perp
C-101	CSX	CSX	Fredericksburg	VA	Potomac Yard	VA	49	30.0	16.3	23.4	7.1	40.3	51.8	29%	20,000	22,000		Х	x	<u> </u>	
C-102	CSX	CSX	Richmond	VA	Doswell	VA	24	18.0	17.8	24.8	7.0	44.0	53.8	22%	21,000	22,000	5%	X	x	<u> </u>	
N-100	NS	NS	Riverton Jct	VA	Roanoke	VA	181	0.0	3.9	12.1	8.2	8.8	28.9	228%	1,000	5,000		<u> </u>	x		
N-315	NS	NS	Alexandria	VA	Manassas	VA	22	16.7	7.8	9.6	1.8	12.9	15.4	19%	2,000	6,000	200%		x		
N-317	NS	NS	Montview	VA	Altavista	VA	21	2.0	15.4	19.6	4.2	23.0	30.5	33%	17,000	18,000	6%		Х		
N-406	NS	NS	Frisco	VA	Kingsport	VA	6	0.0	4.0	4.0	0.0	4.5	6.2	38%	7,000	12,000			x	X	1
N-420	NS	NS	Roanoke	VA	Salem	VA	7	0.0	34.3	40.4	6.1	70.8	84.9	20%	11,000			X	х		
N-421	NS	NS	Salem	VA	Walton	VA	33	0.0	28.2	32.1	3.9	52.1	56.9	9%	10,000			X	x	ļ	
N-432	NS	NS	Poe Mi	VA	Petersburg	VA	3	0.0	8.4	8.0	-0.4	16.4	12.3	-25%	7,000			X	x	x	
C-234	CSX	CSX	Clifton Forge	VA	St Albans	wv	195	0.9	9.8	10.9	1.1	57.0	59.7	5%	3,000	4,000	33%	<u> </u>	X	1	1
			v	A To	tal		765												L	1	\bot
C-237	CSX	CSX	Huntington	wv	Kenova	wv	8	0.9	15.5	16.8	1.3	62.2	67.1	8%	16,000	17,000			X	ــــــ	\perp
C-238	CSX	CSX	Kenova	wv	Big Sandy Jct	wv	1	0.9	32.5	33.2	0.7	59.1	65.5	11%	16,000	17,000		-	x	<u> </u>	\perp
N-288	CR	NS	Charleston	wv	Dickinson	wv	14	0.0	4.3	4.6	0.3	7.6	7.2	-5%	4,000	6,000	50%		х	L	\bot
			W	V To	tal		23											1			\perp
			Gra	and I	[otal		11,256								L			_			

⁽a) Cannot calculate a percentage change from zero.

ATTACHMENT F-3

New Key Route and Major Key Route Rail Line Segments

Proposed Conrail Acquisi	tion	May 1998	Final Environmental Impact Statement
	THIS PAGE INTEN	TIONALLY LEF	T BLANK]
	Appendix F: Safety: Haza	ardous Materials Trans	sport Analysis
	Annondiy E. Cofet " User	ardous Matarials Tran	enort Analysis

ATTACHMENT F-3 NEW KEY ROUTE AND MAJOR KEY ROUTE RAIL LINE SEGMENTS

								Pass	enger & Fr	eight Train	Data			Freight Rail	Data			
	Own	ership			ent Description				Pre	Acq.			d Annual Ca		17	55	46	19
Site ID	Pre Acq.	Post Acq.	(55 S	Segm	ents Total) And		Length (mi.)	Psgr. Trains	Freight Trains	Freight Trains	Change	Ha: Pre Acq.	Post Acq.	Percent Change		Increase In Hazardous Materials	-	r 9
0.276	COV	CON	•	I CA	D. 1	LAT	140	0.0	12.5	12.6	0.0	9.000	17.000	1120/	0		l v	Ε_
C-376 C-377	CSX	CSX	Lagrange Manchester	_	Parkwood Lagrange	GA	142 45	0.0	13.5 12.0	13.5 11.6	0.0 -0.4	8,000 7,000	17,000 14,000	113% 100%	 	X	X	
0.5.7	00/1	0071		A To		0	187	0.0	12.0	11.0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	100/0				
N-045	NS	NS	Lafayette Jct		Tilton	IL	49	0.0	23.6	41.0	17.4	10,000	46,000	360%	х	Х		X
N-040 N-041	NS NS	NS NS	Alexandria Butler	IN	Muncie Ft Wayne	IN IN	16 28	0.0	2.6 13.6	11.8 27.3	9.2 13.7	5,000	16,000 28,000	(a) 460%	-	X	X	x
N-041	NS	NS NS	Ft Wayne	IN	Peru	IN	53	0.0	19.0	34.9	15.9	11,000	47,000	327%	х	X	 ^	X
N-046	NS	NS	Peru		Lafayette Jct	IN	53	0.0	18.4	40.2	21.8	11,000	47,000	327%	Х	Х		X
G 222	CSX	CSX	I. NJ Cabin	N Tot		ОН	199 53	0.0	11.7	11.4	-0.3	4,000	10,000	150%		х	x	-
C-230	CSA	CSA		Y To	Columbus	Un	53	0.0	11./	11.4	-0.3	4,000	10,000	130%		 ^ -	<u> </u>	
C-031	CSX	CSX	Alexandria Jct		Washington	DC	5	22.0	23.9	30.8	6.9	2,000	12,000	500%	Х	х	Х	
C-034	CSX	CSX	Jessup		Alexandria Jct	MD	17	22.0	33.4	37.1	3.7	9,000	19,000			X	X	ļ
C-037	CSX	CSX	Relay M	IMD ID To	Jessup tal	MD	7 29	22.0	33.1	37.0	3.9	9,000	17,000	89%	 	X	X	\vdash
N-478	NS	NS	Moberly		CA Jet	МО	94	0.0	18.6	25.9	7.3	6,000	10,000	67%	х	Х	х	
				10 To			94									 	 	<u> </u>
N-360 N-361	NS NS	NS NS	Salisbury Asheville		Asheville Leadvale	NC TN	142 74	0.0	6.6 8.4	5.4 7.6	-1.2 -0.8	8,000 8,000	10,000	25% 38%	-	X	X	-
14-301	142	GFI		IC To		1 IN	216	0.0	8.4	7.0	-0.8	8,000	11,000	38%		 ^	 ^	†
C-769	CR	CSX	Trenton	NJ	Port Reading	NJ	25	0.0	15.7	11.4	-4.3	7,000	18,000	157%		Х	Х	
S-032	CR	SHARED	PN		Bayway	NJ	9 34	0.0	10.9	16.2	5.3	10,000	22,000	120%	ļ	X	-	X
N-061	CR	NS	Ebenezer Jct	NY NY	Buffalo	NY	6	0.0	0.0	11.4	11.4	0	18,000	(a)		x	x	
N-062	CR	NS	Suffern	NY	Campbell Hall	NY	35	18.0	4.7	4.7	0.0	0	18,000	(a)		х	Х	
N-063	CR	NS	Campbell Hall		Port Jervis	NY	30	18.0	7.9	9.0	1.1	0	18,000	(a)		Х	Х	<u> </u>
N-065 N-245	CR CR	NS NS	Corning Port Jervis	-	Buffalo Binghamton	NY NY	128 126	0.0	13.6 7.9	20.6 9.0	7.0 1.1	2,000	16,000 18,000	700% (a)		X	X	-
N-245 N-246	CR	NS	Binghamton		Waverly	NY	42	0.0	13.0	19.9	6.9	0				x	x	\vdash
N-247	CR	NS	Waverly	NY	Corning	NY	36	0.0	16.4	21.4	5.0	0	18,000	(a)		Х	Х	
N-070	NS	NS	Buffalo Fw		Ashtabula	OH	128	0.0	13.0	25.1	12.1	8,000	26,000	225%		Х	X	X
C-066	CSX	CSX	Deshler N	OH Y	Willow Creek	IN	531 174	2.0	21.4	47.7	26.3	16,000	34,000	113%	x	l x	 	x
C-061	CR	CSX	Berea		Greenwich	OH	42	0.0	14.5	53.0	38.5	16,000	46,000	188%	X	х		Х
C-065	CSX	CSX	Deshler		Toledo	OH	36	0.0	0.6	14.2	13.6	0	14,000	(a)		X	X	<u> </u>
C-068 C-069	CSX	CSX	Greenwich Marcy	OH	Willard Short	OH	12 9	2.0 0.0		55.2 43.8	22.7 27.4	17,000 4,000	55,000 41,000	224% 925%	Х	X	x	X
C-009	CSX	CSX	Marion		Fostoria	ОН	40	0.0	17.8	27.4	9.6	3,000	23,000			x	X	X
C-072	CR	CSX	Mayfield	ОН	Marcy	ОН	6	0.0	3.4	43.8	40.4	0				Х	X	Х
C-073	CR	CSX	Quaker		Mayfield	OH	3	0.0	6.8	43.8	37.0 31.9	4,000		(a)	-	X	X	X
C-074 C-075	CR CSX	CSX	Short Willard		Berea Fostoria	OH	37	0.0 2.0		45.3 54.0	21.5	4,000 18,000	39,000 43,000	875% 139%	х	x	┼	^
C-228	CSX	CSX	Fostoria		Toledo	ОН	29	0.0		37.4	4.1	7,000	25,000	257%		Х	X	X
C-229	CSX	CSX	Columbus	_	Marion	OH	20	0.0	17.8	17.4	-0.4	4,000	12,000			X	X	
N-072 N-075	NS NS	NS NS	Vermilion Ashtabula	OH	Bellevue Cleveland	OH	26 50	0.0	15.6 13.0	27.0 36.6	11.4 23.6	9,000 7,000	15,000 37,000		X X	X	X	x
N-079	NS	NS	Oak Harbor		Bellevue	ОН	27	0.0		27.2	19.5	3,000	18,000			Х	X	
N-080	NS	NS	Cleveland		Vermilion	ОН	37	0.0		34.1	20.6	9,000	32,000	256%	X	X	Х	X
N-081 N-082	CR CR	NS NS	White Youngstown		Cleveland Ashtabula	OH	11 59	2.0 0.0	12.5 11.7	29.7 23.8	17.2	12,000 2,000	34,000 11,000		Х	X	X	X
11-082	-CK	149)H To		Jon.	621	0.0	11./	23.8	12.1	2,000	11,000	43070		<u> </u>	L^	<u> </u>
C-768	CR	CSX	CP Wood		Trenton	NJ	6	48.0	14.3	10.0	-4.3	6,000	18,000	200%		Х	X	
S-233	CR		Phil Frankfort		Camden	NJ	4	0.0		10.7	2.9	8,000				X	X	+
N-095 C-766	CR CR	NS CSX	Rochester West Falls		Youngstown CP Newtown Jct	OH PA		0.0		17.7 11.4	5.1 0.3	2,000 5,000	11,000 19,000		 	X	X	+
C-767	CR	CSX	CP Newtown Jct		CP Wood	PA		48.0			-0.6	6,000	19,000	217%		Х	X	
N-203	CR	NS	Bethlehem		Allentown	PA	3	0.0		13.3	-3.9					X	X	
N-216 S-232	CR CR	NS SHARED	Reading Park Jct		Reading Belt Jct Phil Frankfort	PA PA	6				-1.1 2.9	4,000 8,000				X	X	
3-232	- CK	SHAKED		A To		FA	84		/.8	10.7	2.9	3,000	11,000	3676		上	<u> </u>	
C-344	CSX	CSX	Ashley Jct	SC	Yemassee	SC	54		16.7	20.6	3.9	8,000	10,000	25%		Х	X	
N 202)/a	1 270		C To		-	54					2.000	10.000	332	 	-	1	+
N-392 N-399	NS NS	NS NS	New Line Bulls Gap		Leadvale Frisco	TN	11 41	0.0	4.9 18.0		-5.9	9,000 8,000			X	X	X	+-
				IN To		Ι.,	52		10,0			0,000	15,000					
N-406	NS	NS	Frisco		Kingsport	VA	6	0.0								X	X	
N-432	NS	NS	Poe Mi	VA A To	Petersburg	VA	9	0.0	8.4	8.0	-0.4	7,000	11,000	57%	Х	Х	X	
l				and]			2,163											

[[] Grand Total (a) Cannot calculate a percentage change from zero.

[THIS PAGE INTENTIONALLY LEFT BLANK]

ATTACHMENT F-4

Accident Predictions for Rail Line Segments with a Projected Increase in Hazardous Materials Transported

·		
[THIS PAGE INT	ENTIONALLY I	LEFT BLANK]

	R	ail Line S	Hazardous Materials						
Site ID	Between		And		Pre Acq. Ownership	Length (mi.)	in Reportable Mainline Hazardous Material Releases	Interval between Mainline Hazardous Material Releases (years)	Mainline Hazardous Material Releases (years)
C-267	Decatur	AL	Black Creek	AL	CSX	89	49.1%		4,207
C-268	Black Crk	AL	Birmingham	AL	CSX	5	48.8%		4,196
C-269	Birmingham	AL	Parkwood	AL	CSX	12	44.9%		3,372
C-270	Parkwood	AL	Montgomery	AL	CSX	87	24.2%		5,485
C-271	Montgomery	AL	Flomaton	AL	CSX	110	43.8%		2,730
C-386	Flomaton	AL	Mobile	AL	CSX	59	35.5%		2,238
N-001	Attalla	AL	Norris Yard	AL	NS	48	48.3%		8,863
N-412	Demopolis	AL	Marion Jct	AL	NS	38		(a)	109,998
N-337	Norris Yd	AL	Austell	GA	NS	142	28.2%		2,991
C-387	Mobile	AL	New Orleans	LA	CSX	143	10.4%		2,525
N-343	Burstal	AL	Meridian	MS	NS	140	2.9%		4,036
N-397	Wilson		Memphis	TN	NS	144	6.6%	4,513	4,232
		AL				1,017	10.00/	2050	(7 (0
C-001	Anacostia	DC	Virginia Ave	DC	CR	3	18.9%		6,769
C-003	Washington	DC	Pt of Rocks	MD	CSX	43	7.7%		9,326
C-002	Virginia Ave	DC	Potomac Yard	VA	CR	6	20.8%	8,072	6,684
27.010	D !!		Total	- DE	CD	52	40.40/	26.250	17.696
N-010	Bell	DE	Edgemoor	DE	CR	1	48.4%		17,686
C-201	Wilsmere	DE	Baltimore	MD	CSX	68	49.8%		8,222 6,321
S-001	Davis	DE	Perryville	MD	AMTK	21 90	9.3%	6,912	0,321
C-356	Logrange	GA	Total Montgomery	AL	CSX	100	12.4%	5,825	5,183
C-376	Lagrange Lagrange	GA	Parkwood	AL	CSX	142	106.2%		7,477
C-370	Thomasville	GA	Montgomery	AL	CSX	210	43.8%		35,495
N-379	Valdosta	GA	Occidental	FL	NS	42	3.7%		3,779
C-296	Cartersville	GA	Atlanta	GA	CSX	46	6.0%		5,981
C-297	Atlanta	GA	Manchester	GA	CSX	78	7.2%		22,336
C-298	Manchester	GA	Waycross	GA	CSX	203	50.0%		6,878
C-354	Athens	GA	Atlanta	GA	CSX	69	24.3%		5,054
C-355	Atlanta	GA	Lagrange	GA	CSX	70	26.3%		4,668
C-377	Manchester	GA	Lagrange	GA	CSX	45	101.7%		8,807
N-020	Howell		Spring	GA	NS	1	27.6%		3,328
N-022	Spring		Scherer Coal	GA	+	65	16.9%		3,160
N-331	Cohutta		Austell	GA		108	18.4%		6,129
N-332	Austell		Howell		NS	16	31.9%		2,105
N-333	Scherer Coal		Macon Jct	GA	NS	20	27.4%	+	3,147
N-334	Macon Jct		Brosnan Yd	GA	NS	2	37.2%		2,864
N-335	C of G Jct		Langdale Yd	GA	NS	146	3.8%		3,260
			Total .			1,363			
C-011	Blue Island Jct	IL	59th Street	IL	CSX	15		(a)	48,866
C-263	Dolton	IL	Danville	IL	CSX	106	13.9%	8,146	7,150
C-417	Blue Island Jct	IL	Clearing	IL	CSX	15	26.2%	31,946	25,305
C-476	Chrisman	IL	Decatur	IL	CSX	69	102.3%	46,869	23,166
N-033	Tilton	IL	Decatur	IL	NS	71	60.3%	10,509	6,555
N-312	Kankakee	IL	Streator	IL	CR	49	118.6%		49,360
N-490	Gibson City	IL	Bement	IL	NS	41	55.6%		17,411
N-492	Decatur	IL	Taylorville	IL	NS	30	25.7%		11,484
N-499	Calumet	IL	Landers	IL	NS	8	33.6%	8,723	6,531

		Rail Line S	Hazardous Materials						
							Percent Increase	Pre-Acquisition	Post-Acquisition
					vine	m.	in Reportable	Interval between	Interval between
Site ID	Between		And		Ô	th (Mainline	Mainline	Mainline
					ċd.	Length (mi.)	Hazardous	Hazardous	Hazardous
					Pre Acq. Ownership	L	Material	Material	Material
		T					Releases		Releases (years)
C-264	Danville	IL	Terre Haute	IN	CSX	57	4.9%	7,355	7,011
N-477	Decatur	IL	Moberly	MO	NS	209	137.3%	38,833	16,364
		IL T				670	100.00/	16.060	22.166
C-475	Hillsdale	IN	Chrisman	IL	CSX	16	102.3%	46,869	23,166
N-045	Lafayette Jct	IN	Tilton	IL	NS	49	336.8%	10,499	2,404
C-025	Vincennes	IN	Evansville	IN	CSX	53	41.1%	6,156	4,364
C-027	Willow Creek	IN	Pine Jct	IN	CSX	12	57.2%	5,710	3,633
C-254	Munster	IN	Monon	IN	CSX	62	237.0%	62,312	18,491
C-255	Monon		Lafayette	IN	CSX	30	152.7%	46,700	18,477
C-256	Lafayette	IN	Crawfordsville	IN	CSX	29	151.9%	112,769	44,774
C-265 C-676	Terre Haute	IN	Vincennes	IN	CSX	54	23.5%	7,650	6,196 35,306
C-676	Avon Clermont	IN	Clermont	IN IN	CR	34		(a)	35,306
C-677	Willow Creek	IN	Crawfordsville		CR CR	13	38.7%	(a) 30,464	21,966
N-040	Alexandria	IN	Ivanhoe Muncie	IN IN		16	5013.4%	384,574	7,521
N-040 N-041	Butler	IN IN	Ft Wayne	IN	NS NS	28	392.4%	19,896	4,040
N-041 N-044	Ft Wayne	IN	Peru Peru	IN	NS NS	53	392.4%	9,889	2,377
N-044 N-046	Peru	IN	Lafayette Jct	IN	NS NS	53	317.9%	9,896	2,368
N-305	Goshen	IN	Alexandria	IN	CR	99	27.3%	9,642	7,572
N-485	Muncie	IN	Ivorydale	OH	NS NS	106	60.9%		5,111
C-021	Evansville	IN		TN	CSX	137	52.4%	6,027	3,955
C-021	Evalisville	IN T	Amqui	110	CSA	848	32.470	0,027	3,933
C-295	Corbin	KY	Cartersville	GA	CSX	263	32.5%	23,863	18,014
C-241	Russell	KY	NJ Cabin	KY	CSX	19	4.0%		5,660
C-272	Anchorage	KY	Winchester	KY	CSX	95	51.8%		61,653
C-287	Latonia	KY	Anchorage	KY	CSX	86	51.2%		8,460
C-288	Anchorage	KY	Louisville	KY	CSX	13	48.0%		8,080
C-291	Covington	KY	Latonia	KY	CSX	1	35.1%		5,645
C-293	Winchester	KY	Sinks	KY	CSX	56	34.6%		18,935
C-294	Sinks	KY	Corbin	KY	CSX	35	34.6%		18,947
N-415	Louisville	KY	SJ Jct	KY	NS	87	7.8%		5,520
C-230	NJ Cabin	KY	Columbus	ОН	CSX	53	117.5%		13,592
C-289	Louisville		Amqui		CSX	173	35.6%		8,827
N-327	SJ Jct		Harriman	TN	NS	144	12.7%		3,524
			rotal			1,025			
N-346	Oliver Jct		Oliver Yd	LA	NS	2	2.2%	3,280	3,209
			Total			2			
C-721	Framingham		Westboro	MA	CR	12	-1.1%	13,664	13,822
C-722	Westboro		Worcester	MA		11	-1.1%		13,822
			Total			23			
C-030	Alexandria Jct		Benning	DC	CSX	6	8.6%	6,060	5,581
C-031	Alexandria Jct			DC	CSX	5	376.2%		14,642
C-035	Landover		Anacostia	DC		5		(a)	53,443
C-032	Baltimore		Relay		CSX	7	14.3%	9,960	8,714
C-034	Jessup	MD	Alexandria Jct		CSX	17	98.4%	11,503	5,799
C-037	Relay		Jessup		CSX	7	86.6%	11,946	6,404
S-010	Baltimore		Bowie		AMTK	29		(a)	26,982
S-011	Bowie		Landover		AMTK	8		(a)	26,982

Rail Line Segment Description							Hazardous Materials			
Site ID	Between		And		Pre Acq. Ownership	Length (mi.)	Percent Increase in Reportable Mainline Hazardous Material Releases	Interval between Mainline Hazardous Material Releases (years)	Mainline Hazardous Material Releases (years)	
S-238	Perryville		Baltimore	MD	AMTK	32	62.5%	45,821	28,196	
			Total			117			12 -14	
N-476	Oakwood		Butler	IN	NS	107	48.7%		13,746	
C-218	Saginaw		Flint	MI	CSX	29	61.9%		21,999	
C-219	Flint		Holly	MI	CSX	28	16.8%	11,091	9,492 9,510	
C-220	Holly	MI	Wixom	MI	CSX	20 12	16.9% 13.2%	11,112 10,763	9,510	
C-221	Wixom	MI	Plymouth	MI	CSX		45.1%		6,754	
C-222	Plymouth	MI	Wayne	MI	CSX CSX	8 15			6,759	
C-223	Wayne	MI	Carleton	MI			45.1%		113,303	
S-020	Carleton	MI	Ecorse Trenton	MI	CR CR	20 10	20.5%	(a) 44,891	37,251	
S-209	Delray	MI			CSX	26	68.8%		5,931	
C-040	Carleton	MI	Toledo	OH	CSX	275	08.8%	10,009	3,931	
N-478	Moberly	MIT	CA Jct	МО	NS	94	63.1%	20,876	12,799	
N-478 N-479			N Kansas City		NS NS	31	30.7%	20,878	15,392	
N-4/9	CA Jct			MO	NS	125	30.776	20,116	13,392	
C-330	Charlotte	NC	Total Bostic	NC	CSX	73	16.8%	18,812	16,100	
C-334	Weldon		Rocky Mt	NC	CSX	37	4.5%		3,844	
C-334 C-335		NC	Contentnea	NC	CSX	19	19.6%		6,509	
C-335	Rocky Mt	NC	Selma	NC NC	CSX	22	19.0%		5,943	
C-336 C-337	Contentnea Selma		Fayetteville	NC	CSX	49	8.5%		5,963	
C-337	Fayetteville		Pembroke	NC	CSX	31	25.3%		5,642	
C-350	Hamlet	NC	Monroe	NC	CSX	53	36.2%		3,904	
N-319	Greensboro	NC	Linwood	NC	NS	41	18.0%		5,382	
N-317	Greensboro		Raleigh Yd	NC	NS	83	7.4%		10,521	
N-353	Goldsboro		New Bern	NC	NS NS	58	7.470	(a)	22,099	
N-360	Salisbury	NC	Asheville	NC	NS	142	28.1%		8,747	
C-339	Pembroke		Dillon	SC	CSX	21	12.3%		17,372	
C-351	Monroe	NC	Clinton	SC	CSX	92	92.1%		4,736	
C-357	Hamlet		Mcbee	SC	CSX	50	51.0%		18,432	
N-361	Asheville		Leadvale	TN	NS	74	30.2%		11,223	
14-301	Ashevine		Fotal	111	113	845	30.270	14,010	11,223	
C-769	Trenton		Port Reading	NJ	CR	25	140.7%	16,631	6,909	
N-209	Oak Island	NJ	E Rail T V	NJ	CR	6	47.1%		6,152	
S-030	Lane	NJ	Union	NJ	AMTK	7	47.1%		11,869	
S-030	PN	NJ	Bayway	NJ	CR	9	109.5%		7,030	
S-032	Union	NJ	Midway	NJ	AMTK	22	33.3%		12,364	
S-212	N Bergen	NJ	Ridgefield Hts	NJ	CR	6	32.2%		4,589	
S-217	Bayway	NJ	PD	NJ	CR	6	23.1%		18,414	
S-217	PD	NJ	Wood	NJ	CR	3	235.7%		25,836	
S-218 S-220	Nave	NJ	CP Green	NJ	CR	4	59.7%		5,478	
S-220	Nave	NJ	Croxton	NJ	CR	2	59.6%		5,480	
S-221	Green	NJ	Oak Island	NJ	CR	1	71.0%		5,242	
S-223	Hack	NJ	Croxton	NJ	CR	1	67.1%		24,830	
S-223	Croxton	NJ	North Bergen	NJ	CR	3	31.2%		5,814	
S-224 S-229	Pt Reading Jct	NJ	Port Reading	NJ	CR	16	5.2%		23,367	
S-229 S-230	NK	NJ	Boundbrook	NJ	CR	22	12.6%		4,422	
S-231	Boundbrook	NJ	Pt Reading Jct	NJ	CR	3	0.9%		4,422	

	Rai	Hazardous Materials							
Site ID	Between		And	Pre Acq. Ownership	Length (mi.)	Percent Increase in Reportable Mainline Hazardous Material Releases	Interval between Mainline Hazardous Material	Post-Acquisition Interval between Mainline Hazardous Material Releases (years)	
C-758	Ridgefield Heights	NJ	Newburgh	NY	CR	45	29.8%		4,673
S-031	Midway	NJ	Morrisville	PA	AMTK	17	66.7%	32,970	19,782
		NJ 7	otal			198			
C-051	Chili	NY	Frontier	NY	CR	51	15.2%	2,857	2,480
C-053	Hoffmans	NY	Utica	NY	CR	66	12.7%	2,796	2,480
C-054	Selkirk	NY	Hoffmans	NY	CR	25	12.8%	3,132	2,776
C-687	Buffalo	NY	Draw	NY	CR	2	5.0%	4,187	3,986
C-688	Draw	NY	Buff Crk Jct	NY	CR	1	4.0%	3,225	3,102
C-689	Buff Crk Jct	NY	Buff Seneca	NY	CR	3	3.3%	3,006	2,909
C-735	Utica	NY	Syracuse	NY	CR	51	1.1%	3,419	3,383
C-736	Syracuse	NY	Syracuse Jct	NY	CR	6	24.8%	4,180	3,350
C-737	Syracuse Jct	NY	Solvay	NY	CR	2	19.2%	4,182	3,508
C-738	Solvay	NY	Lyons	NY	CR	42	15.1%	4,038	3,508
C-739	Lyons	NY	Fairport	NY	CR	23	15.1%	4,038	3,508
C-740	Fairport	NY	Rochester	NY	CR	11	16.6%	4,342	3,723
C-741	Rochester	NY	Chili	NY	CR	13	18.0%	3,097	2,625
C-742	Frontier	NY	Buffalo	NY	CR	4	-4.7%	2,954	3,099
C-759	Newburgh	NY	Selkirk	NY	CR	80	29.8%	6,070	4,675
N-061	Ebenezer Jct	NY	Buffalo	NY	CR	6		(a)	8,445
N-062	Suffern	NY	Campbell Hall	NY	CR	35	4731.7%	330,084	6,832
N-063	Campbell Hall	NY	Port Jervis	NY	CR	30	4737.7%	329,012	6,801
N-065	Corning	NY	Buffalo	NY	CR	128	540.0%	47,635	7,443
N-245	Port Jervis	NY	Binghamton	NY	CR	126	4736.2%		6,945
N-246	Binghamton	NY	Waverly	NY	CR	42	4769.4%		6,853
N-247	Waverly	NY	Corning	NY	CR	36	2426.3%	166,180	6,578
N-473	Buffalo	NY	Black Rock	NY	NS	7	201.9%		61,183
C-690	Buff Seneca	NY	Ashtabula	OH	CR	123	4.0%	3,228	3,104
N-070	Buffalo Fw	NY	Ashtabula	OH	NS	128	239.1%	14,480	4,270
		NY	Γotal			1,041			
C-066	Deshler	OH	Willow Creek	IN	CSX	174	101.1%		2,899
C-258	Hamilton	OH	Indianapolis	IN	CSX	99	244.3%	71,904	20,886
C-290	Cincinnati	OH	Covington	KY	CSX	6	11.9%		3,698
N-326	Cincinnati	OH	SJ Jct	KY	NS	112	44.8%		4,167
C-060	Ashtabula	OH	Quaker	OH	CR	47	11.2%		2,184
C-061	Berea	OH		OH	CR	42	157.4%		2,687
C-063	Cincinnati	ОН	Hamilton	ОН	CSX	21	28.2%		6,082
C-065	Deshler	ОН	Toledo	ОН	CSX	36	4576.1%		8,563
C-068	Greenwich	ОН	Willard	OH	CSX	12	212.6%		1,822
C-069	Marcy	ОН	Short	OH		9	746.5%	35,970	4,249
C-070	Marion	ОН	Fostoria	ОН	CSX	40	607.4%	38,231	5,405
C-072	Mayfield	ОН	Marcy	ОН	CR	6		(a)	3,751
C-073	Quaker	OH	Mayfield	OH	CR	3		(a)	3,751
C-074	Short	OH	Berea	ОН	CR	4	711.0%	36,027	4,442
C-075	Willard	OH	Fostoria	ОН	CSX	37	143.5%	6,239	2,562
C-205	Sterling	ОН	Greenwich	ОН	CSX	37	21.6%		6,393
C-206	Fostoria	ОН	Deshler	ОН	CSX	26	68.4%	7,876	4,676
C-224	Hamilton		Dayton	ОН	CSX	34	12.0%		6,201
C-225	Dayton	OH	Sidney	ОН	CSX	37	10.2%	6,954	6,308

Rail Line Segment Description							Hazardous Materials		
Site ID	Between		And		Pre Acq. Ownership	Length (mi.)	in Reportable Mainline Hazardous Material Releases	Interval between Mainline Hazardous Material Releases (years)	Mainline Hazardous Material Releases (years)
C-228	Fostoria	OH	Toledo	OH	CSX	29	248.8%	- / -	5,462
C-229	Columbus	OH	Marion	OH	CSX	20	171.8%		10,845
N-071	Bucyrus	OH	Bellevue	OH	NS	34	29.2%		7,184
N-072	Vermilion	OH	Bellevue	OH	NS	26	68.8%		7,237
N-073	Fairgrounds (Columb		Bucyrus	OH	NS	61	84.0%		4,615
N-074	Cleveland	OH	Shortline Jct	OH	CR	7	101.00/	(a)	25,585
N-075	Ashtabula	OH	Cleveland	OH	NS	50	401.3%		3,026
N-076	Ivorydale	OH	Cincinnati	OH	NS	6	69.9%		5,197
N-078	Dayton		Ivorydale	OH	CR	48	16.8%		17,717
N-079	Oak Harbor	OH	Bellevue	OH	NS	27	484.0%		6,101 3,475
N-080	Cleveland	OH	Vermilion	OH	NS	37	252.4%		5,096
N-081	White	OH	Cleveland	OH	CR	11	162.5%		11,775
N-082	Youngstown	OH	Ashtabula White	OH	CR	59 46	294.4%		3,617
N-084	Alliance	OH		OH	CR		9.4%		15,922
N-287	Columbus	OH	Charleston	WV	CR	185	1.0%	10,083	13,922
C-084	D.C.	PA	Total Wilsmere	DE	CSX	1,427 26	50.3%	11,312	7,527
S-040	RG Arsenal	PA	Davis	DE	AMTK	25	33.3%		6,183
C-768	CP Wood	PA	Trenton	NJ	CR	6	154.8%		6,629
S-233	Phil Frankfort	PA	Camden	NJ	CR	4	29.3%		10,827
N-095	Rochester	PA	Youngstown	OH	CR	39	289.1%		11,246
C-080	Field	PA	Belmont	PA	CR	4	613.6%		27,363
C-083	RG	PA	Field	PA	CR	2	013.070	(a)	26,021
C-764	Park Jct	PA	Belmont	PA	CR	1	41.8%		4,080
C-765	Belmont	PA	West Falls	PA	CR	1	45.6%		3,782
C-766	West Falls	PA	CP Newtown Jct	PA	CR	4	214.4%		6,648
C-767	CP Newtown Jct	PA	CP Wood	PA	CR	21	196.4%		6,375
N-093	Harrisburg	PA	Shocks	PA	CR	22	44.8%		124,766
N-203	Bethlehem	PA	Allentown	PA	CR	3	35.5%		11,139
N-204	Allentown	PA	Burn	PA	CR	3	1.8%	4,160	4,086
N-216	Reading	PA	Reading Belt Jct	PA	CR	2	108.8%	33,134	15,869
N-223	Zoo	PA	Arsenal	PA	CR	2	369.7%	86,248	18,362
N-225	Eastwick	PA	Marcus Hook	PA	CR	12	50.4%	28,901	19,211
S-041	Morrisville	PA	Zoo	PA	AMTK	29	91.7%	24,730	12,902
S-042	South Philadelphia	PA	Field	PA	CR	5	583.7%	116,969	17,107
S-232	Park Jct	PA	Phil Frankfort	PA	CR	6	29.3%	13,996	10,827
		PA T	Γotal			216			
C-353	Greenwood	SC	Athens	GA	CSX	81	30.7%	6,612	5,058
N-359	Columbia	SC	Millen	GA	NS	135	38.4%		22,273
C-344	Ashley Jct	SC	Yemassee	SC	CSX	54	28.9%		12,364
C-352	Clinton	SC	Greenwood	SC	CSX	28	66.2%		5,125
C-358	Mcbee	SC	Columbia	SC	CSX	108	39.5%	25,643	18,388
			[otal			406			
C-266	Nashville	TN	Decatur	AL	CSX	118	49.1%	The second secon	4,208
N-341	Wauhatchie	TN	Attalla	AL	NS	82	37.9%		6,385
N-395	Wauhatchie	TN	Sheffield	AL	NS	154	39.2%		6,075
N-330	Ooltewah	TN	Cohutta	GA	NS	12	21.2%		
C-090	Amqui	TN	Nashville	TN	CSX	16	20.8%	3,926	3,251

	F	Rail Line	Hazardous Materials						
Site ID	Between		And		Pre Acq. Ownership	Length (mi.)	Percent Increase in Reportable Mainline Hazardous Material Releases	Interval between Mainline Hazardous Material	Post-Acquisition Interval between Mainline Hazardous Material Releases (years)
N-328	Harriman	TN	Citico Jct	TN	NS	74	16.7%	6,459	5,535
N-329	Citico Jct	TN	Ooltewah	TN	NS	12	28.6%	4,609	3,584
N-340	Citico Jct	TN	Chattanooga	TN	NS	2	27.3%	3,146	2,471
N-386	Bulls Gap	TN	New Line	TN	NS	16	40.3%	7,529	5,367
N-387	New Line	TN	Sevier Yd	TN	NS	32	49.7%	5,225	3,492
N-388	Sevier Yd	TN	Cleveland	TN	NS	88	63.0%	7,858	4,821
N-389	Cleveland	TN	Ooltewah	TN	NS	14	56.4%	10,007	6,400
N-392	New Line	TN	Leadvale	TN	NS	11	37.4%	14,100	10,262
N-393	Harriman	TN	Sevier Yd	TN	NS	58	5.4%		8,676
N-399	Bulls Gap	TN	Frisco	TN	NS	41	56.8%	15,061	9,606
		TN	Γotal			730			
N-385	Walton	VA	Bulls Gap	TN	NS	187	40.5%		13,865
C-100	Doswell	VA	Fredericksburg	VA	CSX	37	6.5%		6,814
C-101	Fredericksburg	VA	Potomac Yard	VA	CSX	49	8.3%		4,992
C-102	Richmond	VA	Doswell	VA	CSX	24	6.4%		4,520
N-100	Riverton Jct	VA	Roanoke	VA	NS	181	308.4%		23,905
N-315	Alexandria	VA	Manassas	VA	NS	22	202.0%		17,738
N-317	Montview	VA	Altavista	VA	NS	21	5.6%		6,840
N-406	Frisco	VA	Kingsport	VA	NS	6	71.5%		10,291
N-420	Roanoke	VA	Salem	VA	NS	7	29.6%		9,011
N-421	Salem	VA	Walton	VA	NS	33	34.8%		9,259
N-432	Poe Mi	VA	Petersburg	VA	NS	3	53.7%		10,866
C-234	Clifton Forge	VA	St Albans	WV	CSX	195	21.2%	38,440	31,707
		VA '	Γotal			765			
C-237	Huntington	WV	Kenova	WV	CSX	8	10.0%		7,745
C-238	Kenova	WV	Big Sandy Jct	WV	CSX	1	7.4%		9,922
N-288	Charleston	WV	Dickinson	WV	CR	14	67.9%	39,292	23,401
			Total			23			
		Gra	nd Total			11,256			

⁽a) Cannot calculate a percentage change from zero.

APPENDIX G Transportation: Highway/Rail At-grade Crossing Traffic Delay Analysis

CONTENTS

A DDE	NDIX G: TRANSPORTATION: HIGHWAY/RAIL AT-GRADE	<u>Page</u>
AFFE	CROSSING TRAFFIC DELAY ANALYSIS	G-1
	G.1 REVISED ANALYSES WITH REFINED DATA	
	G.2 ADDITIONAL ANALYSES IN RESPONSE TO PUBLIC	. • 1
	COMMENTS	. G-2
	G.2.1 Emergency Response Vehicle Delay	
	G.2.2 Fostoria, Ohio	
	G.2.3 Corridor Analysis	
	FIGURES	
G-1	Fostoria Area	G- 6
	ATTACHMENTS	
G-1	Highway/Rail At-grade Crossing Vehicle Delay and Queues	. G- 11
G-2	Rail Line Segment C-065 Highway/Rail At-grade Crossing Vehicle Delay and	
	Queues	
G-3	Rail Line Segments C-070, C-228, and C-229 Highway/Rail At-grade Crossing V	
_	Delay and Queues	. G- 25
G-4	Rail Line Segments C-066 and C-206 Highway/Rail At-grade Crossing Vehicle	
0.5	2 old and Quodes in the contract of the contra	. G-2 9
G-5	Rail Line Segments N-077 and N-303 Highway/Rail At-grade Crossing Vehicle	C 22
G-6	Delay and Queues	. U- 33
G -0	Delay and Queues	G-37
G-7	Rail Line Segments N-073 and N-085 Highway/Rail At-grade	. U -37
U- /	Crossing Vehicle Delay and Queues	G-43
G-8	Rail Line Segment N-079 Highway/Rail At-grade Crossing Vehicle Delay	. 0 13
0-0	and Queues	. G- 47
G- 9	Rail Line Segment N-476 Highway/Rail At-grade Crossing Vehicle Delay	
0,	and Queues	. G-5 1
G-10	Rail Line Segment C-061 Highway/Rail At-grade Crossing Vehicle Delay and	
- 10	Queues	. G-55
G-11	Rail Line Segment N-046 Highway/Rail At-grade Crossing Vehicle Delay	
	and Queues	. G- 59
	-	

APPENDIX G TRANSPORTATION: HIGHWAY/RAIL AT-GRADE CROSSING TRAFFIC DELAY ANALYSIS

The Section of Environmental Analysis (SEA) of the Surface Transportation Board (the Board) revised its analysis of highway/rail at-grade crossing traffic delay associated with the proposed Conrail Acquisition as presented in the Draft Environmental Impact Statement (Draft EIS) Supplemental Errata. (See Appendix B, "Draft Environmental Impact Statement Correction Letter, Errata, Supplemental Errata and Additional Environmental Information, and Board Notice to Parties of Record.") The revised analysis corrects for an error in the calculation of vehicle crossing delay that SEA used in the Draft EIS.

In addition to the changes reflected in the Supplemental Errata, SEA revised its analysis for the Final Environmental Impact Statement (Final EIS) to reflect refined data not available for the Draft EIS and to respond to public comments, particularly concerning potential delay of emergency response vehicles.

G.1 REVISED ANALYSES WITH REFINED DATA

Following its preparation of the Draft EIS Supplemental Errata, SEA obtained refined data that required revising the highway/rail at-grade crossing delay analysis. These refined data include:

- Highway traffic volumes provided by local and state transportation or planning offices.
- Revised train traffic volumes and revised train speeds from CSX and NS¹, government agencies, and other data sources.
- Information obtained from SEA's site visits to verify or revise the physical environments of those highway/rail at-grade crossings recommended for mitigation.

Attachment G-1 presents the results of SEA's analysis based on these refined data for highway/rail at-grade crossings with average daily traffic (ADT) of more than 5,000 vehicles.

_

[&]quot;CSX" refers to CSX Corporation and CSX Transportation, Inc. (CSX); "NS" refers to Norfolk Southern Corporation and Norfolk Southern Railway Company (NS).

G.2 ADDITIONAL ANALYSES IN RESPONSE TO PUBLIC COMMENTS

SEA conducted additional analyses of highway/rail at-grade crossing delays in response to public comments on the Draft EIS. These analyses pertain specifically to emergency response vehicle delay at highway/rail at-grade crossings and an area in northwestern Ohio where numerous commentors raised concerns regarding local traffic delay.

G.2.1 Emergency Response Vehicle Delay

SEA received comments on the Draft EIS regarding potential effects of the proposed Conrail Acquisition on the ability of emergency vehicles—ambulances, police vehicles, and fire equipment—to respond to emergency calls. Commentors expressed concern that the increase in train traffic associated with the proposed Conrail Acquisition would exacerbate delays of emergency vehicles because of additional time that trains would block highway/rail at-grade crossings. Comments noted that increased delays would worsen a community's health and safety. The comments addressed 42 communities and ranged from concerns regarding specific locations in individual communities to general county-wide concerns. Comments came from citizens, local officials, and state officials. To address these comments, SEA investigated the characteristics of each community referenced in the comments and the emergency services potentially affected by the proposed Conrail Acquisition.

SEA identified rail line segments that are located in or near each community, the average number of trains currently using each rail line segment, and the average number of trains that would use each rail line segment as a result of the proposed Conrail Acquisition. SEA investigated those communities with rail line segments that meet or exceed the Board's threshold for environmental analysis; that is, rail line segments that would experience an increase of eight or more trains per day as a result of the proposed Conrail Acquisition. On rail line segments where the increase in the average number of trains per day would not meet or exceed the Board's threshold for environmental analysis, SEA determined that the effect on emergency vehicles would not be significant and did not conduct further analysis in communities affected by those rail line segments.

In the communities with rail line segments that would experience an increase of eight or more trains per day, SEA performed further analysis. The analysis required additional information regarding the amount of time that trains block highway/rail at-grade crossings, the location of emergency service providers, types of services provided at each location, emergency service dispatch procedures, availability of highway/rail grade-separated crossings, emergency service routes, and existing problems with trains causing blocked crossings. Although SEA had some of this information, detailed analysis required additional information from the communities. SEA conducted telephone interviews and site visits to obtain the needed information.

SEA collected maps of the communities from computerized mapping programs and the Internet. Based on available information, SEA noted on these maps the locations of emergency service

providers, such as fire, ambulance, police, and hospitals. SEA obtained telephone numbers for each emergency service provider. The Applicants' track charts provided information on the locations of existing highway/rail grade-separated crossings that emergency vehicles would use.

SEA conducted telephone interviews that asked the following questions of local officials responsible for emergency services:

- What are the locations of all emergency service providers that provide service to your community? Include locations of fire stations, police stations, ambulance service, hospitals, helicopter medical service (if available), and other medical facilities handling emergencies.
- Do emergency units roam or are they based at a station? For example, police often patrol "beats," but fire trucks usually respond from a station. Do beats cross the railroad tracks? How is this set up in the community?
- What is the emergency dispatch procedure? Do all emergency calls come to a central location from which a dispatcher sends the appropriate emergency service provider, or do emergency calls go directly to the police, fire, and ambulance services?
- Identify the technology that dispatchers use to direct emergency vehicles to the scene of the emergency. This may include GIS-based locators that allow the dispatcher to view the position of the emergency vehicle and direct it accordingly, computerized mapping programs, or maps.
- Is the technology for providing directions based in the dispatcher's office or in the emergency vehicle itself?
- Are there specialty emergency service providers at certain locations? This may include special equipment, such as high-ladder trucks, hazardous materials squads, bomb squads, or SWAT² teams. What is the service area of these specialty emergency services providers?
- What is the average number of daily emergency responses for each provider that require crossing the tracks (if available)?
- What is the emergency service provider service area? Identify the radius of the service area for each provider. Will providers go out of their area to assist another area? If so, how does communication for this takes place?
- Where are the existing highway/rail grade separations in the area?

-

² "SWAT" refers to Special Weapons and Tactics.

- What are the specific routes in the community used by emergency service providers?
- What does your emergency vehicle driver do when blocked by a train at a highway/rail at-grade crossing?
- Are trains through your area typically operating at speed, slow-moving, or stopped?

Telephone interviewers documented information collected during the interviews on a contact memo form. Information on locations of emergency service providers and grade-separated crossings provided the basis for revisions to community maps. SEA investigated discrepancies between track charts and local information on the locations of highway/rail grade-separated crossings and made field visits where needed for validation.

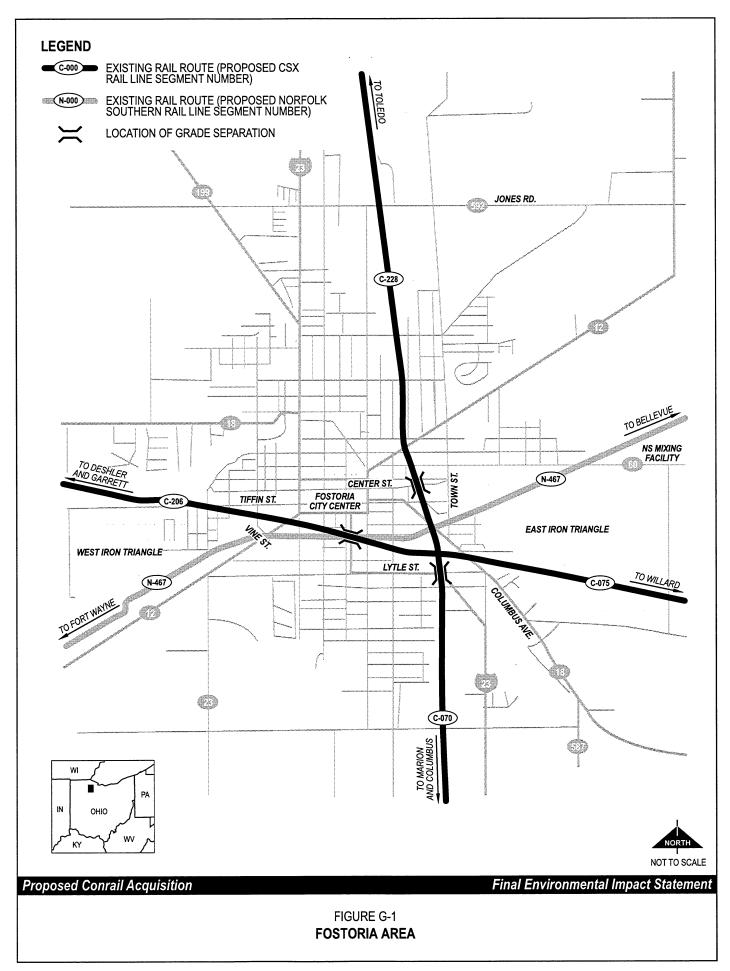
SEA calculated the blocked-crossing time caused by individual trains on each rail line segment in the communities. The time reflected the average train length and speed through the community, plus 30 seconds to allow for crossing gates to lower and raise before and after a train. The average number of trains per day multiplied by the blockage time for an individual train produced the total blockage time per day for highway/rail at-grade crossings on each rail line segment. SEA performed this calculation for existing conditions and conditions that would result from the proposed Conrail Acquisition.

After collecting the information, SEA analyzed the characteristics of each community in detail to determine the effects of the proposed Conrail Acquisition. Each community exhibited unique characteristics that precluded generalization or combining communities into groups with similar problems and similar mitigation. Some communities had no emergency service providers, while others had multiple providers of each service type. The geography of some communities required that most of their emergency services cross the tracks, while services in other communities rarely crossed the tracks. Some communities had one or more highway/rail grade-separated crossings; other communities had none. SEA found that, in most communities, blocked highway/rail at-grade crossings affect police services less than most other emergency services because police generally patrol beats rather than respond from a central facility.

Site visits provided information on driving time from emergency service locations to various points in the community, and the additional driving time using a highway/rail grade separated crossing where one exists. SEA also collected information on land use characteristics of the area.

Generally, SEA recommends real-time train location monitoring systems for communities that would experience a significant increase in slower moving trains and that have reasonably short alternative routes crossing the tracks. This system would allow the emergency dispatcher to monitor the location of blocked highway/rail at-grade crossings and either dispatch an alternative

emergency vehicle or redirect the emergency vehicle around the blocked highway/rail at-grade crossings.


As a general rule, SEA does not recommend mitigation for emergency services in communities that have all emergency services on both sides of the track or that have sufficient highway/rail grade-separated crossings to allow adequate access across the track in the event of highway/rail at-grade crossing blockage. Communities that would be affected by high-speed trains that quickly pass through the community or that have no short alternative routes would not benefit from a train location monitoring system. In addition, SEA does not recommend mitigation for communities affected by rail line segments that would not meet or exceed the Board's threshold for environmental analysis or exhibited a pre-existing condition that would not be affected by the proposed Conrail Acquisition.

G.2.2 Fostoria, Ohio

Currently, 82 trains per day pass through Fostoria, Ohio, on three major rail corridors that intersect near the center of Fostoria. CSX owns and operates two of these three corridors, the north-south Toledo-to-Marion corridor (rail line segments C-228 and C-070) and the east-west Willard-to-Deshler corridor (rail line segments C-075 and C-206). NS owns and operates the northeast-southwestBellevue-to-Fort Wayne corridor (rail line segment N-467). As a result of the proposed Conrail Acquisition, CSX and NS would increase train traffic by a total of 24 trains per day on these rail line segments.

Because of the orientation of these rail line segments, Fostoria has two unique areas, termed "Iron Triangles," on the east and west sides of Fostoria. (See Figure G-1.) An Iron Triangle represents the area that lays between two diverging tracks, with the point where such tracks meet forming the apex of the Iron Triangle, and refers to the fact that access to these areas is blocked whenever trains pass over area highway/rail at-grade crossings. All highway/rail crossings that provide access to the Iron Triangles in Fostoria are at-grade, and certain railroad movements can block all access to the Iron Triangles. This is of particular concern regarding the provision of emergency response services to the Iron Triangles.

The Columbus Avenue and Town Street highway/rail at-grade crossings provide the only practicable access for emergency service providers to the eastern Iron Triangle, but certain existing train movements can block emergency access. A CSX train that moves between the CSX east-west main line and the NS Mixing Facility east of McDougal Street can simultaneously block vehicular traffic on Columbus Avenue and Town Street. Two trains can prevent access to the eastern Iron Triangle as well, if a CSX train on the Marion-to-Willard diverging route blocks vehicular traffic on Columbus Avenue while an NS through train or a switch engine moving out of the NS yard simultaneously blocks Town Street traffic.

The Tiffin Street highway/rail at-grade crossing provides the only access for emergency service providers to the western Iron Triangle. Although a highway/rail at-grade crossing also exists at Vine Street, it does not provide sufficient access because no roadways intersect with Vine Street within the western Iron Triangle. The CSX east-west main line, which crosses Tiffin Street, would experience an increase of 3.9 trains per day as a result of the proposed Conrail Acquisition. Currently, 16 trains per day on the CSX east-west main line must slow from 35 miles per hour to 10 miles per hour in order to safely execute either a north or south diverging movement. This movement significantly adds to the highway/rail at-grade crossing delay at Tiffin Street. As a result of the proposed Conrail Acquisition, however, the number of trains making a north diverging movement would decrease by 11 trains per day. Therefore, although the number of trains on this rail line segment would increase slightly, the overall traffic delay at the Tiffin Street highway/rail at-grade crossing would significantly decrease due to the proposed Conrail Acquisition.

Emergency service providers also face delays at highway/rail at-grade crossings along the CSX north-south main line between Toledo and Fostoria. The control operator often holds trains north of Jones Road until they can pass through Fostoria without stopping. Although the trains are held, they often set off the warning devices at highway/rail at-grade crossings needlessly, delaying response to emergencies east of the north-south main line.

SEA received numerous comments on the Draft EIS concerning potential impacts to Fostoria as a result of the proposed Conrail Acquisition. Most of these comments addressed emergency response issues and delays at highway/rail at-grade crossings. Commentors expressed concern regarding situations in which CSX closes highway/rail at-grade crossings for repair without proper notification, noting that lack of notification can impede emergency service providers from reaching the Iron Triangles in a timely manner. To alleviate these concerns, commentors requested construction of highway/rail grade-separated crossings at Jones Road, Town Street, and Tiffin Street. SEA determined in the Draft EIS that no highway/rail at-grade crossings meet the Board's environmental thresholds for delay analysis and the concerns expressed by the commentors relate to existing conditions, which are beyond the scope of SEA's authority and which are best addressed by state and local agencies.

In response to comments on the Draft EIS, SEA conducted several site visits and contacted CSX and NS to confirm and further refine its analysis of emergency vehicle delay at specific highway/rail at-grade crossings. Based on information gathered from the site visits and from CSX and NS, SEA recommends that CSX and NS take specific actions to relieve the potential emergency response issues surrounding the Iron Triangle areas.

Specifically, SEA recommends that the Applicants provide and maintain, at the Fostoria Emergency Response Dispatch Center, a state-of-the-art electronic display board, or equivalent technology, that is integrated with the CSX dispatching system. SEA also recommends that CSX install a direct voice hotline between Fostoria's Emergency Response Dispatch Center and the CSX operator controlling train movements in the Fostoria area. This electronic display board

(or equivalent technology) and direct voice hotline would allow Fostoria's emergency response personnel to track the movement of trains and ensure that emergency access to the Iron Triangles is available when necessary.

Additionally, SEA recommends that the Applicants install and maintain constant warning time circuits at all of their highway/rail at-grade crossings in Fostoria that currently are or are scheduled to be equipped with active warning devices, and at those crossings where active warning devices would be added as a result of other Board conditions or voluntary actions. Constant warning time circuits would greatly alleviate the traffic delay at the Jones Road highway/rail at-grade crossing.

G.2.3 Corridor Analysis

Several comments on the Draft EIS identified the need for an analysis of vehicle delay at multiple highway/rail at-grade crossings for specific roadway corridors and rail line segments, especially in northwestern Ohio. In response to these comments, SEA conducted an analysis of vehicle delay at closely spaced highway/rail at-grade crossings along the rail line segments in the areas mentioned in the comment documents.

SEA identified groups of closely spaced highway/rail at-grade crossings for areas where two or more highway/rail at-grade crossings are spaced within 800 feet of each other. SEA performed a delay analysis for each group of closely spaced highway/rail at-grade crossings using the method of delay analysis presented in the Draft EIS, Chapter 3, "Analysis Methods and Potential Mitigation Strategies," except that SEA considered all crossings in the group of closely spaced highway/rail at-grade crossings, not just those with average daily traffic volumes of 5,000 vehicles or greater. SEA calculated the crossing delay per stopped vehicle, average delay for all vehicles, and level of service for closely spaced highway/rail at-grade crossings along the following rail line segments.

- Rail line segment C-065.
- Rail line segments C-070, C-228, and C-229.
- Rail line segments C-066 and C-206.
- Rail line segments N-077 and N-303.
- Rail line segments N-080 and N-467.
- Rail line segments N-071, N-073, and N-085.
- Rail line segment N-079.
- Rail line segment N-476.

- Rail line segment C-061.
- Rail line segment N-046.

Attachments G-2 through G-11 present the results of SEA's analysis of closely spaced highway/rail at-grade crossings in northwestern Ohio, the Greater Cleveland Area, and Lafayette, Indiana. SEA concludes that the proposed Conrail Acquisition would have no significant effect on vehicle delays along the roadway corridors associated with the closely space highway/rail atgrade crossings in northwestern Ohio.

Appendix	c G: Transportation: Hi	ighway/Rail At-grade (Crossing Traffic Delay Analysi	is
	[THIS PAGE IN	TENTIONALLY I	LEFT BLANKJ	
	usition		Final Environmental Im	

Highway/Rail At-grade Crossing Vehicle Delay and Queues

[THIS PAGE I	NTENTIONALLY I	LEFT BLANK] Final Environmental Impact St	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
dix G: Transportation:			

Page 1 of 7

ATTACHMENT G-1

Crossing Street Name Roadway ADT Traces PRA 1D PRA 1									I	Pre-Acquisition	isition			H				Post-	Post-Acquisition			
No. No.	County	Site ID	Crossing FRA ID	Street Name	Number of Roadway Lanes		Trains per day	Train Speed (mph)													cle Level o Service	Level of Service with Mitigation
Note 2755944 Note 27559444 Note 2755944 Note 27559444 Note 27559444 Note 2755944 Note 2755944 Note 2755944 Note 2755944 N	Alabama															ł		ŀ		-		
NACONALIZARIAN MATERIAN MATERIAL NATIONAL NA	Etowah	N-001	725283E		2	11,820	7.4	30	4,869	142	28	1.81	2.61	4	12.5	1	4	-		1	A	
No. 11. No.	Jefferson	N-001	725376Y		2	5,909	7.4	40	4,869	57	=	1.14	1.33	=	12.5	-	4	\dashv	-	-	A	
No.227 Triangent National Part State No. 2016 N	Georgia							ŀ						-	-	ŀ	ŀ		-	-	-	
No.277 PROSENT MICHARIES NY N. 19.00	Butts		718450J	3RD ST. SR16	2	7,976	27.2	20	4,869	242	13	1.05	3.84	$^{+}$	+	+	4	+	1	-	۷ ²	
NAMES NAME	Fulton	N-022	718058V	MCDANIEL ST	2	8,275	27.2	35	4,869	325	17	1.38	6.51	$^{+}$	+	+	\downarrow	-	+	+	2 2	
C-010 C-04944 DNUE ENVEYNEETRINA NEETE C-0-01 C-0-0404 C-0-040	Fuiton	N-022	718065F	SAWTELL AVE	2	11.237	27.2	35	4,869	442	23	1.56	7.37	<u> </u>	+	╁	-	\vdash		-	В	
C-010 (644494) GANCHANANISTRENANG 4 7.540 7.10 7.0 6.000 7.11 7.5 7.50	Illinois	220 11	-																			
C-011 G154709 MALINSON NALIANIST Z 7299 179 25 6,000 345 249 1360 186 249 25 6,000 646 249	Cook	C-010	163415H	DIXIE HWY/WESTERN AVE	4	15,400	17.0	70	000'9	711	30	2.54	14.04	В	32.9	Н	Ц				H	C (a)
C-011 C-02444	Cook	C-010	163416P	BROADWAY-135TH ST	2	7,250	17.0	70	000'9	335	28	2.49	13.80	В	32.9	1	_	-		1	-	C(a)
C-011 GASAN HANISTON FALLILLO A 10,500 19.5 27.5 6,000 10.0 11.5 10.0	Cook	C-011	163446G	71ST ST.	2	12,500	19.5	35	000'9	414	31	1.95	7.75	ш	22.9	\dashv	4	-	1	+	+	
C-0.11 IGA42N IITHIRST	Cook	C-011	163539B	MADISON FAU1419	4	10,500	19.5	25	000'9	459	17	1.91	10.03	В	22.9	\dashv	4	+	+	+	+	
C-011	Cook	C-011	163423A	115TH ST	4	17,200	19.5	70	000'9	010	× =	2.63	16.69	+	22.9	\dagger	1	+	+	+	+	
C-011 G-0547H STH-11 G Z-0200H G-0540H G-0	Cook	C-011	163425N	IIITH ST	4	14,100	19.5	500	0000	746	87 5	2.47	13.71	┿	6.77	+	1	+	+	+	+	
Marco Marc	Sook	C-011	163437H	871H ST		27,000	2.61	07	0,000	1429	8 %	70.7	10.90	+	6.77	+	_	-		+	+	
N.9252 SEATONOON N.D. C. 1.00 1.00 </td <td>.00K</td> <td>110-2</td> <td>103433F</td> <td>931H 31</td> <td></td> <td>2000,7</td> <td>22.7</td> <td>3 6</td> <td>0,000</td> <td>100</td> <td>2 2</td> <td>1 16</td> <td>414</td> <td></td> <td>30.05</td> <td>+</td> <td></td> <td>+</td> <td>+</td> <td>-</td> <td>ŀ</td> <td></td>	.00K	110-2	103433F	931H 31		2000,7	22.7	3 6	0,000	100	2 2	1 16	414		30.05	+		+	+	-	ŀ	
NOOTS 6802377 ATRIAN<	Italipaigii	N-032	4/9919J	PONTOON RD	4	7,700	10.0	200	4.869	8 2	9	0.91	1.21	. v	15.0	╁	1	-	\vdash	-	<	
Negly Model Property Negly Model Property Negly Negly Model Property Negly	ladison	N-032	480327V	20TH ST	2	2 900	10.0	35	4,869	88	12	1.26	2.19	A	15.0				_	_	٧	
No.444 APSSAY MACKONE No. 1, 1500 2.16 3.0 4.869 2.27 3.0 4.869 2.27 3.0	fontgomery	N-032	480056S	UNION	2	10,800	10.0	40	4,869	141	20	1.39	2.18	٧	15.0	H	Н		Н		A	
n No445 47895C DOWNAN 22 11,00 23.6 50 4889 22 18 150 34.4 41.0 50 50.00 41.7 18 11.1 6.20 8 12 6.83 B P n N.4454 479862Q DOWNAN 4 8800 215 3.0 4809 259 18 1.53 7.0 410 30 5000 410 11 6.3 1 1.1 6.3 1 1.0 8 1 1.0 1 1.0 3.0 5000 1	iatt	N-033	479967Y	MACON	2	5,800	22.7	20	4,869	147	6	0.97	2.95	V	39.0	H	4	\dashv			В	
No.405 A.798SSK MANN A 18,600 23.6 30 4,889 329 18 1.39 3.44 A 410 30 5,000 410 14 111 1.50 1.55 1	ermilion	N-045	479854T	VOORHEES	2	11,100	23.6	20	4,869	292	81	1.20	3.79	V	41.0	+	4	+	+	+	m r	
N-045 N-0486NK MANN N-045 N-0486NK MANN N-045 N-0486NK MANN N-045 N-0486NK MANN N-045 N-0486NK MANN N-0486NK MANN N-0486NK MANN N-0486NK MANN N-044 N-0486NK MANN N-0486NK MANN N-0486NK MANN N-048 N-046 N-0486NK MANN N-048 N-046 N-0486NK MANN N-0486NK N-048 N-0486NK MANN N-048 N-0486NK MANN N-048 N-0486NK MANN N-048 N-0486NK N-048 N-0486NK N-048 N-0486NK N-048	ermilion	N-045	479856G	BOWMAN	2	8,800	23.6	20	4,869	232	14	1:09	3.44	V	41.0	+	4	+		+	+	
No. 045 4798635 S.ST. A \$500 23.6 35.	ermilion	N-045	479862K	MAIN	4	15,600	23.6	30	4,869	299	œ	1.53	7.04	m i	41.0	\dagger	4	-	+	+	+	
C-022 5385ST THOMAS RD 2 5,500 2.4 50 6,480 15 9 0.96 0.31 A 6,200 47 11 1.14 1.16 A No.41 A7R396J ANTYSYLILE RD 2 5,100 13.6 50 4,869 37.7 8 0.95 1.72 3 0 5,000 14 9 50 17 8 0.95 1.72 3 0 5,000 14 9 6 3 5,000 14 9 6 3 5,000 14 3 1,00 1<	ermilion	N-045	479863S	S.ST.	4	2,600	23.6	30	4,869	215	7	1.28	5.90	9	41.0	\dashv	4	-	1	+	-	
No.44 4782364 MATSTILLERD 2 5,000 136 36 4,869 777 8 6 0.95 1.72 A 5,500 1.88 8 0.96 3.59 A 6 No.44 4782364 ANTHONY BLVD 2 16,330 136 30 4,869 342 36 5.00 214 39 5,000 214 39 5,000 214 32 3 3 5,000 214 32 3 3 3 5,000 214 32 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ndiana	600	CANDEET	THOMAS P.D.	,	\$ 500	2.4	0.5	4 860	15	0	96.0	0.31	4	6.4	\vdash	-		F	F	4	
N-041 478236 ANTHONY BLVD AN	llen	N 041	11901327	MAYSVII TEPD	,	\$ 100	13.6	8 8	4,860	77	\ \ \ \	260	1 72	: <	27.3	+	Ļ	-	L	-	4	
N-043 478210L ANTHONY BLVD. 2 15,120 6.6 35 4,869 144 31 1,89 2.16 A 96 35 5,000 214 32 1.39 B N-044 478240L ENGLERD 2 11,000 19.0 30 4,869 340 26 1.73 500 500 50 500 377 1.74 6,47 B 34.9 30 5,000 214 37 1.201 B N-044 478231W LANDMORRAVE 2 11,200 19.0 30 4,869 177 1.24 6.00 10.0	llen	N-041	4782261	ANTHONY BLVD	2 2	16,330	13.6	8 8	4.869	362	38	2.28	90.9	m	27.3	╁		-	L		-	
N-044 478240E ENGLERD 2 11,000 190 30 4,869 340 26 174 647 B 349 30 5,000 638 26 1.78 12.39 B N-044 478240E ENGLERD 2 10,290 190 30 4,869 184 160 100 181 A 500 500 500 500 500 177 1.23 10,290 190 30 4,869 196 100 1.81 A 500 500 500 294 12 1.01 1.00 1.81 A 500 500 294 1.71 1.81 A 500 500 294 1.81 1.81 3.49 30 5,000 294 1.81 1.81 1.81 1.81 1.84 6.83 B 4.86 1.77 1.26 1.84 6.83 B 4.90 5.00 294 1.81 20 5.00 294 1.11	llen	N-043	478013Y	ANTHONY BLVD.	2	15,120	9.9	35	4,869	144	31	1.89	2.16	4	9.6	H					H	
N-044 47821IL ARDMORE AVE 2 10,290 30 4,869 318 24 1.69 6,27 B 349 30 5,000 597 25 1.73 12.01 B N-044 478230M LANDINA 4 12,550 136 156 16 16 16 18 18 13.9 18 1.0 1.0 1.81 1.0 1.0 1.81 1.0 1.0 1.0 1.81 1.0 </td <td>llen</td> <td>N-044</td> <td>478240E</td> <td>ENGLE RD</td> <td>2</td> <td>11,000</td> <td>19.0</td> <td>30</td> <td>4,869</td> <td>340</td> <td>26</td> <td>1.74</td> <td>6.47</td> <td>В</td> <td>34.9</td> <td>\dashv</td> <td></td> <td></td> <td></td> <td>-</td> <td>+</td> <td></td>	llen	N-044	478240E	ENGLE RD	2	11,000	19.0	30	4,869	340	26	1.74	6.47	В	34.9	\dashv				-	+	
N.941 478210M LANDIN 4 12,950 136 50 4869 196 10 100 181 A 273 50 5,000 402 11 1.01 33.77 A N-044 47823DW BROOKLYNAVE. 2 5,780 190 30 4,869 377 12 138 512 B 349 30 5,000 294 12 118 882 B 8 13.08 B B 40.2 35 5,000 294 12 118 6.00 294 30 5,000 294 12 118 6.00 20 30 4,869 154 12 1.26 401 A 40.2 35 5,000 294 11 1.13 3.77 A 40.2 35 5,000 349 12 1.18 8 2.0 4.00 1.18 3.77 A 40.2 35 5,000 39 1.11 1.18 3.0	ullen	N-044	478241L	ARDMORE AVE	2	10,290	19.0	30	4,869	318	24	1.69	6.27	В	34.9	+	4	+	+	+		
N.044 478233TV BROOKLYN AVE. 2 1,200 190 30 4,869 377 29 184 6.83 B 34.9 30 5,000 294 B 138 1.38 1.84 1.	Vllen	N-041	478210M	LANDIN	4	12,950	13.6	20	4,869	196	9	8.	1.81	4	27.3	+	4	+		+	+	
N-044 47823B) NUTMANAVE. 2 5,070 190 30 4,869 157 12 1.38 512 B 345 30 5,000 294 12 1.41 9,81 B C-066 18320SB NAIN ST 2 5,780 184 35 4,869 154 12 1,26 401 A 402 35 5,000 379 11 1,13 377 A 402 35 6,00 379 11 1,13 377 A 402 35 6,20 379 11 1,13 377 A 402 35 6,20 820 82 1 1,13 377 A 402 35 6,20 82 1 1,13 377 A 405 8 297 26.69 D 477 15 6,20 83.11 F 1 1,13 8 1,13 8 1,18 30 3,60 1,13 1,14 3,8<	Allen	N-044	478237W	BROOKLYN AVE.	2	12,200	19.0	8	4,869	377	53	1.84	6.83	m	34.9	+	-	-	-	+	+	
N-0466 68476SN MAIN ST 2 5,780 18.4 35 4,869 154 12 4.01 A 402 35 5,000 354 1.2 1.26 9 7 40 37 1.1 1.13 3,77 A 47.7 30 6,200 379 1.1 1.13 37.7 A 47.7 30 6,200 379 1.1 1.13 37.7 A 47.7 30 6,200 379 1.1 1.1 37.7 A 47.7 30 6,200 379 1.1 1.1 37.7 A 47.7 30 6,30 2.43 3.0 A 8 1.3 3.0 4.869 2.9 3.7 2.6 D 4.7 30 30 3.0 4.869 2.9 3.7 2.6 30 4.869 2.9 3.7 2.6 30 4.869 2.9 8 1.18 30 5,000 2.8 1.3 3.1 4	Allen	N-044	478238D	NUTMAN AVE.	2	5,070	19.0	30	4,869	157	12	1.38	5.12	m ·	34.9	+	4	+		+	2 2	
C-066 I55330R SOUTH WAYNE 2 6,000 21,4 50 6,000 377 13 3,77 A 47.7 50 6,200 53.9 11 1.10 8.82 B C-066 155330R RANDOLPH ST. 2 5,023 21,4 15 6,000 377 26.9 D 47.7 15 6,200 865 23 4.86 6.87 1.8 A 2.43 1.8 A 1.8 A 1.8 3.0 5.00 1.87 3.5 2.43 7.8 B B A </td <td>arroll</td> <td>N-046</td> <td>484265N</td> <td>MAIN ST</td> <td>2</td> <td>5,780</td> <td>18.4</td> <td>32</td> <td>4,869</td> <td>154</td> <td>12</td> <td>1.26</td> <td>4.01</td> <td>4</td> <td>40.2</td> <td>+</td> <td>4</td> <td>1</td> <td></td> <td>+</td> <td>2 4</td> <td></td>	arroll	N-046	484265N	MAIN ST	2	5,780	18.4	32	4,869	154	12	1.26	4.01	4	40.2	+	4	1		+	2 4	
Note Note 153530K National Part Note Note 153530K National Part Note	De Kalb	C-066	155320E	SOUTH WAYNE	2	6,000	21.4	8	0009	166	= 2	1.13	3.77	4	47.7	+	4	+	+	+	2 6	3
re N-040 474530K KILCJORE 2 10,481 2.0 2.0 4,889 0.2 34 2.37 1.00 A 1.10 2.0 2,00 2.87 2.7 3.00 4,889 2.8 1.31 0.66 A 11.8 30 5,000 137 8 1.31 3.2	e Kalb	0.066	155330K	RANDOLPH ST.	2	5,023	21.4	2 8	0000	//5	27	16.7	60.07	1	110	+	+	-	ļ	+	-	
N-040 4745521 WILKDON ST. 1,000 1,00	Jelaware	N-040	4/4550K	WHITEBINE BI VI	7	10,481	0.7	20 05	4,809	20 02	₹ «	131	0 66	4	8 1	╁	-	+	-	-	+	
Node 475560 Incrementation 4 19,025 2.6 30 4,869 81 22 1.64 0.83 A 118 30 5,000 373 23 1.67 3.93 re N.040 474566G JACKSON ST 2 5,007 2.6 30 4,869 21 12 1.38 0.70 A 118 30 5,000 98 12 1.41 3.31 c.066 155420 CR7 2 5,314 21,4 50 6,000 147 10 1.11 3.68 A 47.7 50 6,200 336 10 1.13 8.60	Delaware	N-040	474553F	NICKOLS	,	6.733	2.6	8 8	4.869	38	99	1.47	0.74	<	11.8	H	L	-		L	-	
re Node 474566G JACKSON ST. 2 5,007 2.6 30 4,869 21 12 1.38 0.70 A 11.8 30 5,000 98 12 1.41 3.31 C.066 155420J CR.7 2 5,314 21.4 50 6,000 147 10 1.11 3.68 A 47.7 50 6,200 336 10 1.13 8.60	Delaware	N-040	474565A	TILLOTSON	4	19,025	2.6	8	4,869	18	22	1.64	0.83	A	11.8	H	-	_			A	
C-066 1554201 CR 7 2 5,314 21,4 50 6,000 147 10 1.11 3.68 A 47.7 50 6,200 336 10 1.13 8.60	Delaware	N-040	474566G	JACKSON ST.	2	5,007	2.6	28	4,869	21	12	1.38	0.70	4	11.8	\vdash	L			H	A	
	Elkhart	C-066	155420J	CR 7	2	5,314	21.4	80	000'9	147	10	E	3.68	٧	47.7		Ц				В	

ATTACHMENT G-1

Level of Service with Mitigation

County

Gibson Huntington Huntington Huntington

Level of Service Avg. Delay per Vehicle (All vehicles) 14.18 11.45 8.29 6.03 8.26 19.27 8.16 25.29 Max. No. Crossing 'of Veh. in Delay per Queue per stopped veh 1.59 1.42 1.56 1.23 1.43 1.41 1.41 2.46 8 3 9 9 8 Post-Acquisition HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES 3 2 3 22 24 18 No. of Veh. Delayed per day 399 218 789 341 131 50 69 46 430 376 474 592 662 662 519 463 504 461 337 523 523 336 320 320 393 393 119 934 430 420 489 771 1017 543 693 6,200 6,200 6,200 6,200 Train Length (feet) 6,200 6,200 6,200 6,200 6,200 6,200 6,200 6,200 5,000 5,000 5,000 5,000 6,200 6,200 6,200 6,200 5,000 6,200 5,000 5,000 5,000 5,000 6,200 6,200 6,200 Train Speed (mph) 35 40 45 50 8 8 8 8 Trains per day 42.7 42.7 30.8 30.8 30.7 30.7 30.7 30.7 34.6 34.6 48.2 13.4 13.4 11.8 47.7 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 28.8 28.8 28.8 28.8 34.9 34.9 Level of Service M M M Avg. Delay per Vehicle (All vehicles) (sec/veh) 12.48 10.09 6.09 4.44 5.99 13.89 5.91 Crossing P Delay per stopped veh (min./veh) 1.39 1.38 2.39 1.39 1.20 Max. No. of Veh. in Queue per Pre-Acquisition lane 12 2 20 2 2 2 2 23 No. of Veh. Delayed per day 239 387 469 380 348 | 193 88 200 | 100 | 000,9 Train Length (feet) 000,9 Train Speed (mph) 8 2 8 8 X 음 원 & Trains per day 23.4 23.4 23.4 23.4 39.6 39.6 23.8 23.8 7,000 9,040 6,665 6,098 6,969 6,900 11,400 11,300 6,477 5,942 6,121 7,654 8,546 7,890 8,565 12,060 5,557 5,430 6,323 9,955 5,720 15,328 5,899 8,180 ADT 6,800 Number of Roadway Lanes RIPLEY ST. (U.S. 6) BROADWAY (S.R. 53) CLARK RD. WILLOW CREEK RD LIBERTY-MICHIGAN FERRY ST HOLLINS FERRY RD BUSH ST. FOREST GLEN RD S SUMMIT AVE S. R. 9 HARRISON ST. WASHINGTON ST NAPOLEON ST UNION ST W. MARYLAND ST W. FRANKLIN ST OHIO ST SKYLINE DRIVE E 9TH ST. WASHINGTON ST W. NOEL AVE MAIN ST COLUMBIA ST SOUTH ST S.R. 26 Street Name 4TH ST U.S. 231 UNDERWOOD ST 17TH & SALEM ST. CALUMET AVE DAVIS ST WABASH ST 140239X 140867D 140488D 140507F Crossing FRA ID 522912C 522912C 522915X 522883U 155632M 155645N 522929F 522778T 522867K 522869Y 155623N 155628X 155478S 484296M 484300A 484301G 484309L 484290W 484292K Site ID C-693a N-040 N-040 N-040 C-026 C-026 C-066 C-066 N-046 N-046 C-025 C-025 N-044 N-044 C-032 C-032 C-003 N-044 N-044 C-024 C-024 C-027 C-027 C-027 C-027 C-027 C-021 C-021 C-021 C-021 Christian Henderson Hopkins Maryland Baltimore City Baltimore City Montgomery Montgomery

Tippecanoe Vanderburgh Vanderburgh Vanderburgh Wabash

Kentucky Christian

Tippecanoe Tippecanoe Tippecanoe Tippecanoe

Fippecanoe

Tippecanoe

Тірресапое Тірресапое

Lake
Lake
Madison
Madison
Porter
Porter
Porter
Porter
St. Joseph

G-14

୭ * *

C(a)

Page 3 of 7

ATTACHMENT G-1

Crossing Per Vehicles (cec/veh) (min/veh) (sec									F	Pre-Acquisition	sition						P	Post-Acquisition	isition			
Machimetry Corp. Heavy Co	County	Site ID			Number of Roadway Lanes	ADT	Trains per day	Train Speed (mph)		40. of Ma Veh. of V elayed Que	x. No. Cr. Veh. in Del					Train Length (feet)	No. of Veh. Delayed per day	Max. No. of Veh. in Queue per lane	Crossing Delay per stopped veh (min./veh)	Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service	Level of Service with Mitigation
Principation (1989) (1989)	Montgomery	C-003	140509U	CHESTNUT ST.	2	10,500	23.8	55	000'9	302		Н		H		6,200	400	19	1.30	5.92	В	
The control of the c	Montgomery	C-003	140494G	RANDOLPH	4	41,000	23.8	20	000'9	1263	+	\dashv	-	$\frac{1}{1}$	4	6,200	1674	39	2.45	12.00	8	
Phene Congrey (1.00) Housey (1978) Many Land M	Prince George's		140253T	DECATUR ST	2	8,000	18.7	25	000,9	335	-	+	-	+	25	6,200	448	/2	2.18	14.03	20 1	
Prince Congrety Coloral Light Prince Congrety Coloral Light 177 50 200 170 50 50 50 50 50 50 50 50 50 50 50 50 50	Prince George's		140257V	UPSHUR ST	2	2,900	18.7	25	6,000	247	+	+	+	Ť	25	6,200	330	07 9	2.01	13.52	20	
National Congress Color Strike Strike Color	Prince George's		140258C	ANNAPOLIS RD	4	29,250	18.7	25	00009	1226	+	+	+	t	7	0,200	1038	49	1.12	13.74	۵ د	
Prince Cond. Cold. Statistical National Cold. Cold. Statistical National Cold. Cold. Statistical National Cold. Cold. Statistical National Cold. Cold. Statistical National Cold. Cold	Prince George's	\neg	140899J	SUNNYSIDE AVE	2	5,070	33.4	8	000,9	219	+	+	+	$^{+}$	2 2	0,200	647	2 =	1.16	6.04	ء ء	
National Script STATION STRING	Prince George's	- 1	140905K	QUEENSBURY RD	2	000,9	33.4	20	0000'9	259	+	-	+	1	N N	0,200	667	1	1.10	0.00	۵	
National Color Col	Michigan	970	7201 1050	STEWART BE		12 330	21.0	98	0009	413	-	H	F	F	40	6.200	641	14	1.38	8.64	В	
Manueleone Code Statistical Figure Code Code Statistical Figure Code Code Statistical Figure Code Code Code Statistical Figure Code	Monroe	2000	7371467	SIEWAKI KU	7	13,000	210	9	0009	436	<u> </u>	+	-	+	9	6,200	9/9	29	1.84	11.50	В	
National Color Col	Monroe	2000	2321478	ED.MT ST	2	16,337	210	35	6,000	509	-	-	╀	H	35	6,200	938	41	2.43	16.85	၁	
National Color Col	Мошое	0.00	232140J	DINIDAD DIN	2	8 510	210	8	000,9	285	-	-	-	\vdash	40	6,200	442	19	1.51	9.44	В	
Waymen SCON HILLS DESTRICATION 2 5,500 12 5,500 12 5,500 12 1,12 2 5,500 13 10 Waymen SCON HILLS MISSTER RD 2 5,600 25 5,600 20 25 5,600 12 5,600 20 20 25 5,600 12 2 5,000 12 5,000 20 20 20 25 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 5,000 12 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Monroe	040	2321401	I AVEWOOD I INABIER	2	8.761	210	9	0009	294	6	ŀ		H	8	6,200	455	20	1.53	9.54	В	
Weyler Septimination Signo 37 56 265 104 A 112 25 3000 187 7 26 189 7 189 7 189 7 18 4 112 25 3000 817 35 20 11 25 3000 817 35 20 11 25 3000 817 35 20 11 25 3000 817 35 3000 11 25 3000 817 35 3000 11 25 3000 817 35 3000 817 35 400 81 20 21 21 25 3000 81 20 21 21 25 3000 81 21 21 21 21 21 22 300 81 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21	Warme	S-020	X020115	INKSTER RD	2	5.742	2.0	25	5,600	24			-	L	-	2,000	124	16	1.67	4.33	Ą	
Wildligger SSDD STITETY PARTICLE SSDD STITETY ALLENSERYLYNNARD 2 2 5 2 2 1 1 2 5 500 20 2 3 2 2 1 1 2 5 500 6 5 2 3 1 2 5 500 6 5 3 1 1 2 5 500 6 5 3 1 1 2 5 5 9 2 3 3 2 3 4 8 3 2 3 4 1 2 5 5 9 3 2 2 1 1 2 5 5 9 3 2 3	Wavne	S-020	\$11024A	SIBLEY	2	8,663	2.0	25	2,600	37				П		5,000	187	24	1.87	4.83	۷	
Wigner SQD9 SIGNDS NOTITION ACADITION A 11.2 25 SQD0 697 32 21.1 A 11.2 25 SQD0 697 32 2.1 Wigner SCR0 5110334 ALLEWINDANIND 2 72.5 5.60 11 2 5.00 695 39 2.3 Wigner SCR0 5110334 ALLEWINDANIND 2 7.26 2.0 11 2 5.00 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 30 150 30 30 30 30 40 30 30 40 30 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 </td <td></td> <td>S-020</td> <td>511027V</td> <td>PENNSYLVANIA RD</td> <td>2</td> <td>9,649</td> <td>2.0</td> <td>25</td> <td>9,600</td> <td>41</td> <td></td> <td></td> <td></td> <td></td> <td>Н</td> <td>5,000</td> <td>208</td> <td>27</td> <td>1.94</td> <td>5.03</td> <td>В</td> <td></td>		S-020	511027V	PENNSYLVANIA RD	2	9,649	2.0	25	9,600	41					Н	5,000	208	27	1.94	5.03	В	
Wigner S-070 S1633Y ALLEN RD 4 2.6 11.9 4.0 4.1 2.5 5.00 66.5 39 2.8 4.1 2.5 5.00 66.5 2.0 1.7 4.0 1.0 4.0		S-020	511032S	NORTHLINE RD	4	23,050	2.0	25	2,600	- 26						2,000	497	32	2.11	5.46	м	
Segre		S-020	511033Y	ALLEN RD	4	28,033	2.0	25	2,600	119					4	2,000	605	39	2.38	91.9	В	
6-050 S10109P CHAMPAICNEE 2 7,676 2 5,600 35 5,600 197 110 A 111.2 25 5,000 166 21 1,80 rkf S,620 51816401 WILLCARLETON DRIVE 2 5,500 135 5,600 143 11.2 25 5,000 166 21 1,80 C-054 51816401 WILLCARLETON DRIVE 2 5,300 130 35 4,80 173 11 2 25 20 130 140 140 6.43 8 4.51 30 140 160 141 324 A 11.2 25 500 140 160 140 141 324 A 145 140 140 140 140 140 140 140 140 140 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 <th< td=""><td>Wavne</td><td>S-020</td><td>511037B</td><td>LONDON RD</td><td>2</td><td>7,240</td><td>2.0</td><td>25</td><td>9,600</td><td>31</td><td></td><td>-</td><td>-</td><td>+</td><td>4</td><td>2,000</td><td>156</td><td>70</td><td>1.77</td><td>4.57</td><td>4</td><td></td></th<>	Wavne	S-020	511037B	LONDON RD	2	7,240	2.0	25	9,600	31		-	-	+	4	2,000	156	70	1.77	4.57	4	
red Segge 518161d WILL CARLETON DRIVE 2 7,600 125 5,000 125 1,60 167 red Cods4 5000 Cods4 5000 Cods4 5000 120 7,60 120 1,60 167 1,61 1,61 1,67 1,61	Wayne	S-020	511039P	CHAMPAIGNE	2	7,676	2.0	25	2,600	32	23		-	┪	+	2,000	166	21	1.80	4.65	∢ .	
Code Statistical Matter Code Statistical Matter	Wayne	S-020	511816U	WILL CARLETON DRIVE	2	5,789	2.0	25	2,600	24	18	-	\dashv	7	4	2,000	125	9	1.67	4.33	4	
Code SYSTON COLEST CASON SYSTON COLEST CASON SYSTON CASON SYSTON CASON SYSTON CASON SYSTON	New York										ļ		-	ŀ	-					20.01	-	
Notive Figure Includes ST 1 2 9,00 130 35 4,869 175 19 174 3.24 A 25,1 35,000 344 2.0 1.15 C-051 520075 510076 1100 107 12 103 179 A 251 35 500 320 115 115 N-070 471711 LAKEANE 2 7,863 130 5600 89 10 1.79 A 139 35 6200 120 115 1.65 C-062 532707 A 18 860 59 35 5600 89 14 142 16 139 35 6200 120 156 16 170 14 12 A 18<	Albany	C-054	S08705Y	COOKS CROSSING	2	7,450	38.7	40	2,600	419	-	-	+	+	4	6,200	529	17	1.43	12.37	2 2	
C-051 STATOW NATIONALE 2 5,800 40.6 5,000 107 6.43 B 459 50 6,200 355 11 1.15 N-070 47711T LAKEANE. 2 7,803 130 35 6,200 150 150 100 107 11 7 6,43 8 40 10 11 7 6,43 8 40 10 11 7 10 10 10 10 10 11 3 6,200 150 11 145 16 145 11 10 14 145 18 10 145 11 10 14 145 14 145 14 145 14 145 14 145 14 145 145 14 145 14 145 145 14 145 145 14 145 145 14 145 14 145 14 14 145 14 14	Chautauqua	N-070	471766F	LAMPHERE ST.	2	9,300	13.0	35	4,869	175	61	+	-	+	4	2,000	344	07	1.47	25.0	2 2	
Notice N	Erie	C-051	520067S	SHELDON AVE.	2	5,808	40.6	20	2,600	290	+	+	+	+	4	6,200	353	=	CI.I	8.43	s ·	
COGZ 532707Y NACKSON ST 2 6200 59 35 5600 84 10 134 152 A 139 35 6200 150 15 145 145 162 A 139 35 6200 150 150 16 154 155 A 139 35 6200 150 16 134 155 A 139 35 6200 170 18 161 154 165 160 160 170 148 185 35 6200 170 18 161 170 A 139 35 6200 171 18 18 18 18 35 5600 60 170 148 18 30 5600 60 20 114 112 A 139 35 6200 171 18 18 18 18 30 5600 60 20 114 18 40 600 18 22	Erie	N-070	471711T	LAKE AVE.	2	7,363	13.0	20	4,869	107	+	\dashv	4	┥	4	2,000	017	71	1.03	3.39	¥	
C-062 5327107Y N IACKSON ST 2 6,200 55 600 59 14 142 1.62 A 139 53 6,200 215 11 144 C-062 5327107 MAIN ST. 2 7,800 59 35 5,600 75 18 1.31 1.32 A 120 15 16 C-062 5327141 MAINTCALFST. 2 7,300 59 35 5,600 69 17 1.48 1.69 A 139 35 6,200 177 18 1.61 1.72 A 139 35 6,200 177 18 1.61 1.72 A 139 35 6,200 177 18 1.61 1.49 A 139 35 6,200 177 18 1.61 1.49 A 139 35 6,200 177 18 1.71 18 1.71 1.49 A 139 35 6,200 177 18	Ohio												-	F	ŀ	0000	9	71	1.51	7 40	4	
C-062 532710G MAIN ST. 4 8,860 59 35 5,600 84 10 1,34 1,22 A 1,39 35 6,200 17 1,49 A 1,39 35 6,200 17 1,49 A 1,39 35 6,200 17 1,49 A 1,39 35 6,200 17 1,49 A 139 35 6,200 17 1,49 A 139 35 6,200 17 1,49 A 139 35 6,200 177 1,49 A 139 35 6,200 177 1,49 A 139 35 6,200 177 1,49 A 139 40 6,200 40 5,600 80 17 1,49 A 139 40 6,200 80 17 1,49 A 139 40 6,200 40 5,600 80 17 1,49 A 139 40 6,200 41 13 </td <td>Allen</td> <td>C-062</td> <td>532707Y</td> <td>N. JACKSON ST</td> <td>2</td> <td>6,200</td> <td>5.9</td> <td>35</td> <td>2,600</td> <td>8</td> <td>4 :</td> <td>1</td> <td>+</td> <td>$^{+}$</td> <td>+</td> <td>0,200</td> <td>OCI</td> <td>01</td> <td>PC.1</td> <td>4.47</td> <td><</td> <td></td>	Allen	C-062	532707Y	N. JACKSON ST	2	6,200	5.9	35	2,600	8	4 :	1	+	$^{+}$	+	0,200	OCI	01	PC.1	4.47	<	
C-062 532/141 N.MEICALYSI. 2 7,804 53 5,000 69 17 1.8 1.61 1.7 1.8 1.8 <td>Allen</td> <td>C-062</td> <td>532710G</td> <td>MAIN ST.</td> <td>4</td> <td>8,860</td> <td>5.9</td> <td>35</td> <td>2,600</td> <td>\$ ×</td> <td>0 0</td> <td>+</td> <td>-</td> <td>$^{+}$</td> <td>╀</td> <td>6,200</td> <td>061</td> <td>20</td> <td>1.64</td> <td>4.77</td> <td>¥</td> <td></td>	Allen	C-062	532710G	MAIN ST.	4	8,860	5.9	35	2,600	\$ ×	0 0	+	-	$^{+}$	╀	6,200	061	20	1.64	4.77	¥	
C-062 532719T COLLE NI 2 7,000 157 1.00	Allen	C-062	532/14)	N. MEICALF SI.	7	000,7	6.6	3 2	2,000	2 6	17	+	+	$\frac{\perp}{1}$	+	6 200	177	2	191	4.67	V	
C-062 532720R CABLEANON RD 2 17,300 5,9 5,00 89 22 140 122 A 139 50 6,20 27 23 151 C-062 5327203W COMENTICKOSSING 2 7,260 5,600 62 15 139 137 A 139 40 6,200 157 2 1,14 C-062 532703W ROUSH CROSSING 2 7,260 5,600 62 15 139 40 6,200 157 9 0.98 Dulla C-062 532703W ROUSH CROSSING 2 1,260 36 11 1,38 1,74 8 310 6,200 157 1,17 1 1,17 1 1,17 1,17 1 1 1,17 1 1 1,17 1 1 1,17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Allen	790-5	532/191	COLESI	7	006,	5.0	8 8	2,000	160	20	+	+	L	L	6,200	408	21	1.57	4.10	A	
C-002 5327220 C-02 5500 62 15 133 1.37 A 139 40 6,200 188 16 144 C-002 5227220 5227220 27,260 5,600 365 11 108 774 B 530 431 12 117 Ouba N-070 4719727 LAKE ST. 2,500 130 35 4,869 10 6 167 A 25,1 35 5,000 157 9 0.98 Jula N-070 4719727 LAKE ST. 2,500 130 35 4,869 10 6 1,13 3,50 5,000 157 9 0.98 Jula N-075 471989W WESTANAVA. 2 4,869 10 6 1,13 36 35 5,000 374 16 1,43 Jula N-075 471989W WESTANAVA. 2 7,320 130 36 4,869 10 1,72	Allen	700-0	232720W	EASTFORM BD	,	12 300	5.0	5	2,000	68	22		-	L	-	6,200	227	23	1.51	3.33	A	
Code 57.28 SIA RROADWAYAVE 2 6,140 48.3 56.0 365 11 1.08 7.74 B 53.0 431 12 117 0.06 5238851. BROADWAYAVE 2 5,500 13.0 56.00 13.0 56.00 157 9 0.98 0.01 A.070 4719727 LAKE ST. 2 5,500 13.0 35 4,869 101 6 1.67 A 25.1 50.00 157 9 0.98 0.01 A.075 471983Y MAINAVE 2 8,000 13.0 35 4,869 10 6 1.37 3.08 A 36.0 37 1.39 1.39 1.30 1.79 A 36.6 35 5,000 37 1.39 1.30 34 1.5 1.17 1.39 1.39 1.30 34 1.5 1.17 1.39 1.43 1.5 1.15 1.15 1.15 1.15 1.15 1.1	Allen	C-062	WF07752	ROLISH CROSSING	2	7.260	5.9	9	2,600	62	-					6,200	158	16	1.44	3.78	٧	
No.70 4719727 LAKE ST. 2 5,500 13.0 50 4,869 80 9 0.96 1.67 A 25.1 50 5,000 157 9 0.98 1.15 1.29 1.15 1	Achtabula	090-0	5238851.	BROADWAY AVE	2	6.140	48.3	20	5,600	365					L	6,200	431	12	1.17	9.85	В	
March Marc	Achtabula	N-070	TC1917A	I AKF ST	2	5 500	13.0	80	4.869	08					_	5,000	157	6	86:0	3.35	۷	
Mode No.75 4/1989W WESTAVE. 2 8,000 13.0	Ashtabula	N.070	471983V	MAIN AVE	4	5.350	13.0	35	4,869	101		-	-		35	5,000	198	9	1.15	5.12	В	
1,10,10,10,10,10,10,10,10,10,10,10,10,10	Achtabula	N-075	W08017h	WEST AVE	2	8,000	13.0	35	4.869	150	17		_			5,000	432	17	1.39	9.02	В	
C-053 152382P MUHLHAUSER 2 7,030 28.2 40 6,000 304 15 1.39 7.22 B 31.2 40 6,200 344 16 1.43 C-063 152389P SYMMES RD 2 6,210 28.2 40 6,000 268 14 1.35 701 B 31.2 40 6,200 304 1.4 1.39 C-063 152392X LAUREL ST 2 6,860 28.2 35 6,000 329 17 1.54 8.84 B 31.2 35 6,200 374 1.7 1.58 C-063 152394Z Centrell 2 6,800 28.2 35 14 1.8 8.84 B 31.2 35 6,200 374 1.7 1.52 C-063 152394L Centrell 2 6,800 28.2 14 1.8 8.84 B 31.2 35 6,200 37.1 1.52 <tr< td=""><td>Achtabula</td><td>N-075</td><td>472008G</td><td>BROADWAY AVE</td><td>2</td><td>7.320</td><td>13.0</td><td>S</td><td>4,869</td><td>106</td><td>12</td><td>_</td><td></td><td></td><td></td><td>5,000</td><td>304</td><td>12</td><td>1.05</td><td>5.22</td><td>В</td><td></td></tr<>	Achtabula	N-075	472008G	BROADWAY AVE	2	7.320	13.0	S	4,869	106	12	_				5,000	304	12	1.05	5.22	В	
C-063 15289P SYMMES RD 2 6,210 28.2 40 6,000 268 14 1.35 701 B 31.2 40 6,200 374 14 1.39 C-063 152392X LAUREL ST 2 6,860 28.2 35 6,000 329 17 1.54 8.85 B 31.2 35 6,200 374 17 1.58 C-063 152394L CENTRAL 2 5,890 28.2 35 6,000 38.2 14 1.48 8.85 B 31.2 35 6,200 37.1 1.58 C-063 152394L CENTRAL 2 5,890 28.2 35 6,000 38.2 14 1.48 8.85 B 31.2 30 6,200 31.2 31.2 30 6,000 38 27 27.1 C 31.2 30 6,000 38 27 27.1 C 31.2 30 6,200 6,200	Ruther	C-063	3685651	MUHLHAUSER	2	7,030	28.2	40	000'9	304	15					6,200	344	16	1.43	8.41	В	
C-063 15299X LAUNELST 2 6,860 282 35 6,000 329 17 1.54 8.85 B 31.2 35 6,200 374 17 1.58 C-063 15299X LAUNELST 2 5,890 282 35 6,000 282 14 1.48 8.54 B 31.2 35 6,200 321 15 1.52 C-063 15240TK VINE ST. 2 7,030 28.2 2 6,000 538 27 2.47 22.71 C 31.2 20 6,200 613 28 2.54 C-063 15240FK VINE ST. 2 11,590 11.7 40 5,600 197 24 1.60 3.25 A 19.5 A 19.5 40 5,000 301 22 1.47	Butler	C-063	152389P	SYMMES RD	2	6,210	28.2	40	000'9	268	14					6,200	304	14	1.39	8.16	m	
C-063 12294L CENTRAL 2 5,890 282 35 6,000 282 14 1.48 8.54 B 31.2 35 6,200 321 152 152 152 152 152 152 152 152 152 1	Butler	C-063	152392X	LAUREL ST	2	098'9	28.2	35	000'9	329	17					6,200	374	17	1.58	10.32	М	
C-053 152407K VINE ST. 2 7,030 28.2 20 6,000 538 27 2.47 22.71 C 31.2 20 6,200 613 28 2.54 N-078 524698G TYLERSVILLERD 2 11,590 11.7 40 5,600 197 24 1.60 3.25 A 19.5 40 5,000 301 22 1.47	Butler	C-063	152394L	CENTRAL	2	5,890	28.2	35	000'9	282	14	H		Н		6,200	321	25	1.52	9.95	В	,
N-078 524698G TYLERSVILLE RD 2 11,590 11.7 40 5,600 197 24 1.60 3.25 A 19.5 40 5,000 301 22 1.47	Butler	C-063	152407K	VINE ST.	2	7,030	28.2	20	000'9	538	27			\dashv	4	6,200	613	28	2.54	26.60		C (a)
	Butler	N-078	524698G	TYLERSVILLE RD	2	11,590	11.7	40	2,600	197	24	_	4	-	4	2,000	301	7.7	1.47	4.37	4	

Page 4 of 7

ATTACHMENT G-1

	, # e									П	П	\top	Т	Т	Τ	Г				T	П	Т	T	Ţ	Т	Т	П	Т	Т	Т	\top	Т		П	П	П	П	\Box	П	П	_	Ī
	Level of Service with Mitigation																										C (a)															
	Level of Service	В	В	В	A	В	В	В	В	ပ	В	O G	B	В	В	В	В	Y	Ą	В	В	Ą	В	g c	В	В	D	В	В	В	В	В	В	В	В	В	Α	٧	٧	A	В	
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	8.44	8.02	5.14	4.89	9.99	5.41	10.80	11.22	17.42	14.28	15.37	7.55	7.79	8.34	7.61	5.74	4.92	4.58	10.37	9.67	4.68	5.25	17.44	8.69	7.99	29.05	10.20	10.13	10.45	10.09	13.27	9.44	7.75	10.08	5.15	4.49	4.46	4.45	4.72	5.06	
isition	Crossing Delay per stopped veh (min./veh)	1.87	1.78	1.77	1.68	1.76	1.07	1.28	1.33	1.84	1.51	1.62	1.51	1.29	1.38	1.26	1.23	1.06	86.0	1.37	1.27	1.01	1.05	10.7	1.43	1.45	2.78	1.56	1.55	09	1.54	2.03	1.44	1.22	1.58	1.49	1.30	1.29	1.29	1.37	1.47	
Post-Acquisition	Max. No. of Veh. in Queue per s	24	21	24	21	27	=	91	18	27	14	61	25	13	17	=	19	12	6	19	16	10	6	97	18	22	37	16	91	æ :	91 55	32	Ξ	6	23	21	13	13	13	16	20	200
P	No. of Veh. Delayed per day	328	279	236	206	995	253	1204	899	839	440	1194	642	300	785	266	439	296	220	640	533	243	222	677	439	523	808	357	346	393	341	1396	476	454	587	278	178	172	340	216	196	
	Train Length (feet)	5,000	5,000	6,200	6,200	6,200	5,000	6,200	6,200	6,200	6,200	6,200	5,000	5,000	5,000	5,000	5,000	5,000	5,000	6,200	6,200	5,000	5,000	000,	5,000	5,000	6,200	6,200	6,200	6,200	6,200	6.200	6,200	5,000	5,000	5,000	5,000	5,000	5,000	5,000	2 000	2,000
	Train Speed (mph)	25	25	35	35	40	45	20	50	35	35	35	50	35	35	35	20	20	50	20	50	50	45	2 9	35	49	20	35	35	35	33	35	35	35	35	35	35	35	35	35	35	6
	Trains per day	19.5	19.5	13.9	13.9	30.1	34.3	53.0	53	45.3	45.3	45.3	36.6	34.1	34.1	34.1	34.1	34.1	34.1	47.7	47.7	34.1	34.1	12.9	343	34.3	31.2	31.2	31.2	31.2	31.2	31.2	31.2	36.0	36.0	19.5	19.5	19.5	19.5	19.5	5 01	17.7
	Level of Service	В	В	٧	V	٧	٧	۷	Α	Α	V	< -	<	<	4	A	٧	٧	A	А	٧	Ą	4	۷,	9 6	В	ပ	В	В	m l	В	B	В	В	В	A	А	A	A	A	Ą	,,
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	6.11	5.81	1.86	1.77	4.11	3.41	2.55	2.65	4.39	3.60	3.87	2.59	2.96	3.17	2.89	2.19	1.88	1.75	4.43	4.13	1.78	1.73	1.24	5.18	5.82	24.80	8.75	8.69	8.97	8.65	11.38	8.09	8.03	10.45	3.68	3.21	3.19	3.18	3.38	3.63	3.04
		2.06	1.96	1.63	1.55	1.63	86.0	1.19	1.24	1.69	1.39	1.50	1 49	1.27	1.36	1.24	1.21	1.04	0.97	1.33	1.24	66'0	0.95	2.54	1.33	1.43	2.70	1.52	1.51	1.56	1.50	86	1.41	1.33	1.73	1.63	1.42	1.41	1.41	1.49	1 60	1.00
Pre-Acquisition	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	27	23	23	20	25	01	15	17	25	13	8 :	25	12	16	=	81	12	6	16	16	10	6	22	9 9	22	36	16	16	81	2 2	3 6	=	01	56	22	14	14	14	17	1,0	1.7
Pre-Acq	No. of Veh. Delayed per day	216	184	92	81	253	175	306	170	229	120	326	224	116	305	103	170	115	85	280	234	94	80	24	295	388	710	314	305	346	300	1229	419	431	557	182	117	113	223	142	175	2
	Train Length (feet)	2,600	5,600	2,600	2,600	2,600	4,869	2,600	5,600	2,600	2,600	2,600	4,009	4.869	4,869	4,869	4,869	4,869	4,869	000'9	000,9	4,869	4,869	4,869	4,009	4.869	000'9	900,9	000'9	0009	0009	0009	000'9	5,600	5,600	5,600	2,600	2,600	5,600	2,600	2 600	2000
	Train Speed (mph)	25	25	35	35	40	20	20	20	35	35	35	2 8	38	35	35	20	20	20	20	50	20	20	2	\$ 8	8	20	35	35	35	35	35	35	35	35	35	35	35	35	35	35	2
	Trains per day	11.7	11.7	5.9	5.9	14.5	26.0	14.5	14.5	13.4	13.4	13.4	13.0	13.5	13.5	13.5	13.5	13.5	13.5	21.4	21.4	13.5	13.5	1.4	26.0	26.0	28.2	28.2	28.2	28.2	28.2	28.2	28.2	31.3	31.3	11.7	11.7	11.7	11.7	11.7	11.7	-
	T ADT	8,740	7,430	9,710	8,480	12,030	6,030	17,135	9,500	10,613	5,560	15,100	15.430	5 970	15,610	5,300	11,320	7,630	5,670	10,120	8,434	6,260	5,330	5,950	8,678	11.424	9,270	6,560	6,360	7,210	6,260	25,630	8,740	8,560	11,060	089'6	6,200	5,980	11,820	7,520	0.770	2,470
	Number of Roadway Lanes	2	2		2	2	2	4	2	2	2	+	7 0	l	T	-		2			2	2	1		7 6	T	\vdash	2		\forall	2 2	+		\vdash			2			2	,	_
	∑ ≅												+			-										-		H						\vdash			-	\vdash				_
	Street Name	CENTRAL	FIRST ST	N SANDUSKY AVE	MANSFIELD ST	MAIN ST	HOPLEY	BAGLEY RD.	COLUMBIA RD	FRONT ST.	HUMMEL RD	ENGLE RD	LONDON RD	WEST 110 ST	WEST 117 ST.	BUNTS RD	COLUMBIA RD	DOVER CENTER RD	BRADLEY RD	OTTAWA AVE	U.S. 24	WATER ST.	STATE ST.	SR 101 TIFFIN	WEBER	COOK	TOWNSHIP AVE	SEYMOUR	NORTHBEND	WYOMING AVE	MARION RD	PRINCETON PIKE	CRESENTVILLE RD.	VINE ST	BEECH ST	SMALLEY RD	HAUCK RD	KEMPER RD	READING RD	TOWNSHIP AVE	WYOMING ST	TO CHILLION I
	Crossing FRA ID	524677N	524678V	532583H	532588S	518443W	481561P	\$24363S	524367U	523977Y	523971H	\$23973W	472093Y	472187A	472192W	472201T	47224ST	472248N	472252D	142356A	142375E	472306G	472308V	481668S	4814/2X	4814703	152355V	152356C	152357J	152368W	152370X	152380D	152381K	S24743Y	S24746U	S24719X	524707D	524712A	524713G	524740D	SOATORE	177/176
	Site ID	N-078	N-078	C-062	C-062	C-067	N-073	C-061	C-061	C-074	C-074	C-074	N-075	N-080	080-N	N-080	N-080	N-080	N-080	C-066	C-066	N-080	N-080	N-085	N-0/3	N-073	C-063	C-063	C-063	C-063	C-063	C-003	C-063	9/0-N	9/0-N	N-078	N-078	N-078	N-078	N-078	N 070	0/0-NT
	County	Butler		ord									Cuyahoga			-									Franklin		_	Hamilton			Hamilton											

Page 5 of 7

ATTACHMENT G-1

Page 6 of 7

ATTACHMENT G-1

	Level of Service with Mitigation					(0)														T															Ð	Ð	Ð	9	(e)			T	T	
			+									-	+	+	-			\dashv	-	+	+	+				+	+	-	H			-	-	-	$\frac{1}{1}$	+	4	-	1	+	-	+	+	_
	ty ile Level of Service	Y	В	В	В	D	В	В	<	В	A	۷	4	m l	۹ (B	В	В		2 2	m <	<	٧	В	В	В	20 2	В	ပ	В	В	В	В	В						4	۷.	4 0	10	ر
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	3.57	6.59	5.91	6.17	28.85	8.28	9.13	4.57	89.9	4.15	4.76	3.58	8.06	8.01	7.29	8.28	7.01		12.80	9.69	4.07	4.74	9.13	7.07	06.6	08.0	8.52	18.64	7.90	7.34	7.02	2.60	6.07	28.73	28.73	26.50	26.42	22.91	3.67	3.54	4.11	19.61	16.70
isition	Crossing Delay per stopped veh (min./veh)	1.14	1.37	1.23	1.29	2.97	1.53	1.68	0.97	1.25	1.01	1.64	1.15	2.05	2.04	1.86	0.99	1.36		09.1	1.22	138	1.37	1.15	1.42	1.99	1.37	1.71	3.75	1.59	1.48	1.41	1.26	1.37	3.20	3.20	2.95	2.95	2.55	1.07	1.03	1.31	1.07	0.1
Post-Acquisition	Max. No. of Veh. in Queue per lane	10	16	15	17	40	17	23	6		2	20	=	21	21	12	6	13		<u>*</u>	14	2 9	16	11	16	33	2 2	58	53	22	18	15	=	91	9	9	9	33	23	13	=	14	٥	2
	No. of Veh. Delayed per day	141	302	304	347	756	327	928	207	229	219	189	143	421	506	235	403	241		477	471	223	217	365	284	602	241	474	973	401	326	278	196	555	830	830	689	1367	404	226	200	167	100	219
	Train Length (feet)	5,000	5,000	6,200	6,200	5,000	5,000	5,000	5,000	5,000	5,000	6,200	2,000	6,200	6,200	6,200	2,000	6,200		6,200	2,000	2,000	5,000	5,000	6,200	6,200	6,200	6,200	6,200	6,200	6,200	6,200	2,000	2,000	2,000	2,000	2,000	5,000	2,000	5,000	2,000	5,000	2,000	2,000
	Train Speed (mph)	40	35	જ	20	15	30	30	20	35	20	35	40	25	25	22	S	40		8	04 %	3 %	35	40	40	40	9 6	8	40	40	40	40	35	35	15	2	15	15	15	20	8	35	3 2	- C7
	Trains per day	19.5	27.2	30.1	30.1	27.2	27.2	27.2	34.5	30.1	30.1	13.9	19.5	14.2	14.2	14.2	61.5	27.4	-	38.3	49.7	9.6	9.61	49.7	26.4	26.4	26.4	26.4	26.4	26.4	26.4	26.4	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	25.1	17.7	1.69.7	49.7
	Level of Service	٧	V	V	Ą	В	A	٧	Ą	В	٧	V	V	4	V	V	m	V		8	m <	4 4	A	В	В	В	200	m	С	В	В	В	۷	A	В	B	В	В	В	A	V	V.		= د
	Avg. Delay per Vehicle (All vehicles) (sec/veh)	2.54	1.79	2.46	2.56	7.79	2.25	2.48	3.32	86.9	4.27	1.72	2.55	0.32	0.32	0.29	7.59	4.33		9.17	9.80	3.22	3.20	9.24	5.83	8.16	5.61	7.03	15.36	6.51	6.05	5.79	2.78	3.02	14.20	14.20	13.10	13.06	11.32	1.83	1.77	3.49	19.78	19.54
	Crossing Postoped yet (min./veh)	1.25	1.34	1.15	1.20	2.90	1.49	1.65	0.95	1.37	1.09	1.51	1.25	2.00	1.99	1.81	1.07	1.32		3	1.33	1 50	1.49	1.25	1.38	1.94	1.33	1.67	3.65	1.55	1.44	1.38	1.23	1.34	3.13	3.13	2.89	2.88	2.50	1.05	1.01	1.43	48.	1.82
isition	Max. No. Cof Veh. in Coluene per stort lane (r	=	16	14	15	39	17	23	∞	12	=	81	=	21	70	12	2	12		12	15	- «	17	12	15	32	13	25	52	21	17	12	=	91	39	39	39	38	23	13	=	15	2 2	_
Pre-Acquisition	No. of M Veh. of Delayed Qi per day	92	84	136	155	209	16	243	153	219	208	74	83	12	∞	2	341	153		351	437	/2 138	134	339	240	209	204	401	822	339	276	235	66	282	420	420	349	169	204	115	102	130	/15	486
1	Train Length (feet)	5,600	4,869	2,600	2,600	4,869	4,869	4,869	4,869	2,600	2,600	2,600	2,600	000,9	000'9	000,9	5,600	000,9		000,0	5,600	2,000	2,600	5,600	000'9	000'9	00009	0009	0000'9	900,9	000,9	9000	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	2,600	2,600	2,600
	Train Speed I (mph)	Н	-	-	_			H	L	Н	-	35	+	+	+	\dashv	-	-	ŀ	+	+	+	\vdash	H	Н	\dashv	04 6	+	-	Н	-	\dashv	-	+	+	\dashv	\dashv	H	\dashv		+	+	+	_
	Trains per S day (i	11.7	7.7	14.5	14.5	7.7	7.7	7.7	26.0	26.4	26.4	5.9	11.7	9.0	9.0	9.0	48.0	17.8	-	28.9	42.4	╁	Ξ	42.4	22.9	22.9	22.9	22.9	22.9	22.9	22.9	22.9	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.6	42.4	47.4
	ADT Tra	Н	7,530	_	8,700	9,330	7,230		L	5,150	Ц	4	4	12,870	6,288	4	5,770	2,600	ŀ	4	7,106	+	H		Ц	+	5,820	丰	닏	Н	Щ	4	4	4	4	닉	4	닉	4	\dashv	4	+	+	5,420
	Number of Roadway / Lanes	2 5	1	2 7	2 8	2 9	2 7	4	2 5	2 5	2 6		1			1	2 5	2 5				2 6		2 5	2 6	1	2 2	t		2 9	2 7	2 6	2				2 9					\dagger	2 ,	2 5
	Num Roa La												+	-	+	-				1	-					+										-			-			+	+	
	Street Name	LINDEN AVE	WATER ST	NO. GAMBLE	MAIN ST	KILBOURNE	MAIN ST.	STATE	US 224	PATTERSON	STOW RD	WASHINGTON	CARLISLE	BOUNDARY (WEST)	INDIANA ST.	LOUISIANA	DROUILLARD	US 30 (LINCOLN WAY W.)		14TH ST.	COLUMBIA AVE.	TENTH ST	18TH ST	DERRY RD	MAIN ST.	OAK LANE	ASHLAND AVE	AMOSLAND AVE	SWARTHMORE AVE	FAIRVIEW RD	MEETINGHOUSE RD	NAAMANS RD	ASH ST.	PARADE ST.	PEACH ST.	SASSAFRAS ST.	CHERRY ST.	LIBERTY ST.	RASPBERRY ST.	GREEN GARDEN RD	PITTSBURG RD	MONTGOMERY	FRONT ST-LINCOLN	SEVENTH ST.
	Crossing FRA ID	524657C	473754T	518458L	518456X	473668W	473687B	473711A	481606U	S03008V	503541T	532779C	S24665U	155821J	155823X	155829N	509855K	228752H		284865S	592237G	292204U 592199A	S92200S	S92369S	140641S	140646B	140647H	140650R	140652E	140654T	140670C	140672R	471893G	471894N	471901W	471902D	471906F	471908U	471911C	471913R	47191SE	503738U	5923381	592341B
	Site ID	N-078	N-079	C-067	C-067	N-079	N-079	N-079	N-071	N-084	N-084	C-062	N-078	C-065	C-065		N-077	C-070		C-082	N-094	N-091	N-091	N-094	C-084	C-084	C-084	C-084	C-084	C-084	C-084	C-084	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-070	N-095	N-094	N-094
	County	Montgomery			Richland	Sandusky	Sandusky			Stark	Summit	Ħ					Wood	Wyandot	lvania			Cumberland			Delaware		Delaware				Delaware	ware									Erie			Lebanon

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES

	_								Pre-Acq	Pre-Acquisition							Post-	Post-Acquisition	_		
County	Site ID	Crossing FRA ID	Street Name	Number of Roadway Lanes	ADT	Trains per day	Train Speed (mph)	Train Length (feet)	No. of 1 Veh. c Delayed C per day	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	Crossing Delay per stopped veh (min./veh)	Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service p	Trains S per day (t	Train T Speed Le (mph) (f	Train Nc Length Del (feet) per	No. of Max. Veh. of Ve Delayed Queu	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)	Avg. Delay or veh veh veh vehicles) (All vehicles) (sec/veh)	cle Level of Service (A)	Level of Service with
Lebanon	N-094	592365P	RAILROAD ST.	2	7,247	42.4	40	9,600	446	15	1.33	9.85	В	49.7	40 5,	5,000 4	1 480	14 1.22	9.74	В	
Westmoreland		145480R	MAIN ST.	2	9,195	27.4	30	90009	485	25	16.1	12.08	В	32.5	30 6,	6,200 5	591 2	26 1.96	15.13	0	
Tennessee																					
Davidson	C-090	350207W	CRAIGHEAD	4	8,400	40.8	40	000'9	525	6	1.26	9.44	В	48.4	40 6,	6,200 6	638	1.29	_	-	
Davidson	C-090	350208D	BERRY RD	2	6,100	40.8	40	000'9	381	13	1.35	10.09	В	48.4	40 6,	-			-	-	
Davidson	C-090	348027Y	DAVIDSON RD	2	7,000	40.8	40	000'9	437	15	1.39	10.44	В	48.4	40	-		16 1.43	-	1	
Davidson	C-090	349218M	THOMPSON LANE	4	21,600	40.8	20	000'9	1141	70	1.37	8.70	В	48.4	50 6,	_		+	-	-	
Davidson	C-090	349226E	UNA-ANTIOCH	2	8,000	40.8	20	000'9	422	15	1.22	7.75	В	48.4	50 6	6,200 5	513	15 1.25		В	
Robertson	C-021	348124H	MAIN ST	2	5,790	23.4	40	000'9	207	13	1.33	5.73	В	30.7	40 6	6,200 2	279 1	13 1.37	7.90	В	
Virginia																			-		
Augusta	N-100	468135B	SR 608	2	11,050	3.9	40	4,869	96	21	1.40	98.0	<	12.1	40	4	_		$\frac{1}{1}$	<	
Chesterfield	C-103	623681B	CENTRALIA RD	2	12,000	18.4	S	000'9	786	22	1.45	4.14	Α	23.0	50 6	6,200 3	_	23 1.48	-	В	
Emponia City	C-103	623755R	E ATLANTIC ST.	3	11,250	18.4	8	000'9	768	21	1.20	3.43	A	23.0	50 6	4	\dashv			4	
Hanover	C-102	860459F	ENGLAND ST.	2	16,549	17.8	40	000'9	451	36	2.17	7.10	В	24.8	40 6	4	-		-	m	
Henrico	C-102	860437F	HUNGARY RD	2	15,360	17.8	20	000'9	354	59	1.72	4.75	Ą	24.8	-	_	-		1	В	
Page	N-100	468699K	EAST MAIN ST.	2	12,660	3.9	40	4,869	65	24	1.51	0.92	Ą	12.1	40 5	5,000	1		-	<	
Richmond City	Т	623663D	JAHNKE RD	2	11.544	18.4	20	000'9	275	22	1.42	4.06	Ą	23.0	50 6	6,200 3	352 2	22 1.45	-	В	
	1	623668M	BROAD ROCK RD	2	20.189	18.4	80	000'9	481	38	2.33	19.9	В	23.0	20 6	6,200 6	616 3	39 2.39	8.75	ш	
Richmond City	1	623672C	WALMSLEY BLVD	2	11,833	18.4	20	6,000	282	22	1.44	4.11	Α	23.0	50 6	6,200	361 2	23 1.47	5.39	В	
West Virginia																-			-	-	
Jefferson	N-091	469361D	SR 9	2	8,800	11.1	40	4,869	128	17	1.28	2.22	V	9.61	40 5	5,000	230 1	17 1.30	4.08	4	

Mitigations:

a. Level of service with 5 mph increase in train speed.
b. Grade seperation.
c. Mitigation not practicable
d. Relocate to CSX corridor.
e. Relocate to CSX corridor based on unique circumstance.

* Indicates significant effect on crossing delay per stopped vehicle. Level of service not applicable.

Rail Line Segment C-065 Highway/Rail At-grade Crossing Vehicle Delay and Queues

Proposed Conrail Acquisition		May 1998	Final Environmental Impact Stateme
[TH	IIS PAGE INTE	ENTIONALLY L	EFT BLANK]

ATTACHMENT G-2 RAIL LINE SEGMENT C-065

RAIL LINE SEGMENT C-065 HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES

								Pre	Pre-Acquisition								Post-Acquisition	uisition			
County	Site ID	Roadway Name	Number of Roadway Lanes	ADT	Trains per day	Train Speed (mph)	Train Length (feet)	No. of Veh. Delayed per day	Max. No. of Veh. in Queue per lane	Crossing Delay per stopped veh (min./vch)	Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service	Trains per day	Train Speed (mph)	Train Length [No. of Veh. Delayed Oper day	Max. No. of Veh. in Queue per Iane	Crossing Delay per stopped veh (min./veh)	Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service	Level of Service with Mitigation
Deshler																					
Henry	C-065	CR B	2	310	9.0	40	000,9	0	_	Ξ	0.12	Y	14.2	H	6,200	7	-	1.14	3.05	Α	
Henry	Г	CR 3	2	50	9.0	40	000'9	0	0	1.10	0.12	Α	14.2	Н	6,200	-	0	1.13	3.03	Ą	
		Corridor	4	360	9.0	40	000'9	0	0	1.11	0.12	V	14.2	6	6,200	&	0	1.14	3.04	▼	
Deshler						ł	ļ														
		MULBERRY ST.	-	310	9.0	35	9,000		2	1.25	0.15	4	14.2	35	6,200	∞ !	2	1.28	3.81	۷.	
	C-065	MAIN	2	3,010	9.0	\dagger	0009	3	,	1.21	0.13	∢ .	14.2	04	6,200	29	,	1.24	3.32	< <	
Henry	7	MAPLE S1.	7 8	4,440	9.0	35	000,9	- v	7 4	1.29	0.15	∢ ∢	14.2	35	6,200	011	4	1.33	3.94	< v	
Haskins																					
	C-065	FINDLAY ST.	2	2,010	9.0	40	000,9	2	4	1.17	0.13	V	14.2	40	6,200	45	5	1.20	3.22	A	
	Г	CHURCH	-	130	9.0	40	000,9	0	-	1.11	0.12	Α	14.2	Н	6,200	3	-	1.14	3.05	Α	
		Corridor	3	2,140	9.0	40	000'9	2	3	1.15	0.13	V	14.2	40	6,200	48	3	1.18	3.16	₹	
Tontogany																					
Wood	C-065	TULLER RD	_	09	9.0	40	000'9	0	0	11.11	0.12	Α	14.2	40	6,200	-	0	1.13	3.04	Y	
Wood	П	KELOGG RD	2	1,510	9.0	40	9,000	-	3	1.15	0.13	Α	14.2	40	6,200	34	3	1.18	3.17	V	
Wood		LINCOLN ST.	2	126	9.0	40	000'9	0	0	=-	0.12	A	14.2	40	6,200	3	0	1.13	3.04	V	
Wood		WALL ST. & BROAD	2	280	9.0	40	000,9	0	-	=	0.12	A	14.2	+	6,200	9	-	1.14	3.05	<	
Wood	П	MAIN	2	480	9.0	40	6,000	0	- -	1.12	0.12	∢.	14.2	9 5	6,200		- ,	51.1	3.07	< -	
Wood	П	WASHINGTON ST.	-	540	9.0	04 6	0000		7	41.14	0.13	<	14.2	$^{+}$	0,700	7	7) · ·	3.13	< <	
Wood	C-065	TONTOGANY RD	2 1	310	9.0	9 6	000,000		-	21.1	0.12	<	14.2	940	0,200	- 82	-	1.15	3.08	<	
Weston		Collino	;	20045			2006	,													
Wood	C-065	MAIN	2	1.260	9.0	40	9,000	-	3	1.15	0.13	٧	14.2	40	6,200	28	3	1.17	3.14	4	
Wood	Т	WALNUT ST.	2	650	9.0	40	6,000	-	-	1.12	0.12	٧	14.2	Н	6,200	14	-	1.15	3.09	4	
Wood	П	OAK ST.	2	710	9:0	40	9,000	-	2	1.13	0.12	٧	14.2	\forall	6,200	91	2	1.16	3.09	4	
		Corridor	9	2,620	9.0	9	9,000	2	2	1.13	0.12	4	14.2	9	6,200	28	7	١٩٩	3.11	<	
Milton Center																			, ,		
!	П	RAILROAD ST.	-	001	9.0	9 5	000,		٥		0.12	∢ .	14.2	04	0,200	7		1.14	3.04	<	
Mood	C-065	SOUTH ST.	- 2	130	9.0	9 9	00009	•	0	1.10	0.12	<	14.2	9 9	6,200	3	0	1.14	3.04	< <	
Perrysburg																					
Wood	C-065	MULBERRY ST.	2	340	9.0	25	6,000	0	1	1.63	0.26	A	14.2	H	6,200	=	_	1.68	6.58	В	
Wood	C-065	INDIANA ST.	2	6,288	9.0	25	9,000	8	20	1.99	0.32	Α	14.2	25	6,200	506	21	2.04	8.01	В	
		Corridor	4	6,628	9.0	25	000'9	6	=	1.79	0.29	V	14.2	Н	6,200	217	=	1.84	7.23	<u> </u>	
Perrysburg	- [800	335		, 6	3.50	-	
Wood		LOUISIANA	4	7,170	9.0	25	9,000	2	12	18.	0.29	٧	14.2	5	0,700	552	7]	08.1	67.7	9 6	
Wood	C-065	ELM ST.	2	3,750	9.0	25	9,000	S	12	1.82	0.29	∢	14.2	25	6,200	123	15	1.87	7.33	200	
Wood		LOCUST ST.	2	1,200	9.0	25	9,000	2	4	1.67	0.27	<	14.2	25	6,200	£ 5	4	1.72	9.70	2	
Wood	П	MAPLE	2	370	9.0	25	0009	0	-	1.63	0.26	⋖	14.2	25	6,200	71	-	89.1	6.39	2	
Mood	C-065	HICKORY ST.	2	580	9.0	52	0000	-	7 7	1.64	0.20	<	2.4.7	27	0,200	145	7 51	60:1	7.50		
Mood	C-065	E. BOUNDARY	7	17 400	9.0	52	0000	٥ /	4 ×	1.80	0.30	<	14.2	25	6.200	572	2 ∞	1.79	7.04	9	
		Corridor	*	17,430	0.0	67	0,000				0.50			1	2021	-12	,				

Page 1 of 1

Rail Line Segments C-070, C-228, and C-229 Highway/Rail At-grade Crossing Vehicle Delay and Queues

[7	THIS PAGE	INTENT	TIONALL'	Y LEFT I	BLANK]	
						Appendix G: Transportation: Highway/Rail Al-grade Crossing Traffic Delay And

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES RAIL LINE SEGMENTS C-070, C-228, and C-229

	Level of Service with Mitigation																										
	Level of Service		В	В	В	В	В	В		V	٧	Y		٧	٧	A		٧	٧	Α	<	٧		В	В	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)		5.85	5.85	5.97	5.87	5.89	5.89		3.81	3.78	3.79		3.72	3.91	3.81		3.75	3.81	3.72	3.71	3.76		5.89	96.6	10.25	10.14
ion	Crossing Delay per stopped veh (min./veh)		1.13	1.13	1.16	1.14	1.14	1.14		1.16	1.15	1.16		1.13	1.19	1.16		1.14	1.16	1.13	1.13	1.15		0.99	1.27	1.31	1.29
Post-Acquisition	Max. No. of Veh. in Queue per lane		0	0	2	0	-	-		2	_	2		0	4	2		-	2	0	0	1		2	_	3	2
Post	No. of Veh. Delayed per day		2	1	32	7	9	48		25	17	42		3	48	51		=	25	2	_	39		19	25	88	193
	Train Length (feet)		6,200	6,200	6,200	6,200	6,200	6,200		6,200	6,200	6,200		6,200	6,200	6,200		6,200	6,200	6,200	6,200	6,200		6,200	6,200	6,200	6,200
i	Train Speed (mph)		40	40	40	40	40	9		40	40	40		40	40	40		40	40	40	40	9		20	35	35	35
	Level of Trains Service per day		27.4	27.4	27.4	27.4	27.4	27.4		17.4	17.4	17.4		17.4	17.4	17.4		17.4	17.4	17.4	17.4	17.4		37.4	37.4	37.4	37.4
			٧	٧	٧	٧	٧	V		٧	Y	V		٧	A	V		٧	٧	Y	<	V		В	В	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)		3.61	3.61	3.69	3.62	3.63	3.64		3.70	3.67	3.69		3.62	3.80	3.71		3.65	3.71	3.62	3.61	3.66		7.00	6.82	7.03	6.95
u ₀	Crossing Delay per stopped veh (min./veh)		1.10	1.10	1.13	E.I	11.1	Ξ		1.13	1.12	1.13		1:1	1.16	1.13		1.12	1.13	1.11	1.10	1.12		1.14	1.12	1.15	1.14
Pre-Acquisition	Max. No. of Veh. in Queue per lane		0	0	2	0	-	-		2	-	2		0	4	2		-	2	0	0	-		3	-	3	2
Pre-	No. of Veh. Delayed per day		_	-	20	4	4	31		25	17	42		3	48	51		11	25	2	_	38		62	20	69	151
	Train Length (feet)		000'9	000'9	6,000	6,000	000'9	000'9		000'9	9000'9	6,000		000'9	000'9	000'9		000,9	6,000	000'9	000'9	000'9		000,9	000'9	000,9	000'9
	Train Speed (mph)		40	40	40	40	40	9		40	40	40		40	40	40		40	40	40	40	40		40	40	40	40
	Trains per day		17.8	17.8	17.8	17.8	17.8	17.8		17.8	17.8	17.8		17.8	17.8	17.8		17.8	17.8	17.8	17.8	17.8		33.3	33.3	33.3	33.3
	ADT		40	30	750	160	140	1,120		006	630	1,530		110	1,770	1,880		400	930	09	20	1,410		1,221	390	1,350	2,961
	Number of Roadway Lanes		_	-	2	2	1	7		2	2	+		2	2	4		2	2	1	-	9		2	2	2	9
	Roadway Name		O'DONNEL ST.	W. HICK ST.	W. JOHNSON ST.	W. WYANDOT ST.	W. WALKER ST.	Corridor		TROY RD	HILL MILLER RD	Corridor		PARK AVE.	WATER ST.	Corridor		S. EAST ST.	W. NEFF ST.	N. CENTER ST.	WEST ST.	Corridor		W. CROCKER ST.	LIGHTNER	CHURCH ST.	Corridor
	Site ID	usky	C-070	020-O	C-070	C-070	C-070			C-229	C-229				C-229			C-229	C-229	C-229	C-229			C-228	C-228	C-228	
	County	Upper Sandusky	Wyandot	Wyandot	Wyandot	Wyandot	Wyandot		Delaware	Delaware	Delaware		Prospect	Marion	Marion		Morral			Marion	Marion		Bradner	Wood	Wood	Wood	

G-27

Rail Line Segments C-066 and C-206 Highway/Rail At-grade Crossing Vehicle Delay and Queues

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES RAIL LINE SEGMENTS C-066 and C-206

Rail Line Segments N-077 and N-303 Highway/Rail At-grade Crossing Vehicle Delay and Queues

-			
[THIS PAGE I	NTENTIONALLY I	LEFT BLANK]	
 Appendix G: Transportation:	ingimayirian i i grade e		

ATTACHMENT G-5

RAIL LINE SEGMENTS N-077 and N-303

								Pre-	Pre-Acquisition	on						Post-A	Post-Acquisition	on			
County	Site ID	Roadway Name	Number of Roadway Lanes	ADT	Trains per day	Train Speed (mph)	Train Length (feet)	No. of Veh. Delayed per day	Max. No. of Veh. in Queue per s	No. of Max. No. Crossing Avg. Del Veh. of Veh. in Delay per (All Delayed Queue per stopped veh vehicles per day lane (min./veh) (sec/veh	ole ole	Level of Trains Service per day	1	Train Speed I (mph)	Train Length (feet)	No. of 1 Veh. c Delayed C per day	Max. No. of Veh. in Queue per s	No. of Max. No. Crossing / Veh. of Veh. in Delay per F Delayed Queue per stopped veh per day lane (min./veh)	Max. No. Crossing Avg. Delay of Veh. in Delay per (All Queue per stopped veh lane (min./veh) (sec/veh)	Level of Service	Level of Service with Mitigation
Rocky Ridge																					
Ottawa	N-077	ROCKY RIDGE	2	160	48	50	000,9	47	_	6.95	7.11	В	61.5	90	6,200	62	1	86.0	9.56	В	
Ottawa	N-077	WEST ST.	-	06	48	50	000'9	9	0	0.94	86.9	В	61.5	20	6,200	7	0	96'0	9.39	В	
		Corridor	3	850	48	20	000'9	53	1	0.95	7.07	В	61.5	20	6,200	69	1	0.97	9.50	В	
Archbold																					
Fulton	N-303	FRANKLIN	2	1,801	50.4	50	9,000	117	3	86.0	1.7.1	В	48.2	20	6,200	115	3	10.1	7.73	В	
Fulton	N-303	DEFIANCE ST.	2	10,240	50.4	20	000,9	899	61	1.34	10.49	В	48.2	50	6,200	654	20	1.37	10.53	В	
		Corridor	4	12,041	50.4	20	000,9	785	11	1.14	8.89	В	48.2	50	6,200	692	11	1.16	8.92	В	
Swanton																					
Fulton	N-303	BRAILEY RD	2	605	50.4	50	000,9	39	_	56.0	7.43	В	48.2	90	6,200	39	1	0.97	7.45	В	
Fulton	N-303	TEMPLETON RD	_	120	50.4	20	000,9	∞	0	0.94	7.35	В	48.2	90	6,200	8	0	96.0	7.37	В	
		Corridor	3	725	50.4	20	000,9	47	-	0.95	7.40	В	48.2	20	6,200	46	-	0.97	7.43	В	

Rail Line Segments N-080 and N-467 Highway/Rail At-grade Crossing Vehicle Delay and Queues

Appendix G: Transportation	: Highway/Rail At-grade (Crossing Traffic Delay Analysis
[THIS PAGE	INTENTIONALLY I	LEFT BLANK]
Proposed Conrail Acquisition	Mav 1998	Final Environmental Impact Statemen

RAIL LINE SEGMENTS N-080 and N-467

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES

	Level of Service with Mitigation																																				
	Level of Service		В	В	В	В	В	В	В	В	В	В	В		В	В	В	В	В	В	В	В	В	В	В		В	В	В	В	В	В	В	В	В	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)		7.79	6.71	6.55	6.48	6.94	8.34	6.85	95.9	6.54	7.02	7.04		18'9	19.7	08.9	6.70	7.28	6.62	7.03	16.91	6.58	19'9	98.9		89.9	6.72	6.63	6.62	6.55	6.54	6.59	6.63	19'9	6.79	6.64
no	Crossing Delay per stopped veh (min./veh)		1.29	1.11	1.09	1.07	1.15	1.38	1.14	1.09	1.08	1.16	1.17		1.13	1.26	1.13	1.11	1.21	1.10	1.17	1.14	1.09	1.10	1.14		Ε:-	1.11	1.10	1.10	1.08	1.08	1.09	1.10	1.11	1.12	1.10
Post-Acquisition	Max. No. of Veh. in Queue per lane		13	3	2	-	5	17	5	2	-	9	9		4	11	4	3	6	2	9	5	2	2	2		3	3	2	2	2	1	2	2	3	4	3
Post-	No. of Veh. Delayed per day		300	92	38	61	129	785	110	39	35	147	1677		100	599	26	73	203	25	151	123	45	52	1166		69	79	99	54	36	34	48	28	. 69	95	96\$
,	Train Length (feet)		5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000		5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000		5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
	Train Speed (mph)		35	35	35	35	35	35	35	35	35	35	35		35	35	35	35	35	35	35	35	35	35	35		35	35	35	35	35	35	35	35	35	35	35
	Trains per day		34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1		34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1		34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1	34.1
	Level of Service		A	Α	A	Α	Α	٧	γ	Υ	Υ	V	Y		Α	Y	٧	Α	٧	Υ	Υ	V	γ	γ	Α		Υ	Α	γ	A	V	γ	Y	Y	Α	٧	Ą
	Avg. Delay per Vehicle (All vehicles) (sec/veh)		2.96	2.55	2.49	2.46	2.64	3.17	2.60	2.49	2.49	2.67	2.68		2.59	5.89	2.58	2.55	2.77	2.52	2.67	2.63	2.50	2.51	2.62		2.54	2.55	2.52	2.52	2.49	2.49	2.51	2.52	2.54	2.58	2.52
on	Crossing Delay per stopped veh (min./veh)		1.27	1.09	1.06	1.05	1.13	1.36	1.11	1.06	1.06	1.14	1.14		1.11	1.24	1.10	1.09	1.18	1.08	1.14	1.12	1.07	1.07	1.12		1.08	1.09	1.08	1.07	90.1	1.06	1.07	1.08	1.08	1.10	1.08
Pre-Acquisition	Max. No. of Veh. in Queue per slane		12	3	2	1	5	91	5	2	1	9	9		4	II	4	3	8	2	9	5	2	2	5		3	3	2	2	_	1	2	2	3	4	2
Pre-	No. of Veh. Delayed per day		116	30	15	7	50	305	43	15	14	57	159		39	103	38	28	16	21	59	48	18	20	452		27	31	22	21	14	13	61	22	26	37	231
	Train Length (feet)		4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869		4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869		4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869
	Train Speed (mph)		35	35	35	35	35	35	35	35	35	35	35		35	32	35	35	32	35	35	35	35	35	35		35	32	35	35	35	35	35	32	35	35	35
	Trains per day		13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5		13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5		13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
	ADT		5,970	1,520	750	370	2,570	15,610	2,180	170	200	2,920	33,360		1,990	5,300	1,930	1,460	4,030	1,090	3,000	2,440	006	1,040	23,180		1,380	1,570	1,120	1,070	720	029	096	1,150	1,330	1,880	11,850
	Number of Roadway Lanes		2	2	2	2	2	4	2	2	2	2	22		2	2	2	2	2	2	2	2	2	2	20		2	2	2	2	2	2	2	2	2	2	20
	Roadway Name		W. 110 ST.	W. 111 ST.	W. 112 ST.	W. 114 ST.	W. 116 ST.	W. 117 ST.	HIRD AVE.	FRY	BEACH AVE.	COVE AVE.	Corridor		GIEL AVE.	BUNTS RD.	MANOR PARK	MARLOWE AVE.	BELLE AVE.	ST. CHARLES AVE.	WARREN AVE.	COOK AVE.	GLADYS AVE.	ANDREWS AVE.	Corridor		LAKELAND AVE.	SUMMIT AVE.	BROOKLEY AVE.	CRANFORD AVE.	WESTLAKE AVE.	HALL AVE.	ETHEL AVE.	EDWARDS AVE.	BONNIEVIEW AVE.	GRANGER AVE.	Corridor
	Site ID		080-N								N-080	080-N				080-N	080-N	080-N	080-N			080-N	080-N	080-N				080-N	080-N	080-N	Γ		080-N	080-N		N-080	
	County	Cleveland	.[П							Cuyahoga		Lakewood					Cuyahoga				Cuyahoga	Cuyahoga		Lakewood	Cuyahoga								Cuyahoga		

Page 1 of 3

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES RAIL LINE SEGMENTS N-080 and N-467

								Pre-A	Pre-Acquisition	on						Post-A	Post-Acquisition	on			
County	Site ID	Roadway Name	Number of Roadway Lanes	ADT	Trains per day	Train Speed (mph)	Train Length (feet)	No. of Veh. c Delayed C per day	Max. No. of Veh. in Queue per si	Crossing Labels per stopped veh (min./veh)	Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service	Trains per day	Train Speed I (mph)	Train Length D (feet)	No. of No. of Veh. o Delayed C	Max. No. of Veh. in Queue per s	Crossing Delay per stopped veh (min./veh)	Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service	Level of Service with Mitigation
Lorain																					
Lorain	N-080	RIED AVE.	2	3,700	13.5	35	4,869	72	8	1.17	2.74	Y	34.1	1	5,000	186	8	1.19	7.20	В	
Lorain	N-080	LONG ST.	2	650	13.5	35	4,869	13	- 1	1.06	2.48	٧	34.1	-	5,000	33	-	1.08	6.53	В	
		Corridor	4	4,350	13.5	35	4,869	88	2	1.11	2.60	A	34.1	35	5,000	219	5	1.14	6.85	В	
Bellevue																					
Huron	N-467	CENTER ST.	2	029	23.9	15	4,869	47	3	2.14	17.83	၁	28.5		5,000	22	3	2.19	22.28	C	
Huron	N-467	MONROE ST.	2	1,760	23.9	25	4,869	79	5	1.43	7.74	В	28.5	Н	5,000	26	5	1.46	6.63	В	
		Corridor	4	2,430	23.9	15	4,869	169	2	2.17	18.13	С	28.5	12	2,000	206	5	2.22	22.65	С	
Bellevue																					
Sandusky	N-467	FLATROCK RD	2	1,650	23.9	50	4,869	44	3	0.84	2.70	Α	28.5	Н	5,000	53	3	98.0	3.34	٧	
Sandusky	N-467	KILBOURNE RD	2	3,070	23.9	50	4,869	82	5	0.88	2.83	Α	28.5	\dashv	5,000	66	5	0.00	3.50	٧	
		Corridor	4	4,720	23.9	20	4,869	126	4	0.86	2.76	A	28.5	50	2,000	153	4	0.88	3.42	Ą	
Green Springs	gs																				
	N-467	CR-175	2	650	23.9	50	4,869	17	-	0.82	2.62	Α	28.5	50	5,000	21	-	0.83	3.24	4	
Sandusky	N-467	CR-62	2	098	23.9	90	4,869	23	_	0.82	2.64	٧	28.5		5,000	28	ı	0.84	3.26	٧	
		Corridor	4	1,510	23.9	50	4,869	40	-	0.82	2.63	A	28.5	20	5,000	49	1	0.84	3.25	A	
Green Springs	gs																				
Seneca	N-467	FORT ST.	1	80	23.9	50	4,869	2	0	0.81	2.58	٧	28.5	-	5,000	3	0	0.82	3.19	<	
Seneca	N-467	MAIN ST.	2	1,260	23.9	50	4,869	34	2	0.83	2.67	٧	28.5	\dashv	2,000	41	2	0.85	3.30	٧	
		Corridor	3	1,340	23.9	50	4,869	36	-	0.83	2.64	A	28.5	20	2,000	43	-	0.84	3.27	V	
Fostoria																					
Seneca	N-467	CR-11	2	100	23.9	50	4,869	3	0	0.81	2.58	Ą	28.5		5,000	3	0	0.82	3.19	4	
Seneca	N-467	LIBERTY TWP 152-B	2	06	23.9	50	4,869	7	٥	0.81	2.58	<	28.5	2 5	2,000	ς ,		7870	3.19	<	
		Corridor	4	190	23.9	20	4,869	2	-	0.81	2.58	V	78.5	┨	000%	٦	5	0.82	3.19	<	
Fostoria				f										ŀ		-		į			
Seneca	N-467	POPLAR ST.	2	1,910	23.9	20	4,869	2	~	0.85	2.73	٧	78.5	+	2,000	70	~	0.87	3.37	<	
Seneca	N-467	MAIN ST.	2	1,805	23.9	20	4,869	48	3	0.85	2.72	V	28.5	20	2,000	28	3	0.86	3.36	<	
		Corridor	4	3,715	23.9	20	4,869	66	3	0.85	2.72	₹	28.5	\dashv	5,000	120	_	0.87	3.37	<	
Arcadia																					
Hancock	N-467	JOSLYN ST.	2	63	23.9	50	4,869	2	0	08.0	2.58	٧	28.5		2,000	2	0	0.82	3.19	۷	
Hancock	N-467	MAIN ST.	2	403	23.9	50	4,869	=	-	0.81	2.60	٧	28.5	20	5,000	13	_	0.83	3.22	<	
		Corridor	4	466	23.9	20	4,869	12	0	0.81	2.59	٧	28.5	┨	5,000	15	0	0.82	3.20	۷	
McComb													 	ŀ	+	}					
Hancock	N-467	PARK DRIVE	2	1,780	23.9	50	4,869	47	3	0.85	2.71	٧	28.5	\dashv	5,000	88	3	98.0	3.36	<	
Hancock	N-467	MAIN ST.	2	1,680	23.9	20	4,869	45	3	0.85	2.71	4	28.5	20	5,000	54	3	0.86	3.35	٧	

Page 2 of 3

RAIL LINE SEGMENTS N-080 and N-467

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES

Level of Service Mitigation with Level of Service 4 ⋖ < < ⋖ < ⋖ < < ⋖ < ٧ ⋖ ∢ per Vehicle vehicles) (sec/veh) ₹ 3.33 4.39 3.24 3.44 3.19 3.35 4.64 4.39 5.01 4.71 3.23 3.20 3.19 3.24 4.49 3.33 3.41 Crossing Delay per Queue per stopped veh (min./veh) 0.86 **0.85** 0.83 96.0 0.89 0.97 1.10 1.03 1.02 0.88 0.82 0.82 98.0 0.8396.0 0.98 0.83 0.85 Post-Acquisition Max. No. of Veh. in lane 7 0 0 0 0 No. of Veh. Delayed per day 8 48 178 79 5 5 83 181 161 49 78 74 88 Length 5,000 5,000 **5,000** 5,000 5,000 5,000 5,000 **5,000** 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 Train (feet) 5,000 Speed (mph) 49 S S S 6 6 **8** 20 S 5 40 令 S 8 20 8 တ္တ 20 40 20 per day Trains 28.5 28.5 28.5 28.5 28.5 28.5 **28.5** 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 Level of Service < < ⋖ ۷ < ⋖ ⋖ ⋖ ⋖ ≺ < < 4 < <|<|< <|<| Avg. Delay per Vehicle vehicles) (sec/veh) EV) 2.69 5.69 3.54 3.62 2.78 2.58 2.71 3.58 4.04 3.80 2.61 2.59 2.58 2.62 3.54 2.62 Crossing Delay per stopped veh (min./veh) 0.84 98.0 0.82 1.00 0.94 0.94 0.87 0.85 0.96 1.08 0.82 0.81 0.820.97 0.81 Pre-Acquisition Max. No. of Veh. in Queue per lane 0 0 0 7 0 Delayed No. of Veh. per day 39 29 64 2 5 69 .|2 133 5 9 41 3 Length (feet) 4,869 4,869 **4,869** 4,869 4,869 4,869 4,869 4,869 4,869 4,869 4,869 4,869 4,869 4,869 4,869 4,869 Train 4,869 4,869 Train Speed (mph) 40 S S S 6 6 **8** 40 40 20 S 5 S S S 20 ဗြ S S 40 Trains per day 23.9 23.9 **23.9** 23.9 23.9 23.9 23.9 23.9 **23.9** 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9 1,900 2,570 40 2,610 1,480 120 1,900 2,040 2,280 2,870 4,240 4,720 ADT 570 260 40 2 590 Number of Roadway Lanes S √ 4 7 7 œ 7 9 7 2 - 6 MAIN ST. PALMER TWP/SR-18 Roadway Name COMMERCIAL ST. BELMORE ST. WALNUT ST. RADER ST. LIBERTY ST N. TODD ST. CHURCH ST. EASTON ST. SOUTH ST. WERNER Corridor 6TH ST. MAIN ST. Corridor Corridor Corridor Corridor Site ID N-467 N-467 N-467 N-467 N-467 N-467 N-467 N-467 N-467 N-467 N-467 N-467 N-467 N-467 West Leipsic Continental Continental County McComb Hancock Hancock Hancock Hancock Jancock Putnam Putnam Putnam Putnam Putnam Putnam Putnam Putnam

⋖

3.22

0.83

0.83

98.0 0.84

20 65 6

5,000 5,000

28.5

⋖ ٧ ⋖

2.60

0.81 0.85

2.62

0.83

48

4,869

8 8 8 8

4,869

23.9

1,810 2,850

4,869

23.9

23.9

630 410

LAURA ST.

N-467 N-467 N-467

Paulding

Paulding

MAIN ST

Paulding

MAPLE ST.

7 7 5,000

28.5

3.27

⋖

3.19

0.82

0 0

3.18 3.20 3.19

0.82

5,000 5,000 5,000

50 20 20 20 50 အ

28.5 28.5 28.5

⋖ <|<

2.57

0.80

<

148

4

Corridor

Jutnam

G-41

28.5

2.58

2.58

0.81 0.81

4,869

23.9 **23.9**

80 **58**0

4,869

8 8 S S

23.9

2 2

ALEXANDER ST. VAN WERT ST.

N-467 N-467

Paulding Paulding

Latty

LEWIS ST.

N-467

Corridor

⋖

Rail Line Segments N-071, N-073, and N-085 Highway/Rail At-grade Crossing Vehicle Delay and Queues

RAIL LINE SEGMENTS N-073 and N-085 HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES

	Level of Service with Mitigation																							
	Level of Service		Α	٧	Α	Α	Y		Α	Α	Α	A		Α	A	A		٧	٧	A		В	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/vch)		4.33	4.39	4.66	3.86	4.29		4.05	3.95	3.86	3.95		3.83	3.91	3.89		3.88	3.84	3.87		10.23	11.08	10.64
	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)		0.93	0.94	1.00	0.83	0.92		0.87	0.84	0.83	0.84		0.82	0.84	0.83		0.83	0.82	0.83		2.22	2.40	2.31
Post-Acquisition	Max. No. of Veh. in Queue per lane		9	7	10	0	9		3	7	0	7		0	I	1		-	0	1		5	91	10
ost-Acq	No. of Veh. Delayed per day		152	168	235	11	566		72	41	11	125		1	29	30		18	3	21		44	139	183
	Train Length (feet)		5,000	5,000	5,000	5,000	5,000		5,000	5,000	5,000	5,000		5,000	5,000	5,000		5,000	5,000	5,000		5,000	5,000	5,000
	Train Speed (mph)		90	90	90	90	0\$		90	0\$	90	0\$		20	0\$	20		20	20	20		12	15	15
	Trains per day		34.3	34.3	34.3	34.3	34.3		34.3	34.3	34.3	34.3		34.3	34.3	34.3		34.3	34.3	34.3		12.9	12.9	12.9
	Level of Service		٧	٧	٧	٧	V		Y	٧	٧	V		٧	Y	V		٧	٧	V		¥	٧	Y
	Avg. Delay per Vehicle (All vehicles) (sec/veh)		3.16	3.21	3.41	2.82	3.13		2.96	2.89	2.82	2.89		2.80	2.86	2.84		2.84	2.81	2.83		1.06	1.15	1.10
ion	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)		0.91	0.92	86.0	0.81	0.00		0.85	0.83	0.81	0.83		08.0	0.82	0.82		0.81	0.81	0.81		2.17	2.35	2.25
Pre-Acquisition			9	7	01	0	9		3	2	0	7		0	ı	1		_	0	_		5	15	10
Pre-	No. of Veh. Delayed per day		113	125	175	∞	421		54	31	8	93		1	22	23		14	2	16		5	15	19
	Train Length (feet)		4,869	4,869	4,869	4,869	4,869		4,869	4,869	4,869	4,869		4,869	4,869	4,869		4,869	4,869	4,869		4,869	4,869	4,869
	Train Speed (mph)		20	90	50	90	20		95	95	95	20		90	95	90		20	50	20		15	15	15
	Trains per day		56	56	56	56	56		26	56	26	56		56	56	56		26	56	76		1.4	4.1	1.4
	ADT		3,890	4,300	6,030	290	14,510		1,851	1,059	287	3,197		35	744	62.2		470	70	240		1,140	3,630	4,770
	Number of Roadway Lanes		2	2	2	2	8		2	2	2	9		_	2	3		2	-	3		2	2	4
	Roadway Name		CHARLOTTE ST.	SOUTHERN	HOPLEY	OAKWOOD	Corridor		WOODLAWN	WARREN	RENNSLAER	Corridor		FRANKLIN	LEWIS CENTER	Corridor		MONRETTE	DALLAS TWP 115	Corridor		SCTO	MONROE	Corridor
	Site ID		N-073	N-073	N-073	N-073			N-073	N-073	N-073			N-073	N-073			N-073	N-073			N-085	N-085	
	County	Bucyrus	Crawford	Crawford	Crawford	Crawford		Bucyrus	Crawford	Crawford	Crawford		Lewis Center	Delaware	Delaware		Bucyrus	Crawford	Crawford		Sandusky	Erie	Erie	

G-45

Rail Line Segment N-079 Highway/Rail At-grade Crossing Vehicle Delay and Queues

Proposed Co	onrail Acquisiti	ion	May 1998	Final Environmental Impact Sta	ateme
	[THIS PAGE IN	ΓENTIONALLY I	LEFT BLANK]	

RAIL LINE SEGMENT N-079

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES

		 								_			_
	Level of Service with Mitigation												
	Level of Service		В	В	В	В	В	В	В	В	В	В	В
	Avg. Delay per Vehicle (All vehicles) (sec/veh)		6.75	6.74	6.54	6.64	6.66	8.28	7.17	6.62	6.86	6.58	6.85
	No. of Max. No. Crossing Veh. of Veh. in Delay per Delayed Queue per stopped veh per day lane (min/veh)		1.24	1.24	1.21	1.22	1.23	1.53	1.32	1.22	1.26	1.21	1.26
Post-Acquisition	Max. No. of Veh. in Queue per lane		3	3	1	2	2	<i>L</i> 1	8	1	4	1	4
ost-Acq	No. of Veh. Delayed per day		58	99	11	33	38	327	144	28	81	19	793
P	Train Length (feet)		5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
	Train Speed (mph)		30	30	30	30	30	30	30	30	30	30	30
	Trains per day		27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2
	Level of Service		Α	Α	٧	٧	¥	<	A	<	¥	٧	V
	Avg. Delay per Vehicle (All vehicles) (sec/veh)		1.83	1.83	1.78	1.80	18.1	2.25	1.95	1.80	1.86	1.79	1.86
ion	Crossing Delay per stopped veh (min./veh)		1.22	1.22	1.18	1.20	1.20	1.49	1.29	1.19	1.24	1.19	1.24
Pre-Acquisition	Max. No. of Veh. in Queue per lane		3	3	_	2	2	17	7	_	4	_	4
Pre-	No. of Veh. Delayed per day		16	15	3	6	01	16	40	8	23	5	220
	Train Length (feet)		4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4,869	4.869
	Train Train Speed Length (mph) (feet)		30	30	30	30	30	30	30	30	30	30	30
	Trains per day		7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7
	ADT		1,280	1,230	250	720	830	7,230	3,180	610	1,800	410	17.540
	Number of Roadway Lanes		2	2	2	2	2	2	2	2	2	2	20
	Roadway Name		SPRING ST.	AMANDA ST.	NELSON ST.	GEORGE ST.	VINE ST.	MAIN ST.	MAPLE ST.	CHURCH ST.	DUANE ST.	EAST ST.	Corridor
	Site ID		640-N	640-N	N-079	640-N	N-079	N-079	1 640-N	640-N	N-079	640-N	
	County	Clyde	Sandusky	Sandusky	Sandusky	Sandusky	Sandusky	Sandusky	Sandusky	Sandusky	Sandusky	Sandusky	

G-49

[THIS PAGE INTENTIONALLY LEFT BLANK]

Rail Line Segment N-476 Highway/Rail At-grade Crossing Vehicle Delay and Queues

Appendix	G: Transportation: Hig	hway/Rail At-grade C	Crossing Traffic Delay Ana	alysis
	[THIS PAGE INT	ENTIONALLY I	LEFT BLANK]	
	vicition		Final Environments	

Page 1 of 1

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES RAIL LINE SEGMENT N-476 **ATTACHMENT G-9**

Site ID Roadway Name Roadway ADT Trains Train No. of Lanes Lanes Lanes Number of Lanes Lanes Lanes Number of Lanes Lanes								Pre-A	Pre-Acquisition	nı					Post	Post-Acquisition	ition				
N-476 CR-19 2 50 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 4,869 15.2 50 50 15.2 50 15.2 50 15.2			Number of Roadway Lanes			Train Speed 1		No. of Veh. Delayed per day	Max. No. of Veh. in Queue per s	Max. No. Crossing / of Veh. in Delay per Queue per stopped veh lane (min./veh)		Level of Trains Service per day	Trains ser day	Train Train Speed Length (mph) (feet)		o. of Marken, of layed Qu	Vo. of Max. No. Crossing Veh. of Veh. in Delay per elayed Queue per stopped veh er day lane (min./veh)	No. of Max. No. Crossing Per Vehicle Veh. of Veh. in Delay per (Min./veh) per day lane (min./veh) (sec/veh)		Level of Service	Level of Scrvice with Mitigation
N-476 CR-19 2 50 15.2 50 4,869 N-476 CR-P 2 40 15.2 50 4,869 Corridor 4 90 15.2 50 4,869																					
N.476 CR-19 2 50 15.2 50 4,869 N.476 CR-P 2 40 15.2 50 4,869 Corridor 4 90 15.2 50 4,869	l u																				
N-476 CR-P 2 40 15.2 50 4,869 CR-p Corridor 4 90 15.2 50 4,869	N-476	CR-19	2	20	15.2	⊢	4,869	_	0	08.0	1.64	¥	17.3	50 5	5,000	-	0	0.82	1.93	Α	
Corridor 4 90 15.2 50 4,869	1	CR-P	2	40	15.2	H	4,869	_	0	08.0	1.64	٧	17.3	50 5	5,000	_	0	0.82	1.93	Α	
0701 02 021 0211 0 07 00 77 17 17 17 17 17 17 17 17 17 17 17 17		Corridor	4	06	15.2	H	4,869	2	0	080	1.64	Υ	17.3	50 5	2,000	2	0	0.82	1.93	Ą	
0701 04 041 0411 0																					
CK-49 2 1,150 15.2 50 4,869	N-476	CR-49	2	1,150	15.2	- 20	4,869	20	2	0.83	69.1	Α	17.3	50 5	5,000	23	2	0.85	2.00	Α	
Williams N-476 CR-F 2 270 15.2 50 4,869 5 0		CR-F	2	270	15.2		4,869	5	0	0.81	1.65	V	17.3	50 5	5,000	5	0	0.82	1.95	٧	
Corridor 4 1,420 15.2 50 4,869 24 1		Corridor	4	1,420	15.2		4,869	24	1	0.82	1.67	Α	17.3	50 5	5,000	28	1	0.84	1.97	Ą	

[THIS PAGE INTENTIONALLY LEFT BLANK]

Rail Line Segment C-061 Highway/Rail At-grade Crossing Vehicle Delay and Queues

[THIS PA	AGE INTE	ENTIONALLY	LEFT BLANK]		
	AGE INTE	ENTIONALLY	LEFT BLANK]		
	AGE INTE	INTIONALLY	LEFT BLANK]		
	AGE INTE	ENTIONALLY	LEFT BLANK]		
	AGE INTE	NTIONALLY	LEFT BLANK]		
	AGE INTE	ENTIONALLY	LEFT BLANK]		
	AGE INTE	NTIONALLY	LEFT BLANK]	ļ.	
[THIS PA	AGE INTE	ENTIONALLY	LEFT BLANK]		
[THIS PA	AGE INTE	NTIONALLY	LEFT BLANK]		
[THIS PA	AGE INTE	ENTIONALLY	LEFT BLANK]		
[THIS PA	AGE INTE	INTIONALLY	LEFT BLANK]		
[THIS PA	AGE INTE	ENTIONALLY	LEFT BLANK]	I	
[THIS PA	AGE INTE	ENTIONALLY	LEFT BLANK]	I	
[THIS PA	AGE INTE	INTIONALLY I	LEFT BLANK]	I	
			,		
endix G: Transpoi	rtation: High	way/Rail At-grade (Crossing Tranic De	elay Allaiysis	
	ndix G: Transpo	endix G: Transportation: High	nuix G. Transportation: Highway/Rail At-grade		endix G: Transportation: Highway/Rail At-grade Crossing Traffic Delay Analysis

Page 1 of 1

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES RAIL LINE SEGMENT C-061 ATTACHMENT G-10

County Site ID Roadway Name Roadway Name Roadway Name Roadway Name Lanes Augusta									Pre-	Pre-Acquisition	ion					P_{6}	Post-Acquisition	iisition				
C-061 W. MAIN ST. 2 3,610 14,5 50 4,869 58 6 0.90 1.75 A 53 50 5,000 217 6 0.92 6.63	County	Site ID		Number of Roadway Lanes		Trains per day	Train Speed (mph)	Train Length (feet)	No. of Veh. Delayed per day	Max. No. of Veh. in Queue per lane	Crossing Delay per stopped veh (min./veh)	Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service	Trains per day	Train Speed (mph)		No. of Veh. Delayed per day	Max. No. of Veh. in Queue per lane	Crossing Delay per stopped veh (min./veh)	Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service	Level of Service with Mitigation
C-061 W. MAIN ST. 2 3,610 14.5 50 4,869 58 6 0.90 1.75 A 53 50 5,000 217 6 0.92 6.63 6.65 6.6																						
C.061 W.MAIN ST. 2 3,610 14.5 50 4,869 63 60 0.90 1.75 A 53 50 5,000 217 6 0.92 6.63 6 6 6 6 0.90 1.75 A 53 50 5,000 217 6 0.92 6.63 6 6 6 6 6 6 6 6 9 1.75 A 53 50 5,000 451 6 0.92 6.63 6	New London																					
C-061 N. MAIN ST. 2 3,870 14.5 50 4,869 63 60 0.91 1.76 A 53 50 5,000 233 6 0.92 6.68 8 C-061 HERRICK AVE. 2 7,480 14.5 50 4,869 121 6 0.90 1.75 A 50 5,000 451 6 0.92 6.68 8 C-061 HERRICK AVE. 2 7,870 14.5 50 4,869 131 13 1.06 2.06 A 5,000 474 13 1.07 7.20 C-061 NO. MAIN ST. 2 1,27 13 1.06 2.06 A 5,000 489 13 1.07 7.70 7.70 C-061 NO. MAIN ST. 2 1,579 14.5 50 4,869 13 1.05 2.05 A 5,000 489 13 1.07 7.70 7.70	Huron	C-061	W. MAIN ST.	2	3,610	14.5	20	4,869	58	9	06.0	1.75	A	53		5,000	217	9	0.92	6.63	В	
Coortidor 4 15,900 14.5 50 4,869 121 6 0.90 1.75 A 53 50 5,000 451 6 0.92 6.65 6.65 6.66 6.66 6.66 6.66 6.66 6.6	Huron	C-061	N. MAIN ST.	2	3,870	_	90	4,869	63	9	16.0	1.76	٧	53	-	5,000	233	9	0.92	89.9	В	
C-061 HERRICK AVE. 2 7,870 14.5 50 4,869 127 13 1.05 2.04 A 53 50 5,000 474 13 1.07 7.72 Corridor 4 15,990 14.5 50 4,869 259 13 1.05 2.05 A 53 50 5,000 963 13 1.07 7.76			Corridor	4	7,480	14.5	20	4,869	121	9	0.90	1.75	Α	53	Н	5,000	451	9	0.92	99.9	В	
Cobil Herrick AVE. 2 7,870 14.5 50 4,869 127 13 1.05 2.04 A 53 50 5,000 474 13 1.07 7.72 7.80 Cobil NO.MAIN ST. 2 8,120 14.5 50 4,869 131 13 1.05 2.05 A 53 50 5,000 963 13 1.07 7.70 7.70 7.70 Cobridor Corridor 4 15,990 14.5 50 4,869 259 13 1.05 2.05 A 53 50 5,000 963 13 1.07 7.76	Wellington																					
C-061 NO.MAINST. 2 8,120 14.5 50 4,869 131 13 1.06 2.06 A 53 50 5,000 489 13 1.07 7.80 7.80 Corridor 4 15,990 14.5 50 4,869 259 13 1.05 2.05 A 53 50 5,000 963 13 1.07 7.76	Lorain		HERRICK AVE.	2	7,870	14.5	90	4,869	127	13	1.05	2.04	٧	\vdash	90		_	13	1.07	7.72	В	
4 15,990 14.5 50 4,869 259 13 1.05 2.05 A 53 50 5,000 963 13 1.07 7.76	Lorain	1	NO. MAIN ST.	2	8,120	14.5	20	4,869	131	13	1.06	2.06	Y	53	\vdash	5,000	489	13	1.08	7.80	В	
			Corridor	4	15,990	14.5	20	4,869	259	13	1.05	2.05	Α	53	\vdash	5,000	963	13	1.07	7.76	В	

[THIS PAGE INTENTIONALLY LEFT BLANK]

Rail Line Segment N-046 Highway/Rail At-grade Crossing Vehicle Delay and Queues

Арре	ndix G: Transportation: Hig	ghway/Rail At-grade C	Crossing Traffic Delay Anal	lysis
	[THIS PAGE IN]	TENTIONALLY I	LEFT BLANK]	

RAIL LINE SEGMENT N-046

HIGHWAY/RAIL AT-GRADE CROSSING VEHICLE DELAY AND QUEUES

								Pre-A	Pre-Acquisition	ın .					Pos	Post-Acquisition	isition				
County	Site ID	Roadway Name	Number of Roadway Lanes	ADT	Trains per day	Train Speed (mph)	Train Length (feet)	No. of Veh. Delayed per day	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)		Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Trains Service per day	Trains per day	Train Speed I (mph)	Train Length D (feet)	No. of No. of Veh. o Delayed C	Max. No. Crossing of Veh. in Delay per Queue per stopped veh lane (min./veh)		Avg. Delay per Vehicle (All vehicles) (sec/veh)	Level of Service	Level of Service with Mitigation
Lafayette																					
Tippecanoe	N-046	17TH & SALEM ST.	4	6,323	18.4	25	4,869	219	6	1.50	6.23	В	40.2	25	5,000	489	6	1.53	14.21	В	
Tippecanoe	N-046	UNION ST.	2	9,955	18.4	<u> </u>	4,869	345	27	1.93	8.02	В	40.2		5,000	171	28	1.97	18.30	С	
		Corridor	9	16,278	18.4	Г	4,869	564	15	1.62	6.73	В	40.2	25	2,000	1260	15	1.65	15.36	С	
Lafayette																					
Tippecanoe	N-046	FERRY ST.	2	6,121	18.4	25	4,869	212	17	1.66	06'9	В	40.2	25	5,000	474	17	1.70	15.75	С	
Tippecanoe	N-046	MAIN ST.	2	7,654	18.4	25	4,869	265	21	1.76	7.31	В	40.2	25	5,000	592	21	1.80	16.68	Э	
Tippecanoe	N-046	11TH ST.	2	730	18.4	H	4,869	25	2	1.39	5.77	В	40.2		5,000	57	2	1.42	13.16	В	
Tippecanoe	N-046	COLUMBIA ST.	3	8,546	18.4	25	4,869	296	15	1.63	08.9	В	40.2	25	5,000	662	91	1.67	15.51	С	
Tippecanoe	N-046	10TH ST.	2	2,622	18.4		4,869	16	7	1.47	6.12	В	40.2	\vdash	5,000	203	7	1.50	13.97	В	
Tippecanoe	N-046	SOUTH ST./SR-26	3	7,890	18.4	25	4,869	274	14	19:1	69'9	В	40.2	_	5,000	119	15	1.64	15.27	С	
Tippecanoe	N-046	9TH ST.	2	8,565	18.4	25	4,869	297	23	1.82	7.57	В	40.2	25	5,000	693	24	1.86	17.28	C	
Tippecanoe	N-046	8TH ST.	2	3,513	18.4		4,869	122	01	15.1	6.30	В	40.2		5,000	272	10	1.55	14.38	В	
Tippecanoe	N-046	7TH ST.	2	1,375	18.4		4,869	48	4	1.41	5.88	В	40.2		5,000	901	4	1.45	13.43	В	
Tippecanoe	N-046	NEW YORK ST.	2	252	18.4	25	4,869	6	-	1.37	5.69	В	40.2	25	5,000	20	1	1.40	12.97	В	
Tippecanoe	N-046	ROMIG ST.	2	982	18.4	┢	4,869	34	3	1.40	5.81	В	40.2		5,000	92	3	1.43	13.27	В	
Tippecanoe	N-046	LINGLE ST.	2	1,471	18.4		4,869	51	4	1.42	5.90	В	40.2	25	5,000	114	4	1.45	13.47	В	
		Corridor	56	49,721	18.4	25	4,869	1724	10	1.53	6.37	В	40.2	H	5,000	3849	11	1.56	14.53	В	
Lafayette																					
Tippecanoe	N-046	STH ST.	2	500	18.4	25	4,869	7	_	1.37	89.5	В	40.2	25	5,000	91	1	1.40	12.96	В	
Tippecanoe	N-046	4TH ST.	2	12,060	18.4	25	4,869	418	33	2.12	8.80	В	40.2	25	5,000	934	33	2.16	20.09	C	
Tippecanoe	N-046	3RD ST.	2	3,823	18.4	25	4,869	133	9	1.53	6.37	В	40.2	25	5,000	296	=	1.56	14.53	В	
Tippecanoe	N-046	POCANO HILL RD	2	2,265	18.4	H	4,869	19	9	1.45	6.05	В	40.2		5,000	175	9	1.49	13.81	В	
		Corridor	7	18,357	18.4	25	4,869	989	14	19.1	69'9	B	40.2	25	5,000	1421	15	1.64	15.26	С	
		-				1			•												

[THIS PAGE INTENTIONALLY LEFT BLANK]

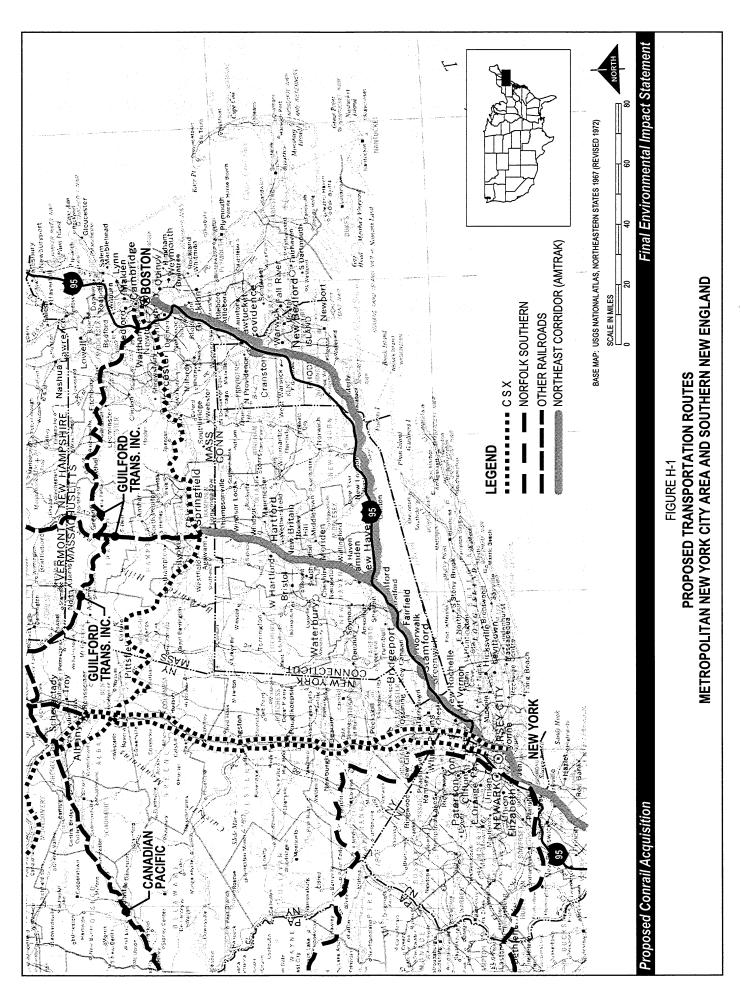
APPENDIX H **Transportation: Roadway Systems Analysis**

CONTENTS

APPE	NDIX I	H. TRA	ANSPORTATION: ROADWAY SYSTEMS ANALYSIS	Page H-1
	H.1		YORK CITY/NORTHERN NEW JERSEY METROPOLITAN	** *
		AREA		H-1
		H.1.1	Existing Transportation Environment	H-3
		H.1.2	The Applicants' Proposed Operations	H-7
		H.1.3	Conditions Proposed in the Metropolitan Area by Parties of	
			Record	H-9
		H.1.4	Draft EIS Analysis of Changes Related to the Proposed Conrail	
			Acquisition in Northern New Jersey and in the New York	
			1	H-12
		H.1.5	Analysis of Truck Movement Effects within the Metropolitan	TT 4.4
	***		Area Regional Highway System	
	H.2		OPOSED SANDUSKY INTERMODAL FACILITY	
	H.3			H-21
		H.3.1	Proposed NS AmeriPort/South Philadelphia Intermodal	11 24
		1122	Facility	
		п.3.2	Revised Analysis for NS Wornsville Intermodal Facility	П-23
			FIGURES	
H-1	-		asportation Routes - Metropolitan New York City Area and England	H-2
H-2A			New York City Area Major Transportation Facilities and Truck	
	Routes			H-4
H-2B	-		New York City Area Major Transportation Facilities and Truck	
H-3	_		New York City Area Maximum Potential Truck Route Shifts	
H-4			, 1	H-20
H-5	CSX a	nd NS S	South Philadelphia Intermodal Facilities	H-22
			TABLES	
H-1	Tracto	r-trailer	s (Heavy Trucks) Average Daily Traffic (ADT), Eastbound	H-7
H-2			Area and Southern New England Commentor List	
H-3	-		cks at Intermodal Facilities in the Proposed North Jersey Shared	
				H-13

Appendix H: Transportation: Roadway Systems Analysis

H-4	Effects of Potential Truck Trip Shifts from Tappan Zee Bridge to George	
	Washington Bridge on Average Daily Traffic	H-17
H-5	Increased Truck Activity Associated With Proposed Sandusky Intermodal	
	Facility	H-19
H-6	Increased Truck Activity Associated With Proposed NS AmeriPort/South	
	Philadelphia Intermodal Facility	H-25
H-7	Traffic Analysis Summary for Morrisville Intermodal Facility	H-26


APPENDIX H TRANSPORTATION: ROADWAY SYSTEMS ANALYSIS

The Section of Environmental Analysis (SEA) of the Surface Transportation Board (the Board) conducted additional transportation analyses to respond to comments on the Draft Environmental Impact Statement (Draft EIS) and to reflect updated information that the Applicants¹ provided after publication of the Draft EIS. In response to comments on the Draft EIS and previously filed Comments and Requests for Conditions, SEA conducted a detailed analysis of transportation systems in the New York City/northern New Jersey metropolitan area (metropolitan area) potentially affected by the proposed Conrail Acquisition. SEA conducted additional transportation analyses to reflect updated information that NS supplied for its proposed Sandusky, Ohio, and AmeriPort/South Philadelphia intermodal facilities. SEA also conducted additional transportation analyses to reflect revised estimates of truck increases by NS at the Morrisville, Pennsylvania, intermodal facility. This appendix provides descriptions of the additional transportation analyses that SEA conducted for the Final Environmental Impact Statement (Final EIS).

H.1 NEW YORK CITY/NORTHERN NEW JERSEY METROPOLITAN AREA

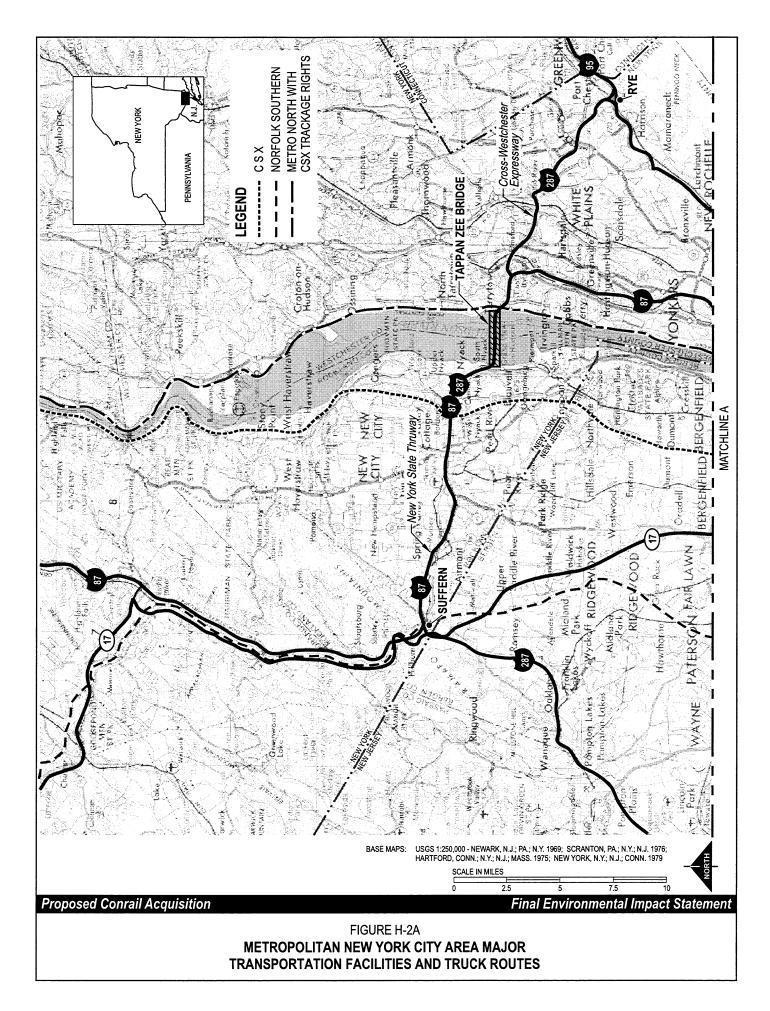
SEA conducted a detailed analysis of roadway systems and transportation issues associated with the New York City/northern New Jersey metropolitan and Southern New England areas in response to comments on the Draft EIS and Comments and Requests for Conditions. As part of this analysis, SEA visited relevant roadway, bridge, and intermodal facilities. Figure H-1 depicts the major railroad routes in the metropolitan and southern New England areas and their owners, if the Board approves the proposed Conrail Acquisition. Figures H-2A and H-2B depict major transportation facilities and truck routes in the metropolitan area. This section presents the results of SEA's analysis.

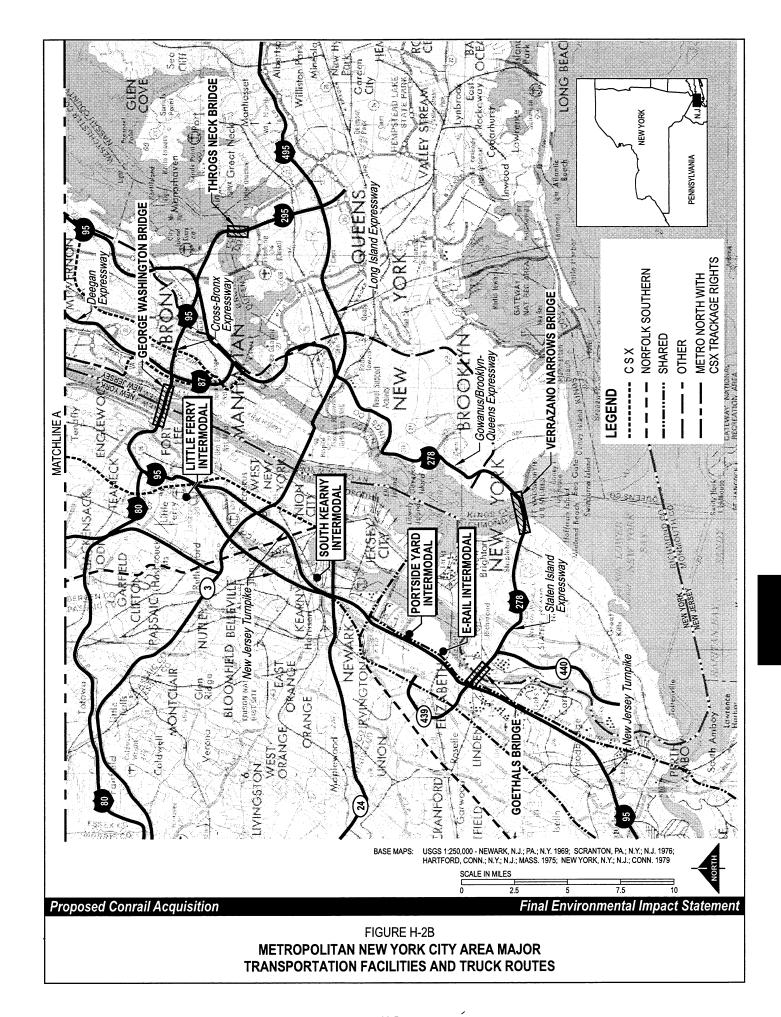
[&]quot;The Applicants" refers to CSX Corporation and CSX Transportation, Inc. (CSX); Norfolk Southern Corporation and Norfolk Southern Railway Company (NS); and Conrail, Inc., and Consolidated Rail Corporation (Conrail).

H.1.1 Existing Transportation Environment

The metropolitan area is one of the largest consumer markets in the world. Residential populations in southeastern New York State and Connecticut add further support. According to the New York/New Jersey Circumferential Commercial Corridor Study (Port Authority of New York and New Jersey, 1991), the metropolitan area historically has been one of the world's largest port centers. Major intermodal facilities within the metropolitan area include five major marine terminal facilities (including Port Newark/Elizabeth, which is larger than all North Atlantic ports combined), three major international airports, and 10 major rail intermodal facilities. Those facilities include the CSX Little Ferry, Conrail Portside and E-Rail in Elizabeth, and Conrail South Kearny facilities, all of which SEA analyzed in the Draft EIS.

The metropolitan area and southern New England rely heavily on trucks to move goods to and from those markets. However, various parties are interested in integrating intermodal movements involving truck, rail, sea, and air, and have been working toward that goal. Several Parties of Record in this proceeding are involved in this effort and submitted Comments and Requests for Conditions to the Board. They also submitted comments on the Draft EIS to express their concerns regarding environmental impacts that could occur in the metropolitan area if the Board approves the proposed Conrail Acquisition.


Rail Operations


Currently, Conrail is the only Class I freight railroad that operates into New York City and over parts of the Northeast Corridor in Connecticut and Massachusetts.² Conrail operates one train per day over the Hudson Line in New York State from Oak Point Yard in New York City through Poughkeepsie to Selkirk Yard near Albany. These nonintermodal trains carry municipal solid waste out of New York City and general merchandise, including perishables, into the city. Conrail also operates several local trains between New York City and New Haven, Connecticut. However, most of Conrail's current intermodal traffic in the metropolitan area originates and terminates at its five intermodal facilities in northern New Jersey.

Conrail does not use the existing passenger railroad tunnels to and through Manhattan to move either conventional intermodal or Triple Crown Service intermodal freight traffic. In addition, it generally does not use the New York Cross Harbor Railroad, except for traffic bound for locations on the New York Cross Harbor, and is currently involved in a lawsuit with the operators of that company.

_

Providence and Worcester Railroad (P&W) operates seasonal aggregate trains from New Haven, Connecticut, to Fresh Pond Junction in Queens, New York, under an agreement with Conrail, Connecticut Department of Transportation, New York Metropolitan Transportation Authority and Amtrak. P&W also has an exclusive assignment to provide freight service on the corridor between New Haven and the Rhode Island-Massachusetts border. P&W's Settlement Agreement with CSX would establish independent pricing for joint line transportation.

Instead, rail cars from the south destined for New York City move north over Conrail's River Line on the west side of the Hudson River to Selkirk Yard, cross the Hudson River near Albany, and move south along the east side of the river on the Hudson Line through Poughkeepsie to Oak Point Yard.

Truck Traffic

In the metropolitan area, heavy trucks (tractor-trailers) move along the major controlled-access, mixed-traffic expressways. These roads usually are sections of the Interstate Highway System. Some of the routes have characteristics similar to the Interstates but are State-numbered, such as Route 3 and Route 24 in New Jersey and the West Shore Expressway (Route 440) in New York. The major toll roads, such as the New Jersey Turnpike and the New York State Thruway, are also important truck routes.

The interstate Hudson River and Staten Island bridges and tunnels and the major New York City bridges and tunnels are key links between the New Jersey and New York highway systems. The main routes for tractor-trailers into and through the metropolitan area are the bridges, particularly the Tappan Zee Bridge, the George Washington Bridge, and the Goethals Bridge/Verrazano Narrows Bridge combination.

CSX's intermodal facility at Little Ferry and Conrail's three intermodal facilities that SEA analyzed in the Draft EIS are all located along the New Jersey Turnpike corridor in northern New Jersey. Each terminal is close to a Turnpike interchange. For movement to points east of the Hudson River in the metropolitan area other than to the Manhattan central business district, the Turnpike provides direct access to either the George Washington Bridge via Interstate Route 95 (I-95) or to the Verrazano Narrows Bridge via the Goethals Bridge and the Staten Island Expressway (I-278).

Trucks headed from the northern New Jersey intermodal terminals to areas in central, northern, or western New York State likely would use the New Jersey Turnpike to I-80, to NJ-17, to the New York State Thruway at Suffern, New York. As with trucks traveling to Pennsylvania and other points in New Jersey, these trucks would not use the George Washington Bridge, the Verrazano Narrows Bridge, or the highway system in New York City or Westchester County.

For the large market area on Long Island, including Brooklyn and Queens, trucks from northern New Jersey would travel via either the Verrazano Narrows Bridge (to the Brooklyn-Queens Expressway and the Long Island Expressway) or the George Washington Bridge (to the Cross-Bronx Expressway and the Throgs Neck Bridge). Trucks from the two southerly intermodal terminals (E-Rail and Portside) would use the Verrazano Narrows Bridge route for "close-in" areas of Brooklyn and Queens. The more northerly terminals (Little Ferry and South Kearny) would produce eastbound truck trips more oriented to the George Washington Bridge route if headed for Queens, central and eastern Long Island, southern Westchester County, and New England.

For longer distance "through" trips (for example, from the west and the south to northern Westchester County and to New England), trucks use the Tappan Zee Bridge route.³ Completion of I-287 in northern New Jersey in late 1993 increased the attractiveness of the Tappan Zee Bridge route compared to the George Washington Bridge route through New York City, and significantly reduced the volume of heavy trucks using the George Washington Bridge. Table H-1 compares the 1993 and 1994 heavy truck traffic at the two crossings, based on data from the Port Authority of New York and New Jersey (Port Authority), and from the New York State Thruway Authority. This reduction in heavy truck use of the George Washington Bridge continued through 1996, when the heavy truck average daily traffic (ADT) of 6,504 was less than the truck ADT for 1994.

TABLE H-1
TRACTOR-TRAILERS (HEAVY TRUCKS)
AVERAGE DAILY TRAFFIC (ADT), EASTBOUND^a

	1993	1994	Change
George Washington Bridge	6,861	6,546	-315
Tappan Zee Bridge	1,263	2,445	+1,182

The George Washington Bridge and the Tappan Zee Bridge each make use of "One-Way Tolls." Therefore, regularly recorded traffic figures, with vehicle classification, are available only for the toll collection direction (eastbound). It is likely that a similar shift of tractor-trailers occurred westbound, from the George Washington Bridge to the Tappan Zee Bridge, but there are no reliable data to confirm this assumption.

Because the I-287 "beltway" in New Jersey is complete, tractor-trailer trips that do not require drop-offs or pick-ups in New York City can now bypass the I-95 route (George Washington Bridge, Cross-Bronx Expressway, Bruckner Expressway). Tractor-trailers now may use the Tappan Zee Bridge route (I-287 in New Jersey, New York State Thruway, Tappan Zee Bridge, and Cross-Westchester Expressway), which is less congested than the George Washington Bridge route and has lower tolls.

H.1.2 The Applicants' Proposed Operations

According to their Operating Plans, CSX and NS would establish the North Jersey Shared Assets Area in territory in northern New Jersey currently operated solely by Conrail. CSX and NS then would divide the Conrail intermodal facilities in the North Jersey Shared Assets Area, and the 189 miles of track would be operated by Conrail's Shared Assets Operations. A superintendent headquartered at Oak Island Yard would supervise Conrail's Shared Assets Operations in northern New Jersey and would report to the General Manager of Conrail's Shared Assets Operations. Except for those rail yards specifically assigned to CSX or NS, Conrail's Shared Assets Operations would include all existing Conrail rail yards in the proposed North Jersey Shared Assets Area and these rail yards would be accessible to both CSX and NS.

_

³ I-287 in New Jersey, New York State Thruway, Tappan Zee Bridge, and Cross-Westchester Expressway.

The proposed Conrail Acquisition would allocate Conrail's North Bergen and South Kearny intermodal terminals to CSX, and Conrail's Portside, Croxton, and E-Rail intermodal facilities to NS. CSX and NS both would have access to the APL Limited (APL) terminal in Kearny, the Port Newark/Elizabeth Marine Terminal Area (including Dockside Yard [Expressrail]), and Oak Island Yard, including the Doremus Avenue Auto Terminal.

CSX would operate North Bergen Yard as an intermodal facility and would originate and terminate four intermodal trains five days per week at that location. CSX also would operate the non-APL portion of Kearny Yard as an intermodal facility specializing in east/west international double-stack container train operations. CSX proposes to operate two pairs of intermodal trains between Kearny and Chicago and a pair of trains between Jacksonville, Florida, and Kearny. Another intermodal train operating between Boston and Atlanta would pick up and set out cars at Kearny. CSX, which would operate the Port Newark Yard, proposes to originate and terminate one pair of intermodal trains at that location.

NS would operate four Triple Crown Service trains daily out of the Portside Yard. NS also would operate eight daily intermodal trains from the E-Rail and Croxton facilities.

According to the Applicants' truck-to-rail diversion studies, the efficiencies resulting from implementing the proposed Conrail Acquisition would increase truck activity in and around the proposed North Jersey Shared Assets Area. The existing CSX Intermodal Little Ferry facility would handle an increase of 177 additional trucks per day. The Conrail South Kearny facility would handle an increase of 78 trucks per day. The Conrail E-Rail Facility in Elizabeth would handle an increase of 335 additional trucks per day. The Conrail/Triple Crown Service Portside Facility in Elizabeth would handle an increase of 50 additional trucks per day. These facilities would be operated by NS after the proposed Conrail Acquisition. Each new truck would make two trips, one into the facility and one out of the facility. Therefore, the additional projected 640 trucks per day at these four facilities would amount to 1,280 new truck trips into and out of the intermodal terminals, if the Board approves the proposed Conrail Acquisition.

SEA analyzed the effects of the increased truck traffic for various roadways associated with these intermodal facilities in the Draft EIS, Chapter 5, "New Jersey: Settings, Impacts, and Proposed Mitigation," concluding that none of the roadways affected would experience an increase of greater than 10 percent of its existing ADT.

The Operating Plans in the primary Application propose that CSX assume Conrail rights and operations in the New York metropolitan area and southern New England. CSX would continue running the daily train over the Hudson Line between Selkirk Yard near Albany and Oak Point

Although CSX Intermodal's Little Ferry facility is on the New York, Susquehanna, and Western Railway, and is not within the North Jersey Shared Assets Area, the Little Ferry facility is close to the North Jersey Shared Assets Area and trucks using the facility could affect the metropolitan area transportation system.

Yard in New York City. However, CSX would not add trains unless it captured additional traffic, such as more of the metropolitan area's municipal solid waste.

CSX and NS indicated in their Rebuttal, filed with the Board on December 15, 1997, that operating restrictions involving passenger service and clearances would prevent CSX from running conventional or Road Railer intermodal equipment through the Bergen (Hudson River) Tunnels and Penn Station for service over the Northeast Corridor to Connecticut and Boston. Therefore, while CSX would continue Conrail's current operations in the metropolitan area and southern New England on the corridor, it does not propose expansion of those operations.

With regard to competition in the New York metropolitan area and southern New England, CSX suggests in its Operating Plan that its Settlement Agreement with Canadian Pacific Railway (CPR) would provide sufficient competition. However, CPR's access would occur through haulage rights rather than trackage rights; therefore, CPR would not have direct access to CSX facilities. The Applicants also claim that new intermodal trains running between Atlanta, Jacksonville, and New England via Selkirk Yard would serve the southern New England (Connecticut, Massachusetts, and Rhode Island) intermodal market.

H.1.3 Conditions Proposed in the Metropolitan Area by Parties of Record

During the course of the proceeding, several Parties of Record (commentors) submitted Responsive Applications, Comments and Requests for Conditions, and comments on the Draft EIS and/or briefs that addressed competitive and environmental issues associated with proposed operations in the metropolitan area and southern New England. These commentors included the State of New York, 24 members of the United States Congress from New York and Connecticut, and a variety of agencies interested in this subject. Table H-2 lists these commentors and the documents filed and summarizes concerns described in those documents regarding potential impacts in the metropolitan area and southern New England.

The commentors addressed several potential environmental impacts that they asserted would occur in the metropolitan area as a result of increased truck traffic to and from northern New Jersey, including increased air pollution and environmental justice impacts. They also suggested that CSX's proposed operations on Conrail's Hudson Line route into New York City would maintain inefficiencies that limit freight rail's competitiveness into the city and southern New England. The commentors also claimed that transportation system effects would include increased heavy truck traffic on I-95 and the Cross-Bronx Expressway, and across the George Washington Bridge, along with the related adverse environmental impacts these movements would create.

Some commentors suggested upgrading and/or including in the proposed Conrail Acquisition a rail car float operation across New York Harbor, which they claim would make rail a more competitive, viable truck alternative from New York City and southern New England. Others suggested implementing conventional and Road Railer intermodal service through the Bergen

(Hudson) Tunnels and through Penn Station over the Northeast Corridor to New Haven and Boston. Finally, most commentors requested granting rights to a third-party railroad competitor to operate over Conrail's Hudson Line from Selkirk Yard to points in New York City, with the hope that competitive service on the rail line would divert more truck traffic to rail. The commentors claimed that such diversions would reduce the pollution and fuel consumption associated with truck traffic.

TABLE H-2
METROPOLITAN AREA AND SOUTHERN
NEW ENGLAND COMMENTOR LIST

Commentor	Comments/Concerns/Requested Conditions	Type of Filings
Capital District Transportation Committee	Seeks freight rail competition in New York City and southern New England.	Comments on the Draft EIS
State of Connecticut Department of Transportation	 Draft EIS underestimates truck traffic on I-95. Truck traffic increases would cause adverse environmental effects. Seeks freight rail competition to Connecticut and intermodal service on the Northeast Corridor. 	Comments (and Request for Conditions) Comments on the Draft EIS
Conservation Law Foundation	 Seeks CSX cooperation with Massachusetts Bay Transportation Authority and Amtrak for improved passenger rail service and access. Seeks an intermodal transfer facility in the Port of Boston to avoid truck drayage. Seeks increased freight rail service between metropolitan area and New England. 	Comments (and Request for Conditions) Comments on the Draft EIS
United States Representative Jerrold Nadler and 23 Members of Congress from the States of New York and Connecticut	 Draft EIS addresses only local effects of truck trips involving the New Jersey Shared Assets Area. New truck traffic crossing the George Washington Bridge and the Cross-Bronx Expressway would increase air pollution and environmental justice impacts in that area. Seeks use of car float operation across New York Harbor to Bay Ridge line. Seeks New York connecting railroad from Fresh Pond Junction to Oak Point Yard. Seeks inclusion in the North Jersey Shared Assets Area of connecting tracks between Oak Point and Harlem River Yards and to the New York Terminal Produce Market, with equal access by other connecting carriers. 	Intervention Petition Comments (and Request for Conditions) Comments on the Draft EIS Brief

TABLE H-2 METROPOLITAN AREA AND SOUTHERN NEW ENGLAND COMMENTOR LIST

Commentor	Comments/Concerns/Requested Conditions	Type of Filings	
State of New York Department of Transportation	 New truck traffic crossing the George Washington Bridge and Cross-Bronx Expressway would increase air pollution in that area. Seeks trackage rights on behalf of another railroad between connections of the Delaware and Hudson Railroad (CP) and points in New York City and Long Island, NY (for example, the Conrail Hudson Line). Seeks elimination of limitation on Metro-North to grant trackage rights over that line. 	 Responsive Application Comments (and Request for Conditions) Comments on the Draft EIS Brief 	
New York City Economic Development Corporation	See Comments/Concerns for State of New York Department of Transportation.	 Responsive Application Comments (and Request for Conditions) Comments on the Draft EIS 	
New York Cross Harbor Railroad Terminal Corp.	 Seeks requirement that CSX route all shipper-directed traffic between mid-Atlantic and metropolitan area and southern New England via NYCH if shortest route. Seeks CSX/NS joint responsibility for existing liabilities. 	Comments (and Request for Conditions)	
Rutgers Environmental Law Clinic (Tri-State Transportation Campaign)	 Seeks freight rail competition in the New York City area. Seeks inclusion or study of car float operation across the New York Harbor. Seeks trackage rights for NS from 65th St. to Bronx Oak Point Yard and Hunts Point Market. Grant NS trackage rights on Northeast Corridor to Connecticut and Massachusetts. Transfer to NS residual Conrail freight rights through Bergen. (Hudson River) tunnels and Penn Station in New York City. Require CSX to establish an intermodal terminal at Harlem River Yard. 	Comments (and Request for Conditions) Comments on the Draft EIS	
South Western Regional Planning Agency	 Increases in heavy truck traffic on I-95 in Connecticut due to new truck trips to and from intermodal facilities in North Jersey Shared Assets Area will cause air and noise pollution and adversely impact highway safety. Seeks conditions proposed by Congressman Nadler and 23 Members of Congress from the states of New York and Connecticut. 	Comments on Scope of the Draft EIS Comments on the Draft EIS	

While the commentors discussed a variety of impacts that could occur in the metropolitan area and southern New England if the Board approves the proposed Conrail Acquisition, many of

these potential impacts are related to competitive or merit issues. In considering the merits of the primary Application, the Board will address competitive issues specifically and will decide whether to impose the conditions that commentors have proposed. SEA has not addressed competitive issues in the Final EIS. However, in the Draft EIS, SEA considered the potential for local environmental impacts that could reasonably result from increased intermodal activity that CSX and NS proposed in the metropolitan area. (See Section H.1.4, "Draft EIS Analysis of Changes Related to the Proposed Conrail Acquisition in Northern New Jersey and in the New York Metropolitan Area.") For the Final EIS, SEA analyzed the potential changes in regional truck movements that could result from this increased intermodal activity. (See Section H.1.5, "Analysis of Truck Movement Effects within the Metropolitan Area Regional Highway System.")

H.1.4 Draft EIS Analysis of Changes Related to the Proposed Conrail Acquisition in Northern New Jersey and in the New York Metropolitan Area

The Draft EIS, Chapter 3, "Analysis Methods and Potential Mitigation Strategies," Section 3.8.1, "Methods for Determining Transportation Impacts from Increased Railroad Activities," summarizes the methods SEA used to determine potential transportation effects that could result from increased truck traffic at intermodal facilities in the metropolitan area. SEA applied the Board's thresholds for environmental analysis and evaluated intermodal facilities projected to have an increase of at least 50 trucks per day at the facility or an increase of 10 percent or more in ADT resulting from additional truck traffic along roadways leading to and from the facility. The Draft EIS Appendix C, "Traffic and Transportation," describes SEA's analysis of intermodal facility transportation effects.

In their Operating Plans, CSX and NS estimate annual projected increases or decreases in lift activity for each intermodal facility, including current Conrail facilities that either CSX or NS would operate. CSX and NS converted these lift projections to corresponding numbers of truck increases or decreases at each facility. SEA reviewed these projections and identified those facilities that would meet or exceed the Board's thresholds for environmental analysis. The Draft EIS analyzed four intermodal facilities in northern New Jersey. No other intermodal facilities in the States of New Jersey and New York required analysis.

Three Conrail facilities in Massachusetts that CSX proposes to operate after the proposed Conrail Acquisition would experience minor increases in truck traffic that would not meet the Board's thresholds for environmental analysis. Conrail has no other intermodal facilities in the New England states.

The Draft EIS, Chapter 5, "State Settings, Impacts, and Proposed Mitigation – New Jersey," describes the potential effects of increased truck activity at the various intermodal facilities in the metropolitan area. Table H-3 identifies those facilities that would experience an increase in truck traffic meeting or exceeding the Board's thresholds for environmental analysis.

TABLE H-3
INCREASED TRUCKS AT INTERMODAL FACILITIES
IN THE PROPOSED NORTH JERSEY SHARED ASSETS AREA

Facility	Current Owner	Proposed Owner	Current Activity	Proposed Activity	Expected Increase
South Kearny	Conrail	CSX	410	488	78
Little Ferry	CSX	CSX	215	392	177
E-Rail	Conrail	NS	72	407	335
Portside (Triple Crown Services)	Conrail	NS	26	76	50
		Total	723	1,363	640

Each truck would account for two truck trips, one into the facility and a second away from the facility. Therefore, total truck trips would increase by 1,280.

The Draft EIS considered the effects of the increased truck traffic on area roadways in the vicinity of the identified intermodal facilities. SEA determined that none of these roadways would experience an increase greater than 10 percent of its existing ADT. Therefore, SEA concluded that potential environmental impacts associated with these facilities would be insignificant if the Board approves the proposed Conrail Acquisition.

Although SEA analyzed the potential environmental impacts of increased truck traffic on the local roadways surrounding the four intermodal facilities in the metropolitan area, it did not analyze potential impacts related to truck trips through the metropolitan area and southern New England. The Applicants do not propose for these areas specific operating changes that would meet or exceed the Board's thresholds for environmental analysis and thereby require evaluation in the Draft EIS. Furthermore, the commentors who requested increased rail operations in the New York metropolitan area did not propose changes that would meet or exceed the Board's thresholds when added to operating changes proposed by the Applicants.

In the Draft EIS, SEA did not analyze the potential for conventional or Road Railer intermodal equipment traffic through the Bergen (Hudson) Tunnels and Penn Station on the Northeast Corridor or for freight traffic that could be interchanged with the New York Cross Harbor Railroad (or a similar car float operator). CSX and NS did not include such proposals in their Operating Plans, indicating that existing operating constraints would prevent the use of the tunnels and the Northeast Corridor. SEA did not analyze proposals from Responsive Applicants or commentors unless implementation of their proposals would result in operations that would meet or exceed the Board's thresholds for environmental analysis when combined with the Applicants' proposed operating changes.

H.1.5 Analysis of Truck Movement Effects within the Metropolitan Area Regional Highway System

The Draft EIS analyzed the local roadway effects of the 1,280 additional truck trips associated with the four intermodal terminals identified in Table H-3. The Draft EIS concluded that no local roadway would experience an average daily traffic increase of 10 percent or greater and, therefore, would not experience significant environmental impacts.

The Applicants projected additional truck trips in the metropolitan area by conducting truck-to-rail traffic diversion studies.⁵ These trips could be new to the local roads near the affected intermodal terminals; however, they would not necessarily be new to the major regional highways. Rather, these trucks would, for the most part, continue to use their original routes to and from New Jersey.

Truck diversions from the I-95/George Washington Bridge route or from the Goethals Bridge/Verrazano Narrows Bridge to the intermodal facilities in northern New Jersey would continue to use these routes. However, west of the Hudson River or the Arthur Kill, these diverted trucks would use the New Jersey Turnpike to access the intermodal terminals, rather than proceeding to destinations in the south or the west. Access to these terminals would involve very little travel on local roadways because each terminal is close to an interchange of the New Jersey Turnpike.

Although there would be no crossing point change for the diverted trucks currently using the George Washington Bridge route or the Goethals Bridge/Verrazano Narrows Bridge route, truck trips diverted from the Tappan Zee Bridge could generate some new trips on the I-95/George Washington Bridge route. Northbound trucks on the Tappan Zee Bridge route, for example, are now using I-287 in New Jersey and the New York State Thruway from Suffern to the Tappan Zee Bridge. These diverted trips from the intermodal terminals logically would not "backtrack" to I-287 at Suffern; rather, they would travel via I-95, the George Washington Bridge, and the Cross-Bronx Expressway to rejoin I-95 in upper Westchester County. SEA considered commentors' concerns regarding the effect of the proposed additional 1,280 truck trips and determined the potential number of current Tappan Zee Bridge truck trips that could shift to the George Washington Bridge if the Board approves the proposed Conrail Acquisition.

The material that Congressman Jerrold Nadler and his colleagues submitted with their February 2, 1998, comments on the Draft EIS noted the 1,280 projected additional truck trips associated with northern New Jersey, stating, "It can be assumed that over one thousand of those trips will originate or terminate in downstate New York and Connecticut and that all of that

.

See Volume 2A of the primary Application, which contains CSX's Operating Plan and the Verified Statement of Joseph G.B. Bryan, and Volume 2B of the primary Application, which contains NS's Operating Plan and the Verified Statement of Patrick J. Krick. Both documents discuss their diversion studies.

traffic, no matter its origin or destination, must be routed via the George Washington Bridge, due to clearance restrictions on all other crossings and circuitry."

This statement implies that approximately 280 of the additional trips, or approximately 22 percent, would be associated with points west of the Hudson River and would not move between New Jersey and New York. However, the conclusion that the remaining 1,000 "must be routed via the George Washington Bridge, due to clearance restrictions on all crossings and circuitry" is not correct because it is based on an assumed clearance restriction on the Goethals Bridge. The Brief of the Congressional Delegation in Support of the Intervention Petition, which the Members of Congress submitted on February 23, 1998, states on pages 12 and 13, "Due to clearance limitations on the Region's highway system, all heavy truck traffic crossing the Hudson River must do so on the George Washington Bridge or the Tappan Zee Bridge." This statement is explained by a footnote that says, "The route to the Verrazano Narrows Bridge crosses the Goethals Bridge. The lane width of the Goethals Bridge excludes trucks exceeding 8 feet in width, which is all heavy trucks." SEA contacted the Port Authority and confirmed that trucks up to 8 feet 6 inches wide, the current standard trailer width, are allowed to use the Goethals Bridge. In fact, on an average day in 1996, 2,576 trailers used the Goethals Bridge, constituting almost 4 percent of the average daily traffic. Additionally, the Verrazano Narrows Bridge, which opened in 1964, has standard lanes and readily accommodates 8 feet 6 inches wide tractor-trailers. At the Verrazano Narrows Bridge, 1997 traffic data indicate a 3,487 heavy truck average daily traffic volume.

Having clarified that tractor-trailers can use any of the Tappan Zee Bridge, George Washington Bridge, or Goethals Bridge/Verrazano Narrows Bridge routes, SEA considered the potential Tappan Zee Bridge-to-George Washington Bridge truck trip "shifts" using two approaches:

• In the first approach, SEA examined the present tractor-trailer usage of the three bridge routes. According to the latest available truck counts⁶, eastbound tractor-trailer average daily traffic levels for these crossings are: Tappan Zee Bridge – 2,800 (25.3 percent); George Washington Bridge – 6,504 (58.9 percent); Verrazano Narrows Bridge – 1,744 (15.8 percent). SEA then applied these percentages to the 1,000 truck trips that the Members of Congress assumed would shift their routes to or from the intermodal facilities in northern New Jersey. As noted earlier in this truck movements analysis, only the trucks now using the Tappan Zee Bridge would logically change their crossing point to the George Washington Bridge in order to more directly access the four affected intermodal terminals in the area. Consequently, SEA concluded that 253 truck trips (25.3 percent of 1,000) could shift from a Tappan Zee Bridge routing to a George Washington Bridge routing, if the Board approves the proposed Conrail Acquisition. SEA believes that this figure represents the maximum potential shift and is a very conservative figure. SEA also believes this number is high, based on information gained from site visits to three of the

_

¹⁹⁹⁶ for the Tappan Zee Bridge and George Washington Bridge; 1997 for the Verrazano Narrows Bridge.

affected intermodal facilities in northern New Jersey on March 17, 1998, which included discussions with two intermodal terminal operations managers regarding current and proposed operations. These managers indicated that high proportions of terminal trailers are moved to areas west and south of the metropolitan area and to international ocean terminals in New Jersey.⁷

• SEA developed the second approach based on CSX's estimate in its response to SEA inquiries on this subject. CSX's evaluation, for example, indicates that Tappan Zee Bridge-to-George Washington Bridge truck-trip shifts would be considerably lower than SEA's assumed 253 ADT level.

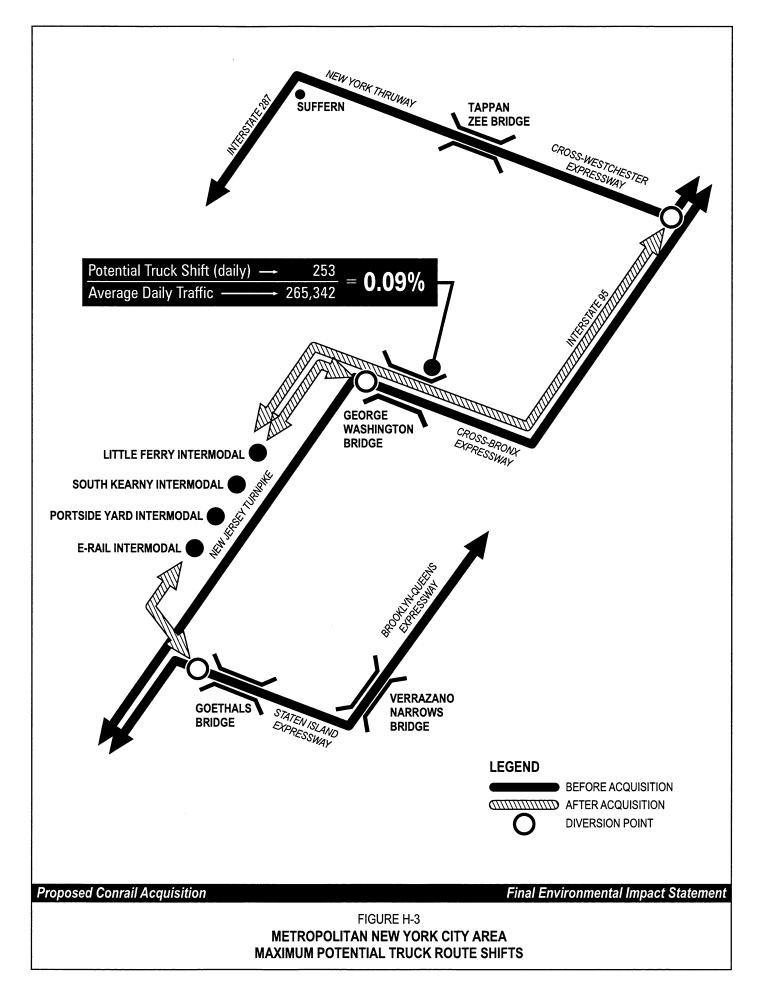
To be conservative, SEA assumed the full 253-truck trip shift to the George Washington Bridge, using that number to calculate the traffic effects (in numbers and percentages) on the George Washington Bridge and its major, direct truck connections in the Bronx. SEA used a "George Washington Bridge Exit/Entrance Study" prepared for the Port Authority in 1988 to identify data distributing George Washington Bridge traffic to the major approaches in the Bronx. The percentages of eastbound trucks were: 53 percent to the Cross-Bronx Expressway (I-95), 23 percent to the northbound Deegan Expressway (I-87), and 14 percent to the southbound Deegan Expressway (I-87). Applying these percentages, the 253 additional truck trips that could be added to the George Washington Bridge would be distributed as follows: 134 on the Cross-Bronx Expressway, 58 on the northbound Deegan Expressway, and 35 on the southbound Deegan Expressway. Table H-4 indicates the specific effects these changes would have on truck ADTs and total ADTs.

With regard to the metropolitan area regional highway system, SEA determined that under a worst-case scenario the projected diversions to the proposed northern New Jersey intermodal facilities would result in a small decrease in truck trips at the Tappan Zee Bridge and a small increase at the George Washington Bridge and its approaches. SEA also determined that these changes, which would result from localized shifts by trucks accessing the northern New Jersey area intermodal facilities and not by new truck trips, would be negligible as a percent of total average daily traffic. As a percent of truck average daily traffic, they would be in the 1 percent or less range, far below the 10 percent or greater threshold the Board applied to local roadways. Figure H-3 depicts the truck route shifts that could result within the metropolitan area if the Board approves the proposed Conrail Acquisition.

_

SEA was not able to quantify the volume of this movement. Therefore, SEA utilized a conservative estimate. The intermodal terminals in New Jersey are the eastern terminus of the "Land Bridge." Much of the intermodal freight is moved from the rail terminals by truck to the ocean terminals in New Jersey without crossing into New York. Thus, this movement would not affect the interstate system, the George Washington Bridge, or New York City roads.

TABLE H-4
EFFECTS OF POTENTIAL TRUCK TRIP SHIFTS FROM TAPPAN ZEE BRIDGE
TO GEORGE WASHINGTON BRIDGE ON AVERAGE DAILY TRAFFIC


		Average Daily Traffic (ADT) Effect			fect
Facility	Added Trips	Trucl	k ADT ^a	Tota	al ADT ^b
George Washington	253	253	1.000/	253	0.0007
Bridge		19,688	1.28%	265,342	0.09%
Cross-Bronx	134	134	0.540/	134	0.000/
Expressway		24,980	0.54%	161,650	0.08%
Deegan Expressway	58	58	0.440/	58	0.040/
North		12,519	0.44%	133,328	0.04%
Deegan Expressway	35	35		35	0.000/
South		10,156	0.34%	108,160	0.03%

Sources: Truck ADTs – New York State Department of Transportation, Port Authority of New York and New Jersey (1997); Port Authority of New York and New Jersey (1996).

Commentors concerned about potential air quality and environmental justice impacts that could occur in the metropolitan area based their concerns on the assumption that 1,000 new truck trips would be added to the George Washington Bridge and Cross-Bronx Expressway. However, SEA's expanded analysis of these proposed truck trips illustrates that any environmental impacts in the metropolitan area would be negligible and insignificant when compared to current traffic conditions. Consequently, SEA concluded that neither an air quality review nor an environmental justice review was warranted.

SEA also determined that the overall effect of the proposed truck-to-rail diversions would be positive because a significant number of longer-haul truck trips would shift from congested highways to intermodal trains moving to and from northern New Jersey and New England. Although part of the metropolitan area and southern New England might not experience the benefits of those diversions, SEA found no evidence that implementation of the proposed Conrail Acquisition would result in an increased number of truck trips (rather than truck trip shifts) in the metropolitan area and southern New England. Finally, SEA concluded that the truck trip shifts that could occur as a result of the proposed Conrail Acquisition would have no significant environmental impacts, either individually or cumulatively.

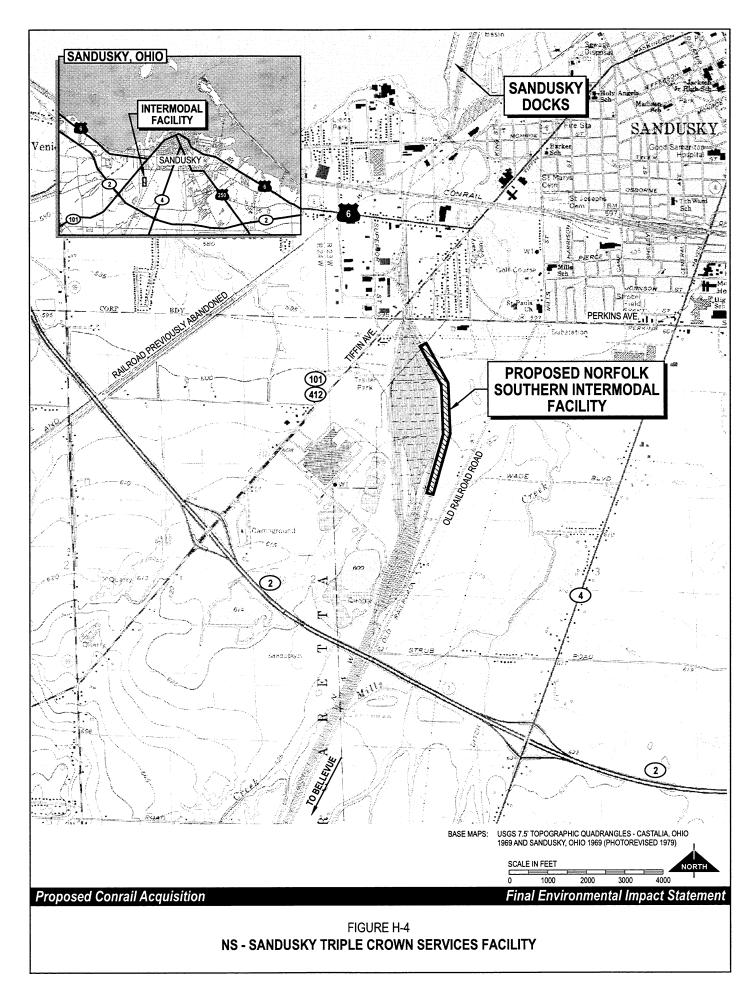
Sources: Total ADTs – New York State Department of Transportation, Port Authority of New York and New Jersey (1993 or 1994, expanded to 1996); Port Authority of New York and New Jersey (1996).

H.2 NS PROPOSED SANDUSKY INTERMODAL FACILITY

NS plans to build a new Triple Crown Service (TCS) facility along the east side of the existing NS rail yard approximately 2 miles southwest of downtown Sandusky, Ohio. (See Figure H-4.) This TCS facility would replace an existing Conrail TCS facility located in Crestline, Ohio. Using the same methodology presented in the Draft EIS, SEA conducted an additional analysis of transportation systems that the new intermodal facility potentially would affect.

The main gate for truck entry and exit movements for the new TCS facility would be located on Old Railroad Road, south of Perkins Avenue. The Ohio Turnpike (Interstate 80/90) and State Route 2 would serve the proposed facility. The primary truck route to and from the Ohio Turnpike would include State Route 4, Perkins Avenue, and Old Railroad Road. The primary truck route for truck traffic to and from State Route 2 bound for the Sandusky area also would include State Route 4, Perkins Avenue, and Old Railroad Road.

NS expects the proposed facility to handle 71 trucks per day, which corresponds to 142 new truck trips per day (one trip into the facility and one trip out of the facility). SEA assumed that 90 percent of the new truck trips would use the Ohio Turnpike. The remaining 10 percent of the new truck trips would use State Route 2. All of the new truck trips would use State Route 4, Perkins Avenue, and Old Railroad Road. SEA analyzed the average daily traffic volumes on the roadways approaching the proposed facility to determine the potential effects of these additional truck trips on those roadways. Table H-5 summarizes the results of SEA's analysis.


TABLE H-5
INCREASED TRUCK ACTIVITY ASSOCIATED WITH PROPOSED
SANDUSKY INTERMODAL FACILITY

Roadway Name	Roadway ADT	Increased Daily Truck Trips Using Roadway	Roadway ADT Percent Increase
Ohio Turnpike (Interstate 80/90)	121,600ª	128	0.11%
State Route 4	11,490 ^b	142	1.24%
State Route 2	14,950°	14	0.09%
Perkins Avenue	21,740°	142	0.65%
Old Railroad Road	2,050°	142	6.93%

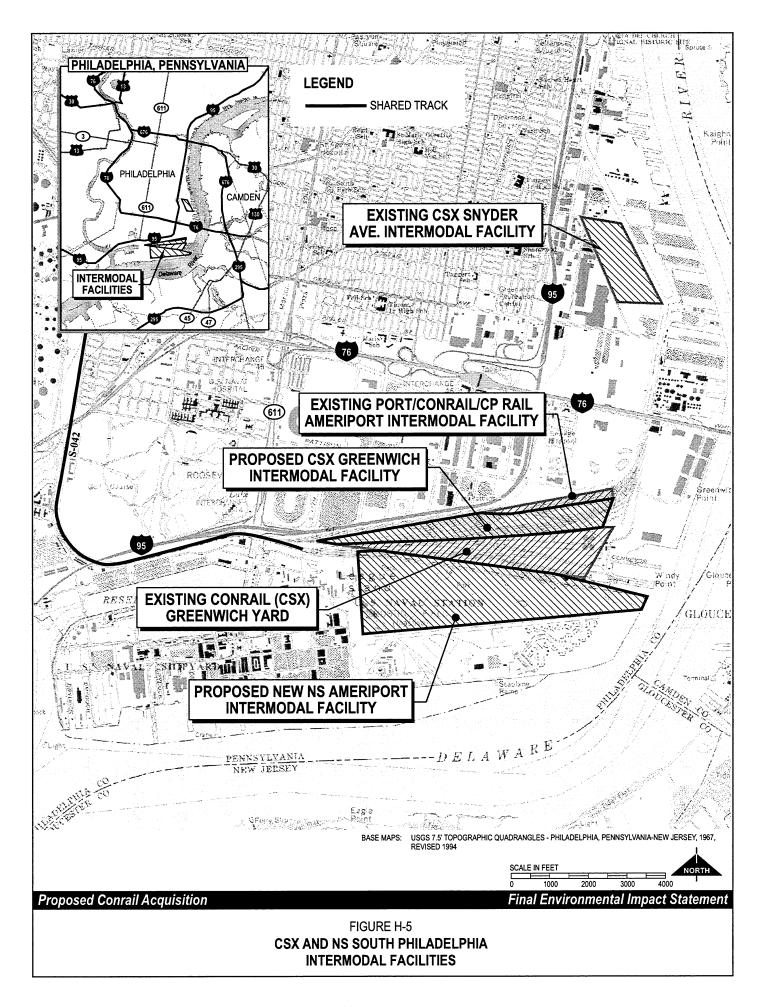
Source: Ohio Turnpike Commission data.

b Source: Ohio Department of Transportation data.

^c Source: Erie County, Ohio, data.

H-20

SEA's analysis shows that the total daily increase in truck traffic resulting from the proposed Sandusky intermodal facility would be less than 7 percent of the average daily traffic for all of the potentially affected roadways. SEA concludes that these increases in truck traffic would have no significant effects on the area roadways.


H.3 PHILADELPHIA AREA INTERMODAL FACILITIES

As a result of the proposed Conrail Acquisition, CSX and NS would implement several changes to the intermodal facilities in the Philadelphia area. These changes include the closing of one facility, the transfer of truck activity from one facility to two other facilities, the construction of one new facility, and the expansion of an existing facility. All of these facilities are located in South Philadelphia. Changes also would include the reallocation of trucks from the Morrisville facility to South Philadelphia.

Three intermodal facilities currently operate in South Philadelphia. The CSX Snyder Avenue facility is located on the west side of Christopher Columbus Boulevard (formerly Delaware Avenue) south of Oregon Avenue and north of Pattison Avenue. The AmeriPort intermodal facility is located on the west side of Christopher Columbus Boulevard south of Pattison Avenue. The Conrail Greenwich Yard is located south of Pattison Avenue. CSX would assume operation of the Greenwich yard following the proposed Conrail Acquisition. Figure H-5 shows the locations of these facilities.

The Snyder Avenue facility currently handles approximately 260 trucks per day. As part of the proposed Conrail Acquisition, CSX plans to develop a portion of the Greenwich site into a new intermodal facility that would handle approximately 272 trucks per day. CSX would close the existing Snyder Avenue facility once the new Greenwich facility begins operations.

The existing AmeriPort intermodal facility is operated by the Port of Philadelphia and Camden, a unit of the Delaware River Port Authority. Conrail and CP Rail provide rail service to the AmeriPort facility via truckage rights on shared rail line segment S-042. The AmeriPort facility currently handles approximately 108 trucks per day. Conrail accounts for approximately 64 trucks, while CP Rail accounts for approximately 44 trucks. After the proposed Conrail Acquisition, 27 Conrail-generated trucks would transfer to the new CSX Greenwich facility and 37 would transfer to a new NS facility.

As part of the proposed Conrail Acquisition, NS proposes to build a new AmeriPort/South Philadelphia intermodal facility south of the existing Conrail Greenwich Yard (future CSX yard) at the northeast corner of the former U.S. Naval Station. NS and the Delaware River Port Authority are exploring the possibility of jointly developing this new site. To date, the two parties have not finalized joint development. This proposed intermodal facility would be a key component of the planned redevelopment of the large portion of the Naval Station that the military no longer uses. NS is currently negotiating to acquire approximately 200 acres comprising the former Mustin Field, an airfield that has been inactive for some time. The site is in the early planning stages and NS has not yet developed conceptual plans. The proposed facility is projected to handle approximately 122 trucks per day after the proposed Conrail Acquisition. This figure includes approximately 37 of the Conrail-generated trucks from the existing AmeriPort facility. SEA based its study of the proposed NS AmeriPort/South Philadelphia intermodal facility on these figures.

The ultimate fate of the existing AmeriPort facility after the proposed Conrail Acquisition is unknown. CP Rail will continue to have trackage rights on shared rail line segment S-042, which will serve all three intermodal facilities after the proposed Conrail Acquisition. CP Rail traffic may ultimately shift to the new CSX Greenwich facility and/or the proposed NS AmeriPort/South Philadelphia intermodal facility. Because NS has not yet determined the future of the existing AmeriPort facility, SEA assumed that the current CP Rail traffic would remain at the existing AmeriPort facility.

As shown in Figure H-5, the three intermodal facilities that would operate in South Philadelphia after the proposed Conrail Acquisition are adjacent to each other in a heavy industrial and warehousing area. With the closing of the Snyder Avenue facility and the shifting of trucks to the new facilities, the operation of these three facilities in proximity to each other would have insignificant effects on the area roadways.

The Draft EIS contains a detailed traffic analysis for the proposed CSX Greenwich intermodal facility. (See Draft EIS, Chapter 5, "Pennsylvania: Setting, Impacts, and Proposed Mitigation," Section 5-PA.10, "Pennsylvania Transportation: Roadway Effects from Rail Facility Modifications.") This analysis was based on the 544 new truck trips that would be generated for the new Greenwich facility. Trucks bound for the existing CSX Snyder Avenue facility and the existing AmeriPort facility use the same truck route that the trucks for the Greenwich facility would use. This route includes Interstates 76 and 95 to Front Street, Oregon Avenue, and Christopher Columbus Boulevard. The 260 trucks per day that the CSX Snyder Avenue facility currently handles would be eliminated by closing the facility following the proposed Conrail Acquisition. This would eliminate 520 truck trips per day. The transfer of 37 Conrail-generated trucks per day from the existing AmeriPort facility to the proposed new NS AmeriPort/South Philadelphia intermodal facility would eliminate 74 truck trips per day at the existing AmeriPort facility. The 27 Conrail-generated trucks per day transferred from the existing AmeriPort facility to the proposed Greenwich facility would eliminate 54 truck trips per day at the existing AmeriPort facility. Therefore, 52 fewer trucks per day would travel the route involving Interstates 76 and 95 to Front Street, Oregon Avenue, and Christopher Columbus Boulevard after the proposed Conrail Acquisition.

SEA concludes that the intermodal activities in South Philadelphia involving the closing of the CSX Snyder Avenue facility and the construction of a new Greenwich facility would have no significant effects on area roadways.

Section H.3.1 of this appendix contains the detailed traffic analysis for the proposed NS AmeriPort/South Philadelphia intermodal facility. Section H.3.2 contains the revised traffic analysis of the NS Morrisville intermodal facility.

H.3.1 Proposed NS AmeriPort/South Philadelphia Intermodal Facility

Instead of expanding the Morrisville, Pennsylvania, Intermodal Facility, NS plans to build a new AmeriPort intermodal facility in South Philadelphia, Pennsylvania, at the northeast corner of the former Philadelphia U.S. Naval Station. (See Figure H-5.) The proposed intermodal facility would be a key component of the planned redevelopment of the large portion of the Naval Station that is no longer used for military purposes. NS currently is negotiating to acquire approximately 200 acres of the Naval Station comprising the former Mustin Field, an inactive airfield. The proposed new intermodal facility would handle new NS intermodal traffic as well as some former Conrail intermodal traffic that currently uses the existing AmeriPort intermodal facility, which is operated by the Port of Philadelphia and Camden.

To date, NS has no conceptual plans for the proposed new facility. The exact location of the main gate for truck entry and exit movements for the facility, though undetermined at this time, would be within the limits of the Naval Station. Trucks en route to the proposed new intermodal facility would pass through the Naval Station's main gate (or a new gate in the vicinity of the main gate) and move along roads within the Naval Station to the main gate of the proposed new facility. Trucks exiting the proposed facility would operate along that same route. The Naval Station's main gate is located on South Broad Street (State Route 611), and is the only access point to the Naval Station that currently is in active use. South Broad Street is the primary truck route between the Naval Station and Interstates 76 and 95. NS is investigating possible alternate access routes to the proposed new facility that would include extending either South Delaware Avenue or South 11th Street to pass through Conrail's Greenwich Yard site. CSX would operate Greenwich Yard should the Board approve the proposed Conrail Acquisition. These possible new access routes would require extensive planning and coordination between NS and CSX. SEA did not consider these possible new access routes in this analysis.

NS expects the proposed facility to handle 122 trucks per day, which corresponds to 244 new truck trips per day (one trip into the facility and one trip out of the facility). SEA assumed that 50 percent of the new truck trips would use Interstate 76 and 50 percent would use Interstate 95. All of the new truck trips would use South Broad Street (State Route 611). SEA analyzed the average daily traffic volumes on the roadways approaching the proposed facility to determine

the potential effects of these additional truck trips on those roadways. Table H-6 summarizes the results of SEA's analysis.

SEA's analysis shows that the total daily increase in truck traffic resulting from the proposed NS AmeriPort/South Philadelphia intermodal facility would be less than 2 percent of the average daily traffic for all of the potentially affected roadways. SEA concludes that these increases in truck traffic would have no significant effects on the area roadways.

TABLE H-6 INCREASED TRUCK ACTIVITY ASSOCIATED WITH PROPOSED NS AMERIPORT/SOUTH PHILADELPHIA INTERMODAL FACILITY

Roadway Name	Roadway ADT ^a	Increased Daily Truck Trips Using Roadway	Roadway ADT Percent Increase
Interstate 76	97,100	122	0.13%
Interstate 95	96,000	122	0.13%
South Broad Street	21,200	244	1.15%

^a Source: Delaware Valley Regional Planning Commission data.

H.3.2 Revised Analysis for NS Morrisville Intermodal Facility

NS would operate the existing Conrail Morrisville intermodal facility after the proposed Conrail Acquisition. As discussed in the Draft EIS, NS had originally intended to expand the existing conventional intermodal facility and construct a new TCS facility at the Morrisville site. Because of the proposed NS AmeriPort/South Philadelphia intermodal facility, NS no longer plans to construct a new TCS facility at the Morrisville site. This analysis reflects revised projections in the increases of truck traffic at the Morrisville facility.

The existing Conrail facility is located south of the U.S. Route 1 Bypass, just west of Morrisville. The main gate for truck entry and exit movements is located on Cabot Boulevard. The primary route for trucks to and from Interstate 95 includes the U.S. Route 1 Bypass, Oxford Valley Road, and Cabot Boulevard. Cabot Boulevard traverses an industrial area and dead-ends at the gate to the facility.

The Conrail facility currently handles approximately 164 trucks per day. The proposed Conrail Acquisition would increase this figure to 225 trucks per day. This total daily increase of 61 trucks corresponds to 122 additional truck trips per day. SEA assumed that all of the additional truck trips would use the four-lane roadways identified above. Table H-7 summarizes the traffic data analysis to determine the effects of these additional truck trips on the roadways approaching the facility.

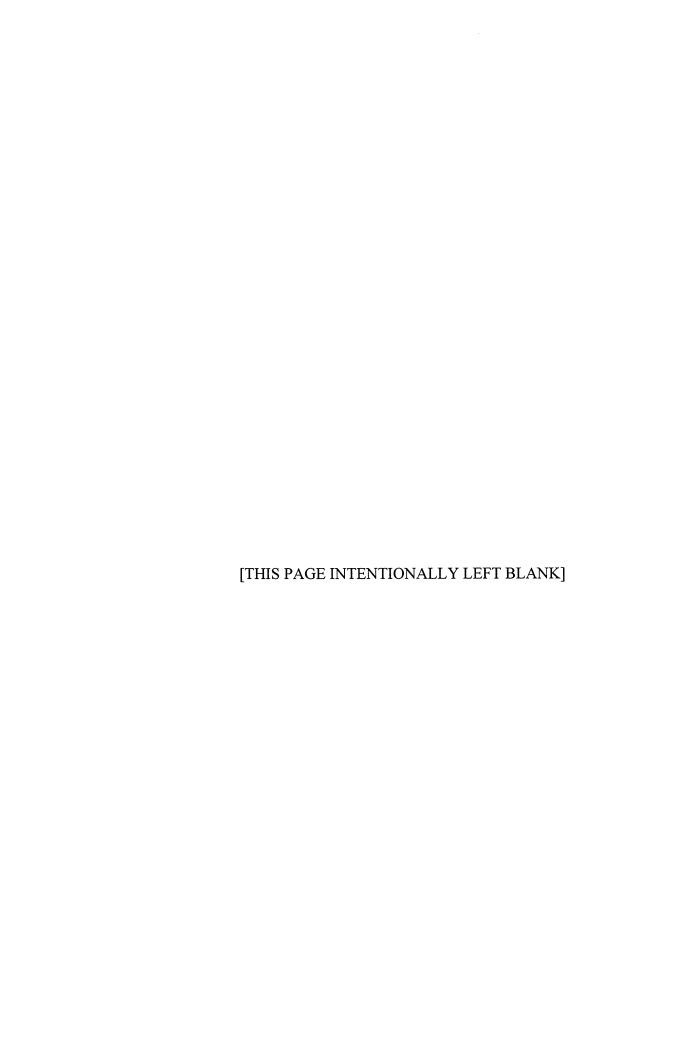

As shown in Table H-7, the average daily increase in truck traffic related to the proposed Conrail Acquisition would be less than 1 percent of the average daily traffic for Interstate 95, the U.S. Route 1 Bypass, and Oxford Valley Road. The total daily increase in truck traffic would be approximately 11 percent for Cabot Boulevard. Cabot Boulevard serves several light industries as well as the existing intermodal facility. Because Cabot Boulevard dead-ends at the intermodal facility and the majority of traffic on it is bound for the intermodal facility, this roadway can accommodate this increase in truck traffic. SEA concludes that this increase in truck traffic would not have any adverse effects on the predominantly commercial vehicle traffic that travels this roadway. Therefore, SEA concludes that these increases in truck traffic would have insignificant effects on area roadways.

TABLE H-7
TRAFFIC ANALYSIS SUMMARY FOR
MORRISVILLE INTERMODAL FACILITY

Roadway Name	Roadway ADT ^a	Increased Daily Truck Trips Using Roadway	Roadway ADT Percent Increase
I-95	50,200	122	0.24%
US 1 Bypass	56,700	122	0.22%
Oxford Valley Rd.	31,800	122	0.38%
Cabot Blvd.	1,100	122	11.09%

Source: Delaware Valley Regional Planning Commission.

APPENDIX I Air Quality Analysis

CONTENTS

A PPE	NDIX I	· ATR	QUALITY ANALYSIS	Page I-1
731112	I.1		SIONS ANALYSES	
	2. 2	I.1.1	Additional and Revised Emissions Analyses	
		I.1.2	Additional Emissions Analysis Associated With Increased Traffic from Inconsistent and Responsive Applications and Settlement Agreements	
	I.2	ADDI	TIONAL ANALYSES IN RESPONSE TO COMMENTS	
	1.2	I.2.1	Projected Cumulative Changes in Nitrogen Oxides Emissions	
		I.2.2	Potential Ambient Carbon Monoxide Concentrations Due to Motor	
		I.2.3	Vehicle Delays at Highway/Rail At-grade Crossings Potential Ambient Air Pollutant Concentrations Due to Diesel	
			Locomotive Exhaust Emissions from Stopped Trains	I-17
		I.2.4	Potential Ambient Air Pollutant Concentrations Due to Emissions	
			from Diesel Locomotives on Rail Line Segments	I-20
		I.2.5	Potential Health Effects of Toxic Air Pollutants in Diesel	
			Locomotive Exhaust Emissions	I-25
			TABLES	
I-1	Count	v/Jurisd	liction Emissions Screening Levels	. I-2
I-2	-	•	y, Ohio Annual Nitrogen Oxides Emissions Summary	
I-3			unty, Ohio Annual Nitrogen Oxides Emissions Summary	
I-4			ty, Ohio Annual Nitrogen Oxides Emissions Summary	
I-5	Wayne	Count	y, Michigan Annual Nitrogen Oxides Emissions Summary	. I-7
I-6	Estima	ited Inc	reases in Emissions in Albany County	I-10
I-7	Estima	ited Inc	reases in Emissions in Rensselaer County	I-10
I-8			County Annual Nitrogen Oxides Emissions Summary	I-11
I-9			reases in Emissions in Counties Affected by Louisville and Indiana	
			ement	
I-10	Carbo	n Mono	oxide Modeling Input Values and Results for Highway/Rail At-grade	:
	Crossi	_		I-16
I-11	Model	ing Inp	ut Values for Analysis of Stopped, Idling Locomotives	I-19
I-12	Maxim	num Co	ncentrations of Criteria Pollutants Due to Stopped, Idling Diesel	
		notives		I-20
I-13			ut Values For Analysis of Locomotives on Rail Line Segments	I-21
I-14			ncentrations of Criteria Pollutants Due to 153 Locomotive	
	Passby	s/Day	Compared to EPA Significance Levels and NAAQS	I-24

ATTACHMENTS

I-1	Cumulative Nitrogen Oxides Emissions Changes Due to Proposed Conrail	
	Acquisition and EPA Locomotive Rules	I-31
I-2	Charts Showing Cumulative Nitrogen Oxides (NO _x) Emissions Changes Due to	
	Proposed Conrail Acquisition and EPA Locomotive Rules	I-35
I-3	Maximum Concentrations of Diesel Particulates and Organic Substances and	
	Comparison to Health Criteria for 153 Diesel Locomotive Passbys Per Day	I-45
I-4	Maximum Calculated Concentrations of Diesel Particulates and Organic	
	Substances Due to Locomotives and Comparison to Health Criteria for 73	
	Locomotive Passbys Per Day	I-49

APPENDIX I AIR QUALITY ANALYSIS

This appendix describes the additional air quality analyses that the Section of Environmental Analysis (SEA) of the Surface Transportation Board (the Board) conducted for the Final Environmental Impact Statement (Final EIS) of the proposed Conrail Acquisition. SEA conducted additional air quality analyses in response to public comments on the Draft EIS and for updated railroad operations data that the Applicants¹ provided after preparation of the Draft EIS.

I.1 EMISSIONS ANALYSES

Appendix E, "Air Quality," of the Draft EIS describes the initial emissions analysis that SEA conducted. Chapter 4, "System-wide and Regional Setting, Impacts, and Proposed Mitigation," of the Draft EIS presents the results of SEA's initial system-wide and regional impact analysis. Chapter 5, "State Settings, Impacts, and Proposed Mitigation," of the Draft EIS presents the results of SEA's initial emissions analysis for counties or other local jurisdictions. SEA conducted additional emissions analyses to determine the potential air quality impacts associated with:

- Increased rail activity in three counties (Butler, Hamilton, and Ottawa Counties, Ohio) that SEA did not analyze in the Draft EIS, and revised information provided by the Applicants on rail activity in two counties (Vanderburgh County, Indiana, and Wayne County, Michigan) that SEA had analyzed in the Draft EIS.
- Additional rail segments that would meet or exceed the Board's thresholds for environmental analysis due to Inconsistent and Responsive applications and Settlement Agreements.

SEA conducted its additional emissions analyses using the same process in the Final EIS that it used in the Draft EIS. (See Draft EIS, Appendix E, "Air Quality," Section E.6, "County Emissions Estimation.") SEA developed the following five-step process for its emissions analysis:

¹ "The Applicants" refers to CSX Corporation and CSX Transportation, Inc. (CSX); Norfolk Southern Corporation and Norfolk Southern Railway Company (NS); and Conrail, Inc., and Consolidated Rail Corporation (Conrail).

- 1. Determine which rail line segments, intermodal facilities, and/or rail yards would meet or exceed the Board's thresholds for air quality analysis if the Board approves the proposed Conrail Acquisition.
- 2. Identify counties or independent jurisdictions that include portions of rail line segments, intermodal facilities, and rail yards that would meet or exceed the Board's thresholds for environmental analysis of air quality impacts.
- 3. Total the estimated emissions increases on the portions of rail line segments, intermodal facilities, and/or rail yards in the counties/jurisdictions identified.
- 4. Compare total estimated emissions increases for the affected counties/jurisdictions with the emissions screening levels that SEA developed based on U.S. Environmental Protection Agency (EPA) emissions levels for stationary source permitting. (See Table I-1.)
- 5. Conduct a detailed emissions analysis for the counties in which the estimated emissions increase would exceed the appropriate emissions screening level. The detailed analysis considers all potential emissions increases and decreases from the proposed Conrail Acquisition and related activities.

TABLE I-1 COUNTY/JURISDICTION EMISSIONS SCREENING LEVELS

Pollutant	Area Designation	Emissions Screening Levela (tons per year)
Nitrogen Oxides (NO _x)	NO ₂ Attainment/Maintenance Area or Ozone (O ₃) Marginal/Moderate Nonattainment Area (NAA) or O ₃ Attainment/Maintenance	100
	O ₃ Serious NAA	50
	O ₃ Severe NAA	25
Volatile Organic Compounds (VOCs)	O ₃ Attainment/Maintenance Outside Northeast Ozone Transport Region (OTR) ^b <u>or</u> O ₃ Marginal/Moderate NAA Outside OTR	100
	O ₃ Attainment/Maintenance Inside OTR <u>or</u> O ₃ Marginal/Moderate NAA Inside OTR <u>or</u> O ₃ Serious NAA	50
	O ₃ Severe NAA	25

TABLE I-1 COUNTY/JURISDICTION EMISSIONS SCREENING LEVELS

Pollutant	Area Designation	Emissions Screening Level ^a (tons per year)
Carbon Monoxide (CO)	CO Attainment/Maintenance or CO Marginal/Moderate NAA	100
	CO Serious NAA	50
Particles < 10 Microns (PM ₁₀)	PM ₁₀ Attainment/Maintenance <u>or</u> PM ₁₀ Moderate NAA	100
	PM ₁₀ Serious NAA	70
Sulfur Dioxide (SO ₂)	SO ₂ Attainment or NAA	100
Lead	Lead Attainment or NAA	0.6

The emissions screening levels for NO_x, VOCs, CO, PM₁₀, and SO₂ are based on EPA general conformity emission thresholds and Clean Air Act Amendments Title V emission thresholds. The emissions screening level for lead is based on EPA New Source Review emission threshold for major modification.

I.1.1 Additional and Revised Emissions Analyses

SEA conducted emissions analyses for three additional counties that SEA did not analyze in the Draft EIS. The additional counties for which SEA conducted emissions analyses are Butler, Hamilton, and Ottawa Counties in Ohio. If the Board approves the proposed Conrail Acquisition, the rail line segments, intermodal facilities, and/or rail yards in Butler, Hamilton, and Ottawa Counties, Ohio would meet or exceed the Board's threshold for environmental analysis of air quality impacts. SEA did not include an analysis of these counties in the Draft EIS because it did not have the data to calculate the emissions prior to preparation of the Draft EIS.

SEA revised its emissions analysis of Wayne County, Michigan, using updated information the Applicants provided after issuance of the Draft EIS. SEA's revised emissions analysis of Wayne County reflects NS's revised Operating Plan for the proposed Conrail Acquisition for:

- Rail line segment N-121 (West Detroit, Michigan, to Jackson, Michigan).
- Rail line segment C-214 (Detroit, Michigan, to Plymouth, Michigan).

The OTR is an area consisting of the northeastern states (from Maine through Pennsylvania and norther n Virginia) that was delineated by the 1990 Clean Air Act Amendments as an area of special concern because of substantial transport of ozone and its precursor pollutants (NO_x and VOCs) across state and county boundaries.

• Rail line segment C-215 (Plymouth, Michigan, to Grand Rapids, Michigan).

NS's revised plan decreases the estimated amount of freight hauled annually on each of these rail line segments. Therefore, the emissions in Wayne County will be smaller than previously estimated. SEA also revised its analysis of Vanderburgh County, Indiana, to reflect slightly lower train traffic levels as a result of CSX's Settlement Agreement with the Louisville and Indiana Railroad. (See Section I.1.2, "Additional Emissions Analysis Associated With Increased Traffic from Inconsistent and Responsive Applications and Settlement Agreements.")

SEA's estimated emissions increases for activities that would meet or exceed the Board's thresholds for environmental analysis of air quality impacts did not exceed the appropriate screening level for any of the pollutants except nitrogen oxides (NO_x) in these counties. SEA, therefore, did not perform a detailed emissions analysis for any pollutants other than NO_x . The following sections provide the results of NO_x emissions analyses for the five additional counties.

Butler County, Ohio

Butler County is designated by the EPA as a moderate nonattainment area for ozone. The emission screening level for NO_x in Butler County is 100 tons per year. Table I-2 shows the results of SEA's NO_x emissions analysis for Butler County. SEA determined that the proposed Conrail Acquisition would result in a net increase in NO_x emissions in Butler County above the NO_x emissions screening level of 100 tons per year.

TABLE I-2
BUTLER COUNTY, OHIO
ANNUAL NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (Railroad)	Identification	NO _x Emissions (tons/year)
Rail Line Segment (NS)	Dayton, OH to Ivorydale, OH	83.63
Rail Line Segment (NS)	Muncie, IN to Ivorydale, OH	65.21
Rail Line Segment (CSX)	Cincinnati, OH to Hamilton, OH	28.76
Rail Line Segment (CSX)	Middletown Jct., OH to Middletown, OH	-7.33
Rail Line Segment (CSX)	Indianapolis, IN to Hamilton, OH	15.51
Rail Yard (CSX)	Hamilton, OH	-10.14
Rail Yard (CSX)	Middletown, OH - Excello, OH	0.28
Truck Diversion (both)	County-wide	-8.81
Highway/Rail At-Grade	Affected Crossings >5,000 Vehicles/Day ^a	4.78
Total Acquisition-related Net N	itrogen Oxides Emissions Increase	171.89

TABLE I-2 BUTLER COUNTY, OHIO ANNUAL NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (Railroad)	Identification	NO _x Emissions (tons/year)
Nitrogen Oxides Emissions Screening Level		100.00
Existing (1995) County Total Nitrogen Oxides Emissions		17,272.22
Percent Increase in County Nitrogen	Oxides Emissions	1.00%

The estimated increase in NO_x emissions in Butler County represents a 1.0 percent increase in the existing (1995) county-wide NO_x emissions (EPA, 1996). SEA does not expect that the estimated 1.0 percent increase in NO_x emissions would have a significant adverse impact on ozone attainment in the county. (See Draft EIS, Chapter 4, "System-wide and Regional Setting, Impacts, and Proposed Mitigation," for a discussion of system-wide and regional air quality.)

Hamilton County, Ohio

Hamilton County is designated by the EPA as a moderate nonattainment area for ozone. The emission screening level for NO_x in Hamilton County is 100 tons per year. Table I-3 shows the results of SEA's analysis of NO_x emissions for Hamilton County. SEA determined that the proposed Conrail Acquisition would result in a net decrease in NO_x emissions in Hamilton County of more than 50 tons per year. Based on these results, SEA did not perform further analysis for this county.

TABLE I-3
HAMILTON COUNTY, OHIO
ANNUAL NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (Railroad)	Identification	Nitrogen Oxides Emissions (tons/year)
Rail Line Segment (NS)	Dayton, OH to Ivorydale, OH	40.19
Rail Line Segment (NS)	Ivorydale, OH to Cincinnati, OH	37.23
Rail Line Segment (NS)	Sardenia, OH to Norwood, OH	-23.28
Rail Line Segment (NS)	Norwood, OH to Ivorydale, OH	-7.99
Rail Line Segment (NS)	Cincinnati, OH to SJ Jct, KY	0.51
Rail Line Segment (CSX)	Cincinnati, OH to Hamilton, OH	59.83
Rail Line Segment (CSX)	Cincinnati, OH to Columbus, OH	9.31
Rail Line Segment (CSX)	Cincinnati, OH to Mitchell, OH	-98.99
Rail Line Segment (CSX)	Cincinnati, OH to Covington, OH	2.92

TABLE I-3 HAMILTON COUNTY, OHIO ANNUAL NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (Railroad)	Identification	Nitrogen Oxides Emissions (tons/year)
Rail Yard (NS)	Cincinnati, OH	1.44
Rail Yard (NS)	Sharonville, OH	-0.10
Rail Yard (CSX)	Cincinnati, OH - Decoursey	-5.05
Rail Yard (CSX)	Cincinnati, OH - Ivorydale	-4.66
Rail Yard (CSX)	Cincinnati, OH - Queensgate Yd	-15.55
Rail Yard (CSX)	Cincinnati, OH - Springdale	-2.97
Intermodal Facility (NS)	Cincinnati, OH - Gest Street	5.53
Intermodal Facility (CSX)	Cincinnati, OH	2.06
Truck Diversions (both)	County-wide	-53.03
Highway/Rail At-grade	Affected Crossings >5,000	0.88
Total Acquisition-related Net 1	Nitrogen Oxides Emissions Increase	-51.72
Nitrogen Oxides Emissions Sc	reening Level	100.00

[&]quot;Affected Crossings" are those with an increase in rail line segment activity over the Board's thresholds for air quality analysis, and which have vehicle traffic levels over 5,000 vehicles per day.

Ottawa County, Ohio

Ottawa County is designated by EPA as an attainment area for all pollutants, with no maintenance areas for any pollutant. The emission screening level for NO_x in Ottawa County is 100 tons per year. Table I-4 shows the results of SEA's analysis of NO_x emissions for Ottawa County. SEA determined that the proposed Conrail Acquisition would result in a net decrease in NO_x emissions in Ottawa County of more than 7 tons per year. Based on these results, SEA did not perform further analysis for this county.

TABLE I-4 OTTAWA COUNTY, OHIO ANNUAL NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (RR)	Identification	Nitrogen Oxides Emissions (tons/year)
Rail Line Segment (NS)	Oak Harbor, OH to Bellevue, OH	53.28
Rail Line Segment (NS)	Vemilion, OH to Oak Harbor, OH	-124.84
Rail Line Segment (NS)	Homestead, OH to Oak Harbor, OH	-39.09

TABLE I-4 OTTAWA COUNTY, OHIO ANNUAL NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (RR)	Identification	Nitrogen Oxides Emissions (tons/year)
Rail Line Segment (NS)	Oak Harbor, OH to Miami, OH	103.44
Highway/Rail At-grade Crossings (both)	Affected Crossings >5,000 Vehicles/Day ^a	0.04
Total Acquisition-related Net Nitrogen Oxides Emissions Increase		-7.17
Nitrogen Oxides Emissions Scre	100.00	

^a "Affected Crossings" are those with an increase in rail line segment activity over the Board's thresholds for air quality analysis, and which have vehicle traffic levels over 5,000 vehicles per day.

Wayne County, Michigan

Wayne County is designated by EPA as a maintenance area for ozone. The emissions screening level for NO_x in Wayne County is 100 tons per year. Table I-5 shows the results of SEA's NO_x emissions analysis for Wayne County. SEA determined that the proposed Conrail Acquisition would result in a net increase in NO_x emissions in Wayne County above the emissions screening level of 100 tons per year.

TABLE I-5
WAYNE COUNTY, MICHIGAN
ANNUAL NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (RR)	Identification	NO _x Emissions (tons/year)
Rail Segment (CSX)	Detroit, MI to Plymouth, MI	-28.85
Rail Segment (CSX)	Plymouth, MI to Grand Rapids, MI	-12.44
Rail Segment (CSX)	Wixom, MI to Plymouth, MI	4.47
Rail Segment (CSX)	Plymouth, MI to Wayne, MI	6.46
Rail Segment (CSX)	Wayne, MI to Carleton, MI	62.96
Rail Segment (NS)	W Detroit, MI to Jackson, MI	-11.80
Rail Segment (NS)	Airline, OH to River Rouge, MI	12.40
Rail Segment (NS)	Oakwood, MI to Butler, IN	36.04
Rail Segment (NS)	St Thomas, ON to W Detroit, MI	1.02
Rail Segment (SA)	Carleton, MI to Ecorse, MI	88.76
Rail Segment (SA)	W Detroit, MI to North Yard, MI	21.11

TABLE I-5 WAYNE COUNTY, MICHIGAN ANNUAL NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (RR)	Identification	NO _x Emissions (tons/year)
Rail Segment (SA)	W Detroit, MI to Delray, MI	8.98
Rail Segment (SA)	Delray, MI to Trenton, MI	-16.07
Rail Yard (CSX)	Detroit - Lincoln Park	-0.21
Rail Yard (CSX)	Detroit - Livernois	-4.68
Rail Yard (CSX)	Detroit - Mound Road	0.01
Rail Yard (CSX)	Detroit - North Yard	-5.14
Rail Yard (CSX)	Detroit - River Rogue	-9.22
Rail Yard (CSX)	Detroit - Warren/Sterl	1.21
Rail Yard (CSX)	Detroit - Middlebelt	-2.81
Rail Yard (CSX)	Detroit - Plymouth	1.03
Rail Yard (CSX)	Detroit - Rougemere	14.03
Rail Yard (CSX)	Detroit - Wayne	2.17
Rail Yard (NS)	Detroit - Livernois	-2.76
Rail Yard (NS)	Detroit - North Yard	-2.54
Rail Yard (NS)	Detroit - River Rouge	-6.13
Intermodal Facility (CSX)	Detroit - Livernois	5.10
Intermodal Facility (NS)	Detroit - Livernois	-2.44
Intermodal Facility (NS)	Detroit - Delray	6.55
Intermodal Facility (NS)	Detroit - Oakwood/Melvindale	7.65
Truck Diversions (both)	County-wide	-53.73
At-Grade Crossings (both)	Affected Crossings >5,000 Vehicles/Day ^a	0.27
Total Acquisition-Related Ne	t NO, Emissions Increase	121.40
NO, Emissions Screening Lev	vel	100.00
Existing (1995) County Total	NO _x Emissions	124,884.14
Percent Increase in County N	O _v Emissions	0.10%

[&]quot;Affected Crossings" are those with an increase in rail segment activity over Board air quality analysis thresholds, and which have vehicle traffic levels over 5,000 vehicles/day.

The estimated increase in NO_x emissions in Wayne County represents a 0.1 percent increase in the existing (1995) county-wide NO_x emissions (EPA, 1996). Because this is well below 1.0 percent of the existing NO_x emissions, SEA does not expect a significant impact to local (county)

ozone levels as a result of the proposed Conrail Acquisition. (See Draft EIS, Chapter 4, "System-wide and Regional Setting, Impacts, and Proposed Mitigation," for a discussion of system-wide and regional air quality.) In addition, SEA anticipates that implementation of proposed new EPA emissions standards for locomotives will more than offset the estimated increase within a few years after their implementation. (See Appendix O, "EPA Rules on Locomotive Emissions," of this Final EIS.)

I.1.2 Additional Emissions Analysis Associated With Increased Traffic from Inconsistent and Responsive Applications and Settlement Agreements

Inconsistent and Responsive Applications

Two Inconsistent and Responsive (IR) applicants requested trackage rights over the same rail line segment in Albany, New York (10 miles of rail line segment C-726, between rail line segment C-187 and Selkirk in Albany and Rensselaer Counties). Each IR applicant proposed an additional 2 trains per day on this rail line segment. Although this rail line segment would have no projected increase in traffic as a result of the proposed Conrail Acquisition, the Board's approval of these two IR applications would result in an increase in train traffic of 4 trains per day, which would exceed the Board's threshold for air quality analysis. Therefore, SEA conducted emissions analyses for Albany and Rensselaer Counties, where the rail line segment is located.

Because neither IR applicant provided information on the amount of freight that would be transported over the rail line segment as a result of their proposals, SEA estimated the annual amount of freight (in million gross tons) in order to calculate emissions resulting from the proposed additional traffic. SEA's estimate is based on the annual amount of freight per train on all rail line segments included in the detailed emissions analysis presented in the Draft EIS. SEA calculated the pollutant emissions resulting from the additional 4 trains per day on the subject rail line segment using its estimated freight-per-train value and the pollutant specific emission factors presented in the Draft EIS. (See Draft EIS, Appendix E, "Air Quality," Section E.7, "Emissions Factors," for emission factors and calculation methodology.)

The following sections provide the results of SEA's emissions analyses of Albany and Rensselaer Counties. SEA's estimated emissions increases for the proposed additional train traffic on rail line segment C-726 do not exceed the appropriate screening level for any of the criteria pollutants. Therefore, SEA did not perform a detailed emissions analysis for the two counties affected by the IR applications.

Albany County, New York. Albany County is designated by EPA as a marginal nonattainment area for ozone. SEA estimated increases in emissions for each of the rail facilities in Albany County that would experience an increase in traffic or activity and meet or exceed the Board's thresholds for environmental analysis as a result of the proposed Conrail Acquisition and IR applications. (See Table I-6.) Although the increased traffic would result in an increase in

emissions, the estimated increase is below the screening level for each of the pollutants. (See Table I-1.)

Rensselaer County, New York. Rensselaer County is designated by EPA as a marginal nonattainment area for ozone. SEA estimated increases in emissions for the rail facilities in Rensselaer County that would experience an increase in traffic or activity and meet or exceed the Board's thresholds for environmental analysis as a result of the proposed Conrail Acquisition and IR applications. (See Table I-7.) Although the increased traffic would result in an increase in emissions, the estimated increase is below the screening level for each of the pollutants. (See Table I-1.)

TABLE I-6
ESTIMATED INCREASES IN EMISSIONS IN ALBANY COUNTY

Rail	Length of	Change in Trains	Change	Estimated Increases in Emissions (tons/year)				:	
Line Segment	Segment within County (miles)	Per Day	in MGT ^a	NO _x ^b	VOCsc	COd	PM ₁₀ ^e	SO ₂ ^f	Lead
C-054	13	6.5	9.90	50.00	1.90	5.50	1.30	3.20	1.1x10 ⁻⁴
C-726	4.7	4.0	8.24	15.09	0.56	1.68	0.38	0.98	3.2x10 ⁻⁵
Total for Albany County			65.09	2.46	7.18	1.68	4.18	1.4x10 ⁻⁴	

- a Million gross tons.
- b Nitrogen oxides.
- ^c Volatile Organic Compounds.
- d Carbon monoxide.
- e Particles less than 10 microns in diameter.
- f Sulfur dioxide.

TABLE I-7
ESTIMATED INCREASES IN EMISSIONS IN RENSSELAER COUNTY

Rail	Length of	Change	Change	Estimated Increases in Emissions (tons/year)					
Line Segment	Segment within County (miles)	in Trains per Day	in MGT ^a	NO _x ^b	VOCsc	COd	PM ₁₀ ^e	SO ₂ ^f	Lead
C-726	4.7	4.0	8.24	15.09	0.56	1.68	0.38	0.98	3.2x10 ⁻⁵

- Million gross tons.
- b Nitrogen oxides.
- c Volatile Organic Compounds.
- d Carbon monoxide.
- e Particles less than 10 microns in diameter.
- f Sulfur dioxide.

CSX/Louisville and Indiana Settlement Agreement

After preparation of the Draft EIS, SEA was informed of a Settlement Agreement between CSX and the Louisville and Indiana Railroad. This agreement altered CSX's proposed Operating Plan for several rail line segments in Indiana, Kentucky, Tennessee, and Ohio. SEA evaluated these changes and determined that several counties previously analyzed would no longer meet the Board's air quality analysis thresholds, some counties not previously analyzed would meet Board thresholds, and some counties previously analyzed would have changes in emissions.

SEA found that of the counties analyzed previously, only Vanderburgh County would have a non-negligible change in NO_x emissions due to the agreement. Therefore, SEA has revised its detailed NO_x emissions netting analysis for Vanderburgh County. (See Table I-8.)

TABLE I-8
VANDERBURGH COUNTY ANNUAL
NITROGEN OXIDES EMISSIONS SUMMARY

Activity Type (RR)	Identification	NO _x Emissions (tons/year)
Rail Segment (CSX)	Vincennes, IN to Evansville, IN	171.62
Rail Segment (CSX)	Evansville, IN to Amqui, TN	90.01
Rail Yard (CSX)	Evansville - Howell	2.51
Intermodal Facility (CSX)	Evansville	0.16
Truck Diversions (both)	County-wide	-0.92
At-Grade Crossings (both)	Affected Crossings > 5,000 Vehicles/Day ^a	0.18
Total Acquisition-Related Net	NO _x Emissions Increase	263.56
NO _x Emissions Screening Lev	rel	100.00
Existing (1995) County Total	12,094.44	
Percent Increase in County No	D _x Emissions	2.18%

^a "Affected Crossings" are those with an increase in rail segment activity over the Board's air quality analysis thresholds, and which have vehicle traffic levels over 5000 vehicles/day.

The revised analysis for Vanderburgh County changes the estimated NO_x increase from 311 tons per year, or a 2.58 percent increase in county-total nitrogen oxides emissions as presented in the Draft EIS, to a revised increase of 264 tons per year, or 2.18 percent of county-total NO_x emissions. This minor increase would be temporary (see Section I.2.1), and in any case, is not expected to significantly affect local ozone concentrations, which can be affected by NO_x emissions. EPA recently changed Vanderburgh County's designation to an ozone maintenance area from a nonattainment area for ozone. Recent studies by the Ozone Transport Assessment

Group (OTAG) have found, however, that the primary cause of high ozone is NO_x emissions over large-scale areas, rather than local NO_x emissions. Because the proposed Conrail Acquisition would result in a system-wide decrease in NO_x emissions, SEA has concluded that the small increase in NO_x in Vanderburgh County would not adversely affect local ozone levels.

In addition to revising its analysis for Vanderburgh County, SEA estimated emissions for several other counties in Indiana and Kentucky that were not analyzed in the Draft EIS because they were not expected to have activities exceeding the Board's air quality analysis thresholds. Because of the Settlement Agreement, which grants CSX trackage rights over two rail line segments owned by the Louisville and Indiana Railroad, the Indianapolis-to-Seymour, Indiana and Seymour-to-Louisville, Kentucky, rail line segments would exceed Board analysis thresholds. Table I-9 presents SEA's estimated air pollutant emissions for each of the counties affected by these rail line segments.

TABLE I-9
ESTIMATED INCREASES IN EMISSIONS IN COUNTIES AFFECTED BY
LOUISVILLE AND INDIANA RAILROAD SETTLEMENT

Rail Line	Length of Segment within	Change in Trains	Change in	Es	stimated Inc	reases in	n Emission	s (tons/y	ear)
Segment	County (miles)	Per Day	MGT ^a	NO _x ^b	VOCsc	COd	PM ₁₀ ^e	SO ₂ ^f	Lead
LIRC-1	9.0	2.1	4.05	14.20	0.53	1.58	0.36	0.92	3.0x10 ⁻⁵
Total for M	larion County		100000000000000000000000000000000000000	14.20	0.53	1.58	0.36	0.92	3.0x10 ⁻⁵
LIRC-1	21.8	2.1	4.05	34.40	1.28	3.82	0.87	2.23	7.3x10 ⁻⁵
Total for Jo	ohnson County	- · · · · · · · · · · · · · · · · · · ·		34.40	1.28	3.82	0.87	2.23	7.3x10 ⁻⁵
LIRC-1	22.2	2.1	4.05	35.03	1.30	3.89	0.88	2.27	7.4x10 ⁻⁵
Total for B	artholomew Count	y		35.03	1.30	3.89	0.88	2.27	7.4x10 ⁻⁵
LIRC-1	5.8	2.1	4.05	9.15	0.34	1.02	0.23	0.59	1.9x10 ⁻⁵
LIRC-2	13.7	4.2	8.05	42.97	1.59	4.77	1.08	2.78	9.1x10 ⁻⁵
Total for Ja	ackson County			52.12	1.93	5.79	1.31	3.37	1.1x10 ⁻⁴
LIRC-2	12.2	4.2	8.05	38.27	1.42	4.25	0.97	2.48	8.1x10 ⁻⁵
Total for So	cott County			38.27	1.42	4.25	0.97	2.48	8.1x10 ⁻⁵
LIRC-2	23.6	4.2	8.05	74.03	2.74	8.22	1.87	4.80	1.6x10⁴
Total for C	Total for Clark County			74.03	2.74	8.22	1.87	4.80	1.6x10 ⁻⁴
LIRC-2	3.0	4.2	8.05	9.41	0.35	1.05	0.24	0.61	2.0x10 ⁻⁵
Total for Jo	Total for Jefferson County			9.41	0.35	1.05	0.24	0.61	2.0x10 ⁻⁵

a Million gross tons.

b Nitrogen oxides.

Volatile Organic Compounds.

d Carbon monoxide.

e Particles less than 10 microns in diameter.

f Sulfur dioxide.

The counties listed in Table I-9 are designated by EPA as attainment, maintenance, or marginal nonattainment areas for ozone, and are designated as attainment areas for other pollutants. The data in Table I-9 show that increased emissions in each county affected are below SEA's emissions screening levels. Therefore, SEA did not perform a detailed emissions netting analysis for any of these counties and concludes that these small increases will not have a significant impact on air quality.

I.2 ADDITIONAL ANALYSES IN RESPONSE TO COMMENTS

I.2.1 Projected Cumulative Changes in Nitrogen Oxides Emissions

In response to several commentors who expressed concern about projected localized NO_x emissions increases, SEA performed additional analysis to evaluate the cumulative effects of the proposed Conrail Acquisition and EPA's proposed emissions standards for new and rebuilt locomotive engines. The commentors generally expressed concern that any increase in local (county-wide) NO_x emissions would impede efforts to reduce such emissions to help maintain compliance or bring areas into compliance with the National Ambient Air Quality Standards (NAAQS) for ozone.

Local NO_x emissions control efforts do not have a significant impact on reducing local ozone concentrations. In studies that included large-scale modeling of ozone transport, OTAG concluded that the transport of ozone is a larger-scale problem and requires NO_x reductions on a larger, regional scale, rather than only on a local level. (See Draft EIS, Chapter 4, "Systemwide and Regional Setting, Impacts, and Proposed Mitigation.") The proposed Conrail Acquisition is expected to reduce NO_x emissions slightly on a system-wide basis. Therefore, SEA does not believe the relatively minor NO_x increases projected for some local areas would have a significant adverse impact on ozone levels.

Although recent OTAG findings suggest that NO_x controls should have a multistate, rather than a county-by-county focus, SEA recognizes that many counties are still attempting to maintain or reduce NO_x emissions budgets in accordance with state implementation plan (SIP) agreements with EPA. Therefore, SEA analyzed the combined effects of the proposed Conrail Acquisition together with the new locomotive emissions standards to identify the projected effects on local NO_x emissions over time.

Attachment I-1 shows the projected trend in locomotive NO_x emissions due to the cumulative effects of the proposed Conrail Acquisition and the locomotive emissions standards. The counties listed are those classified as ozone nonattainment and maintenance areas, with estimated NO_x emissions above SEA's emissions screening levels for NO_x . (See Table I-1.) The projections in Attachment I-1 are based on the following assumptions and procedures:

• The proposed Conrail Acquisition would take three years to implement, starting in late 1998, and the associated local NO_x emissions increases would occur evenly over time,

with one-third occurring by the end of 1999, two-thirds by the end of 2000, and all of the proposed Conrail Acquisition-related emissions increases by the end of 2001.

- EPA locomotive emissions standards will be effective starting January 1, 2000, and the rate of locomotive emissions reduction will be as projected by EPA. (See Appendix O, "EPA Rules on Locomotive Emissions," of this Final EIS.)
- SEA estimated the locomotive rule-related emissions reductions only for rail line segments operated by CSX, NS, and Conrail, or as shared operations in the counties analyzed by SEA. Because these reductions were not estimated for other rail carriers, or for locomotive activity in rail yards or intermodal facilities, SEA expects that the rate of NO_x emissions reduction would be faster than estimated in Attachment I-1.

The first column of data in Attachment I-1 shows the estimated NO_x increase calculated for each county, without accounting for the effects of the EPA locomotive emissions standards. This column represents the net NO_x emissions calculated from all sources analyzed in relation to the proposed Conrail Acquisition (rail line segments, rail yards, intermodal facilities, truck-to-rail diversions, and highway/rail at-grade crossings). The second column of data in Attachment I-1 shows the estimated total (existing plus projected future) NO_x emissions for all CSX, NS, Conrail, and shared-area rail line segments in each county, if activities related to the proposed Conrail Acquisition are fully implemented, without the effects of the EPA locomotive emissions standards.

The remaining columns of Attachment I-1 show the projected net or cumulative NO_x emissions changes for each year from 1999 through 2009, relating to the combined effect of the proposed Conrail Acquisition and locomotive emissions/standards. Attachment I-2 presents charts for selected counties based on the data presented in Attachment I-1.

The results of the cumulative assessment of projected rail line segment locomotive NO_x emissions show that nearly all counties listed would have a negative net change in cumulative NO_x emissions by 2005, and every county shown would have a decrease in cumulative NO_x emissions by 2007. Thus, the proposed Conrail Acquisition would increase rail-related NO_x emissions in these counties for a few years at most, and these increases would be less than the conservative values estimated in the Draft EIS.

Finally, SEA emphasizes that system-wide NO_x emissions would decrease due to the proposed Conrail Acquisition alone. Factoring in the effects of EPA's rule establishing locomotive emissions standards, NO_x emissions from rail-related operations would decrease much more significantly over the areas affected by the proposed Conrail Acquisition.

I.2.2 Potential Ambient Carbon Monoxide Concentrations Due to Motor Vehicle Delays at Highway/Rail At-grade Crossings

A number of comments on the Draft EIS concerned potential ambient air quality effects due to emissions from motor vehicles delayed at highway/rail at-grade crossings. SEA performed a conservative screening analysis, using dispersion modeling, of ambient concentrations from these emissions. The purpose of the analysis was to determine whether potential increases in vehicle delay due to increased train traffic as a result of the proposed Conrail Acquisition might cause or significantly contribute to exceedances of the NAAQS at locations accessible to the general public. SEA estimated concentrations only for carbon monoxide, because EPA guidelines specify carbon monoxide as the indicator pollutant for air quality effects of roadway traffic. Motor vehicles emit larger amounts of carbon monoxide relative to emissions of other pollutants. In the event of adverse air quality conditions due to vehicles, concentrations would approach the NAAQS for carbon monoxide before approaching the standards for other pollutants. The NAAQS for carbon monoxide are 35 parts per million (ppm) for one-hour and 9 ppm for eight-hour average concentrations. SEA performed the study in a conservative manner (tending to overestimate potential effects).

SEA did not analyze carbon monoxide concentrations at locations where commentors indicated that highway/rail at-grade crossings are currently blocked by stopped trains for extended periods (e.g., one hour or more), because these are existing conditions that are unrelated to the proposed Conrail Acquisition. Although the proposed Conrail Acquisition would increase vehicle delays at some crossings, these increases would be incremental and would not be associated with the causes of any existing instances of blocked crossings.

Analysis Procedure

Dispersion modeling estimates the pollutant concentrations at specific locations of interest (receptors) as a result of source activity. Receptors include locations where the public could have legitimate access for the time periods specified in the NAAQS. For example, a residence, school, or sidewalk is a receptor, but a point within the crossing right-of-way is not. SEA conducted the analysis in accordance with EPA guidelines and used EPA's CAL3QHC model and emissions data as calculated in the Draft EIS, Appendix E, "Air Quality," for vehicles idling in queues. SEA selected the emission factors corresponding to "Northern Tier - Winter" from the Draft EIS, Appendix E in order to simulate maximum carbon monoxide emission rates for idling vehicles. SEA calculated emission factors for moving vehicles with EPA's MOBILE5A model consistent with the Draft EIS, assuming a conservative (slow) speed of 20 mph for moving traffic in order to maximize emission rates.

SEA selected for analysis the highway/rail at-grade crossings with the highest traffic volumes, and the highway/rail at-grade crossings with the largest projected amounts of vehicle delay, from all the highway/rail at-grade crossings evaluated for delay in the EIS. (See Appendix G, "Transportation: Highway/Rail At-grade Crossing Traffic Delay Analysis," of this Final EIS for the list of all highway/rail at-grade crossings evaluated.) Total volume (vehicles per day or

ADT) and total delay time (vehicle-minutes per day) are effective indicators of the degree of congestion and the need for air quality analysis. The total delay time accounts for both the vehicle volume and the effect of highway/rail at-grade crossing closures due to trains. The highest traffic volume analyzed was 41,700 ADT, and the largest vehicle delay was 2,972 vehicle-minutes per day. In response to comments on the Draft EIS that concerned air quality impacts of the proposed Conrail Acquisition at specifically identified highway/rail at-grade crossings, SEA also analyzed emissions impacts from delayed vehicles at these highway/rail at-grade crossings. For each highway/rail at-grade crossing, SEA calculated the peak hour traffic volumes, the amount of vehicle delay in the peak hour, and the size of the queues using the same method as for the highway/rail at-grade crossing traffic analysis. (See Draft EIS, Chapter 3, Section 3.7, "Transportation: Highway/Rail At-grade Crossing Delay.") Because SEA could access only limited geometric information on each highway/rail at-grade crossing, SEA analyzed each location as consisting of a straight roadway and a straight railroad track intersecting at right angles.

For each crossing, SEA calculated concentrations at receptors at conservative locations adjacent to the queues in accordance with EPA guidelines. Also in accordance with these guidelines, SEA considered all wind directions at 10-degree increments, and used a wind speed of 1 meter per second and an atmospheric stability class of D (neutral), corresponding to urban land use. From all combinations of receptor location and meteorology, SEA selected the combination that resulted in the highest one-hour carbon monoxide concentration. SEA multiplied the maximum hourly concentrations by EPA's screening adjustment factor of 0.7 to derive the eight-hour concentration for comparison to the NAAQS.

The total ambient pollutant concentration is the sum of the contribution from motor vehicles and a background concentration. To estimate the total ambient concentration, SEA conservatively assumed background concentrations of 5 ppm for one hour and 3 ppm for eight hours. These values are representative of high carbon monoxide levels for urban areas.

Table I-10 lists the model input values used to conservatively analyze the potential ambient air quality effects due to emissions from motor vehicles delayed at highway/rail at-grade crossings.

TABLE I-10 CARBON MONOXIDE MODELING INPUT VALUES AND RESULTS FOR HIGHWAY/RAIL AT-GRADE CROSSINGS

MOBILE5A emission factors	
Idle emission factor	567.0 g/veh-hr
20 mph emission factor	40.1 g/veh-mile
CAL3QHC, version 2 assumptions	
Surface roughness coefficient	$Z_0 = 108$ cm (single family residential)
Design saturation flow rate	SFR = 1400 veh/hr (urban)

TABLE I-10 CARBON MONOXIDE MODELING INPUT VALUES AND RESULTS FOR HIGHWAY/RAIL AT-GRADE CROSSINGS

Arrival rate	AT = 3 (random arrivals)			
Signal type	ST = 1 (pre-timed)			
Meteorological parameters				
Wind speed	1 m/sec			
Stability class	D			
Mixing height	1000 m			
Wind directions	10° - 360° scanned at 10° increments			
Adjustment factor (1 to 8 hr)	0.7			
Background concentrations				
One-hour	5 ppm			
Eight-hour	3 ppm			
Maximum values for vehicle traffic				
Highest traffic volume	41,700 ADT			
Largest vehicle delay	2,972 veh-min/day			
Maximum estimated CO concentrations from all cases, including background				
One-hour	12.4 ppm (NAAQS = 35 ppm)			
Eight-hour	8.2 ppm (NAAQS = 9 ppm)			

Results

Table I-10 lists the maximum estimated carbon monoxide concentrations caused by vehicle delays near highway/rail at-grade crossings. The conservative carbon monoxide concentration estimates, including potential effects of the proposed Conrail Acquisition, were less than the NAAQS. Therefore, SEA does not expect ambient air pollutant concentrations at highway/rail at-grade crossings, due to the proposed Conrail Acquisition, to result in adverse air quality effects.

I.2.3 Potential Ambient Air Pollutant Concentrations Due to Diesel Locomotive Exhaust Emissions from Stopped Trains

A number of comments on the Draft EIS concerned ambient air pollutant concentrations that may result from stopped trains with locomotives idling, especially near highway/rail at-grade crossings. SEA performed a conservative screening analysis, using dispersion modeling to evaluate potential effects of emissions from idling diesel locomotives on nearby localized areas. The purpose of the analysis was to determine whether potential increases in occurrences of idling, stopped trains associated with the proposed Conrail Acquisition might cause or

significantly contribute to exceedances of the NAAQS at locations accessible to the general public. SEA estimated concentrations for all criteria pollutants except lead. Based on the emission inventories, SEA concluded that lead emissions from locomotives would not cause exceedances of the NAAQS.

SEA conducted the study conservatively (tending to overestimate potential effects) since it did not account for the significant overall reduction in diesel locomotive exhaust emissions that will result from EPA's new locomotive emission standards issued in December 1997. This appendix provides details of the modeling analysis for stopped, idling locomotives.

Analysis Procedure

Dispersion modeling estimates the pollutant concentrations at specific locations of interest (receptors) as a result of source activity. Receptors include locations where the public could have legitimate access for the time periods specified in the NAAQS. For example, a residence or a school is a receptor, but a point within the railroad right-of-way is not. The dispersion modeling analysis estimates the potential air quality effects of stopped, idling locomotives at receptors. Although the Applicants operate some freight trains with more than two locomotives to provide additional power in rural, mountainous terrain, they normally use a maximum of two locomotives in urban areas that tend to have flatter terrain. Urban areas are of greatest concern to this study because they have numerous sensitive land uses (receptors) close to the rail lines. SEA evaluated a case consisting of one stopped train with two locomotives, corresponding to conditions such as a train waiting on a siding to be unloaded or for another train to pass. SEA did not evaluate larger groups of stopped, idling locomotives because such groupings are possible only in yards where larger numbers of both locomotives and parallel tracks could exist, and this type of location is unlikely to have receptors in close proximity. Based on typical railroad operating practices, SEA assumed that the locomotives could idle continuously for up to four hours. SEA also assumed conservatively that the idling could occur for up to four hours in any 24-hour period, every day of the year.

SEA used EPA's ISC3 model and data on exhaust characteristics for typical freight locomotives to estimate maximum one-hour average concentrations. SEA selected this program to model stopped locomotives appropriately as stationary sources. SEA calculated concentrations at a range of receptor distances in all directions from the locomotive exhaust stacks for an EPA-approved screening range of meteorological conditions. From all combinations of receptor distance and meteorology, SEA selected the combination that resulted in the highest concentrations of each pollutant. SEA multiplied the maximum hourly concentrations by EPA's screening adjustment factors to derive the concentrations for longer averaging periods. SEA adjusted the concentrations for the proportion of time (corresponding to the NAAQS averaging periods) that locomotives typically may be idling near the receptors. Table I-11 provides a summary of the model input data used in this screening analysis.

TABLE I-11 MODELING INPUT VALUES FOR ANALYSIS OF STOPPED, IDLING LOCOMOTIVES

Source Data	
Throttle notch	Idle
Emission rates	
СО	0.0617 g/sec
NO_x	0.521 g/sec
PM/PM ₁₀	0.0122 g/sec
SO_2	0.0298 g/sec
Exhaust height	4.18 m
Exhaust temperature	366 K
Exhaust gas velocity	1.46 m/sec
Exhaust equivalent diameter	1.07 m
Meteorology	
Wind speeds by stability class:	
A	1, 3 m/sec
В	1, 3, 5 m/sec
С	1, 3, 5, 7.5, 10 m/sec
D (day)	1, 3, 5, 7.5, 10, 15, 20 m/sec
D (night)	1, 3, 5, 7.5, 10, 15, 20 m/sec
Е	1, 3, 5 m/sec
F	1, 3, 5 m/sec
Mixing height	1,000 m
Wind directions	Scanned at 10° increments
Ambient temperature	293 K
Receptors	
Distance from exhaust port	15, 30, 45, 60, 100 m, +100 m increments to 2,000 m
Height above ground	1.8 m (breathing height)

Emissions of NO_x from locomotives consist mostly of nitric oxide, while the NAAQS applies only to nitrogen dioxide. Some of the emitted nitric oxide converts to nitrogen dioxide in the atmosphere through chemical reactions with ambient ozone. In estimating concentrations of nitrogen dioxide, SEA applied an EPA-approved ozone-limiting method to account for this conversion. SEA used 18 percent as the initial fraction of nitrogen dioxide in the exhaust, and 25 percent as the fraction of nitric oxide converted to nitrogen dioxide. SEA assumed conservatively that the ambient ozone concentration was equal to the NAAQS, or 0.12 parts per million (ppm).

The total ambient pollutant concentration is the sum of the contribution from locomotives and a background concentration. To estimate the total ambient concentration, SEA assumed that the background concentrations were equal to typical urban values of one-third of the NAAQS for each pollutant and averaging time.

Results

Table I-12 provides the estimated worst-case incremental, background, and total concentrations of criteria pollutants due to stopped, idling locomotives, along with a comparison to the NAAQS. All the values in Table I-12 are less than the respective NAAQS. Therefore, SEA does not expect ambient air pollutant concentrations from idling diesel locomotives on rail line segments, due to the proposed Conrail Acquisition, to result in adverse air quality effects.

TABLE I-12
MAXIMUM CONCENTRATIONS OF CRITERIA POLLUTANTS
DUE TO STOPPED, IDLING DIESEL LOCOMOTIVES

Dollutont	Pollutant Averaging Maximum Estimated Concentration							
(units)	Period	Modeled	Background	Total	NAAQS (40 CFR 50)			
CO (ppm)	1 hour	0.50	11.7	12.2	35			
CO (ppm)	8 hour	0.35	3.0	3.3	9			
NO ₂ (μg/m³)	Annual	20	33	53	100			
$PM_{10} (\mu g/m^3)$	24 hour	7.5	50	58	150			
$PM_{10} (\mu g/m^3)$	Annual	1.9	16.7	19	50			
$SO_2 (\mu g/m^3)$	3 hour	248	433	681	1300			
$SO_2 (\mu g/m^3)$	24 hour	18	122	140	365			
$SO_2 (\mu g/m^3)$	Annual	4.6	26.7	31	80			

I.2.4 Potential Ambient Air Pollutant Concentrations Due to Emissions from Diesel Locomotives on Rail Line Segments

In response to comments on the Draft EIS concerning ambient air pollutant concentrations that may result from locomotives traveling on rail line segments, SEA performed a conservative screening analysis, using dispersion modeling, to evaluate effects on localized areas due to projected increases in diesel locomotive exhaust emissions. The purpose of the analysis was to determine whether projected emission increases associated with the proposed Conrail Acquisition might cause or significantly contribute to exceedances of the NAAQS or air toxic health effects thresholds at locations accessible to the general public. To compare to the NAAQS, SEA estimated concentrations for all criteria pollutants except lead. Based on the

emission inventories, SEA concluded that lead emissions from locomotives would not cause exceedances of the NAAQS.

SEA performed the study in a conservative manner (tending to overestimate potential effects) in that it used worst-case assumptions, and did not account for the significant overall reduction in diesel locomotive exhaust emissions that will result from EPA's new locomotive emission standards issued in December 1997. This section describes the modeling analysis and results. The potential air toxic health effects of diesel exhaust and the air toxics threshold concentrations that SEA used in this analysis are discussed in Section I.2.5 of this appendix.

Analysis Procedure

Dispersion modeling estimates the pollutant concentrations at specific locations of interest (receptors) as a result of source activity. This dispersion modeling analysis estimates the impacts of locomotive passbys at receptors along rail line segments. Receptors include locations where the public could have legitimate access for the time periods specified in the NAAQS. For example, a residence or a school is a receptor but a point within the railroad right-of-way is not. SEA evaluated a range of train operating characteristics including number of locomotives per train, throttle notch settings and train speeds. SEA calculated concentrations at a range of receptor distances from the track, for an EPA-approved screening range of meteorological conditions. From all combinations of operating conditions, receptor distance, and meteorology, SEA selected the combination that resulted in the highest concentrations of each pollutant due to a train passing the receptor location.

SEA used EPA's INPUFF 2.3 model and data on exhaust characteristics for typical freight locomotives. SEA selected this program to model locomotives appropriately, given the relatively short source-receptor distances found along rail line segments. Although several other models can simulate railroads, only INPUFF 2.3 can model locomotives explicitly as moving points with plume rise. INPUFF 2.3 is a Gaussian integrated puff model. Source emissions are treated as a series of puffs emitted into the atmosphere. Each puff trajectory is tracked individually, and the diffusion parameters are functions of travel time. The model includes Briggs plume rise methods and stack (locomotive exhaust port) downwash. Table I-13 lists the input values that SEA used in the modeling.

TABLE I-13 MODELING INPUT VALUES FOR ANALYSIS OF LOCOMOTIVES ON RAIL LINE SEGMENTS

Source Options	
Use stack downwash	Yes
Use buoyancy-induced dispersion	No
Use deposition and settling	No

TABLE I-13 MODELING INPUT VALUES FOR ANALYSIS OF LOCOMOTIVES ON RAIL LINE SEGMENTS

User calculates plume rise	No	No		
Perform puff combinations	Yes			
Source Data	Criteria Pollutants Analysis	Air Toxics Analysis		
Train speed (for worst case)	10 mph (4.47 m/sec)	10 mph (4.47 m/sec)		
Throttle notch (for worst case)	8 (i.e., full power) for all pollutants	1 for HC/VOC/organics 8 for PM/PM10		
Emission rates				
СО	0.439 g/sec	N/A		
HC/VOC	N/A	0.0333 g/sec		
NO _x	11.86 g/sec	N/A		
PM/PM10	0.23 g/sec	0.23 g/sec		
SO ₂	0.73 g/sec	N/A		
Exhaust height	4.18 m	4.18 m		
Exhaust temperature	623 K	388 K (notch 1 for HC/organics) 623 K (notch 8 for PM)		
Exhaust gas velocity	9.71 m/sec	1.78 m/sec (notch 1 for HC/organics) 9.71 m/sec (notch 8 for PM)		
Exhaust equivalent diameter	1.07 m	1.07 m		
Initial sigma Y	103.3 m	103.3 m		
Initial sigma Z	1.94 m	1.94 m		
Meteorology				
Wind speeds by stability class				
A	1, 3 m/sec	1, 3 m/sec		
В	1, 3, 5 m/sec			
С	1, 3, 5, 7.5, 10 m/sec	1, 3, 5, 7.5, 10 m/sec		
D (day)	1, 3, 5, 7.5, 10, 15, 20 m/sec	1, 3, 5, 7.5, 10, 15, 20 m/sec		
D (night)	1, 3, 5, 7.5, 10, 15, 20 m/sec	1, 3, 5, 7.5, 10, 15, 20 m/sec		
E	1, 3, 5 m/sec	1, 3, 5 m/sec		

TABLE I-13 MODELING INPUT VALUES FOR ANALYSIS OF LOCOMOTIVES ON RAIL LINE SEGMENTS

F	1, 3, 5 m/sec
Mixing height	3000 m
Wind directions	Scanned at 10° increments
Ambient temperature	290 K
Simulation time per passby	450 sec/passby (corresponding to locomotive travel distance of 2 Km to encompass all exhaust plume effects at each receptor)
Puff release rate	Calculated by program
Sigma theta	0.0
Sigma phi	0.0
Puff combination criterion	Calculated by program
Anemometer height	10 m
Receptors	
Distance from track centerline	15, 30, 45, 60, 75, 90, 105, 120 m
Height above ground	1.8 m (breathing height)

N/A = Not Applicable

The concentration resulting from one train passby represents a peak, transitory pollution level only. SEA averaged these estimated peak levels over one hour to allow comparison to the NAAQS that are based on averaging periods of one hour to one year of exposure. SEA multiplied the maximum hourly concentration due to one locomotive passby by the number of locomotives per train, and the number of trains projected to operate on a rail line segment, to give the worst-case total concentration due to diesel locomotives.

For purposes of selecting a conservative condition, SEA evaluated all rail line segments that would have any change in activity due to the proposed Conrail Acquisition and calculated the total number of locomotive passbys. The number of locomotives included passenger trains, but did not include electric locomotives (such as those used in Amtrak service between Washington, D.C. and New Haven, Connecticut). SEA derived the number of locomotive passbys by assuming that each passenger train has one diesel locomotive and each freight train has two. Although the Applicants operate some freight trains with more than two locomotives in order to provide additional power in rural, mountainous terrain, they normally use a maximum of two locomotives in urban areas, which tend to have flatter terrain. Urban areas are of greatest concern to this study because they have numerous sensitive land uses (receptors) close to the rail line segments. On this basis, SEA selected the rail line segment with the highest projected

number of diesel locomotive passbys. The selected rail line segment is number N-308 with a projected activity of 83.5 trains per day (14 passenger and 69.5 freight) after the proposed Conrail Acquisition. The resulting number of locomotive passbys on rail line segment N-308 is 153 per day, or an average of 6.375 locomotives per hour. SEA used this number of locomotives to estimate the conservative pollutant concentrations. SEA multiplied the maximum hourly concentrations by EPA's screening adjustment factors to derive the concentrations for longer averaging periods.

Results

Table I-14 presents the conservative incremental concentrations of criteria pollutants due to the maximum 153 locomotives per day. Attachment I-3 gives the conservative total concentrations of diesel particulates and organic substances air pollutants. All the values in Table I-14 and Attachment I-3 are far below the respective NAAQS and health effects thresholds. Also, all of the criteria pollutant concentrations in Table I-14, except for the nitrogen dioxide concentration, are below EPA Significance Levels (40 CFR 51.165). These levels are not a measure of "significance" in the context of NEPA, but are levels below which EPA considers the impacts so insignificant that they do not hold stationary emissions sources responsible.

TABLE I-14
MAXIMUM CONCENTRATIONS OF CRITERIA POLLUTANTS
DUE TO 153 LOCOMOTIVE PASSBYS/DAY COMPARED
TO EPA SIGNIFICANCE LEVELS AND NAAQS

Pollutant (units)	Averaging Period	Modeled Concentration	Signif. Level (40 CFR 51.165)	NAAQS (40 CFR 50)
CO (ppm)	1 hour	0.0005	1.75	35
CO (ppm)	8 hour	0.0004	0.45	9
HC/VOC (μg/m³)	1 hour	0.33 ª	N/A	N/A
HC/VOC (μg/m³)	Annual	0.033 a	N/A	N/A
NO ₂ (μg/m³)	Annual	1.7	1.0	100
$PM_{10} (\mu g/m^3)$	1 hour	0.33 a	N/A	N/A
$PM_{10} (\mu g/m^3)$	24 hour	0.13	5.0	150
PM ₁₀ (μg/m ³)	Annual	0.033	1.0	50
SO ₂ (μg/m³)	3 hour	0.94	25.0	1300
SO ₂ (μg/m ³)	24 hour	0.42	5.0	365
SO ₂ (μg/m ³)	Annual	0.10	1.0	80

N/A = Not applicable; U.S. EPA has not established a NAAQS for this pollutant and time period.

Used for toxics analysis only (Section I.2.5 of this appendix). U.S. EPA has not established a NAAQS for this pollutant and time period.

Based on the above results, SEA does not expect ambient air pollutant concentrations from diesel locomotives on rail line segments due to the proposed Conrail Acquisition to result in adverse air quality effects.

I.2.5 Potential Health Effects of Toxic Air Pollutants in Diesel Locomotive Exhaust Emissions

In response to comments on the Draft EIS concerning potential effects of toxic air pollutants including carcinogens, SEA used dispersion modeling in performing a conservative screening analysis of projected increases in diesel locomotive exhaust emissions that could affect the University Circle area of Cleveland, Ohio, and other localized areas. The purpose of the analysis was to determine whether projected emission increases associated with the proposed Conrail Acquisition might cause or significantly contribute to adverse air toxic health impacts to the general public. SEA's study was performed in a conservative manner (tending to overestimate potential effects) in that it did not account for the significant overall reduction in diesel locomotive exhaust emissions projected to result from EPA's new locomotive emission standards issued in December 1997. Section I.2.4 of this appendix provides details of the modeling analysis.

SEA reviewed diesel exhaust health effects data from the Health Effects Institute (HEI) and the EPA. These health effects data provide recommendations for acceptable ambient concentration levels of diesel exhaust particulate matter and gaseous air toxics. SEA used these recommendations to establish ambient concentration thresholds, and compared the screening dispersion modeling results with these thresholds. Levels below these thresholds should not pose any adverse health effects to the public. This section discusses the basis for SEA's use of health effects thresholds.

SEA also used air toxics screening procedures developed by the Ohio Environmental Protection Agency (Ohio EPA) for permitting and regulating new stationary sources. Ohio EPA uses its air toxics screening procedures to determine whether to grant a construction permit to a new source that could emit toxic air pollutants. Ohio EPA's air toxic screening procedure compares the maximum predicted 1-hour ambient concentration from the source to a calculated 1-hour average Maximum Acceptable Ground-Level Concentration (MAGLC) for each pollutant. The Ohio EPA derives the pollutant-specific MAGLC by dividing the American Conference of Governmental and Industrial Hygienists' threshold limit value (ACGIH-TLV) by a factor of 42. (The ACGIH-TLV is expressed as a time-weighted average of the concentration of a substance to which most workers can be exposed without adverse effects). The Ohio EPA's value of 42 is a safety factor to relate the ACGIH-TLV concentration values to non-occupational public exposure levels.

Diesel Exhaust Emissions Characteristics

Diesel emissions are highly complex mixtures consisting of a wide range of organic and inorganic compounds distributed among the gaseous and particulate phases. The composition

of diesel exhaust varies considerably depending on engine type and operating conditions, fuel, lubricating oil, and presence of any emission control systems. The particulate matter is mainly attributable to the incomplete combustion of fuel hydrocarbons, though some may be due to engine oil or other fuel components. Diesel exhaust particulate matter consists of a solid core composed mainly of carbon, a soluble organic fraction, sulfates, and trace elements. The particles are very small (mainly less than 1 micron in diameter), making them readily respirable. Their small size and relatively large surface area makes the particles ideal for serving as adsorption and condensation sites for organic compounds (products of incomplete combustion) and trace metal elements that were contained in the fuel. These particles have hundreds of chemicals adsorbed onto their surfaces, including many known or suspected mutagens and carcinogens. The gaseous phase also contains oxides of nitrogen, carbon monoxide, and hydrocarbons.

At temperatures below 500° C, the particles become coated with adsorbed and condensed high molecular weight organic compounds. These organic compounds include open-chain hydrocarbons of 14-35 carbon atoms, alkyl-substituted benzenes, and derivatives of polycyclic aromatic hydrocarbons (PAH) such as ketones, nitrates, carboxyaldehydes, carboxylic acids, acid anhydrides, hydroxy compounds, and quinones. Diesel exhaust polycyclic organic matter can exist in both the gas and particulate phases in the atmosphere. The distribution between the two phases is determined by the vapor pressure of the species, the ambient temperature, and the amount of airborne particulate matter present. Colder temperatures and higher aerosol concentrations lead to greater association of polycyclic organic matter with particles. Because of this particulate affinity of organics, and the fact that diesel particulate matter is generally defined as any material that is collected, at a temperature of 52° C or less, on a filtering medium after dilution of the raw exhaust gases, health effect researchers typically have focused on carcinogenic and noncarcinogenic health effects of diesel exhaust particulate matter in occupational and ambient environments.

Because maximum diesel locomotive exhaust temperatures tend to range under 350°C at the highest throttle notch setting, SEA assumed that the majority of diesel exhaust air toxics are associated with the particulate phase. However, SEA's air toxics screening modeling evaluation also considered individual gaseous air toxic emissions for those substances for which representative emission factors were available or could be readily derived from the literature.

Exposure Levels

Because diesel engines are only one of the many sources of ambient pollutants, it is difficult to measure the exposures from various sources, and to distinguish the potential health risks attributable to exposure to diesel exhaust from those attributable to other air pollutants. For example, combustion of other fossil fuels and tobacco produces many of the same chemicals that are present in diesel emissions, and both natural and man-made sources of respirable particles are common. Although no single constituent of diesel exhaust serves as a unique marker of exposure, scientists have used the levels of fine particulate or elemental carbon as surrogate indices of diesel exhaust particulate matter in health effects studies.

Exposure to diesel exhaust particulate matter has been assessed in occupational settings and some ambient environments. Although the existing data are limited, some estimates of the range of human exposure to diesel emissions can be made:

- In some occupations, diesel emissions contribute a high proportion of the particulate and gaseous air pollutants. The estimates for workplace exposures (eight-hour averages) to diesel exhaust particulate matter range widely, from approximately 1 to 100 micrograms per cubic meter (μg/m³) in some occupations such as trucking or transportation, to 100 to 1,700 μg/m³ for occupations such as underground mining where equipment powered by diesel engines is often used in enclosed spaces.
- Although ambient exposure data are sparse, studies conducted in the Los Angeles Basin in the early 1980s showed that diesel emissions accounted for approximately 3 percent of the mass of total particulate matter, and 7 percent of the mass of fine particles emitted into the atmosphere. Average monthly values for ambient levels of diesel exhaust particulate matter ranged from 1 to 3 μg/m³ in areas with low levels of air pollution. The highest monthly average level of diesel particulate matter was approximately 10 μg/m³ during the winter months. Short-term or peak exposures to diesel particulate matter, especially in urban settings such as street canyons, are usually higher than monthly or annual average concentrations.

Human and Animal Response Health Effects

HEI's Diesel Working Group developed the following conclusions after reviewing more than 30 epidemiological studies of workers exposed to diesel emissions in occupational settings for the period 1950 through the early 1980s, and animal response studies:

- The epidemiological data are consistent in showing weak associations between exposure to diesel exhaust and lung cancer. Available evidence suggests that long-term exposure to diesel exhaust in a variety of occupational circumstances is associated with a 1.2- to 1.5-fold increase in the relative risk of lung cancer compared with workers classified as unexposed. However, the lack of definitive exposure data for occupationally exposed study populations precludes using available epidemiologic data to develop quantitative estimates of cancer risk. When appropriate human information is not available, some policymakers have relied on the results of animal bioassays to estimate human risk.
- The carcinogenic activity of diesel emissions has been convincingly demonstrated in rats. Nearly lifetime exposure for 35 hours or more per week to high concentrations of diesel exhaust particulate matter (2,000 to 10,000 µg/m³) causes an exposure-dependent increase in the incidence of benign and malignant lung tumors in rats. No consistent evidence suggests that diesel emissions induce cancer in rats at sites other than the lung. Prolonged diesel emission exposures to other rodent species does not produce lung tumors, which suggests that species-specific factors play a critical role in inducing formation of lung tumors. Recent studies also support the idea that the particle-associated organic chemicals

play little or no role in the development of lung tumors in rats exposed to high concentrations of diesel exhaust.

HEI's Diesel Working Group recommended caution in extrapolating the rat bioassay data (obtained at high-dose exposure levels) to humans, which could overestimate potential carcinogenic risks. The reason for this uncertainty is that the mechanism of lung tumor induction that appears to operate in rats continuously exposed to high concentrations of diesel exhaust may not be relevant to most humans, who are exposed intermittently to levels of diesel exhaust particulate matter that are two or three orders of magnitude lower than those used in the rat bioassays. Moreover, carcinogenic risk extrapolations from animals to humans need to account for several influences on carcinogenicity that scientists do not fully understand. These include particle overload and associated inflammatory and proliferative processes; the apparent existence of a threshold for particle-induced biologic responses such as impairment of lung clearance mechanisms, inflammation, cell proliferation, and tumor development; and the mechanistic relation of the nongenotoxic injuries to the development of lung tumors in laboratory rats.

Health Effects Institute's Diesel Working Group Health Effects Recommendations

HEI's Diesel Working Group concluded that it is not currently possible to base a risk characterization of diesel exhaust solely on either the human or the animal data. Instead, the Group evaluated and integrated the available information from diverse data sets to make the most informed judgements about the potential carcinogenicity of exposure to diesel exhaust. A key issue concerning human health risk is whether particle overloading occurs in humans under environmental exposure conditions, and if so, whether it triggers processes that lead to lung cancer. One mathematical extrapolation model suggests that human lung clearance mechanisms would not be impaired even if the humans were exposed continuously (24 hours per day) to the current national estimate of average ambient atmospheric concentration levels of diesel exhaust particulate matter (1 to $10~\mu g/m^3$). The levels of respirable diesel particles needed to depress lung clearance mechanisms in humans under continuous exposure conditions are greater than $100~to~200~\mu g/m^3$. This, however, is an unlikely exposure scenario even for most workers.

Therefore, SEA believes that the toxicity and health effects data support the Diesel Working Group's finding that human exposure to diesel exhaust particulate matter alone at the levels found in most ambient settings (1 to $10 \mu g/m^3$) are not sufficiently high to overwhelm lung clearance processes and thus induce lung tumors by a mechanism driven by inflammation and cell proliferation. This long-term (chronic) exposure concentration level range for diesel particulate matter was used in SEA's dispersion modeling study.

Non-Carcinogenic Health Effects of Diesel Particulate Matter

Most of the acute (arising from short-term exposure) and subchronic effects consist of respiratory tract irritation and diminished resistance to infection. Increased cough and phlegm, and slight impairments in lung function have also been documented. Animal data indicate that chronic respiratory diseases can result from long-term exposure to diesel exhaust. Although it appears

that normal, healthy adults are not at high risk to serious noncancer effects from diesel exhaust at levels found in the ambient air, the data are inadequate to form conclusions about sensitive subpopulations. EPA cited a reference concentration (RfC) for diesel exhaust particulate matter of 5 μ g/m³ over a lifetime. An RfC is an estimate of the day-to-day exposure to the human population that is likely to be without deleterious effects during a lifetime. As such, it can be viewed as a long-term (chronic) exposure concentration level. This non-carcinogenic RfC is within the range cited above for ambient concentration levels assumed not to induce carcinogenic effects in humans. SEA compared this RfC to the annual average concentrations estimated in the dispersion modeling analysis. SEA also compared the modeled concentrations of criteria air pollutants (particulates, carbon monoxide, and oxides of nitrogen, and sulfur dioxide; see Section I.2.4 of this appendix) to the NAAQS, based on the dispersion modeling results.

Health Effects of Organic Substances in Diesel Exhaust

Although SEA believes that the majority of the air toxic substances contained in diesel exhaust are associated with particulate matter, SEA also considered individual air toxic substances that have been found in diesel exhaust from large uncontrolled stationary diesel engines and nonroad mobile sources, and for which representative emission factors were available. These substances were benzene, toluene, xylene, formaldehyde, acetaldehyde, acrolein, and 1,3-butadiene.

Results

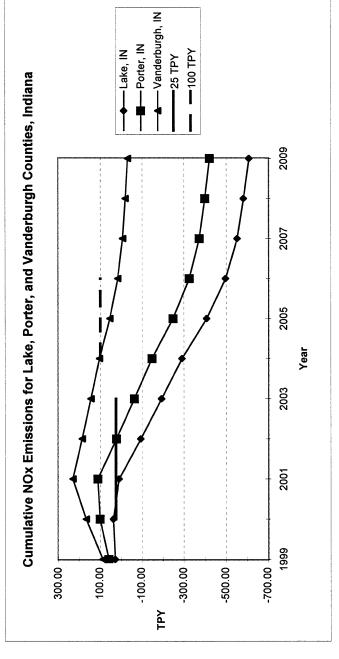
Attachment I-4 summarizes the health effects criteria and thresholds from the HEI, EPA, and Ohio EPA. Attachment I-4 also lists the emission factors used in the dispersion modeling and the analysis results. The results reflect assumptions of 36.6 trains per day and 2 locomotives per train, corresponding to the rail line segment with the most train activity that potentially could affect the University Circle area of Cleveland, Ohio. SEA also selected emission factors corresponding to the conservative condition of low train speed and maximum emission rates by engine throttle notch. Attachment I-4 demonstrates that all conservative modeled concentrations due to diesel exhaust are less than the corresponding health effects thresholds.

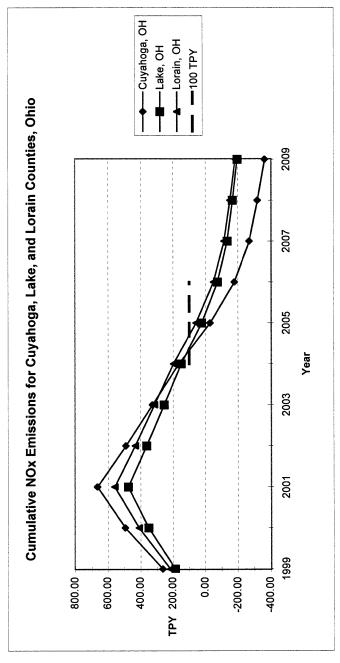
	Appendix I: A	ir Quality Analysis	

Cumulative Nitrogen Oxides Emissions Changes Due to Proposed Conrail Acquisition and EPA Locomotive Rules

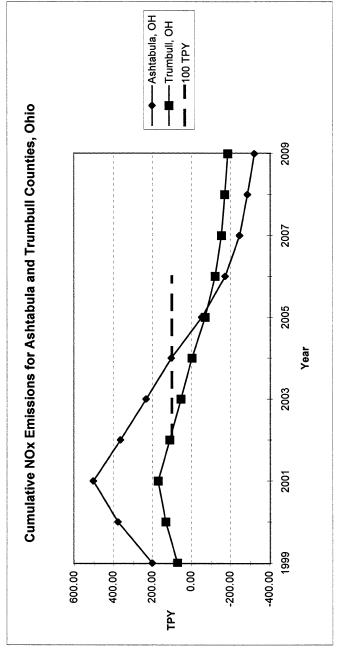
Appendix I: Air Quality Analysis
[THIS PAGE INTENTIONALLY LEFT BLANK]

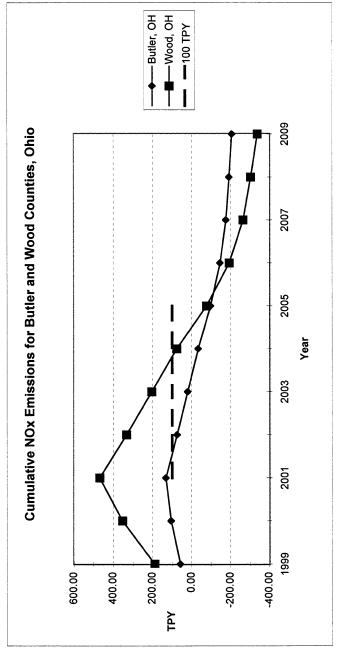
CUMULATIVE NITROGEN OXIDES EMISSIONS CHANGES DUE TO PROPOSED CONRAIL ACQUISITION AND EPA LOCOMOTIVE RULES **ATTACHMENT I-1**

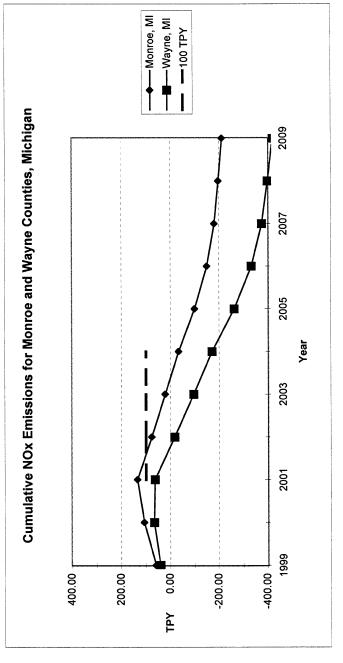

Ž	NonAttainment/	AcqRelated	Post-Acq. Rail Seg					Future	Future Year Cumulative	nlative				
Ma	Maintenance Area	NOx Increase	CSX/NS/CR/SA					NO _x (NOx Change (TPY) *	PY) *				
State	County/City	(TPY)	NOx Total (TPY)	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009
DE	New Castle	184.85	917.98	61.62	113.59	146.29	92.13	40.73	92.6-	-70.35	-117.17	-145.62	-161.23	-175.00
ВA	Fulton	70.79	1373.70	23.60	32.77	13.09	-67.95	-144.88	-220.43	-311.10	-381.16	-423.74	-447.09	-467.70
ВA	Henry	62.39	644.06	20.80	34.83	35.34	-2.66	-38.73	-74.15	-116.66	-149.51	-169.47	-180.42	-190.08
Z	Lake	83.76	1767.94	27.92	37.28	9.51	-94.80	-193.81	-291.04	-407.73	-497.89	-552.70	-582.75	-609.27
Z	Porter	176.06	1524.72	58.69	101.36	112.02	22.06	-63.32	-147.18	-247.81	-325.57	-372.84	-398.76	-421.63
Z	Vanderburgh	263.56	751.05	87.85	167.82	232.02	187.70	145.65	104.34	54.77	16.46	-6.82	-19.59	-30.85
MD	Anne Arundel	124.05	406.90	41.35	78.43	96.901	82.95	60.17	37.79	10.93	-9.82	-22.43	-29.35	-35.45
MD	Cecil	95.96	888.15	30.99	52.65	55.66	3.26	-46.48	-95.33	-153.95	-199.24	-226.77	-241.87	-255.19
MD	Frederick	113.08	614.15	37.69	68.94	87.29	51.05	16.66	-17.12	-57.65	-88.98	-108.01	-118.45	-127.67
MD	Montgomery	173.50	663.35	57.83	108.70	145.64	106.50	69.35	32.87	-10.91	-44.74	-65.31	-76.58	-86.53
MD	Prince George's	176.82	653.26	58.94	111.02	149.38	110.84	74.26	38.33	-4.79	-38.10	-58.35	-69.46	-79.26
M	Monroe	176.13	992.15	58.71	107.00	134.46	75.92	20.36	-34.21	69.66-	-150.29	-181.04	-167.91	-212.79
M	Wayne	121.40	1383.12	40.47	66.41	63.31	-18.30	-95.75	-171.82	-263.11	-333.65	-376.52	-400.04	-420.78
Z	Bergen	208.64	610.02	69.55	132.69	183.02	147.03	112.87	79.32	39.05	7.94	-10.97	-21.34	-30.49
Z	Mercer	61.09	529.79	20.36	35.16	38.84	7.58	-22.09	-51.23	-86.19	-113.21	-129.63	-138.64	-146.59
Z	Middlesex	149.12	1383.67	49.71	84.88	91.01	9.37	-68.12	-144.22	-235.54	-306.11	-349.00	-372.52	-393.28
χ	Erie	347.61	2855.65	115.87	201.76	227.67	59.19	-100.73	-257.79	-446.26	-591.90	-680.42	-728.97	-771.80
λ	Montgomery	195.07	1390.97	65.02	115.44	136.65	54.58	-23.31	-99.82	-191.62	-262.56	-305.68	-329.33	-350.19
ЮН	Ashtabula	601.89	2356.75	200.63	376.51	502.91	363.86	231.88	102.26	-53.29	-173.48	-246.54	-286.60	-321.96
НО	Butler	171.89	06'996	57.30	104.44	131.28	74.23	20.09	-33.09	-96.91	-146.22	-176.19	-192.63	-207.13
НО	Cuyahoga	787.45	2937.23	262.48	494.13	604.09	490.79	326.30	164.76	-29.10	-178.90	-269.95	-319.89	-363.94
НО	Lake	556.53	1920.56	185.51	350.85	475.87	362.55	255.00	149.37	22.61	-75.33	-134.87	-167.52	-196.33
ЮН	Lorain	648.01	2121.51	216.00	409.73	558.91	433.74	314.93	198.25	58.23	-49.97	-115.73	-151.80	-183.62
НО	Trumbull	213.31	1019.56	71.10	131.50	170.49	110.33	53.24	-2.84	-70.13	-122.13	-153.73	-171.06	-186.36
НО	Wood	565.63	2306.88	188.54	352.86	468.74	332.64	203.45	76.57	-75.68	-193.33	-264.85	-304.06	-338.67
PA	Allegheny	228.31	2682.08	76.10	124.04	115.66	-42.58	-192.78	-340.29	-517.31	-624.09	-737.24	-782.83	-823.07
PA	Delaware	104.54	473.57	34.85	64.72	84.65	56.71	30.19	4.14	-27.11	-51.26	-65.95	-74.00	-81.10
PA	Erie	309.71	2422.06	103.24	181.04	207.98	65.08	-70.55	-203.77	-363.62	-487.15	-562.23	-603.41	-639.74
PA	Fayette	306.89	991.77	102.30	194.18	265.24	206.72	151.18	96.63	31.18	-19.40	-50.15	-67.01	-81.88
PA	Lawrence	166.02	89.988	55.34	101.37	128.78	76.47	26.81	-21.96	-80.48	-125.70	-153.18	-168.26	-181.56
PA	Philadelphia	87.49	705.81	29.16	50.92	57.85	16.20	-23.32	-62.14	-108.73	-144.72	-166.60	-178.60	-189.19
PA	Somerset	181.47	1055.28	60.49	109.90	137.15	74.89	15.79	-42.25	-111.90	-165.72	-198.43	-216.37	-232.20
Z.	Davidson	244.20	1343.69	81.40	148.69	187.77	108.49	33.24	-40.66	-129.35	-197.87	-239.53	-262.37	-282.53
۸۸	Stafford	68.58	363.31	22.86	41.91	53.32	31.89	11.54	-8.44	-32.42	-50.95	-62.21	-68.39	-73.84
DC	DC	84.47	329.33	28.16	52.86	70.64	51.21	32.77	14.65	-7.08	-23.88	-34.09	-39.69	-44.63

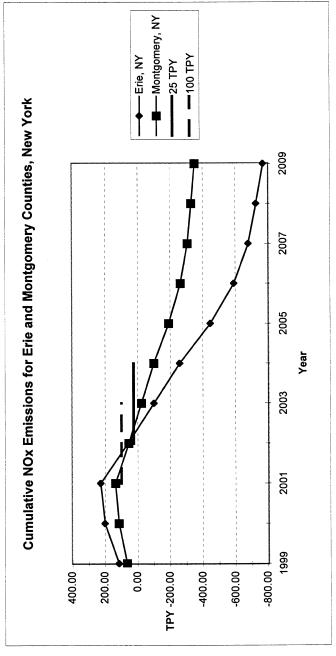

* Changes are in comparison to 1998 baseline NOx, and are approximations based only on cumulative effects of the proposed Conrail Acquisition (assumed to be implemented over 3 years) and the EPA Locomotive Rule effects on just rail segment emissions by CSX, NS, Conrail, and Shared Assets Areas.

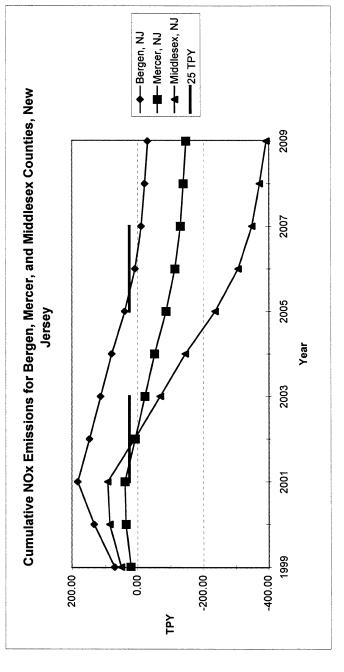
Charts Showing Cumulative Nitrogen Oxides (NO_x) Emissions Changes Due to Proposed Conrail Acquisition and EPA Locomotive Rules

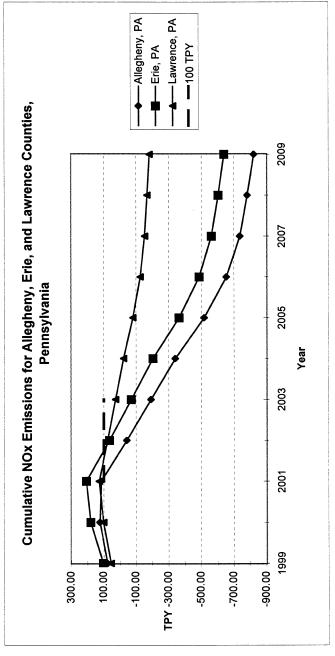

Appendix Is Air Quelity Analysis
Appendix I: Air Quality Analysis
[THIS PAGE INTENTIONALLY LEFT BLANK]

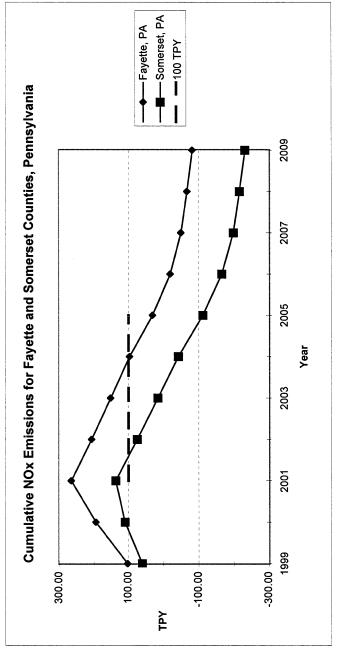

ATTACHMENT I-2
CHARTS SHOWING CUMULATIVE NITROGEN OXIDES (NOx) EMISSIONS CHANGES
DUE TO PROPOSED CONRAIL ACQUISITION AND EPA LOCOMOTIVE RULES

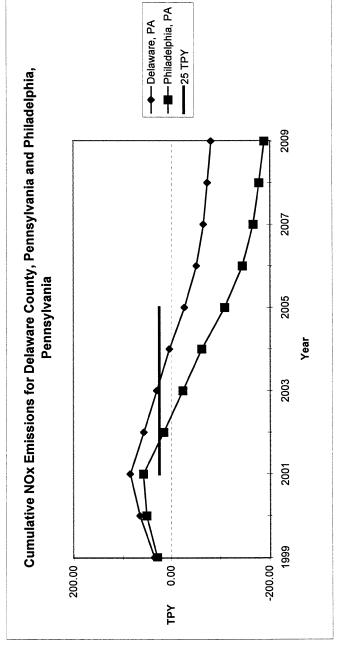


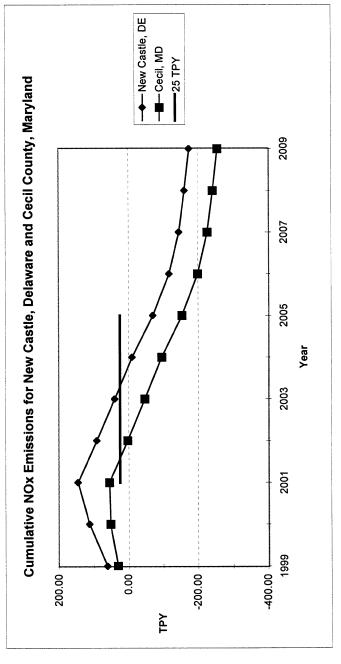

ATTACHMENT I-2
CHARTS SHOWING CUMULATIVE NITROGEN OXIDES (NOx) EMISSIONS CHANGES
DUE TO PROPOSED CONRAIL ACQUISITION AND EPA LOCOMOTIVE RULES

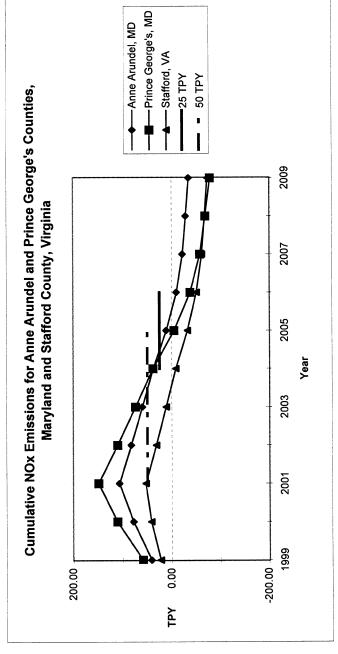


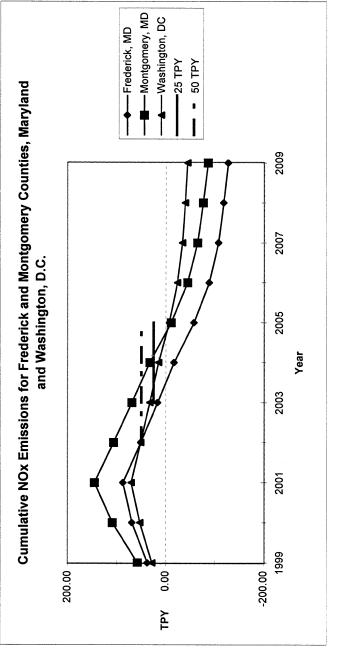

ATTACHMENT I-2
CHARTS SHOWING CUMULATIVE NITROGEN OXIDES (NOX) EMISSIONS CHANGES
DUE TO PROPOSED CONRAIL ACQUISITION AND EPA LOCOMOTIVE RULES

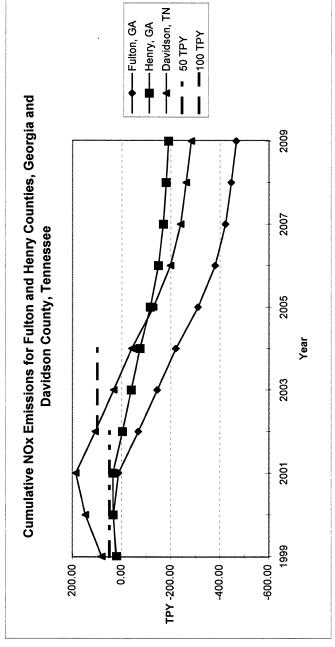



ATTACHMENT I-2
CHARTS SHOWING CUMULATIVE NITROGEN OXIDES (NOx) EMISSIONS CHANGES
DUE TO PROPOSED CONRAIL ACQUISITION AND EPA LOCOMOTIVE RULES




ATTACHMENT I-2
CHARTS SHOWING CUMULATIVE NITROGEN OXIDES (NOx) EMISSIONS CHANGES
DUE TO PROPOSED CONRAIL ACQUISITION AND EPA LOCOMOTIVE RULES




ATTACHMENT I-2
CHARTS SHOWING CUMULATIVE NITROGEN OXIDES (NOx) EMISSIONS CHANGES
DUE TO PROPOSED CONRAIL ACQUISITION AND EPA LOCOMOTIVE RULES

ATTACHMENT I-2 CHARTS SHOWING CUMULATIVE NITROGEN OXIDES (NOx) EMISSIONS CHANGES DUE TO PROPOSED CONRAIL ACQUISITION AND EPA LOCOMOTIVE RULES

Maximum Concentrations of Diesel Particulates and Organic Substances and Comparison to Health Criteria for 153 Diesel Locomotive Passbys Per Day

Appendix I: Air Quality Analysis
[THIS PAGE INTENTIONALLY LEFT BLANK]

Administratively Confidential

MAXIMUM CONCENTRATIONS OF DIESEL PARTICULATES AND ORGANIC SUBSTANCES AND COMPARISON TO HEALTH CRITERIA FOR 153 DIESEL LOCOMOTIVE PASSBYS PER DAY **ATTACHMENT I-3**

Pollutant	Emission Factor	Max. 1-Hour Concentration (μg/m³)	Ohio EPA 1-Hour MAGLC ^a (µg/m³)	Max. Annual Concentration (μg/m³)	U.S. EPA RfC ^b (μg/m³)	HEI Chronic Effects Threshold ^c (µg/m³)
Diesel Particulate Matter	0.26 g/hp-hr ^d	0.33	N/A	0.033	5	1-10
Acetaldehyde	2.52 x 10 ⁻⁵ lb/MMBtu ^e	3.84×10^{-5}	4,286	3.48 x 10 ⁻⁶	6	N/A
Acrolein	7.88 x 10 ⁻⁶ lb/MMBtu ^e	1.09 x 10 ⁻⁵	6.0	1.09 x 10 ⁻⁶	0.02	N/A
Benzene	0.0387 g/hp-hr ^{f,g,h}	1.00×10^{-2}	762	1.00×10^{-3}	N/A	N/A
Formaldehyde	0.0142 g/hp-hr ^{f.g,h}	3.68×10^{-3}	35.7	3.68 x 10 ⁻⁴	N/A	N/A
Toluene	2.81 x 10 ⁻⁴ lb/MMBtu ^e	3.88 x 10 ⁻⁴	1,786	3.88 x 10 ⁻⁵	400	N/A
Xylenes	1.93 x 10 ⁻⁴ lb/MMBtu ^e	2.67 x 10 ⁻⁴	10,357	2.67 x 10 ⁻⁵	N/A	N/A
1,3-Butadiene	0.0167 g/hp-hr ^{f.g.h}	4.35 x 10 ⁻³	524	4.35 x 10 ⁻⁴	N/A	N/A

N/A Not applicable or no value established.

Source: Ohio EPA, 1998.

Source: EPA Office of Mobile Sources, 1993.

Source: Health Effects Institute, 1997.

Source: EPA Office of Mobile Sources, 1997.

Source: EPA Office of Air Quality Planning and Standards, 1996.

Source: EPA Region 5, 1993.

Source: General Motors Corporation, 1986.

Emission factor calculated as percentage (f) of total hydrocarbon emissions (g).

Maximum Calculated Concentrations of Diesel Particulates and Organic Substances

Due to Locomotives and Comparison to Health Criteria for 73 Locomotive Passbys Per

Day

Annondis Is Air Ossalits Analysis
Appendix I: Air Quality Analysis
[THIS PAGE INTENTIONALLY LEFT BLANK]

Administratively Confidential

AND ORGANIC SUBSTANCES DUE TO LOCOMOTIVES AND COMPARISON TO MAXIMUM CALCULATED CONCENTRATIONS OF DIESEL PARTICULATES HEALTH CRITERIA FOR 73 LOCOMOTIVE PASSBYS PER DAY **ATTACHMENT I-4**

Pollutant	Emission Factor	Max. 1-Hour Concentration (μg/m³)	Ohio EPA 1-Hour MAGLC ^a (μg/m ³)	Max. Annual Concentration (μg/m³)	U.S. EPA RfC ^b (µg/m³)	HEI Chronic Effects Threshold ^c (μg/m³)
Diesel Particulate Matter	0.26 g/hp-hr ^d	0.158	NA	0.0158	5	1-10
Acetaldehyde	2.52 x 10 ⁻⁵ lb/MMBtu ^e	1.67×10^{-5}	4,286	1.67 x 10 ⁻⁶	6	N/A
Acrolein	7.88 x 10-6 lb/MMBtue	5.21 x 10 ⁻⁶	6.0	5.21 x 10 ⁻⁷	0.02	N/A
Benzene	0.0387 g/hp-hr ^{f.g,h}	4.80×10^{-3}	762	4.80 x 10 ⁻⁴	N/A	N/A
Formaldehyde	0.0142 g/hp-hr ^{f.g,h}	1.76×10^{-3}	35.7	1.76 x 10 ⁻⁴	N/A	N/A
Toluene	$2.81 \times 10^{-4} \text{ lb/MMBtu}^{\text{e}}$	1.86×10^{-4}	1,786	1.86 x 10 ⁻⁵	400	N/A
Xylenes	1.93 x 10 ⁻⁴ lb/MMBtu ^e	1.28×10^{-4}	10,357	1.28 x 10 ⁻⁵	N/A	N/A
1,3-Butadiene	0.0167 g/hp-hr ^{f,g,h}	2.08×10^{-3}	524	2.08 x 10 ⁻⁴	N/A	N/A

N/A Not applicable or no value established.

Source: Ohio EPA, 1998.

Source: EPA Office of Mobile Sources, 1993.

Source: Health Effects Institute, 1997.

Source: EPA Office of Mobile Sources, 1997.

Source: EPA Office of Air Quality Planning and Standards, 1996.

Source: EPA Region 5, 1993.

Source: General Motors Corporation, 1986.

Emission factor calculated as percentage (f) of total hydrocarbon emissions (g).