Crop Germplasm Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
NCGR-Pecans
PecanNutQuality
 

Research Project: GENETIC ANALYSES AND TRAIT MAPPING TO EXPLOIT UNTAPPED GENETIC DIVERSITY IN SORGHUM

Location: Crop Germplasm Research

Project Number: 6202-21000-027-00
Project Type: Appropriated

Start Date: Mar 01, 2008
End Date: Feb 28, 2013

Objective:
Objective 1: Refine the sorghum genome map to accelerate map-based gene discovery and comparative analyses of genes and gene networks in the Poaceae family. Completion of a genome map of sorghum will permit direct cross-referencing of the genomes of sorghum, rice, and maize, thereby permitting a unified Poaceae genome map to be assembled. This map and associated technology platforms will enhance gene discovery and expedite germplasm development via marker-assisted selection of key agronomic traits. Objective 2: Utilize the sorghum genome map and genetic resources to clone key genes, including those controlling pollen fertility and drought tolerance. As the products of Objective 1 are developed and released, positional cloning of genes will be simplified when complemented with high-quality linkage analyses. Sub-objective 2.A: Elucidate the genetic basis of drought tolerance by positional cloning of a major stay-green QTL in sorghum. Utilizing genetic stocks that are isogenic for a given stay-green QTL, high resolution maps have been constructed and continued refinement of each QTL will be achieved. The further refinement of the QTL, coupled with detailed genetic, physiological, and molecular analyses of gene candidates will ultimately permit the gene(s) conditioning the stay-green phenotype to be cloned. Sub-objective 2.B: Elucidate the genetic basis of pollen fertility restoration in sorghum by positional cloning of the Rf2 fertility gene. Armed with fine mapping populations, genomic technology platforms for sorghum, and having cloned the first major sorghum fertility gene, positional cloning of Rf2 fertility restoration gene is achievable. Objective 3: Map genome regions controlling photoperiodism and plant height in sorghum and identify robust molecular markers linked to these traits. Completion of the genome map flanking these trait loci will expedite high-resolution mapping by revealing sequences representing potential markers for additional fine mapping, while also revealing candidate genes conditioning photoperiodic-insensitivity and reduced plant height. Objective 4: Conduct proof-of-concept study, utilizing molecular markers, to expedite the conversion of tropical sorghum to temperate adaptation. We will utilize the genome map and molecular markers discovered under Objective 3 to evaluate the introgression of recessive alleles conditioning photoperiod insensitivity, plus reduced plant height, into tropical germplasm. This molecular evaluation will supplant the additional selfing generations and associated phenotypic evaluation normally required to track the introgression of recessive alleles into exotic germplasm during their conversion to photoperiod-insensitive, short-stature cultivars suitable for production in the U.S.

Approach:
The long-term goal of this project is to develop and utilize appropriate approaches and techniques in genomics and biotechnology to discover genes that control key agronomic traits, and to utilize these to augment breeding strategies that will facilitate the development of improved sorghum cultivars. At present, positional cloning in sorghum is a daunting task, but the further refinement of a sequenced-based sorghum genome map will greatly simplify gene discovery. We have targeted several agronomically critical genes for positional cloning, including the stay-green gene(s) conditioning sorghum¿s exceptional tolerance to post-anthesis drought. In ongoing collaboration with scientists at Texas A&M University and the Department of Primary Industries and Fisheries, Queensland, Australia, an integrated approach that includes the plant disciplines of physiology, breeding, molecular genetics, and genomics is being employed to clone stay-green genes. This information, and markers linked to these genes, will be exploited to introgress post-anthesis drought tolerance into elite sorghum cultivars. Additionally, the molecular tools developed under Objective 1 and Sub-objective 2.A will facilitate our ongoing efforts to clone pollen fertility restoration genes. Work with our Queensland collaborator will target cloning of Rf2 because of its importance in hybrid seed production, and the need for informative markers tightly linked to Rf2 for germplasm evaluation. We also seek to map, at high resolution, the height and photoperiod-insensitive genes required to convert tropical sorghums to photoperiod-insensitive, short-stature cultivars suitable for production in the U.S. Objectives 1-3 are complementary, and the knowledge gained under one objective will facilitate success in all. Continued map resolution of photoperiodic and height trait loci obtained under Objective 3 will provide the foundation for identification of additional robust molecular markers and potential candidate genes, which will positively impact achievement of Objective 4.

   

 
Project Team
Klein, Robert - Bob
 
Project Annual Reports
  FY 2008
 
Related National Programs
  Plant Genetic Resources, Genomics and Genetic Improvement (301)
 
Related Projects
   PHENOTYPIC CHARACTERIZATION OF SORGHUM BICOLOR CAROTENOID ENDOSPERM CONTENT
   EVALUATING PHOTOPERIOD SENSITIVE SORGHUM GERMPLASM FOR PRE- AND POST-FLOWERING DROUGHT TOLERANCE
   CHARACTERIZATION OF GENES INVOLVED IN FERTILITY RESTORATION IN SORGHUM
   SCREENING SORGHUM GERMPLASM LINES FOR HEAD SMUT RESISTANCE
   SORGHUM SPECIES HYBRIDIZATION
 
 
Last Modified: 11/07/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House