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ABSTRACT

Occasionally, a mining company extends its power system to the point where the calculated available
trailing cable short-circuit current approaches the overcurrent protection setting of the system. Since
theoretical calculations depend upon approximations of the power system components, a method to
evaluate these calculations with empirical data is needed. This paper will discuss a test method to
determine the impedance of an ac system. In addition to discussing this method, fault calculations
and impedance measurements obtained from field testing will be compared with a theoretical
analysis.

INTRODUCTION

Part of the mission of Technical Support’'s Mine Electrical Systems Division, of the Mine Safety and
Health Administration is to provide engineering assistance to resolve safety problems related to the
use of electricity in mines. This work has necessitated the development of unique testing procedures
for diagnostic purposes. In this case, a test procedure was developed to determine system
impedances and available fault currents.

One of the advantages of measuring the ac impedance of an electrical distribution system of a mine
is that accurate calculations of fault currents can be made. The method presently used by mining
companies to determine short-circuit currents is based on theoretical calculations. These calculations
rely on information from the utility company that supplies power to the mine substation. Other data
needed for the analysis are impedance values for each transformer in the system, as well as resistance
and reactance values for all associated cables. The theoretical calculations for determining the
system impedance use these values that are supplied by manufacturers and which can deviate from
actual values. Therefore, errors can occur in the calculation for the amount of available fault current.
Also, when the calculations result in values which indicate a small safety factor between settings on
protective equipment and calculated short-circuit currents, in-mine testing may be needed to validate
the theoretically calculated values.

The test procedure that will be discussed is simple to use and can be expected to be accurate within



10% for a system with a power factor of 0.90 or greater. This power factor is not the usual power
factor that we normally relate to, but it is the power factor under a short-circuit condition at the end
of the trailing cable, and does not include motor contributions. The test instrumentation and
equipment used are not specialized and are normally available at most mines.

MINE POWER SYSTEM DISCUSSION

A test procedure was developed to measure the estimated power system impedance at the end of a
trailing cable. To understand why the method works, certain information about the physical
components of the system must be known. The one-line diagram in figure 1 shows a typical three-
phase faulted power system.
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Figure 1. One-Line Diagram of a Three-Phase Faulted System

The impedance of each component in the power system is considered in determining the total system
impedance, &5 . To illustrate, typical impedance values of each of these components will be
discussed. In this example, the power system source will have infinite buss (or be stiff).

The electric utility system delivering power to a mine is the source of short-circuit current. But the
current contribution to a fault at a distant section of the mine will appear to be merely a small
increase in the load current at the utility [1]. Since the utility current will essentially be unchanged,
its impedance value, Z , will have very little influence on a section fault inby the power center
secondary. Therefore, the utility impedance has limited effect on the system impedance and can be
excluded from the calculations.

At a typical mine, the main substation transformer supplying power underground has a capacity of
3,000 kVA with a primary voltage of 69,000 volts, and a secondary distribution voltage of 7,200
volts [3]. This type of transformer will have approximately 7.0 percent impedance [2]. Since the
resistance component of such a transformer is small, the impedgpce, Z , is considered to be equal
to the reactance [5].

High voltage (7,200 volts) underground distribution cables may extend up to 15,000 feet to the most
distant mining section [4]. The typical size of power feeder cables used underground is #4/0 AWG.
A resistance value of 0.9750 ohms, and a reactance value of 0.5100 ohms, are obtained for this size
feeder cable [6] based on the maximum distance of 15,000 feet.



An average size section power center can have a transformer rated at 750 kVA, with a secondary
utilization voltage of 480 volts [7]. The impedance of this type of transformer is 5.75% [2], and the
values of resistance and reactance, will be 0.0035 ohms and 0.0174 ohms respectively [8].

Using the above information, the impedance of the sourge, Z , (power center and the electrical
distribution system outby), can be found by combining the individual components together after they
are converted to a common base. Since there are few voltage transformations, representation of
system components in ohms-per-phase provides the most straightforward calculations [9]. For
comparison, the resistance and reactance of the components just discussed are calculated using a
base voltage of 480 volts, and are listed in table 1. The calculations produce a source impedance of
0.02637/ 73° ohms.

Impedance Values
Source Components
R (ohm) X (ohm)
Z, Utility
Zgyy Main Substation 0.0000 0.0054
Zy Distribution 0.0043 0.0023
Zoc Power Center 0.0035 0.0174
Zg Source (Total) 0.0078 0.0251
Table 1. Impedance Values for Components of the Source,
Calculated Using a 480 Volt Base

A number 4 AWG, 3-conductor ffimg cable is used in this illustration. This size trailing cable is
usually used on roof bolters and ac shuttle cars, and can have a maximum length of 600 feet.
Therefore, it will have maximum resistance and reactance val@e230#2 ohms and 0.0186 ohms
respectively [6], and the impedance is 0.20%F ohms.

When the impedance values of the source and trailing cable are compared, as in table 2, it becomes
clear that the predominant component is the trailing cable. It can be further deduced that the trailing
cable resistance is the dominant element in the power system impedance. This is because the trailing
cable resistance comprises 96% of the total system’s resistance and is about 5 times the system
reactance. By combining the source impedance and the trailing cable impedance, the system
impedance (£s = 0.220411° ohms) is found which, as can be seen, is essentially resistive.



Impedance Values
Source Components
R (ohm) X (ohm)
Zg Source 0.0078 0.0251
Zic Trailing Cable 0.2082 0.0186
Zgys System 0.2160 0.0437

Table 2. Impedance Values for Components of the Systen
Calculated Using a 480 Volt Base

—

Once the system impedance is known, the fault current can be calculated. The value obtained is only
an estimate, however, because the impedances for the individual components from published
reference materials are not exact. Also, the calculations are based on a symmetrical three-phase
system, which will not necessarily be true since various mine loads may introduce factors which
could slightly unbalance the phases.

MEASUREMENT TECHNIQUE

The most exact way to determine the short-circuit current is to place a bolted fault intentionally on
the mine power system at the end of a trailing cable, but this is not a realistic method to determine
fault currents. Also, equipment protective devices on the power center would interrupt the current
in the trailing cable before measurements could be made. Prudent test procedures and safe
engineering practice necessitate limiting the test fault currents. Therefore, a more realistic and
practical method is to insert a low resistance power resistor in the circuit in place of the fault. The
effects of this resistor are subtracted from the measurements when the system impedance is found.
Using this test procedure the power system impedance at the end of a trailing cable can be measured,
and hence the fault current can be determined.

As discussed previously, if the system impedance is predominately resistive, then a single point test
method can be used to measure the system impedance. The per phase impedance of the power
system is represented in figure 2 below, being energized by an ideal voltage source.

The test method for measuring the system impedance is performed in two steps. Initially, the no load
voltage at the terminals of a section power center is measured as shown in figure 2. Then, as shown
in figure 3, a resistive load is connected to the power center and the current and voltage are measured
at the load resistor.

_ e Te—
o Eysiam |

") ELO® ' E

. | no load
ey

|___r_1 —

Figure 2. Single-Phase Equivalent Circuit for a Mine
Power System, Under No Load Conditions



Figure 3. Single-Phase Equivalent Circuit for a Mine
Power System, Under Load Conditions

Once the no load voltage, load voltage and current are measured, the system impedance can be
calculated by dividing the voltage drop across the system impedance by the current passing through
the system as expressed below.
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where: Zoys = Calculated system impedance, in ohms per phase

Z, = Total test impedance
R, = Measured load resistor impedance
E = Voltage drop across the system impedance, in golts/
Ew = No load voltage, phase to neutral, in vdits/
E. = Load voltage, phase to neutral, in vats/

I = Load current, in amperes

The phase angl®, can usually be ignored in these calculations because the resistance in the trailing
cable, being much greater than the system reactance, will be the dominant factor. Having an
impedance that is predominantly resistive will produce a phase angle near zero. This simplified
analysis is valid for specific conditions and contains inherent limitations, which will be discussed
in the following section.

Using the above measured data, the short-circuit current at a fault on the endinfacaiale can

now be calculated. The three-phase fault, calculated on a per-phase basis is the first one considered.
This type of fault will result in the maximum short-circuit current [10]. In the equation below, the
voltage, E, , is at the point where the system will be faulted. This value should be close to the
maximum operating voltage under fully loaded system conditions.



Voltage per phase:

c 2)

A balanced three-phase bolted fault provides the maximum expected fault current.

Three-phase bolted fault current (to end of trailing cable).
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The single phase-to-phase bolted fault current is used to determine the circuit breaker setting.

Single phase-to-phase bolted fault current (to end of trailing cable).
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ERROR ANALYSIS

In an effort to simplify the test method and analysis, certain assumptions were made concerning the
characteristics of the system impedance. These assumptions will be analyzed to reveal potential
errors that may be introduced into the calculated system impedance.

The single point test measurement technique, as previously described, does not provide information
related to the test system phase anpyJegs shown in figure 4. Not knowing this phase anple,
prohibits complete quantification of the system impedance. To overcome this missing phase angle
measurement, the test method assumes the power system impedance is primarily resistive. The
power system is then analyzed without consideration of the phase shifting effects of the smaller
reactive components, as shown in equation 1. This approach is justified since the trailing cable
resistance was shown to be the predominant element of the power system impedance.

The system impedance calculations are simplified by subtracting the magnitude of the test load
resistance directly from the total test impedance without regard to the phase angle. Since the power
system is not purely resistive this analysis technique introduces an analytical error, ER, into the
system impedance calculations, as illustrated in figure 4. This analytical error pertains only to the



procedure; it is not the error that would be associated with the measurement, as this error can make
even more of a difference.
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Figure 4. System Impedance Error Analysis Diagram

where:
Z;S = True system impedance
Z'sys = Calculated system impedance
Z = Total test impedance
F:L = Measured load resistor impedance (all resistive)
R, = Load resistor magnitude
0 = True system phase angle under bolted fault condition
¢ = Total system phase angle under test condition
ER = Analytical error

The system impedance error analysis diagram was constructed by first plotting the true system
impedance vector,s , at an exaggerated phase &hdt®, illustrative purposes. The test load
resistance, R , (shown as a smaller magnitude than used in actual practice) is then added vectorially
to the system impedance. This vector summation yields the total test impedance, Z, at an unknown
phase anglep, as measured during testing. The magnitude of R (shown in the diagrdn), & R
subtracted from the magnitude f Z without regard to the unknown phasedartglealculate the

system impedance,'4. The analytical error, ER, becomes evident when the calculated system

impedance, Z,is reflected onto the true system impedancgs Z , as illustrated by the dashed arc
line.



With the aid of the system impedance error analysis diagram in figure 4, the analytical error can be
derived from a mathematical relationship between the system impedance, load resistor, and phase
angle,0.
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Zoys = ZgysCOSO + | Zg,sSiNn 6
Z =R + Zg,sC0S0 + j Zg cSin O (7)
Z, =/ (R + ZgysCOS B) + (Zgyssin 6) (8)
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Values were substituted for the variables shown in equation (11) to determine the range of percent
analytical error that can be expected for a typical mine power system impedance test. The values
used for the variables were;,Z = 0.22041.4° ohms for the typical system impedance discussed
earlier; R = 1.32 ohms for actual test that will be discussed later; and tBe(power factor)

ranging from 1.00 to 0.89 the maximum expected range at the end of a trailing cable. The sensitivity
analysis graph generated by this substitution procedure shows the percent analytical error vs the
system phase angle relationship in figure 5. The dashed lines indicate an analytical error of 1.7%
that would be generated for a phase angle of {p@wer factor of 0.98) if the typical mine system

was tested using this procedure.

The sensitivity graph demonstrates that the percent error is inversely proportional to the system
power factor (co§). However, even with a faulted system power factor of 0.90 the analytical error
is less than 10%.






