# The FHWA Travel Model Improvement Program Workshop over the Web

The Travel Model
Development Series:
Part I –
Travel Model Estimation

presented by Thomas Rossi Cambridge Systematics, Inc.

October 16, 2008

1

### **Acknowledgments**

- Webinar prepared by Cambridge Systematics, Inc.
  - Thomas Rossi
  - Yasasvi Popuri
- Prepared for Federal Highway Administration
  - H. Sarah Sun
- Arranged by Texas Transportation Institute
  - Gary Thomas

### Webinar Objectives Learning

- Intended for those who have a low level of familiarity with the estimation and validation of travel models
- Introduces
  - Development of model estimation data sets
  - Structures of various model components
  - Procedures for estimating models
- Does not train participants in model estimation procedures

#### **Webinar Outline**

- Session 1: Introduction October 16, 2008
- Session 2: Data Set Preparation November 6, 2008
- Session 3: Estimation of Non-Logit Models December 11, 2008
- Session 4: Estimation of Logit Models February 10, 2009

4

### Webinar Outline (continued)

- Session 5: Application and Validation of Logit Models – March 12, 2009
- Session 6: Advanced Topics in Discrete Choice Models – April 14, 2009
- Session 7: Trip Assignment May 7, 2009
- Session 8: Evaluation of Validation Results June 9, 2009

5

#### **Homework**

(You thought you finished this forever decades ago!)

- Exercise will be assigned at the end of each session, based on some of the information discussed
- May require generally available software (e.g., Excel, text editor, etc.), but not specialized software such as model estimation or application programs
- You may e-mail questions on the homework to us up to one week before the next session
  - trossi@camsys.com, ypopuri@camsys.com
- Homework will be reviewed during the first part of the next session

### **Types of Urban Models**

- Four-step models
- Three-step models (no mode choice)
- Tour and activity based models

F

# **Model Components Four-Step Models**

- Trip production
- Trip attraction
- Trip distribution
- Mode choice

- Assignment
- Time of day
- Auto ownership
- Other
  - Trucks/freight
  - External trips
  - Other?

#### The Model ...

- ... takes a set of input data ...
- ... and converts it to a set of output data ...
- ... using a set of mathematical models ...
- ... which use parameters to perform the conversions
- The input and output data for individual model components may be temporary, or interim

Model Parameters ...

... may be:

- Estimated (usually from local data),
- "Borrowed" from another model or other data source, or
- Asserted, based on knowledge from other sources

10



### **Model Development Process**

- Have a model development plan
- Assemble necessary data for estimation, validation, and application
- For each component
  - Define the mathematical model and the model structure
  - Estimate (or otherwise obtain) the parameters
  - Validate the model (a whole 'nother topic!)
  - Recalibrate the parameters as necessary

# **Model Development Process** (continued)

- Validate overall model system, including forecast years
  - Recalibrate as necessary
- Don't forget documentation!

13

14

### **Model Application Process**

- Overall inputs
  - Socioeconomic data
  - Networks (highway, transit)
  - Other (parking costs, auto operating costs, etc.)
- Overall outputs
  - Link volumes → VMT
  - − Link speeds → VHT
  - Transit boardings, line volumes
  - Trips by O-D, mode, purpose, time of day, etc.

# **Some Model Component Examples**

- Trip generation
  - Input Socioeconomic data
  - Output Trip ends
- Trip distribution
  - Input Trip ends/network skims
  - Output Trip tables

15

# Some Model Component Examples (continued)

- Mode choice
  - Input Trip tables/network skims
  - Output Trip tables by mode
- Highway assignment
  - Input Trip tables for auto mode/highway network
  - Outputs Volumes/speeds

# **Common Model Component Formulations**

- Simple factoring
- Cross-classification
- Regression
- Logit (multinomial, nested)
- Assignment

17

#### **Model Estimation Data Sources**

- Household activity/travel survey (household, trip level)
- Transit on-board survey
- Critical nonsurvey data
  - Socioeconomic data
  - Networks
  - Other (area types, parking costs, auto operating costs, etc.)

# **Model Types**

| Model<br>Component | Typical<br>Model Type                     | Usual<br>Estimation Data<br>Source | Other<br>Basic Data               |  |
|--------------------|-------------------------------------------|------------------------------------|-----------------------------------|--|
| Auto ownership     | Multinomial/<br>ordered<br>response logit | Household survey (household file)  | Socioeconomic,<br>network (skims) |  |
| Trip production    | Cross-<br>classification                  | Household survey (household file)  | Socioeconomic                     |  |
| Trip attraction    | Linear regression                         | Household survey (trip file)       | Socioeconomic                     |  |
| Trip distribution  | Gravity/<br>multinomial logit             | Household survey (trip file)       | Socioeconomic,<br>network (skims) |  |

19

# Model Types (continued)

| Model<br>Component | Typical<br>Model Type        | Usual<br>Estimation<br>Data Source | Other<br>Basic Data             |
|--------------------|------------------------------|------------------------------------|---------------------------------|
| Time of day        | Simple factoring             | Household survey (trip file)       |                                 |
| Mode choice        | Multinomial/<br>nested logit | Household survey (trip file)       | Socioeconomic , network (skims) |
| Highway assignment | Static user equilibrium      |                                    | Highway network                 |
| Transit assignment | All-or-nothing,<br>multipath |                                    | Transit network                 |

### **Regression Model**

$$Y = B_0 + B_1 X_1 + B_2 X_2 + ... + B_n X_n$$

where:

**Y = Dependent variable** 

**B**<sub>i</sub> = Estimated coefficients

**X**<sub>i</sub> = Independent variables

21

### **Regression Model Example Trip Attraction Model**

**HBO Attractions = 1.32 (service employment)** 

+ 1.46 (retail employment)

+ 0.76 (households)

| Cross-C                    | lass    | ificatio         | on Mod           | del     |                 |
|----------------------------|---------|------------------|------------------|---------|-----------------|
|                            |         |                  |                  |         |                 |
|                            |         | Indep            | endent Vari      | able #1 |                 |
|                            |         | Value 1          | Value 2          |         | Value r         |
|                            | Value 1 | Dep var<br>value | Dep var<br>value |         | Dep va<br>value |
| Independent<br>Variable #2 | Value 2 | Dep var<br>value | Dep var<br>value |         | Dep va<br>value |
|                            |         |                  |                  |         |                 |
|                            | Value n | Dep var<br>value | Dep var<br>value |         | Dep va          |



# **Gravity Model Trip Distribution**

$$T_{ij} = \frac{P_i \, A_j \, F(t)_{ij} \, K_{ij}}{\sum_j P_i \, A_j \, F(t)_{ij} \, K_{ij}}$$
 where: 
$$T_{ij} = \quad \text{number of trips produced in zone i and attracted to zone j}$$
 
$$P_i = \quad \text{trips produced in zone i}$$
 
$$A_j = \quad \text{trips attracted to zone j}$$
 
$$F(t)_{ij} = \quad \text{friction factor from i to j (based on impedance t)}$$
 
$$K_{ij} = \quad K \, \text{factor from i to j}$$
 
$$i = \quad \text{origin zone}$$
 
$$j = \quad \text{destination zone}$$

## **Multinomial Logit Model**

P (alt 1) = 
$$\frac{\exp(V_1)}{\sum_{j} \exp(V_j)}$$

where:

 $V_j$  = Deterministic component of utility of alternative j exp = exponential function (e<sup>x</sup>)

26

# **Multinomial Logit Model Utility Function**

$$V_{ij} = B_{0j} + B_{1j} X_{1ij} + B_{2j} X_{2ij} + ... + B_{nj} X_{nij}$$

#### where:

 $V_{ij}$  = Utility (deterministic component) of alternative j for individual i

 $X_{kij}$  =Attributes (k = 1,n) for individual i for alternative j

 $\mathbf{B}_{kj}$  =Estimated coefficients for attribute k for alternative i

**B**<sub>0i</sub> = Alternative-specific constant for alternative j

27

# Multinomial Logit Model Example Vehicle Availability Model

|                               | Vehicle Availability Level |       |       |       |
|-------------------------------|----------------------------|-------|-------|-------|
| Variable                      | 0                          | 1     | 2     | 3+    |
| Constant                      |                            | 0.64  | -0.45 | -2.29 |
| 1 worker in household (0,1)   | Base alt                   | 0.83  | 1.10  | 1.66  |
| 2+ workers in household (0,1) | (U = 0)                    | 0.54  | 2.47  | 3.32  |
| Low-med income (0,1)          |                            | 1.16  | 2.18  | 2.26  |
| High-med income (0,1)         |                            | 0.87  | 3.04  | 3.64  |
| High income (0,1)             |                            | 1.78  | 4.31  | 5.28  |
| % employment within 15 min    | 1                          | -0.03 | -0.08 | -0.12 |

```
Multinomial Logit Model Example
Vehicle Availability Model (continued)

Utility functions:

U<sub>0</sub> = 0

U<sub>1</sub> = 0.64 + 0.83 (1 worker) + 0.54 (2+ worker)
+ 1.16 (Low-medium income) + 0.87 (High-medium income)
+ 1.78 (High income) -0.03 (% employer w/in 15 min)

U<sub>2</sub> = -0.45 + 1.10 (1 worker) + 2.47 (2+ worker)
+ 2.18 (Low-medium income) + 3.04 (High-medium income)
+ 4.31 (High income) -0.08 (% employer w/in 15 min)

U<sub>3</sub> = -2.29 + 1.66 (1 worker) + 3.32 (2+ worker)
+ 2.26 (Low-medium income) + 3.64 (High-medium income)
+ 5.28 (High income) -0.12 (% employer w/in 15 min)
```



# **Nested Logit Model**

P (alt 1 | A) = 
$$\frac{\exp(V_1)}{\exp(V_1) + \exp(V_2)}$$

P(A) = 
$$\frac{\exp [f(V_{1}, V_{2})]}{\exp [f(V_{1}, V_{2})] + \exp [f(V_{3}, V_{4})]}$$

$$P(alt 1) = P(alt 1 | A) P(A)$$

31

## **Highway Assignment**

- Static equilibrium assignment
  - Assumes O-D travel times along all used paths are equal
- Link travel time is a function of travel time, e.g.,

$$T = T_0 + [1 + a (v/c)^b]$$

where:

T = link travel time

 $T_0$  = free flow travel time

v = link volume

c = link capacity

a, b model parameters

# **Model Parameter Development Example**

- Estimated (from household survey)
  - Trip generation rates
  - Friction factors for gravity model
  - Time of day percentages by purpose
- Borrowed
  - Mode choice utility coefficients (from other model)
- Asserted
  - BPR function parameters a, b (from literature)
  - K-factors (all set to 1.0)