Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Limits to Species’ Distribution and Persistence: A Landscape Genetics Study of Two Amphibian Species in Yellowstone National Park

EPA Grant Number: F6F21367
Title: Limits to Species’ Distribution and Persistence: A Landscape Genetics Study of Two Amphibian Species in Yellowstone National Park
Investigators: Murphy, Melanie
Institution: Washington State University
EPA Project Officer: McClure, Karen
Project Period: September 1, 2006 through September 1, 2009
Project Amount: $111,344
RFA: STAR Graduate Fellowships (2006)
Research Category: Academic Fellowships , Fellowship - Terrestrial Systems Ecology , Ecological Indicators/Assessment/Restoration

Description:

Objective:

My objective is to test how landscape features influence species’ dispersal, species’ distributions, and population persistence. I will address the following questions using the boreal toad (patchy distribution, declining) and boreal chorus frog (continuous distribution, abundant) in Yellowstone National Park:

Approach:

A central objective of conservation biology is to understand processes that shape species’ distributions and population persistence. The emerging discipline of landscape genetics provides a conceptual framework to address these processes, through an integration of landscape ecology, spatial statistics, and population genetics. A landscape genetics approach is ideal for modeling amphibian systems because amphibians generally have population genetic structure on appropriate geographic scales and are sensitive to landscape characteristics, including land use change.

In my preliminary research, I developed a unique method to represent gene flow as a continuous spatial response variable. This method newly enables analysis of the influence of continuous (e.g., elevation, moisture), as well as discrete (e.g., roads, land cover), landscape variables on gene flow. I will implement this methodology to create landscape genetic models of gene flow for the two study species and to determine the landscape variables that explain patchy vs. continuous distributions. Finally, I will test for genetic signatures of recent population declines. If population declines are detected; I will model population status (decline vs. no decline) based on landscape variables and presence of a chytrid fungus (B. dendrobatidis), a pathogen implicated in the global decline of amphibians.

Expected Results:

I predict that gene flow in P. maculata will be more limited than B. boreas due to smaller empirically-estimated dispersal distances, and influenced by habitat connectivity and moisture. I also predict that B. boreas is in decline through at least part of its range due to presenceof chytrid fungus (B. dendrobatidis).

Supplemental Keywords:

Landscape genetics, amphibians, amphibian decline, landscape variables, habitat quality, chytrid, amphibian disease, Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, Ecology and Ecosystems, Environmental Monitoring, Habitat, conservation biology, habitat fragmentation, habitat loss, habitat population structure, habitat use, B. dendrobatidis, , Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, Habitat, Biology, Environmental Monitoring, conservation biology, habitat use, species interaction, habitat dynamics, habitat disturbance, land use effects, amphibian population, anthropogenic stressors, ecological consequences, dynamic landscapes

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.