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EXECUTIVE SUMMARY 

In 1996, over 1.8 million rear-end crashes occurred in the United States with approximately 
2,000 associated fatalities and 800,000 injuries. Rear-end crashes accounted for approximately 
25% of all police-reported crashes and 5% of all traffic fatalities. Forward Collision Warning 
(FCW) systems are now emerging that provide alerts intended to assist drivers in avoiding or 
mitigating rear-end crashes. This project was conducted to define and develop key pre-
competitive enabling elements of FCW systems. These elements include definition of the 
specific crash type(s) that an FCW system should be designed to address, the resulting minimum 
functional requirements for such a system, and objective test procedures for evaluating the extent 
to which a particular system design provides the desired functionality. Establishing these key 
elements will enhance consistent countermeasure system implementation across manufacturers. 
This will result in improved customer understanding and acceptance and help to accelerate the 
implementation of FCW systems 

This effort focuses on FCW systems designed for light vehicles (passenger cars, light trucks and 
vans). Taking into account a fundamental understanding of potential countermeasure system 
technology, specific high frequency and severity crash scenarios were identified. Six relevant 
situations were selected from a previous analysis which postulates interactions of causal factors 
and crash outcomes in the form of specific crash scenario descriptions. The underlying 
assumptions used in the selection process are that the potential threat is observable by line-of-
sight sensing from the front of the host vehicle, drivers avoid or mitigate the impending crash by 
braking only, and that the FCW system operates autonomously within existing infrastructure. 
The scenarios selected contain the majority of the situations described in the analysis in which 
one vehicle strikes the rear-end of another as a result of driver error. These situations account for 
over 16% of the direct costs and over 9% of the functional years lost annually from police 
reported crashes in the United States. The most common conditions in which rear-end crashes 
occur are during daylight hours on dry, flat, straight roads under clear atmospheric conditions. 
The predominant causal factor is driver inattention. While pedestrian and animal crashes may 
also be mitigated by FCW systems in some instances, these are typically very different scenarios 
from rear-end crashes and are not considered in the performance requirements set developed. 
Based on these scenarios, a driver's "mental model" of how an FCW system should perform was 
developed. This model suggests that the FCW system should behave like an ever-vigilant 
passenger, producing a crash alert only when a passenger would become alarmed. A set of 
“operational scenarios” were also defined which describe commonly encountered driving 
situations that may cause missed or unwanted ("out-of-path nuisance") alerts such as approaching 
a guardrail on a curve, overhead signs or bridges. In all, six crash scenarios and nine operational 
scenarios were identified. 

Crash alert timing and crash alert modality (auditory, visual and/or haptic) requirements were 
developed by conducting a series of closed-course human factors studies using a "surrogate 
target" methodology developed in this program. The "surrogate target" consists of a molded 
composite mock-up of the rear half of a passenger car mounted on an impact absorbing trailer 
that is towed via a collapsible beam. The surrogate target provides a realistic crash threat to 
drivers, yet is able to absorb impacts of up to a 10 mile per hour velocity differential without 
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sustaining permanent damage. This approach allowed experimenters to safely place naive 
drivers in realistic rear-end crash scenarios on a proving ground and observe their behavior. 

In the first phase of human factors testing, drivers were asked to perform last second braking 
maneuvers while approaching a slowing or stopped vehicle (surrogate target) without FCW 
alerts. Drivers were instructed to use either "normal" or "hard" braking to avoid a crash. For 
each instruction, the point at which drivers chose to begin braking and how hard they actually 
braked to avoid a crash was found to be a function of closing speed and lead vehicle deceleration 
rate. Driver’s "hard" braking behavior was then modeled and used as the alert timing criterion 
for the second phase of testing, which evaluated drivers’ reaction times to a variety of interfaces 
under surprise and alerted conditions. This reaction time data was then combined with 
knowledge of driver’s braking behavior to develop a model for the range at which an FCW alert 
should be given. The resulting alert prompts inattentive drivers to begin braking at a point 
consistent with the preferred last second "hard" braking judgements observed. This timing 
criteria provides an alert after most attentive drivers would have started a "normal" last-second 
braking maneuver, yet soon enough for most drivers to still avoid a crash using "hard" braking. 
This approach minimizes the number of alerts which drivers perceive as too early ("in-path 
nuisance" alerts) while maintaining high FCW effectiveness under tested conditions. This model 
is significantly different from previously developed alert criteria that are based on headway-time 
or time-to-collision. The difference is attributed to the surrogate target methodology, which is 
believed to present a more realistic crash threat than previously available. The various interfaces 
were compared using subjective and objective measures, including driver reaction time. The 
preferred FCW alert interface consists of a specific non-speech tone (required) and visual icon 
(recommended, but not required). If included, this icon should be flashed on a "high head-down" 
display.  A steady or flashing head-up display of this same icon may be substituted. A brake 
pulse haptic alert was also studied, but such an alert is not recommended because of driver 
response (annoyance / confusion) and vehicle implementation issues (vehicle response under low 
traction conditions). 

Based on the results of the scenario analysis and human factors testing, a set of preliminary 
minimum functional requirements and associated vehicle level objective test procedures were 
developed. The functional requirements specify the crash alert response of an FCW equipped 
vehicle in both crash relevant and non-crash operational driving scenarios (i.e., alert too early / 
too late / no alert). The objective test procedures verify vehicle system level performance with 
professional drivers. A set of 26 test procedures specify requirements for the test site, 
instrumentation and execution including pass / fail criteria. These tests are expected to take a 
total of two to four weeks to execute and are designed to be repeatable across different test sites. 
These test procedures were validated by executing a subset of five critical scenarios with off-the-
shelf laser and radar based FCW systems at the GM Proving Ground in Milford, Michigan and at 
the Transportation Research Center in East Liberty, Ohio. The scenarios selected for validation 
were those considered most difficult to execute. 

The approach of establishing minimum vehicle-level performance requirements (i.e., what the 
system should do) contrasts with previous attempts to define specific sensor and processing 
performance requirements (i.e., how to build the system). These criteria describe the minimum 
performance of an ideal FCW system from the driver’s perspective. This approach allows 
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countermeasure system suppliers to utilize whatever technology becomes available to best 
perform the desired function. 

The preliminary minimum functional requirements and objective test procedures for FCW 
systems developed in this project provide a sound framework on which to build. However, there 
is no claim that these requirements can be met with currently available technology.  It is also 
possible that countermeasure systems which do not meet all of the proposed requirements may 
still provide drivers with some level of crash avoidance / mitigation benefit. In addition, these 
results are subject to a number of limitations. Among them are the range of initial conditions 
evaluated in the human factors testing, the instrumentation quality data used to model the 
proposed alert timing criteria, and the limited evaluation used to establish the "nuisance alert" 
exposure rates on which objective test procedure pass / fail criteria are based. All human factors 
testing was conducted during clear weather daylight conditions on a straight, dry, level road. 
"Instantaneous" knowledge of lead vehicle behavior (including deceleration) was obtained from 
on-board instrumentation via vehicle-to-vehicle communications. The crash scenario evaluated 
was an in-lane approach to a stopped vehicle or a lead vehicle exhibiting constant deceleration 
levels. While the scenarios evaluated represent the majority of rear-end crashes, further testing is 
necessary to establish driver acceptance of the proposed alert timing and interface modality 
requirements under different operating conditions using autonomous sensor data. Among the 
additional conditions that should be considered are nighttime, bad weather, and non-constant lead 
vehicle deceleration profiles. Also, true nuisance alert exposure rates are driver dependent. 
Extensive field operational testing is necessary, at a minimum, to better understand what levels 
of nuisance alerts are acceptable to drivers. 
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System Functionality 
The purpose of a Forward Collision Warning system is to provide alerts to assist drivers in 
avoiding or reducing the severity of crashes involving the FCW equipped vehicle striking the 
rear-end of another vehicle. These alerts should be provided in time to help drivers avoid most 
common rear-end crashes by braking only, while also minimizing "nuisance alerts" in order to 
improve driver acceptance. Nuisance alerts are warnings issued in situations that the driver does 
not perceive as alarming.  Nuisance alerts include warnings triggered by objects ahead of the 
vehicle but outside of the driver’s intended path ("out-of-path" nuisance alerts) and alerts caused 
by a vehicle in the driver’s intended path in situations not considered alarming by the driver ("in-
path" nuisance alerts). 

The FCW system is assumed to operate autonomously within existing infrastructure. Proper 
operation of the FCW system does not require cooperative interaction with other vehicles or the 
roadway.  However, systems may take advantage of common infrastructure features such as lane 
markings if they are present. The system provides alerts only.  It does not attempt to control the 
FCW equipped vehicle to avoid an impending crash. The system monitors the forward scene and 
evaluates potential threats. However, the system can only address situations that are observable 
by line-of-sight sensing from the front of the FCW equipped vehicle. 

Balancing system effectiveness against driver annoyance is a key issue in defining the 
performance characteristics of an FCW function. If the system is required to provide alerts such 
that all drivers are able to avoid rear-end crashes in all possible situations, the resulting system 
would necessarily provide alerts to a large number of drivers in situations which they did not 
consider alarming.  The resulting high number of in-path nuisance alerts may cause drivers to 
ignore the FCW alerts and thus reduce system effectiveness substantially. A high number of out-
of-path nuisance alerts will also exacerbate this problem. A more feasible goal is to provide 
alerts which will assist drivers to avoid most common rear-end crashes by braking only.  A 
consistent "mental model" of how the FCW system performs this task is key to wide spread 
driver understanding and acceptance. The proposed model is one of an "ever-vigilant passenger", 
producing alerts only in situations in which a knowledgeable passenger would become alarmed. 

The specific crash problem which an FCW system should address is described in terms of the 
prioritized list of six rear-end crash scenario descriptions contained in Table 1. These scenarios 
were selected from previous analysis work ("44 Crashes", Version 3.0, General Motors, January 
1997) which combined crash outcome statistics (1991 General Estimates System, 1990 Michigan 
and 1991 North Carolina police reports) with causal factors (Tri-Level Study of the Causes of 
Traffic Accidents, Indiana University, Treat, J.R., et. al., 1979). These scenarios were judged to 
satisfy three conditions. They are observable by the FCW system, a warning may have helped a 
driver brake to avoid or mitigate the impending crash, and they are high frequency and severity 
events. In this analysis, severity comprehends both the direct costs of crashes and the functional 
years lost due to death or incapacitating injury. The most common conditions associated with 
rear-end crashes are straight roads during the daytime under clear weather conditions. Driver 
inattention is the major causal factor in these rear-end crash scenarios. It is possible that FCW 
systems may provide some benefit in other crash scenarios. However, the resulting wide range of 
operating conditions, pre-crash dynamics and struck objects would drive an unrealistic FCW 
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system specification.  
one vehicle strikes the rear-end of another as a result of driver error.   scenarios selected
represent 19.5% of all crashes and account for 16.2% of the direct costs and 9.2% of functional
years lost from motor vehicle crashes in the U.S. annually.

Table 1 - Prioritized List of Relevant Rear-End Crash Scenarios

Scenario Frequency (%) Functional years
lost  )

Direct Cost (%)

Inattentive driver 12.0 4.9 10.2
Distracted driver 2.0 1.7 1.9
Poor Visibility 2.0 1.6 1.7
Aggressive driver 1.5 0.5 1.1
Tailgate 1.0 0.3 0.8
Cut-in 1.0 0.2 0.5

The response of the FCW system in other common non-crash "operational scenarios" is also a
key driver acceptance issue.   the proposed model of a knowledgeable "ever-vigilant
passenger", a set of driving scenarios that may cause unwanted or missed alerts was developed.
These scenarios include overhead signs and bridges, elements of the road surface (gratings,
manhole covers, crosswalk striping) and debris on the road, vehicles in adjacent lanes, roadside
clutter (signs, guardrails, mailboxes) and widely varying vehicle sizes in the same or adjacent
lanes as depicted in Table 2.  CW system requirements.  n both sets
of scenarios, the (potentially) FCW equipped vehicle is referred to as the Subject Vehicle (SV)
and the vehicle that poses the potential collision threat is the Principal Other Vehicle (POV) .

Table 2 – FCW System Operational Scenarios
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Human Factors Studies 
The human factors portion of this project defined driver-interface requirements for an FCW 
system. Effort was focused on when to present crash alerts in an approach situation (i.e., alert 
timing) and how to present crash alerts to drivers (i.e., auditory, visual and/or haptic alert 
modality). The goal was to develop an approach to FCW alert timing and modality that would 
assist drivers in avoiding or mitigating a rear-end crash in a high percentage of situations while 
not generating alerts in situations drivers perceive as non-alarming. 

In order to develop these requirements, it was necessary to collect data on driver braking 
behavior under controlled yet realistic rear-end crash conditions. Prior to this work, available 
data on driver behavior in rear-end crash situations has been collected almost exclusively in 
driving simulators. In this case, an artificial lead vehicle or “surrogate target” methodology  was 
developed that allowed for the possibility of safe, low-speed impacts by an approaching vehicle. 
This target consisted of a molded composite mock-up of the rear half of a passenger car mounted 
on an impact-absorbing trailer. A lead vehicle towed the target via a collapsible beam. This 
combination of impact absorbing target and collapsible tow beam is able to absorb impacts by a 
following vehicle of up to a 10 mile per hour velocity differential without sustaining permanent 
damage or deploying the impacting vehicles airbags. The lead vehicle was modified to brake 
automatically at various constant deceleration levels. This surrogate target methodology is 
illustrated below in Figure 1 at the General Motors Milford Proving Ground test site. 

Figure 1 - CAMP Surrogate Target Methodology 

In developing a crash alert approach for an FCW system, two fundamental driver behavior 
parameters have to be considered: 

•	 How hard the driver will brake in response to the alert (i.e., driver deceleration 
behavior) 

•	 The time it takes for the driver to respond to the crash alert and begin braking (i.e., 
driver brake reaction time). 

These parameters serve as input into vehicle kinematics equations to establish the appropriate 
warning range as shown in Figure 2. Given values for these parameters, and assuming current 
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speed and lead vehicle deceleration values, an alert range can be derived such that the front 
bumper of the driver’s vehicle would just contact the rear bumper of the lead vehicle during the 
approach. How hard drivers actually braked in a potential rear-end crash situation was addressed 
by the first human factors study, referred to as the “baseline study”.  Driver reaction time in 
response to an FCW alert was addressed by three subsequent studies referred to collectively as 
the “interface studies”. These interface studies also provided the opportunity to validate the 
model of driver braking in response to the alert developed in the earlier baseline study. 

How hard the driver brakes in 
response to the alert 
(i.e., the driver deceleration 
parameter) 

--> Modeled from Baseline Study 

--> Validated in Interface Studies 

The time it takes for the driver to response to 
the alert and begin braking 
(which is crash alert modality dependent) 

--> Developed and Validated in 
Interface Studies 

WARNING RANGE = BRAKING ONSET RANGE + DELAY TIME RANGE 

function(VSV, POV, decREQ, cPOV) function(VSV, VPOV, ecSV, decPOV, brake delay time, 

driver brake RT , interface delay time) 

V de d

Figure 2 – Driver Behavior Parameter Influence on Warning Range 

A fundamental understanding of drivers’ "last-second" braking behavior without an FCW system 
was established in the baseline study. Drivers were asked to wait to brake until the last possible 
moment in order to avoid colliding with the surrogate target. These last-second braking 
judgments were made while approaching the surrogate target under a wide range of speed (30 to 
60 mph) and lead vehicle deceleration conditions (0 g’s to -0.39 g’s). In performing these 
judgments, subjects were instructed to use either "normal", "comfortable hard" or "hard" braking 
pressure. These different instructions enabled the proper identification and modeling of drivers’ 
perceptions of "aggressive normal braking" and "hard braking". Thirty-six younger, 36 middle-
aged and 36 older drivers were tested, with an equal number of males and females in each age 
group. A wide variety of deceleration-based and time-based (e.g., time-to-collision) driver 
performance measures were obtained from over 3,800 last-second braking trials. 

The driver braking preference data obtained in the baseline study was statistically modeled for 
use in the subsequent interface studies. This provided an estimate of when and how hard drivers 
would prefer to brake in response to the alert. Results suggest that drivers’ "last-second" braking 
decisions are deceleration-based rather than time-based as suggested in previous studies. The 
"actual deceleration" measure, illustrated in Figure 3, is defined as the constant deceleration level 
required to yield the observed stopping distance. The "required deceleration" measure is defined 
as the constant deceleration level required for the driver to avoid the crash at braking onset. This 
measure was calculated by using the current speeds of the driver’s vehicle and the lead vehicle, 
and assuming the lead vehicle continued to slow at the prevailing deceleration value. These 
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deceleration measures varied with driver speed and lead vehicle deceleration rates. That is, 
drivers braked harder at higher speeds and as the lead vehicle braked harder. This also contrasts 
with assumptions employed in previous FCW system crash alert timing approaches. Both 
parameters were relatively uninfluenced by driver age or gender. 

SV Braking 
Onset 

Actual SV 
Stopping Point 

Actual Stopping 
Margin 

Actual Braking Distance -
Used to calculate “Actual” 
Deceleration Measure 

Hypothetical Required Braking Distance -
Used to calculate “Required” Deceleration Measure 

Hypothetical SV 
Stopping Point 

“Actual” Deceleration (g) - The constant deceleration level needed to yield the 
actual (observed) stopping distance 

Parked 
Vehicle 

Parked 
Vehicle 

“Required” Deceleration (g) - The constant deceleration level required for the 
driver to avoid the crash at braking onset 

SV Braking 
Onset 

Figure 3 - Definition of Actual and Required Deceleration Measures 

The 50th percentile “required deceleration” measure obtained under “hard” braking instructions 
appears very promising as a proper estimate of how hard the driver would prefer to brake in 
response to the alert. Figure 4 shows three cumulative probability distributions of assumed 
driver deceleration parameters for various braking instructions during a typical approach 
condition. The left most distribution is the "required deceleration" parameter calculated for the 
"normal" braking instruction. This distribution indicates drivers’ preferred braking onset 
behavior for normal last second braking.  Any alert given before the end point of this distribution 
is reached during an approach might be perceived as "too early" by the remaining percentage of 
drivers. The middle distribution is the "required deceleration" parameter calculated for the 
"hard" braking instruction. This data indicates the preferred braking onset behavior for drivers 
executing a last second hard braking maneuver. An alert issued at some point along this 
distribution during an approach would be perceived as an acceptable avoidance braking 
maneuver for those to the left and uncomfortably hard for those to the right. The right most 
distribution is the "actual deceleration" parameter for the "hard" braking instruction. This curve 
models the level of (constant) deceleration which drivers actually employed to avoid the crash. 
As the deceleration level required to avoid the crash increases, this distribution shows the 
percentage of drivers remaining (to the right) who demonstrated that they were able to brake at 
this level or harder. Drivers who brake at a level below this point (to the left) in an actual 
collision situation would still realize some crash mitigation benefit from a reduced impact 
velocity. Thus by accommodating driver preferences for hard braking it appears possible to 
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minimize "too early" alerts for a high percentage of drivers while still allowing sufficient 
distance for most drivers to avoid the crash by hard braking.  The 50th percentile "required 
deceleration" parameter for "hard" braking was modeled across all test conditions and used for 
crash alert timing purposes in the interface studies. 
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normal braking onsets 

Maximize hard braking 
crash avoidance capability 

45 MPH / -0.28 g 
Example Case 

assumed ‘driver deceleration behavior’ 
in response to a crash alert 

Figure 4 – Required Deceleration Model for Assumed Driver Deceleration Behavior 

Three driver interface studies focused on how to present a crash alert to the driver and the 
assumed driver brake reaction time for crash alert timing purposes. In these interface studies, the 
driver was simultaneously presented (i.e., in a one-stage manner) crash alerts from two or more 
sensory modalities. The FCW system crash alert types evaluated are listed below. 

• Head-Up Display + Non-Speech Tone 
• High Head-Down Display + Non-Speech Tone 
• High Head-Down Display + Speech message 
• High Head-Down Display + Brake Pulse 
• High Head-Down Display + Brake Pulse + Non-Speech Tone 
• Flashing High Head-Down Display + Non-Speech Tone 

Both visual alerts were located centerline to the driver, with the amber High Head-Down Display 
(HHDD) located on the top of the dashboard near the cowl of the windshield, and the blue-green 
Head-Up Display (HUD) positioned slightly above the front hood at a 1.2 m distance. An 
American National Standards Institute (ANSI) testing procedure was used to select the visual 
alert format. The auditory alerts included a non-speech tone and a speech message (the word 
“warning” repeated) played through the front car speakers. These sounds were selected based on 
drivers’ subjective ratings of various alternative sounds on crash alert properties. The haptic alert 
evaluated was a brief brake pulse or “vehicle jerk” alert. 
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Younger, middle-aged and older drivers were asked to brake in response to these crash alert types 
while approaching the surrogate target under the same speed and lead vehicle deceleration 
conditions examined in the baseline study. Both alerted and unexpected (or surprise) braking 
event conditions were investigated with naive drivers and drivers experienced with the alerts. In 
two of the three studies, drivers were unaware the vehicle was equipped with an FCW system 
crash alert prior to the surprise braking event.  Several strategies were employed to create an 
“inattentive” driver during this surprise event, including engaging the driver in natural 
conversation, asking the driver to respond to some background-type questions, and asking the 
driver to search for a (non-existent) indicator light on the conventional instrument panel. During 
this surprise braking event, the driver was following the lead vehicle at about 30 mph when the 
lead vehicle suddenly braked at about -0.37 g’s without any brake lights. The key driver 
performance measures used to compare these crash alert types were brake reaction times, the 
drivers’ ability to notice the alerts under surprise conditions, required and actual deceleration 
levels, and drivers’ ratings of the crash alert timing and crash alert types examined. 
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Figure 5 – Driver Subjective Ratings of Alert Timing for Alerted Trials 

Results clearly indicated that the timing approach employed was subjectively rated (on average) 
as “just right” timing under a wide range of speed and lead vehicle deceleration conditions, as 
shown if Figure 5 for alerted trial conditions. Most importantly, this timing approach allowed 
104 of 108 drivers to respond to the crash alert under the surprise braking event conditions in a 
manner that allowed them to avoid impacts with the surrogate target. Based on data obtained in 
the interface studies, as well as the previous baseline study, a set of minimum driver interface 
requirements and a recommended driver interface approach were developed. Recommended 
values for the assumed driver brake reaction times obtained from interface testing (for crash alert 
timing purposes) are incorporated in the alert timing requirements discussed in the next section. 
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Minimum Functional Requirements 
The proposed minimum functional requirements for an FCW system were derived by combining 
the system functionality necessary to address the specific crash problem identified and satisfy the 
expectations of the driver’s mental model developed with the knowledge obtained regarding how 
drivers normally (prefer to) brake to avoid a rear-end crash. These requirements fall into four 
categories: driver interface, alert zone, nuisance and environmental. 

Driver Interface Requirements 

Proposed minimum requirements for an FCW system driver interface and an optional 
"recommended approach" are summarized in Table 3. As a minimum, a single stage alert 
consisting of a specific non-speech tone is required. A specific visual icon may be used to 
supplement this auditory alert if desired. Although optional, use of the visual icon is encouraged 
to improve alert noticeability for drivers who may not hear the tone, prompt drivers to look ahead 
in response to an alert, and to explain the non-speech tone to the driver. A single stage crash 
alert consisting of the non-speech tone combined with a flashing High Head Down Display of the 
visual icon with the word “WARNING” added is recommended. This combination demonstrated 
good all-around performance in terms of objective data (e.g., faster driver brake reaction times) 
and subjective data (e.g., alert noticeability) during interface testing.  These findings also support 
replacing the High Head Down Display with a Head Up Display if desired. 

Overall, the speech alerts examined performed poorly in terms of both objective and subjective 
data. The brake pulse haptic alert is not currently recommended due to a number of unresolved 
implementation and driver behavior issues (e.g., activation on slippery surfaces, driver braking 
onset delays, observed foot / body movements). 

The single-stage rear-end crash alert recommendation is based on modeling how drivers actually 
perform this braking task. This supports the notion of a consistent driver "mental model" and 
simplifies customer education while minimizing nuisance alerts. The proposed crash alert timing 
requirements based on this model define an acceptable crash alert timing zone for an FCW 
system as shown in Figure 6. The boundaries for this zone are defined by “too early” and “too 
late” alert onset range cut-off points. These are oriented toward observed driver hard braking 
preferences and demonstrated capability, respectively.  These cut-off points are calculated from 
vehicle kinematics equations, for prevailing speeds and lead vehicle deceleration rate, based on 
assumptions for the two fundamental driver behavior parameters established during testing 
(driver deceleration behavior and driver brake reaction time). Note that this requirement does not 
specify the particular crash alert timing approach to be used, but instead simply requires that 
whatever crash alert timing approach is used yield performance consistent with these boundary 
timing requirements. 
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Table 3 - Summary of FCW Driver Interface Requirements 

Criteria Minimum Requirement Recommended Approach 
Number of 

Crash 
Alert 

Stages 

At least one-stage. 

(Multi-stage alert allowed if all minimum 
requirements met at the minimum timing 
setting and any additional stages do not 
reduce the effectiveness of the most 
imminent alert.) 

Single-Stage 

Crash 
Alert 

Modality 

Non-Speech Tone 

(Sound #8: mixed waveforms with 
2500 & 2650 Hz peaks) 

Non-Speech Tone 
+ 

Flashing High Head-Down Display 

(Steady or flashing Head-Up Display may 
be substituted for the High Head-Down 
display if desired) 

Crash 
Alert 

Display 
Format 

(if 
provided) 

Red-Orange, Amber 
or Yellow indicator 

Red-Orange, Amber 
or Yellow indicator 

WARNING 

Crash 
Alert 

Timing 

Driver Behavior Parameters 
(input assumptions for vehicle kinematics 

equations) 

Assumptions for “too early” alert onset cut-off: 

° Deceleration level at braking onset in g’s (*) = 
-0.165 + 
0.685*(lead vehicle deceleration in g’s ) + 
0.080* (only if lead vehicle moving) -
0.00877*(speed difference in meters / second) 

° Brake Reaction Time to crash alert in seconds = 1.52 

Assumptions for “too late” alert onset cut-off: 

° Deceleration level at braking onset in g’s = 
-0.260 -
0.00723*(driver speed in meters / second) 

° Brake Reaction Time to crash alert in seconds = 1.18 

Driver Behavior Parameters 
(input assumptions for vehicle 

kinematics equations) 

Assumptions: 

° Deceleration level at braking onset in g’s (*) = 
-0.165 + 
0.685* (lead vehicle deceleration in g’s ) + 
0.080* (only if lead vehicle is moving) -
0.00877*(speed difference in meters / second) 

° Brake Reaction Time to crash alert in sec. = 1.18 

Note: * The domain of validity of this equation is described in the report. 
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Approaching 
FCW-Equipped 

Vehicle 

Lead 
Vehicle 

“too early” 
alert onset 

cut-off point 

“too late” 
alert onset 

cut-off point 

Acceptable Crash 
Alert Zone 

Figure 6 - Illustration of the Acceptable Crash Alert Timing Zone 

For the “too early” alert onset range cut-off, the assumed driver deceleration in response to the 
crash alert is based on a braking onset model developed from the baseline study (no alert). This 
model is a function of closing speed, lead vehicle deceleration rate, and whether the lead vehicle 
is moving or stopped. The assumed driver brake reaction time to the crash alert of 1.52 seconds 
is based on the 95th percentile driver brake reaction time from a surprise braking event study. 
This data was gathered with naive drivers who were unaware that the vehicle was equipped with 
an FCW system. These drivers were also distracted at the time of the alert via a request to search 
the instrument panel for a (non-existent) indicator light. 

For the “too late” onset range cut-off, the assumed driver deceleration in response to the crash 
alert is based on an equation developed from the baseline study (no alert) under the condition 
when the lead vehicle braked the hardest (-0.39 g’s). This equation estimates the 85th percentile 
actual deceleration value for the "hard" braking instruction as a function of speed. At speeds of 
30, 45, and 60 mph, the actual deceleration value estimates are -0.36, -0.41 and -0.46 g’s, 
respectively.  Note that these observed driver deceleration values are significantly lower than the 
maximum vehicle deceleration capability on dry roads, an assumption frequently used in 
previous alert timing approaches. The assumed driver brake reaction time to the crash alert of 
1.18 seconds is based on the 85th percentile driver brake reaction time from a surprise braking 
event study. 

The recommended crash alert timing approach combines the braking onset model developed 
from the baseline study with the observed 85th percentile driver brake reaction time of 1.18 
seconds, also from a surprise braking event study. 

Alert Zone Requirements 

The FCW system "Alert Zone" defines the region relative to the equipped vehicle within which 
other vehicles should be evaluated as potential crash threats. This region is defined in terms of 
the roadway scene consistent with the driver mental model discussed earlier. This is different 
from the FCW system "Coverage Zone" necessary to provide proper system functionality. No 
specific requirements are placed on the "Coverage Zone". Figure 7 depicts one possible 
relationship between these two regions. 
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Coverage Zone 

Alert Zone 

Figure 7 - Coverage and Alert Zone of an FCW System 

d1 

k1 

k2 

Alert Zone 

w 

d0 

d1 

wAlert Zone 

d0 

Alert Zone 

Figure 8 - Alert Zone Horizontal and Vertical Shape and Size 

The Alert Zone covers the anticipated path of the FCW equipped vehicle. This zone moves 
smoothly with the vehicle as it changes lanes. Alerts are required if another vehicle is present in 
the Alert Zone and its relationship to the FCW equipped vehicle meets the crash alert timing 
criteria. As shown in Figure 8 the horizontal dimensions of the Alert Zone follows the vehicle’s 
travel lane while the vertical dimensions follow the visible line-of-sight of the road surface. The 
roadway can be curved and/or banked according to standard AASHTO roadway construction 
practices. The center of the Alert Zone is centered on the front of the vehicle. The minimum 
zone width is the width of the vehicle, and the maximum zone width is one standard U.S. lane 
width, 3.6 meters. Another vehicle is defined to be in the Alert Zone if any part of its rear-end is 
within the lateral, longitudinal and vertical extent of the Alert Zone. The Alert Zone begins 
between 0 and 2 meters from the front of host vehicle (d0)and extends to at least 100 meters (d1). 
The 100 meter minimum longitudinal extent is based upon current technology constraints and 
computer simulations suggesting diminishing benefits for extending detection capability beyond 
this range. The vertical dimension of the Alert Zone is no less than the height of the vehicle. 
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This Alert Zone concept is combined with the Crash Alert Timing criteria developed to define 
the minimum functional requirements for an FCW system from a roadway environment 
perspective. This is illustrated in Figure 9 for a straight road situation. This approach is used to 
define a set of objective test procedures that comprehend the crash and operational scenarios 
identified. 

Crash alert must occur 
while POV is in this region 

������������������������������������������������� 

������������������������������������������������� 

���������������������������������������������������������������� 
�������������������������������������������������������������� 

���������������������������������������������������������������� 

“too late” 
cutoff 

“too early” 
cutoff 

Alerts triggered by objects 
outside alert zone are 
Out-of-path nuisance alerts 

Alerts triggered by objects 
beyond the “too early” cutoff 
are In-path nuisance alerts 

POV 
SV 

Crash alert may occur 
while POV is in this region 

Figure 9 – Combining Alert Zone and Crash Alert Onset Timing Requirements 

Nuisance Alert Requirements 

The suggested maximum acceptable nuisance alert rates are no more than one out-of-path alert 
per week and no more than one in-path alert per week for a representative sample of driving 
conditions (i.e., approximately once per 200 miles of driving over a wide distribution of road 
types). Examples of these conditions are illustrated in Figure 9. Further work is required to 
better define "typical" driving and understand driver acceptance of nuisance alerts in various 
situations. 

Environmental Requirements 

The FCW system shall function in all weather and ambient lighting conditions, or warn the driver 
if system operation is limited. This includes day, night, sunrise and sunset conditions. If 
atmospheric conditions such as rain, snow or fog prevent the FCW system from responding 
properly to objects at its nominal maximum range, the FCW system should communicate this 
information to the driver. Given that some technologies are able to detect objects beyond the 
distance that the driver can see clearly, the system is allowed to produce an alert when the 
driver’s vision is limited by lack of light or weather conditions. 
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Objective Test Procedures 
Twenty six dynamic, vehicle-level tests are proposed to evaluate FCW system performance with 
respect to the proposed minimum functional requirements. These tests are designed to evaluate 
system performance across a variety of conditions, while still being practical to execute. Total 
test time is estimated at two to four weeks, not including initial fabrication (special targets / 
clutter objects), set-up and surveying of test sites. Intended users of these tests are vehicle 
manufacturers, countermeasure system suppliers and government organizations. Three facilities 
were considered when designing the tests: the Ford Michigan Proving Ground, the GM Milford 
Proving Ground and the Transportation Research Center (TRC) in Ohio. The tests are designed 
to be technology-independent and, hence, applicable to systems that use millimeter wave radar, 
laser radar and/or computer vision. Each test is described by detailed test procedures and 
requirements for data reporting and analysis, as well as test documentation. The proposed tests 
evaluate alert timing but do not evaluate the alert presentation (e.g. audible alert intensity). Tests 
for the alert modality approach are left to existing industry practices. The complete test regime 
consists of 17 crash alert tests, which incorporate in-path "operational" issues, and 9 out-of-path 
nuisance alert tests. A countermeasure must pass each of the 17 individual crash alert tests and 
score acceptably on the set of 9 out-of-path nuisance alert tests in order to satisfy the proposed 
FCW system minimum functional requirements. 

The 17 crash alert tests (C1 – C17, Table 4) involve dynamic maneuvers of a countermeasure-
equipped Subject Vehicle and up to three Principal Other Vehicles. These tests simulate 
situations in which an alert is required. Data is collected and analyzed to determine whether the 
alert onset timing meets the requirements described earlier (i.e., the alert cannot be “too early” or 
“too late”). The countermeasure fails if it provides alerts that are too late on any of the 17 crash 
alert tests. Alerts that are too early are tallied and later compared against a weighted threshold to 
determine whether the in-path nuisance alert performance is acceptable. The crash alert tests 
include a wide variety of vehicle speeds, lead vehicle decelerations, roadway geometries, lighting 
and visibility conditions and other environmental variables. POVs include mid-sized sedans, 
motorcycles and large trucks. SV lane change maneuvers and a cut-in maneuver by a slower 
POV are included. 

Nine out-of-path nuisance alert tests are defined (N1 - N9, Table 5). These tests derive from the 
operational scenarios and involve simulating common driving conditions in which an alert 
should not occur. These tests combine a variety of vehicle speeds, roadway geometries, POVs 
and out-of-path objects. The out-of-path objects include guardrails, vehicles in adjacent lanes, an 
overhead sign, roadside signs and roadway debris. Alerts that occur during these tests are 
considered out-of-path nuisance alerts. If the weighted sum of the alerts that occur exceeds a 
specified threshold, the system fails the out-of-path nuisance portion of testing.  Scenario weights 
and a maximum threshold are proposed, based on the preliminary minimum functional 
requirements described earlier, which limit the acceptable frequency of out-of-path nuisance 
alerts. The proposed scenario weights are based on an empirical study of objects encountered on 
a short test route over local public roads. The exact values of the scenario weights and maximum 
threshold require further refinement through field operational testing and real world deployment 
experience. 
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Table 4 - Proposed Vehicle-level Tests 

Crash Alert Tests 

C- 100 kph to POV stopped in travel lane (night) 

C- 80 kph to POV at 16 kph (uneven surface) 

C- 100 kph to POV braking moderately hard from 100 kph 

C- 100 kph to POV stopped under overhead sign 

C- 100 kph to slowed or stopped motorcycle 

C SV to POV stopped in transition to curve (wet pavement) 

C SV to POV stopped in a curve without lane markings 

C SV to slower POV in tight curve 

C POV at 67 kph cuts in front of 100 kph SV 

C SV at 72 kph changes lanes and encounters parked POV 

C- 100 kph to stopped POV, with fog. 

C POV brakes while SV tailgates at 100 kph. 

C- 100 kph to 32 kph motorcycle traveling between two trucks also at 32 kph 

C- 100 kph to 32 kph motorcycle traveling behind a truck 

C- 100 kph to 32 kph Truck 

C SV to POV stopped in transition to curve (poor lane markings) 

C- 24 kph SV to stopped POV 

Table 5 - Proposed Vehicle-level Tests 

Out-Of-Path Nuisance Alert Tests 

N- Overhead sign at crest of hill 

N- Road surface objects on flat roads 

N- Grating at bottom of hill 

N- Guard-rails and concrete barriers along curve entrance 

N- Roadside objects along straight and curved roads (dry & wet pavement) 

N U-turn with sign directly ahead 

N- Slow cars in adjacent lane, in transition to curve 

N- 120 kph between two 60 kph trucks in both adjacent lanes 

N- N-5, except with poor lane markings 
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If the countermeasure allows the driver to adjust alert timing, then both crash alert tests and out-
of-path nuisance alert tests are executed at the setting that provides the latest alerts. This ensures 
that the system is capable of providing the required alert timing without exceeding the nuisance 
alert threshold. 

If a countermeasure fails either the crash alert test set or the out-of-path nuisance alert test set, 
there is a high probability that the system does not meet all the minimum functional requirements 
for an FCW system. If a countermeasure passes these tests, there is a high confidence that the 
system would meet the requirements over a wide set of conditions. Nevertheless, field 
operational testing will be required to learn about drivers’ acceptance of the system and its 
potential effectiveness in the real world. 

To validate the objective test procedures, five of the tests were executed (C-3, C-6, C-9, C-13 
and N-7). These five tests were selected based on their relative ability to assess the following 
critical issues: safety of executing the test maneuvers, repeatability of driving the maneuvers 
within tolerance, and sensitivity of results to test site. Testing was performed using FCW systems 
available commercially from automotive electronics suppliers. Both millimeter wave and an 
infrared (laser) based systems were used in each of the tests executed. Tests were executed at the 
General Motors Proving Ground in Milford, Michigan and at the Transportation Research Center 
in East Liberty, Ohio. Three test vehicles were instrumented to measure and record ground truth 
measurements (using differential GPS) and countermeasure data. Data from over 100 test trials 
was collected and analyzed to evaluate test validation issues. This process led to test procedure 
changes that simplify execution and more precisely define road curvature and speed 
requirements. Minor changes in lane markings may be needed to better emulate public road 
markings in specific curved track sections. Also, if these tests are to be executed routinely, there 
is value in developing simple aids to assist test drivers in maintaining lane position or holding 
constant low speeds. 

In addition, two FCW equipped vehicles (one millimeter wave radar and one laser radar) were 
driven over a two hundred mile route around southeastern lower Michigan to identify any 
significant nuisance alert situations missing from the test procedures. The route was selected to 
attain the distribution of road types and time of day outlined in Table 6. This distribution of 
"typical" driving was taken from previous work done by the National Highway traffic Safety 
Administration (Stewart, Gerald and Burgett, August, "Consideration of Potential Safety Effects 
for a New Vehicle Based Roadway Illumination Specification, Twelfth International Conference 
on Experimental Safety Vehicles, 1989). Two new items were added based on this testing. 

Table 6 – Public Road Study Route Characteristics 

Percentage o f  Road  Type Traveled 

Total RI – Rural Interstate 

D aytim e  R o u te 76 
RA – Rural Arterial 
RL – Rural Local 

N igh ttim e  R ou te 24 UI – Urban Interstate 
UA – Urban Arterial 

Total 11 19 13 16 30 10 UL - Urban Local 

RI  RA RL UI  UA UL 

7 14 10 13 24 8 

4 5 3 3 6 2 
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The 21 tests that were not executed are still proposed, based on the validation work done both on 
and away from the test track. Proving ground testing verified that test execution is safe. Use of 
Differential Global Positioning System data combined with Inertial Navigation System 
corrections appears to provide adequate measurement accuracy, and drivers are able to achieve 
the specified path tolerances with simple aids. The overall test regime appears to meet cost and 
time constraints. The procedures are comprehensive and understandable to the proving ground 
staff. The test sites necessary to execute the procedures exist at all three selected facilities. 
Overall, the validation process suggested that the objective test methodology is a sound and 
feasible approach to evaluating FCW system performance with respect to the proposed minimum 
functional requirements. 
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1 INTRODUCTION AND BACKGROUND 

1.1 Program Description 

1.1.1 Goals and Objectives 

In 1996, over 1.8 million rear-end crashes occurred in the United States with approximately 
2,000 associated fatalities and 800,000 injuries. Rear-end crashes accounted for approximately 
25% of all police-reported crashes and 5% of all traffic fatalities. Forward Collision Warning 
(FCW) systems are now emerging that provide alerts intended to assist drivers in avoiding or 
mitigating rear-end crashes. This project was conducted to define and develop key pre-
competitive enabling elements of FCW systems designed for light vehicles (passenger cars, light 
trucks and vans). These elements include definition of the specific crash type(s) that an FCW 
system should be designed to address, the resulting minimum functional requirements for such a 
system, and objective test procedures for evaluating the extent to which a particular system 
design provides the desired functionality. Establishing these key elements will enhance 
consistent countermeasure system implementation across manufacturers. This will result in 
improved customer understanding and acceptance and help to accelerate the implementation of 
FCW systems 

1.1.2 FCW Project 

There are three levels at which the issue of performance requirements and test procedures for a 
crash countermeasure system can be addressed. The first level determines whether or not the 
system components are performing according to hardware design specifications. This 
countermeasure sub-system level deals with how to build the system and is not a pre-competitive 
topic. The second level is the vehicle-system level. This level addresses what the desired 
function should be and a methodology to evaluate the system’s ability to perform the function. 
This second level of function definition and vehicle system evaluation was the focus of this 
program. This project addressed countermeasures that are vehicle-borne and autonomous. The 
countermeasures considered were limited to Forward Collision Warning (FCW) systems. This 
project developed vehicle-system level function specifications (including driver-interface 
requirements), associated test procedures and performance metrics for FCW systems. The 
following description details the activities that were undertaken for FCW systems. The major 
deliverables from this program were a preliminary set of function requirements and objective test 
procedures for FCW systems. These will make it possible to validate, at the vehicle system level, 
a particular system’s ability to sense required objects and generate appropriate alerts. The third 
level involves evaluation of the combined driver-vehicle-system operating in the traffic . This 
level of investigation presumes we have already established that the countermeasure-vehicle 
system is functioning properly.  The outcome will depend on how drivers respond to the 
information presented by the vehicle-countermeasure system. This level of testing is beyond the 
scope of this program and is left for future fleet studies. 
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1.2 Project Tasks 
Figure 1-1 shows an overview of the project’s work tasks and timing.  As can be seen, the 
program was divided into seven overlapping technical tasks. The eighth task was for program 
management. 

ID Task Name Start Finish 

1 Task 1 - Conduct Background Information Search and Analysis 2/1/96 8/30/96 

5 

6 Task 2 - Identify Key Parameters of Rear-End Crash Type 3/6/96 8/30/96 

9 

10 Task 3 - Define Countermeasure Functions 9/2/96 12/16/97 

17 

18 Task 4 - Define and Test Interface and Functions 9/2/96 3/31/99 

32 

33 Task 5 - Develop Vehicle Level Countermeasure Test Methodology 8/1/96 9/30/98 

45 

46 Task 6 - Conduct Tests to Evaluate Test Methodology 4/1/98 1/7/99 

50 

51 Task 7 - Recommend Metrics/Procedures/Functions 12/1/98 3/31/99 

56 

57 Task 8 - Program Management 2/1/96 3/31/99 

Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 
1996 1997 1998 19 

Figure 1-1 Project Tasks GANTT Chart 

1.2.1 Task 1: Conduct Background Information Search and Analysis 

A significant amount of prior research has been conducted in the areas of crash data analysis, 
scenario generation, countermeasure function definition, modeling, performance specification, 
and effectiveness estimation. To ensure a sound basis for the program, the first step was to 
collect and review the major relevant work, both internal to CAMP and from external sources. 

The primary purpose of this task was to lay a solid foundation for the remainder of the project. A 
bibliography and detailed final work plan was developed under this task. The work plan outlined 
specific activities required to define the countermeasure functions and objective test procedures 
for FCW systems. The work plan also included projected resource allocations, a detailed 
description of task activities, including sub-task milestones, the content of all deliverables, 
overall program timing and expected level of NHTSA involvement. 

1.2.2 Task 2: Identify Key Parameters of Rear-End Crash Type 

It is not feasible to address all possible crash scenarios for a given crash type. It was necessary to 
define and focus on a limited set. This task developed a prioritized list of relevant crash 
scenarios for which FCW systems may be beneficial. This set of scenarios encompasses those 
particular scenarios that cause the greatest harm in terms of frequency and overall severity. 
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These relevant scenarios were identified from existing analyses. Prioritization was based on the 
frequency and severity of the crash scenarios. Selection of the relevant crash scenarios was made 
independent of considerations surrounding specific sensing technologies. In addition to the crash 
scenarios, this task defined key non-crash scenarios (operational scenarios) in which the desired 
response was established in order to improve driver acceptance of these systems. The addition of 
operational scenarios to the considerations for functional requirements is a key contribution of 
this project. The operational scenarios were used to modify the functional requirements 
contributed by the relevant crash scenarios and resulted in additional requirements to the overall 
minimum functional requirements. It is widely believed that a high incidence of nuisance alerts 
will erode driver confidence in an FCW system and could lead drivers to modify their reactions 
to appropriate warnings. Such actions, if they occur, will degrade the overall system 
effectiveness to assist drivers in avoiding or mitigating crashes. 

From the relevant crash scenarios and operational scenarios, key performance parameters were 
identified. Such parameters include pre-crash factors that contribute to the incident (both during 
normal driving and immediately prior to the crash), the kinematics of the actual crash, target 
classifications, environmental factors such as lighting and weather, road geometry and roadside 
furniture and appurtenances. 

Chapter 2 of this report contains a description of the general assumptions, scenario analysis and 
operational parameters that were developed under Task 2. 

1.2.3 Task 3: Define Countermeasure Functions 

Based on the problem definition developed in Task 2 and knowledge of the current and projected 
state-of-the-art, a specification was developed for the functions that FCW systems should 
perform. In addition to performance during crash-relevant scenarios, the desired performance 
during other non-crash operational scenarios was specified as well. This specification document 
was revised and refined after definition and testing of driver interface and countermeasure 
functions (Task 4 in Section 1.4.4) and conducting tests to evaluate the countermeasure test 
methodology (Task 6 in Section 1.4.6). Additionally, the list of key crash scenarios was updated 
based on the increased understanding of the scenarios and applicable FCW countermeasure 
technologies obtained during this task. 

The relevant crash scenarios were subjected to systematic analysis, including modeling and 
simulation to define the functions and key operational parameters that must be addressed in the 
performance specifications. The REAMACS (Rear-End Accident Model and Countermeasure 
Simulation) model developed at Ford was enhanced and used to address rear-end collision 
countermeasures (Farber & Paley, 1993). It provides an analytical framework for evaluating such 
factors as warning thresholds, system range requirements, reliability of detection, constancy and 
accuracy in distance and speed-related functions, and the interaction of these factors with 
assumptions about driver response times. 

REAMACS was used to initially help identify and understand the important scenario and 
countermeasure parameters in rear-end crashes. The parameters that REAMACS can address 
include traffic characteristics (following distances and vehicle speeds), braking levels, driver 
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response times and countermeasure algorithms. One use of REAMACS was to conduct 
sensitivity analyses to determine (1) which crash or pre-crash parameters and assumptions are 
most important in determining whether or not a crash takes place and (2) what countermeasure 
characteristics and assumptions are most important in reducing crashes while minimizing 
nuisance alarms. 

The deliverables from this task included a specification of proposed functions and preliminary 
driver interface requirements for FCW, and results and conclusions from the simulation work 
performed. A revised and updated version of this specification is included as Chapter 4 in this 
Final Report. The results of the REAMACS simulations are included in Appendix A. 

1.2.4 Task 4: Define and Test Interface and Functions 

The objectives of this task were to (1) validate and refine the FCW function specifications 
developed in the previous task and (2) determine the effects of the FCW system and associated 
interfaces on driver behavior. 

The aim of this human factors portion of the CAMP project was to define driver-interface 
requirements. More specifically, this effort was focused on defining when to present crash alerts 
(i.e., the crash alert timing) and how to present crash alerts to drivers (i.e., the crash alert 
modality). The critical need for obtaining these data is dictated by the complete absence of data 
under controlled, realistic conditions involving drivers braking to a realistic crash threat while 
experiencing production-oriented crash alerts. 

In developing a crash alert timing approach for a Forward Collision Warning (or FCW) system, 
two fundamental parameters involving driver behavior need to be assumed. These parameters 
serve as input into straightforward vehicle kinematic equations that determine the alert range 
necessary to avoid a crash. 

The first parameter is the time it takes for the driver to respond to the crash alert and begin 
braking (which includes driver brake reaction time). The second parameter is the driver 
deceleration (or braking) behavior in response to this alert across a wide variety of initial vehicle-
vehicle kinematic conditions. Defining this second parameter of driver behavior was the focus of 
CAMP Study 1. In this study, a strategy was employed to initially develop a fundamental 
understanding of the timing and nature of the “last-second” braking behavior of drivers without a 
FCW system, before conducting the subsequent FCW system driver interface studies. This 
strategy was taken so that drivers’ perceptions of “normal” and “hard” braking kinematic 
situations could be properly identified and modeled for FCW system crash alert timing purposes. 
The underlying assumption of this experimental strategy is that properly characterizing (i.e., 
modeling) the kinematic conditions surrounding these hard braking onsets without FCW system 
crash alert support will lead to a proper estimate for the assumed driver deceleration (or braking) 
behavior in response to a FCW system crash alert. 

The second fundamental crash alert timing parameter involving driver behavior that needs to be 
considered in developing a crash alert timing approach is driver brake reaction time (or driver 
brake RT). This second parameter was addressed in three subsequent driver interface studies (all 
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conducted at the GM Milford Proving Ground) in the presence of various FCW system crash 
alert types under unexpected (or surprise) braking event and expected braking event conditions. 
These studies focused on how to present a crash alert to the driver (i.e., visual, auditory, and/or 
haptic/kinesthetic alerts), and provided an opportunity to evaluate and validate the crash alert 
timing approach assumptions developed from CAMP Study 1. 

Appropriate human use guidelines were followed to ensure that the subjects would not be 
endangered in any way during testing in any of the four studies. CAMP utilized the General 
Motors’ established human use review board that is in compliance with 49 CFR Part 11 (Federal 
Policy for the Protection of Human Subjects) and NHTSA Order 700-1 (Protection of the Rights 
and Welfare of Human Subjects in NHTSA-Sponsored Experiments). The experimental protocol 
for each of the studies was subject to review and approval by a Human Subjects Review 
Committee at General Motors and at the NHTSA prior to initiation of subject testing.  Before 
participating in any experiment, every subject was required to read and sign an informed consent 
form, as outlined in 49 CFR Part 11. In the closed-course testing, the research vehicles were 
insured through one of the partner companies. At least one experimenter was present in each 
vehicle during testing.  The experimenter in the Subject Vehicle had a redundant brake and an 
alert (called a “bail out” crash alert) indicating when to override the subject by hitting the brake 
to ensure the participant’s safety. 

Chapter 4 of this final report contains a detailed description of the studies and results from this 
task. In addition, the Driver-Vehicle Interface and Timing Requirements sections of Chapter 4 
are based upon the results of the Human Factors Studies. 

1.2.5 Task 5: Develop Vehicle-System Level Countermeasure Test 
Methodology 

The relevant crash scenarios developed in Task 2 and the system functional requirements 
developed in Task 3 were used to define dynamic test scenarios. These test scenarios are, in 
effect, the procedures for performance testing of vehicle-system level crash countermeasures. 
Two types of test scenarios are included. First, tests for the crash-relevant scenarios were 
defined. This is the set of scenarios that the system is designed to address. These tests determine 
if alerts occur too late as well as “too early” (i.e., when they would be considered nuisance 
alerts). 

Second, tests for other common non-crash operational scenarios were identified and specified to 
represent operating conditions under which activation of the countermeasure might or might not 
be appropriate. These are the conditions that might produce false alarms, sometimes referred to 
as nuisance alarms. Both types of scenarios were defined at a level of detail sufficient to specify 
full-scale vehicle test procedures. Consistent system response in both sets of scenarios is 
important in order to reduce rear-end crash frequency in the real world. The system must be 
capable of providing effective warnings to prevent or mitigate the crash in crash-relevant 
scenarios without causing excessive nuisance alarms in other (non-crash) operational situations. 



1-10 

A parallel sub-task procured test vehicles, equipment, and FCW systems for use in evaluating the 
test procedures under Task 6. IR and radar were acquired from leading FCW suppliers. NHTSA 
was substantially involved in the process leading to the selection of the FCW systems used by 
CAMP. An instrumentation sub-task defined, procured, and installed vehicle equipment for 
collecting ground truth during testing. 

To support the tests, and to provide consistent test results, there should be consistency in the 
props and vehicles used in testing, such as representative valid targets, non-target objects, 
roadside furniture, appurtenances, road geometry, and operational procedures, as well as the 
instrumentation and data logging required to measure and record the critical parameters of the 
crash as identified previously. Chapter 5 includes CAMP’s definitions, requirements, and 
recommendations for these items. 

A data analysis and reporting plan was developed to evaluate the data collected in the testing.  It 
provides procedures for analysis and documentation of the data collected using the test 
procedures. This process identified candidate performance metrics for FCW systems. 

This task also developed a test plan for evaluating the objective test procedures for FCW 
systems. This plan addressed full-scale vehicle testing for the minimum performance 
requirements. The plan and the results of its execution are documented in Chapter 7. 

The parts of this Final Report that were developed under Task 5 include: 

° The proposed test methodology included in Chapter 5. 

° Data analysis and reporting requirements described in Chapter 5. 

° The instrumentation described in Chapter 5. 

° The plan for the test procedure evaluation reported in Chapter 5. 

1.2.6 Task 6: Conduct Tests to Evaluate Test Methodology 

Vehicle-system level testing was conducted using third party hardware obtained in Task 5 from 
countermeasure suppliers. The testing was performed using professional drivers on a closed 
course to confirm the procedures, measurement techniques, and data analysis plan. The test 
methodology was evaluated using two sensor technologies, radar and IR sensing. 

The goal of this task was to evaluate the proposed test procedures. Chapter 6 of this report 
describes the evaluation of the objective test procedures. In addition, any modifications to the 
objective test procedures suggested by the evaluation have been incorporated into the appropriate 
chapters of this report. 
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1.2.7 Task 7: Recommend Metrics / Procedures / Functions 

This task allowed time for revision and iteration of the sections developed in each task based on 
information discovered and issues raised during the project. The final report for the project was 
written to update the preliminary reports developed in previous tasks. 

This project was intended to establish the functional requirements and objective test procedures 
for rear-end crash countermeasures. A substantial portion of Task 7 was for final reviews of the 
Final Report with Product Development, Safety, and Research personnel at Ford and General 
Motors. This task allowed time for iteration of the final report, based on the comments received 
from the reviews, prior to publication. 

1.2.8 Task 8: Program Management 

°	 This project was jointly managed by two project managers who are employees of 
Ford and General Motors. Their responsibilities were: 

°	 To oversee the tasks so that milestones and deliverables are timely and of high 
quality. 

° To revise the project plan, as necessary, in cooperation with the NHTSA. 

°	 To prepare reports and material for information exchange meetings, as agreed in 
the project plan, in the required format. 

° To coordinate with other NHTSA contractors engaged in related activities. 

*	 To interface with Ford and General Motors, to ensure prior and current relevant 
activities were utilized in this project to the extent possible, and to facilitate 
acceptance of CAMP results by Ford and General Motors. 

The deliverables under this task were: 

° Annual research reports 

° This final project report and briefing 

° Quarterly briefings 

1.3 Report Organization 
The remainder of this report is organized according to the tasks just described. Chapter 2 covers 
fundamental assumptions about FCW systems used throughout the project. It then provides a 
review of previous work and derives the crash scenarios and operational scenarios used in 
subsequent tasks. Chapter 3 describes the human factors studies that were performed under Task 
4. It includes the conclusions that were derived from these studies regarding crash alert timing 
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and the methods for presenting this crash alert to the driver. Chapter 4 includes the minimal 
functional requirements and guidelines that were derived from human factors studies and the 
scenario descriptions. Chapter 5 describes the test procedures that were derived from the 
minimal functional requirements. These include the required track configurations, props, and 
detailed descriptions of the driving maneuvers that must be performed to simulate each scenario. 
Chapter 6 includes requirements for instrumentation and documentation during testing and the 
analysis that must be done on the data collected during execution of the tests. Chapter 7 
describes the testing that was performed to evaluate the test procedures. Included in this chapter 
is a description of the FCW systems and instrumented vehicles used for this purpose. 

1.4 References 
Blincoe and Faigin, (1990). The economic cost of motor vehicle crashes. Report No. DOT-HS-
807-876. Washington, DC.: U.S. Department of Transportation, National Highway Traffic 
Safety Administration. 

Deering, R.K., and Viano, D.C., (1994). Critical success factors for crash avoidance 
countermeasure implementation. SAE International Congress on Transportation Electronics, 
Paper SAE 94C025. Warrendale, PA: Society of Automotive Engineers. 

Farber, E., and Paley, M (1993). Using freeway traffic data to estimate the effectiveness of rear-
end collision countermeasures. Proceedings of the 1993 Annual Meeting of IVHS America (p. 
260). Washington, D.C. 
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2	 ROADWAY SCENARIOS FOR FORWARD 
COLLISION WARNING (FCW) SYSTEMS 

2.1 Fundamental Assumptions and Purpose of FCW 
Systems 

No single crash-avoidance countermeasure can be effective in preventing or mitigating all 
types of crashes. The variety of crash types that occur, and the numerous causal factors 
involved, make it necessary to focus individual CA systems on particular categories of 
collisions defined by certain crash scenarios. 

The purpose of an FCW system is to provide warning(s) to drivers as an aid in avoiding 
or reducing the severity of crashes involving the FCW-equipped vehicle with the rear 
end of another vehicle. 

The CAMP project selected several fundamental assumptions about an FCW system that were 
used in all subsequent developments. 

°	 The system is autonomous and does not require cooperative features on other 
vehicles or external infrastructure beyond what currently exists (e.g., the FCW may 
use lane markings when present but cannot require special transponders placed at 
lane boundaries). 

°	 The system provides alert(s) only and does not provide active, sustained control of 
the host vehicle in order to avoid an impending crash. 

°	 The system can only sense objects that are visible by line-of-sight from the front of 
the driver’s vehicle. 

°	 The system continuously monitors the forward coverage zone and evaluates 
potential threats. 

An FCW system is faced with the very difficult task of distinguishing potentially threatening 
vehicles from other non-threatening vehicles and roadway objects that occur in the complex 
roadway environment. An FCW system that is required to provide adequate warning for all 
drivers to avoid all imaginable rear-end crashes would be required to issue so many alerts that 
it would quickly become a nuisance, preventing driver acceptance of FCW systems and thus 
limiting the potential benefits. A more feasible goal for FCW systems would be to warn in 
time to help the driver avoid the most common rear-end crashes by driver braking only (not 
steering) while issuing few enough nuisance alerts that driver acceptance is possible. 

The project participants believe that drivers expect an FCW system to help them avoid rear-
end crashes with other vehicles without too many annoyances. Drivers also expect that FCW 
systems function so they can use a consistent, easily understood mental model of what an 
FCW system does. An example of a simple mental model is that an FCW system acts like an 
ever-vigilant passenger who observes the road ahead of the vehicle and produces alerts when 
such a passenger would normally be alarmed. 
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2.2 Roadway Scenario Overview 
The following sections describe a set of automotive crash scenarios (relevant scenarios) for 
which FCW technology may potentially help drivers prevent or mitigate the associated 
collision. They further define key non-crash scenarios (operational scenarios) in which the 
desired response of an FCW system should be established in order to improve driver 
acceptance of these systems. This work is based on extensive crash data analyses performed 
by the NHTSA Office of Crash Avoidance Research (OCAR), further detailed analysis 
performed by the General Motors Crash Avoidance Department and the experiences of the 
CAMP partners with current FCW system technology.  The set of relevant and operational 
scenarios identified here, collectively known as roadway scenarios, were used to establish the 
minimum functional requirements and objective test procedures for FCW systems contained 
in Chapters 4 and 5. 

The methodology utilized to develop the scenarios began by reviewing previous crash 
statistics in the United States. The crash statistics reports are summarized in Section 2.3. The 
analysis assumed the model of an automotive FCW system described in the previous section. 
Previously defined crash scenarios were then reviewed in order to ascertain which scenarios 
should establish performance requirements for future FCW systems. The selection of the 
scenarios is complicated in that it depends upon the frequency and severity of each crash type, 
not only available FCW sensing and data processing technology.  These relevant scenarios, 
together with common operational scenarios that should not elicit a response from an FCW 
system, formed the basis for establishing FCW minimum performance requirements. Crash 
scenarios that do not drive minimum performance requirements may still benefit from FCW 
technology; however, solving these crash problems will not be the primary focus of FCW 
systems. 

Figure 2-1 shows how the relevant scenarios developed in this task were used to derive 
functional requirements for FCW systems. These requirements, in turn, lead to the 
development and validation of the test methodologies for FCW systems described in Chapter 
5. 
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2.3 Summary of Previous Crash Statistics Research 
This section briefly summarizes selected reports on U.S. crash statistics. Frequency, severity 
and the pre-crash factors for various crash types will be discussed. It should be noted that the 
crash statistics reported in this section are not normalized for exposure. Furthermore, this 
section is not intended to be an exhaustive literature review, but rather a synopsis of the 
portion of the crash problem for which FCW technology may be relevant. 

2.3.1 Knipling, Wang, and Yin 
(1993). Rear-end crashes: Problem size assessment and 
statistical description.  DOT-HS-807-995. 

2.3.1.1 Frequency 

Knipling, et al. (1993) used the 1990 GES and FARS databases as the principal sources for 
their assessment. They reported that in 1990 there were 1.5 million police reported rear-end 
crashes. Of those, 2,084 fatalities and 844,000 injuries (of which 68,000 were considered 
serious) occurred. Rear-end (RE) crashes accounted for 23.4% of all crashes and 4.7% of all 
fatalities in 1990. 

2.3.1.2 Conditions 

The authors also reported that most rear-end crashes occur on straight, level roads (90%) 
which are dry (78.8%). Rear-end crashes occur only 18% of the time in rainy conditions and 
only 1.9% in snowy conditions. For rear-end crashes, only 0.5% occur in fog; view 
obstruction is rarely cited. Most RE crashes occur between 6 a.m. and 6:30 p.m., which is 
related to the fact that 76.5% occur in daylight and 14.2% in dark, lit conditions. Only 6% of 
these crashes occur in dark, non-lit conditions. Friday is the day rear-ends are most frequent 
and they occur least frequently on Sundays. Additionally, the majority of rear-end collisions 
occur in rural areas, those with populations less than 25,000. The next highest is urban areas 
(over 100,000), then areas with populations between 50,000 and 100,000, and finally areas 
with populations between 25,000 and 50,000. Interestingly, 54.5% of drivers were not given 
any citation, 23.7% were cited with “other violations,” 13.7% were given a speeding citation, 
and only 3% were cited as under the influence of alcohol and/or drugs. It should be noted that 
the number of citations given may not correspond to the actual presence of illegal actions. 

2.3.1.3 Lead Vehicle Stationary or Moving 

Rear-end crashes can be broken into two distinct groups based upon the lead, or struck, 
vehicle velocity: Lead Vehicle Stationary (LVS) or Lead Vehicle Moving (LVM). In this 
study, the stationary or moving description of the lead vehicle refers to the state when struck, 
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and not to the state immediately before the impact. LVS crashes account for 70% of all rear-
end crashes and LVM crashes account for 30%. Table 2-1 gives details for each group in 
terms of frequency and severity, roadway and speed related variables, pre-crash maneuvers 
and causes. 

LVS LVM 
Frequency and Severity 

Police reported crashes 1 1.05M (69.7%) 0.46M (30.3%) 
Fatalities 2 1,647 1,338 
Fatalities per crash 0.0016 0.0029 
Killed and Incapacitated 3% 4.6% 
Roadway Related 
Non-Junction 3 35.4% 54.2% 
Divided roads 67.1% 57.3% 

Fog Related 0.6% 0.2% 
Speed Related 

Posted roadway speed over 55 mph 13.4% 28.6% 
Median posted roadway speed 39 mph 42 mph 
Actual speed reported 4 22 mph 32 mph 
Actual speeds over 55 mph 2.5% 14.8% 

Striking Vehicle Pre-Crash Maneuver 
Going straight 88.6% 25.8% 
Slowing stopping 6.7% 55.6% 
Turning left na 8.1% 
Turning right na 6.5% 

Tri-Level Causes 
Vehicular 11% 17% 
Human 93% 92% 
Recognition 82% 67% 
Decision 24% 50% 
Alcohol 9% not reported 
Environment 9% 17% 
1 Estimated 1.8 million non-police reported rear-end crashes. 
2 LVM less frequent, but more severe. 
3 54.9% of all rear-ends are intersection related. 
4 Crash speed was unknown in 70%. 

Table 2-1 LVS and LVM Rear-End Crash Statistics 
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2.3.2 National Safety Council 
(1993). Accident facts. 

The National Safety Council reported that, for 1992, there were 10 million police-reported 
crashes in the U.S. (see Table 2-2 for a partial listing). It is interesting to note that rear-end 
crashes account for 24% of the crashes and 5% of the fatalities, indicating a frequent but low 
severity crash. Pedestrian and head-on collision account for only 2% of the crashes each, but 
for 15% and 13% of the fatalities, respectively.  This indicates that rear-end crashes are less 
severe, but more frequent. 

Fatal % of Fatal Injury % of Injury Total % of Total 
Total 35,800 1,400,000 10,000,000 

Pedestrian 5,500 15.36 60,000 4.29 180,000 1.80 
Head-on 4,500 12.57 36,000 2.57 220,000 2.20 
Rear-end 1,700 4.75 329,000 23.50 2,360,000 23.60 
Pedacycle 700 1.96 39,000 2.79 150,000 1.50 
Animal 100 0.28 9,000 0.64 240,000 2.40 

Table 2-2 National Safety Council Accident Facts for 1992 

2.3.3 Campbell, Wolfe, Blower, Waller, Massie, and Ridella 
(June 1990). Accident data analysis in support of collision 
avoidance technologies.  UMTRI-90-31. University of 
Michigan Transportation Research Institute. 

The authors conducted a survey of five crash types in order to estimate the frequency of each 
collision type. Collision types investigated were Single Vehicle Non-Intersection, Multiple 
Vehicle Crossing Paths Signalized Intersection, Multiple Vehicle Crossing Paths Signed 
Intersection, Multiple Vehicle Non-Intersection Driveway/Parking Lot, and Multiple Vehicle 
Non-Intersection Same Direction. The focus was on common crashes of ordinary drivers. 
They did not use drivers under the age of 16, intoxicated drivers, or reckless drivers. They 
also excluded pedestrian and pedacycle collisions. Only ordinary drivers and common 
collisions were included in this study. 

The authors examined 215 police reports from Michigan. The sample was controlled by crash 
type and age. Additional controls, such as lighting conditions, urban/rural, and presence of 
signals, were used for some crash types. The data for rear-end collisions are presented below. 

2.3.3.1 Same Direction Non-Intersection 

Of the 215 sampled crashes, 37 were classified as Same Direction Non-Intersection. Of these 
37 crashes, 24 were rear-end collisions. More than one-third of the rear-end collisions 
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involved more than two vehicles. Younger and older drivers were over-represented (they have 
more crashes of this type). Additionally the authors found that in 30.7% of the crashes the 
lead vehicle was stopped, in 22.7% the lead vehicle was going straight, in 13.8% the lead 
vehicle was turning, and in 10% the lead vehicle position was unknown. 

2.3.4	 Treat, Tumbas, McDonald, Shinar, Hume, Mayer, Stansifer, 
and Castellan 
(May 30, 1979). Tri-level study of the causes of traffic 
accidents: Executive summary. DOT-HS-805-099. 

This report documented the findings of the “Tri-Level Study of the Causes of Traffic 
Accidents”. Briefly, the term “tri-level” refers to the three levels of data collection: 

° Baseline 

° On-site investigation (n=2,258) 

° In-depth (n=420) 

The cause of the crash was broken into three main categories 
° Human 

° Environment 

° Vehicle 

Human errors were cited as a definite cause in at least 64% and a probable cause in as many as 
93% of the crashes. The most common probable human errors were: 

° Improper lookout (23%) 

° Excessive speed (13%) 

° Inattention (15%) 

° Improper evasive action (13%) 

° Internal distraction (9%) 

Environmental factors were cited as the definite cause in only 12% of the crashes. 
Environmental factors were cited as probable causes in 34% to 35% of the crashes; view 
obstruction was the most frequent probable cause (12%), followed by slick road (10%), and 
design problems (5%). Vehicle problems (e.g., gross brake failure, inadequate tire tread) were 
cited as definite causes in only 4% and probable causes in 9% to 13% of the crashes. 
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2.3.5	 Institute for Research in Public Safety 
(February 1975). An analysis of emergency situations, 
maneuvers, and driver behaviors in accident avoidance. 
Bloomington, IN: Indiana University. 

This report examined 372 crashes occurring from 1971 to 1974 in Monroe County, Indiana. 
The data were collected through the in-depth investigations in the Tri-Level study. Reported in 
Table 2-3 are data from the collisions of interest. The second column is the percentage of all 
crashes by collision type. The third column is the percentage of all crashes in which the 
researchers judged “that at least one driver had time to attempt an additional or different 
maneuver.”  This value could be used as a rough estimate of the maximum percentage of 
crashes an FCW system might potentially help. 

Crash Category % of All Crashes 1 % of Crashes Avoidable 2 

Rear-end, 2 vehicles 12.9 79.2 
Rear-end, >2 vehicles 1.9 71.4 
1 Number of crashes in category divided by the total (372) 
2 Avoidable is defined as an crash in which at least one driver was judged to have had time to attempt an 

additional or different maneuver. 

Table 2-3 Percentage of Preventable Crashes 

2.3.6	 Najm, Mironer, and Yap 
(1996). Dynamically distinct precrash scenarios of major 
crash types. Memo DOT-VNTSC-HS621-PM-96-17. 
Cambridge, MA: US DOT Volpe National Transportation 
Systems Center. 

This report identified dynamically distinct pre-crash scenarios for five major crash types:


° Intersection crossing path


° Single vehicle road departure


° Rear end


° Lane change


° Backing


Twenty dynamically distinct scenarios were identified for rear-end crashes. The crashes are

distinguished by the pre-crash movement and critical pre-crash events. Pre-crash maneuvers

include steady speed, slowing, starting, stopped, negotiating a curve, merging, passing and

turning.  The critical event descriptions included speed differential or encroachment.
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The NHTSA General Estimates System (GES) and Crashworthiness Data System (CDS) data 
bases were used to make two estimates of the percent of each crash type that exhibited each 
dynamically distinct scenario. The first estimate was the percentage of rear-end crashes in the 
database that fell into each scenario. The second involved weighting each scenario using the 
corresponding National Inflation Factor to compensate for the small sample size in the 
database. The most common rear-end crash scenario was when the striking vehicle is going 
straight at constant speed while the stricken vehicle was slowing in traffic. This scenario 
included cases where the stricken vehicle was coded as stopped due to a traffic-control device 
or to make a turn on a straight road. The next two most common rear-end crash scenarios 
were when the striking vehicle was going straight at constant speed or negotiating a curve 
while the stricken vehicle was stopped in the lane of traffic. Combined, these three scenarios 
were estimated to represent about 80% of all rear-end crashes. 

Striking 
Vehicle's 

Maneuver 

Stricken Vehicle's 
Maneuver 

Critical 
Event 

Relative 
Frequency of 
Occurrence 

(%) 

Adjusted Relative 
Frequency of 

Occurrence (%) 

1 Going 
straight, 
constant speed 

Slowing in traffic 
lane 

Speed 
differential 

56.3 47.4 

2 Negotiating a 
Curve 

Stopped in Traffic 
Lane 

Speed 
Differential 

19.2 14.1 

3 Going 
straight, 
constant speed 

Stopped in traffic 
lane 

Speed 
differential 

5.0 10.4 

4 Going 
straight, 
constant speed 

Going straight, 
constant speed 

Speed 
differential 

1.5 5.9 

5 Going 
straight, 
constant speed 

Slowing in traffic 
lane 

Speed 
differential 

5.3 4.4 

6 Going 
straight, 
constant speed 

Starting in lane Speed 
differential 

0.6 2.2 

7 Changing 
lanes 

Slowing in traffic 
lane 

Speed 
differential 

3.7 2.2 

8 Negotiating a 
curve 

Slowing in traffic 
lane 

Encroachment 3.7 2.2 

9 Negotiating a 
curve 

Changing lanes Encroachment 1.0 1.5 

Table 2-4 Dynamically-Distinct Rear-End Pre-Crash Scenarios 
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2.3.7	 General Motors 
(1996). 44 crashes.  Warren, MI: North American 
Operations, Crash Avoidance Department. 

“44 Crashes” is intended to define the distribution of annual U.S. crashes. The 44 crashes 
were compiled from a number of sources, including police reports, the Tri-Level study, and 
work done at UMTRI (University of Michigan Transportation Research Institute). Each crash, 
or scenario, contains a cause, a crash configuration, a representative narrative, and the 
associated frequency and losses. The reader should refer to the original document for more 
information concerning the crash data and classification. 

Table 2-5 lists the name and a brief description of each crash. In the description, SV is the 
Subject Vehicle and POVs are the Principal Other Vehicles (or lead vehicles). The letter in 
the subscript represents the vehicle letter set forth in “44 Crashes” 

Table 2-5 lists the crashes by number, cause-crash name, group, percentage of vehicles 
crashed, direct costs and years of life and functioning lost. The percentages of vehicle crashes 
were derived from the “crossing of a typology with a causal factor” (p. 8). The direct costs 
were defined as the actual dollar expenditures related to the damage and injury caused by the 
crash. Years of functioning and life was defined as “the number of years lost to fatal injury 
plus the number of years of functional capacity lost to nonfatal injury” (Miller, Lestina, 
Galbraith, Schlax, Mabery, Deering, Massie and Campbell, 1995, p. 3). 

Table 2-5 Description of the 44 Crashes 

# Name Description 

1 Struck human SVA strikes a human. 
3 Struck animal SVA strikes an animal. 
9 Drowsy driver The driver of SVA falls asleep and departs the roadway. 

10 Aggressive 
departure 

The driver of SVA drives aggressively, perhaps too fast, loses 
control and departs the roadway. 

11 Slick road departure The driver of SVA loses control on a slick road and departs the 
roadway. 

12 Rough road 
departure 

The driver of SVA loses control of the vehicle on a poorly 
maintained or designed road. SVA departs the roadway. 

13 Avoidance departure SVA makes an avoidance maneuver and loses control of the vehicle, 
departing the roadway. 

18 Impaired departure The driver of SVA is legally impaired and loses control of the 
vehicle and departs the roadway. 

19 Back into object SVA is backing out of a driveway and strikes an object (POVB). 
22 Ran red/“T-bone” SVA runs a red light and collides with POVB. 
28 Slick road, ran stop SVA approaches an intersection. Due to slick roads SVA cannot 

stop at the stop sign. SVA collides with POVB. 
30 Inattentive, ran stop SVA is not paying attention1, runs a stop sign and collides with 

POVB. 
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# Name Description 

33 View obstruction SVA cannot see POVB due to some obstruction. SVA collides with 
POVB. 

35 Looked but didn’t 
see 

SVA looks for oncoming traffic, but does not see any; thus crashing 
with POVB. 

37 Sirens SVA does not see POVB (an emergency vehicle) and either strikes 
or is struck by POVB. 

38 Left turn clip SVA is making a left turn. POVB is waiting at the stop line on the 
street into which SVA is turning.  SVA misjudges the turn and 
strikes the front left corner of POVB. 

40 Wrong driveway SVA is exiting a driveway. SVA incorrectly assumes POVB is 
making a specific maneuver and pulls out in front of POVB, 
resulting in a collision. 

44 Wave to go SVA is waiting at a cross street, when POVB “wave’s him/her to 
go.” Not seeing POVC, SVA pulls into and collides with POVC. 

47 Turn into passer SVA is following POVB. SVA decides to pass POVB. POVB 

decides to make a turn. They collide. 
48 Back into roadway SVA is backing into a roadway and does not see POVB in oncoming 

traffic, creating a collision. 
52 Tailgate SVB is following POVA too closely.  POVA slows or stops, and SVB 

strikes the rear-end of POVA. 
56 Distracted rear end SVA, following POVB, is distracted.2  POVB slows or stops and SVA 

strikes the rear-end of POVB. 
58 Avoidance, rear end SVA makes a maneuver to avoid POVC. However, the maneuver 

puts SVA behind POVB, who is slowing or stopped. SVA strikes the 
rear-end of POVB. 

61 Pedal miss SVA intends to brake; however, he/she misses the brake pedal and 
collides with POVB. 

62 Inattentive rear end SVB, following POVA, is not paying attention. POVA slows or 
stops and SVB strikes the rear-end of POVA. 

64 Stutter stop SVB is stopped behind POVA. Assuming POVA is going to move 
forward, SVB accelerates. POVA decided not to move; thus, SVB 

strikes the rear-end of POVA. 
66 Aggressive rear end SVB is driving aggressively, perhaps too fast. POVA has slowed or 

stopped. SVB does not have enough time to stop and strikes the 
rear-end of POVA. 

68 Maintenance SVB is unable to control his/her vehicle due to some mechanical 
failure; thus, colliding with POVA. 

74 Slick road, rear end SVB, following POVA, tries to slow or stop. Due to slick roads SVB 

cannot slow or stop and strikes the rear of POVA. 
75 Passing clip SVA is following POVB and decides to pass. SVA misjudges the 

passing maneuver and strikes a rear corner of POVB. 
76 Lane change right SVA, intending to move into the right lane, looks but does not see 

POVB in that lane. SVA changes lanes and forces POVB to the 
right. 

78 Visibility rear end Visibility is limited. SVA, following POVB, cannot see that POVB 

has slowed or stopped. SVA strikes the rear end of POVB. 
79 Lane change left SVA, intending to move into the left lane, looks but does not see 
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# Name Description 

POVB in that lane. SVA changes lanes and forces POVB to the left. 
80 Lane change rear 

end 
SVA moves into an adjacent lane. POVB, who is in the lane SVA 

moved into, does not have enough time to slow. POVB strikes the 
rear end of SVA. POVC, who is following POVB, also does not 
have enough time to slow. POVC strikes the rear end of POVB. 

82 Back track SVA backs into POVB. 
83 U-turn SVB decides to make a U-turn. POVA, unaware of the intentions of 

SVB, is driving on the left of SVB. SVB makes the U-turn in front 
of POVA. POVA collides with SVB. This scenario also includes a 
turn across lanes from wrong lane. 

91 Inexperience, 
departure 

SVA, an inexperienced driver, loses control of the vehicle and 
departs the roadway. 

92 Impaired, head-on SVA is legally impaired and drives into the on-coming lane. POVB, 
in that on-coming lane, collides head-on with SVA. 

93 Slick road, head-on The roadway is slick.  SVA and POVB are traveling opposite 
directions. Due to the road conditions, one or both lose control and 
collide. 

94 Run red into left 
turner 

SVA is making a left turn. POVB runs a red light and collides with 
SVA. 

96 Misjudgment, left 
turn 

SVA is planning to make a left turn. Assuming he/she has enough 
time, SVA executes the maneuver in front of POVB. POVB cannot 
stop and crashes with SVA. 

99 View obstructed left SVA is planning to make a left turn. SVA cannot see the oncoming 
vehicle, POVB. SVA executes the maneuver in front of POVB. 
POVB cannot stop and crashes with SVA. 

100 Miscellaneous Any crash that does not fit into one of the 43 categories. 
101 New “This crash would not have occurred without the introduction of a 

new safety technology.  The driver selected to use the technology 
for increased mobility rather than an increase in safety as intended” 
(p. 52). 

1 An inattentive driver has chosen “to direct his attention elsewhere for some non-compelling reason”. Inattention 
may include “unnecessary wandering of the mind, or a state of being engrossed in thought matters not of 
immediate importance to the driving task” (Treat et al., 1977, p. 202). See Section 4.4.1 for additional details. 

2 For distracted driver “some event, activity, object or person within his vehicle [or outside the vehicle], 
compelled, or tended to induce the driver’s shifting of attention away from the driving task” (Treat et al., 1977, 
p. 203). See Section 4.4.2 for additional details. 



2-17 

Table 2-6 Frequency and Costs for the 44 Crashes 

Number Name % Crashed 
(14,507,000 

cars) 

% Direct 
Cost 

($66066 M) 

% Years Lost 
(2,059,000 yr.) 

1 B Struck human 1.0 2.8 5.4 
3 C Struck animal 4.0 1.8 0.3 
9 Drowsy driver 1.0 1.9 3.4 

10 Aggressive departure 3.0 6.5 10.9 
11 Slick road departure 2.0 3.9 6.6 
12 Rough road departure 1.0 1.8 2.9 
13 Avoidance departure 3.0 3.9 5.7 
18 Impaired departure 2.0 4.0 6.7 
19 Back into object 1.5 0.9 0.7 
22 Ran red/“T-bone” 4.1 4.9 3.8 
28 Slick road, ran stop 2.0 1.8 1.6 
30 Inattentive, ran stop 2.5 2.8 2.8 
33 View obstruction 1.0 1.0 0.7 
35 Looked but didn’t see 10.0 10.2 8.9 
37 Sirens 1.0 1.0 0.8 
38 Left turn clip 1.5 1.2 1.0 
40 Wrong driveway 1.0 0.8 0.5 
44 Wave to go 1.5 1.3 1.2 
47 Turn into passer 2.0 0.4 0.8 
48 Back into roadway 2.0 1.0 0.1 
52 A Tailgate 1.0 0.8 0.3 
56 A Distracted rear end 2.0 1.9 1.7 
58 A Avoidance, rear end 1.5 1.0 0.4 
61 A Pedal miss 1.0 0.5 0.2 
62 A Inattentive rear end 12.0 10.2 4.9 
64 A Stutter stop 2.0 1.6 0.7 
66 A Aggressive rear end 1.5 1.1 0.5 
68 A Maintenance 2.2 2.6 2.6 
74 A Slick road, rear end 6.0 4.7 2.3 
75 Passing clip 2.5 2.0 1.3 
76 Lane change right 2.2 2.1 1.5 
78 A Visibility rear end 2.0 1.7 1.6 
79 Lane change left 2.0 1.4 0.7 
80 A Lane change rear end 1.0 0.5 0.2 
82 Back track 1.2 0.6 0.2 
83 U-turn 1.6 0.9 0.4 
91 Inexperience, departure 2.0 3.4 6.5 
92 Impaired, head-on 2.5 2.5 2.9 
93 Slick road, head-on 1.2 1.4 2.1 
94 Run red into left turner 1.0 1.1 0.9 
96 Misjudgment, left turn 1.6 1.8 1.5 
99 View obstructed left 1.2 1.3 1.2 
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Number Name % Crashed 
(14,507,000 

cars) 

% Direct 
Cost 

($66066 M) 

% Years Lost 
(2,059,000 yr.) 

100 Miscellaneous 1.7 0.7 0.6 
101 New ? ? ? 

A Considered rear-end crashes 
B Struck human accident 
C Struck animal accident 

2.3.8 Summary of Crash Statistics 

Across these studies, rear-end crashes accounted for between 11% and 32% of all collisions 
and about 5% of all fatalities across these studies (see Table 2-7). The percentage differences 
across studies are due to the different aims of these studies rather than disagreements. The 
Knipling et al. (1993) and National Safety Council (1993) studies provide the best estimates of 
the magnitude of the rear-end crash problem, whereas the Campbell et al. (1990), IRPS 
(1975), and 44 Crashes (1996) accident figures are a result of the way the crash data was 
sampled based on the specific aims of each of these papers. The direct costs are 
approximately $17.5 billion a year. The functioning and life lost is about 317,086 per year. 

Reference % of All 
Crashes 

% of Fatal 
Crashes 

Knipling, et al. 23.4 4.7 
National Safety Council 23.6 4.75 
Campbell, et al. 11.2 
IRPS 14.8 
44 Crashes 32.2 

Table 2-7 Summary of Rear-End Collisions 

2.4 Crash Scenario Selection 
This section describes the selection of relevant crash scenarios that were used to establish the

minimum functional requirements contained in Chapter 4.


Functional requirements refer to system performance parameters and include, for example:


° Specification levels for detection zone


° Target size


° Maximum reporting delay


° Crash alert timing


° Adjustability


° Crash alert modality


Those collisions that establish the FCW minimum requirements are called the relevant crash

scenarios. These are the scenarios that involve vehicle-to-vehicle rear-end crashes. The relevant
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crash scenarios do not include any collisions due to causal factors such as road surface, lack of 
vehicle maintenance and physiological state of the driver (e.g., alcohol-impaired, ill). 
Monitoring of these causal factors is not an intended function of the FCW system. The FCW 
system may help drivers avoid or mitigate a portion of these crashes; however, prevention or 
mitigation of these crash scenarios are not defined as the primary focus of FCW systems. The 
FCW system may benefit other major crash types such as Roadway Departure (20% of all 
crashes), Intersection (30%), Backing (3%), and Opposite Direction (3%) crashes, when the 
obstacle(s) appears in the FCW detection zone. Again, however, prevention or mitigation of 
these crash types is not defined as the primary focus of FCW systems. 

One consideration in selecting the scenarios that would be used to derive the functional 
requirements was the technical feasibility of the sensing system. A minimal number of 
assumptions were made in the selection process. No assumptions were made regarding the 
underlying sensing technology.  At this time, three active sensing technologies are dominant 
within the crash avoidance community: millimeter wave radar, laser radar and machine vision. 

For the purpose of generating a set of relevant scenarios, a reasonable range of values was 
assumed for the horizontal and vertical field of view (FOV) and the minimum and maximum 
ranges of the system. Practical (operational) millimeter wave radar and laser radar systems 
might have a horizontal FOV of up to ±15º; the horizontal FOV for a vision-based system 
might be ±30 to ±40º. Generally, the vertical FOV of FCW systems is at least 3º. A minimum 
range of 1 m is considered small and a maximum range of 200 m is considered large. Only 
scenarios that require sensor performance that does not significantly exceeding these values 
were considered. 

The following analysis is based on the typology and causal factors presented in “44 Crashes” 
using the fundamental assumptions, purpose of an FCW system, and assumed customer 
expectations described in Section 2.1. The “44 Crashes” describes all type of crashes 
including Intersection, Rear End, Roadway Departure, Lane Change and Merge, Backing, and 
Opposite Direction. “44 Crashes” was employed because the crash analysis approach 
employed in this work allows one to more easily identify and prioritize the rear-end crash 
scenarios. These scenarios are somewhat unique in that they consider precipitating causes 
involving driver behavior (e.g., driver inattention). 

It is assumed that the FCW system is only on the SV while selecting the relevant crash 
scenarios. The following questions were applied to each crash scenario: 

° Would an FCW system observe the crash? 

°	 Would an FCW crash alert help the driver avoid or mitigate an impending 
collision? 

°	 Taking into consideration the frequency and severity of the crash type, should this 
scenario drive the minimum functional requirements? 

If the answer is “yes” to each of the above questions, the scenario is assigned to Category I, 
which are considered directly relevant scenarios. All other scenarios are assigned to Category 
II, which are not considered directly relevant scenarios. It is important to keep in mind that it 
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is possible for an FCW system to benefit the driver in mitigating a portion of crashes in 
Category II, even though these crashes are not the primary emphasis of the system’s design. 

2.4.1 Crash Scenario Categories 

Each of the 44 crash types defined in “44 Crashes” was assigned to a single crash scenario 
category.  The two categories are defined as follows: 

°	 Category I (contribute to system requirements):  An FCW system will detect 
the other vehicles and may help the driver avoid or mitigate an impending collision 
for the relevant scenarios (as Category I crashes are referred to in other parts of 
this report). These scenarios will contribute to the minimum functional 
requirements for the FCW system. 

°	 Category II (do not contribute to system requirements):  These scenarios do not 
establish FCW minimum functional requirements. However, an FCW system may 
help the driver mitigate an impending collision for some of these scenarios in a 
limited capacity. While prevention or mitigation of these crashes is not an 
intended function of the FCW system, these crash scenarios may benefit from the 
FCW system. 

2.4.1.1 Category I (Contribute to System Requirements) 

A total of six crash scenarios from the “44 Crashes” fit the description of Category I.  These 
scenarios and the rationale for grouping them into Category I are described below. Each 
scenario contributes to a problem-driven set of minimum functional requirements for an FCW 
system. These requirements were balanced against technology constraints and combined with 
other operational requirements discussed in Section 2.5 of this chapter to obtain the final set of 
minimum performance requirements. 

According to Knipling, et al, rear-end crashes are 23% of all police reported crashes and 5% of 
all fatal crashes. 90% are on straight, level roads, 79% on dry roads and 77% in daylight. 
70% occur with the lead vehicle stopped. 66% of the RE collisions occur due to inattention 
and driving too close. 

Inattentive Rear-End Collision (#62 in Table 2-5) 

This crash accounts for 12.0% of the total crashes, 4.9% of the functional years lost and 10.2% 
of the direct costs. This scenario contributes to the following minimum requirements: 
minimum headway, detection zone shape and size, target class, crash alert timing and crash 
alert modality. 
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Distracted Rear-End Collision (#56) 

This crash accounts for 2.% of the total crashes, 1.7% of the functional years lost and 1.9% of 
the direct costs. This scenario contributes to the following minimum requirements: minimum 
headway, detection zone shape and size, target class, crash alert timing and crash alert 
modality. 

Visibility Rear-End Collision (#78) 

This crash accounts for 2% of the total crashes, 1.6% of the functional years lost and 1.7% of 
the direct costs. This scenario contributes to the following minimum requirements: weather 
capability, day and night operation and crash alert timing and adjustability. 

Aggressive Rear-End Collision (#66) 

This crash accounts for 1.5% of the total crashes, 0.5% of the functional years lost and 1.1% 
of the direct costs. This scenario may influence the following minimum requirements: 
minimum headway, detection zone shape and size, target class and adjustability. 

Tailgate (#52) 

This crash accounts for 1% of the total crashes, 0.3% of the functional years lost, and 0.8% of 
the direct costs. This scenario may influence the following minimum requirements: minimum 
headway, crash alert timing, adjustability and crash alert modality. 

Lane Change, Rear-End Collision (#80) 

This crash accounts for 1% of the total crashes, 0.2% of the functional years lost and 0.5% of 
the direct costs. This scenario may influence the following minimum requirements: minimum 
headway, detection zone shape and size, target class, crash alert timing and crash alert 
modality. 

2.4.1.2 Category II (Do not Contribute to System Requirements) 

A total of 36 crash scenarios from “44 Crashes” fit the description of Category II.  These 
scenarios and the rationale for grouping them into Category II are described below. 

Struck Human (#1 in Table 2-5) 

Due to the severity of this crash type, it is desirable that an FCW help the driver avoid or 
mitigate this type of collision. However, many cases within this scenario are not solvable due 
to lack of warning time and obscured vision. For example, if a person suddenly intrudes in 
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front of a moving vehicle, the system may not have adequate time to detect the obstacle and 
provide a warning to the driver. Similarly, a person crossing the street between two parked 
cars may be obscured from the sensor’s view, so that there is inadequate time to provide a 
warning.  Since it was judged the FCW system could not reliably detect humans at an 
adequate range, the driver would be left with ambiguous expectations with respect to a 
“pedestrian avoidance” capability, which would violate the notion of a simple mental model to 
the driver. This requirement to reliably sense pedestrians is not considered technically feasible 
at this point in a time, and hence, such a requirement could delay FCW system deployment. It 
should be noted that although the FCW system is not targeted for pedestrians, it still may 
provide benefits in some situations. 

Struck Animal (#3) 

Due to the frequency of this crash type, it is desirable that FCW systems help the driver avoid 
or mitigate this type of collision. However, many cases within this scenario are not solvable 
due to lack of warning time, obscured vision and difficulty in predicting the path of animals. 
The identical comments made above for “pedestrian avoidance” capability apply here to 
“animal avoidance” capability. 

Drowsy Driver (#9) 

Avoidance or mitigation may require additional capabilities, such as lane sensing and monitoring 
of driver physiological state, which are outside the scope of the FCW system capability 
assumptions described in Section 2.1. 

Departures: Aggressive (#10); Slick Road (#11); Rough Road (#12); Impaired (#18); 
Inexperience (#91) 

Avoidance or mitigation may require capabilities, such as lane sensing, which are beyond the 
FCW system capability described in Section 2.1. In addition, the driver of the SV may have 
already lost control of the vehicle, so a warning may not help the situation. 

Avoidance Departure (#13) 

When an obstacle(s) suddenly appears in the SV path, the FCW system may not have adequate 
time to detect the obstacle and provide a warning to the driver. 

Back into Object (#19); Back into roadway (#48) 

Obstacles under consideration are not in the forward detection zone. 
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Ran Red “T-bone” (#22) 

Avoidance or mitigation of this scenario may require a wider detection zone than the FCW 
system capability described in Section 2.1. When the FCW system observes the POV at a close 
range, avoidance or mitigation may not be possible due to lack of warning time. 

Slick Road, Ran Stop (#28); Slick Road Head On (# 93) 

Avoidance or mitigation of this scenario requires monitoring of road surface conditions, which is 
beyond the FCW system capability described in Section 2.1. 

Inattentive, Ran Stop (#30) 

Avoidance of this scenario requires a wide forward coverage zone (up to 180 degrees) and 
identification of stop signs, which is beyond the model FCW system described in Section 2.1. 

View Obstruction (#33); View Obstruction Left (#99) 

When driver’s view is obstructed, the FCW system’s view may also obstructed. 

Look but Did Not See (#35); Sirens (#37); Left Turn Clip (#38) 

Avoidance of this scenario requires a wide forward coverage zone (up to 180 degrees), which is 
beyond the model FCW system described in Section 2.1. 

Wrong driveway (#40); Wave to Go (#44), Run Red into Left Turner (#94), Misjudgment Left 
Turner (#96) 

Avoidance or mitigation is not possible since the POV is not in the SV detection zone. 

Turn into Passer (#47); Lane Change, Right and Left (#76, 79) 

Avoidance or mitigation of this scenario may require side-sensing capability, which is not an 
intended function of FCW systems. 

Avoidance Rear End (#58) 

The lead vehicle obstructs the SV’s view of the POV in the adjacent lane. Therefore, the SV 
driver may be unable to avoid or mitigate an impeding collision due to lack of warning time even 
though the FCW system may detect the POV after the SV changes lanes. 
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Pedal Miss (#61) 

An FCW system may warn the driver when the POV is in the SV detection zone. The driver has 
already attempted to avoid or mitigate an impeding collision; however, he/she has missed the 
pedal. 

Stutter Stop (#64) 

Avoidance of this scenario may not be possible due to lack of time and requiring the FCW 
system to operate at extremely close range. 

Maintenance (#68) 

Avoidance or mitigation of this scenario requires monitoring of vehicle conditions such as brake 
or tire pressure, which is not an intended function of FCW systems. 

Slick Road, Rear End (#74) 

The SV will detect the POV when the POV is in the SV path; however, avoidance or mitigation 
may not be possible due to lack of warning time resulting from the road surface condition. 
Monitoring of road surface conditions is not a function of the FCW system capability described 
in Section 2.1. 

Passing Clip (#75) 

Avoidance of this scenario may require a wide forward coverage (up to 180 degrees), which is 
outside the practical limits discussed in Section 2.1. 

Back Track (#82) 

An FCW system may be able to provide a warning to the SV driver; however, the SV driver has 
limited ability to avoid or mitigate the impending collision. 

U-Turn (#83) 

The SV may detect the POV; however, avoidance or mitigation may not be possible due to lack 
of warning time. 

Impaired, Head On (#92) 

Even though an FCW system may warn the SV driver about the impending collision, avoidance 
or mitigation may not be possible due to lack of warning time. This situation occurs because of 
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the extremely high closing speeds involved in this crash type and the limited sensing range of an 
FCW system. It has been suggested that the FCW system may be beneficial in some instances of 
this crash type since there may be adequate warning time for the driver to perform an avoidance 
maneuver (rather than attempting full braking). However, this crash scenario is included in 
Category II because of the limited number of cases in which the FCW system may be of benefit 
and the impractical demands that addressing this scenario, places on system technology. 

Finally, two crashes do not belong in either category:  Miscellaneous (#100) and New (#101). 
Table 2-8 gives the tabulated results of applying this procedure to “44 Crash” scenarios. 
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Number Name Category I 
(Scenarios that contribute to 

FCW functional requirements) 

Category II 
(Scenarios that DO NOT 

contribute to FCW functional 
requirements) 

1 Struck human X 
3 Struck animal X 
9 Drowsy  driver X 

10 Aggressive departure X 
11 Slick road departure X 
12 Rough road departure X 
13 Avoidance departure X 
18 Impaired departure X 
19 Back into object X 
22 Ran red “T-bone” X 
28 Slick road, ran stop X 
30 Inattentive, ran stop X 
33 View obstruction X 
35 Looked but didn’t see X 
37 Sirens X 
38 Left turn clip X 
40 Wrong driveway X 
44 Wave to go X 
47 Turn into passer X 
48 Back into roadway X 
52 Tailgate X 
56 Distracted rear end X 
58 Avoidance rear end X 
61 Pedal miss X 
62 Inattentive rear end X 
64 Stutter stop X 
66 Aggressive rear end X 
68 Maintenance X 
74 Slick road rear end X 
75 Passing clip X 
76 Lane change right X 
78 Visibility rear end X 
79 Lane change left X 
80 Lane change rear end X 
82 Back track X 
83 U-turn X 
91 Inexperience, departure X 
92 Impaired, head-on X 
93 Slick road, head-on X 
94 Run red into left turner X 
96 Misjudgment, left turn X 
99 View obstructed left X 

Table 2-8 Generation of Relevant Scenarios to Establish FCW Functional Requirements 
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2.4.2 Summary 

Table 2-9 summarizes the six relevant scenarios and the FCW functional requirements to 
which they contribute, and lists these scenarios in order by the percentage of direct cost 
attributable and the percentage of functional years lost attributable to each crash scenario. 

These six relevant scenarios account for approximately 19.5% of all annual crashes in the 
United States, approximately 16.2% of the direct costs, and approximately 9.2% of the 
functional years lost. These percentages suggest that a sizable portion of the crash problem 
may be addressed through the use of FCW systems possessing characteristics similar to the 
model system described in Section 2.1 of this report. 

Of these six relevant scenarios, Inattentive RE appears to offer the major opportunities for 
benefits from FCW systems; this scenario accounts for about 63% of the direct cost and 53% 
of the functional years lost attributable to the combined relevant scenarios. However, this is 
an ideal model, and it is recognized that no crash avoidance system can be 100% effective at 
preventing a particular crash type. On the other hand, an FCW system may provide benefit in 
the Category II crash scenarios as well. 

Number Name Frequenc 
y (%) 

Functional 
Years Lost 

(%) 

Direct 
Cost (%) 

Key Parameters 

62 Inattentive RE 12.0 4.9 10.2 Minimum headway, detection 
zone shape and size, target class, 
warning modality 

56 Distracted RE 2.0 1.7 1.9 Minimum headway, detection 
zone shape and size, target class, 
warning modality 

78 Visibility RE 2.0 1.6 1.7 Weather capability, day and night 
operation, separation criteria 
adjustability 

66 Aggressive RE 1.5 0.5 1.1 Minimum headway, detection 
zone shape and size, target class, 
separation criteria adjustability 

52 Tailgate 1.0 0.3 0.8 Minimum headway, warning 
distance, separation criteria 
adjustability, warning modality 

80 Lane change RE 1.0 0.2 0.5 Minimum headway, detection 
zone shape and size, target class, 
warning modality 

Table 2-9 Summary of Relevant Scenarios and Key Parameters 

2.5 Operational Scenarios 
While the purpose of an FCW system is to provide warnings to the driver when confronted by 
a relevant scenario, the response of the system to other common, non-crash operational 
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scenarios is also extremely important. These operational scenarios were used to modify the 
functional requirements contributed by the relevant crash scenarios and resulted in additional 
requirements to the overall minimum functional requirements. It is widely believed that a 
high incidence of nuisance alerts will erode driver confidence in an FCW system and could 
lead drivers to modify their reactions to appropriate warnings (Farber and Paley, 1993; Lerner 
et. al, 1996; Wilson 1994). Such actions, if they occur, will degrade the overall system 
effectiveness to assist drivers in avoiding or mitigating crashes. 

Nuisance alerts are defined to be warnings given by an FCW system when drivers do not 
consider the situation alarming.  Three types of nuisance alerts can be distinguished. 

° False alerts caused by noise or interference, when there is no object present. 

°	 In-path nuisance alerts are those caused by vehicles that are in the path of the SV 
but are at a distance or moving at a speed that drivers do not perceive as alarming. 

°	 Out-of-path nuisance alerts are those caused by objects that are not in the path of 
the subject vehicle. 

No Obstacle In-Path Vehicle Out-Of-Path 
Objects

Alarming 
Situation 

Non-Alarming 
Situation 

Alert 
Occurred 

False alert Appropriate 
alert 

In-path nuisance 
alert 

Out-of-path 
nuisance alert 

No Alert 
Occurred 

Appropriate non-alert Missed alert Appropriate non-
alert 

Appropriate non-
alert 

Table 2-10 Decision Type Matrix for Forward-Collision Warning System 

Table 2-10 summarizes the types of nuisance alerts and their relationship with the driver's

perception of the situation. It also includes missed alerts, which are those that do not occur or

occur too late to be useful. While no quantitative data is publicly available regarding

acceptable nuisance, false and missed alert rates, minimizing their number represents a major

challenge to fielding FCW technology given the current state-of-the-art.


The following list identifies some common operational scenarios that could cause FCW

systems to miss alerts or generate nuisance alerts. The scenario categories are listed below.


° Overhead objects


° The road surface itself and debris on the road


° Adjacent lane traffic


° Roadside clutter


° Diverse vehicle sizes


° Lane changes


Each category will now be discussed in turn.
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2.5.1 Overhead Objects 

Obstacles above the roadway may be interpreted as being 
in the path of the vehicle and cause an out-of-path 
nuisance alert.  Overhead items that may affect the system 
are overpasses, suspended bridges, signs and traffic 
lights. The vertical field of view of an FCW system and 
its range will determine if this category would contribute 
to the nuisance warnings. This category contributes to 
the minimum requirements addressing detection zone 
shape and size. 

2.5.2 Road Surface and Debris 

Different road surfaces may cause nuisance alerts. 
Metallic manhole covers and grated metal surfaces (as 
found on bridges) may give a false warning of an obstacle 
ahead. Similarly, surface markings such as signs, 
crosswalks, painted lane stripes and retroreflectors on the 
road surface may confuse some systems. Debris such as 
tire scraps, soda cans or pieces of wood may also be 
misinterpreted. Going up or down a hill may make the 
FCW system interpret the road incorrectly and give a 
warning when none is required. An example would be a 
steep driveway where the FCW system is directed down 

CAMP 
1 MILE 

Subject Vehicle 

Figure 2-2 Overhead Obstacle 

Subject Vehicle 

Coverage Zone 

Figure 2-3 Steep Hill Scenario 

at the road surface ahead, as shown in Figure 2-3. This category contributes to the minimum 
requirements addressing detection zone shape and size, vertical curvature tolerance and target 
sizes. 

2.5.3 Adjacent Lane Traffic 

Figure 2-5 illustrates how a vehicle in an adjacent lane to the subject vehicle is directly ahead 
when the roadway bends to the right or left. The system may interpret these vehicles as being 

Trucks 

Subject Vehicle 

Subject Vehicle 

Coverage Zone 

Next Lane Vehicle 
Directly Ahead of 
Subject Vehicle 

Figure 2-4 Adjacent Vehicles 
Figure 2-5 Adjacent Lane 
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in the path of the subject vehicle and alert the driver when it is not necessary. Figure 2-4 
illustrates a situation where vehicles in adjacent lanes may be mistaken for a single vehicle in 
the same lane as the subject vehicle. Each of these situations relates to out-of-path nuisance 
alerts. This category contributes to the minimum requirements addressing roadway horizontal 
curvature and POV sizes. 

2.5.4 Roadside Clutter 

As shown in Figure 2-7, objects outside the SV's path on a curved roadway, such as guardrails, 
trees, rocks or road signs, may appear in the detection zone of an FCW system. The system 
may interpret the object as being in the vehicle’s path and alert the driver unnecessarily. This 
situation is common in a “U-Turn in Median”, in which drivers typically decelerate hard into a 
lane in which a large metallic sign resides outside the curve of this reversal lane. Narrow 
streets with parked cars or mailboxes and lampposts close to road edges, as in urban areas, 
present obstacles close to the FCW system coverage zone, Figure 2-6. This would cause out-
of-path nuisance alerts, as shown in Table 2-10. This category contributes to the minimum 
requirements addressing detection zone shape and size, and target classes. 

Guardrail 
Subject Vehicle 

Coverage Zone 

Figure 2-7 Curved Road Scenario 

Subject Vehicle 

Coverage Zone 

Sign or Pole 

Figure 2-8 U-Turn in 
Median 

Subject Vehicle 

Parked Vehicle 

Coverage Zone 

Figure 2-6 Dense Clutter Environment 
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2.5.5 Diverse Vehicle Sizes 

Complex traffic situations may contribute to a “Missed Alert”, defined in Table 2-10. 

Truck 

Motorcycle Subject Vehicle Truck Motorcycle SV 

Figure 2-9 Greater Size and Equal Figure 2-10 Greater Size and 
Distance Distance 

The obstacle that is in the path of the SV may be overlooked due to a larger obstacle at a 
greater or equal distance, Figure 2-9 or Figure 2-10. This category contributes to the 
minimum requirement addressing target classes. 

2.6 Summary 
A set of relevant scenarios were selected that describe the primary crash situations selected for 
the purpose of generating FCW system functional requirements. In addition, a set of 
operational scenarios was identified that describe non-crash situations in which FCW systems 
should not generate nuisance alerts. Together, these roadway scenarios form the basis for 
developing the minimum functional requirements and objective test procedures for FCW 
systems. 
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3	 DEVELOPING A FCW SYSTEM CRASH ALERT 
TIMING AND MODALITY APPROACH VIA 
HUMAN FACTORS STUDIES 

3.1 Preface 
The goal of the human factor portion of the CAMP project was to define driver-interface 
requirements. More specifically, this effort is focused on defining when to present crash alerts 
(i.e., crash alert timing) and how to present crash alerts to drivers (i.e., the crash alert modality). 

The need for obtaining data to define these requirements was dictated by the absence of data 
under controlled, realistic conditions involving drivers braking to a realistic crash threat. Based 
primarily on the four closed-courses, human factors studies described in this chapter, a set of 
minimum driver interface requirements and recommendations were developed, which are 
discussed in Chapter 4. 

The current chapter is conceptually organized into two parts. The first part of this chapter is 
encompassed by Study 1, referred to as the “baseline study”. This study was aimed at defining 
crash alert timing for subsequent studies, and asked drivers to perform “last-second” braking 
maneuvers without FCW system support. The second part of this Chapter is encompassed by 
Study 2, Study 3, and Study 4, which are collectively referred to as the “Interface Studies". 
These studies were aimed at defining how to present FCW system crash alerts to drivers, and 
provided the opportunity to evaluate and validate the crash alert timing approach developed in 
the baseline study. In these studies, drivers experienced various FCW system crash alert types 
under both expected and unexpected (surprise) lead vehicle braking conditions. In 2 of these 3 
interface studies, drivers were completely unaware the vehicle was equipped with FCW system 
crash alerts when the surprise-braking event was introduced. 

The reader interested in a collective summary (or overview) of both the baseline study and the 
interface studies is referred to the Executive Summary at the very beginning of this report. 

3.2 Abstract for Study 1 – The Baseline Study 
The goal of the human factor portion of the CAMP project was to define driver-interface 
requirements. More specifically, this effort is focused on defining when to present crash alerts 
(i.e., crash alert timing) and how to present crash alerts to drivers (i.e., the crash alert modality. 
The primary goal of this first CAMP human factor study was to define a crash alert timing 
approach for a FCW system by exploring various driver behavior measures. 

In this study, a strategy was employed to initially develop a fundamental understanding of the 
timing and nature of drivers’ “last-second” braking behavior without a FCW system, before 
conducting the subsequent FCW system driver interface studies. This strategy was taken so that 
drivers’ perceptions of “normal” and “hard braking” kinematic situations could be properly 
identified and modeled for FCW system crash alert timing purposes. The underlying assumption 
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of this experimental strategy is that properly characterizing (i.e., modeling) the kinematic 
conditions surrounding the hard braking onsets, without FCW system crash alert support will 
lead to a proper estimate for the assumed driver deceleration (or braking) behavior in response to 
a FCW system crash alert across a wide variety of initial vehicle-to-vehicle kinematic conditions. 

More specifically, in developing a crash alert timing approach for a FCW system, two 
fundamental driver behavior parameters have to be considered. These parameters serve as input 
into straightforward vehicle kinematic equations that determine the alert range necessary to avoid 
a crash. The first parameter is the time it takes for the driver to respond to the crash alert and 
begin braking (which includes driver brake reaction time), and the second parameter is the driver 
deceleration (or braking) behavior in response to this alert across a wide variety of initial vehicle-
to-vehicle kinematic conditions. This second parameter was addressed by the current study. 

Under closed-course conditions, drivers were asked to wait to brake until the last possible 
moment in order to avoid colliding with the “surrogate” lead vehicle, which was either slowing 
or stopped. This lead vehicle was designed to mimic a real vehicle as much as possible with the 
constraint it would allow for safe impacts at low impact velocities. The experimenter had access 
to add-on brakes and an audible crash alert. Thirty-six younger, 36 middle-aged, and 36 older 
drivers were tested. Overall, data from over 3,800 last second braking trials were obtained. The 
critical need for obtaining this type of data under controlled conditions is dictated by the 
infrequency of near/actual rear-end crashes (and associated “black box” data), the lack of data 
available to support FCW “benefits” modeling, and the inherent difficulties associated with 
accident reconstruction. 

Converging evidence suggests that the 50th percentile required deceleration value observed in 
this study under “hard braking” driver instructions appears very promising as an appropriate (not 
too early/not too late) estimate of the assumed driver braking onset range for crash alert timing 
purposes. The required deceleration measure was defined, as the constant deceleration level 
required for the driver to avoid the crash at braking onset. This measure was calculated by using 
the current speeds of the driver’s vehicle and the lead vehicle, and assuming the lead vehicle 
continued to decelerate at the prevailing deceleration value (i.e., at the current “constant” rate of 
slowing). To put in another way, the data suggested this required deceleration-based estimate 
would ensure that, for a high percentage of drivers, the onset of hard braking in response to a 
crash alert would occur at a closer range than their braking onset range during “aggressive” 
normal braking, and that this estimate would allow sufficient range for the driver to avoid the 
crash by hard braking.  This required deceleration measure varied with driver speed and lead 
vehicle deceleration rates, which is in sharp contrast to the “constant (or fixed) driver 
deceleration level” assumption routinely employed in FCW warning algorithms and “benefits” 
modeling.  It is also important to note that these required deceleration values were relatively 
uninfluenced by driver age or gender, which is a desirable finding from a production 
implementation perspective. Additional evidence suggest that drivers with a FCW-equipped 
vehicle would be capable of executing the observed hard braking levels without exceeding their 
“comfort zone” for hard braking. 

In terms of allowing the driver sufficient warning distances to avoid a crash, 100 meters of sensor 
“knowledge” accommodated over 90% of drivers in all the various testing conditions, except 
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when drivers approached a parked vehicle at 60 mph (the highest delta velocity condition 
tested). There are several caveats associated with this conclusion, including an assumed 1.7 
second combined driver perception reaction time plus delay time, that sufficient road surface 
coefficient of friction is available (dry roads were used here), and that drivers can match the 
observed hard braking levels during real-world braking in response to a crash alert. 

These results also suggest that attempts to define crash alert timing based on research which 
places drivers under minimal crash risk or no crash risk (e.g., simulator) conditions has potential 
to lead to overly aggressive crash alert timing.  This research approach could in turn lead to the 
consequence of decreasing the harm reduction potential of the FCW system. In addition, these 
results raise serious concerns about the real-world validity of previous FCW interface research. 

The results of this study were used in the three subsequent driver interface studies for crash alert 
timing purposes. More specifically, these results, and the subsequent modeling of these Study 1 
results (see Appendix A20) aimed at predicting required deceleration values, formed the basis for 
assumptions regarding the assumed driver deceleration (or braking) behavior in response to the 
FCW crash alert in the subsequent driver interface studies. These interface studies focused on 
how to present a crash alert to the driver (i.e., visual, auditory, and/or haptic alerts), and provided 
an important opportunity to evaluate and validate these deceleration-based crash alert timing 
approach assumptions. 

3.3	 Study 1 - “Last-Second” Braking Judgments 
Without FCW Crash Alerts 

3.3.1 Introduction 

This research described here is the first of four closed-course, field studies aimed at exploring 
human factors issues surrounding FCW systems (i.e., the effects of the FCW system and 
associated interfaces on driver behavior). More specifically, this research will explore human 
factors issues surrounding FCW which has not been adequately addressed by the relatively 
limited number of previous human factors studies, which have been conducted either under 
laboratory conditions (Graham, Hirst, & Carter, 1995; Hirst & Graham, in press) or driving 
simulator conditions (Janssen & Nilsson, 1990; Janssen & Thomas, 1994; McGehee, Dingus, & 
Wilson, 1996; Nilsson, Alm, & Janssen, 1991). 

The primary goal of this first CAMP study was to develop a crash alert timing approach for a 
FCW system by exploring a number of performance measures. In this study, a strategy was 
employed to initially develop a fundamental understanding of the timing and nature of drivers’ 
“last-second” braking behavior without a FCW system, before conducting the subsequent FCW 
system driver interface studies. This strategy was taken so that drivers’ perceptions of “normal” 
and “hard braking” kinematic situations could be properly identified and modeled for FCW 
system crash alert timing purposes. The underlying assumption of this experimental strategy is 
that properly characterizing (i.e., modeling) the kinematic conditions surrounding these hard 
braking onsets without FCW system crash alert support will lead to a proper estimate for the 
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assumed driver deceleration (or braking) behavior in response to a FCW system crash alert across 
a wide variety of initial vehicle-to-vehicle kinematic conditions. 

The three follow-on CAMP human factors studies involve examining driver behavior with a 
FCW interface, in the context of the solid foundation for a crash alert timing approach provided 
by the present study. 

More specifically, in developing a crash alert timing approach for a FCW system, two 
fundamental parameters involving driver behavior have to be considered. One parameter is the 
time it takes for the driver to respond to the crash alert and begin braking, referred to as driver 
brake reaction time (or driver brake RT). This parameter was not addressed in the current study, 
and will be addressed in planned follow-on studies, which will include unexpected braking 
events. A second parameter involving driver behavior is the assumed braking onset range (which 
may be expressed either by deceleration-based and/or time-based measures), once the driver has 
responded to the crash alert and begins to apply the brake. This second parameter was the focus 
of this study. 

Overview of Methodological Approach 

Overall, the goal of the current study (and subsequent CAMP studies) is to gather data of the 
highest real-world validity possible under controlled closed-course conditions. Consistent with 
this strategic approach, the experimental methodology employed for the current study is aptly 
described in the following quotation. 

One should not ask subjects to indicate the hypothetical moment they 
would collide, or the moment an evasive action has to start. Let them 
perform as if in actual traffic and record when they make their decision 
and how they react. (van der Horst, 1990, p. 133) 

Under closed-course conditions, the current study asked drivers to make last-second braking 
judgments and maneuvers to a slowing or stopped “surrogate” lead vehicle. This surrogate lead 
vehicle was designed to mimic a real vehicle as much as possible with the constraint that the 
surrogate lead vehicle would allow for safe impacts at low impact velocities (up to 10 mph). The 
passenger-side experimenter had access to add-on brakes and an audible collision alert. 
Younger, middle-aged, and older drivers were tested. Overall, data from over 3,800 last-second 
braking trials were obtained. The critical need for obtaining this type of data under controlled 
conditions is dictated by the infrequency of near and actual collisions in the real-world, the 
sparseness of “black box” data available during these situations, the lack of data available to 
support collision warning “benefits” modeling, and the inherent difficulties involved in precisely 
reconstructing an accident. 



3-13 

3.3.2 Experimental Methodology and Approach 

Subjects 

Test participants consisted of 18 males and 18 females in each of three different age groups: 
20-30 , 40-51, and 60-71 years old. Corresponding mean ages for these younger, middle-aged, 
and older age groups were 25, 46, and 65 years old, respectively.  Each driver was tested 
individually in one approximately 2 to 2 ½ hour session and paid $150 for their participation. 
Drivers were recruited by an outside market research recruiting firm, and were required to be 
within approximately a 45-minute drive from the Milford Proving Ground facility. (Hence, for 
some participants, the test involved a 4-hour time commitment.) Two drivers, both in the older 
age group, were not able to complete the test due to feeling uneasy or ill. 

Drivers who were ultimately allowed to participate were mailed the information letter shown in 
Appendix A prior to testing.  A copy of the informed consent statement, which describes the 
various conditions that ruled out potential drivers from participating, is also provided in 
Appendix A. Participants were required to possess a valid, unrestricted, U.S. drivers license 
(except for corrective eye glasses), have a minimum of 2 years driving experience, be over 18 
years of age, be able to drive an automatic transmission vehicle without assisting devices or 
special equipment, be able to give informed consent, and not be under the influence of alcohol, 
drugs, or any other substances (e.g., antihistamines) which may impair their ability to drive. 
Drivers were also excluded from participation if they had a history of heart condition or prior 
heart attack, lingering effects of brain damage from stroke, tumor, head injury, or infection, 
epileptic seizures in the past 12 months, obvious shortness of breath or chronic medical therapy 
for respiratory disorders, a history of motion sickness, a history of inner ear problems, dizziness, 
vertigo, or balance problems, diabetes for which insulin is required, chronic migraine or tension 
headaches, or were pregnant. Additionally, participants were asked to refrain from the use of 
alcohol, drugs, or any other substances (e.g., antihistamines) which impair their ability to drive 
for a period of no less than 24 hours prior to participation. Finally, drivers were excluded if 
anyone in their household worked for an automobile dealer, manufacturer or supplier, an 
advertising agency, a TV or radio station, a newspaper or magazine publisher, or a market 
research firm or department. 

Test Site 

Data was gathered on a 1 mile long, 2 lane wide (12 foot wide lanes), straight, level, smooth 
asphalt road at the General Motors Milford Proving Ground in Milford, Michigan. The road was 
closed to all other traffic during testing, and is shown in Figure 3-1. All testing was conducted 
under daytime conditions under generally dry road and dry weather conditions. 
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Test Vehicles and the “Surrogate” (Lead Vehicle) Target 

Overview of Experimental Apparatus 

Test participants were asked to drive behind the lead vehicle, which towed (at about 40 feet 
behind) a 3-dimensional mock-up of the rear-end of a 1997 Mercury Sable. The driver’s (or 
subject’s) vehicle, the mock-up surrogate lead-vehicle, and the lead (tow) vehicle will be 
subsequently referred to as the subject vehicle (SV), surrogate target, and principle other vehicle 
(POV), respectively.  These three elements of the experimental set-up are shown in Figure 3-1 
and Figure 3-2. Both the SV and POV were 1997 Ford Taurus SHOs equipped with driver-side 
airbags and anti-lock brakes. Both the SV and POV were driven by trained Milford Proving 
Ground test drivers, who were from the General Motors Proving Ground Special Tests Group 
and had previous experience conducting brake tests. The SV and the POV test drivers 
communicated during the study via FM radio communication. 

Surrogate (Lead Vehicle) Target 

The surrogate lead vehicle target was designed to mimic a real vehicle as much as possible with 
the constraint that, if struck at low speeds (up to 10 mph impact speeds), it would not cause 
injury to either the test participant or researchers, or damage to the target. Several illustrations of 
the surrogate target are provided in Figure 3-1 through Figure 3-5. A detailed description of the 
design of the surrogate target is provided with kind permission from Roush Industries, Inc in 
Appendix A, at the end of this final report. The basic components of the target include a “skin” 
made of a flexible polyurethane material, a supporting PVC frame, a trailer assembly (with mild 
steel tubing), coiled springs attached to a high density foam bumper, a collapsible beam (which 
could collapse up to 9 feet), working rear lighting, and reflectors (for range sensing purposes). 
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Figure 3-1	 Side View of the Principal Other Vehicle (POV), Surrogate Target (Or Surrogate 
Lead Vehicle) and Subject Vehicle (SV), as well as an Illustration of the Test 
Track 

Figure 3-2	 Side View of the Principal Other Vehicle (POV), Collapsible Beam, Surrogate Target and 
Subject Vehicle (SV) 
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Figure 3-3 Close-Up Side View of the Surrogate Target 
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Figure 3-4 Close-up Rear View of the Surrogate Target 
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Figure 3-5 Close-up Front View of the Surrogate Target 
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In order to ensure the safety of the test participants and research team, a surrogate target 
validation crash impact test was conducted at the GM Safety Test Laboratory where full-scale 
barrier tests are routinely conducted. The general philosophy of this test was to stage dynamic 
SV/POV impacts (with the POV stationary) by gradually increasing the SV approach speed until 
the surrogate target incurred sufficient damage to warrant replacing the target. At this delta 
velocity (i.e., the difference in speeds between the SV and POV) level, the purpose of the test 
was to ensure that neither the SV or POV experienced any damage, and that the surrogate target 
crash impact would not reach the criterion for triggering the driver-side airbag in the SV. 

Four crash tests were conducted (in the following order), with impacts of 5.3, 7.5, 10.6, and 10.6 
mph, respectively.  During the first and fourth test, the SV brakes were not applied. During the 
second and third tests, only the SV parking brake (i.e., rear brakes) was applied. Results 
indicated the following. First, the air bag was not activated during any of the four crashes. 
Second, across tests, only cosmetic SV front bumper damage was obtained, which was the result 
of the SV hitting a metal vertical plate within the body cavity of the surrogate target, which then 
pushed the surrogate target forward (which resulted in the collapsible beam collapsing). Across 
tests, the collapsible beam attaching the POV and surrogate target, which can collapse up to 
about nine feet, never collapsed more than about 31 inches (about 2 ½ feet). Third, the integrity 
of the surrogate target remained largely intact across tests. Fourth, there was a tendency for the 
surrogate target to climb onto the front hood (although it never touched the windshield), 
particularly at the highest impact speed with no brakes applied. In order to mitigate this 
tendency, the target was subsequently modified. These modifications involved adding to the rear 
of the surrogate target a high-density Styrofoam bumper and four coiled springs. In addition, in 
order to prevent sagging of the target, the target was reinforced with fiberglass in certain areas. 

Subsequent “live” surrogate target validation crash tests were performed with a driver and 
passenger approaching the parked “modified” surrogate target at 5 and 10 mph speeds. These 
tests resulted in no damage to either the surrogate targets or the test vehicles, and provided strong 
support that the modifications eliminated any tendency for the surrogate target to climb onto the 
front hood. In addition, during further pilot testing, the torque of the collapsible beam was 
loosened up until the point the stability of the surrogate target was not compromised when the 
POV braked at a -0.45 g deceleration level at the highest test speed (60 mph). 

In order to prevent the test participants from experiencing surrogate target impacts above the 
highest desirable delta velocity, the passenger-experimenter was provided an add-on brake and a 
“bail-out” FCW crash alert (described later). This alert was used to signal the passenger-
experimenter to take over and begin braking.  Overall, during formal data collection (i.e., 3,888 
last second braking judgment trials), six impacts occurred with the surrogate target. Four of 
these impacts were relatively minor, and the remaining 2 impacts resulted in the beam collapsing 
from 1½-2½ feet. Although a spare surrogate target was available, the original target was never 
replaced during the entire test. 
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Data Acquisition System 

Equipment Overview 

The SV and POV were instrumented to continuously record various measures at 30 Hz, including 
the range (or distance) between the two vehicles, and the speed and acceleration of both test 
vehicles. All equipment was secured as not to present a hazard. Modifications to the SV 
included the installation of the following devices: brake pressure sensors (brake pedal load cells), 
accelerometer, GPS receiver, data logger, inverter, laptop computer, laser radar sensor, video 
recorder, video splitter, three cameras, and a steering sensor. In addition, a passenger-side 
override brake pedal, mechanically linked to the driver’s brake pedal, was installed on the front 
passenger’s side. Modifications to the POV included the installation of the following devices: 
brake pressure sensors, accelerometer, GPS receiver, data logger, inverter, laptop computer, 
smart brake booster, throttle controller, and control for the electric brakes on the trailer. The 
POV was instrumented such that the POV could automatically brake at a pre-selected constant 
deceleration value. A rear looking, eye-safe, ranging sensor was also installed on the POV. A 
conventional trailer hitch was added to the back of the POV, in order to tow the surrogate target. 
The data logging system, power inverters, and batteries were installed in the trunk and securely 
fastened to prevent shifting during the testing.  A fire extinguisher, first-aid kit, and an FM radio 
communication system was placed in both test vehicles. A cellular phone was located in the 
POV. 

Software 

Data collection and control software was developed using a LABVIEW product. GPS time was 
used to synchronize the data from both vehicles and the video. Special care was taken to record 
time on each video frame to synchronize with the data during play back. The user was provided 
with current information about vehicle performance on the screen of the computer during the 
testing.  The user was able to start and end a test sequence with a single keystroke. The software 
program was the same for both vehicles. The functions within the program were selectable 
depending on which vehicle it was used in. A setup file was used to configure the program for 
the vehicle. The basic differences between the POV and SV functions were the control of 
braking on the POV, and the control of video recording and audible alert on the SV. 

Different POV braking profiles (i.e., constant deceleration profiles) were coded into setup files. 
The user determined when the profile would be executed for a given test from a single keystroke. 
The profiles were based on the vehicle speed condition and the POV braking.  The software 
program used the Smart Booster and the accelerometer to control POV braking.  The video 
recorder in the SV was controlled from the same keystroke that started and ended the test. The 
SV employed information provided by the laser radar sensor function to provide the 
experimenter an auditory crash alert corresponding to the last possible moment that braking must 
begin in order to avoid a collision with the surrogate target. The alert algorithm was part of the 
setup file. 
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“Bail Out” Crash Alert 

The crash alert equation employed was the following (if range was less than the quantity on the 
right-hand side, the alert was sounded): 

Range < (((VSV-VPOV)2/2(aSV-aPOV)) +  TSV(VSV-VPOV)) 

where: - VSV and VPOV are the measured velocities in m/s of the SV and POV, respectively 
- aSV is the assumed SV (constant) deceleration value, which was 6.9 m/s2 (-0.70 g’s) 
- aPOV is the assumed POV deceleration based on the trial condition, which was 

either -1.5, -2.9 m/s2, - 4.4 m/s2, (-0.15,-0.30, or -0.45 g’s) 
- TSV  is the assumed “travel” delay time value (includes test driver reaction time plus 

system delay time), which was assumed to be 1 seconds for POV Stationary Trials, 
and 2 seconds for POV Moving Trials 

Data Recording 

All data parameters were recorded at a 30 Hz rate throughout the testing.  Data was written to a 
file in a directory that was unique for that test. The directory names were based on the date and a 
sequence of run numbers for that day.  The folder names were dependent on which vehicle the 
data was collected, ‘RUNAxxx’ for the SV and ‘RUNBxxx’ for the POV.  The data was 
combined from each vehicle at the end of the testing into synchronized files. The combined data 
was placed into a folder ‘RUNCxxx’.  The combining process was based on the start and end 
time of each file for that day.  At the beginning of each test, header information was recorded that 
identified the date, time, vehicle, and setup used. 

Procedure and Design 

Procedures Before and After Test Trials 

After completing various pre-experiment forms and procedures (including the informed consent 
statement), drivers were escorted to the track. Drivers were then administered test instructions 
verbally (shown in Appendix A), and asked to adjust the seat, steering wheel, and mirrors to their 
preferred position, and to fasten their shoulder harness and lap belt. 

Before starting testing, a brief review of instructions was again administered verbally (shown in 
Appendix A). It should be noted that drivers were instructed on the nature of the surrogate 
target, and more specifically, that this target was designed to allow low speed impacts. Next, a 
sequence of practice and test trials was conducted, described below. After the test trials were 
completed, drivers were escorted from the track, debriefed on the purpose of the study, and paid 
for their participation. 



3-22 

Overview of Test Trials / Driver Instructions 

Drivers experienced trials in which the POV was parked (or stationary), and trials in which the 
POV was moving. These two general types of test trials will be referred to as Stationary Trials 
and Moving Trials, respectively.  During Stationary Trials, drivers were asked to approach the 
parked surrogate target at an instructed speed, either 30, 45, or 60 mph. During Moving Trials, 
drivers followed a lead vehicle which towed the surrogate target at these same three speeds, and 
were given ample time to maintain and stabilize at what they considered to be their normal 
following distance. Next, the POV driver enabled the POV to automatically brake to a stop 
according to a pre-specified braking profile, which resulted in a constant deceleration of either -
.15, -.28, or -.39 g’s). (It should be noted that the original experimental design called for the two 
hardest POV braking profile level to be -0.30 and -0.45 g’s respectively, but subsequent data 
analysis indicated that only a POV braking profile levels of -0.28 and -0.39 g’s were attained for 
these two conditions during the study.) At that point, the test participant was asked to wait to 
brake the SV at the last possible moment in order to avoid colliding with the surrogate target. 
When both vehicles came to a complete stop, data collection was halted and the trial was ended. 
During Stationary Trials, drivers were asked to make these same braking judgments while 
approaching the parked surrogate target. 

Drivers were asked to make these last second braking judgments under three different braking 
instruction conditions, “normal” braking, “comfortable hard” braking, and “hard” braking.  Each 
instruction differed on the instructed braking intensity or pressure. Under one instruction, the 
driver was asked to brake with normal braking intensity or pressure. Under a second instruction, 
the driver was asked to brake with the hardest braking intensity or pressure that they felt 
comfortable. Under a third instruction, the driver was asked to brake with hard braking intensity 
or pressure. These three instruction conditions were included to provide insight into when 
drivers should be presented crash alert information, when drivers should not be presented crash 
alert information (in order to avoid in-path nuisance alerts or any tendency the driver may have to 
ignore an alert which does in fact signify an alarming situation), and to explore driver’s 
interpretation of “hard braking” and “comfortable hard” braking levels. That is, the use of 
different braking instructions enabled properly identifying and modeling drivers’ perceptions of 
“normal braking” (albeit “aggressive normal braking”) and “hard braking” for crash alert timing 
purposes. 

Drivers were discouraged from “second-guessing” and correcting their initial braking onset 
judgment by releasing brake pressure (or “double-pumping”), for two reasons. First, even if 
inaccurate, the interest here is when drivers perceive the need to begin braking.  Second, it is 
anticipated that a driver response to a crash alert will typically involve either maintaining or 
increasing brake pressure (rather than releasing brake pressure) throughout the braking 
maneuver. Hence, it was felt the braking distance and levels observed may be representative of a 
driver’s hard braking levels in response to a crash alert. 
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Test Trial Sequence 

Each driver experienced three blocks of trials, each corresponding to a different braking 
instruction condition. The first block of trials was always conducted under the normal braking 
instruction, whereas the second and third block of trials were conducted under comfortable hard 
and hard braking instructions (with the order of these two braking instructions counterbalanced 
across drivers). The first block of trials served to get drivers comfortable with braking the 
vehicle under more normal conditions, and with the “last-second” braking instruction. Trials in 
which the passenger-experimenter intervened with braking were immediately repeated. 

Within each block of trials, drivers experienced 15 trials. During trials 1-3, drivers braked in 
response to a series of three horizontally aligned traffic cones (placed perpendicular to the 
vehicle’s path of travel). These trials served to get drivers comfortable braking with the vehicle 
under the last second braking instruction relevant to the block of trials. During trials 4-6, drivers 
experienced three Stationary Trials, with the order of the three target approach speeds (30, 45, or 
60 mph) counterbalanced within a driver’s testing session (across the three braking instruction 
conditions), as well as across drivers. During trials 7-15, drivers experienced nine Moving 
Trials, formed by crossing the three target speeds (30, 45, or 60 mph) with the three POV braking 
profile levels (-.15, -.28, or .-39 g’s). During these 9 trials, drivers experienced three successive 
trials at each target speed (each with a different POV braking profile). The order of the three 
target speeds and the three POV braking profile levels were appropriately counterbalanced within 
a driver’s testing session (across the three braking instruction conditions), as well as across 
drivers. 

Independent Variables Examined 

For Stationary Trials, the within-subjects variables analyzed were target speed (30, 45, and 60 
mph) and braking instruction (normal, comfortable hard, and hard), and the between-subjects 
variables were age (younger, middle-aged, or older), gender (male or female), and hard braking 
instruction order (comfortable hard/hard or hard/comfortable hard). For Moving Trials, the 
within-subjects variables analyzed were target speed (30, 45, and 60 mph), POV braking profile 
(-.15, -.28, and -.39 g’s), and braking instruction (normal, comfortable hard, and hard), and the 
between-subjects variables were age (younger, middle-aged, or older), gender (male or female), 
and hard braking instruction order (comfortable hard/hard, or hard/comfortable hard). 

Dependent Measures (Or Performance Measures) Examined 

Various performance measures were analyzed for Moving Trials and Stationary Trials. The 
variable definitions, and the point in time during the braking maneuver in which these measures 
were analyzed (at POV braking onset, at SV braking onset, throughout the braking, end of the 
braking maneuver) are shown in Table 3-1. 

It should be noted that SV braking onset was not defined relative to the brake switch trigger 
point, since it was observed that some drivers had a tendency to momentarily ride the brakes 
during their last-second braking decision. Instead, SV braking onset was defined as the point in 
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time in which the vehicle actually began to slow as a result of braking.  Based on a manual 
analysis of 10% of the entire data set, SV braking onset was defined as five 30 Hz data samples 
(or 165 ms) prior to SV crossing the .10 g deceleration level. 

The time-to-collision (or TTC) measure was examined under different assumptions about SV and 
POV deceleration. “Time-to-collision” refers to the time it would take for a collision to occur at 
the prevailing speeds, distances, and trajectories associated with the driver’s vehicle and the 
closest lead vehicle (van der Horst, 1990). 

In calculating the TTC during Stationary Trials, the driver’s speed at SV braking onset was 
assumed to remain constant throughout the braking maneuver. That is, this TTC measures 
provides a measure of the time it would take for drivers to collide (or contact) with the lead 
vehicle if the drivers continued at their current ( or “momentary”) speed at SV braking onset. 

In calculating the TTC during Moving Trials, two different cases of TTC measures were 
examined, which made difference assumptions about lead vehicle decelerations. Under TTC-
Case 1 (identical to the Stationary Trials case above), this measure was calculated by assuming 
the current speeds of the driver’s vehicle and the lead vehicle. That is, this TTC measures 
provides a measure of the time it would take for the driver to collide with the lead vehicle if the 
driver and the lead driver continued at their current speeds. 

Under TTC-Case 2 during Moving Trials, this measure was calculated by assuming the current 
speeds of the driver’s vehicle and the lead vehicle, as well as assuming the lead vehicle continued 
to decelerate at the prevailing deceleration value (i.e., at the current “constant” rate of slowing). 
That is, this measure provides a measure of the time it would take for the driver to collide with 
the lead vehicle assuming the current speeds of the driver’s vehicle and the lead vehicle, and 
assuming the lead vehicle continued to decelerate at the prevailing deceleration value. 

Similar underlying assumptions were made for the required deceleration measure at SV braking 
onset, which was defined as the constant deceleration level required for the driver to avoid the 
crash at braking onset. This measure was calculated by using the current speeds of the driver’s 
vehicle and the lead vehicle, and assuming the lead vehicle continued to decelerate at the 
prevailing deceleration value (i.e., at the current “constant” rate of slowing). It should be noted 
that in calculating both the TTC and deceleration required measures, the movement state of the 
lead vehicle (stationary or moving) during the “playing out” of the lead vehicle assumptions (i.e., 
0 g deceleration, constant level of deceleration) was addressed. 
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Table 3-1 Driver Performance Measures Analyzed 

Time During Braking Maneuver Which 
Measure Was Analyzed 

Dependent Measure 
(Measurement Unit) Variable Definition 

At POV 
Braking 

Onset 

At SV 
Braking 
Onset * 

Through 
-out 

Braking 

End of 
SV 

Braking 
SV Speed (mph) Speed of subject vehicle (SV) ✔ 
Initial POV Speed 
(mph) 

Speed of principal other vehicle (POV) at POV braking onset (moving trials only) ✔ 

POV Speed (mph) Speed of POV (moving trials only) ✔ 
Delta Velocity 
(or Delta V in mph) 

Difference in speeds between the SV and POV (moving trials only) ✔ 

SV Deceleration (g) Deceleration level of SV ✔ 
POV Deceleration (g) Deceleration level of POV (moving trials only) ✔ 
Braking Onset Range 
(m) 

Range (or distance) between the SV and POV at SV braking onset ✔ 

Following Headway 
(sec) 

The range between the SV and POV divided by the SV speed at POV braking onset 
(moving trials only) 

✔ 

Headway (sec) The range between the SV and POV divided by the SV speed at SV braking onset ✔ 
Time-To-Collision 
(or TTC in seconds) 

The time it would take for the SV and POV to collide under prevailing speeds and 
assumed deceleration values (see text for 2 cases examined) 

✔ 

Required Deceleration 
(g) 

The constant deceleration level at braking onset for the SV driver to avoid the crash, 
assuming the current SV and POV speeds, and that the POV vehicle continues 
decelerating at the prevailing deceleration value. 

✔ 

Actual Deceleration(g) The constant deceleration level needed for the SV to yield the observed stopping 
distance 

✔ 

Peak Deceleration (g) The peak (or maximum) deceleration level reached by the SV driver during the braking 
maneuver 

✔ 

Braking Distance (m) SV stopping or braking distance ✔ 
Minimum TTC (sec) The minimum TTC value reached by the SV during the braking maneuver ✔ 
Minimum Headway 
(sec) 

The minimum time headway reached by the SV during the braking maneuver (moving 
trials only) 

✔ 

Minimum Range (m) The minimum range between the SV and the POV reached during the braking maneuver ✔ 
End Range (m) The range between the SV and the POV when the SV has come to a full stop ✔ 

Note:  * SV braking onset was defined relative to when the vehicle actually began slowing rather than by the brake switch trigger point. 
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3.3.3 Results and Discussion 

Overview of Statistical Analysis Approach 

A mixed factorial Analysis of Variance (ANOVA) was performed for each performance measure 
defined in Table 3-1. Data from Stationary Trials and Moving Trials were analyzed separately 
during the statistical analysis. For Stationary Trials, the within-subjects variables analyzed were 
target speed (30, 45, and 60 mph) and braking instruction (normal, comfortable hard, and hard), 
and the between-subjects variables were age (younger, middle-aged, or older), gender (male or 
female), and hard braking instruction order (comfortable hard/hard or hard/comfortable hard). 
For Moving Trials, the within-subjects variables analyzed were target speed (30, 45, and 60 
mph), braking instruction (normal, comfortable hard, and hard), and POV braking profile (-.15, -
.28, and -.39 g’s), and the between-subjects variables were age (younger, middle-aged, or older), 
gender (male or female), and hard braking instruction order (comfortable hard/hard or 
hard/comfortable hard). This ANOVA approach was used to explore underlying relationships 
between the various independent variables and performance measures. Due to the exploratory 
nature of this research and the relatively large number of statistical tests carried out (which 
increases the probability of spuriously significant results, (Hays, 1981)), the criterion set for 
statistical significance was p<0.01. Statistically significant effects are shown for Stationary 
Trials in Table 3-2, and for Moving Trials in Table 3-3. All statistically significant results 
indicated in these tables at least met (and often exceeded) the adopted p<0.01 criterion. 

It should be stressed that this analysis was considered a necessary precursor to a modeling 
activity aimed at predicting SV driver range at braking onset for crash alert timing purposes in 
planned follow-on studied examining FCW interfaces. Hence, rather than explaining and giving 
equal emphasis to every statistically significant effect observed (which is shown for Stationary 
Trials in Table 3-2, and for Moving Trials in Table 3-3), the following discussion and data 
presentation is more focused around the goal of determining a crash alert timing approach. 

In this vein, the performance measures in Table 3-1, which will not be discussed here in any great 
detail, include the effects involving the braking instruction and POV braking profile variables on 
the following measures (all measured at SV braking onset): SV speed, SV deceleration, POV 
speed, and POV deceleration. In general, these effects were extremely small in magnitude and of 
negligible practical significance.  In any case, these effects will be addressed in the subsequent 
modeling of these data, which will attempt to develop equations for predicting driver’s braking 
onset range in the current study. However, one important effect involving the POV braking 
profile variable was actually an experimental manipulation, and indicated that the three POV 
braking profiles corresponded to -.15, -.28, and -.39 g’s, respectively.  In addition, “isolated” 
higher-order interaction effects, which were not generally observed across measures (i.e., Table 
3-2, rows 9-10; and Table 3-3, rows 12-13 and 15-18), will not be discussed here. Once again, 
these effects were generally small in magnitude. 



1

2

3

4

5

6

7

8

9

10

3-27 

Table 3-2 Stationary Trials Data - Overview of Statistically Significant Effects (*p< .01, **p< .001, ***p< .0001) 

At Braking Onset Throughout Braking End of 
Braking 

Ref. 
Row 

Significant 
Effects 

Speed Decel. Range TTC Req. 
Decel. 

Actual 
Decel. 

Peak 
Decel. 

Min. TTC Range 

Age * * * 

Gender * 

rder 

Braking Instr. *** *** *** *** *** *** *** * 

Speed *** *** *** *** *** *** *** *** *** 

O x BI * * *** ** *** ** * 

A x Sp ** 

BI x Sp *** ** *** ** * * 

A x O x Sp * * 

O x BI x Sp * 

* * 

O

Note: For rows 6-10 above, A=Age, O=Hard Braking Instruction Order, BI=Braking Instruction, and Sp=Speed. 
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Table 3-3 Moving Trials Data – Overview of Statistically Significant Effects (*p< .01, **p< .001, ***p< .0001)

At POV
Braking Onset

At SV Braking Onset Throughout Braking End of
SV

Braking

Ref.
Row

Significant
Effects

Time
Head
-way

Initial
POV
Speed

SV
Speed

SV
Dec.

POV
Speed

POV
Dec.

Delta
V

Range Time
Head
-way

TTC
(Case

1 )

TTC
(Case

2)

Req.
Dec.

Actual
Dec.

Peak
Dec.

Min.
TTC
(Case

1 )

Min
TTC
(Case

2 )

Min.
Head
-way

Min.
Range

End
Range

1 ge

2 Gender
3 rder
4 Braking

Instr.
*** *** * *** *** *** *** *** *** *** *** *** *** *** *** ***

5 Speed *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
6 Braking

Prof.
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

7  x BI * * ***
8  x Sp
9 BI x Sp * ** *** * *** * **

10 BI x BP *** *** ** ** *** *** *** *** *** *** *** *** *** ***
11 S x BP * *** *** *** *** * ** *** *** ***
12 O x BI x BP ***
13 O x Sp x BP ***
14 BI x Sp x BP *** *** *
15 G x BI x BP *
16 A x G x Sp *
17 A x G x BI x

BP
*

18 A x BI x Sp
x BP

**

Note:   For rows 7-18 above, A=Age, G=Gender, O=Hard Braking Instruction Order, BI=Braking Instruction, Sp=Speed and BP=Braking Profile. During The two different cases of TTC
measures examined (TTC-Case1 and TTC-Case 2) are described in the text.

A

O

O
G
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Driver’s Compliance to Speed Instruction and Headway Instructions 

Before discussing the effects of each independent variable on the various performance measures, 
it is important to verify that drivers followed the experimenter instructions prior to their initiation 
of last-second braking.  Drivers were instructed to maintain 30, 45 or 60 mph speeds. In 
addition, during Moving trials, drivers were instructed to follow at their normal following 
distance. 

Results shown in Table 3-4 indicate that both the SV (and POV) were very close to target speeds 
during both Stationary Trials and Moving Trials. Results from Table 3-5 indicate that the 
average time headway observed across age groups in the current study (at POV braking onset) 
correspond closely to those recently observed in the manual (no adaptive cruise control) 
condition in the recent large-scale ACC field trials (Sayer, Fancher, Ervin, and Melford, 1997). 
(It should be noted that, in the current study, the effect of the age variable on this average time 
headway measure only reached a p<0.10 level of statistical significance.) This latter result 
provides strong evidence that drivers’ time headways during Moving Trials in the current study 
are representative of real-world driving conditions, and were not altered by the last-second 
braking judgment task. 

Hard Braking Instruction Order Effects 

Although there were no main effects of the hard braking instruction order variable (see row 3 of 
Table 3-2 and Table 3-3), this variable interacted with the hard braking instruction order variable 
in a robust fashion during Stationary Trials (see Table 3-2, row 6), and for a few measures during 
Moving Trials (see Table 3-2, row 7). A representative example of this Hard Braking Instruction 
Order x Braking Instruction interaction is shown in Figure 3-6 for the average required 
deceleration measure during Stationary Trials. (This measure will be shown shortly to be a key 
measure for crash alert timing purposes.) This interaction indicates that during the first and third 
block (or set) of trials, the average required deceleration values were no different across hard 
braking instruction order conditions (comfortable hard/hard versus hard/comfortable hard). 
However, during the second block of trials, average required deceleration values were higher for 
the “hard/comfortable hard” hard braking instruction order group relative to the “comfortable 
hard/hard” order group. This pattern of results suggests that drivers in the latter group may have 
been relatively more aggressive in their third block of trials due to experiencing the “hard 
braking” instruction in the previous block of trials. In any case, the magnitude of this interaction 
effect (.02 g’s) was relatively small for this measure, as well as other performance measures 
analyzed. Furthermore, it is interesting to note that data were more stable in the “hard” relative 
to “comfortable hard” braking instructions across the two hard braking instruction orders, which 
suggests that the driver’s interpretation of “hard” braking is relatively insensitive to practice. 
This insensitivity to practice would seem to make data from the hard braking instruction 
condition a better candidate for modeling crash alert timing, particularly if drivers with a FCW-
equipped vehicle are instructed that “hard” braking may be one of the appropriate responses to a 
crash alert. Overall, as will be shown below, the data from the comfortable hard braking 
instruction condition are nearly identical to that obtained in the hard braking instruction 
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condition. This would suggest that drivers with a FCW-equipped vehicle would be capable of 
executing the hard braking levels observed in the current study without exceeding their “comfort 
zone” for hard braking.  Finally, as can be seen by examining the significant interaction effects in 
Table 3-2 (rows 6-10) and Table 3-3 (rows 7-18), the braking instruction order variables did not 
generally interact across with other performance measures. 

Age and Gender Effects 

The only significant main effects of either age or gender occurred during Stationary Trials (see 
rows 1-2 of Table 3-2 and Table 3-3), when drivers experienced the highest delta velocity (and 
perhaps the highest perceived risk) levels. The main effects of age during Stationary Trials are 
shown in Table 3-6, and indicate the younger group behaved more aggressively than the middle-
aged and older group, with largely no difference in behavior between the two older groups. A 
main effect of gender was found during Stationary Trials for only the average required 
deceleration measure, and indicated average required deceleration values of -.29 and -.31 g’s for 
female and male drivers, respectively.  Overall, it should be noted that main effects of age and 
gender are relatively small in magnitude. In addition, as can be seen by examining the significant 
interaction effects in Table 3-2 (rows 6-10) and Table 3-3 (rows 7-18), the age and gender 
variables did not generally interact with the more “kinematic-oriented” variables of speed, 
braking instruction, and POV Braking profile across performance measures. Hence, to the extent 
to which one would want to add a correction factor in crash alert timing to accommodate 
differences in either age and/or gender, the process is seemingly very straightforward, and the 
underlying relationships between the more kinematic-oriented variables (which will now be 
discussed) still hold. 
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Table 3-4	 Comparison of Speed Instructions Versus Driver’s Actual Speeds at the Time of Critical 
Braking Events 

POV Stationary Trials POV Moving 
Trials 

Speed Instruction 
Average SV Speed at 

SV Braking Onset 
Average SV Speed 

at SV Braking Onset 
Average POV Speed 

at POV Braking 
Onset 

Maintain 30 mph 29.8 30.3 30.3 

Maintain 45 mph 44.6 45.9 45.9 

Maintain 60 mph 58.0 60.8 60.8 

Table 3-5	 Comparison of Time Headways During CAMP Moving Trials Versus 
UMTRI ACC Field Trials Across Age Groups 

Average Time Headways (sec) 
Age Group* CAMP at POV 

Braking Onset 
UMTRI ACC Field Trials 

(Sayer et al., 1997) 

Young 1.3 1.2 

Middle 1.6 1.4 

Old 1.6 1.5 
* The young, middle-aged and older groups in the current study were defined as 20-30, 40-51, 

and 60-71 years old, respectively.  In the UMTRI ACC Field Trials  (Sayer et al., 1997), the 
corresponding age groups (which are nearly identical) were 20-30, 40-50, and 60-70 years 
old, respectively. 

Table 3-6	 Effects of Age on Various Performance Measures During 
Stationary Trials 

At Braking Onset 

Age 
Group 

Ave. 
Range 

(m) 

Ave. 
TTC 
(sec) 

Ave. Req. 
Decel. (g) 

Ave. Min 
TTC (sec) 

Ave. End 
Range 

(m) 

Young 69.2 3.4 -.31 2.0 7.5 

Middle 78.9 3.8 -.29 2.5 12.1 

Old 79.1 3.8 -.28 2.4 11.1 
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Figure 3-6	 Average Required Deceleration at Braking Onset as a Function of Trial Set and Braking 
Instruction During Stationary Trials 
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Figure 3-7	 Average Range at SV Braking Onset as a Function of Braking 
Instruction, POV Braking Profile, and Speed Condition 

Speed, Braking Instruction and POV Braking Profile Interaction Effects: 
“Kinematic Figures” 

Developing the “Kinematic Figure” concept 

The following discussion is aimed at providing the reader a close look at the various higher-order 
interactions observed between the kinematic-oriented variables across performance measures. 
These variables play a paramount and fundamental role in determining appropriate crash alert 
timing.  For Stationary Trials, these key kinematic-oriented variables include speed and braking 
instruction. For Moving Trials, these key kinematic-oriented variables include speed, braking 
instruction, and POV braking profile. 

These kinematic-oriented variables provided robust main effects across performance measures 
during Stationary Trials (see Table 3-2, rows 4 and 5) and Moving Trials (see Table 3-3, rows 4-
6). In addition, these key kinematic-oriented variables strongly interacted with one another. 
During Stationary Trials, this can be observed in the robust Speed x Braking Instruction 
interaction (see Table 3-2, row 8). Similarly, during Moving Trials, this can be observed in the 
Braking Instruction x Speed interaction (see Table 3-3, row 9), Braking Instruction x Braking 
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Profile interaction (see Table 3-3, row 10), and the Speed x Braking Profile interaction (see Table 
3-3, row 11). 

Hence, a data presentation approach which focuses on the highest-order interaction between 
kinematic-oriented variables provides the most powerful approach for interpreting the underlying 
trends of this large data set, and allowing the reader to make clean, straightforward comparisons 
across performance measures. For Stationary Trials, the highest-order interaction between 
kinematic-oriented variables is provided by the Speed x Braking Instruction (2-way) interaction. 
For Moving Trials, the highest-order interaction between kinematic-oriented variables is 
provided by the Speed x Braking Instruction x POV Braking Profile (3-way) interaction. 
Furthermore, in order to facilitate comparisons between data obtained during Stationary Trials 
and Moving Trials for a given performance measure, data from the corresponding “highest order” 
interactions under these two types of trials are presented on the same figure. For ease of 
terminology purposes, this type of figure will subsequently referred to as a “Kinematic Figure”. 
For some measures, it should be noted that Stationary Trials data is not shown on the Kinematic 
Figure, primarily because the measure is not appropriate for these types of trials. Finally, to the 
extent possible, Kinematic Figures corresponding to similar performance measures are grouped 
together. 

An example of a Kinematic Figure described above, which represents a key strategy for 
representing and interpreting this large data set, is shown in Figure 3-7 for the average range at 
SV braking onset measure. In each of these Kinematic Figures, the performance measure is 
shown on the vertical axis, and the various combinations of the braking instruction/POV braking 
profile conditions are shown on the horizontal axis. Note that for illustrative purposes, the 
Stationary Trials condition is represented as a POV braking profile level. Furthermore, the 
various lines/connecting points on the figure correspond to the three different speed conditions 
under each braking instruction/POV braking profile combination, with isolated non-connected 
points used to represent the Stationary Trials data. It should be noted that 108 drivers (with 
occasional outliers removed) contributed to each of the 36 data points shown on any given 
Kinematic Figure. In total, each Kinematic Figure represents data from approximately 3,888 last 
second braking judgment trials. 

In interpreting these Kinematic Figures, it is useful to point out that data from the normal braking 
condition is less aggressive than that obtained from the hard and comfortably hard braking 
conditions. Also, the data from the comfortable hard braking instruction condition is nearly 
identical to that obtained in the hard braking instruction condition. (As was mentioned earlier, 
this latter finding would suggest that drivers with a FCW-equipped vehicle would be capable of 
executing the observed braking levels in the current study without exceeding their “comfort 
zone” for hard braking.) Hence, in analyzing these Kinematic Figures with an eye toward 
thinking about crash alert timing, the reader may find it advantageous to focus on data from the 
hard braking instruction condition (the rightmost third of the figure), which provides additional 
rationale for the “Kinematic Figure” approach. Indeed, data from the hard braking instruction 
condition will be the focus of much of the following discussion. The importance of data from the 
normal braking instruction condition and its relevance to driver annoyance (i.e., in-path nuisance 
alerts) will be primarily discussed later when examining percentile data. Next, a brief discussion 
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will be provided of each of the Kinematic Figures corresponding to various performance 
measures. 

Delta V 

The Kinematic Figure corresponding to the average difference in velocities (or delta V’s) 
between the SV and POV at SV braking onset is shown in Figure 3-8. Although the data from 
Stationary Trials is not shown in this figure (since it would triple the size of the vertical scale, 
and diminish the readers ability to see the pattern of results during Moving Trials), the reader 
should know that the delta velocities during Stationary Trials simply correspond to the driver’s 
speeds at SV braking onset. These latter speeds corresponded very closely to drivers’ instructed 
speeds (see Table 3-4). Under the hard braking instruction conditions during Moving Trials, the 
average delta velocities ranged from 8-16 mph. As can be seen in Figure 3-8, overall, the delta 
V’s increased as the (instructed) speeds increased and as the lead vehicle (POV) braked harder. 
This pattern of results is generally true across measures, many of which are highly correlated. It 
is also interesting to note that the 85th percentile delta V’s ranged from 13-26 mph across the 
hard braking instruction conditions. 

Peak Decelerations 

The Kinematic Figure corresponding to the average peak deceleration of the SV throughout the 
braking maneuver is shown in Figure 3-9. Across all hard braking instruction conditions, the 
average peak deceleration values ranged between -.75 and -.90 g’s. During Stationary Trials, the 
average peak decelerations remained relatively constant across approach speeds. In contrast, 
during Moving Trials, the average peak deceleration values increased as speeds increased from 
30 mph to the two higher speeds (45 mph and 60 mph), and increased as the POV braked harder. 
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Figure 3-8	 Average Differences in Velocities (Delta V) Between the SV and POV at SV Braking Onset 
During Moving Trials as a Function of Braking Instruction, POV Braking Profile, and 
Speed Condition 
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Figure 3-9	 Average Peak Deceleration of the SV Throughout Braking as a Function of 
Braking Instruction, POV Profile, and Speed Condition 

Range at Braking Onset / Exploring Sensor Range Requirements 

The Kinematic Figure corresponding to the average range between the SV and POV at SV 
braking onset is shown in Figure 3-7. This figure indicates that, overall, the average range at SV 
braking onset increased as speeds increased and as the lead vehicle (POV) braked harder. This 
figure clearly illustrates that in terms of determining requirements for FCW sensor range, 
situations corresponding to the Stationary Trials condition (e.g., a parked vehicle) will demand 
substantially longer driver warning distances than situations corresponding to Moving Trials. 

Figure 3-10 examines the Stationary Trials data in terms of exploring potential requirements for 
driver warning distances (and hence, FCW sensor ranges). In this figure, a 1.7 second travel 
distance (based on observed speeds in the three different speed conditions) is added to three 
following measures; average stopping distance, average range between the SV and POV at SV 
braking onset, and 90th percentile stopping distances. (These latter stopping distances can be 
viewed of as long, or conservative.) The 1.7 seconds value is based on an assumed 1.5 second 
percentile P-RT, and an additional 0.2 second system delay time (which included the time it takes 
for the vehicle to begin slowing after the brakes are applied). The assumed driver P-RT time 
corresponds to an 85th-95th percentile driver perception-response time value (Olson, 1996), 
which is a percentile range commonly used in traffic engineering.  (The reader can easily explore 
other assumed P-RT values by converting the assumed driver P-RT to a travel distance across the 
three speeds, and adding this distance to the measures provided in Figure 3-10.) 
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As can be seen in Figure 3-10, the 100 meters of “sensor knowledge” accommodates the 
proposed potential driver warning distances for avoiding a crash in the 30 and 45 mph speed 
condition (for 90% of drivers in the 45 mph condition), but falls short in the 60 mph condition. It 
should be stressed that substantial collision mitigation would still be possible in this latter speed 
condition. It should also be noted that the above conclusions assume that drivers will at least 
match the observed hard braking levels in the current study under real-world conditions in 
response to a crash alert, and that the road surface coefficient of friction can support the hard 
braking levels observed in the current study (which may not be true under wet, snowy, or icy road 
surface conditions). 

Braking Distance 

Although this measure was not statistically analyzed (since it is redundant with the average 
deceleration measure), the Kinematic Figures corresponding to SV braking distance is shown in 
Figure 3-11. As can be seen in this figure, overall, the average braking distances increased as 
speeds increased and decreased as the lead vehicle braked harder. It is also interesting to note 
that the across the three speed conditions under both comfortable hard and hard braking 
instruction conditions, braking distances found during Stationary Trials correspond closely to 
those found during Moving Trials in the -.28 g POV braking profile condition . 

Minimum Range / End Range 

The Kinematic Figures corresponding to the average minimum range throughout braking and the 
average end range are shown in Figure 12 and Figure 13, respectively.  Note that these two 
variables are equivalent during Stationary Trials, and that these data are redundantly displayed in 
both of these two Kinematic Figures. During Moving trials, these two variables are not 
necessarily identical, since the minimum range can occur during the actual braking maneuver. 
Both Figure 12 and Figure 13 indicate that, overall, both the average minimum range and average 
end range increased as speeds increased, and decreased as the lead vehicle braked harder. For the 
hard braking instruction condition during Stationary Trials, the average minimum range (or 
equivalently, average end range) shown in Figure 13 increased approximately 1-3 mid-size car 
lengths in a fairly linear fashion as target speeds increased from 30-60 mph. The definition used 
here of a mid-size car length is 5.1 m, which corresponds to the length of a Chevrolet Lumina or 
Ford Taurus. Interestingly, this same pattern of results was true for the minimum range measure 
during Moving Trials for the hardest POV braking profile condition (-.39 g). Overall, these 
results would appear to suggest that a driver’s preferred “buffer zone” increased with driver 
speed. 
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Figure 3-10	 Potential “Driver Warning” Distances Based on Adding 1.7 Seconds 
Travel Distance to the Following Measures in the Hard 
Braking/Stationary Trials Conditions: Ave. Braking Onset Range, Ave. 
Stopping Distance, and the 90th Percentile Stopping Distance 

D
ri

ve
r 

W
ar

n
in

g
 D

is
ta

n
ce

 (
m

) 



3-40 

190 
180 

A
ve

ra
g

e 
S

V
 B

ra
ki

n
g

 D
is

ta
n

ce
 (

m
) 

170 
160 
150 
140 
130 
120 
110 
100 
90 
80 
70 
60 
50 
40 
30 

60 MPH 
45 MPH 
30 MPH 

20 
10 

.15  .28 .39  Stat. .15  .28 .39 Stat. .15  .28  .39 Stat. 

Normal  Comfortable-Hard Hard 

Braking Instruction / POV Braking Profile (g) 

Figure 3-11	 Average SV Braking Distance as a Function of Braking Instruction, 
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However, the interpretation of these minimum range and end range data are not straightforward, 
since (as discussed above in the “Procedure and Design” section) drivers were discouraged from 
“second-guessing” and correcting their initial braking onset judgment by releasing brake pressure 
(or “double-pumping”). Hence, this constraint may have resulted in higher (more conservative) 
end ranges and/or higher minimum ranges than may have been obtained if drivers were given the 
opportunity to release pressure off the brakes during the brake maneuver. This hypothesis will be 
further tested in the two follow-up closed course studies, which will not constrain the driver’s 
braking behavior in this manner, and will also include unexpected braking events. 

Actual Deceleration and Required Deceleration 

Before discussing the results from the actual deceleration and required deceleration measures, 
which will be argued to be the most important variables examined here for developing a FCW 
crash alert timing approach, it is important to elaborate on the definitions of these variables 
provided earlier in Table 3-1. Figure 3-14 provides an illustration of the definition of these 
measures for the Stationary Trials condition. Referring to Figure 3-14, the reader is to imagine 
the vehicle shown on the left is approaching the parked vehicle shown to the far right, and then 
begins braking, and eventually comes to a stop. The top illustration depicts the case where the 
driver’s braking distance enables the driver to avoid colliding with the lead vehicle by a few car 
lengths. The braking distance observed could than be re-expressed as the constant (or fixed) 
deceleration level needed to yield the actual (observed) stopping distance, defined as the actual 
deceleration measure. Now imagine replaying this same exact sequence of events, except the 
driver comes to a stop right at the front bumper of the lead vehicle. The “hypothetical” braking 
distance observed can than be re-expressed as the constant (or fixed) deceleration level required 
for the driver to avoid the crash at braking onset, defined as the required deceleration measure. 
Note that assuming the driver avoids the crash, the actual deceleration value is always greater 
than the required deceleration value. However, the exact relationship between the actual and 
required deceleration measures is in no way predetermined or inherently straightforward. That is, 
the relationship between these measures may be different across drivers, as well as for any given 
driver across different vehicle-to-vehicle kinematic conditions. 

Data from both the actual and required deceleration measures under Stationary Trials conditions 
is shown in Figure 3-15. For both measures, this figure reveals only small differences between 
the comfortable hard and hard braking conditions, and a consistent (approximately .07 g) 
difference or “tight coupling” between the actual and required measures. Furthermore, both 
measures increased as the driver’s speed increased (i.e., people braked harder at higher speeds). 
The Kinematic Figures corresponding to the actual and required deceleration measures (which 
also include the Stationary Trials data shown in Figure 3-15) are shown in Figure 3-16 and 
Figure 3-17, respectively.  As was found during Stationary Trials, during Moving Trials, these 
two figures reveal only small differences between the comfortable hard and hard braking 
conditions, and a consistent difference or “tight coupling” between the actual and required 
deceleration measures (this effects can be better observed by overlaying transparencies of each of 
these two figures). Furthermore, both measures increased as the lead vehicle braked harder. For 
two hardest POV braking profile conditions (-.28 and -.39 g’s) during Moving Trials, both the 
actual and required deceleration measures increased as the driver’s speed increased (i.e., people 



3-43 

braked harder at higher speeds), particularly at the hardest POV braking profile condition (-.39 
g’s). However, for the least aggressive POV braking profile condition (-.15 g’s), both the actual 
and required deceleration measures remained stable across driver speeds. 

Overall, and in sharp contrast to commonly proposed crash alert timing approaches, these results 
suggest that it may be advantageous to vary the assumed driver deceleration value for crash alert 
timing as a function of driver speed and lead vehicle deceleration. Across the entire range of 
experimental conditions tested under the hard braking instruction condition, the average required 
deceleration values ranged from -.22 to -.45 g’s (as can be seen in Figure 3-17). This range can 
be compared to the driver deceleration values assumed in the early phase of CAMP program 
(prior to Human Factors testing), which assumed fixed -.3 and -.5 g values for the driver’s 
response to cautionary and imminent crash alerts, respectively. 

SV Braking 
Onset 

Actual SV 
Stopping Point 

Actual Stopping 
Margin 

Actual Braking Distance -
Used to calculate “Actual” 
Deceleration Measure 

Hypothetical Required Braking Distance -
Used to calculate “Required” Deceleration Measure 

Hypothetical SV 
Stopping Point 

“Actual” Deceleration (g) - The constant deceleration level needed to yield the 
actual (observed) stopping distance 

Parked 
Vehicle 

Parked 
Vehicle 

“Required” Deceleration (g) - The constant deceleration level required for the 
driver to avoid the crash at braking onset 

SV Braking 
Onset 

Figure 3-14	 Definition of “Actual” Deceleration and “Required” Deceleration Measures 
(Illustrated for Case Where Lead Vehicle is Stationary or Parked) 
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Actual and Required Deceleration: Promising Measures for Developing a Crash Alert Timing 
Approach 

As was touched upon earlier, the actual deceleration and required deceleration measures appear 
to be the most important variables of all those examined here for developing a crash alert timing 
approach, for two primary reasons. 

First, the required deceleration measure appears to be tightly coupled to a fundamental kinematic 
variable, braking or stopping distance (re-expressed here in terms of an actual deceleration 
measure). The time-based measures (TTC or headway), which will be discussed soon, do not 
provide a direct linkage to a fundamental kinematic variable. 

Second, a “stability” analysis of performance measures across experimental conditions suggests 
that the required deceleration measure remain more stable (in terms of either central tendency or 
data spread measures) than either the actual deceleration measure or any of the time-based 
measures examined at SV Braking Onset (i.e., TTC-Case 1, TTC-Case 2, time headway). To the 
extent that a measure is stable across experimental conditions for a given driver, and that 
measure’s stability is consistent across drivers, the measure offers two important advantages. 
First, the measure may come closer to matching the underlying criterion drivers use for deciding 
when to brake and how hard to brake. Second, the measure may eliminate (or at least mitigate) 
the need for a crash alert criterion control, which is a desirable feature from a production 
implementation and a simplicity/ease of use perspective. 

This “stability” analysis is shown in Table 3-7 and Table 3-8 for Stationary Trials and Moving 
Trials, respectively, and involves calculating coefficients of variation (COV). The COV is 
defined for a given measure as the standard deviation divided by the mean (standard 
deviation/mean). This measure allows the distinct advantage of comparing across measures on 
the same “normalized” scale. Each table entry of Table 3-7 and Table 3-8 is based on 108 
separate COV measures, with each driver contributing a single COV measure based on all the 
trials experienced under comfortable hard and hard braking conditions (i.e., 6 trials under 
Stationary Trials conditions and 18 trials Moving Trials conditions). 

For each COV measure shown in the left-hand column of Table 3-7 and Table 3-8, a measure’s 
stability is reflected by low values. The measures corresponding to the central tendency of the 
COV (i.e., average, median) provide a measure of the extent to which the measure remains stable 
across experimental conditions for a given driver. During Stationary Trials, paired t-tests 
revealed significantly lower mean COV values for the required deceleration measure relative the 
TTC-Case 1 measure (p < 0.0001), with no difference found between the actual and required 
deceleration measure. During Moving Trials, paired t-tests revealed significantly lower mean 
COV values for the required deceleration measure relative to the TTC-Case 1 measure (p 
<0.0001), with no difference found between the required deceleration measure and the actual 
deceleration, TTC-Case 2, and time headway measures. 

The measures in the left-hand column of Table 3-7 and Table 3-8 corresponding to the variation 
or spread of the COV measure (i.e., standard deviation, minimum value, and maximum value) 
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provide a measure of the extent to which a measure’s stability across experimental conditions for 
a given driver is consistent across drivers. Hence, in this case, a measure’s stability is reflected 
by low COV standard deviations, low COV minimum values, and low COV maximum values. 
During Stationary Trials, overall, the required deceleration measure shows lower values across 
these measures of COV variability relative to the actual deceleration and TTC-Case 1 measures. 
During Moving Trials, overall, the required deceleration measure shows lower values across 
these measures of COV variability relative to the actual deceleration and the time-based 
measures examined at SV Braking Onset (i.e., TTC-Case 1, TTC-Case 2, time headway). It is 
worthwhile noting that the time headway measure appears surprisingly stable relative to the TTC 
measures. 

Hence, in addition to the “tight coupling” observed between the required deceleration measure 
and the actual deceleration measure, this COV “stability” analysis provides further supports 
further for exploring the required deceleration measure for crash alert timing purposes. Another 
fruitful avenue for exploring the required deceleration measure for crash alert timing purposes is 
to examine percentile values, which is a common practice in traffic engineering (e.g., using 85th-
95th percentile values for design purposes). Table 3-9 and Table 3-10 provides the data which is 
the basis for an argument that the 50th percentile required deceleration value during hard braking 
may be a well-founded assumption for the assumed driver deceleration in response to a crash 
alert. In making this argument, it is best to start by examining a “nominal” experimental 
condition in the study, which is during Moving Trials where the instructed speed was 45 mph 
and the lead vehicle braked at -.28 g’s. Percentile data for this nominal condition is shown in 
Figure 3-18. The arguments made below for this specific experimental condition hold equally 
well for the remaining experimental conditions, which will be discussed shortly (and is supported 
by data from Table 3-9 and Table 3-10). 

The left-most percentile curve in Figure 3-18 represents data for the required deceleration 
measure under the normal braking instruction condition. As can be seen by the vertical dotted 
line on this figure, more than 96% of all (108) drivers exhibited required deceleration values of 
approximately -.35 g’s or less. Put in another way, only 4% of drivers exhibited required 
deceleration values of approximately -.35 g values or more in the normal braking instruction 
condition. 

The middle percentile curve in Figure 3-18 represents data (once again) for the required 
deceleration measure, but this time under the hard braking instruction condition. As can be seen 
by the vertical dotted line on this figure, the 50th percentile required deceleration value under the 
hard braking instruction is approximately -.35 g.  Hence, coupling this curve with the left-most 
percentile curve suggests that assuming the 50th percentile required deceleration value observed 
during hard braking for crash alert timing (i.e., the assumed driver deceleration in response to a 
crash alert) would be unlikely to annoy drivers doing “normal” braking (via an in-path nuisance 
alert). This is particularly true if the assumption is made that the observed required deceleration 
values during the normal braking instruction condition are more “aggressive” than corresponding 
values during normal “real-world” braking, largely because the “normal” braking in this study 
was performed in the context of a last-second braking instruction. 
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Table 3-7	 Coefficients of Variation (COV) Within-Subjects for Select Performance 
Measures Relevant for Crash Alert Timing Purposes During Stationary Trials 
(COV=Standard Deviation/Average) 

Performance Measure at SV Braking Onset 
Coefficient of Variation 

Measure 
Required 

Deceleration 
(g) 

Actual 
Deceleration (g) 

TTC-Case 1 (sec) 

Average 0.16 0.17 0.22 

Median 0.16 0.16 0.22 

Standard Deviation 0.05 0.07 0.06 

Minimum Value 0.06 0.07 0.10 

Maximum Value 0.30 0.70 0.35 

Note:  Each table entry above is based on 108 separate COV measures (one per driver), with each driver 
contributing a single COV measure based on 6 Stationary Trials. These 6 trials correspond to the 3 
“comfortable hard” braking instruction trials and the 3 “hard” braking instruction trials, where the 3 
trials in each of braking instruction condition correspond to the 3 speed condition levels. 

Table 3-8	 Coefficients of Variation (COV) Within-Subjects for Select Performance Measures Relevant for Crash-
Alert Timing Purposes During Moving Trials (COV = Standard Deviation/Average) 

Performance Measure at SV Braking Onset 
Coefficient of Variation 

Measure 
Required 

Deceleration 
(g) 

Actual 
Deceleration 

(g) 

TTC-Case 1 
(sec) 

TTC-Case 2 
(sec) 

Time 
Headway 

(sec) 

Average 0.29 0.29 0.35 0.28 0.28 

Median 0.29 0.29 0.33 0.28 0.27 

Standard Deviation 0.04 0.08 0.11 0.06 0.07 

Minimum Value 0.16 0.16 0.18 0.17 0.13 

Maximum Value 0.41 0.74 1.00 0.52 0.48 

Note: 	 Each table entry above is based on 108 separate COV measures (one per driver), with each driver contributing  a single 
COV measure based on 18 Moving Trials. . These 18 trials correspond to the 9 “comfortable hard” braking instruction 
trials and the 9 “hard” braking instruction trials, where the 9 trials in each of braking instruction condition are formed by 
the crossing of the 3 speed condition levels by the 3 POV Braking Profile levels. 
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Table 3-9	 Exploring the Utility of Deceleration-Based Measures for Crash-
Alert Timing Purposes with Stationary Trials Data 

Speed Condition 
Braking 
Instr. Cond. 

Deceleration 
Measure 

%tile 30 mph 45 mph 60 mph 

Normal Required 
Deceleration 

95th -.27 -.32 -.35 

Hard Required 
Deceleration 

50th -.29 
(-.29) 

-.34 
(-.34) 

-.38 
(-.38) 

Hard Actual 
Deceleration 

15th -.28 -.34 -.36 

Note:	 Values in parentheses indicate corresponding mean values. Also, it should be 
stressed that Study 1 normal braking can be considered on the aggressive side 
of normal braking. 

Table 3-10 Exploring the Utility of Deceleration-Based Measures for Crash Alert Timing Purposes with Moving Trials Data 

Speed Condition (mph) / POV Braking Profile Condition (g) 
Braking 
Instr. Cond. 

Deceleration 
Measure 

%tile 30 / -.15 30 / -.28 30 / -.39 45 / -.15 45 / -.28 45 / -.39 60 / -.15 60 / -.28 60 / -.39 

Normal Required 
Deceleration 

95th -.20 -.30 -.37 -.20 -.33 -.42 -.21 -.34 -.45 

Hard Required 
Deceleration 

50th -.23 (-.23) -.33 (-.33) -.38 (-.38) -.22 (-.22) -.35 (-.35) -.41 (-.41) -.21 (-.22) -.36 (-.36) -.45 (-.45) 

Hard Actual 
Deceleration 

15th -.22 -.31 -.36 -.22 -.36 -.41 -.21 -.39 -.45 

Note:	 Values in parentheses indicate corresponding mean values. Also, it should be stressed that Study 1 normal braking can be considered on the aggressive side of 
normal braking. 
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The next important question to ask is whether drivers would be capable of braking to avoid the 
crash if the 50th percentile required deceleration value observed during hard braking was used as 
the assumed driver deceleration in response to a crash alert. The right-most percentile data curve 
in Figure 3-18 represents for the actual deceleration values under the hard braking instruction. As 
can be seen by the vertical dotted line on this figure which passes through the 50th percentile 
required deceleration values data under the hard braking instruction, the actual deceleration values 
for 13% of drivers fall to the left of this line, which suggest that for these drivers the 50th 
percentile required deceleration value (during hard braking) is too aggressive for allowing them to 
avoid the crash (although collision mitigation may occur). On the other hand, for approximately 
87% of the drivers, the 50th percentile required deceleration value during hard braking 
accommodates the actual deceleration values observed during hard braking.  If it is assumed that 
drivers will in fact brake harder (if required) under real-world condition than observed in the 
current study, than the 15% of the drivers not accommodated by the 50th percentile required 
deceleration value during hard braking would be substantially reduced or eliminated. This would 
in effect move the rightmost percentile curve in Figure 3-18 farther to the right. 

Corresponding data for the remaining experimental conditions are shown in table form in Table 
3-9 for Stationary Trials and Table 3-10 for Moving Trials. (These two tables also reinforce the 
point made above that the required deceleration measures are a function of both driver speed and 
lead vehicle deceleration.) For each experimental condition (including the nominal condition 
discussed at length above), three percentile values are provided: 

° The 95th percentile required deceleration value under normal braking conditions. 

° The 50th percentile required deceleration value under hard braking conditions. 

° The 15th percentile actual deceleration value under hard braking conditions. 

The pattern of results in Table 3-9 for Stationary Trials and in Table 3-10 for Moving Trials 
provide strong evidence that the arguments made above for nominal 45 mph / -.28 g condition 
during Moving Trials (shown in middle part of Table 3-9) hold equally well for the remaining 
experimental conditions. 

First, across experimental conditions during both Stationary Trials and Moving Trials, the 95th 
percentile required deceleration value observed under normal braking instruction conditions 
virtually never exceeds (with one exception) the 50th percentile required deceleration value 
observed under hard braking instruction conditions. Assuming a 50th percentile required 
deceleration value during hard braking for crash alert timing (i.e., the assumed driver deceleration 
in response to a crash alert), would be unlikely to annoy drivers doing “normal” braking 
particularly if the assumption is made that the required deceleration values during the normal 
braking instruction observed in this study are more aggressive than corresponding values during 
normal real-world driving. 

Second, across experimental conditions during both Stationary Trials and Moving Trials, the 50th 
percentile required deceleration value observed under hard braking instruction conditions is 
remarkably close to the 15th percentile actual deceleration value observed under hard braking 
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conditions. Hence, for approximately 85% of the drivers, the 50th percentile required 
deceleration value during hard braking accommodates the actual deceleration values observed 
during the hard braking instruction condition. If it is assumed that drivers will in fact brake harder 
(if required) under real-world conditions than observed in the current study, than the remaining 
approximately 15% of the drivers not accommodated by this approach may be substantially 
reduced or eliminated. 

Hence, overall, assuming the 50th percentile required deceleration value during the hard braking 
condition for the assumed driver deceleration in response to a crash alert appears promising.  First, 
it appears that only a relatively small percentage of drivers (less than 5%) would find this assumed 
SV driver deceleration response to be not aggressive enough. However, if one assumes the 
normal braking levels observed here are more aggressive than in the real world, this small 
percentage of drivers may be reduced or eliminated. Second, it appears that only a relatively small 
percentage of drivers (less than 15%) would find this assumed SV driver deceleration value too 
aggressive. (It should be noted that these drivers may experience some level of collision 
mitigation). However, if one assumes that drivers could in fact brake harder (if required) under 
real-world conditions relative to those here, this relatively small percentage of drivers may be 
reduced or eliminated. This assumption will be further tested in two follow-up closed course 
studies, which will also include unexpected braking events. 

In any case, the 50th percentile required deceleration value observed during hard braking appears 
to provides a solid anchor and foundation for assumptions surrounding the assumed driver 
deceleration in response to a crash alert. More generally, in terms of estimating driver’s 
maximum braking capabilities, it is interesting to note that the highest (i.e., most aggressive) 15th 
percentile actual deceleration value across experimental conditions was -.45 g’s (see bottom rows 
of Table 3-9 and Table 3-10). This “highest” value occurred during Moving Trials in the 60 mph 
/-.39 POV braking profile condition. 

Time-Based (Headway and TTC) Measures 

For the reasons discussed in detail above, the time-based measures examined at SV Braking Onset 
(TTC-Case 1, TTC-Case 2, and time headway) do not appear as promising as deceleration-based 
measures for developing FCW crash alert timing.  Briefly, these reasons included the lack of a 
direct linkage of time-based measures to a fundamental kinematic variable (e.g., braking distance), 
and the finding (via a “stability” covariance analysis) that the required deceleration levels (or 
values) remain more stable than any of the time-based measures examined at SV braking onset 
(i.e., TTC-Case 1, TTC-Case 2, time headway). 

However, given the large amount of previous work examining these time-based measures (see van 
der Horst (1990) for a review of this work), the interested reader is provided Kinematic Figures 
for each of the time-based measures defined in Table 3-1 in Figure 3-19 through Figure 3-24. The 
reader should note that for Stationary Trials, the time-based measures at SV braking onset (i.e., 
time headway, TTC-Case 1, and TTC-Case 2.) are equivalent, and redundantly provided on each 
of these Kinematic Figures for comparative purposes. It should also be noted that the minimum 
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TTC values observed during the braking maneuver have been previously interpreted as a measure 
of the imminent danger of a collision during the braking maneuver (van der Horst, 1990). 
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Figure 3-23	 Average TTC (Case 2) at SV Braking Onset as a Function of Braking 
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Comparison of Observed Data to Previous “Last-Second” Braking Judgment 
Data 

Methodology of the CAMP Versus TNO Studies 

It is worthwhile to compare the results of the current study to previously obtained results under 
closed-course conditions (van der Horst, 1990) and (fixed-base) driving simulator conditions 
(Kaptein et al., 1996). These two comparison studies were conducted by researchers at the TNO 
Institute for Human Factors in Soesterberg, The Netherlands. 

In these studies, drivers were tested only under Stationary Trials conditions, and under nearly 
identical normal and hard braking instruction conditions relative to those used in the current 
CAMP study (the “comfortable hard” braking instruction was not employed). A few additional 
important differences between the current CAMP and previous TNO studies are worth stressing 
before comparing results across studies. First, unlike the current study where drivers were 
actively involved in controlling their speeds, driver’s speeds in the TNO studies were controlled 
automatically via cruise control. Second, in the TNO closed-course study, drivers last-second 
braking judgments were made on an open airstrip (without any driving lane indications) while 
drivers approached a 2-dimensional Styrofoam mock-up of the rear-end of a vehicle mounted on a 
plastic barrel. Hence, relative to the current study, drivers’ risk levels were substantially lower for 
with respect to hitting the target and avoiding the target by either a steering or combined 
steering/braking maneuver. With respect to the latter point, it should be noted that 1/10 mile 
markers mounted on metal poles were present on both sides of the test track, which are barely 
viewable in Figure 3-1 near the bridge underpass. Third, it is important to note that different 
speed conditions were used across the current CAMP and the two TNO studies, and hence, 
comparisons across these three studies are not entirely straightforward. Fourth, different age 
groups were used across the current CAMP and the two TNO studies. However, given the lack of 
and relatively small magnitude of age effects in the current study, these differences do not appear 
to be particularly problematic in making comparisons across studies. 

Comparison of CAMP Versus TNO Studies Results 

The average range at braking onset under normal and hard braking instructions for the current 
CAMP, and previous TNO closed-course and simulator studies are shown in Figure 3-25. These 
comparative results indicate that for both the normal and hard braking instruction conditions, 
average braking onset ranges are substantially longer (and hence, less aggressive/more 
conservative) in the current CAMP relative to both TNO studies. Under hard braking conditions, 
the average braking onset ranges in the current CAMP study are approximately 30%-75% longer 
across the 30-45 mph approach speeds relative to those observed in the TNO closed-course study 
(van der Horst, 1990). Similarly, the average braking onset ranges in the CAMP study are 
approximately 20%-35% longer across the 30-60 mph speeds relative to those observed in the 
TNO simulator study (Kaptein et al., 1996). It is interesting to note that the differences observed 
under hard braking conditions between the current CAMP and TNO studies increase with 
approach speeds, where driver’s perceived risk levels may have been higher. In addition to these 
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results, it should be noted that consistent with the current CAMP study, the averaged required 
deceleration values in the TNO closed-course study increased with approach speeds (the TNO 
simulator study report does not report these values). 

It should be stressed to the results found on the TNO simulator may be idiosyncratic to that 
particular simulator facility, and so that these results should not be automatically assumed to 
generalize to other driving simulators. One potential avenue of research, previously suggested by 
Kaptein et al. (1996) and supported by the current CAMP findings, would be to replicate the 
current study on a simulator study with motion-base capabilities. 

It is interesting to note that based primarily on the two TNO studies discussed above conducted 
under Stationary Trial conditions, van der Horst and Hogema (1994) recommended as a potential 
crash alert timing approach to assume a constant 4-second TTC value. This value reflects an 
assumed (fixed) 1.5 second driver P-RT plus an assumed (fixed) 2.5 second TTC value at braking 
onset. With respect to this latter assumption, the current results suggest this crash alert timing 
approach would appear not be appropriate. As can be seen clearly in Figure 3-23, the assumption 
of a fixed TTC value (in the context of a fixed driver P-RT) appears dubious. Furthermore, even 
if one focuses on Stationary Trials (i.e., the condition actually tested by TNO), the assumed 2.5 
second TTC value at SV braking onset appears to accommodate the average TTC-Case 2 values 
(e.g., rather than 85th percentile value) observed here only in the lowest approach speed condition 
tested (30 mph). (The reader should note that for Stationary Trials, the TTC-Case 2 measure is 
equivalent to TTC-Case 1 measure.) 

“Real-World Validity” Implications of Differences Observed Across CAMP Versus TNO Studies 

Overall, a “target crash risk” effects appears to be the most likely explanation for the observed 
differences across the current CAMP and TNO studies. That is, it appears that under lower target 
crash risk conditions (e.g., the TNO simulator and TNO closed-course study conditions described 
above), drivers are willing to begin hard braking later (i.e., at closer ranges to the lead vehicle) 
than under higher target crash risk conditions (e.g., the current CAMP study conditions). Most 
importantly, the observed differences suggest that attempts to define crash alert based on research 
which places drivers under minimal crash risk or no crash risk (e.g., simulator) conditions has the 
potential to lead to inappropriate and overly aggressive crash alert timing.  An error in making the 
crash alert timing too aggressive in turn leads to the consequence of a decreasing the harm 
reduction potential of the FCW system. In addition, these results raise serious concerns about the 
real-world validity of previous FCW interface research which has employed substantially different 
crash alert timing approaches than suggested by these results (e.g., a fixed TTC criterion) and/or 
target crash risk conditions which may not be representative of those under which drivers would 
experience crash alerts (Graham et al., 1995; Hirst & Graham, in press; Janssen & Nilsson, 1990; 
Janssen & Thomas, 1994; McGehee, et al., 1996; Nilsson et al., 1991). 
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3.3.4 General Discussion 

The primary goal of this initial CAMP study was to build a solid foundation for developing a 
crash alert timing and interface approach for a FCW system by exploring a number of 
performance measures. These measures were explored in the context of drivers performing 
“successful” (crash-free) last second braking maneuvers without a FCW system. In developing a 
crash alert timing approach for a FCW system, two fundamental parameters involving driver 
behavior have to be considered. One parameter is the time it takes for the driver to respond to the 
crash alert and begin braking (e.g., 1.5 seconds), and the second parameter is the driver 
deceleration (or braking) behavior in response to this alert across a wide variety of initial vehicle-
to-vehicle kinematic conditions. This second parameter was the focus of the current study. 

Converging evidence suggests that the 50th percentile required deceleration values observed in 
this study under the hard braking instruction condition appears very promising as an appropriate 
(not too early/not too late) estimate of the assumed driver braking onset range.  The required 
deceleration level is defined here as the constant deceleration level required for the driver to avoid 
the crash at braking onset. More precisely, it is the constant deceleration level at braking onset 
required for the driver to avoid the crash assuming the current speeds of both the driver’s vehicle 
and the lead vehicle, and assuming the lead vehicle continued to decelerate at the prevailing 
deceleration value (i.e., at the current “constant” rate of slowing). Since the exact 50th percentile 
required deceleration values were effected by both speed and lead vehicle deceleration (i.e., the 
value changed across experimental conditions), modeling work was conducted aimed at predicting 
these values, which is described in detail in Appendix A20. This appendix also reports modeling 
efforts aimed at exploring the ability to predict these “last-second”, “hard braking” onsets based 
on a subset of the available “ideal” data described above (e.g., assuming fixed driver and lead 
vehicle deceleration values). 

It should stressed that the common assumption underlying previous crash alert timing approaches 
was to assume a fixed driver deceleration value independent of these kinematic variables. It is 
also important to note that the observed average required deceleration values were relatively 
independent of driver age or gender, which is a desirable characteristic from a FCW system 
production implementation perspective. 

The required deceleration measure were tightly coupled with the actual deceleration measures, 
where the latter is simply a re-expression of driver’s stopping distance given some initial speed. 
The lack of difference in results found between “comfortable hard” and “hard” braking instruction 
conditions suggest that drivers with a FCW-equipped vehicle would be capable of executing the 
observed “hard” braking levels without exceeding their “comfort zone” for hard braking.  In 
addition, driver’s were able to maintain the instructed speeds and appeared to follow at “normal” 
time headways prior to the last second braking judgment. This latter finding provides further 
evidence that these results found when the lead vehicle was moving may generalize to real-world 
driving. 

In terms of allowing the driver sufficient collision warning distances to avoid a crash, the 
requirement for FCW sensing range generally increase as the difference in velocities (or delta V) 
between the following and lead vehicles increases. The 100 meters of sensor “knowledge” 



3-64 

accommodates potential crash alert warning distances for completing avoiding a crash for 90% of 
drivers in the second highest delta V condition tested, which involved the driver approaching the 
(stationary) parked lead vehicle target at 45 mph. Although the 100-meter criterion fell short in 
terms of avoiding any crash impact in the highest delta V condition tested (60-mph approach to 
the parked target). It should be noted that drivers could still experience substantial collision 
mitigation with a crash alert that is too late for avoiding any crash impact. It should be noted there 
are a number of caveats associated with this sensing range conclusion, including an assumed 1.7 
second combined driver P-RT. Plus delay time, that the road surface coefficient of friction 
available can support the observed hard braking levels (dry roads were used here), and that drivers 
can at least match the hard braking levels observed in the current study under real-world 
conditions in response to a crash alert. 

A comparing of these results to previous results obtained at the TNO Human Factors Research 
Institute (van der Horst, 1990; Kaptein et al., 1996) suggests that attempts to define crash alert 
timing based on research which places drivers under minimal or no (e.g., simulator) crash risk 
conditions the potential to lead to overly aggressive crash alert timing.  This type of error could in 
turn lead to the consequence of decreasing the harm reduction potential of the FCW system. In 
addition, these results raise serious concerns about the real-world validity of previous FCW 
interface research which has employed substantially different crash alert timing than suggested by 
these results (e.g., a fixed 4-seconds time-to-collision criterion) and/or target crash risk conditions 
which may not represent those under which drivers would experience crash alerts (Graham et al., 
1995; Hirst & Graham, in press; Janssen & Nilsson, 1990; Janssen & Thomas, 1994; McGehee, et 
al., 1996; Nilsson et al., 1991). 

The results of this study were used in the three subsequent driver interface studies for crash alert 
timing purposes. More specifically, these results, and the subsequent modeling of these Study 1 
results (see Appendix A20) aimed at predicting required deceleration values, formed the basis for 
assumptions regarding the assumed driver deceleration (or braking) behavior in response to the 
FCW crash alert in the subsequent driver interface studies. These interface studies focused on 
how to present a crash alert to the driver (i.e., visual, auditory, and/or haptic alerts), and provided 
an important opportunity to evaluate and validate these deceleration-based crash alert timing 
approach assumptions. 
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3.4 Abstract for Study 2, Study 3, and Study 4 -
The Interface Studies 

The goal of the human factors portion of the CAMP project was to define driver-interface 
requirements. More specifically, this effort is focused on defining when to present crash alerts 
(i.e., the crash alert timing) and how to present crash alerts to drivers (i.e., the crash alert 
modality). Developing a crash alert timing approach was the focus of Study 1, and the following 
three driver interface studies focused on how to present a crash alert to the driver (i.e., visual, 
auditory, and/or haptic alerts). These driver interface studies also provided an important 
opportunity to evaluate and validate the crash alert timing approach developed in Study 1. The 
critical need for obtaining these data is dictated by the absence of data under controlled, realistic 
conditions involving drivers braking to a realistic crash threat while experiencing production-
oriented crash alerts. 

In developing a crash alert timing approach for a Forward Collision Warning (or FCW) system, 
two fundamental parameters involving driver behavior need to be assumed. These parameters 
serve as input into straightforward vehicle kinematic equations that determine the alert range 
necessary to avoid a crash. 

The first parameter is the time it takes for the driver to respond to the crash alert and begin 
braking (which included driver brake reaction time), and the second parameter is the driver 
deceleration (or braking) behavior in response to this alert across a wide variety of initial vehicle-
to-vehicle kinematic conditions. Defining this second parameter of driver behavior was the focus 
of CAMP Study 1. In this study, a strategy was employed to initially develop a fundamental 
understanding of the timing and nature of drivers’ “last-second” braking behavior without a FCW 
system, before conducting the subsequent FCW system driver interface studies. This strategy was 
taken so that drivers’ perceptions of “normal” and “hard braking” kinematic situations could be 
properly identified and modeled for FCW system crash alert timing purposes. The underlying 
assumption of this experimental strategy is that properly characterizing (i.e., modeling) the 
kinematic conditions surrounding these hard braking onsets without FCW system crash alert 
support will lead to a proper estimate for the assumed driver deceleration (or braking) behavior in 
response to a FCW system crash alert across a wide variety of initial vehicle-to-vehicle kinematic 
conditions. This CAMP Study 1 is subsequently referred to as the “baseline” study. 

The second fundamental crash alert timing parameter involving driver behavior which needs to be 
considered in developing a crash alert timing approach is driver brake reaction time (or driver 
brake RT). This second parameter was addressed in the three closed-course, field studies (all 
conducted at the GM Milford Proving Ground) reported here in the presence of various FCW 
system crash alert types under unexpected (or surprise) braking event conditions, which are 
discussed below. 

The three driver interface studies reported here focused on how to present a crash alert to the 
driver (i.e., visual, auditory, and/or haptic alerts), and provided an opportunity to evaluate and 
validate the deceleration-based crash alert timing approach assumptions developed from the 
baseline study (i.e., the required deceleration parameter-based Study 1 predictive equation coupled 
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with a driver brake RT assumption). With respect to the latter point, results clearly indicated that 
the deceleration-based timing approach employed was subjectively rated by drivers (on average) 
as “just right” timing under a wide range of combinations of driver speed and lead vehicle 
decelerations under both expected and surprise braking event conditions. Most importantly, this 
crash alert timing approach allowed drivers to respond to the crash alert in a manner which 
allowed them to avoid impacts with the surrogate lead vehicle (or surrogate target). 

Across these driver interface studies, younger, middle-aged and older drivers were tested. Drivers 
were asked to brake in response to various FCW system crash alert types while approaching the 
slowing or stopped surrogate target. Both alerted and unexpected (or surprise) braking event 
conditions were investigated with both trained and naive drivers. In two of the three studies, 
drivers were completely unaware the vehicle was even equipped with a FCW system crash alert 
prior to the unexpected, surprise braking event.  Across these three driver interface studies during 
the surprise braking event conditions, several strategies were employed to ensure the driver 
experienced the crash alert and create a relatively “inattentive” driver (i.e., the criterion for 
triggering the crash alert was met). During the surprise braking event, the lead vehicle traveled at 
30 MPH and braked at about -0.37 g’s without brakelights activated. Strategies were employed to 
create a relatively “inattentive” driver including engaging the driver in natural conversation, 
asking the driver to respond to some background-type questions, and asking the driver to search 
the head-down, conventional instrument panel for a (non-existent) indicator light. 

Across these driver interface studies, six separate crash alert types were evaluated in which the 
driver was simultaneously presented crash alerts from two sensory modalities (with one exception 
involving three modalities), sometimes referred to as a 1-stage, dual-modality crash alert. The 
crash alert type conditions that were tested are indicated below: 

° Head-Up + Non-Speech Tone 

° High Head-Down Display  + Non-Speech Tone 

° High Head-Down Display  + Speech message 

° High Head-Down Display  + Brake Pulse 

° High Head-Down Display  + Non-Speech Tone + Brake Pulse 

°	 Flashing High Head-Down Display  + Non-Speech Tone (for the other crash alert 
types, the High Head-Down Display was not flashed and remained steady) 

The visual alert components evaluated included a “high” head-down display (or HHDD) and a 
head-up display (or HUD). The visual format of these displays (a “car-star-car” crash icon with 
the word “WARNING” printed below) was selected from a set of alternatives by using an 
established ANSI procedure for evaluating candidate symbols. The auditory alert components 
evaluated included a non-speech sound and a speech sound (the word “warning” repeated), which 
were played through the front car speakers. These two sounds were selected based on a laboratory 
study involving drivers rating various alternative sounds on crash alert properties. The haptic alert 
evaluated was a brief brake pulse, or “vehicle jerk” alert.  This alert was examined with more 
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intent to explore its potential, since unlike the visual and auditory alerts examined here, there are 
important unresolved implementation issues surrounding this alert. 

The key dependent measures were drivers’ brake RTs (particularly during surprise braking event 
conditions), drivers’ required and actual (or observed) decelerations in response to the crash alerts, 
the extent to which drivers noticed the various crash alerts under surprise braking event 
conditions, and drivers’ subjective ratings of both the crash alert timing and FCW system crash 
alert types examined. 

Results indicated differences in both objective (performance) data and subjective (questionnaire-
oriented) data across the crash alert types examined. The key findings were as follows. First, the 
crash alert type conditions including a non-speech tone component resulted in faster brake RTs 
relative to the crash alert type including a speech component. Second, drivers rated the crash alert 
types including either a speech or brake pulse component as more annoying relative to the 
remaining crash alert types, under the assumption that FCW system crash alerts would occur in 
non-threatening situations between once a day to once a week. Third, the brake pulse alert 
provided a “vehicle slowing” advantage during the delay time interval between when the crash 
alert timing was violated and when the driver braked, such that the driver was in a more 
conservative kinematic scenario at braking onset relative to the crash alert types examined not 
including this alert component. Furthermore, adding a non-speech tone component to the brake 
pulse alert significantly reduced the relatively slow brake RTs initially observed in the HHDD + 
Brake Pulse condition. Fourth, although there were no performance differences associated with 
the relevant HHDD versus HUD comparisons, subjects indicated a strong preference for the HUD. 
In a related finding, for a 1-stage crash alert approach, drivers indicated a strong preference for a 
multi-modality crash alert approach (particularly a dual-modality crash alert approach). Fifth, 
after the surprise braking event was experienced by naive drivers, nearly all drivers reported 
noticing non-speech tone, speech, and brake pulse components of these crash alert types 
examined, and significantly more drivers noticed the Flashing HHDD and steady HUD relative to 
the steady HHDD. 

In addition to these crash alert modality (or crash alert type) differences, brake RTs observed 
under the surprise technique which resulted in the highest upper percentile values (the head-down 
visual search task) yielded 85th to 95th percentile (i.e., slower) RTs of 1.2 and 1.5 seconds, 
respectively. 

Of the 1-stage, FCW crash alert types examined, the “Flashing HHDD + Non-Speech Tone” is 
recommended as a near-term approach (Replacing the flashing HHDD with a “steady” HUD” is 
also supported by these findings.). The “Steady HHDD + Non-Speech Tone” crash alert type 
provided good all-around performance in terms of both objective data (e.g., fast driver brake RTs) 
and subjective data (e.g., low driver annoyance). The recommendation to flash the HHDD is 
primarily based on improving the noticeability of the HHDD for drivers who may not hear the 
non-speech tone either due to hearing impairments and/or noises coming from either inside or 
outside the vehicle. Other considerations include potentially facilitating the driver to look ahead 
in response to the visual crash alert, and using this visual alert to help explain the non-speech tone 
to the driver. The recommended visual display format is (a “car-star-car” crash icon with the 
word “WARNING” printed below) and non-speech tone correspond to those tested in these three 
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interface studies. Although a multiple-stage alert is allowed under the proposed requirement, a 1-
Stage alert is recommended based on the current discovery of a proper “single-point” crash alert 
timing approach, compatibility with Adaptive Cruise Control system driver alerts being 
considered, simplicity/elegance from a customer education (mental model) and production 
implementation perspective, minimizing nuisance alerts (which can reduce system effectiveness, 
and the rapid (potentially confusing) sequencing of multi-stage alerts in many closing scenarios 
likely to trigger crash alerts. 

A critical consideration in recommending the “Flashing HHDD + Non-Speech Tone” alert as a 
near-term FCW crash alert approach is that this alert type has favorable qualities from an industry-
wide, international implementation perspective relative to the HUD, brake pulse, and speech crash 
alert components examined. (In any case, the speech alert component performed poorly in terms 
of both objective and subjective data.). In the near-term, HUDs will not be implemented industry-
wide. Furthermore, as discussed above, there are important unresolved implementation and driver 
behavior issues surrounding the brake pulse alert (and haptic alerts in general). 

Based primarily on data from these three interface studies and the previous baseline study (CAMP 
Study 1), a set of minimum driver interface requirements were developed, which are discussed in 
Chapter 4. 

3.5 Introduction for Interface Studies 

Purpose of CAMP Human Factors Studies 2, 3, and 4 

This research describes three closed-course, field studies aimed at exploring human factors issues 
surrounding forward collision warning systems (i.e., the effects of this collision warning system 
and associated interfaces on driver behavior). More specifically, this research explored human 
factors issues surrounding Forward Collision Warning (or FCW) systems which have not been 
adequately addressed by the relatively limited number of previous human factors studies 
conducted either under laboratory conditions (Graham, Hirst, & Carter, 1995; Hirst & Graham, in 
press) or driving simulator conditions (Janssen & Nilsson, 1990; Janssen & Thomas, 1994; 
McGehee, Dingus, & Wilson, 1996; Nilsson, Alm, & Janssen, 1991). 

Overall, this CAMP human factors effort is focused on defining when to present crash alerts (i.e., 
the crash alert timing) and how to present crash alerts to drivers (i.e., the crash alert modality) by 
exploring a number of objective and subjective driver measures. The critical need for obtaining 
these data is dictated by the absence of data under controlled, realistic conditions involving 
drivers braking to a realistic crash threat while experiencing production-oriented crash alerts. In 
CAMP Study 1, a strategy was employed to initially develop a fundamental understanding of the 
timing and nature of drivers’ “last-second” braking behavior without a FCW system, before 
conducting the subsequent FCW system driver interface studies. This strategy was taken so that 
drivers’ perceptions of “normal” and “hard braking” kinematic situations could be properly 
identified and modeled for FCW system crash alert timing purposes. The underlying assumption 
of this experimental strategy is that properly characterizing (i.e., modeling) the kinematic 
conditions surrounding these hard braking onsets without FCW system crash alert support will 
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lead to a proper estimate for the assumed driver deceleration (or braking) behavior in response to 
a FCW system crash alert across a wide variety of initial vehicle-to-vehicle kinematic conditions. 

As was noted above, previous research examining FCW system interfaces (and timing)  have been 
conducted under either laboratory or driving simulator conditions, and these results have not been 
validated under real-world driving conditions. A comparison of CAMP Study 1 results to 
previous driving simulator research suggested that attempts to define crash alert timing under 
conditions which place drivers under minimal or no crash risk conditions (e.g., driving simulator 
conditions) has potential to lead to overly aggressive crash alert timing.  This type of error could 
in turn lead to the consequence of decreasing the harm reduction potential of the FCW system. In 
addition, this comparison raises serious concerns about the real-world validity of previous FCW 
system interface research which has employed substantially different crash alert timing than that 
suggested by the CAMP Study 1 results (e.g., a fixed 4-seconds time-to-collision criterion) and/or 
target crash risk conditions which may not represent those under which drivers would experience 
crash alerts. 

In developing a crash alert timing approach for a FCW system, two fundamental parameters 
involving driver behavior need to be assumed. These parameters serve as input into 
straightforward vehicle kinematic equations that determine the alert range necessary to avoid a 
crash. The first parameter is the time it takes for the driver to respond to the crash alert and begin 
braking (which includes driver brake reaction time), and the second parameter is the driver 
deceleration (or braking) behavior in response to this alert across a wide variety of initial vehicle-
to-vehicle kinematic conditions. Defining this second parameter of driver behavior was the focus 
of the CAMP Study 1, during which drivers performed “last second” braking without the benefit 
of FCW system support. This study is subsequently referred to as the “baseline” study. The 
second fundamental crash alert timing parameter involving driver behavior, which needs to be 
considered in developing a crash alert timing approach is: driver brake reaction time (or driver 
brake RT). This second parameter was addressed in the three closed-course, field studies (all 
conducted at the GM Milford Proving Ground) reported here in the presence of various FCW 
system crash alerts under surprise braking event conditions, which are discussed below. 

The three driver interface studies reported here focused on how to present a crash alert to the 
driver (i.e., visual, auditory, and/or haptic alerts), and provided an opportunity to evaluate and 
validate the crash alert timing approach assumptions developed from the baseline study (i.e., the 
required deceleration parameter-based Study 1 predictive equation coupled with a driver brake RT 
assumption). 
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3.6 Overview of Methodological Approach for 
Interface Studies 

Overall, the goal of the current studies is to gather data of the highest real-world validity possible 
under controlled closed-course conditions. An overview of the experimental methodology and 
approach used in the three studies described below is shown in Table 3-11, and an overview of the 
order of experiment events (or procedures) in these three studies is shown in Table 3-12. For 
each of these studies, data was gathered on the same 1-mile straightaway and under the same 
general vehicle-to-vehicle spacing conditions which were used for CAMP Study 1. 

Across these driver interface studies, younger, middle-aged and older drivers were tested under 
closed-course field conditions. Drivers were asked to respond to various FCW system crash alerts 
while approaching the slowing or stopped surrogate target. Both alerted and unexpected (or 
surprise) braking event conditions were investigated with both trained and naive drivers. In two 
of the three studies, drivers were completely unaware the vehicle was even equipped with a FCW 
system crash alert prior to the unexpected, surprise braking event.  Several strategies were 
employed to ensure the driver experienced the crash alert (i.e., the criterion for triggering the alert 
was met) during the surprise braking event conditions and to create a relatively “inattentive” 
driver. Strategies used to create an inattentive driver included engaging the driver in natural 
conversation (used in Study 2), asking the driver to respond to some background-type questions 
(used in Study 3), and asking the driver to search the head-down, conventional instrument panel 
for a (non-existent) indicator light (used in Study 4). 

During this unexpected, surprise braking event, the lead vehicle traveled at 30 mph and braked at 
0.36-0.38 g’s without brake lights activated (average lead vehicle deceleration values caused by 
the “automatic” brake controller varied slightly across studies). The rationale for choosing this 
lead vehicle speed and deceleration conditions were two-fold. First, for safety reasons, it was felt 
the surprise event should be run initially at the lowest speed condition tested (i.e., 30 mph). 
Second, 6 surrogate target impacts occurred in CAMP Study 1, which can be thought of as a 
failure to execute appropriate braking by both the driver and experimenter (the latter who had 
access to add-on brakes). Of the 12 distinct lead vehicle speed/lead vehicle deceleration 
combinations investigated in CAMP Study 1, 4 of the 6 impacts occurred in the 30 mph /-0.39 g 
combination condition. Hence, it appears this scenario may be particularly problematic for 
making appropriate “last-second” hard braking judgments. These surprise braking event 
conditions (i.e., the POV speed and POV deceleration profile) were held constant across each of 
the three studies reported, and are subsequently referred to collectively as the Surprise Moving 
Trial. Drivers were also asked to repeat the surprise braking event condition as an alerted driver 
for comparison purposes. 
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Table 3-11 Overview of Study 2, Study 3, and Study 4 Methodology 

Method Issue Study 2 Study 3 Study 4 

Subjects from 
CAMP Study 1? 

Yes No Yes 

Number of 
younger/middle/ 
older aged subjects 
tested 
(Gender split) 

8 / 8 / 8 (n=24) 0 / 30 / 30 (n=60) 8 / 8 / 8 (n=24) 

Study Phases (1ST) Alerted Stationary 
(2ND) Surprise Moving 
(3RD) Follow-on Moving 

(1ST) Surprise Moving 
(2ND) Follow-on Moving 

(1ST) Surprise Moving 
(2ND) Alerted Moving 

Instructions During 
Alerted Trials 

Maintain steady speed (during Stationary Trials) or follow normally (during Moving 
Trials). Brake immediately in response to crash alert in order to avoid crash. 

Alerted Trials 
Scenarios 

Approach parked car at 30 
or 60 mph. 

Crash alert timings used: 
“RDP”, “RDP + 0.05 g”, 
“RDP + 0.10 g”. 

Driver RT = 0.52 sec. 

Not applicable. 

Approach moving car 
traveling at 30, 45, or 60 
mph. Lead car brakes at 
either -0.15, -0.27, or -0.36-
0.38 g’s. 

“RDP” timing used. 

Driver RT = 0.52 sec. 

Surprise Moving 
Trial Technique 

Natural Conversation Background Q & A Head-Down Telltale Search 

Surprise / 
Follow-On 
Trials Scenario 

Lead vehicle travels at 30 mph and brakes at -0.36 to -0.38 g’s without brakelights. 
“RDP” crash alert timing used. 

Driver RT assumption = 1.5 seconds for Surprise trial. 

Crash Alert Types 
Tested (1-stage, 
primarily dual-
modality) 

HUD + Non-Speech 
HHDD + Non-Speech 
HHDD + Speech 
HHDD +  Pulse 

‚ 
‚ 
‚ 

HHDD + Pulse + 
Non-Speech 

Flashing HHDD + 
Non-Speech 

‚ 

‚ 

“Key” Dependent 
Measures 

Brake RT, Required deceleration, Actual deceleration, Crash alert timing and Interface 
appropriateness ratings, and Visual telltale noticeability 
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Table 3-12 Procedure Orders for Study 2, Study 3 and Study 4 

Performance Data Brief Procedure Description 
Study 

2 3 4 

Alerted Stationary Trials 4 blocks of 6 trials; a different crash alert type used for 
each block.  Alerted driver approaches parked surrogate 
target at either 30 or 60 mph, and brakes to alert. 

1 

Surprise Moving Trial One trial; POV speed 30 mph, POV deceleration –0.36 to 
–0.39g, no POV brakelights. Unexpected (or surprise) 
braking event triggers alert. Various driver distraction 
techniques employed. 

2 1 1 

Alerted Moving Trials 18 trials varying speed, POV deceleration, and crash alert 
timing.  Alerted driver follows moving surrogate target, 
and brakes to alert when target slows. 

2 

Follow-on Moving 
Trials 

Trials following surprise trial. Conditions identical to 
Surprise Moving Trial except driver is alerted to braking 
event. 

3 2 

Subjective Data 

Alert Noticeability 
Questionnaire 

Naive participant reported alerts noticed during post-
Surprise Moving Trial interview. 

1a 1a 

Timing Rating Participant rated crash alert timing on a scale ranging from 
1 (much too early) to 7 (much too late). 

1a, 2a , 
3a 

1a,2a 1a,2a 

Alert Modality 
Appropriateness 
Questionnaire 

Participant rated modality-specific characteristics of alert 
(e.g., brightness, duration, intensity). 

1b 2b 

Crash Alert 
Appropriateness 
Questionnaire 

Participant rated warning characteristics of multi-modality 
crash alert types experienced (e.g., confusability, 
annoyance, startle). 

4 3 

Build an Interface 
Questionnaire 

Participant selected preferred alert(s) under 1-stage alert 
assumptions, and then under 2-stage alert assumptions. 

5 

Name the System 
Questionnaire (open-
ended) 

Participant generated possible name for alert system. 6 

Name the System 
Questionnaire (forced 
choice) 

Participant chose three preferred names for alert system 
from a list of names. 

7 4 

aRefers to subjective data gathered on corresponding “performance data” trial.

bThe Alert Modality Appropriateness Questionnaire was completed for each alert type after each block of trials.
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Across these driver interface studies, six separate crash alerts were evaluated in which the driver 
was simultaneously presented crash alerts from two sensory modalities (with one exception 
involving three modalities), sometimes referred to as a 1-stage, dual-modality crash alert. The 
visuals alert components evaluated included a “high” head-down display and a head-up display (or 
HUD). The visual format of these displays (a “car-star-car” crash icon with the word 
“WARNING” printed below) was selected from a set of alternatives by using an established ANSI 
procedure for evaluating candidate symbols. The auditory alert components evaluated included a 
non-speech sound and a speech sound (the word “warning” repeated), which were played through 
the front car speakers. These two sounds were selected based on a laboratory study involving 
drivers rating various alternative sounds on crash alert properties. The haptic alert evaluated was 
a brief brake pulse, or “vehicle jerk” alert. This alert was examined with more of an intention to 
explore its potential, since unlike the visual and auditory alerts, there are important unresolved 
implementation and driver behavior issues surrounding this alert. 

The rationale for evaluating 1-stage rather than multiple-stage (e.g., a 2-stage cautionary 
alert/imminent alert approach) crash alert types was based in part on results from CAMP Study 1. 
The 50th percentile required deceleration value observed in that study under “hard braking” driver 
instructions appeared very promising as an appropriate (not too early/not too late) single point 
estimate of the assumed driver braking onset range (or distance) for crash alert timing purposes. 
The required deceleration measure was defined, as the constant deceleration level required for the 
driver to avoid the crash at braking onset. This measure was calculated by using the current 
speeds of the driver’s vehicle and the lead vehicle, and assuming the lead vehicle continued to 
decelerate at the prevailing deceleration value (i.e., at the current “constant” rate of slowing). Put 
in another way, it was felt that this required deceleration-based estimate would ensure that, for a 
high percentage of drivers, the onset of braking in response to a crash alert would: 

1.	 Occur at a closer range than their braking onset range during “aggressive” normal 
braking. 

2. Allow sufficient range for the driver to avoid the crash. 

The required deceleration data from CAMP Study 1 was modeled (explained further below) and 
provided the basis for assumptions made about driver braking onset range. It is important to note 
that these required deceleration values were relatively uninfluenced by driver age or gender in 
CAMP Study 1, which is a desirable finding from a production implementation perspective. 
Furthermore, it was felt that the low percentage of drivers not accommodated by (2) above 
(allowing sufficient range for the driver to avoid the crash) would brake harder in response to a 
crash alert (i.e., they were capable of braking harder) than what was observed during their 
preferred “last second” hard braking in CAMP Study 1. 

Additional reasons for employing a 1-stage rather than multiple-stage crash alert approach were 
the following. First, with respect to the compatibility of a FCW system integrated with an 
Adaptive Cruise Control (or ACC) system, a 1-stage alert is more consistent with the 1-stage ACC 
system driver alerts being considered (e.g., one possible ACC alert is to warn the driver if they 
have exceeded the maximum braking deceleration authority of the ACC system). Early 
production implementations of FCW systems are likely to be integrated with ACC. Since an ACC 
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system alert may be largely consistent with the meaning intended by a FCW system alert (i.e., a 
collision may occur unless evasive control action is taken), the use of a 1-stage alert for both ACC 
and FCW systems may be promising from a customer education, simple “mental model” 
perspective. 

Second, with respect to a “stand-alone” FCW system, a 1-stage alert is much more simple and 
elegant from a customer education (”mental model”) and production implementation perspective. 
For example, the driver only has to interpret the meaning of one (versus more than one) alert. In 
addition, if the alert timing (or criterion) is under driver control, the effect of the driver adjusting a 
1-stage alert criterion is relatively straightforward. In a multiple-stage alert scheme, the effect of 
such an adjustment is less straightforward. For example, do adjustments effect multiple alert 
stages?  Are adjustments permitted for the most imminent alert? 

Third, a 1-stage alert provides a potential means of reducing in-path (“too early”) nuisance alerts 
and out-of-path nuisance alerts relative to the first stage of a 2-stage (or multiple-stage) crash 
alert approach. In this case, it is assumed the first stage of a 2-stage (or multiple-stage) alert 
approach would be more conservative (i.e., the alert would occur earlier or at a farther range to the 
vehicle ahead) than a 1-stage alert.  These increases in nuisance alerts could reduce system 
effectiveness (e.g., drivers’ brake RTs to the alert could increase), system usage in FCW-equipped 
vehicles (i.e., drivers may turn the system off), and negatively impact driver acceptance of FCW 
systems. On the other hand, it could be argued that, providing these “first stage” nuisance alert 
concerns could be addressed, a properly designed 2-stage approach might give the driver an 
earlier opportunity to avoid “near misses” and situations where evasive control action must be 
taken immediately, as well as respond earlier under poor traction or poor atmospheric conditions. 
However, these potential benefits of a 2-stage crash alert approach may also be able to be attained 
with a 1-stage crash alert with an adjustable crash alert timing feature. 

Fourth, based on CAMP experiences during pilot testing attempting to sequence the 1-stage alert 
and the “bail-out” alert (i.e., the alert was used to signal the passenger-experimenter to take over 
and begin braking), which can be thought of as but one example of a 2-stage alert, a concern was 
identified that the extremely short time lag between the two crash alerts might render the 2-stage 
alert distinction meaningless and potentially confusing for the driver. Hence, this raises the 
possibility that under the wide range of vehicle-to-vehicle kinematic scenarios likely to trigger 
crash alerts examined in these CAMP studies, a 2-stage alert may be more confusing than helpful 
for the driver. More generally, rapid sequencing of multi-stage alerts are more likely to occur 
under conditions when the driver’s vehicle is rapidly closing in on the lead vehicle such that the 
difference in speeds between these two vehicles (i.e., the delta velocity) is building up rapidly. 
(Conversely, slower sequencing of multi-stage alerts are less likely to occur under conditions 
when the driver’s vehicle is slowly closing in on the lead vehicle such that the difference in speeds 
between these two vehicles (i.e., the delta velocity) is building up slowly.) Examples of 
conditions under which rapid sequencing may occur include when the driver of an FCW-equipped 
vehicle is approaching a stopped or braking lead vehicle, as well as under various cut-in/merge 
and lane change situations. It should be stressed that the distinction between the moments at 
which “soon” and “immediate” evasive control action are required, associated with cautionary and 
imminent crash alerts, respectively, is solely dependent on a particular crash alert timing 
approach. If this distinction is relatively minor under most vehicle-to-vehicle kinematic 
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conditions (causing a rapid, potentially confusing sequencing of these alerts), particularly if those 
conditions are relatively more serious in nature, then the merits of a 2-stage alert are questionable. 
It is worth noting that the previous recommendation made by Lerner, Kotwal, Lyons, and 
Gardner-Bonneau (1996) for 2-stage automotive crash alerts was based on research examining 
aircraft alerting systems, which may have very different alert timecourses (e.g., slower-developing 
timecourses) relative to automotive crash alert systems. 

Indeed, one could argue that multiple-stage (e.g., 2-stage) alerts should be avoided unless the 
advantages of using such alerts outweigh the disadvantages of such alerts. As discussed above, 
potential disadvantages of multiple-stage alerts relative to a 1-stage alert include potential non-
compatibility with ACC system driver alerts, increases in system complexity from a customer 
education (driver mental model) perspective, increases in system complexity from a production 
implementation perspective (e.g., added controls and displays), and increases in nuisance alerts 
which could reduce system effectiveness. 

The rationale for evaluating dual-modality warnings in these studies was based on the notion that 
an omnidirectional component of the crash alert (i.e., an auditory or haptic component) was 
required which was independent of where the driver was directing visual attention, and that 
adding a (non-omnidirectional) visual crash alert was a prudent strategy for a crash alert modality 
approach. With respect to the former point, an omnidirectional alert component is required since 
an inattentive or distracted driver (who play large roles in rear-end collisions) may not detect a 
visual crash alert display, since their visual attention may be directed elsewhere (e.g., at an 
instrument panel display) at the same time the alert is initially presented. With respect to this 
latter point, a visual crash alert is recommended in order to accommodate drivers who may not 
hear the alert sound either due to hearing impairments (e.g., older, hearing-impaired drivers or 
deaf drivers) and/or competing noises coming from either inside or outside the vehicle. One 
advantage of visual over auditory displays is that whereas driver licensing requirements in most 
states in the United States generally do require a minimum level of visual performance (e.g., 
20/40 far acuity, adequate peripheral vision), they generally do not require any minimum level of 
auditory performance.  Additional important reasons for including a visual alert modality 
component are to potentially facilitate the driver to look ahead in response to the crash alert if they 
are not currently looking ahead at the forward scene, and to help explain the omnidirectional 
component of the alert to the driver. With respect to this latter point, it is currently common 
industry practice to provide a visual indicator for most telltale-related sounds. For these reasons, a 
visual alert (either a “high” head-down display or head-up display) was always included as a 
component in each of the multi-modality (either dual-modality or tri-modality) crash alert types 
investigated. 

Various objective measures were analyzed. The key dependent measures were drivers’ brake RTs 
(particularly during the Surprise Moving Trial). Drivers’ required and actual (or observed) 
decelerations in response to the crash alerts, the extent to which drivers noticed the various crash 
alerts under the Surprise Moving Trial conditions, and drivers’ subjective ratings of both the crash 
alert timing and FCW system crash alert types examined. The variable definitions, and the point 
in time during the braking maneuver in which the performance measures were analyzed (at POV 
braking onset, at SV braking onset, throughout the braking, end of the braking maneuver) are 
identical to that used in Study 1, with the exception of one new measure, driver’s brake reaction 
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time (RT). This measure is defined as the time between crash alert onset and the driver contacting 
the brake (i.e., triggering the brake switch) in response to the alert. (Also, it should be noted that 
unlike CAMP Study 1, SV braking onset was defined relative to the brake switch trigger point, 
since drivers braked in a “crisp”, firm manner in response to the alert (rather than sometimes 
hovering over the brake as was observed during “last-second” braking judgments in CAMP Study 
1). 
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3.7 Study 2 Experimental Methodology and Approach 

Braking in Response to Expected FCW Crash Alerts Under Lead Vehicle 
Stationary Conditions / Unexpected Braking Event 

Building upon the solid foundation provided by the results obtained from CAMP Study 1, this 
study examined how and when to present crash alert information to both an attentive and 
relatively inattentive driver. An overview of the experimental methodology and approach used in 
this study is shown in Table 3-11, and an overview of the order of experiment events (or 
procedures) in this study is shown in Table 3-12. A subset of the test participants used in CAMP 
Study 1 was tested. Drivers in this study were fully informed that the purpose of the study was to 
address the usefulness of FCW system crash alerts for helping drivers avoid rear-end collisions. 

In this study, drivers were asked to brake in response to a FCW system crash alert as an attentive 
driver while approaching the stationary (or parked) surrogate target at a steady speed of either 30 
or 60 mph. These types of trials are subsequently referred to as Alerted Stationary Trials. These 
two lead vehicle stationary conditions were previously examined in CAMP Study 1. Hence, 
driver’s braking behavior with a crash alert could be compared to previous data obtained under 
identical conditions without a crash alert (for the same driver), which is discussed toward the end 
of this Chapter immediately prior to the General Discussion section. Three different crash alert 
timing approaches were examined. Immediately after a trial, drivers were asked to judge the 
appropriateness of the FCW system crash alert timing with the following 7-point scale: 

What is your opinion about when the crash alert was presented? 

| 
1 

Much ately t  Slightly ately 
Too Early Early Too 

Early Late 

| | | | | | 
7 6 5 4 3 2 

Moder JusSlightly Moder Much 
Late Late Right 

When the test was allegedly over, the Surprise Moving Trial was introduced. The surprise trial 
technique involved the backseat-experimenter engaging the driver in “semi-structured”, context-
appropriate, natural, non-suspicious dialog. This type of trial is subsequently referred to 
throughout this paper as the Surprise Moving Trial. This Surprise Moving Trial was then 
followed by two comparable alerted trials with the same alert type. These types of trials will be 
subsequently referred to throughout this paper as Follow-On Moving Trials. 

Four different, 1-stage, dual-modality crash alert types were investigated, which were each 
examined with three different crash alert timing approaches. The timing of the crash alert 
information was based on modeling results from CAMP Study 1, explained in further detail 
below. For the Alerted Stationary Trials and Follow-On Moving Trials, driver brake RT was 
assumed to be 0.52 seconds, based on piloting work conducted with four drivers. This driver 
brake RT was intended to allow an alerted driver to experience hard braking onset at the range 
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predicted based on the modeling of Study 1 findings (discussed below). For the Surprise Moving 
Trial, driver brake RT was assumed to be 1.50 seconds. Similarly, this driver brake RT was 
intended to allow an inattentive or distracted driver to experience hard braking onset at the range 
predicted based on the modeling of Study 1 findings (discussed below). Olson (1996) states that 
for “reasonably” straightforward situations, 85%-95% of drivers will respond with a perception-
response time of 1.5 seconds or less after the first appearance of the object or condition of 
concern. This tentatively suggested that a 1.5 second assume driver brake RT value would be a 
good choice for allowing ample time for the vast majority of drivers to brake to avoid a rear-end 
collision, but the trade-off between this perception-RT value and avoiding excessive in-path 
nuisance (or ‘too early”) alerts remains unclear. 

3.7.1 Subjects 

Test participants consisted of four males and four females in each of three different age groups; 
21-31, 41-51, and 61-67 years old. Corresponding mean ages for these three groups were 26, 46, 
and 64 years old, respectively.  Each driver was tested individually in one approximately 2 to 2 ½ 
hour sessions and paid $150 for their participation. Drivers were recruited by an outside market 
research recruiting firm, and were required to be CAMP Study 1 participants. Drivers who were 
ultimately allowed to participate were mailed the information letter shown in Appendix A1 prior 
to testing.  A copy of the informed consent statement is provided in Appendix A2, which 
describes the various conditions that ruled out potential drivers from participating (which were 
nearly identical to the conditions used in CAMP Study 1). 

3.7.2 Test Site 

Data was gathered on the same straightaway used in CAMP Study 1. The road was closed to all 
other traffic during testing.  All testing was conducted under daytime conditions under dry road 
and dry weather conditions. 

3.7.3 Test Vehicles and the “Surrogate” (Lead Vehicle) Target 

The driver’s (or subject’s) vehicle, the mock-up surrogate lead-vehicle and the lead (tow) vehicle 
were identical to those used in CAMP Study 1. These three primary elements of the experimental 
apparatus will be subsequently referred to as the subject vehicle (SV), surrogate target, and 
principal other vehicle (POV), respectively. 

The SV front seat, passenger-side experimenter and POV driver were trained General Motors 
Milford Proving Ground test drivers who had previous experience conducting brake tests. The 
SV and the POV test drivers communicated during the study via digital radio communication. 
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3.7.4 Data Acquisition System 

The data acquisition system used was identical to that used in CAMP Study 1, with the exception 
of the changes noted below. 

Instrumentation 

The two computers, one in each car, were linked together using a wireless local area network (or 
LAN). This link was used to control the beginning and end of a test trial. In addition, information 
about POV speed and POV acceleration levels were transferred to the SV. VI Engineering using 
National Instrument Labview Software developed the data acquisition program. The signal-
conditioning interface (N.I. SCXI) was changed relative to Study 1 to provide more inputs and 
outputs to accommodate the various crash alert modality components. Figure 3-26 provides 
concept or block diagrams of the SV and POV instrumentation. Figure 3-27 shows the position of 
some of the main pieces of equipment installed in the vehicles. The equipment in the trunk was 
mounted in a rack to prevent sliding.  The computer was mounted on a pedestal in the back seat 
along with the video monitor. The antennas were fastened to the rooftop above the rear seat. 
Table 3-13 provides a detailed list of POV and SV instrumentation used during the testing.  Items 
in this table listed with no cost were provided by the CAMP partner companies (GM or Ford). 
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Figure 3-26 Concept Diagrams of the Subject Vehicle and Principal Other Vehicle Instrumentation 
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Figure 3-27 Illustration of Equipment Installations 
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Table 3-13 Equipment List for the Subject Vehicle (SV) and the Principal Other Vehicle (POV) 

SV Instruments Manufacture Model Serial Number Cost 
Test Car Ford Motor Company 1997 White Taurus SHO 1FALP54N9VA 

140762 
$15,000 

Power Inverter Trip Lite PV-400 $170 

Signal chassis National Instruments SCXI chassis $11,000 

Distance Sensor Mitsubishi Laser Radar 
Control Unit, Head 

EMZ503-01 
X4T25571T1 

001 $3,300 

Passenger Brake Safety Industries Titan Dual Control Brake $620 

Video Monitor Citizen M398 C6-02692 $280 

VCR Panasonic AG-5700-P 16TB00090 $1,450 

4 to 1 Video Panasonic Quad System WJ-420 6ZB22758 $1,250 

Camera Elmo MN401E Camera 131879, 131862, 
131842 

$7,800 

Time Code Generator Horita RM-50II GPS MT-4393033 $1,800 

Time Code Converter Horita VG-50 VB-757850 $265 

GPS Receiver Hortia 28529-61 0260034705 $1,215 

Computer Micron NBK001221-00 758041-0001 $4,800 

Computer desk Mobile Planet MP320101 Mobile desk $180 

Accelerometer Lucas Schaevitz, LSBP-1 38922 $0 

Load Cells Entran Sensors ELF-1000I-100 96L96L17-
Y16,Y21,Y17 

$2000 

Position Transducer SpaceAge Control 160-1215 4580 $574 

Heads-Up-Display Delco Electronics Eye-Cue 2000 002 $1500 

High-Head-Down 
Display 

General Motors HHDD $0 

Brake Pulse Delphi Brake Pulse System $39,984 

POV Instruments Manufacture Model Serial Number Cost 
Test Car Ford Motor Company 1997 Silver Taurus SHO 1FALP54N7VA 

140761 
$15,000 

Power Inverter Trip Lite Power PV400 $170 

Signal Chassis National Instruments SCXI chassis $11,000 

Brake Booster ITT Industries Analog Booster System 3-33826-69 $37,561 

Trailer Brake Kelsey Energize Electric Brake Control Unit $0 

Computer Micron NBK001221-00 758041-0002 $4,800 

Computer desk Mobile Planet MP320101 Mobile desk $180 

Accelerometer Lucas Schaevitz LSBP-1 38923 $0 

Accelerometer Valentine Research G-analyst 3035000200 $0 

Valentine Research G-analyst display 0774000100 $0 

Radio NexTel I370XL 089AXYK475 $201 

FJW Industries Find-R-Scope 9082 $0 

Accelerometer Valentine Research G-analyst 8925000200 $0 

Valentine Research G-analyst display 5774000100 $0 
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3.7.5 Visual, Auditory and Brake Pulse Crash Alert Modality 
Components 

The driver was simultaneously presented crash alerts from two sensory modalities, sometimes 
referred to as a 1-stage, dual-modality crash alert. The modality components of the various crash 
alerts examined are described below. 

Visual Crash Alert Modality Components 

The high head-down display was placed on top of the instrument panel, close to the cowl of the 
windshield, and centerline to the driver. This display was supplied by GM, and is shown in the 
top half of Figure 3-28. This figure illustrates the visual display format resulting from the visual 
icon selection process, which is explained, in detail in Appendix A18. The crash alert icon (a 
“half car-star-half car” symbol) and the word “WARNING” (printed below) appeared as amber on 
a black background. With respect to the eyellipse centroid, the following discussion provides 
specific information on the position and size of this high head-down display visual crash alert. 
The center of the icon was positioned at a 7.70 look-down angle below the driver’s visual horizon, 
and at a 0.947 meter distance. For a reference point, the look-down angle to the front hood (i.e., 
where the hood visually occludes the roadway) was also 7.70, and the look-down angle to the 
center of the instrument panel cluster was 19.30. The area encompassed by both the visual icon (a 
“half car-star-half car” symbol) and the word “WARNING” subtended a 0.80 high by 1.20 wide 
visual angle area. The area encompassed by the visual icon subtended a 0.30 high by 0.90 wide 
visual angle area. The area encompassed by the capitalized word “WARNING” subtended a 0.20 

high by 1.20 wide visual angle area.  These capitalized letters were 3 millimeters in height, and 
printed in Helvetica bold font type. 

The high head down display module consisted of four lamps enclosed in a machined aluminum 
housing with baffles positioned between the lamps. The exterior was painted black, and the inside 
was a white color. The lamps were mounted on a printed circuit board that slides into the housing 
from the front. The panel with the crash alert icon was plastic and snapped into the front of the 
housing.  Four icons were selected and sized to be placed on a Polycarbon material, which was 
done by Lettergraphics of Detroit. These icons were selected based on results from the 
comprehension estimation procedure during the first phase of the visual icon selection procedure. 
The operation of the lamps was controlled through a signal-conditioning interface. A breadboard 
of relays was built to switch the lamps. The relays were driven by digital TTL signals, which 
provided the ability to flash the icon. 

The head-up display (or HUD) was projected off a combiner as a virtual blue/green image and 
appeared below the driver’s line of sight and centerline to the driver. The format of the HUD 
crash alert was identical to that used with the high head-down visual display, which is shown in 
the bottom half of Figure 3-28. (The reader should note that the HUD photograph in this 
illustration was taken off center.) With respect to the eyellipse centroid, the following discussion 
provides specific information on the position and size of this HUD crash alert. The HUD 
appeared at approximately a 1.214-meter image distance. The area encompassed by both the 
visual icon and the word “WARNING” subtended a 1.40 high by 3.40 wide visual angle area. The 
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Figure 3-28	 Illustrations of the High Head-Down Display (HHDD) and the Head-Up Display (HUD) 
Visual Crash Alerts 
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area encompassed by the visual icon subtended a 0.70 high by 2.50 wide visual angle area. The 
area encompassed by the capitalized word “WARNING” subtended a 0.50 high by 3.40 wide 
visual angle area. The HUD look down angle relative to the driver’s visual horizon was 
adjustable by the driver, and was not measured individually for each subject (which is a time-
consuming procedure). Since this aftermarket HUD was not designed for the test vehicle, there is 
no straightforward way to characterize the HUD look down angle. However, given that subjects 
were instructed to and were able to adjust the HUD to be positioned above the front hood, a lower 
bound for the bottom of HUD crash alert display is the look-down angle to the front hood (i.e., 
where the hood visually occludes the roadway), which was 7.70 relative to the eyellipse centroid. 
Based on previous HUD experience, the “nominal” look down angle to this HUD crash alert was 
likely to be about 40-50. 

This head-up display was an after-market Eye-Cue 2000 HUD product offered by Delco 
Electronics. The display is an 80 by 40 pixel display with plastic housing and combiner glass, and 
a separate DC to DC power supply.  A controller to drive the display was developed by Danlaw 
Incorporated. The controller, a Motorola 68HC11, was programmed to display various crash alert 
icons, as well as a “CAMP” test image. Four digital TTL input lines were used to select which 
icon to display.  The intensity (or brightness) of the display was controlled by a knob on the right 
side of the housing, which can be seen in Figure 3-28. The vertical location of the HUD image in 
the driver’s field of view was controlled by tilting the combiner glass in a fore/aft motion. As can 
be seen in Figure 3-28, this aftermarket HUD unit was mounted on top of the instrument panel in 
front of the driver. Figure 3-29 illustrates the interconnections of the HUD components, HUD, 
power supply, and the controller. 

Hence, overall, the HUD visual crash alert subtended a larger visual angle than the HHDD visual 
crash alert in both the height and width dimensions. In addition, the HUD appeared at 
approximately half the look down angle relative to the HHDD (or put in another way, the HUD 
appeared twice as close to the driver’s visual horizon). 

Auditory Crash Alert Modality Components 

The non-speech and speech crash alerts were digitized “WAV” sound files on the computer that 
were played through the front car speakers at a 67.4 dBa sound level (averaging over left and right 
channels). The computer sound output was fed through the car’s radio system by using a cassette 
adapter in the radio. The radio was turned on and set to cassette mode. The crash alert sound 
intensity (or loudness) was set using the radio volume controls. The non-speech and speech 
sounds selected were based on results from the auditory alert selection process, which is explained 
in detail in Appendix A19. 
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Haptic Crash Alert Modality Component 

The brake pulse alert involved a brief (about 600 ms) vehicle jerk, involving a peak deceleration 
of 0.24 g’s. (For the interested reader, a detailed description of the time-course of the brake pulse 
alert is shown in Appendix A16). This brake pulse profile was established during informal pilot 
testing with four drivers, since there were no relevant driver performance data available. In 
general, the goal of this pilot work was to allow the brake pulse to be clearly noticeable while 
avoiding, as much as possible, shifting the driver out of their driving position. Delphi Chassis 
Systems was contracted to supply the device that provided this example of a haptic crash alert. 
Delphi was required to modify the standard brake system on the SV so that the brakes could be 
pulsed from a computer to generate a deceleration rate between 0.15 to 0.30 g’s for a duration 
between 0.1 to 2.0 seconds. All other brake functions were to operate as a standard brake system, 
and this device was required to not interfere with the normal operation of the vehicle brakes. The 
computer, using an analog output board, was to generate a 0 to 5-volt signal for the required brake 
pulse intensity and duration. 

In response to these requirements, Delphi supplied and installed a brake modulation subsystem 
capable of applying up to a -0.30 g vehicle deceleration for speeds up to 60 mph on dry roads. A 
functional diagram of this subsystem is shown in Figure 3-30. This subsystem was controlled by 
a vehicle level controller by means of applying brake pressure to the front axle of the vehicle. The 
conventional base brake system and the ABS available on the car were not affected during manual 
braking by the driver. Any manual brake pedal application interrupted the add-on brake 
modulation and overrode any signal input to the modulation subsystem by the vehicle controller. 
The ABS and traction-control systems were not available (or operating) when the brake pulse was 
activated, which would be desirable from a production implementation perspective in order to 
address the activation of this alert on slippery surfaces. The CAMP computer interfaced to the 
embedded controller by ‘System Command’ and ‘System Enable’ signals. If the modulation 
subsystem detected a fault in its operation, a ‘Fail Indicator’ signal was sent to the CAMP 
Computer. To aid in problem-solving a fault, Delphi provided a software program. A separate 
serial interface was provided from the embedded controller for communication to the program. 
This program provided status information on the various internal parameters that could be used 
for trouble-shooting purposes. 
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Figure 3-29 Interconnections of HUD Components, HUD, HUD Power Supply, and the Controller 
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Brake Pulse Modulation Subsystem 
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Figure 3-30 Brake Pulse Crash Alert Modulation Subsystem 

3.7.6 Procedure and Design 

Procedures Before and After Test Trials 

After completing various pre-experiment forms and procedures (including the informed consent 
statement), subjects were escorted to the track. Drivers were then administered test instructions 
verbally (shown in Appendix A3), and asked to adjust the seat, steering wheel, and mirrors to their 
preferred position, and to fasten their shoulder harness and lap belt. It should be noted that 
subjects were instructed about the nature of the surrogate target, and more specifically, that this 
target was designed to allow low speed impacts. Subjects were also informed of the add-on 
passenger-side brake. Next, a sequence of test trials was conducted, which are described below. 
After the test trials were completed, subjects were escorted from the track, debriefed on the 
purpose of the study, and paid for their participation. 

Test Phases / Driver Instructions 

During the first phase of this study, drivers experienced trials in which the surrogate target was 
parked (or stationary). These types of test trials are referred to as Alerted Stationary Trials. 
Drivers were asked to approach the parked surrogate target at either 30 or 60 mph, and maintain a 
steady speed. 
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During the approach, a 1-stage, dual-modality crash alert was presented. Four separate crash alert 
types were evaluated, which are indicated below: 

° Head-Up Display (HUD) + Non-Speech Tone 

° High Head-Down Display (HHDD) + Non-Speech Tone 

° High Head-Down Display (HHDD) + Speech 

° High Head-Down Display (HHDD) + Brake Pulse 

Drivers were instructed to brake immediately in response to the crash alert in order to avoid 
colliding with the artificial car. When the SV came to a complete stop, data collection was halted 
and the trial was ended. 

Drivers were asked to make these braking responses under three different crash alert timing 
conditions, which are described shortly. During these alerted trials, drivers experienced 4 blocks 
of 6 trials each, with each block of trials dedicated to one crash alert type. The order of these 
crash alert type (or interface) blocks was appropriately counterbalanced across drivers. The six 
trials per block, were formed, by crossing the 2 approach speeds with the 3 crash alert timings. 
The approach speed changed every trial within a block, and the crash alert timing condition was 
randomized from trial-to-trial and appropriately counterbalanced across drivers. 

After the Alerted Stationary Trials were completed, the second phase of the study began. In this 
phase, the driver was led to believe the test was over. An unexpected (surprise) braking event was 
then introduced in which the lead vehicle, traveling at 30 mph, suddenly braked at about a 
constant -0.38 g level of deceleration without brake lights. The crash alert type presented 
coincided with the type tested in the last block of test trials. This type of trial is referred to as the 
Surprise Moving Trial.  In an attempt to create an inattentive driver prior to the unexpected 
braking event, the backseat experimenter engaged the driver in an active, naturalistic, 2-way 
conversation. This conversation typically occurred at the end of dialogue, which began with a 
brief informal debriefing discussion and ended with a “post-test” casual conversation. This 
conversation typically evolved around the driver’s summer vacations or job, as well as topics that 
evolved during the testing session. This surprise trial technique will be referred to as the “Natural 
Conversation” surprise technique. 

The Surprise Moving Trial was then followed by two trials that were identical to the conditions of 
the Surprise Moving Trial, except that now drivers were fully aware that the lead vehicle would be 
braking.  These types of trials will be referred to as Follow-On Moving Trials. 

Crash Alert Timing Approach 

For crash alert timing, an assumed total delay time (which included driver brake RT) and an 
assumed driver deceleration in response to the alert were input into straightforward, fundamental 
vehicle kinematic equations used for calculating the appropriate warning range to avoid a crash. 
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(These equations are described below.) These two critical, driver-behavior related inputs are now 
discussed in turn. 

The assumed total delay time was the composite sum of three separate delay times, which are 
now described in the same time sequence in which they occurred. The interface delay time is 
defined as the time between when the crash alert criterion was violated and when the crash alert 
was presented to the driver. This delay is assumed to be 180 ms for all crash alert types examined 
except those including a brake pulse crash alert component. The brake pulse is assumed to onset 
after 410 ms, when the -0.10 g deceleration value was reached due to the brake pulse. (It should 
be noted that there was some variability associated with the time course of the brake pulse, which 
for the interested reader, is shown in Appendix A16). The driver brake RT delay is defined as the 
time between crash alert onset and when the driver triggered the brake switch. Based on 
discussions above, this delay was assumed to be 0.52 seconds for expected alerts, and 1.50 
seconds for surprise alerts. The brake system delay time is defined as the time between braking 
onset and vehicle slowing, and is assumed to be 200 milliseconds. The assumed “delay time 
range” between crash alert criterion violation and vehicle braking is then the expected decrease in 
range during this total delay time, assuming the prevailing kinematic conditions (i.e., SV speed, 
POV deceleration) would continue during this total delay time. This delay time range, calculated 
as shown below, is added to a “braking onset distance” (described below) to calculate the desired 
warning range. In the equation below, “V” represents the current velocity (or speed), and decSVM 

and decPOVM represents the current deceleration levels of the SV and POV, respectively.  In this 
equation, the speed and deceleration variables should be expressed in feet/sec2, and deceleration 
values are represented as negative values. 

Delay Time Range = ((VSV - VPOV)(Total Delay Time)) + (0.5 (decSV- decPOV)((Total Delay Time)2)) 

The assumed driver deceleration response in response to the crash alert was based on the required 
deceleration equation developed/modeled from CAMP Study 1 findings, which is shown below 
and discussed in detail in Appendix A20. This equation is subsequently referred to as the CAMP 
Required Deceleration Parameter (or CAMP RDP equation). In this equation, deceleration 
values are represented as negative values. This equation expressed in feet/sec2 is as follows: 

Required Deceleration (decREQ) = -5.308 + 0.685(decPOV) + 2.570(if POV moving) - 0.086(delta V) 

(An alternative version of this equation predicts required deceleration in g’s is shown in at the end 
of Appendix A20). (To remind the reader, the required deceleration measure was defined as the 
constant deceleration level required for the driver to avoid the crash at braking onset, assuming 
the current speeds of the driver’s vehicle and the lead vehicle, and assuming the lead vehicle 
continued to decelerate at the prevailing deceleration value). In the above equations, the “delta V” 
predictor variable represents the speed difference between the SV and POV projected at braking 
onset and “POV dec.” represents the current POV deceleration level.  (The “projection” described 
here, as well as the projections described below, were performed to be consistent with the Study 1 
modeling efforts which focused on predicting the moment of braking onset.) In addition, the “if 
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POV moving” predictor variable is set to 0 if the POV is projected to be stopped at braking onset , 
and is set to 1 if the POV is projected to be moving at braking onset. Once again, in the above 
equation, the variables “delta V” and “decPOV” should be expressed in feet/sec and feet/sec2 

respectively, which is consistent with the measurement units used in calculating delay time range 
above. These predicted required deceleration values are then converted to calculate a braking 
onset range or “braking onset range”, using one of the three kinematic “case” equations described 
below. Given the assumed two driver behavior parameters described above, and assuming current 
speeds (for both the SV and POV) and the prevailing lead vehicle deceleration value, these 
kinematic equations produce an alert range such that the difference in speeds between the driver’s 
vehicle and lead vehicle and the distance between the two vehicles reach zero values 
simultaneously (i.e., when the front bumper of the driver’s vehicle barely contacts or touches the 
rear bumper of the lead vehicle). 

The appropriate case equation used to calculate the braking onset range (Case 1, Case 2, or Case 
3) is based on the projected movement state of the POV at braking onset (POV moving or POV 
stationary), and the projected movement state of the POV when the SV barely contacts the POV 
(contact when POV is moving or contact when POV is stationary) under the required deceleration 
prediction (or assumption). The braking onset range is then calculated by inputting the predicted 
required deceleration value into the appropriate case equation below. Once again, in the equations 
below, the variables need to be expressed in common measurement units, which should be 
consistent with those used in calculating the delay time range and predicted required deceleration 
values above. Furthermore, deceleration values are represented as negative values. In the 
equations below, VSVP and VPOVP represent the projected speeds of the SV and POV speed at SV 
braking onset, respectively.  That is, 

VSVP = VSV + (decSV(Total Delay Time)) 
VPOVP = VPOV + (decPOV(Total Delay Time)) 

Case 1: POV Stationary ‚ 

Braking Onset Range = (VSVP)2 

______________ 

-2*(decREQ) 

Case 2: POV Moving, contact when POV is moving ‚ 

Braking Onset Range = (VSVP – VPOVP)2 

________________________ 

-2*(decREQ - decPOV) 

Case 3: POV Moving, contact when POV is stationary ‚ 

Braking Onset Range = (VSVP)2  (VPOVP)2 

______________ ______________– 
-2*(decREQ) -2*(decPOV) 
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This braking onset range is then added to the previously described delay time range to calculate a 
desired warning range. That is, 

Warning Range = Delay Time Range  +  Braking Onset Range 

This method of calculating a warning range will be referred to as the CAMP Required 
Deceleration Parameter approach (or the RDP approach). The reader should note that the RDP 
approach is different from the RDP equation described above. The RDP equation is but one of 
the input parameters used in the RDP approach to calculate a desired warning range. The required 
deceleration value (which is derived from the CAMP RDP equation) which is input into this 
Warning Range equation to calculate Braking Onset Range is distinctly different from commonly 
employed warning algorithms which assume a fixed driver deceleration response independent of 
driver speed and lead vehicle deceleration levels. Under the CAMP RDP equation, the assumed 
driver deceleration varies as a function of both the speed difference between the two vehicles (i.e., 
delta V) and lead vehicle deceleration levels. (For readers concerned with the details of 
implementing crash alert timing equations, it should be noted that the kinematic equations shown 
above were focused on closing scenarios encountered in these interface experiments. Additional 
logic and equations, which are not shown above, were also implemented in these experiments so 
that inappropriate alerts did not occur in normal, non-braking situations (e.g., when the range 
between the vehicles is increasing). In a production implementation, a crash alert algorithm will 
be exposed to a wide variety of driving situations, which will include the key closing scenario 
elements shown above, as well as the additional logic and equations required to handle normal, 
non-braking driving conditions and to issue alerts in unusual circumstances with crash alert timing 
that is equivalent to that described here.) 

Drivers were tested with three different crash alert timing approaches. The first approach used the 
RDP crash alert timing approach described above. The remaining two approaches assumed the 
driver would brake in response to the crash alert harder than that predicted by the RDP crash alert 
timing, or put in another way, drivers would brake harder than what was observed/modeled in 
CAMP Study 1 without a crash alert. Hence, the RDP crash alert timing provided the most 
conservative timing assumption, or put in another way, the earliest, farthest crash alert timing 
assumption examined. The second crash alert timing approach assumed the driver decelerated in 
response to the crash alert with an additional 0.05 g’s relative to the RDP crash alert timing 
approach, and is subsequently referred to as the “RDP + 0.05 g” crash alert timing approach. The 
third, and most aggressive (latest, closest) crash alert timing approach, assumed the driver 
decelerated in response to the crash alert with an additional 0.10 g’s relative to the RDP crash 
alert timing approach, and is subsequently referred to as the “RDP + 0.10 g” crash alert timing 
approach. In each of these three crash alert timing approaches, if the predicted warning range was 
larger than the observed warning range, the crash alert criterion was violated and the crash alert 
was presented. 
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“Bail-out” visual markers were placed on the right-center portion of the driving lane to provide 
the front seat, passenger-side experimenter information on when to take over braking using the 
add-on brake. Separate markers were positioned for each of the three different approach speeds 
examined (30, 45, and 60 mph). The test drivers were to begin braking at the point the vehicle 
occluded the visual marker. The distances for these markers were formed by having a driver 
approach a test reflector target at 5 mph above the target approach speed, while the test driver 
used the add-on brake to brake to the bail-out visual marker. Repeated trials were performed with 
each of the test drivers, and the longest braking distance found at each of the three speeds were 
using to create the visual marker distances. 

The visual alerts were presented as long as the crash alert timing criterion was violated, whereas 
both the auditory and brake pulse alerts played out for a maximum of one entire cycle. In the 
event that the “bail-out” auditory alert for the experiment was triggered, the “bail-out” alert 
interrupted the non-speech tone intended for the driver. The “bail-out” auditory alert for the front 
seat, passenger-side experimenter was also triggered based on the RDP crash alert timing 
approach, with assumed inputs of a 0.52 second driver (test driver) brake RT, and an assumed 
constant deceleration in response to the crash alert of -0.55 g’s. The “bail-out” sound, which was 
distinct from the non-speech tone employed, signaled to the experimenter to take over braking 
using the add-on brake. A black cardboard visual barrier was placed between the driver and the 
front seat experimenter which prevented the driver from anticipating (or being distracted by) the 
foot (braking) behavior of the experimenter, and allowed the experimenter to discretely let their 
foot hover over the add-on brake during a test trial. 

Independent Variables Examined 

For the Alerted Stationary Trials, the within-subjects variables analyzed were crash alert type 
(HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + Brake Pulse), crash-
alert timing (RDP, RDP + 0.05 g, and RDP + 0.10 g), and (approach) speed (30 and 60 mph), and 
the between-subjects variables analyzed were age (younger, middle-aged, or older) and gender 
(male or female). 

For the Surprise Moving Trial and the Follow-On Moving Trials, the between-subjects variables 
analyzed were crash alert type (HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, or 
HHDD + Brake Pulse) and age (younger, middle-aged, or older). 

Objective (or Performance) Measures Examined 

Various performance measures were analyzed. The variable definitions, and the point in time 
during the braking maneuver in which the performance measures were analyzed (at POV braking 
onset, at SV braking onset, throughout the braking, end of the braking maneuver) are identical to 
that used in Study 1, with the exception of one new measure, driver’s brake reaction time (RT). 
This measure is defined as the time between crash alert onset and the driver contacting the brake 
(i.e., triggering the brake switch) in response to the alert. 
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Subjective Measures / Questionnaire Data 

Immediately after each braking trial, drivers were asked to judge the appropriateness of the FCW 
system crash alert timing using the 7-point scale ranging from “much too early” to “much too 
late”, which is shown in the opening paragraphs of the “Study 2 Experimental Methodology and 
Approach” section. (In this study, drivers were also asked how well the urgency level suggested 
by the alert matched the timing of the alert on a scale ranging from “much too low” to “much too 
high”, with a “just right” mid-point. This question proved somewhat difficult to construct in a 
meaningful way for drivers, although these results were extremely consistent with the pattern of 
crash alert timing results reported below. Hence, the results from this “urgency level” question 
will not be discussed further.) 

These timing appropriateness ratings were analyzed for each phase of the study using the same 
independent variables and analysis approach that was used to analyze the driver performance 
measures. 

Several questionnaires were administered throughout the study. During the first phase of Alerted 
Stationary Trials, drivers rated each crash alert type after experiencing the block of 6 trials with a 
given crash alert type. This “alert modality appropriateness” questionnaire involved the driver 
rating each modality of the crash alert type just experienced on various attributes. Excerpts of this 
questionnaire are shown in Appendix A4. For the visual alerts, drivers rated the intensity, size, 
color, and location of the display.  For the auditory (non-speech and speech) alerts, drivers rated 
the loudness and duration of the alert. In addition, drivers were asked whether the radio should be 
muted during the alert. For the brake pulse alert, drivers rated the strength of the vehicle jerk and 
the duration of the alert. 

At the end of the study, drivers were asked to fill out three separate questionnaires. In the first 
questionnaire, drivers were asked to rate each of the 1-stage, dual-modality crash alert types 
experienced on 14 different statements. This “crash alert appropriateness” questionnaire is 
shown in Appendix A5. These statements involved the driver rating each of the four crash alert 
types on the 14 statements, in the order shown below. These statements were associated with 
“overall” ratings, crash alert noticeability, confusion, attention-getting properties, startle, 
interference with driving, annoyance, harmony, association with danger, and purchase interest. 
Each of these statements was rated on a 7-point scale ranging from Strongly Disagree to Strongly 
Agree. 
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Crash Alert Appropriateness Statement 
1. This is a good method for presenting crash alerts to drivers. 

2. This method would be clearly noticeable in the car. 

3.	 This method would NOT be confused with other events happening either inside or 
outside the car. 

4.	 This method would get my attention immediately if I was distracted and not 
concentrating on the driving task. 

5.	 This method would NOT startle me, that is, cause me to blink, jump, or make a rapid 
reflex-like movement. 

6.	 This method would NOT interfere with my ability to make a quick and accurate 
decision about the safest driving action to take (brake, steer, brake and steer, do 
nothing). 

7.	 This method would NOT interfere with my ability to perform a quick and accurate 
emergency driving action. 

8.	 This method would NOT annoy me if the alert came on once a week in a situation 
where no driving action was required. 

9.	 This method would NOT annoy me if the alert came on once a day in a situation where 
no driving action was required. 

10. This method would NOT appear out of place in a car or truck. 

11. This method would clearly tell me that I am in danger and need to react immediately. 

12. This method of presenting crash alert information has great potential for preventing me 
from getting in a rear-end accident. 

13. This method of presenting crash alert information would get my attention without 
being overly annoying. 

14. If cost were not an issue, I would be likely to purchase this type of crash alert feature 
when I purchased a vehicle. 

In the second questionnaire completed at the end of the test, drivers were asked to create their own 
interface. This “build an interface” questionnaire is shown in Appendix A6. Drivers were first 
asked to build a 1-stage crash alert, and then asked to build a 2-stage crash alert. 

In the third and final questionnaire, drivers were asked to name the FCW system. This “name the 
system” questionnaire is shown in Appendix A7. Drivers were first asked to name the system in 
an open-ended fashion, and then asked to rank order their top three name choices from the 
following set of proposed system names: 



3-98 

Proposed System Names 
° Forward Collision Warning System 

° Forward Crash Warning System 

° Forward Accident Warning System 

° Rear-end Collision Warning System 

° Rear-end Crash Warning System 

° Rear-end Accident Warning System 

° Front-end Collision Warning System 

° Front-end Crash Warning System 

° Front-end Accident Warning System 
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3.7.7 Results and Discussion 

Overview of Statistical Analysis Approach for Objective Measures 

For the analysis of the objective (or performance) measures, a factorial Analysis of Variance 
(ANOVA) was performed for each relevant driver performance measure (dependent on whether 
the lead vehicle was moving or stationary) shown previously in Table 3-1.  Data from the Alerted 
Stationary Trials, Surprise Moving Trial and Follow-On Moving Trials were analyzed separately 
during the statistical analysis. The criterion set for statistical significance was p<0.01 during the 
analysis of the Alerted Stationary Trials (Study 2), due to the large number of statistical tests 
carried out (which increases the probability of spuriously significant results (Hays, 1981). For the 
analysis of the Surprise Moving Trial (in Study 2 and Study 3) and the Follow-On Moving Trials 
data, the criterion set for statistical significance was p<0.05. Unless otherwise noted, all 
statistically significant results indicated met (and often exceeded) these adopted criterion. 

Objective (Or Performance) Measures 

Alerted Stationary Trials 

The within-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD + Non-
Speech, HHDD + Speech, and HHDD + Brake Pulse), crash alert timing (RDP, RDP + 0.05 g, 
and RDP + 0.10 g), and (approach) speed (30 and 60 mph), and the between-subjects variables 
analyzed were age (younger, middle-aged, or older) and gender (male or female). Results 
indicated main effects of age on the brake RT and TTC measures. 

For the younger, middle-aged, and older groups, mean brake RTs were 491, 533, and 627 ms, 
respectively, and mean TTC values were 2.9, 2.7, and 2.8 seconds, respectively.  There were also 
relatively robust main effects of crash alert type, crash alert timing, and speed. These effects 
found for various performance measures are shown in Table 3-14, Table 3-15 and Table 3-16 
respectively.  These effects will be discussed to help the reader get oriented to the large volume of 
data analyzed, however, it should be stressed that many of these main effects need to be 
interpreted in terms of higher-order interactions, which are discussed below. 
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Table 3-14	 Significant Main Effects of Crash Alert Type on Various Measures During 
Alerted Stationary Trials (Study 2) 

At SV Braking Onset 
Crash Alert Type 

Condition 
Mean 
Brake RTs 

Mean 
Current 
Dec. (g) 

Mean Req. 
Dec. (g) 

Mean 
TTC 
(sec) 

HUD Speech 502 -0.03 -0.42 2.8 

HHDD Speech 509 -0.03 -0.42 2.8 

HHDD 573 -0.03 -0.44 2.7 

HHDD ake Pulse 617 -0.07 -0.39 2.9 

Non-+ 

Non-+ 

Speech + 

Br+ 

Table 3-15	 Significant Main Effects of Crash Alert Timing on Various Measures During Alerted 
Stationary Trials (Study 2) 

At Braking Onset Throughout Braking End of 
Braking 

Crash Alert 
Timing 
Condition 

Mean 
Brake 
RTs 
(sec) 

Mean 
Range 
(feet) 

Mean 
TTC 
(sec) 

Mean 
Req. 
Dec. 
(g) 

Mean 
Actual 
Dec. 

Mean 
Peak 
Dec. 
(g) 

Mean 
Min. 
TTC 
(sec) 

Mean 
Range 
(feet) 

RDP 575 213 3.1 -0.37 -0.52 -0.70 1.8 40 

RDP + 0.05 g 547 193 2.8 -0.42 -0.56 -0.76 1.5 30 

RDP + 0.10 g 529 173 2.5 -0.47 -0.59 -0.82 1.3 22 

Table 3-16	 Significant Main Effects of Speed on Various Measures During Alerted 
Stationary Trials (Study 2) 

At Braking Onset Throughout Braking End of 
Braking 

Target 
Speed 
Cond. 

Mean 
Speed 

Mean 
Range 
(feet 

Mean 
TTC 
(sec) 

Mean 
Req. 
Dec. 
(g) 

Mean 
Actual 
Dec. 

Mean 
Peak 
Dec. 
(g) 

Mean 
Min. 
TTC 
(sec) 

Mean 
Range 
(feet) 

30 mph 30.4 104 2.3 -0.36 -0.52 -0.71 1.3 19 
60 mph 59.3 282 3.2 -0.47 -0.59 -0.81 1.8 42 
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The brake RT results shown in Table 3-14 are also shown in the left-hand portion of Figure 3-31. 
Follow-up planned comparison tests indicated faster RTs in the HUD + Non-Speech and HHDD + 
Non-Speech conditions relative to both the HHDD + Speech and HHDD + Brake Pulse 
conditions. In addition, these follow-up tests indicated faster RTs in the HHDD + Speech relative 
to HHDD + Brake Pulse conditions. Hence, the rank ordering of these brake RT results were as 
follows: 

(HUD + Non-Speech=HHDD + Non-Speech) < HHDD + Speech < HHDD + Brake Pulse 

The results from the remainder of the measures shown in Table 3-14 indicate a trade-off between 
brake RT and the effect of the HHDD + Brake Pulse cue slowing the vehicle during the “total 
delay time” interval discussed earlier (which includes driver RT). The consequence of this 
slowing can be mainly seen in the pattern of results for the mean current deceleration measure at 
SV braking onset, which indicates an additional -0.04 g of deceleration for the HHDD + Brake 
Pulse condition at SV braking onset relative to the remaining crash alert types examined. If 
braking was the appropriate response to an alert, this data would suggest that trade-off may 
actually favor the HHDD + Brake Pulse condition (relative to the other three crash alert type 
conditions), since at braking onset, the driver is in a more conservative kinematic scenario (lower 
required deceleration and higher TTC values). 

The main effects of crash alert timing shown in Table 3-15 are very systematic and 
straightforward to interpret. These results indicate that as the crash alert timing became more 
aggressive, the driver was closer to the parked surrogate target at braking onset, the driver 
exhibited more aggressive braking (and minimum TTC) behavior, and the driver ended up closer 
to the parked vehicle. In addition, these results indicate that drivers' brake RTs decreased slightly 
(perhaps due to an increase in perceived threat) as the crash alert timing became more aggressive. 
It should be noted that the 0.05 g steps employed to form the three crash alert timing conditions 
tested are validated in Table 3-15 for the required deceleration measure. 

The main effects of speed shown in Table 3-16 are also systematic and straightforward to 
interpret. These results indicate that in the 60 mph relative to 30 mph condition, the driver 
exhibited more aggressive braking behavior (although in the context of more conservative 
minimum TTC values), and the driver was farther away from the parked vehicle at both braking 
onset and at the end of braking. 

The remainder of the discussion in this section will focus on interpreting the various higher-order 
interactions which were observed for various measures obtained at SV braking onset, throughout 
braking, and at the end of braking.  Overall, these higher-order interactions were generally small 
in magnitude, of little practical significance, and not robust across related performance measures. 
However, a brief explanation of each of these interactions is provided below for the sake of 
completeness for the interested reader. (The non-interested reader is encouraged to proceed to the 
next section.) Also, in the event that a higher-order interaction (e.g., 4-way) encompasses a lower 
higher-order interaction (e.g., 2-way), a description of the higher-order interaction is provided 
(which is the context in which the “lower” higher-order interaction should be interpreted). 
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Figure 3-31 Average Brake Reaction Time as a Function of Study Phase and Crash Alert Type (Study 2) 

For the brake RT measure, results indicated a Crash Alert Type x Speed interaction, and a (4-way) 
Age x Gender x Crash Alert Type x Speed interaction. With respect to the former interaction, in 
the 30 mph condition, brake RTs in the HUD + Non-Speech, HHDD + Non-Speech, HHDD + 
Speech, and HHDD + Brake Pulse conditions were 509, 514, 531, and 616 ms, respectively.  The 
corresponding means for the 60 mph condition were 502, 508, 595, and 640 ms, respectively. 
Hence, the brake RT advantage mentioned above for the HUD + Non-Speech and HHDD + 
Non-Speech conditions relative to the HHDD + Speech and HHDD + Brake Pulse increased 
with the higher speed approach. Results from the 4-way interaction mentioned above indicated 
that the intermediate (i.e., second place) mean brake RT position for the HHDD + Non-Speech 
condition described above was far more stable in the 60 mph condition. In the 30 mph 
condition, the HHDD + Non-Speech brake RTs were generally quite similar to those found in the 
HUD + Non-Speech and HHDD + Non-Speech conditions. 

For the SV deceleration at braking onset measure, results indicated an Age x Crash Alert Type, 
Age x Gender x Crash Alert Type, and a Crash Alert Type x Crash Alert Timing x Speed 
interaction. Results for the Age x Gender x Crash Alert Type interaction for the SV deceleration 
at braking onset measure indicated that this measure was very stable across all cell combinations 
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of these three variables (ranging between -0.03 and -0.04 g’s), except in the HHDD + Brake Pulse 
crash alert type condition. For this latter crash alert type, across all Age x Gender cell 
combinations, the SV deceleration at braking onset ranged between -0.04 and -0.12 g’s. For male 
drivers in the HHDD + Brake Pulse crash alert type condition, the mean SV deceleration at 
braking onset decreased as age increased (which is consistent with the main age effect observed 
for brake RTs, since younger drivers may have been more likely to interrupt the completion of the 
brake pulse “cycle” relative to older drivers) . In contrast, for female drivers in this crash alert 
condition, the mean SV deceleration at braking onset was highest for middle-aged females. 
Results for the Crash Alert Type x Crash Alert Timing x Speed interaction for the SV deceleration 
at braking onset measure indicated that this measure was very stable across all cell combinations 
of these three variables (ranging between -0.03 and -0.04 g’s), except once again for the HHDD + 
Brake Pulse crash alert type condition. For this latter crash alert type, across all Crash Alert 
Timing x Speed cell combinations, the SV deceleration at braking onset ranged between -0.05 and 
-0.09 g’s. In the 30 mph condition for the HHDD + Brake Pulse crash alert type condition, the 
mean SV deceleration at braking onset decreased as the crash alert timing became more 
aggressive. In contrast, in the 60 mph condition in this crash alert condition, the mean SV 
deceleration at braking onset increased as the crash alert timing became more aggressive. 

For the SV speed at SV braking onset measure, results indicated Gender x Crash Alert Type x 
Speed, Age x Gender, Crash Alert Type x Crash Alert Timing, and Age x Gender x Crash Alert 
Type x Speed interactions. Results for the Gender x Crash Alert Type x Speed interaction for this 
measure, indicated, that this measure was very stable across all cell combinations. Of these three 
variables (within 1.4 mph) for 3 out of the 4 crash alert type conditions at both speeds across all 
Gender x Speed condition cell combinations. However, in the 30 mph condition with the HUD + 
Non-Speech crash alert type, the mean SV speed at braking onset was slightly higher (2.7 mph) 
for female relative to male drivers. In addition, in the 60 mph condition with the HHDD + Speech 
crash alert type, the mean SV speed at braking onset was slightly higher (2.4 mph) for female 
relative to male drivers. Results for the Age x Gender x Crash Alert Type x Speed interaction for 
the SV speed at braking onset measure appeared to be due to a relatively unstable pattern of mean 
speeds across crash alert timing conditions for the middle-aged male and younger female groups. 

For the range at SV braking onset measure, results indicated Crash Alert Timing x Speed and Age 
x Crash Alert Type x Crash Alert Timing x Speed interactions. With respect to the former 
interaction, in the 30 mph condition, the range at braking onset for RDP, RDP + 0.05 g, and RDP 
+ 0.10 g conditions were 117, 104, and 91 feet, respectively.  Corresponding means for the 60 
mph condition were 309, 282, and 256 feet, respectively.  Hence, the difference in ranges between 
the 30 mph and 60 mph conditions decreased as the crash alert timing became more aggressive. 
The 4-way interaction involving this measure indicated a general decrease in range as the crash 
alert timing became more aggressive for the various Age x Crash Alert Type x Speed cell 
combinations, with the exception of the middle-aged x HHDD + Brake Pulse x 60 mph cell 
combination. For this latter combination of conditions, the mean range at SV braking onset was 
higher in the RDP + 0.05 g crash alert timing condition relative to either the RDP or RDP + 0.10 g 
timing conditions. 

With respect to the required deceleration and TTC measures (both measured at braking onset), 
there was an Age x Gender interaction for the former measure, and a (4-way) Age x Gender x 
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Crash Alert Type x Speed interaction for both measures. For this latter interaction, for both the 
required deceleration and TTC measures, the crash alert type differences shown in Table 3-14 for 
these measures were relative stable for the various Age x Gender cell combinations in the 30 mph 
condition (with the exception of the younger female group). In the 60 mph condition, this pattern 
of crash alert type differences was less stable, occurring for 2 to 3 of the 6 Age x Gender cell 
combinations. 

For the actual deceleration measure (which is an alternative way of expressing braking distance), 
it is worth noting there were no higher-order interactions. Based on the main effects of only crash 
alert timing and speed reported above for this measure, this indicates that neither age, gender, nor 
the crash alert types played any role in affecting observed braking distances. This indirectly 
suggests that once drivers (regardless of age or gender) received an alert (regardless of the crash 
alert), braking occurred in a relatively systematic fashion based on the prevailing kinematic 
conditions (the latter of which was determined by crash alert timing condition). 

For the peak deceleration measure, results indicated a Crash Alert Timing x Speed interaction. In 
the 30 mph condition, the mean peak deceleration values for the RDP, RDP + 0.05 g, and RDP + 
0.10 g conditions were -0.64, -0.72, and -0.78 g’s, respectively.  In the 60-mph condition, the 
corresponding mean values were -0.77, -0.81, and -0.86, respectively.  Hence, the difference 
between peak deceleration values across speed conditions was highest in the RDP crash alert 
timing condition. 

For the minimum TTC measure, there was a (5-way) Age x Gender x Crash Alert Type x Crash 
Alert Timing x Speed interaction. This interaction indicated a general decrease in mean minimum 
TTC as the crash alert timing became more aggressive for the various 48 Age x Gender x Crash 
Alert Type x Speed cell combinations. This pattern is much more stable in the 30 mph condition 
(particularly for males) relatively to the 60 mph condition. 

For the minimum range measure, there was also a (5-way) Age x Gender x Crash Alert Type x 
Crash Alert Timing x Speed interaction. This interaction indicated a general decrease in range as 
the crash alert timing became more aggressive for the 48 various Age x Gender x Crash Alert 
Type x Speed cell combinations, with the exception of the Middle-Age x Male x HHDD + Brake 
Pulse x 60 mph speed cell combination and the 4 Younger x Female x 60 mph speed condition 
cell combinations (1 combination for each crash alert type). 

Surprise Moving Trial 

The between-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD + 
Non-Speech, HHDD + Speech, or HHDD + Brake Pulse) and age (younger, middle-aged, or 
older). ). It should be noted that there were no Surprise Moving Trials in which the passenger-
side experimenter intervened to assist the driver in coming to a stop. 

Results indicated a main effect of crash alert type on brake RTs, which is shown in the middle 
portion of Figure 3-31. The trend of these RTs are identical to those found across crash alert types 
during Alerted Stationary Trials, and provide converging evidence for the effect of crash alert type 
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on RTs across alerted and surprise braking event conditions. Follow-up tests indicated 
significantly faster brake RTs in the HUD + Non-Speech relative to HHDD + Brake Pulse 
conditions, and significantly faster brake RTs in the HHDD + Non-Speech relative to HHDD + 
Brake Pulse conditions. It is important to note that the differences in brake RTs observed across 
crash alert types during Alerted Stationary Trials are now exaggerated and substantially larger in 
the Surprise Moving Trial data (e.g., the fastest crash alert condition is nearly twice as fast as the 
slowest condition). Figure 3-32 provides the brake RT distribution for all drivers during these 
Surprise Moving Trials. It is worth noting that only one subject yielded a brake RT higher than 
the 1.5 second brake RT assumed for crash alert timing purposes. 
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85th %tile Brake RT = 1.23 sec 
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(where bin X ranges from X to (X + 0.099) seconds)


Figure 3-32 Brake Reaction Time Distribution During Surprise Moving Trials (Study 2) 

Results also indicated a significant effect of crash alert type on POV speed at SV braking onset. 
The mean POV speed at SV braking onset for the HUD + Non-Speech, HHDD + Non-Speech, 
HHDD + Speech, and HHDD + Brake Pulse conditions were 24.5, 25.6, 20.9, and 19.4 mph, 
respectively.  These differences are likely to be due in large part to the RT differences cited above, 
since increases in RTs result in a longer time during which the POV is decelerating (and hence, 
reducing speed) at a constant rate. 

Results also indicated a significant effect of crash alert type on POV deceleration at braking onset, 
and a significant Age x Crash Alert Type interaction on this measure. For younger drivers, the 
mean POV deceleration at SV braking onset for the HUD + Non-Speech, HHDD + Non-Speech, 
HHDD + Speech, and HHDD + Brake Pulse conditions were 0.39, 0.38, 0.41, and 0.39 g’s, 

N
u

m
b

er
 o

f 
S

u
b

je
ct

s 
in

 
R

ea
ct

io
n

 T
im

e 
B

in
 



3-106 

respectively.  For the middle-age drivers, the corresponding mean values were 0.37, 0.39, 0.40, 
and 0.48 g’s, respectively.  For the older drivers, the corresponding mean values were 0.39, 0.34, 
0.56, and 0.39 g’s, respectively.  The mean decelerations which fall out of the 0.37-0.41 range are 
likely due to contributions of trials in which the POV driver braked the lead vehicle due to a brake 
controller failure in the POV. 

In summary, results from the Surprise Moving Trials indicate that the fastest brake reactions times 
occurred in the HUD + Non-Speech and HHDD + Non-Speech conditions (as was found during 
the Alerted Stationary Trials), and that the RT advantage of these conditions over the HHDD + 
Speech and HHDD + Brake Pulse crash alert types was increased substantially in the Surprise 
Moving Trials (relative to the Alerted Stationary Trials). For reference purposes, Table 3-17 
provides a list of various percentile values for key variables, nearly all of which were not involved 
in any of the significance effects discussed above. 

Follow-On Moving Trials 

The between-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD + 
Non-Speech, HHDD + Speech, or HHDD + Brake Pulse) and age (younger, middle-aged, or 
older). Results indicated no statistically significant effects on the brake RT measure. For 
comparison purposes, results found for the brake RT measure across the various crash alert types 
are shown in the rightmost portion of Figure 3-31. These results indicate essentially the same 
(albeit statistically non-significant) trend in the means as observed during both the Alerted 
Stationary Trials and Surprise Moving Trial study phases, which provides strong evidence that the 
observed trend is very robust. One possible reason for the lack of statistically significant effects 
during these Follow-On Moving Trials is difficulties reported by the experimenter in getting the 
subjects focused on performing during these trials which were experienced immediately after the 
Surprise Moving Trial. 

However, results did indicate a significant effect of crash alert type on SV deceleration at braking 
onset, POV speed at braking onset, and TTC-Case 1 at SV braking onset. These effects are shown 
in Table 3-18. As in the Surprise Moving Trial phase, these differences may be due in part to the 
(statistically non-significant) brake RT differences observed across crash alert types discussed 
above. Results also indicated a significant effect of age on POV speed at SV braking onset. The 
mean POV speed at SV braking onset for the young, middle-aged, and older groups were 26.0, 
25.7, and 22.2 mph, respectively. 
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Table 3-17	 Percentile Values for Key Driver Performance Measures During Surprise Moving Trials for 
Study 2 (Across All Combinations of Age, Gender, and Crash Alert Type) 

Time During Which 
Variable was Measured 

Dependent Measure (unit) 15th %tile 
Value 

50th %tile 
Value 

85th %tile 
Value 

At POV Braking Onset Time Headway (sec) 1.0 1.5 1.9 

At SV Braking Onset Brake Reaction Time (sec) 0.59 0.84 1.23 

Required Deceleration (g) -0.28 -0.33 -0.42 

Throughout Braking Braking Distance (feet) 75 94 105 

Actual Deceleration (g) -0.35 -0.42 -0.47 

Peak Deceleration (g) -0.53 -0.60 -0.77 

Minimum Headway (sec) 0.6 1.2 1.6 

Minimum Range (feet) 5 17 28 

Table 3-18	 Significant Main Effects of Crash Alert Type on Various Measures 
During Follow-On Moving Trials (Study 2) 

At SV Braking Onset 
Crash Alert Type 

Condition 
Mean Current 

Dec. 
(g) 

Mean POV 
Speed 
(mph) 

Mean TTC / 
Case 1 (sec) 

HUD Speech -0.02 25.9 8.6 

HHDD Speech -0.03 25.6 7.0 

HHDD -0.03 23.7 7.0 

HHDD ake Pulse -0.05 23.3 5.3 

Non-+ 

Non-+ 

Speech + 

Br+ 
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Subjective Measures / Questionnaire Data 

Crash Alert Timing Ratings 

Alerted Stationary Trials 
The within-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD + 
Non-Speech, HHDD + Speech, and HHDD + Brake Pulse), crash alert timing (RDP, RDP + 0.05 
g, and RDP + 0.10 g), and (approach) speed (30 and 60 mph), and the between-subjects variables 
analyzed were age (younger, middle-aged, or older) and gender (male or female). Results 
indicated main effects of crash alert timing and speed, as well as a Crash Alert Timing x Speed 
interaction. In the 30 mph condition, mean crash alert timing ratings for the RDP, RDP + 0.05 g, 
and RDP + 0.10 g crash alert timings were 4.1, 4.4, and 4.8, respectively.  Corresponding mean 
ratings in the 60 mph condition were 3.6, 4.3, and 4.7, respectively.  Hence, the ratings increased 
(i.e., became “later”) as the crash alert timing became more aggressive, and the difference in 
timing ratings between the two speed conditions examined appear to be limited to the RDP crash 
alert timing condition. Overall, the mean crash alert timing ratings for the RDP, RDP + 0.05 g, 
and RDP + 0.10 g conditions were 3.9, 4.4, and 4.7, respectively.  These results indicate that 
under these well-controlled Alerted Stationary Trials, drivers clearly perceived the differences 
between the three crash alert timing approaches evaluated. 

Results also indicated a main effect of age, as well as a marginally significant  (p<0.02) main 
effect of Crash Alert Type. Overall, the mean crash alert timing ratings for younger, middle-
aged, and older groups were 4.6, 4.4, and 4.0, respectively.  Follow-up tests indicated a 
difference between the ratings for the younger versus older groups, while the difference between 
the middle-aged and older groups approached significance (p<0.05). Overall, the mean timing 
ratings for the HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + 
Brake Pulse conditions were 4.4, 4.3, 4.5, and 4.1, respectively.  Follow-up tests indicated a 
difference only between the ratings in the HHDD + Speech and HHDD + Brake Pulse conditions. 

A more insightful look at these crash alert timing data is provided in Figure 3-33. The histogram 
provided shows the percent of responses at each point along the crash rating scale as a function 
of crash alert timing. (For each crash alert timing, across all drivers, 192 total ratings were made). 
This figure averages over the independent variables crash alert type, speed, age, and gender, since 
overall, the effects reported above are modest in size (across all Crash Alert Type x Speed x Age 
x Gender combinations, the mean ratings ranged from 3.6-5.1 on a 7-point scale). 

As can be seen in Figure 3-33, the largest percent (about half) of responses for the RDP and RDP 
+ 0.05 crash alert timings occurred at the “just right” (i.e., “4”) point along the rating scale, 
whereas the largest percent of responses for the RDP + 0.10 g crash alert timing occurred at the 
“slightly late” (i.e., “5”) point along the rating scale. It should be noted that the percent of “much 
too early”, “moderately early”, “moderately late”, and “much too late” responses are extremely 
low (<5%) across nearly all crash alert timing conditions. The one notable exception to this trend 
is that over 10% of drivers rated the RDP + 0.10 g crash alert timing as “moderately late.” 
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Overall, these data clearly suggest that the range of timing approaches employed in this study 
appear to bracket driver preferences for crash alert timing.  If the goal was to get a distribution of 
responses that were symmetrically distributed around the “just right” midpoint of the scale, it 
appears timing somewhere between the RDP and RDP + 0.05 g timing should be employed. 
Furthermore, the trade-offs between a crash alert timing approach which is slightly skewed 
toward early versus skewed toward late in terms of subjective ratings (i.e., RDP versus RDP + 
0.05 g) is not entirely straightforward. 

Surprise Moving Trial 

The between-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD +

Non-Speech, HHDD + Speech, or HHDD + Brake Pulse) and age (younger, middle-aged, or

older). Recall, in this study phase, that the RDP crash alert timing was used. Results indicated

no statistically significant effects, with an overall rating of 4.2 (closest to “just right”). A

histogram provided in Figure 3-34, shows the percent of timing responses at each point along the

crash rating scale. Across all drivers, 24 total rating were made. This data indicates that 83% of

the timing responses were “just right”, and 8% of the timing responses were either “slightly

early” or “slightly late.”


Follow-On Moving Trials

The between-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD +

Non-Speech, HHDD + Speech, or HHDD + Brake Pulse) and age (younger, middle-aged, or

older). Once again, in this study phase, the RDP crash alert timing was used. Results indicated

no statistically significant effects, with an overall rating of 4.0 (closest to “just right”).


Summary of Crash Alert Timing Ratings Findings 

In summary, the crash alert timing ratings from the Alerted Stationary, Surprise Moving, and 
Follow-On Moving Trials provide strong evidence that the crash alert timing approach directly 
derived/modeled from the CAMP Study 1 findings (i.e., the RDP crash alert timing) does an 
excellent job from a driver preference perspective under a wide range of driver expectancy 
conditions. As is best shown in Figure 3-33, assuming “slightly early”, “just right”, and “slightly 
late” ratings would be acceptable to drivers using the RDP algorithm,  the combined ratings of 
“moderately early” and “much too early” amounted to only 6% of all ratings using this crash alert 
timing, and “moderately late” ratings amounted to only 3% of all ratings using this timing (there 
were no “much too late” ratings with this timing). Consequently, in the remaining CAMP 
studies, the RDP crash alert timing approach (the most conservative tested in this study) was 
employed. 
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Figure 3-33	 Histogram of Subjective Crash Alert Timing Ratings as a Function of Crash Alert Timing 
Approach During Alerted Stationary Trials (Study 2) 
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Figure 3-34	 Histogram of Subjective Crash Alert Timing Ratings During 
Surprise Moving Trials (Study 2) 

Alert Modality Appropriateness Questionnaire 

Results from this questionnaire (administered at the end of each interface block of Alerted 
Stationary Trials) are shown in Table 3-19. Across crash alert types, the visual alerts were rated 
on average from “fair” to “good”, with the HUD receiving consistently higher attribute ratings 
than the HHDD visual alert (particularly for the intensity and size attributes). Across crash alert 
types, the auditory alerts were rated on average “just right”, with the speech alert receiving 
slightly higher mean loudness and mean duration ratings than the HHDD alert. Note that the 
actual dBa sound level of the non-speech and speech alerts were the same. In addition, across the 
three crash alert types employing an auditory alert (HUD + Non-Speech, HHDD + Non-Speech, 
and HHDD + Speech), 81% of drivers (ranging between 77%-83% across these alert types) 
indicated the radio should be muted during the alert. For the brake pulse alert, the strength of 
jerk and duration attributes were rated on average closest to “just right”. 

Overall, these findings suggest that the crash alert modalities tested were overall rated good/just 
right, with the exception of the HHDD which received “fair” ratings on size and intensity. Each 
of the crash alert types tested were chosen to represent realistic production constraints (e.g., the 
direct view HHDD could not be placed higher and more central in the driver’s field of view 
without the telltale module interfering with a 5th %tile female driver’s view of the road.) In light 
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of current production constraints, and the overall good/just right ratings that were attained, the 
identical alert modality components were used in Study 3 and Study 4, with one exception. The 
loudness of the auditory alerts was increased from 67.4 dBa to 73.7 dBa in the following studies. 

Table 3-19	 Mean Ratings from Alert Modality Appropriateness Questionnaire Findings 
(Study 2) 

Crash Alert Type 
Modality/Attribute HUD + 

Non-Speech 
HHDD + 

Non-Speech 
HHDD + 
Speech 

HHDD + 
Brake Pulse 

Visual 

Intensity 4.0 3.0 3.0 2.7 

Size 3.9 3.0 3.2 3.0 

Color 4.0 3.6 3.5 3.4 

Location 3.8 3.6 3.5 3.3 

Auditory 

Loudness 3.8 3.8 4.0 N/A. 

Duration 3.9 3.9 4.1 N/A. 

Brake Pulse 

Strength of Jerk N/A. N/A. N/A. 3.8 

Duration N/A. N/A. N/A. 3.6 

Note:  See Appendix A4 for excerpts from a copy of this questionnaire. On the attribute rating scale, 
for visual alerts, 2=Poor, 3=Fair, 4=Good, and 5=Excellent. For the loudness attribute, 
3=Slightly Soft, 4=Just Right, and 5=Slightly Loud. For the auditory duration attribute, 
3=Slightly Short, 4=Just Right, and 5=Slightly Long. For the strength of jerk attribute, 
3=Slightly Weak and 4=Just Right. For the brake pulse duration attribute, 3=Slightly Short 
and 4=Just Right. N/A=Not applicable. 
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Crash Alert Appropriateness Questionnaire 

An Analysis of Variance (ANOVA) was performed on each of the 14 statements employed in 
this questionnaire. The within-subjects variable analyzed was crash alert type (HUD + Non-
Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + Brake Pulse), and the between-
subjects variables analyzed were age (younger, middle-aged, or older) and gender (male or 
female). Due to the relatively large number of statistical tests carried out (which increases the 
probability of spuriously significant results (Hays, 1981), the criterion set for statistical 
significance was p<0.01. All statistically significant results met at least (and often exceeded) the 
adopted p<0.01 criterion. 

Across all 64 cells formed by combining the 4 crash alert types by 14 sound statements, the mean 
statement ratings (averaging over both age and gender) ranged from 3.7 to 6.1 (where 3=perhaps 
disagree, 4=neutral, 5=perhaps agree, 6=moderately agree, and 7=strongly agree). Overall, there 
were little or no statistically significant differences found between the four crash alert types 
examined. The differences found, which were relatively small in magnitude, were for the 
following subset of the 14 statements rated: 

Crash Alert Appropriateness Statements 
5.	 This method would NOT startle me, that is, cause me to blink, jump, or make a rapid 

reflex-like movement. 

6.	 This method would NOT interfere with my ability to make a quick and accurate decision 
about the safest driving action to take (brake, steer, brake and steer, do nothing). 

8.	 This method would NOT annoy me if the alert came on once a week in a situation where 
no driving action was required. 

10. This method would NOT appear out of place in a car or truck. 

11. This method would clearly tell me that I am in danger and need to react immediately. 

13.	 This method of presenting crash alert information would get my attention without being 
overly annoying. 

For Question #8 (not annoying), there was a main effect of Crash Alert Type. The mean ratings 
for the HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + Brake Pulse 
conditions were 5.0, 4.7, 4.0, and 4.0, respectively.  Follow-up planned comparison tests 
indicated significantly lower annoyance ratings in the HUD + Non-Speech condition relative to 
the HHDD + Speech and HHDD + Brake Pulse conditions. It should be noted that a similar 
trend was observed for question #9 (not annoying) at the p<0.05 level, which assumed alerts 
requiring no action occurred once a day (as opposed to the “once a week” assumption in 
Question #8). 

There was also a main effect of Crash Alert Type for Question #6 (not interfering). The mean 
ratings for the HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + 
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Brake Pulse conditions were 5.8, 5.5, 5.2, and 4.9, respectively.  Follow-up planned comparison 
tests did not reveal any significant differences, although it is interesting that the general trend 
across the crash alert types examined for this question parallels that found for Question #8 (not 
annoying). 

There was also an Age x Crash Alert Type interaction for Question #6 (not interfering), as well 
as for Question #5 (not startling). For Question #6, the mean ratings for younger drivers for the 
HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + Brake Pulse 
conditions were 5.4, 5.3, 4.4, and 4.9, respectively.  The corresponding mean ratings for the 
middle-age drivers were 5.9, 5.6, 5.3, and 3.9, respectively, and the corresponding mean ratings 
for the older drivers were 6.1, 5.8, 5.9, and 6.0, respectively.  These results suggest these 
interference effects were restricted to younger and middle-aged drivers, and that overall, 
interference effects were particularly associated with the HHDD + Brake Pulse crash alert type 
for middle-age drivers. For Question #5 (not startling), the mean ratings for younger drivers for 
the HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + Brake Pulse 
conditions were 4.6, 4.6, 3.6, and 4.5, respectively.  The corresponding mean ratings for the 
middle-age drivers were 5.8, 5.3, 5.3, and 3.4, respectively, and the corresponding mean ratings 
for the older drivers were 5.5, 5.1, 5.3, and 6.0, respectively.  These results indicate a fair amount 
of disagreement on startle ratings across age groups. The two lowest mean ratings (which 
indicates more startle) were given for the HHDD + Speech (3.6 rating) and HHDD + Brake Pulse 
(3.4 rating) conditions by the younger and middle-aged drivers, respectively.  In contrast, the 
highest mean rating (which indicated less startle) was given for the HHDD + Brake Pulse (6.0 
rating) condition by the older drivers. 

There were also Gender x Crash Alert Type interactions for Question #10 (harmony), Question 
#11 (danger), and Question #13 (good method). Across these three question (#10, #11, and #13), 
the lowest (least desirable) mean ratings were provided by female drivers for the HHDD + Brake 
Pulse condition, whereas male drivers tended to rate the HHDD + Brake Pulse condition quite 
favorably. For Question #10 (harmony), the mean ratings for male drivers for the HUD + Non-
Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + Brake Pulse crash alert types 
were 5.7, 6.0, 6.0, and 6.3, respectively.  The corresponding mean ratings for the female drivers 
were 5.6, 5.9, 6.1, and 4.8, respectively.  For Question #11 (danger), the mean ratings for male 
drivers for the HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, and HHDD + 
Brake Pulse crash alert types were 5.9, 5.3, 5.5, and 6.0, respectively.  The corresponding mean 
ratings for the female drivers were 6.3, 6.0, 6.2, and 4.8, respectively.  For Question #11 (good 
method), the mean ratings for male drivers for the HUD + Non-Speech, HHDD + Non-Speech, 
HHDD + Speech, and HHDD + Brake Pulse crash alert types were 5.9, 5.3, 4.9, and 6.3, 
respectively.  The corresponding mean ratings for the female drivers were 6.0, 5.7, 5.8, and 4.8, 
respectively. 

Overall, these results generally indicated less desirable statement ratings associated with the 
HHDD + Brake Pulse condition (e.g., annoyance), and in some instances, with the HHDD + 
Speech condition. In some cases for the HHDD + Brake Pulse condition (i.e., the harmony, 
danger, and good method statements), this trend was primarily restricted to female drivers 
(whereas male drivers provided favorable ratings for the HHDD + Brake Pulse condition). It 
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should be also noted that with the exception of Question #10 (harmony), the HUD + Non-Speech 
condition received the highest (most desirable) mean rating for each of the statements examined. 

Build an Interface Questionnaire 

Results from this questionnaire (administered at the end of testing, after the Follow-On Moving 
Trials) are shown in Table 3-20. A few drivers were eliminated from analysis either because they 
failed to complete the questionnaire or because they requested that a speech and non-speech alert 
be presented simultaneously. 

Overall, for the 1-stage alert, 3, 12, and 6 drivers requested single-, dual-, and tri-modality crash 
alerts, respectively.  The strong driver preference against a single-modality crash alert approach 
(18 of 21 drivers) provides support for a multi-modality crash alert approach (particularly a dual-
modality crash alert approach) in terms of accommodating driver preferences. Sixteen of 21 
drivers wanted a visual alert component as part of the crash alert, 18 of 21 drivers wanted an 
auditory alert component as part of the crash alert, and 11 of 21 drivers wanted a brake pulse 
component as part of the crash alert. For those selecting a visual alert, 13 of 16 drivers chose a 
HUD over the HHDD. For those selecting an auditory alert, 9 drivers wanted a speech warning 
and 9 drivers wanted a non-speech warning.  The most frequent requests (selected by 4 drivers 
each) were the HUD + Non-Speech and HUD + Non-Speech + Brake Pulse combinations. 
Hence, the preference for the HUD visual alert, and the HUD and non-speech combination as 
part of the crash alert, were the most interesting results. However, it should be noted that 
together, these two most frequent requests were only selected by 8 of the 21 drivers. 

For the 2-stage alert, there was wide disagreement between drivers, which may in part be due to 
drivers having no direct prior experience with 2-stage crash alerts and/or having difficulties 
understanding the 2-stage crash alert concept. Overall, for the cautionary part of the crash alert, 
15 and 5 drivers requested single- and dual-modality crash alerts, respectively.  10 of 20 drivers 
wanted a visual alert component as part of the cautionary crash alert, 12 of 20 drivers wanted an 
auditory alert component as part of the cautionary crash alert, and only 3 of 20 drivers wanted a 
brake pulse component as part of this cautionary crash alert. For those selecting a visual alert, 8 
of the 10 drivers chose a HUD over the HHDD. For those selecting an auditory alert, 9 drivers 
wanted a speech warning and 3 drivers wanted a non-speech warning.  The most frequent 
requests were the single-modality alerts (selected by 6 drivers each) involving the HUD and 
speech alerts. In sharp contrast to the strong multi-modality alert preferences described above for 
a 1-stage crash alert, for the cautionary portion of the 2-stage alert, there was a strong preference 
for a single-modality alert (15 of 20 drivers). 

Overall, for the imminent part of the 2-stage crash alert, 10, 5, and 5 drivers requested single-, 
dual-, and tri-modality crash alerts, respectively.  Seven of 20 drivers wanted a visual alert 
component as part of the imminent crash alert, 17 of 20 drivers wanted an auditory alert 
component as part of this imminent crash alert, and 11 of 20 drivers wanted a brake pulse 
component as part of this imminent crash alert. For those selecting a visual alert, 5 of the 7 
drivers chose a HUD over the HHDD. For those selecting an auditory alert, 8 drivers wanted a 
speech warning and 9 drivers wanted a non-speech warning.  As with the cautionary portion of 



3-116 

this 2-stage alert, the most frequent requests were single-modality alerts (selected by 4 drivers 
each) involving the HUD and speech alerts. Once again, in contrast to the strong multi-modality 
alert preferences described above for a 1-stage crash alert, for the imminent portion of this 2-
stage alert, there was no strong preference for a multi-modality warning (10 of 20 drivers). 

In terms of alert modality, preference shifts when transitioning between the cautionary and 
imminent stages of a 2-stage alert. A decrease in requests for visual alerts (from 10 to 7), an 
increase in requests for auditory alerts (from 12 to 17), and a substantial increase in brake pulse 
alert requests (from 3 to 11). A more detailed look at the responses indicated that the most 
consistent pair (observed for only 5 of the 20 drivers) involved a HUD cautionary alert followed 
by a non-speech imminent alert. For 2 of these 5 drivers, a brake pulse crash alert component 
was also included as part of the imminent alert. 

In summary, results from this questionnaire indicate a strong preference for a HUD over HHDD 
visual alert. No clear preferences for a speech versus non-speech alerts, and a substantially 
weaker preference for including a brake pulse component in the cautionary portion of a 2-stage 
alert relative to the imminent portion of a 2-stage alert. Interestingly, there was substantially no 
difference in the number of auditory alert and brake pulse alert requests in the imminent portion 
of a 2-stage alert relative to the 1-stage alert scenario. However, the number of visual alert 
requests were about twice as high in the 1-stage alert scenario relative to the scenario involving 
the imminent portion of a 2-stage alert. These results suggested that, overall, drivers perceived 
the 1-stage alert to be closer to the imminent (relative to the cautionary) portion of a 2-stage 
crash alert. 
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Table 3-20	 Build an Interface Questionnaire Findings for 1-Stage and 2-Stage Crash Alert Scenarios 
(Study 2) 

Crash Alert Type Request 
Visual 

Component 
Auditory 

Component 
Number of Requests 

Crash Alert 
Modality 

Type 

HUD HHDD Non-
Speech 

Speech Brake 
Pulse 

For 1-
Stage 
Alert 

For 2-
Stage 

Caution
ary 

For 2-
Stage 

Imminent 

V 0 0 

V 2 4 

V 1 4 

Single-
Modality 

V 0 2 

V 4 1 

V 2 0 

V 2 0 

V 1 0 

V 0 0 

V 1 1 

V 2 1 

Dual-
Modality 

V 0 2 

V V 4 3 

V 1 1 
Tri-
Modality 

V V 1 1 

6 

1 

6 

2 

V 0 

V 2 

V 0 

V 1 

V 1 

V 0 

V 0 

V 1 

V 0 

V V 0 

V 0 

Note:  See Appendix A6 for a copy of this questionnaire. Only requested crash alert types are listed. 
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Name the System Questionnaire 

This questionnaire was administered at the end of testing, after the Follow-On Moving Trials. 
Results from the open-ended portion of this questionnaire were not particularly informative for 
assessing a driver-preferred system name. No name was mentioned more than twice. 10 of the 
23 drivers included the word “Alert” as part of the proposed system name, whereas 6 of the 23 
drivers included the word “Warning” as part of the proposed system name. However, the 
interpretation of these “Alert” versus “Warning” results is somewhat unclear, since during the 
driver’s testing session, the various crash alerts tested were referred to “alerts”. These references 
may have influenced drivers’ generation of a proposed system name. 

Results for the ranking portion of this questionnaire are shown in Table 3-21. These proposed 
system name choices are listed in the order of number of total votes received in the top three 
choices (which is shown in the rightmost column of Table 3-21). There are several interesting 
trends that can be observed. First, the only name that was picked in the top three by more than 
half of the drivers was “Forward Collision Warning.” Second, three of the top four names 
included “Collision Warning” as part of the system name (as opposed to “Crash Warning” or 
“Accident Warning”). Third, the two top choices included “Forward” as part of the system name 
(as opposed to “Front-end” or “Rear-end”). 

It should be stressed that this naming data is strictly based on driver preferences, and does not 
provide direct data on what driver expectations (in terms of system performance) would be 
associated with each of these proposed names. During the middle-portion of this CAMP FCW 
system program, the name of the system being addressed in this program was changed from 
“Forward Collision Warning” to “Rear-end Collision Warning” in an attempt to communicate to 
the driver that the system was designed only for responding to vehicles ahead, and not, for 
example, for detecting pedestrians. 

In the following study (Study 3) a similar questionnaire was administered. Unlike in the current 
study, drivers were informed that this feature was not designed to detect pedestrians, and that this 
feature would occasionally alert or warn the driver under conditions which pose no threat to the 
driver. Furthermore, the eight choices examined in the following study were compiled by 
selecting the top four choices listed in Table 3-21, and adding four identical system name choices 
which using the word “alert” rather than “warning.” 
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Table 3-21 Name the System Questionnaire Findings (Study 2) 

Number of Votes 
Proposed System Name Best 

Choice 
Second 
Choice 

Third 
Choice 

In Top 
Three 

Forward Collision Warning System 4 6 3 13 

Forward  Crash  Warning  System 7 

Front-end Collision Warning System 4 

Rear-end Collision Warning System 3 

Forward  Accident  Warning  System 0 

Front-end  Accident  Warning  System 3 

Rear-end  Accident  Warning  System 0 

Front-end  Crash  Warning  System 1 

Rear-end  Crash  Warning  System 0 

9 1 1 

9 2 3 

9 4 2 

7 6 1 

6 2 1 

5 2 3 

4 1 2 

4 1 3 

Note: See Appendix A7 for a copy of this questionnaire. 24 drivers provided ratings. 
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3.8 Study 3 Experimental Methodology and Approach 

Unexpected Braking Event with “Unexplained” FCW Crash Alerts 

Building upon the solid foundation provided by the results obtained from CAMP Study 1 and 
Study 2, this study further examined how and when to present crash alert information to a 
relatively inattentive driver. An overview of the experimental methodology and approach used in 
this study is shown in Table 3-11, and an overview of the order of experiment events (or 
procedures) in this study is shown in Table 3-12. Unlike Study 2, a completely new set of test 
drivers was tested who had not previously participated in CAMP Study 1. In sharp contrast to 
Study 2, drivers in this study were not informed at the beginning of the study that the purpose of 
this research was to address the usefulness of FCW system crash alerts for helping drivers avoid 
rear-end collisions. 

In this study, the Surprise Moving Trial occurred during the first phase of the study. In this early 
phase, the on-board computer was allegedly “learning” driver’s normal following behavior for a 
later “automatic distance control” phase. Drivers were simply asked to follow the lead vehicle at 
their “normal” following distance. The backseat experimenter was engaging the driver in a 
structured Question and Answer (Q & A) background information dialogue when the Surprise 
Moving Trial was introduced. Prior to this event, these (naïve) drivers were completely unaware 
the vehicle was equipped with a FCW system crash alert. 

After the Surprise Moving Trial, drivers were asked a series of questions about whether they 
noticed anything coming on or happening inside the car before they began braking.  This trial 
was then followed by two Follow-On Moving Trials using the same alert type used for the 
Surprise Moving Trial, and then two Follow-On Moving Trials with a comparison alert type. As 
in Study 2, immediately after both the Surprise Moving Trial and the Follow-On Moving Trials, 
drivers were asked judge the appropriateness of the FCW system crash alert timing on a 7-point 
scale ranging from “much too early” to “much too late”. 

The timing of the crash alert information was again based on modeling results from CAMP Study 
1, and utilized the most conservative crash alert timing approach used in Study 2 (i.e., the RDP 
timing). For both the Surprise Moving Trial and the Follow-On Moving Trials, driver RT was 
assumed to be 1.50 seconds. 

Five different 1-stage FCW system crash alert types were evaluated, three of which were 
“carryovers” from Study 2. These carryovers included the HUD + Non-Speech, HHDD + Non-
Speech, and HHDD + Speech crash alert type conditions. The two new crash alert types tested 
included a HHDD + Non-Speech condition in which the HHDD was flashed, which was added in 
an attempt to increase the noticeability of the HHDD alert. This alert is subsequently referred to 
as the Flashing HHDD + Non-Speech condition. The second new crash alert type tested 
involved adding the non-speech tone component to the HHDD + Brake Pulse crash alert type 
tested in Study 2, forming a 1-stage, tri-modality alert. This alert is subsequently referred to as 
the HHDD + Brake Pulse + Non-Speech condition. The non-speech tone component was added 
in an attempt to reduce the relatively slow brake RTs associated with the HHDD + Brake Pulse 
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condition in Study 2, and to reduce any ambiguity associated with the brake pulse by 
simultaneously providing a non-speech alert. 

3.8.1 Subjects 

Test participants consisted of 15 males and 15 females in each of two different age groups; 40-57 
and 60-66 years old. Corresponding mean ages for these two groups were 45 and 63 years old, 
respectively.  Each driver was tested individually in one approximately 1 ½ hour session and paid 
$150 for their participation. It should be noted that drivers finished 1 hour earlier than they were 
led to believe, in order to be consistent with the test instruction rouse used in Part 1 of this study. 
Drivers were recruited by an outside market research recruiting firm, and were required to be 
“naive” drivers who had not previously participated in CAMP Study 1 or Study 2. Drivers who 
were ultimately allowed to participate were mailed the information letter shown in Appendix A8 
prior to testing.  A copy of the informed consent statement is provided in Appendix A9, which 
describes the various conditions that ruled out potential drivers from participating (which were 
nearly identical to the conditions used in CAMP Study 1). 

3.8.2 Test Site 

Data was gathered on the same straightaway used in CAMP Study 1 and Study 2. The road was 
closed to all other traffic during testing.  All testing was conducted under daytime conditions 
under dry road and dry weather conditions. 

3.8.3 Test Vehicles and the “Surrogate” (Lead Vehicle) Target 

The SV, surrogate target, and POV were identical to that used in CAMP Study 1 and Study 2. 
Both the SV front seat, passenger-side experimenter and POV driver were trained General 
Motors Milford Proving Ground test drivers who had previous experience conducting brake tests. 
The SV and the POV test drivers communicated during the study via digital radio 
communication. 

3.8.4 Data Acquisition System 

The data acquisition system used was identical to that used in CAMP Study 2, with the exception 
of the following crash alert changes. The capability of flashing the HHDD was added. When 
flashed, the HHDD was flashed at a 4 Hz rate, with a 50% duty cycle (i.e., repeated cycles of 125 
ms on and 125 ms off). In addition, the loudness of the alert sounds were increased such that the 
dBa levels (averaging over left and right channels) were approximately 74.8 and 72.6 dBa for the 
non-speech and speech sounds, respectively. 



3-123 

3.8.5 Procedure and Design 

Procedures Before and After Test Trials 

The procedures used were identical to those used in Study 2, with the exception of the test 
instructions (shown in Appendix A10). Prior to the start of the test session, subjects in the HUD 
+ Non-Speech condition were instructed to adjust the HUD while viewing a “CAMP” logo, since 
HUD visibility is dependent on the driver’s seated eye position. Subjects were told the HUD 
would be used in later testing.  This HUD adjustment procedure was necessary to help ensure the 
HUD would be visible to the driver (i.e., the driver’s eyes would be within the HUD eye box or 
viewing area) during the Surprise Moving Trial. 

Test Phases / Driver Instructions 

Unlike in Study 2, the Surprise Moving Trial in this study occurred during the first phase of the 
study. In this first phase, the computer was allegedly “learning” driver’s normal following 
behavior for a later “automatic distance control” phase. Drivers were simply asked to follow the 
lead vehicle at their “normal” following distance. The backseat experimenter engaged the driver 
in a structured Question & Answer (Q & A) background information dialogue. The last two 
questions of the dialogue were as follows: 

1.	 Can you tell me the make and model of the last three vehicles you owned prior to your 
current vehicle? 

2. In your opinion, what is the best car you ever owned and why? 

During this last question, the surprise braking event was introduced under the same conditions 
(30 mph POV speed, -0.37 g POV deceleration, and no brake lights) used in Study 2. This 
surprise trial technique will be referred to as the “Background Q & A” surprise technique. After 
this event, drivers were asked a series of questions shown below about whether they noticed 
anything coming on or happening inside the car before they began braking. 

1.	 “Did you notice anything come on or happen inside the car before you began 
braking?” 
If yes, please describe what came on (please be as specific as possible). 

2.	 Did you notice anything else come on or happen inside the car before you began 
braking? 
If yes, please describe what came on (please be as specific as possible). 

If the driver did notice any of the crash alerts components coming on, they were asked a series of 
additional questions about the alert components that they did notice, which are shown below. If 
the driver did not report in an open-ended fashion any of the crash alerts components coming on, 
they were asked more specifically (one at a time) if they noticed a visual indicator, sound, or 
vehicle braking or jerk. Based on this experimenter prompting, if the driver then reported 
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noticing any of the crash alerts components coming on, they were asked the questions below 
about the alert components that they did notice. 

- If the driver noticed visual alert: 
‚ What color was the indicator? 
‚ Where was this indicator located? 
‚ Were there letters or a picture, or letters and a picture on the indicator? 

If you saw letters, what word or words did they spell? 
If you saw a picture, please draw or describe the picture? 

What does this picture mean to you? 

- If the driver noticed the auditory alert: 
‚ What was the type of sound you noticed? 
‚ Was the sound a tone or a word, or both? 

If you heard a tone, please describe the sound. 
If you heard a word, please say the word. 

If drivers noticed the brake pulse alert, they were asked to describe the sensation. 

In addition, after this Surprise Moving Trial, drivers were asked to judge the appropriateness of 
the crash alert timing using the same rating scale used during Study 2. 

The Surprise Moving Trial was then followed by two comparable alerted trials using the same 
alert type, and then two comparable alerted trials with the comparison HHDD + Non-Speech 
alert type. In the condition in which the driver experienced the HHDD + Non-Speech alert 
during the Surprise Moving Trial, the comparison alert was a HHDD + Speech alert. During 
these Follow-On Moving Trials (the second phase of the study), drivers were instructed to brake 
immediately in response to the crash alert in order to avoid colliding with the artificial car. 

In this study, five separate, 1-stage, multi-modality crash alert types were evaluated, which are 
indicated below: 

° Head-Up Display (HUD) + Non-Speech Tone 

° High Head-Down Display (HHDD) + Non-Speech Tone 

° High Head-Down Display (HHDD) + Speech 

° High Head-Down Display (HHDD) + Non-Speech Tone + Brake Pulse 

° Flashing High Head-Down Display (HHDD) + Non-Speech Tone 

For crash alert timing, the RDP crash alert timing was employed with a 1.5 second driver brake 
RT assumption. The “bail-out” auditory alert for the front seat, passenger-side experimenter was 
also triggered based on the RDP crash alert timing approach, with assumed inputs of a 0.52 
second driver (test driver) brake RT, and an assumed constant deceleration in response to the 
crash alert of -0.55 g’s. The “bail-out” sound, which was distinct from the non-speech tone 
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employed, signaled the experimenter to take over braking using the add-on brake. A black 
cardboard visual barrier was placed between the driver and front seat experimenter which 
prevented the driver from anticipating (or being distracted by) the foot (braking) behavior of the 
experimenter, and allowed the experimenter to discretely let their foot hover over the add-on 
brake during a test trial. 

Independent Variables Examined 

For the Surprise Moving Trial and Follow-On Moving Trials, the between-subjects variables 
analyzed were crash alert type (HUD + Non-Speech, HHDD + Non-Speech, HHDD + Speech, 
HHDD + Brake Pulse + Non-Speech, or Flashing HHDD + Non-Speech), age (middle-aged or 
older), and gender (male or female). 

It should be noted that originally, additional analysis were planned for the Follow-On Trials to 
compare the first pair of trials, using the crash alert type experienced during the Surprise Moving 
Trial, to the second pair of Follow-On Moving Trials experienced with the comparison crash 
alert type (which in 4 of the 5 cases was the HHDD + Non-Speech condition). However, a strong 
order effect was found with the only two crash alert type conditions during which such an effect 
could be assessed (HHDD + Non-Speech/HHDD + Speech order versus the HHDD + 
Speech/HHDD + Non-Speech order). Hence, any comparisons between the first and second pair 
of Follow-On Moving Trials were deemed inappropriate, and all analyses were performed on the 
first pair of Follow-On Moving Trials in order to avoid confounding potential order effects. 

Objective (Or Performance) Measures Examined 

Same as those used in the Surprise Moving Trial and the Follow-On Moving Trials conditions of 
Study 2. 

Subjective Measures / Questionnaire Data. 

As in Study 2, immediately after each trial, drivers were asked to judge the appropriateness of the 
FCW system crash alert timing using the 7-point scale ranging from “much too early” to “much 
too late. These ratings were analyzed for each phase of the study using the same independent 
variables and analysis approach that was used to analyze the driver performance measures. 

In addition, after the Surprise Moving Trial, drivers were asked various questions about what 
they noticed coming on or happening inside the car before they began braking.  This is referred to 
as the “alert noticeability” questionnaire. These questions were previously described above in 
the “Test phases / Driver instructions” section. 

At the end of the study, drivers were asked to fill out three separate questionnaires. First, drivers 
were administered the alert modality appropriateness questionnaire previously used in Study 2 
after each pair of Follow-On Moving Trials. Second, drivers were administered the crash alert 
appropriateness questionnaire used in Study 2. Third, drivers were administered the rank order 
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portion of the name the system questionnaire used in Study 2. This revised questionnaire is 
shown in Appendix A11. Unlike Study 2, drivers were informed that the feature they were to 
name was not designed to detect pedestrians, and that this feature would occasionally alert or 
warn the driver under conditions which pose no threat to the driver. This change was made in 
order to be more consistent with current CAMP assumptions about FCW system performance. 
Drivers were asked to rank order the top three names from the following set of proposed system 
names, which are shown below. The eight system name choices below were compiled by 
selecting the top four choices found in Study 2 (see Table 3-21), and adding four identical system 
name choices which used the word “alert” rather than “warning.” 

Proposed System Names 
° Forward Collision Warning System 

° Forward Collision Alert System 

° Forward Crash Warning System 

° Forward Crash Alert System 

° Front-End Collision Warning System 

° Front-End Collision Alert System 

° Rear-End Collision Warning System 

° Rear-End Collision Alert System 
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3.8.6 Results and Discussion 

Overview of Statistical Analysis Approach for Objective Measures 

For the analysis of the objective (or performance) measures, a factorial Analysis of Variance 
(ANOVA) was performed for each relevant performance measure (i.e., when the lead vehicle 
was moving) used in Study 1, along with the brake reaction time measure defined in Study 2. 
Data from the Surprise Moving Trial and Follow-On Moving Trials were analyzed separately 
during the statistical analysis. The criterion set for statistical significance was p<0.05. Unless 
otherwise noted, all statistically significant results indicated met (and often exceeded) these 
adopted criterion. 

Objective (or Performance) Measures 

Surprise Moving Trial 

The between-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD + 
Non-Speech, HHDD + Speech, HHDD + Brake Pulse + Non-Speech, or Flashing HHDD + Non-
Speech), age (middle-aged or older), and gender (male or female). During 2 of these 60 Surprise 
Moving Trials, the passenger-side experimenter intervened to assist the driver in coming to a 
stop, but the driver contacted the brake first. This occurred once in the HUD + Non-Speech 
condition, and once in the Flashing HHDD + Non-Speech. It remains unclear whether these 
drivers could have avoided impact with the surrogate target without the assistance of the 
passenger-side experimenter. In these two cases, the data obtained at onset of braking was 
included in the analysis, but any measures obtained throughout or at the end of braking were 
excluded from the analysis. 

The brake RT findings are shown in Figure 3-35. Unlike Study 2, these results did not indicate a 
main effect of crash alert type on brake RTs. However, a planned comparison test did find there 
was a significant effect of faster brake RTs in the HHDD + Non-Speech relative to the HHDD + 
Speech condition. One hypothesis for these findings is that the use of the non-speech component 
across 4 of the 5 crash alert types examined in effect neutralized any differences between the 
various crash alert types. Partial support for this hypothesis comes from a planned comparison of 
brake RTs in the HHDD + Speech condition relative to the remaining four crash alert types 
combined, all of which have a non-speech component. Although, results did not quite reach 
statistical significance (p<0.11), this comparison does provide some support for this “non-speech 
tone neutralization” hypothesis. 

Figure 3-36 provides the brake RT distribution (based on 60 RTs) during these Surprise Moving 
Trials for all drivers. It is worth noting that no subject yielded a brake RT higher than the 1.5 
second brake RT assumed for crash alert timing purposes. This distribution is overall quite 
similar to the upper-percentile distribution found in Study 2 (see Figure 3-32), with a 0.13 second 
lower 85th %tile value and a 0.16 second lower 95th %tile value. 
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There were also significant main effects of crash alert type on a number of dependent measures, 
which are shown in Table 3-22, along with brackets indicating significant differences between 
pairs of conditions found from follow-up tests. These results generally indicate that the driver 
was in a more conservative (less aggressive) kinematic scenario in the HHDD + Brake Pulse + 
Non-Speech scenario relative to the HUD + Non-Speech and HHDD + Speech conditions (i.e., 
lower speed, TTC, and required deceleration values), and for a few variables (minimum headway 
and range) relative to the Flashing HUD + Non-Speech condition. There were no differences 
found between the HHDD + Brake Pulse + Non-Speech and the (steady) HHDD + Non-Speech 
condition. 

For the dependent measures shown in Table 3-22, there was only one higher order interaction 
involving the crash alert type variable, and this was an Age x Crash Alert Type interaction with 
the minimum range measure. For the middle-age group, mean minimum ranges in the HUD + 
Non-Speech, HHDD + Non-Speech, HHDD + Brake Pulse + Non-Speech, HHDD + Speech, and 
Flashing HHDD + Non-Speech conditions were 16, 13, 27, 10, and 6 feet, respectively.  The 
corresponding mean minimum ranges for the older age group were 11, 13, 19, 23, and 17 feet, 
respectively.  (For a point of reference, as mentioned in the CAMP Study 1 report, 1 mid-size car 
length is about 16 feet.). These minimum range data are not straightforward to interpret, since a 
small minimum range can be obtained within the context of a hard stop or more of a coasting, 
rolling stop. 

In summary, as in Study 2, results from the Surprise Moving Trial indicate that the fastest mean 
brake reactions times occurred in the HUD + Non-Speech and HHDD + Non-Speech conditions, 
and brake RTs were significantly faster in the HHDD + Non-Speech relative to the HHDD + 
Speech condition. It is also worth noting that, in comparing mean brake RTs from Study 2 to 
those in the current study, brake RTs were reduced by 30% by adding a non-speech component to 
the HHDD + Brake Pulse crash alert type examined in Study 2. It is also interesting to note that, 
overall, the distribution of all brake RTs observed during these trials is very similar (albeit with 
times slightly lower in the upper percentiles) to those observed in Study 2. Finally, results found 
for the TTC-based and required deceleration measures suggest that the vehicle slowing, resulting 
from the brake pulse cue, resulted in the driver being in a more conservative kinematic scenario 
at SV braking onset relative to the HUD + Non-Speech and HHDD + Speech conditions (but not 
relative to the HHDD + Non-Speech and Flashing HHDD + Non-Speech conditions). 

For reference and comparison purposes, Table 3-28 provides a list of various percentile values 
for key variables, along with the corresponding values for Study 2 Surprise Moving Trials for 
comparison purposes (previously shown in Table 3-17). 
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Figure 3-35	 Ave. Brake Reaction Times During Surprise Trials as a Function of Crash Alert 
Type (Study 3) 
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Figure 3-36 Brake Reaction Time Distribution During Surprise Moving Trials (Study 3) 
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Table 3-22	 Significant Main Effects of Crash Alert Type on Various Driver Performance Measures 
During the Surprise Moving Trials, as well as Results from Follow-Up Tests (Study 3) 

At SV Braking Onset Throughout Braking 
Crash Alert 

Type 
SV 

Speed 
(mph) 

TTC / 
Case 1 
(sec) 

TTC / 
Case 2 
(sec) 

Req. 
Decel. 

(g) 

Peak 
Decel. 

(g) 

Min 
TTC / 
Case 2 
(sec) 

Min. 
Head-
way 
(sec) 

Min. 
Range 
(feet) 

HHDD 
+ 

Non-Speech 
31.1 7.1 2.7 -0.31 -0.52 2.6 1.3 13.5 

HUD 
+ 

Non-Speech 
31.2 6.3 2.4 -0.34 -0.62 2.3 1.0 13.0 

HHDD + 
Non-Speech 
+ Br. Pulse 

30.0 8.2 2.9 -0.28 -0.51 2.9 1.6 23.0 

HHDD 
+ 

Speech 
31.3 5.3 2.4 -0.36 -0.60 2.2 1.1 16.2 

HHDD 
Flashing 

+ 
Non-Speech 

30.8 6.2 2.5 -0.34 -0.53 2.5 1.1 11.2 

Note:  Brackets indicating significant differences between pairs of conditions found from follow-up tests. 

Table 3-23	 Percentile Values for Key Driver Performance Measures During Surprise Moving Trials 
for Study 3 (Across All Combinations of Age, Gender and Crash Alert Type Variables) 

Time During Which 
Variable was Measured 

Dependent Measure (unit) 15th %tile 
Value 

50th %tile 
Value 

85th %tile 
Value 

At POV Braking Onset Time Headway (sec) 1.1 (1.0) 1.6 (1.5) 2.1 (1.9) 

At SV Braking Onset Brake Reaction Time (sec) 0.46 (0.59) 0.82 (0.84) 1.10 (1.23) 

Required Deceleration (g) -0.26 (-0.28) -0.32 (-0.33) -0.40 (-0.42) 

Throughout Braking Braking Distance (feet) 86 (75) 103 (94) 115 (105) 

Actual Deceleration (g) -0.30 (-0.35) -0.36 (-0.42) -0.44 (-0.47) 

Peak Deceleration (g) -0.44 (-0.53) -0.55 (-0.60) -0.64 (-0.77) 

Minimum Headway (sec) 0.5 (0.6) 1.3 (1.2) 1.7 (1.6) 

Minimum Range (feet) 4 (5) 15 (17) 23 (28) 

Note: Numbers shown in parenthesis indicate corresponding values from Study 2 Surprise Moving Trials. 
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Follow-On Moving Trials 

The between-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD + 
Non-Speech, HHDD + Speech, HHDD + Brake Pulse + Non-Speech, or Flashing HHDD + Non-
Speech), age (middle-aged or older), and gender (male or female). As in Study 2, results 
indicated no statistically significant effects on driver brake RTs during Follow-On Moving 
Trials. Across the crash alert type conditions examined, mean brake RTs ranged from 485 to 579 
ms. Once again the lack of differences observed may be due to difficulties reported by the 
experimenter in getting the drivers focused on performing during these trials which were 
experienced immediately after the Surprise Moving Trial. 

However, there were significant main effects of crash alert type on a number of dependent 
measures, where are shown in Table 3-24, along with brackets indicating significant differences 
between pairs of conditions found from follow-up tests. These results indicate that the driver 
was in a more conservative (less aggressive) kinematic scenario in the HHDD + Brake Pulse + 
Non-Speech scenario relative to the remaining crash alert type conditions (i.e., lower TTC, and 
required deceleration values). Unlike during the Surprise Moving Trial phase of this study, there 
were differences found between the HHDD + Brake Pulse + Non-Speech and the steady/flashing 
HHDD + Non-Speech conditions during this Follow-On Moving Trials phase. 

For the dependent measures shown in Table 3-24, there was only one higher order interaction 
involving the crash alert type variable, and this was an Age x Gender x Crash Alert Type 
interaction with the minimum range measure. This interaction indicated that for each of the five 
crash alert types tested, the direction of the change in the mean minimum range from the middle-
aged to older groups (i.e., either an increase or decrease in minimum range) was the exact 
opposite for the male relative to female groups. Of the 20 cells formed by this 3-way interaction, 
3 of the 4 longest minimum ranges occurred in the HHDD + Brake Pulse + Non-Speech 
condition. However, as was mentioned earlier, these minimum range data are not 
straightforward to interpret, since a small minimum range can be obtained within the context of a 
controlled stop. 

There were also Age x Gender x Crash Alert Type interaction effects on the following measures: 
range at POV braking onset, SV Speed at POV braking onset, headway at POV braking onset, 
range at SV braking onset, headway at SV braking onset, POV Speed at SV braking onset, and 
SV actual deceleration at SV braking onset. These 3-way interactions generally indicated that for 
the majority of the five crash alert types tested, the direction of the change in the measure of 
interest from the middle-aged to older groups (i.e., either an increase or decrease in the measure) 
was the exact opposite for the male relative to female groups. For both the range and headway 
measures at both POV braking onset and SV braking onset, the nature of this Age x Gender x 
Crash Alert Type interaction was very similar. For the male drivers, with the exception of the 
HHDD + Brake Pulse + Non-Speech crash alert type, the mean values were lower for the middle-
aged relative to the older-aged group. In contrast, for the female drivers, with the exception of 
the HHDD + Brake Pulse + Non-Speech and HHDD + Non-Speech crash alert types, the mean 
values were higher for the middle-aged relative to the older-aged group for 3 of the 5 crash alert 
types tested. For 4 out of the 5 crash alert types tested, (the exception being the HHDD + Non-
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Speech condition), the direction of change in the measure of interest from the middle aged to 
older groups (i.e., either an increase or decrease in the measure) was the exact opposite for the 
male relative to female groups. 

There were also a few statistically significant effects not involving the crash alert type variable. 
There was a main effect of age on mean peak deceleration values. For the middle-aged and 
older-aged groups, the mean peak deceleration values were -0.49 and -0.56, respectively.  There 
was also an Age x Gender interaction for the TTC-Case 2 measure at SV braking onset. For the 
middle-aged group, the mean TTC-Case 2 values for male and female drivers were 2.8 and 3.1 
seconds, respectively.  The corresponding mean values for the older age group were 3.1 and 3.0 
seconds, respectively. 

In summary, as with the Surprise Moving Trial, results from the Follow-On Moving Trials 
indicate that the driver was in a more conservative (less aggressive) kinematic scenario in the 
HHDD + Brake Pulse + Non-Speech scenario relative to the remaining crash alert type 
conditions (i.e., lower TTC, and required deceleration values). Although there were differences 
found between the HHDD + Brake Pulse + Non-Speech and the steady/flashing HHDD + Non-
Speech conditions (unlike results found for the Surprise Moving Trial phase of this study), these 
differences were not apparent for the required deceleration measure. 

Table 3-24	 Significant Main Effects of Crash Alert Type on Various Driver Performance Measures 
During Follow-On Moving Trials, as well as Results from Follow-Up Tests (Study 3) 

At SV Braking Onset Throughout Braking 

Crash Alert 
Type 

Mean 
Current 

Dec. 
(g) 

TTC / 
Case 2 
(sec) 

Req. 
Decel. 

(g) 

Min 
TTC / 
Case 1 

(sec 

Min 
TTC / 
Case 2 
(sec) 

Min. 
Range 
(feet) 

HHDD 
+ 

Non-Speech 
-0.02 3.0 -0.27 3.1 3.0 25 

HUD 
+ 

Non-Speech 
-0.02 2.8 -0.30 2.2 2.6 17 

HHDD + 
Non-Speech 
+ Br. Pulse 

-0.10 3.4 -0.25 5.1 3.2 42 

HHDD 
+ 

Speech 
-0.02 2.9 -0.29 3.7 2.8 29 

HHDD 
Flashing 

+ 
Non-Speech 

-0.02 2.8 -0.30 2.9 2.7 22 
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Subjective Measures / Questionnaire Data 

Crash Alert Timing Ratings 

Surprise Moving Trial

The between-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD +

Non-Speech, HHDD + Speech, HHDD + Brake Pulse, or Flashing HHDD + Non-Speech), age

(middle-aged or older), and gender (male or female). Recall, in this study phase, the RDP crash

alert timing was used. Results indicated no statistically significant effects, with an overall rating

of 4.1 (closest to “just right”). A histogram provided in Figure 3-37 shows the percent of

responses at each point along the crash rating scale. Across all drivers, 58 total ratings were

made. These data indicate that 69% of the timing responses were “just right”, and 24% of the

timing responses were either “slightly early” or slightly late.”


Follow-On Moving Trials

The between-subjects variables analyzed were crash alert type (HUD + Non-Speech, HHDD +

Non-Speech, HHDD + Speech, HHDD + Brake Pulse, or Flashing HHDD + Non-Speech), age

(middle-aged or older), and gender (male or female). Once again, in this study phase, the RDP

crash alert timing was used. Results indicated an overall rating of 3.9 (closest to “just right”),

and an Age x Gender interaction. For male drivers, the mean crash alert timing ratings for the

middle-aged and older groups were 3.6 and 4.3, respectively.  For female drivers, the

corresponding mean ratings were 3.8 and 3.7, respectively.  Hence, the largest difference in

ratings between gender groups occurred for the older age group.


The histogram provided in Figure 3-38 shows the percent of responses at each point along the 
crash rating scale. Across all drivers, 116 total ratings were made. These data indicate that 59% 
of the timing responses were “just right”, and 32% of the timing responses were either “slightly 
early” or slightly late.” 

Summary of Crash Alert Timing Ratings Findings 

In summary, these crash alert timing ratings are consistent with those found in Study 2, and 
provide further evidence that the crash alert timing approach directly derived/modeling from the 
CAMP Study 1 findings (i.e., the RDP crash alert timing) does an excellent job from a driver 
preference perspective under a wide range of driver expectancy conditions. 
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Figure 3-37	 Histogram of Subjective Crash Alert Timing Ratings During Surprise Moving Trials 
(Study 3) 
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Figure 3-38	 Histogram of Subjective Crash Alert Timing Ratings During Follow-On 
Moving Trials (Study 3) 
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Alert Noticeability Questionnaire 

Results from this questionnaire (administered immediately after the Surprise Moving Trial) are 
shown in Table 3-25. The criterion for “noticeability” of these alerts during this first experience 
the driver had with each of these crash alert components were as follows. For the visual alert, 
noticeability was defined as correctly reporting either the presence of a flashing light, the HHDD 
location, the yellow/orange color, or the correct word or picture following either an open-ended 
report of the presence of a visual indicator or following an experimenter prompting if the driver 
noticed a visual indicator. For the auditory non-speech alert, the criterion for the noticeability 
was defined as correctly reporting the sound following either an open-ended report of the 
presence of the sound or following an experimenter prompting if they noticed a sound. For the 
speech alert, the criterion for the noticeability was defined as correctly reporting the word 
“Warning” following either an open-ended report of the presence of the speech alert or following 
an experimenter prompting if they noticed a sound. (It should be pointed out that nearly all 
drivers correctly described whether the sound was a tone versus speech message). For the brake 
pulse alert, the criterion for the noticeability was defined as correctly reporting a pulse-like 
sensation following either an open-ended report of or following an experimenter prompting if 
they noticed such a sensation (even if drivers were not sure of the source of the sensation during 
this initial experience with this alert). For the interested reader, a more detailed breakdown of 
these data beyond this high-level “noticeability” criterion is provided in Appendix A17. The 
decision to include experimenter-prompted responses to assess whether the noticeability criterion 
was met during subject’s initial experience with the crash alert was due to the intentional 
vagueness of the open-ended questions (i.e., “Did you notice anything come on or happen inside 
the car?”), the ability to verify whether responses given by the driver were correct by examining 
their comments, and to perhaps facilitate driver recollections which may have been impacted by 
the surprise braking event and the driver’s braking maneuver. 

Across each of the three alert types combining a visual and auditory alert (HUD + Non-Speech, 
HHDD + Non-Speech, Flashing HHDD + Non-Speech), the non-speech component of the alert 
was noticed by all drivers. For the HHDD + Non-Speech + Brake Pulse and HHDD + Speech 
crash alert types, 11 of 12 drivers noticed the auditory component of the alert. In the one crash 
alert type including a brake pulse (HHDD + Non-Speech + Brake Pulse), the pulse was noticed 
by all drivers. This data provides direct evidence that the auditory alert and brake pulse profile 
established during pilot testing met the goal of providing crash alert components which would be 
clearly noticed by naive drivers. In summary, across all crash alerts, the auditory and brake pulse 
components of the alerts examined were noticed by a very high percentage of drivers, all of 
whom were completely unaware the vehicle was equipped with a FCW system crash alert during 
this first phase of testing.  The descriptions provided by drivers of the brake pulse alert proved 
interesting.  Two of the 12 drivers reported experiencing a bump. All of the remaining 10 of 12 
drivers experiencing this alert reported a pulse-like sensation. Seven of these 10 drivers 
attributed the vehicle as the source of this sensation (using responses such as “vehicle 
hesitation”, “braking”, “jerk”, and “like ABS” in their descriptions), whereas 3 of these 10 
drivers could not readily identify the source of this pulse-like sensation (the vehicle, their own 
braking, or the road). These data suggest that when implementing a brake pulse alert, an 
additional alert modality component (visual and/or auditory) is merited to “explain” the source of 
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the pulse-like sensation experienced by the driver (5 of the 12 drivers failed to quickly identify 
the vehicle as the source of this sensation) . However, it should be noted that under more typical 
conditions in which the driver would be aware his/her vehicle was equipped with a brake pulse 
crash alert, the driver may have little difficulty unambiguously identifying this pulse-like 
sensation as a crash alert. 

In contrast, the noticeability of the visual alerts varied considerably across the crash alert types. 
In the (steady) HUD + Non-Speech and the Flashing HHDD + Non-Speech conditions, the visual 
alerts were noticed by 9 of 12 drivers and 8 of 12 drivers, respectively.  In the three remaining 
crash alert type conditions (HHDD + Non-Speech, HHDD + Non-Speech + Brake Pulse, and 
HHDD + Speech), all of which employed a steady HHDD, the visual alerts were noticed by less 
than half of the drivers. In addition, it should be noted that, in general, drivers had great 
difficulty reporting any information with respect to the visual display format (i.e., the icon or 
word) based on this first experience with a visual crash alert, particularly in the HHDD (relative 
to the HUD) condition (see Appendix A17). As with the brake pulse alert, under more typical 
conditions in which the driver would be aware that his/her vehicle was equipped with a visual 
crash alert, the probability of noticing these visual alerts may increase. 

These visual alert data suggest that flashing the HHDD may be prudent in order to improve the 
noticeability of the HHDD (which is also likely to be true for the HUD). This flashing issue was 
further examined in Study 4 under Surprise Moving Trial conditions in which the driver was 
asked to search for a (non-existent) indicator light located at the head-down, conventional 
instrument panel. These conditions tested this flashing hypothesis under conditions in which the 
anticipated visual angle between the driver’s eyes and both the visual crash alert location and the 
lead vehicle braking event location were substantially increased relative to the current study. 

Table 3-25	 Noticeability of Visual, Auditory, and Brake Pulse Alerts Across Various Crash Alert 
Types (Study 3) 

Crash Alert Type Visual Alert 
Noticed? 

Auditory 
Alert 

Noticed? 

Brake Pulse 
Alert Noticed? 

HUD + Non-Speech 9 / 12 12 / 12 N/A. 

Flashing HHDD + Non-Speech 8 / 12 12 / 12 N/A. 

HHDD + Non-Speech 5 / 12 12 / 12 N/A. 

HHDD + Non-Speech + Brake 
Pulse 

4 / 12 11 / 12 12 /12 

HHDD + Speech 2 / 12 11 / 12 N/A. 
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Alert Modality Appropriateness Questionnaire 

Results from this questionnaire (administered at the end of the Follow-On Moving Trials) are 
shown in Table 3-26. For comparison purposes, also provided are corresponding ratings from 
the previous Study 2. However, unlike Study 2, these ratings were between-subjects, and were 
made with much less experience with both the crash alerts experienced and alternative crash alert 
types. Hence, in general, these ratings are considered less valuable than those found in Study 2. 
The ratings provided in Table 3-26 are based on the Surprise Moving Trial and the next two 
Follow-On Moving Trials (all conducted with the same crash alert type). 

Across crash alert types, the visual alerts were rated on average from “fair” to “good”. As in 
Study 2, the HUD generally received higher attribute ratings than the HHDD crash alert 
component (particularly for the intensity and size attributes). Across crash alert types, the 
auditory alerts were rated on average “just right”, with the speech alert, as in Study 2, receiving 
slightly higher mean loudness and mean duration ratings than the non-speech alert. Note that the 
actual dBa sound level of the speech alert was slightly lower. Also, it is worth noting that the 
loudness ratings were higher in this study relative to the previous Study 2, which could be 
explained by the approximately 6 dBa sound level increase in the auditory sounds employed in 
this study. In addition, overall, 70% of drivers (ranging between 50%-83% across all crash alert 
types tested) indicated the radio should be muted during the alert. For the brake pulse alert, the 
strength of jerk was rated on average between “slightly weak” and “just right” and the duration 
was rated between “slightly short” and “just right.” 

Overall, these findings are very consistent with those found in Study 2. The crash alert 
modalities tested were overall rated good/just right, with the exception of the HHDD which again 
received low ratings on size and intensity. The loudness ratings for the auditory alerts increased 
over Study 2, most likely due to the increase in sound levels employed in this study. Finally, 
across both Study 2 and Study 3, overall, about 3 of 4 drivers indicated that the radio should be 
muted during the crash alert sound presentation. 
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Table 3-26 Mean Ratings from Alert Modality Appropriateness Questionnaire Findings (Study 3) 

Crash Alert Type 

Modality/Attribute HUD 
Non-Speech 

HHDD 
Non-Speech 

HHDD 
Speech 

HHDD 
Non-Speech 

+ rake 
Pulse 

Flashing 
HHDD + 

Non-Speech 

Visual 

Intensity 3.8 4.0) 3.0 3.0) 2.8 3.0) 3.0 2.7) 3.9 

Size 3.8 3.9) 3.7 3.0) 3.0 3.2) 3.3 3.0) 3.4 

Color 4.0 4.0) 3.4 3.6) 2.8 3.5) 3.2 3.4) 3.9 

Location 4.0 3.8) 4.2 3.6) 3.3 3.5) 3.7 3.3) 3.5 

Auditory 

Loudness 4.3 (3.8) 4.1 (3.8) 4.5 4.0) 4.4 N/A.) 4.5 

Duration 4.3 (3.9) 4.2 (3.9) 3.9 4.1) 3.8 N/A.) 3.9 

Brake Pulse 

Strength of Jerk N/A. N/A. N/A. 3.5 3.8) 

Duration N/A. N/A. N/A. 3.5 3.6) 

+ + + + 

B

( ( ( (

( ( ( (

( ( ( (

( ( ( (

( (

( (

(

(

Note:  See Appendix A4 for excerpts of a questionnaire identical to the one used in this Study.  Above ratings are 
based on the Surprise Moving Trial and first two Follow-On Moving Trials (all experienced with the same 
crash alert type). Hence, relative to Study 2, these ratings are based on much more limited experience with 
the crash alert type being rated, as well as other crash alert types. With the exception of the HHDD + Non-
Speech + Brake Pulse crash alert type, all italicized numbers shown in parentheses are corresponding ratings 
found for the same crash alert type in Study 2.  For the HHDD + Non-Speech + Brake Pulse condition, the 
italicized numbers are corresponding ratings found for the HHDD + Brake Pulse conditions in Study 2 
provided for comparison purposes. On the attribute rating scale, for visual alerts, 2=Poor, 3=Fair, 4=Good, 
and 5=Excellent. For the loudness attribute, 3=Slightly Soft, 4=Just Right, and 5=Slightly Loud. For the 
auditory duration attribute, 3=Slightly Short, 4=Just Right, and 5=Slightly Long. For the strength of jerk 
attribute, 3=Slightly Weak and 4=Just Right. For the brake pulse duration attribute, 3=Slightly Short and 
4=Just Right. N/A=Not applicable. 
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Crash Alert Appropriateness Questionnaire 

An Analysis of Variance (ANOVA) was performed on each of the 14 statements employed in 
this questionnaire. The between-subjects variables analyzed were crash alert type (HUD + Non-
Speech, HHDD + Non-Speech, HHDD + Speech, HHDD + Brake Pulse + Non-Speech, or 
Flashing HHDD + Non-Speech), age (middle-aged or older), and gender (male or female). Due 
to the relatively large number of statistical tests carried out (which increases the probability of 
spuriously significant results, (Hays, 1981)), the criterion set for statistical significance was 
p<0.01. Unlike Study 2, these ratings were made between-subjects, and were made with much 
less experience with both the crash alerts experienced and alternative crash alert types. Hence, in 
general, these ratings are considered less valuable than those found in Study 2. The ratings 
analyzed were based on the Surprise Moving Trial and the next two Follow-On Moving Trials 
(all conducted with the same crash alert type). 

Across all 64 cells formed by combining the 5 crash alert types by 14 sound statements, the mean 
statement ratings (averaging over both age and gender) ranged from 3.0 to 6.8 (where 3=perhaps 
disagree, 4=neutral, 5=perhaps agree, 6=moderately agree, and 7=strongly agree). There were no 
statistically significant differences found between the five crash alert types examined. It should 
be also noted that with the exception of Question #11 (danger), either the HUD + Non-Speech or 
HHDD + Brake Pulse + Non-Speech conditions received the highest (most desirable) mean 
rating for each of the statements examined. This pattern of results for the HUD + Non-Speech 
condition is largely consistent with those found in Study 2, and the pattern of these ratings 
provides evidence that adding the non-speech component to the HHDD + Brake Pulse crash alert 
type tested in Study 2 substantially improved driver’s subjective ratings of this crash alert type 
including a brake pulse component. 

Name the System Questionnaire 

This questionnaire was administered at the end of testing, after the Follow-On Moving Trials. 
Results for this questionnaire are shown in Table 3-27. The proposed system name choices are 
listed in the order of the total number of votes received in the top three choices (shown in the 
rightmost column of Table 3-27. There are several interesting trends that can be observed. First, 
there was no clear preference between including  “Warning” versus “Alert” as part of the system 
name. Second, there appears to be a slight preference for including “Collision Alert” as part of 
the system name relative to “Collision Warning.”  However, the interpretation of both these 
results is somewhat unclear, since during the driver’s testing session, the various crash alerts 
tested were referred to simply as “alerts”, and these references may have influenced drivers’ 
naming judgments. Third, as in Study 2, the top name included “Forward Collision” as part of 
the system name, in spite of instruction that the system was not designed for detecting 
pedestrians. 
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It should be stressed once again that this naming data is strictly based on driver preferences, and 
does not provide direct data on what driver expectations (in terms of system performance) would 
be associated with each of these proposed names. An “open-ended” questionnaire employing 
naive drivers would provide more direct data for assessing the association between system name 
and driver expectations. 

Table 3-27 Name the System Questionnaire Findings (Study 3) 

Number of Votes 
Proposed System Name Best 

Choice 
Second 
Choice 

Third 
Choice 

In Top 
Three 

Forward Collision Alert System 12 10 7 29 

Front-end Collision Alert System 7 11 9 27 

Rear-end Collision Warning System* 6 10 10 26 

Front-end Collision Warning System* 10 7 8 25 

Forward Collision Warning System* 9 4 9 22 

Rear-end Collision Alert System 8 4 7 19 

Forward Crash Alert System 5 10 1 16 

Forward Crash Warning System* 3 4 9 16 

Note:  See Appendix A11 for a copy of the questionnaire. “*” denotes proposed system name carried 
over from Study 2. 60 subjects provided ratings. It should be noted that unlike Study 2, subjects 
in this study were informed that feature is not designed to detect pedestrians, and that this feature 
would occasionally alert or warn the driver under conditions which pose no threat to the driver. 
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3.9 Study 4 Experimental Methodology and Approach 

Unexpected Braking Event with “Unexplained” FCW Crash Alerts / Braking 
in Response to Expected FCW Crash Alerts Under Lead Vehicle Moving 
Conditions 

Building upon the solid foundation provided by the results obtained from CAMP Study 1, Study 
2, and Study 3, this study further examined how and when to present crash alert information to 
both an attentive and relatively inattentive driver. An overview of the experimental methodology 
and approach used in this study is shown in Table 3-11, and an overview of the order of 
experiment events (or procedures) in this study is shown in Table 3-12. As in Study 2, a subset 
of the test participants used in CAMP Study 1 was tested (who were not participants in either 
Study 2 or Study 3). As in Study 3, drivers in this study were not informed at the beginning of 
the study that the purpose of this research was to address the usefulness of FCW system crash 
alerts for helping drivers avoid rear-end collisions. 

As in Study 3, the Surprise Moving Trial occurred during the first phase of the study. Once 
again, the on-board computer was allegedly “learning” driver’s normal following behavior for a 
later “automatic distance control” phase, and the backseat experimenter engaged the driver in a 
structured Q & A background information dialogue. The backseat experimenter engaged the 
driver in the exact same dialogue used in Study 3, except this dialog was interrupted by a request 
for the driver to search for a (non-existent) indicator light on the dashboard. As the driver was 
visually searching for the indicator, the Surprise Moving Trial was introduced. As in Study 3, 
drivers were completely unaware the vehicle was equipped with a FCW system crash alert. After 
the Surprise Moving Trial, drivers were then asked the series of questions used in Study 3 about 
what they noticed come on inside the car before they began braking, and were also asked to 
provide a crash alert timing rating. 

This Surprise Moving Trial was then followed by a number of trials in which drivers were asked 
to brake in response to a FCW system crash alert as an attentive driver while approaching the 
moving surrogate target. The driver was instructed to follow the POV at their “normal” 
following distance while the POV traveled at 30, 45, or 60 mph. After this headway had been 
attained, the POV braked automatically at a constant deceleration rate of approximately 0.15, 
0.27, or 0.36 g’s, in the same manner as was used in CAMP Study 1. These types of trials are 
subsequently referred to as Alerted Moving Trials. The nine combinations formed by crossing 
the three POV speed levels by the three POV deceleration levels were nearly identical to those 
examined in CAMP Study 1. Hence, driver’s braking behavior with a crash alert could be 
compared to previous data obtained under identical conditions without a crash alert (for the same 
driver), which is discussed toward the end of this Chapter immediately prior to the General 
Discussion section. As in Study 2 and Study 3, immediately after a trial, drivers were asked to 
judge the appropriateness of the FCW system crash alert timing on a 7-point scale ranging from 
“much too early” to “much too late”. Finally, it should be noted that rather than run Follow-On 
Moving Trials as in the previous two studies (Study 2 and Study 3), driver performance during 
the Surprise Moving Trial was compared to performance during the equivalent Speed/POV 
braking profile conditions evaluated in the Alerted Moving Trials phase. It was felt this latter 
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condition would provide a more stable, valuable comparison to performance observed in the 
Surprise Moving Trial than would be found with Follow-On Moving Trials, although it should be 
noted that driver brake RT assumptions are different across Surprise Moving Trials and Alerted 
Moving Trials. Often drivers would need some time to get refocused on the task instructions 
after the Surprise Moving Trial, which may have affected the subsequent Follow-On Moving 
Trials data gathered immediately following the Surprise Moving Trial. 

The timing of the crash alert information was again based on modeling results from CAMP Study 
1, and utilized the most conservative crash alert timing approach used in Study 2 (i.e., the RDP 
crash alert timing), and the identical crash alert timing approach used in Study 3. The decision 
not to test a more aggressive crash alert timing approach, as was done in Study 2, was made after 
looking at early data from this study which suggested that the alert timing approach employed 
was perceived as between “just right” and “slightly late”. For the Alerted Moving Trials, as in 
the Alerted Stationary Trials of Study 2, driver RT was assumed to be 0.52 seconds for crash 
alert timing purposes. For the Surprise Moving Trial, driver RT was assumed to be 1.50 seconds 
(as in Study 2 and Study 3). 

The two different 1-stage, dual-modality, FCW system crash alert types evaluated were the 
steady HHDD + Non-Speech and flashing HHDD + Non-Speech crash alert types, both 
“carryovers” from Study 3. The rationale for selecting these two FCW system crash alert types 
for this study was based on the following considerations. First, in terms of an experimental 
strategy (as well as experimental efficiency), focusing the study on two crash alert types allowed 
exploring the same wide range of POV speed/POV braking profile combinations explored in 
Study 1. This provided an important opportunity to evaluate and validate the crash alert timing 
approach under a much wider range of conditions when the lead vehicle was moving. Second, in 
both Study 2 and Study 3, the HHDD + Non-Speech crash alert type provided good all-around 
performance in terms of both objective data (e.g., fast brake RTs) and subjective data (e.g., low 
driver annoyance ratings). Third, the HHDD + Non-Speech crash alert type (whether the 
HHDD is steady or flashing) has favorable qualities as a crash alert type approach from an 
industry-wide, international implementation perspective relative to speech alerts (which, in any 
case, performed poorly in terms of both objective and subjective data), HUD alerts (HUDs are 
not currently implemented industry-wide), and the relatively immature brake pulse alert. Hence, 
in terms of developing minimum requirements, it made the most sense to concentrate on 
gathering additional data with the HHDD and non-speech dual-modality approach with a 
different surprise trial technique (i.e., the head-down visual search task), which might provide a 
different Surprise Moving Trial brake RT distribution. Fourth, the issue of whether or not to 
flash the HHDD alert could be explored further under a surprise trial technique where the 
anticipated visual angle between the driver’s eyes and both the visual crash alert location and the 
lead vehicle braking event location were substantially increased. 
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3.9.1 Subjects 

Test participants consisted of 4 males and 4 females in each of three different age groups; 20-31, 
40-51, and 60-71 years old. Corresponding mean ages for these younger, middle-aged, and older 
age groups were 25, 46, and 65 years old, respectively.  Each driver was tested individually in 
one approximately 2 to 2 ½ hour session and paid $150 for their participation. Drivers were 
recruited by an outside market research recruiting firm, and were required to be CAMP Study 1 
participants who had not participated in the previous Study 2. Drivers who were ultimately 
allowed to participate were mailed the information letter shown in Appendix A12 prior to testing. 
A copy of the informed consent statement is provided in Appendix A13, which describes the 
various conditions that ruled out potential drivers from participating (which were nearly identical 
to the conditions used in CAMP Study 1). 

3.9.2 Test Site 

Data was gathered on the same straightaway used in CAMP Study 1, Study 2, and Study 3. The 
road was closed to all other traffic during testing.  All testing was conducted under daytime 
conditions under dry road and dry weather conditions. 

3.9.3 Test Vehicles and the “Surrogate” (Lead Vehicle) Target 

The SV, surrogate target, and POV were identical to that used in CAMP Study 1, Study 2, and

Study 3. Both the SV front seat, passenger-side experimenter and POV driver were trained

General Motors Milford Proving Ground test drivers who had previous experience conducting

brake tests. The SV and the POV test drivers communicated during the study via digital radio

communication.


3.9.4 Data Acquisition System


The data acquisition system used was identical to that used in CAMP Study 3.


3.9.5 Procedure and Design 

Procedures Before and After Trials 

The procedures used were identical to those used in Study 2, with the exception of the test 
instructions. The test instructions given before and after the Surprise Moving trial are shown in 
Appendix A14 and Appendix A15, respectively. 
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Test Phases / Driver Instructions 

As in Study 3, the Surprise Moving Trial in this study occurred during the first phase of the 
study. In this first phase, the computer again was allegedly “learning” driver’s normal following 
behavior for a later “automatic distance control” phase. The backseat experimenter engaged the 
driver in the same structured Question & Answer (Q & A) background information dialogue used 
in Study 3. This dialogue was interrupted by the following, which requested the driver to search 
for a (non-existent) indicator light located at the head-down, conventional instrument panel: 

“Have you noticed the indicator light by the dashboard? It is located 
below the tachometer on the dash. It is a little blue-green indicator 
that is a little car with bars in front of it. I know it has been coming 
on. Can you find it? Once you find it I need you to tell me how may 
bars are in front of the car.” 

While the driver was visually searching for the indicator, the Surprise Moving Trial was 
introduced under the same POV conditions (30 mph speed, -0.37 g deceleration, no brake lights) 
used in Study 2 and Study 3. This surprise trial technique will be referred to as the “Head-Down 
Telltale Search” surprise technique. As in Study 3, drivers were completely unaware the vehicle 
was equipped with a FCW system crash alert. After the Surprise Moving Trials, drivers were 
asked a series of questions about what they noticed coming on or happening inside the car before 
they began braking.  These questions were identical to those used in Study 3. 

During the second phase of this study, drivers experienced trials in which the surrogate target 
was moving. The driver was instructed to follow the POV at their “normal” following distance 
while the POV traveled at 30, 45, or 60 mph. After this headway had been attained, the POV 
braked automatically at a constant deceleration rate of approximately 0.15, 0.27, or 0.36 g’s, in 
the same manner as was used in CAMP Study 1. These types of trials are subsequently referred 
to as Alerted Moving Trials. Drivers were asked to brake in response to the FCW system crash 
alerts as an attentive driver while approaching a surrogate target moving at 30, 45, or 60 mph. 
These types of trials are subsequently referred to as Alerted Moving Trials. 

During this study, two 1-stage, dual-modality crash alerts were examined. These crash alert 
types are indicated below: 

° Steady High Head-Down Display (HHDD) + Non-Speech Tone 

° Flashing High Head-Down Display (HHDD) + Non-Speech Tone 

Drivers were instructed to brake immediately in response to the crash alert in order to avoid 
colliding with the artificial car. When the SV came to a complete stop, data collection was 
halted and the trial was ended. During these Alerted Moving trials, drivers experienced two test 
blocks of 9 trials each (overall, 18 trials) with the same crash alert experienced during the 
Surprise Moving Trial. The 9 trials per block were formed by crossing the three POV speeds 
(30, 45, and 60 mph) with the three POV constant deceleration profiles (-0.15,-0.27, and -0.36 
g’s). During these 9 trials, drivers experienced three successive trials in each speed condition 
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(each with a different POV braking profile). The second block of trials provided a second 
repetition of the same conditions in order to examine learning effects. The order of the three 
approach speeds within a block and the three POV braking profile levels from trial-to-trial were 
appropriately randomized and counterbalanced. 

For crash alert timing, the RDP crash alert timing was employed with a 1.5 second driver brake 
RT assumption for the Surprise Moving Trial (as in Study 2 and Study 3), and a 0.52 second 
driver RT assumption employed for the Alerted Moving Trials (as was used during the Alerted 
Stationary Trials in Study 2) for crash alert timing purposes. The “bail-out” auditory alert for the 
front seat, passenger-side experimenter was also triggered based on the RDP crash alert timing 
approach, with assumed inputs of 520 ms driver (test driver) brake RT, and an assumed constant 
deceleration in response to the crash alert of -0.55 g’s during the 30 mph condition, and -0.60 
g’s during the 45 mph and 60 mph conditions. The identical “bail-out” sound used in Study 3 
was employed here, as well as the visual barrier placed between the experimenter and front seat 
experimenter (which prevented the driver from anticipating test driver braking behavior). 

Independent Variables Examined 

For the Surprise Moving Trial, the between-subjects variables analyzed were crash alert type 
(Steady HHDD + Non-Speech or Flashing HHDD + Non-Speech), age (younger, middle-aged, or 
older), and gender (male or female). For the Alerted Moving Trials, the within-subjects variables 
analyzed were speed (30, 45, and 60 mph), POV braking profile (-0.15, -0.27, or -0.36 g), and 
repetition (first and second), and the between-subjects variables analyzed were crash alert type 
(Steady HHDD + Non-Speech or Flashing HHDD + Non-Speech), age (younger, middle-aged, or 
older), and gender (male or female). 

Objective (or Performance) Measures Examined 

The same driver performance measures were analyzed as in Study 3, with the exception that end 
range was not included in this analysis due to the difficulties in interpreting this measure 
discussed earlier. 

Subjective Measures / Questionnaire Data 

As in Study 2 and Study 3, immediately after each braking trial, drivers were asked to judge the 
appropriateness of the FCW system crash alert timing using the 7-point scale ranging from 
“much too early” to “much too late. These ratings were analyzed for each phase of the study 
using the same independent variables and analysis approach that was used to analyze the driver 
performance measures. 

In addition, after the Surprise Moving Trial, the alert noticeability questionnaire used in Study 3 
was administered to assess what the driver noticed coming on or happening inside the car before 
they began braking. 
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3.9.6 Results and Discussion 

Overview of Statistical Analysis Approach for Objective Measures 

For the analysis of the objective (or performance) measures, an Analysis of Variance (ANOVA) 
was performed for each relevant performance measure (dependent on whether the lead vehicle 
was moving or stationary) defined in Table 3-1. Data from the Surprise Moving Trial and 
Alerted Moving Trials were analyzed separately during the statistical analysis. The criterion set 
for statistical significance was p<0.01 during the analysis of the Alerted Moving Trials, due to 
the large number of statistical tests carried out (which increases the probability of spuriously 
significant results, (Hays, 1981)). For the analysis of the Surprise Moving Trial data, the 
criterion set for statistical significance was p<0.05. Unless otherwise noted, all statistically 
significant results indicated met (and often exceeded) these adopted criterion. 

Objective (Or Performance) Measures 

Surprise Moving Trial 

The between-subjects variables analyzed were crash alert type (Steady HHDD + Non-Speech or 
Flashing HHDD + Non-Speech), age (younger, middle-aged, or older), and gender (male or 
female). During 2 of these 24 Surprise Moving Trials, the passenger-side experimenter 
intervened to assist the driver in coming to a stop. In the one case involving the Steady HHDD + 
Non-Speech condition, the driver contacted the brake first. In this case, the data obtained at 
onset of braking was included in the analysis, but any measures obtained throughout or at the end 
of braking were excluded from the analysis. In the remaining case involving the Flashing HHDD 
+ Non-Speech condition, the passenger-side experimenter contacted the brake first. In this case, 
none of the data from this trial was included in the analysis. As was mentioned for the two-
experimenter intervention cases observed in Study 3, it remains unclear whether these drivers 
could have avoided impact with the surrogate target without the assistance of the passenger-side 
experimenter. 

As in Study 3, these results did not indicate a main effect of crash alert type (a difference 
between the Steady HHDD + Non-Speech or Flashing HHDD + Non-Speech conditions) on 
brake reaction times. The overall mean brake RT was 881 ms, which is 126 ms higher than the 
mean brake RT found in Study 3 (averaged over these same two crash alert types). 

Table 3-39 provides the brake RT distribution (based on 23 RTs) during the Surprise Moving 
Trials for all drivers. It is worth noting that only two subjects yielded a brake RT higher than the 
1.5 second brake RT assumed for crash alert timing purposes. The upper-percentile brake RTs 
found in Study 3 (see Figure 3-36) are similar to the current data, with nearly identical 85th %tile 
values, but somewhat higher (0.30 seconds higher) 95th %tile values. 

There were no significant main effects of crash alert type. However, there was a Gender x Crash 
Alert Type interaction for the required deceleration and TTC-Case 1 measures (both measured at 
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SV braking onset). For the male drivers, the mean required deceleration values for the Steady 
HHDD + Non-Speech and Flashing HHDD + Non-Speech conditions were -0.40 and -0.33 g’s, 
respectively.  For the female drivers, the corresponding mean values were -0.35 and -0.39 g’s, 
respectively.  For the TTC-Case 1 measure, for male drivers, the mean values for the Steady 
HHDD + Non-Speech and Flashing HHDD + Non-Speech conditions were 3.8 and 5.8 seconds, 
respectively.  For the female drivers, the corresponding mean values were 5.1 and 4.4 second, 
respectively.  There was also a Age x Crash Alert Type interaction for the minimum TTC-Case 1 
measure. For the younger, middle-aged, and older groups, the mean values for the Steady HHDD 
+ Non-Speech condition were 0.7, 1.9, and 2.0 seconds, respectively.  The corresponding mean 
values for the Flashing HHDD + Non-Speech condition were 1.0, 0.4, and 2.1, respectively.  The 
explanation for these interactions described above are unclear, and in any case, do not distinguish 
between the two crash alert types investigated. 

There were also significant effects of age on TTC-Case 1 at SV braking onset, minimum TTC-
Case 1, and peak deceleration throughout braking measure. For the younger, middle-aged, and 
older age groups, the mean TTC-Case 1 values were 5.9, 4.5, and 4.0 seconds respectively.  The 
corresponding mean minimum TTC-Case 1 values were 0.9, 1.2, and 2.0 seconds, respectively. 
For the younger, middle-aged, and older age groups, the mean peak deceleration values were -
0.52, -0.60, and -0.67 g’s, respectively. 

In summary, and consistent with Study 3, these objective results did not clearly distinguish 
between the Steady HHDD + Non-Speech or Flashing HHDD + Non-Speech condition. Overall, 
the 85th percentile brake RT value during Surprise Moving Trials was nearly identical (within 
100 ms) to that observed in Study 2 and Study 3. Across Study 2, Study 3, and the current study 
(Study 4), 85th percentile brake RT values were 1.21, 1.10, and 1.18 seconds, respectively. 
However, the 95th percentile brake RT value during Surprise Moving Trials was somewhat 
higher than observed in previous studies. Across Study 2, Study 3, and the current study (Study 
4), 95th percentile brake RT values were 1.38, 1.22, and 1.52 seconds, respectively.  For 
reference and comparison purposes, Table 3-28 provides a list of various percentile values for 
key variables for this study along with the corresponding values for Study 2 and Study 3 Surprise 
Moving Trials for comparison purposes (previously shown in Table 3-17 and Table 3-23). 
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(where bin X ranges from X to (X + 0.099) seconds) 

Figure 3-39 Brake Reaction Time Distribution During Surprise Moving Trials (Study 4) 

Alerted Moving Trials 

The within-subjects variables analyzed were speed (30, 45, and 60 mph), POV braking profile (-
0.15, -0.27, or -0.36 g), and repetition (first and second), and the between-drivers variables 
analyzed were crash alert type (Steady HHDD + Non-Speech or Flashing HHDD + Non-Speech), 
age (younger, middle-aged, or older), and gender (male or female). Overall, it should be noted 
that effects involving the variables crash alert type and repetition were largely non-existent in the 
results reported below. 

Results indicated robust main effects of speed and POV braking profile for various performance 
measures, as well as a robust Speed x Braking Profile interaction for many of these measures. 
The main effects of speed on variables measured before or at SV braking onset are shown in 
Table 3-29 and the main effects of speed on variables measured throughout braking are shown in 
Table 3-30. The main effects of POV braking profile on variables measured before or at SV 
braking onset are shown in Table 3-31, and the main effects of speed on variables measured 
throughout braking are shown in Table 3-32. These main effects are provided to help the reader 
get oriented to the large volume of data analyzed; however, it should be stressed that many of 
these main effects need to be interpreted in terms of the significant Speed x Braking Profile 
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interactions, which are shown in Table 3-33 and Table 3-34 for variables measured at SV braking 
onset and variables measured throughout braking, respectively. 

The main effects of speed shown in Table 3-29 and Table 3-30 are very systematic and 
straightforward to interpret. These results indicate that both the SV and POV were very close to 
the target approach speeds. As speed increased, the following variables increased: range and 
TTC values (both at SV braking onset and minimum values), minimum headway, required 
deceleration (albeit very slightly), and brake reaction times. The main effects of POV braking 
profile shown in Table 3-31 and Table 3-32. As the POV braking profile increased (i.e., the POV 
braked harder), the following variables increased: POV speed, POV deceleration, time headway, 
range, TTC-Case 1, and required deceleration (all variables listed measured at SV braking 
onset). In addition, both the actual and peak deceleration values increased as POV braking 
profile increased. As the POV braking profile increased (i.e., the POV braked harder), the 
following variables decreased: SV deceleration and TTC-Case 2 (both measured at SV braking 
onset), minimum TTC (both Case 1 and Case 2) and minimum range. In addition, as the POV 
braking profile increased, both brake RTs and time headway (measured at SV braking onset) 
somewhat curiously show higher values in the -0.27 g relative to -0.15 and -0.36 g POV braking 
profile conditions. 

As mentioned earlier, many of these main effects of speed and POV braking profile need to be 
interpreted in terms of the corresponding significant Speed x Braking Profile interactions, which 
are shown in Table 3-33 for variables measured at SV braking onset, and in Table 3-34 for 
variables measured throughout braking.  At SV braking onset, for the variables listed in Table 
3-33, this Speed x Braking Profile interaction indicates that these variables increase with speed 
(with the exception of the time headway at SV braking onset measure), and that these variables 
increase with speed at a greater rate in the -0.27 g and -0.36 g POV braking profile conditions 
(which are very similar, overall) relative to values in the -0.15 g braking profile condition. For 
nearly all of the variables measured throughout braking, which are shown in Table 3-34 (with the 
exception of the peak deceleration), nearly the same interaction pattern occurred with the 
exception that values from the –0.27 g braking profile condition were generally higher than 
values in the –0.36 g braking profile condition. For the peak deceleration variable, the Speed x 
Braking Profile interaction (shown Table 3-34) indicated that peak deceleration values increased 
with speed in a linear fashion in the –0.15 g braking profile condition, remained relatively stable 
across speed in the –0.27 g braking profile condition, and were higher in the 30 mph relative to 
the 45 mph and 60 mph conditions. 
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Table 3-28	 Percentile Values for Key Driver Performance Measures During Surprise Moving 
Trials for Study 4 (Across All Combinations of Age, Gender, and Crash Alert 
Type Variables) 

Time During 
Which Variable 
was Measured 

Dependent Measure 
(unit) 

15th %tile 
Value 

50th %tile 
Value 

85th %tile 
Value 

At POV Braking 
Onset 

Time Headway (sec) 1.0 (1.0/1.1) 1.6 (1.5/1.6) 2.2 (1.9/2.1) 

At SV Braking 
Onset 

Brake Reaction Time 
(sec) 

0.50 
(0.59/0.46) 

0.92 
(0.84/0.82) 

1.18 
(1.23/1.10) 

Required 
Deceleration (g) 

-0.30 (-0.28/-
0.26) 

-0.38 (-0.33/-
0.32) 

-0.42 (-0.42/-
0.40) 

Throughout 
Braking 

Braking Distance 
(feet) 

78 (75/86) 92 (94/103) 115 
(105/115) 

Actual Deceleration 
(g) 

-0.33 (-0.35/-
0.30) 

-0.42 (-0.42/-
0.36) 

-0.47 (-0.47/-
0.44) 

Peak Deceleration (g) -0.49 (-0.53/-
0.44) 

-0.59 (-0.60/-
0.55) 

-0.71 (-0.77/-
0.64) 

Minimum Headway 
(g) 

0.2 (0.6/0.5) 0.9 (1.2/1.3) 1.6 (1.6/1.7) 

Minimum Range 
(feet) 

1 (5/4) 10 (17/15) 21 (28/23) 

Note:	 Numbers shown in parenthesis indicate corresponding values from Study 2 and Study 3 Surprise 
Moving Trials. Within a set of parenthesis, the left-hand value refers to the corresponding value 
obtained in Study 2 and the right-hand value refers to the corresponding value obtained in Study 3. 

Table 3-29	 Significant Main Effects of Speed Condition on Various Driver Performance Measures 
Analyzed at or Before SV Braking Onset During Alerted Moving Trials (Study 4) 

At POV 
Braking 

Onset 

At SV Braking Onset 

Speed 
Condition 

POV 
Speed 
(mph) 

Brake 
Reaction 

Time 
(sec) 

SV 
Speed 
(mph) 

SV 
Decel. 

(g) 

POV 
Decel. 

(g) 

Range 
(feet) 

TTC/ 
Case 
1(sec) 

TTC/ 
Case 
2(sec) 

Req. 
Decel. 

(g) 

30 mph 30.8 0.499 30.6 -0.02 -0.27 57 3.9 2.3 -0.336 

45 mph 45.6 0.547 45.4 -0.03 -0.26 84 4.9 2.8 -0.341 

60 mph 60.8 0.578 59.9 -0.04 -0.26 120 5.4 3.3 -0.347 
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Table 3-30	 Significant Main Effects of Speed Condition on Various Driver 
Performance Measures Analyzed Throughout SV Braking Onset 
During Alerted Moving Trials (Study 4) 

Throughout Braking 
Speed 

Condition 
Actual 
POV 

Decel. (g) 

Min. TTC / 
Case 1 (sec) 

Min. TTC / 
Case 2 (sec) 

Min. Time 
Head-way 

(sec) 

Min. 
Range 
(feet) 

30 mph -0.260 1.7 2.1 0.7 13 

45 mph -0.262 2.5 2.7 0.9 22 

60 mph -0.257 3.2 3.2 1.0 37 

Table 3-31	 Significant Main Effects of POV Braking Profile Condition on Various Driver Performance 
Measures Analyzed at SV Braking Onset During Alerted Moving Trials (Study 4) 

At SV Braking Onset 

Braking 
Profile 

Condition 

Brake 
RT 

(sec) 

SV 
Speed 
(mph) 

SV 
Decel. 

(g) 

POV 
Speed 
(mph) 

POV 
Decel. 

(g) 

Range 
(feet) 

Time 
Head-
way 
(sec) 

TTC / 
Case 1 
(sec) 

TTC / 
Case 2 
(sec) 

Req. 
Decel. 

(g) 

0.15 g 0.515 44.8 -0.031 19.1 -0.15 75 1.2 3.9 3.0 -0.25 

0.27 g 0.570 45.6 -0.029 32.3 -0.27 91 1.4 5.2 2.9 -0.35 

0.36 g 0.539 45.5 -0.027 43.8 -0.37 95 1.4 5.1 2.6 -0.43 

Table 3-32	 Significant Main Effects of POV Braking Profile Condition on Various Driver Performance 
Measures Analyzed Throughout SV Braking Onset During Alerted Moving Trials (Study 4) 

Throughout Braking 
Braking 
Profile 

Condition 

Actual 
POV 

Decel. (g) 

Actual 
Decel. (g) 

Peak 
Decel. 

(g) 

Min. TTC / 
Case 1 (sec) 

Min. TTC / 
Case 2 (sec) 

Min. Time 
Headway 

(sec) 

Min. 
Range 
(feet) 

0.15 g -0.15 -0.30 -0.58 2.8 2.8 0.8 29 

0.27 g -0.27 -0.39 -0.64 2.7 2.8 1.0 16 

0.36 g -0.36 -0.48 -0.74 1.8 2.3 0.8 17 
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In addition, there were main effects of age on POV speed at POV braking onset, SV speed at SV 
braking onset, and the peak deceleration measures. For the younger, middle-aged, and older age 
groups, the mean POV speeds at POV braking onset were 46.1, 45.5, and 45.6 mph, respectively. 
The corresponding means for mean SV speed at SV braking onset were 45.0, 45.2, and 44.7 mph, 
respectively.  For the younger, middle-aged, and older age groups, the mean peak deceleration 
values were –0.58, -0.63, and –0.75 g’s, respectively.  This latter result is consistent with the 
pattern found across age groups during Surprise Moving Trials. 

There were only a few, isolated higher-order interactions beyond the numerous Speed x Braking 
Profile interactions described above. For the minimum range measure, there was a Gender x 
Speed interaction. For the male drivers, the mean minimum range for the 30, 45, and 60 mph 
conditions were 12, 17, and 28 feet, respectively.  For the female drivers, the corresponding 
means were 13, 27, and 45 feet, respectively.  For the time headway at POV braking onset 
measure, there was a (4-way) Age x Gender x Speed x POV Braking Profile interaction. The 
pattern of results for this measure was very unstable across conditions. 

For the POV speed at SV braking onset measure, there was a (4-way) Age x Crash Alert Type x 
POV Braking Profile interaction x Repetition interaction. Results from the middle-age group 
appear to be the source of this interaction. For the Flashing HHDD + Non-Speech 
condition/middle-age group combination, POV speed at SV braking onset decreased as POV 
deceleration increased. In contrast, for the Steady HHDD + Non-Speech condition/middle-age 
group combination, POV speed at SV braking onset was similar in the -0.15 and -0.36 g POV 
braking profile conditions, and lower than the corresponding speeds in the -0.27 g POV braking 
profile conditions. For the POV actual deceleration measure, there was a (4-way) Age x Crash 
Alert Type x Speed x Repetition interaction, and a (5-way) Age x Gender x Crash Alert Type x 
Speed x Repetition interaction. The effects of these interactions were very small, as the mean 
values for this measure varied between –0.25 to –0.27 g’s across all cell combinations of this 5-
way interaction. 
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Table 3-33	 Significant Speed x POV Deceleration Profile Interaction 
Effects for Various Driver Performance Measures Measured 
at SV Braking Onset During Alerted Moving Trials (Study 4) 

POV Deceleration Profile 

Performance Measure 
at SV Braking Onset 

Speed -0.15 g -0.27 g - 0.36 g 

Range (feet) 

30 mph 53 60 59 

45 mph 74 87 91 

60 mph 97 127 135 

Time Headway (sec) 

30 mph 1.2 1.3 1.3 

45 mph 1.1 1.3 1.4 

60 mph 1.1 1.4 1.5 

TTC / Case 1 (sec) 

30 mph 3.7 4.1 3.9 

45 mph 3.8 5.6 5.3 

60 mph 4.1 5.9 6.1 

TTC / Case 2 (sec) 

30 mph 2.6 2.3 2.0 

45 mph 2.9 2.9 2.6 

60 mph 3.3 3.5 3.2 

POV Speed (mph) 

30 mph 20.3 19.0 18.0 

45 mph 31.8 33.3 31.8 

60 mph 43.3 44.9 43.1 
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Table 3-34	 Significant Speed x POV Deceleration Profile Interaction 
Effects for Various Driver Performance Measures Measured 
either Throughout or at the End of SV Braking During 
Alerted Moving Trials (Study 4) 

POV Deceleration Profile 

Performance Measure Speed -0.15 g -0.27 g - 0.36 g 

Peak Deceleration (g) 

30 mph -0.54 -0.64 -0.78 

45 mph -0.59 -0.62 -0.71 

60 mph -0.63 -0.65 -0.72 

Min. Time Headway 
(sec) 

30 mph 0.9 0.8 0.5 

45 mph 0.8 1.0 0.8 

60 mph 0.8 1.1 1.1 

Min. TTC / Case 1 
(sec) 

30 mph 2.6 1.6 0.9 

45 mph 2.8 2.9 1.8 

60 mph 3.1 3.7 2.7 

Min. TTC / Case 2 
(sec) 

30 mph 2.5 2.1 1.6 

45 mph 2.8 2.8 2.3 

60 mph 3.1 3.3 3.1 

Min. Range (feet) 

30 mph 21 10 6 

45 mph 28 24 14 

60 mph 37 44 30 
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Comparison of Brake Reaction Times During the Surprise Moving Trial Versus the Alerted 
Moving Trials Study Phases 

This study, relative to Study 2 and Study 3, provided the best opportunity to sensitively compare 
drivers RTs during surprise, unexpected braking conditions relative to comparable alerted, 
expected braking conditions. As argued before, it is felt that performance during the (alerted) 
Follow-On Moving trials in the previous studies may have been impacted by the driver’s ability 
to immediately recover from the Surprise Moving Trial and follow and stay focused on 
subsequent experimenter instructions. In this study, drivers experienced the “alerted” version of 
the Surprise Moving Trial (30 mph /-0.36 g POV braking profile) twice in the midst of a set of 
Alerted Moving Trials, and hence were likely to provide more stable, reliable RT performance. 
The Surprise Moving Trial: Alerted Moving Trial RT ratio was 1.8, 2.6, 3.3, and with respect to 
the 50th, 85th, and 95th percentile RT values for these two study phases. These ratios may have 
potential future use for conditions under which a surprise, unexpected braking event is not 
feasible. It is also worth noting note that the spread of driver RTs between the 15th percentile and 
85th percentile values was 3.8 times higher during the Surprise Moving Trial relative to that 
observed during the corresponding “alerted” version of this trial during Alerted Moving Trials. 

Subjective Measures / Questionnaire Data 

Crash Alert Timing Ratings 

Surprise Moving Trial

The between-subjects variables analyzed were crash alert type (Steady HHDD + Non-Speech or

Flashing HHDD + Non-Speech), age (younger, middle-aged, or older), and gender (male or

female). Once again, in this study phase, the RDP crash alert timing was used. Results indicated

no statistically significant effects, with an overall rating of 4.4 (closest to “just right”). The

histogram provided in Figure 3-40 shows the percent of timing responses at each point along the

crash rating scale. Across all drivers, 23 total ratings were made. This data indicates that 61%,

35%, and 4% of the timing responses were “just right”, “slightly late”, “moderately late”,

respectively.


Relative to the crash alert timing ratings obtained during Surprise Moving Trials in Study 2 and 
Study 3, drivers in this study rated the alert to have occurred later on the crash alert timing scale 
(compare Figure 3-40 to both Figure 3-34 and Figure 3-37). However, all but one of the ratings 
in this study were either “just right” or slightly late”.  This difference in timing ratings across 
studies may be attributable to the slower overall brake RTs obtained in the this study relative to 
those found during Surprise Moving Trials in Study 2 and Study 3. 
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Figure 3-40	 Histogram of Subjective Crash Alert Timing Ratings During Surprise Moving Trials 
(Study 4) 

Alerted Moving Trials 
The within-subjects variables analyzed were speed (30, 45, and 60 mph), POV braking profile (-
0.15, -0.27, or -0.36 g), and repetition (first and second), and the between-drivers variables 
analyzed were crash alert type (Steady HHDD + Non-Speech or Flashing HHDD + Non-Speech), 
age (younger, middle-aged, or older), and gender (male or female). In the 30, 45, and 60 mph 
conditions, mean crash alert timing ratings were 4.8, 4.5, and 4.3, respectively.  In the -0.15, -
0.28, and -0.36 g POV braking profile conditions, mean crash alert timing ratings were 4.8, 4.3 
and 4.5, respectively.  However, these main effects need to be interpreted in terms of the Speed x 
Braking Profile interaction. This interaction indicated that the mean crash alert timing ratings in 
the -0.15 g braking profile condition were relatively stable across speeds (mean rating ranging 
from 4.7 - 4.8), whereas the ratings at the two higher braking profile conditions decreased (i.e., 
were judged “earlier”) as speeds increased. In the -0.27 g braking profile condition, mean crash 
alert timing ratings at the 30, 45, and 60 mph conditions were 4.6, 4.2, and 4.0, respectively.  In 
the -0.36 g braking profile condition, mean crash alert timing ratings at the 30, 45, and 60 mph 
conditions were 5.0, 4.3, and 4.0, respectively.  Hence, the difference between these two higher 
braking profile conditions was primarily restricted to the 30 mph condition. 
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A more insightful look at these crash alert timing data is provided in Figure 3-41. This figure 
shows the percent of timing responses at each point along the crash rating scale as a function of 
each Speed x Braking Profile combination. (For each combination, across all drivers, 48 total 
ratings were made). This figure averages over the independent variables of repetition, crash alert 
type, age, and gender. For comparison purposes, results from Study 2 found with Alerted 
Stationary Trials are also provided in Figure 3-41. (For each of the two approach speed 
conditions during these latter trials, across all drivers, 96 total ratings were made). On the one 
hand, there were very few “much too early” and “moderately early” ratings across all Speed/POV 
Braking Profile combinations during the Alerted Moving Trials. On the other hand, there were 6 
Speed/POV Braking Profile combinations during these trials in which the percent of combined 
“moderately late” and “much too late” responses ranged between about 15%-25%. As can be 
seen in Figure 3-41, 3 of these 6 combinations involved the 30 mph condition in which the lead 
vehicle was moving, and 3 of these 6 combinations occurred when the POV braking profile was -
0.15 g’s. 

Overall, as can be seen in Figure 3-41, the crash alert timing ratings found during the Alerted 
Moving Trials in this study were judged as “later” on the crash alert timing rating scale relative 
to those obtained during the Alerted Stationary Trials in Study 2. This rating difference may be 
due to the relatively greater uncertainty for the driver surrounding the behavior of the surrogate 
target (lead vehicle) during Alerted Moving Trials relative to Alerted Stationary Trials. In the 
former case, the lead vehicle could brake at various levels, whereas in the latter case, the 
surrogate target was parked. 

Summary of Crash Alert Timing Ratings Findings 

In summary, these crash alert timing ratings are generally consistent with those found in the 
previous Study 2 and Study 3, and provide further evidence that the crash alert timing approach 
directly derived/modeling from the CAMP Study 1 findings (i.e., the RDP crash alert timing) 
does an excellent job from a driver preference perspective under a wide range of driver 
expectancy and kinematic conditions. Furthermore, it should be kept in mind that for the 
Speed/POV Braking Profile combinations discussed above in which 15%-25% of the drivers 
rated the alert as either “moderately late” or “much too late”, drivers were still able to avoid 
colliding with the surrogate target. 

It is also interesting to compare the crash alert timing ratings in this study found during Surprise 
Moving Trials to those found under identical POV speed/POV braking profile conditions (30 
mph /-0.36 g) during Alerted Moving Trials (see Figure 3-40 and Figure 3-41). The mean crash 
alert timing rating during the Surprise Moving Trial and the alerted version of this trial were 4.4 
and 5.0, respectively.  It should be noted that the assumed driver RT (which was input into the 
RBD crash alert timing algorithm) was about 1 second less during the Alerted Moving Trial. 
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Figure 3-41	 Percent of Crash Alert Timing Ratings with the RDP Crash Alert Timing Approach 
During Alerted Moving Trials (Study 4) and Alerted Stationary Trials (Study 2) Across 
All Speed/POV Braking Profile Combinations Tested 

Alert Noticeability Questionnaire 

Results from this questionnaire (administered immediately after the Surprise Moving Trial) are 
shown in Table 3-35, along with results from Study 3 for comparison purposes (previously 
shown in Table 3-25). The identical criterion for “noticeability” employed in Study 3 across the 
various crash alert modality components was employed in the current study. Across both alert 
types evaluated in this study (Steady HHDD + Non-Speech, Flashing HHDD + Non-Speech), the 
non-speech component of the alert was noticed by all drivers. In contrast, as in Study 3, the 
noticeability of the visual alerts varied considerably across these two crash alert types. In the 
Steady HHDD + Non-Speech and the Flashing HHDD + Non-Speech conditions, the visual alerts 
were noticed by 4 of 12 drivers and 10 of 12 drivers, respectively.  These results are very 
consistent with those found in Study 3, and hence, the change in the surprise trial technique from 
Study 3 to Study 4 had no substantial impact on the pattern of alert noticeability results across 
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crash alert types. For the interested reader, a more detailed breakdown of these data beyond the 
high-level “noticeability” criterion is provided in Appendix A17. 

The visual alert data from this study and Study 3 suggest that flashing the HHDD may be prudent 
in order to improve the noticeability of the HHDD (which may also be true for the HUD), 
particularly when this alert is coupled only with an auditory crash alert since some drivers may 
not hear the auditory alert under some conditions. Once again, it should be noted that under 
more typical conditions in which the driver would be aware his/her vehicle was equipped with a 
visual crash alert, the probability of noticing these visual alerts may increase. 

Table 3-35	 Noticeability of Visual and Auditory Alerts Across the 
“Flashing HHDD+Non-Speech” and “Steady HHDD+  Non-
Speech” Crash Alert Types (Studies 4 and 3) 

Crash Alert Type Visual Alert 
Noticed? 

Auditory Alert 
Noticed? 

Flashing HHDD + Non-Speech 10/12 (8/12) 12/12 (12/12) 

Steady HHDD + Non-Speech 4/12 (5/12) 12/12 (12/12) 

Note:  Numbers shown in parentheses indicate corresponding values from Study 
3, Surprise Moving Trials. 

3.9.7 Follow-up Analysis on Brake Reaction Time Findings 

A better understanding of these brake RT results was attained by conducting a frame-by-frame 
video analysis of the driver’s eye position at alert onset, and observing any subsequent eye 
movements made to the visual alert (prior to and after braking onset). The relationship of these 
eye movement patterns to both visual alert noticeability and brake RT measures were then 
explored, to the extent that was possible given the limited data set. This analysis is shown in 
Table 3-36. Corresponding results from Study 3 are also shown in this table (in smaller, 
italicized font), which follow the same pattern as those reported below. 
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Table 3-36	 Detailed Gaze Location, Eye Movement, and Visual Alert Noticeability Analysis for the “Steady HHDD + Non-Speech” and “Flashing HHDD + 
Non-Speech” Crash Alert Types for Study 4 Data and Corresponding Study 3 Data (Data from this latter study in indicated in italicized, smaller 
font) 

Gaze location of 
driver at alert 
onset / 

Number of 
drivers at gaze 
location at alert 
onset 

Crash Alert 
Type / 

Number of 
drivers at gaze 
location at 
alert onset 
with this 
Crash Alert 
Type 

Number of drivers 
who noticed visual 
alert / 

Number of possible 
drivers in Gaze 
Location x Crash 
Alert Type cell 

Number of drivers who… 
…paused to look at 
visual alert prior to 
braking / 

Number of possible 
drivers in Gaze 
Location x Crash 
Alert Type cell 

… paused to look at 
visual alert after 
braking / 

Number of possible 
drivers in Gaze 
Location x Crash 
Alert Type cell 

…did not pause to 
look at visual alert / 

Number of possible 
drivers in Gaze 
Location x Crash Alert 
Type cell 

Number of drivers who 
noticed visual alert 
without pausing to look at 
the alert / 

Number of  possible 
drivers in Gaze Location x 
Crash Alert Type cell who 
did not pause to took at 
alert 

Forward Scene / 
n=7 
(n=19) 

Steady HHDD 
+ Non-Speech 
/ n=3 
(n=11) 

1 / 3 
(5 / 11) 

0 / 3 
(1 / 11) 

1 / 3 
(2 / 11) 

2 / 3 
(8 / 11) 

0 / 2 
(2 / 8) 

Flashing 
HHDD + 
Non-Speech / 
n=4 
(n=8) 

4 / 4 
(5 / 8) 

0 / 4 
(1 / 8) 

2 / 4 
(3 / 8) 

2 / 4 
(4 / 8) 

2 / 2 
(5 / 8) 

Conventional 
Instrument Panel / 
n=12 

Steady HHDD 
+ Non-Speech 
/ n=6 

0 / 6 0 / 6 0 / 6 6 / 6 0 / 6 

Flashing 
HHDD + 
Non-Speech / 
n=6 

4 / 6 2 / 6 0 / 6 4 / 6 2 / 4 

Note:	 Only subjects for whom the location of their gaze immediately prior to alert could be scored as either at the forward scene or at the conventional (head-down) instrument 
panel location were included in this analysis. For both Study 4 and Study 3, this meant 5 of the 24 subjects (12 possible subjects per crash alert type) were excluded from 
this analysis. Note that there was no compelling reason to look down in Study 3 during the Surprise Moving Trial, and hence, the Study 3 data is concentrated for cases 
where gaze location at alert onset was the forward scene. 
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Table 3-37	 Individual Brake Reaction Times for Drivers Who Were Gazing 
at Either the Conventional Instrument Panel or Forward Scene 
at Crash Alert Onset as a Function of Crash Alert Type and 
Age Group (With Gender also Indicated) 

Driver Gaze Location at Alert 
Onset 

Crash Alert 
Type 

Age Group Conventional 
Instrument 

Panel 

Forward Scene 

Young 0.49 (female) 
0.52 (female) 

Middle-Aged 0.99 (female) 
1.09 (male) 
1.15 (male) 

Steady HHDD 
+ 
Non-Speech 

Older 0.55 (male) 
1.15 (male) 
0.95 (female) 

0.32 (female) 

Young 0.52 (male) 
0.45 (female) 
0.65 (male) 
0.55 (female) 

Middle-Aged 1.52 (female) 
1.69 (female) 

Flashing HHDD 
+ 
Non-Speech 

Older 1.02 (female) 
0.62 (male) 
0.92 (female) 

Note:  * Denotes subject who paused to look at the visual alert prior to braking.  Both of these subjects 
avoided impacting the surrogate (lead vehicle) target without braking intervention from the 
passenger-side experimenter. 

First, driver’s eye position at alert onset was scored and placed into various gaze location 
categories. As can be seen in the first column of Table 3-36, 7 and 12 drivers were categorized 
into the “forward scene” and (head-down) “conventional instrument panel” categories, 
respectively.  (Five drivers from this study were excluded from this analysis. Three drivers could 
not be scored due to either poor image quality or eye closure at alert onset, one driver was 
looking at the rear-view mirror at alert onset, and one driver happened to be looking at the 
HHDD at alert onset.) Hence, despite the experimenters’ best attempts during these Surprise 
Moving Trials to time the crash alert to occur when the driver was looking down at the 
conventional instrument panel, about 1/3 of the drivers happened to be looking at the forward 
scene when the alert was presented. This is not surprising given that drivers do not typically 
make long, sustained visual fixations to the instrument panel, and instead typically opt for 
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making a series of relatively short head-down visual fixations to perform an in-vehicle task. 
Between these fixations, drivers typically visually check (i.e., fixate) the forward scene. 

Finally, it should be noted there was a strong age effect associated with the driver gaze location 
at brake onset (which can be seen in Table 3-37, described below). Six of the 7 drivers who were 
looking at the forward scene at crash alert onset were younger-aged drivers. In sharp contrast, all 
of the 11 drivers who were looking at the conventional instrument panel at crash alert onset were 
either middle-aged or older-age drivers. Hence, for reasons that are somewhat unclear, a much 
higher degree of success was attained with getting middle-aged and older-aged drivers in terms 
of getting them to look at the conventional instrument panel at alert onset. As a consequence, 
any comparisons between brake RT as a function of driver gaze location are necessarily 
confounded by driver age effects. 

As can be seen in the second column of Table 3-36, these 7 “forward scene” and 12 
“conventional instrument panel” gaze locations at alert onset are further broken down as a 
function of crash alert type (Steady HHDD + Non-Speech versus Flashing HHDD + Non-
Speech). Fortunately, there are nearly an equal number of drivers for each crash alert type within 
each gaze location at alert onset category (forward scene versus conventional IP), which allows 
one to better explore the effects of crash alert type as a function of gaze location of the driver at 
alert onset. 

As can be seen in the third column of Table 3-36, independent of driver’s gaze location at alert 
onset, it appears the probability of the driver noticing the visual alert is much higher for the 
Flashing HHDD + Non-Speech condition. This same trend was true for the Study 3 results, 
particularly if one includes drivers who were not looking in these two gaze location categories at 
alert onset (see Table 3-25). 

Columns four through six of Table 3-36 indicate the number of drivers who paused to look at the 
visual alert prior to braking (column four), the number of drivers who paused to look at the 
visual alert after braking (column five), and the number of drivers who did not pause to look at 
the visual alert (column six). These data indicate that the two drivers who looked at the visual 
alert prior to braking were looking at the conventional instrument panel at the onset of the 
Flashing HHDD + Non-Speech alert. Furthermore, these two drivers (both middle-aged females) 
experienced the two longest brake RTs (1.52 and 1.69 seconds) in Study 4. Table 3-37 provides 
each subject’s brake RT in this analysis as a function of crash alert type and gaze location at alert 
onset. These limited data suggest any RT slowing effects caused by the Flashing HHDD + Non-
Speech alert are due to actually pausing to look at the visual alert, rather than the due to flashing 
per se. For the case in which drivers were looking at the conventional instrument panel at the 
onset of the alert, and who did not fixate the alert prior to braking, there does not appear to be 
any difference in RT between the Steady HHDD + Non-Speech and Flashing HHDD + Non-
Speech conditions with the available data. A similar “non-difference” between these crash alert 
types can be observed for the young drivers who were looking forward at the onset of the alert. 
These isolated brake RT slowing effects which are potentially due to pausing to look at the visual 
alert prior to braking onset need to put into the following context. 
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First, for these two drivers (as was true for all 19 drivers in this analysis), it was their first 
experience with the crash alert. Under more typical conditions, the driver would be aware his/her 
vehicle was equipped with a visual crash alert. The current experimental conditions in all 
likelihood increased any novel tendency drivers may have to choose to pause and look at the 
visual alert prior to braking.  It seems likely that under the more typical conditions described 
above, drivers would not choose to pause to look at the alert (in part because of the compelling 
nature of rapidly approaching a vehicle ahead), and would be more capable of “peripherally” 
using the information provided by the location and flashing nature of this visual indicator without 
a direct fixation. Indeed, of the four remaining “novice” drivers who were also looking at the 
conventional instrument panel at the onset of the Flashing HHDD + Non-Speech alert, two of 
these drivers did not pause to look at the visual alert, and two of the drivers noticed the visual 
alert during this first experience without actually pausing to look at the alert. 

Second, both of the two drivers mentioned above were still able to avoid impact with surrogate 
target without braking intervention by the passenger-side experimenter. Furthermore, this was 
also true for both drivers in Study 3 who paused to look at the visual alert prior to braking (see 
Table 3-36, column 4), who were both looking at the forward scene at crash alert onset. It 
remains unclear whether the brake RTs may have been actually slower or faster for these 
particular Study 4 and Study 3 drivers if they had experienced the Steady HHDD + Non-Speech 
alert (or no visual alert at all). Indeed, the flashing HHDD may have played a critical role in 
allowing these drivers to successfully avoid impacting the target by orienting the driver’s visual 
attention from the in-vehicle visual search task to the road ahead. 

Third, as can be seen in the rightmost column of Table 3-36, given that drivers did not pause to 
look at the alert, 0 of the 8 possible drivers experiencing the Steady HHDD + Non-Speech alert 
noticed the visual alert, and 4 of the 6 possible drivers experiencing the Flashing HHDD + Non-
Speech alert noticed the visual alert. The corresponding data from Study 3 were as follows. 
Given that drivers did not pause to look at the alert, 2 of the 8 possible drivers experiencing the 
Steady HHDD + Non-Speech alert noticed the visual alert, and 5 of the 8 possible drivers 
experiencing the Flashing HHDD + Non-Speech alert noticed the visual alert. Clearly, together 
with the data reported above, this limited data set clearly indicate that the likelihood of noticing 
and fixating the telltale is substantially higher in the Flashing HHDD + Non-Speech condition. 
Furthermore, the likelihood of noticing the telltale without actually pausing to look at the telltale 
is substantially higher in the Flashing HHDD + Non-Speech condition. Clearly, in terms of 
accommodating drivers who may not hear the alert sound (either due to hearing impairments 
and/or competing noises) and potentially facilitating these drivers to look away from inside of the 
vehicle and toward the forward scene, these limited data provide support for using a Flashing 
versus Steady HHDD. 

Fourth, for drivers who were looking at the forward scene at alert onset, none of the four drivers 
in the Flashing HHDD + Non-Speech in Study 4 paused to look at the visual alert. For the Study 
3 drivers who were looking at the forward scene at alert onset, only 1 of the 8 drivers in the 
Flashing HHDD + Non-Speech condition paused to look at the visual alert. As is pointed out in 
Chapter 2 of this report, the percent of rear-end collisions which can be attributed to drivers 
looking head-down while performing an in-vehicle task appears to be relatively small compared 
to the percent of rear-end collisions which can be attributed to drivers become inattentive for a 
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non-compelling reason (e.g., daydreaming). Furthermore, once again, neither of the two drivers 
who were looking head-down while performing the in-vehicle (visual search) task, and who may 
have experienced RT slowing due to pausing to look at the alert, needed braking assistance from 
the passenger-side experimenter to avoid colliding with the surrogate (lead vehicle) target. 

In summary, these data suggest that a flashing HHDD visual crash alert is more likely to be 
noticed than steady HHDD visual crash alert, even when the driver does not actually pause to 
look at the visual telltale. Clearly, in terms of accommodating drivers who may not hear the alert 
sound either due to hearing impairments and/or competing noises, and potentially facilitating 
these drivers to look away from inside of the vehicle and toward the forward scene, these limited 
data provide support for using a Flashing versus Steady HHDD. Furthermore, any potential 
brake RT slowing effect experienced by a relatively limited number of drivers in this study is 
hypothesized to be due to a novelty effect. Assuming this slowing effect occurred, the drivers 
who paused to look at the visual alert prior to braking were still able to avoid the impact with the 
surrogate target without braking intervention by the passenger-side experimenter. Indeed, the 
flashing HHDD may have played a critical role in allowing these drivers to avoid impact by 
orienting the driver’s visual attention from the in-vehicle visual search task to the forward scene 
ahead. Finally, even if the brake RT slowing effect mentioned above occurred, this phenomenon 
appears to limited to when the driver was looking at the conventional instrument panel (as 
opposed to the forward scene) prior to braking onset. The percent of rear-end collisions which 
can be attributed to drivers looking head-down while performing an in-vehicle task is relatively 
small compared to the percent of rear-end collisions which can be attributed to drivers who are 
looking at the forward scene and become inattentive for a non-compelling reason. 
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3.10 Comparison of Driver Performance With a Crash 
Alert Versus Without a Crash Alert Under Alerted 
Conditions 

In both Study 2 and Study 4, all drivers had previously participated in Study 1 (although no 
drivers participated in both Study 2 and Study 4). Hence, driver’s braking behavior with a crash 
alert during both Study 2-Alerted Stationary Trials and Study 4-Alerted Moving Trials could be 
compared to previous data obtained under nearly the same conditions without a crash alert for the 
same driver (Study 1). (Recall, during alerted trials, the driver is asked to brake in response to 
the anticipated alert.) It should be noted that this comparison is more straightforward with 
respect to Alerted Stationary Trials, since drivers were more likely to be closer to the exact same 
conditions with a crash alert (Study 2) versus without a crash alert (Study 1) than under Alerted 
Moving Trials. In the latter case, the time headways prior to the lead vehicle braking introduce 
inherent variability in the timing of the crash alert onset, and subsequent braking onset by the 
driver. Furthermore, since the Steady HHDD + Non-Speech and the RDP crash alert timing were 
the only crash alert type and timing conditions that were used in both Study 2 and Study 4, data 
from this combination of conditions was examined so that unconfounded comparisons could be 
made across Alerted Stationary Trials and Alerted Moving Trials relative to the corresponding 
baseline (Study 1) trials. Finally, since the main interest here is in driver performance with 
versus without crash alerts under alerted conditions, only statistically significant effects involving 
alert presence (i.e., Study) effects will be discussed below. 

3.10.1 Alerted Stationary Trials -
With Versus Without a Crash Alert 

In this comparison of driver behavior with versus without a crash alert under alerted conditions, 
drivers were selected who had participated in both Study 2 and Study 1. An Analysis of 
Variance (ANOVA) was performed for each of the following measures: SV speed at SV braking 
onset, SV acceleration at SV braking onset, range at SV braking onset, required deceleration at 
SV braking onset, actual deceleration, peak deceleration, minimum TTC-Case 1, and minimum 
range. Each of these measures were previously defined in Table 3-3. The criterion set for 
statistical significance was p<0.01. Unless otherwise noted, all statistically significant results 
indicated met (and often exceeded) these adopted criterion. The within-subjects variables 
analyzed were Study/Alert Presence (Study 1/no crash alert, Study 2/“Steady HHDD + Non-
Speech” alert) and (approach) speed (30 and 60 mph), and the between-subjects variables 
analyzed were age (younger, middle-aged, or older) and gender (male or female). 

Results indicated main effects of alert presence on SV acceleration at SV braking onset, required 
deceleration at SV braking onset, actual deceleration, and peak deceleration. These main effects 
are shown in Table 3-38. The results for the SV acceleration at SV braking onset are due to 
drivers sometimes hovering over the brake during “last-second” braking judgments in CAMP 
Study 1, whereas drivers in Study 2 braked in “crisp”, firm manner in response to the alert. The 
results for the remaining main effects indicate that with the alert present, drivers were attaining 
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shorter braking distances (higher actual decelerations), using more controlled braking (lower 
peak decelerations). With respect to the latter “controlled braking” finding, a significant Alert 
Presence x Speed interaction suggests this effect was more prominent in the 30 mph condition. 
In the 30 mph condition, the mean peak decelerations in Study 1 (no alert) and Study 2 (alert 
present) were –0.82 and –0.60, respectively.  In the 60 mph condition, the corresponding means 
were –0.85 and –0.72, respectively.  The interpretation of these effects is not straightforward. On 
one hand, one could argue that the presence of the alert resulted in a “more controlled” braking 
profile, which would be beneficial under certain conditions. However, another possibility, which 
cannot be ruled out, is this pattern of results is due to a practice effect, since Study 1 was 
completed before Study 2, and drivers may have felt more comfortable braking the test vehicle 
and whole experimental set-up in the latter study. 

3.10.2 Alerted Moving Trials -
With Versus Without a Crash Alert 

In this comparison of driver behavior with versus without a crash alert under alerted conditions, 
drivers were selected who had participated in the both the Study 4-“Steady HHDD + Non-
Speech” crash alert type condition and Study 1. An Analysis of Variance (ANOVA) was 
performed for each of the following measures: time headway at POV braking onset, SV speed at 
SV braking onset, SV acceleration at SV braking onset, range at SV braking onset, required 
deceleration at SV braking onset, actual deceleration, peak deceleration, minimum TTC-Case 2, 
minimum TTC-Case 2, minimum headway, and minimum range.  Each of these measures was 
previously defined in Table 3-3. The criterion set for statistical significance was p<0.01. Unless 
otherwise noted, all statistically significant results indicated met (and often exceeded) these 
adopted criterion. 

The within-subjects variables analyzed were Study/Alert Presence (Study 1-no crash alert, Study 
4-“Steady HHDD + Non-Speech” alert), speed (30, 45, and 60 mph), and POV braking profile 
(light, moderate, hard), and the between-subjects variables analyzed age (younger, middle-aged, 
or older), and gender (male or female). With respect to POV braking profile, there is somewhat 
of a confound between Study 1 and Study 4, which will be revisited in the reporting of these 
results. In the former study, the three POV braking profiles were -015, -0.28, and -0.39 g’s. In 
the former study, the three corresponding POV braking profiles were -015, -0.27, and -0.36 g’s. 

Results indicated main effects of alert presence on SV speed at SV braking onset, SV 
acceleration at SV braking onset, and peak deceleration. These main effects are shown in Table 
3-39. Once again, as explained above, the results for the SV acceleration at SV braking onset are 
artifactual in nature. The results for the remaining main effects indicate that with the alert 
present, drivers were at slightly higher speeds (1 mph difference across studies), and using more 
controlled braking (lower peak decelerations). As mentioned above, one could argue that the 
presence of the alert resulted in a “more controlled” braking profile, which would be beneficial 
under certain conditions. However, another possibility is that this pattern of results is once again 
due to a practice effect, since Study 1 was completed before Study 4. 
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3.10.3 Summary of “With” Versus “Without” Crash Alert Comparison 

Overall, during these expected braking conditions, these results suggest that, relative to drivers 
without a crash alert, drivers with a crash alert reached lower peak decelerations without 
extending their braking distances. In remains unclear whether this effect is due to the presence of 
the alert or to a practice effect, since all drivers participated in the baseline study (Study 1-no 
alert) prior to a study where they experienced a crash alert (Study 2 or Study 4). 

Table 3-38	 Significant Main Effects of Study (Alert Presence) on Various Variables 
Measured at SV Braking Onset During Alerted Stationary Trials 
(Comparison of Study 1 Versus Study 2 Results) 

Study/Alert Presence Mean 
Current 
Dec. (g) 

Mean 
Required 
Dec. (g) 

Mean 
Actual Dec. 

(g) 

Mean Peak 
Dec. (g) 

Study 1/Without Alert -0.05 -0.33 -0.40 -0.84 

Study 2/With Alert -0.03 -0.37 -0.48 -0.66 

Table 3-39	 Significant Main Effects of Study (Alert Presence) on Various Variables 
Measured at SV Braking Onset During Alerted Moving Trials (Comparison 
of Study 1 Versus Study 4 Results) 

Study/Alert Presence Mean SV Speed 
(mph) 

Mean 
Current Dec. 

(g) 

Mean Peak 
Dec.(sec) 

Study 1/Without Alert 44.4 -0.05 -0.86 

Study 4/With Alert 45.3 -0.03 -0.67 
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3.11 General Discussion 
Results indicated differences in both objective (performance) data and subjective (questionnaire-
oriented) data across the crash alert types examined. It should be stressed that each of the crash 
alert modality components of the crash alert types tested were chosen to represent realistic 
production constraints (e.g., the direct view high head-down display could not be placed higher 
and more central in the driver’s field of view without interfering with a short driver’s view of the 
road), and were well-received by the drivers. The key findings with respect to crash alert 
modality effects were as follows. 

First, the crash alert types including a non-speech tone component resulted in faster brake RTs 
relative to the crash alert type including a speech component. It should be stressed this RT effect 
was observed under expected braking conditions during which drivers were experienced with the 
various crash alert types, as well as under unexpected braking event (Surprise Moving Trials) 
conditions during which drivers were completely unaware the vehicle was equipped with a FCW 
system. Together, these data provide compelling evidence against the use of speech crash alerts. 

Second, drivers rated the crash alert types including either a speech or brake pulse component as 
more annoying relative to the remaining crash alert types, under the assumption that FCW system 
crash alerts would occur in non-threatening situations between once a day to once a week. Driver 
annoyance is an extremely important consideration in terms of driver acceptance, particularly in 
the initial introduction of FCW systems. 

Third, the brake pulse alert provided a “vehicle slowing” advantage during the delay time interval 
(i.e., between when the crash alert timing was violated and when the driver braked). Thus, under 
some conditions, the driver was in a more conservative kinematic scenario at braking onset in the 
crash alert type condition including a brake pulse component. Furthermore, adding a non-speech 
tone component to the brake pulse alert significantly reduced the relatively slow brake RTs 
initially observed in the HHDD + Brake Pulse condition (to remind the reader, HHDD refers to 
the High Head-Down Display). However, unlike the visual and auditory alerts examined here, 
there are important unresolved implementation and driver behavior issues surrounding the brake 
pulse alert.  These issues include alert activation on slippery surfaces, onset delays, consequences 
of moving the driver (and their foot) from their “normal”  position in the car, inhibiting more 
appropriate steering responses, and driver annoyance associated with nuisance alerts. It should 
be noted that these concerns are equally true for other (relatively immature) haptic alerts which 
have been suggested. These alerts include accelerator pedal pushback, steering wheel vibration, 
and seat vibration. If these issues surrounding the brake pulse could be satisfactorily resolved, 
these exploratory results suggest that the “vehicle slowing” advantage might be beneficial, and 
that the brake pulse should be “explained” by coupling it with an auditory and visual alert 
component. Furthermore, it appears the brake pulse cue as implemented in the human factors 
studies reported in Chapter 3 would be a reasonable candidate for a specific brake pulse 
implementation. 

Fourth, although there were no performance differences associated with the relevant HHDD 
versus HUD comparisons, subjects indicated a strong preference for the head-up display (or 
HUD). In a related finding, for a 1-stage crash alert approach, drivers indicated a strong 
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preference for a multi-modality alert approach (particularly a dual-modality crash alert) over a 
single-modality crash alert approach. Although a dual-modality crash alert approach is supported 
in terms of accommodating driver preferences, it should be noted the possibility exists that 
drivers’ lack of experience with single-modality alerts may have influenced the observed pattern 
of driver preferences. 

Fifth, after the surprise braking event was experienced by naive drivers, nearly all drivers 
reported noticing non-speech tone, speech, and brake pulse components of these crash alert types 
examined, and significantly more drivers noticed the Flashing HHDD and steady HUD relative to 
the steady HHDD. It should be stressed that each of these drivers were completely unaware the 
vehicle was equipped with a FCW system crash alert during the testing phase in which the crash 
alert was first experienced. This data provides direct evidence that the auditory alerts and brake 
pulse profile established during pilot testing met the goal of providing an alert that would be 
clearly noticed by naive drivers. In addition, overall, about 3 of 4 subjects indicated that the 
radio should be muted during the alert. However, it should be noted that these drivers had no 
direct experience with various types of in-path (“too early”) and out-of-path nuisance alerts, 
which could change this preference for radio muting. 

The drivers’ ability to notice the visual alerts under surprise conditions varied considerably 
across the crash alert types. However, it should be stressed that these visual alert noticeability 
results should be treated somewhat cautiously, since under more typical conditions in which the 
driver would be aware his/her vehicle was equipped with a visual crash alert, the probability of 
noticing these visual alerts may increase substantially. Given this caveat, data suggested that 
flashing the HHDD may be prudent in order to improve the noticeability of the HHDD (which 
may also be true for a flashing HUD, which was not examined here). This would be particularly 
true when this alert is coupled only with an auditory crash alert, since some drivers may not hear 
the alert sound either due to hearing impairments (e.g., older, hearing-impaired drivers or deaf 
drivers) and/or competing noises coming from either inside or outside the vehicle. Additional 
important reasons for including a visual alert modality component in any FCW crash alert 
modality approach are to potentially facilitate the driver to look ahead in response to the crash 
alert if they are not currently looking ahead at the forward scene, and to help explain the auditory 
or brake pulse crash alert components to the driver. With respect to this latter point, it is 
currently common industry practice to provide a visual indicator for most telltale-related sounds. 

In addition to these crash alert modality effects, there were also key findings with respect to 
developing a crash alert timing approach. First, brake RTs observed under the surprise technique 
resulting in the highest upper percentile values (i.e., the Study 4 head-down visual search task), 
yielded 85th and 95th percentile (i.e., slower) RTs of 1.2 and 1.5 seconds, respectively.  These 
values are being considered for the assumed driver brake RT in response to the crash alert during 
the development of crash alert timing requirements for the minimum crash alert timing setting 
(i.e., latest, most aggressive setting for a FCW system. ). These upper percentile values 
correspond well to the 85th-95th percentile driver perception-response time value of 1.5 seconds 
recommended by Olson (1996) for “reasonably” straightforward situations. (Olson (1996) 
provides a review of the driver-perception response time literature). More specifically, these 
values generally accommodate other relevant sources of previous “surprise” driver brake RT data 
(Johansson & Rumar, 1971; Olson & Sivak, 1986). Johansson and Rumar (1971) measured 5 
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driver’s brake reaction times to an auditory stimulus (a “buzzer”) which was implemented in the 
driver’s own personal vehicle. Four of these drivers were between 25 and 35 years old, and the 
fifth driver was 50 years old. This buzzer was presented a total of 10 times at random intervals 
during their normal driving.  The interval between buzzer presentations ranged between 1 hour 
and “more than a week”. Drivers were instructed to immediately respond to the buzzer by 
tapping the brake pedal (without bringing the car to a stop). The first three stimulus 
presentations were considered practice, and were not reported or included in the driver brake RT 
analysis. The obtained driver brake reaction times ranged between 0.5 and 1.1 seconds. Olson 
and Sivak (1986) measured 64 drivers’ brake RTs to a 6-inch high by 3-foot wide yellow foam 
object encountered after cresting a hill on a 2-lane public road. These drivers were led to believe 
that the purpose of their drive was to become familiar with the route for a study conducted the 
following day.  49 of these drivers were between 18 and 40 years old, and 15 of these drivers 
were between 50 and 84 years old. Observed 85th and 95th percentile driver brake reaction times 
to the obstacle were about 1.3 and 1.6 seconds, respectively.  The slightly faster (100 ms faster) 
upper percentile driver brake RTs obtained in the current study compared to the Olson and Sivak 
(1986) study may be due to several factors, including drivers associating increased crash risk 
with the surprise scenario employed in the current study relative to the surprise scenario 
employed in the Olson and Sivak (1986) study. 

Second, results clearly indicated that the timing approach employed was subjectively rated by 
drivers (on average) as “just right” timing under a wide range of combinations of driver speed 
and lead vehicle decelerations under both expected and unexpected (surprise) lead vehicle 
braking event conditions. Most importantly, this crash alert timing approach allowed nearly all 
drivers to respond to the crash alert in a manner which allowed them to avoid impacts during 
Surprise Moving Trials with the surrogate lead vehicle. During 3.7% of the Surprise Moving 
Trials conducted (four of 108) across all three interface studies, the passenger-side experimenter 
intervened to assist the driver in coming to a stop. In 3 of these 4 cases, the driver contacted the 
brake first. It remains unclear in any of these 4 cases whether these drivers could have avoided 
impact with the surrogate target (if given the opportunity) without the assistance of the 
passenger-side experimenter. Overall, these findings provide strong evidence that the 
deceleration-based crash alert timing approach directly derived/modeled from the CAMP Study 1 
findings does an excellent job from a driver performance and preference perspective under both 
alerted and surprise braking event conditions (i.e., not too early/not too late). These crash alert 
timing findings are extremely important from a methodological validity standpoint, since how to 
present crash alert information is intimately related to when this information is presented. Put in 
another way, these findings bolster the validity of both the objective and subjective data gathered 
with respect to the various crash alert types examined, since the crash alert types were presented 
at an appropriate perceived timing. 

Third, it has been argued that a driver following a lead vehicle at a short time headway may be 
more alert, and hence, have faster brake RTs than a driver following a lead vehicle at a longer 
(i.e., more conservative) headway (Farber, 1997). These data provide clear evidence against such 
an assumption, and more generally, against any crash alert timing approach that assumes drivers’ 
brake RTs are related to time headways. Across all studies employing Surprise Moving Trials, 
the Pearson correlation coefficients (r) between drivers’ brake RTs and time headways at lead 



3-174 

vehicle braking onset were extremely low. (The corresponding r-values for Study 2, Study 3, and 
Study 4 were + 0.07, -0.18, and –0.18, respectively.) 

Finally, results from a “name the system” questionnaire favored the inclusion of “Forward 
Collision” as part of the system name (rather than for example, “Rear-End Collision”), in spite of 
the instruction that the system was not designed for detecting pedestrians (and hence, not 
everything in the forward scene). However, it should be stressed these naming data are strictly 
based on driver preferences, and do not provide direct data on what driver expectations (in terms 
of system performance) would be associated with each of these proposed names. An “open-
ended” questionnaire employing naive subjects would provide more direct data for assessing the 
association between system name and driver expectations. 

In summary, the crash alert timing approach developed in CAMP Study 1 (the CAMP required-
deceleration based algorithm) received strong validation in these three interface studies. This 
timing approach appears very promising,  and merits future closed-course and in-traffic testing. 
Of the 1-stage, FCW crash alert types examined, the “Flashing HHDD + Non-Speech Tone” is 
recommended as a near-term approach (Replacing the flashing HHDD with a “steady” HUD” is 
also supported by these findings.). The “Steady HHDD + Non-Speech Tone” crash alert type 
provided good all-around performance in terms of both objective data (e.g., fast driver brake 
RTs) and subjective data (e.g., low driver annoyance). The recommendation to flash the HHDD 
is primarily based on improving the noticeability of the HHDD for drivers who may not hear the 
non-speech tone either due to hearing impairments and/or noises coming from either inside or 
outside the vehicle. Other considerations include potentially facilitating the driver to look ahead 
in response to the visual crash alert, and using this visual alert to help explain the non-speech 
tone to the driver. The recommended visual display format (a “car-star-car” crash icon with the 
word “WARNING” printed below) and non-speech tone correspond to those tested in these three 
interface studies. Prior to these studies, the visual display formats and the auditory alerts were 
down-sized from numerous alternatives based on questionnaire studies (following ANSI 
procedures) and laboratory studies, respectively. 

Although a multiple-stage alert is allowed under the proposed requirements, a 1-Stage alert is 
recommended based on the current discovery of a proper “single-point” crash alert timing 
approach, compatibility with Adaptive Cruise Control system driver alerts being considered, 
simplicity/elegance from a customer education (mental model) and production implementation 
perspective, minimizing nuisance alerts, and the rapid (potentially confusing) sequencing of 
multi-stage alerts in many closing scenarios likely to trigger crash alerts. Indeed, one could argue 
that multiple-stage (e.g., 2-stage) alerts should be avoided unless the advantages of using such 
alerts outweigh the disadvantages of such alerts. 

A critical consideration in recommending the “Flashing HHDD + Non-Speech Tone” alert as a 
near-term FCW crash alert approach is that this alert type has favorable qualities from an 
industry-wide, international implementation perspective relative to the HUD, brake pulse, and 
speech crash alert components examined (in any case, the speech alert component performed 
poorly in terms of both objective and subjective data). In the near-term, HUDs will not be 
implemented industry-wide. Furthermore, as discussed above, there are important unresolved 
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implementation and driver behavior issues surrounding the brake pulse alert (and haptic alerts in 
general). 

Based primarily on data from these three interface studies and the previous baseline study 
(CAMP Study 1), a set of minimum driver interface requirements were developed, which are 
discussed in Chapter 4. 
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4	 PRELIMINARY MINIMUM FUNCTIONAL 
REQUIREMENTS AND RECOMMENDATIONS 

4.1 Introduction and Methodology 
The project is to focus on collisions between the front of a host vehicle and the rear end of 
another vehicle. These requirements are a set of development goals for what a FCW system 
should do; they do not specify how to achieve these goals. There is no claim that these 
requirements can be met with currently available technology. Furthermore, it should be stressed 
at this point that the current project represents CAMP’s best efforts at developing preliminary 
functional requirements for a FCW system. Further evaluation of these requirements under 
in-traffic, operational field test, and vehicle-level testing conditions will undoubtedly provide 
additional information for refining these requirements. 

No single crash countermeasure can be effective in preventing or mitigating all types of crashes. 
The variety of crash types, which occur, and the numerous causal factors involved, make it 
necessary to focus individual countermeasure systems on particular categories of collisions. 
FCW systems focus on helping the driver avoid or reduce the severity of rear-end crashes with 
other vehicles. 

The primary objective of this chapter is to propose requirements that result in systems that meet 
driver expectations regarding a FCW system. These requirements result from the best efforts of 
the Program participants to reflect those expectations. These requirements were used to 
development a set of test procedures for FCW systems. The process used to develop these 
requirements involved the following, sometime simultaneous, areas of work (Figure 4-1): 

° Development of an assumed set of customer expectations for a FCW system. 

° Definition of the functional requirements for a hypothetical ideal system. 

° Adjustment of the requirements based upon expert opinion on technical feasibility. 

° Accommodating human factors and driver behavior considerations. 

°	 Comparison of the suggested requirements with those developed in other projects by 
other organizations. 

° Computer-based modeling of performance. 

°	 Adjustment of the requirements based upon expert opinion of the consumer 
perspective. 
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Figure 4-1 FCW System Requirements Development Process 

The requirements include: 

°	 Driver-vehicle interface functional requirements, including crash alert timing and 
crash alert modality requirements. 

°	 The dimensions of the Alert Zone, defined as the region in space ahead of the 
equipped vehicle where alerts are required if the obstacle meets other criteria such as 
relative speed and distance from the host vehicle. 

° Maximum levels for how often out-of-path nuisance alerts are allowed to occur. 

° Maximum levels for how often in-path nuisance alerts are allowed to occur. 

° Other FCW performance requirements. 
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The remainder of this chapter is divided into six sections. Section 4.2 describes the driver-
vehicle interface requirements, and focuses on defining the crash alert timing and crash alert 
modality.  Section 4.3 describes the Alert Zone shape and boundaries. Section 4.4 reviews the 
Crash Scenarios from Chapter 2 and presents the preliminary minimum functional requirements 
derived from each one. Section 4.5 describes the nuisance alerts, and Section 0 presents the 
Operational Scenarios requirements. Section 4.7 tabulates the requirements developed in the 
previous sections. 

The reader should be reminded at this point that these requirements are considered preliminary 
functional requirements. Throughout these requirements, the words “shall” and “should” are 
often used, and are intended to communicate different levels of importance with respect to 
compliance with these preliminary requirements. The word “shall” is meant to indicate the 
proposed minimum preliminary requirement must be met, and there shall be no deviation from 
this requirement. The word “should” is meant to indicate the proposed preliminary requirement 
should be met, but the level of knowledge does not merit preventing (or not allowing) deviation 
from this requirement. In many of these “should” cases, it is not the case that the preliminary 
minimum requirement is in a sense optional, but rather that the range or range of values proposed 
for the preliminary requirements lacks a solid empirical basis at this point to allow no deviation 
from this requirement. 

4.2 Driver-Vehicle Interface Functional 
Requirements 

This portion of the document describes the preliminary minimum functional requirements for a 
FCW system driver interface, with the primary focus on requirements for FCW system crash 
alerts (Sections 4.2.1 to 4.2.4). More specifically, these requirements are primarily focused on 
when to present crash alerts to drivers (i.e., the crash alert timing) and how to present crash alerts 
to drivers (i.e., visual, auditory, and/or haptic alerts). It should be stressed that how to present 
crash alert information is intimately related to when this information is presented. In general, as 
the likelihood of an impending collision if no evasive vehicle control action (e.g., braking) is 
taken increases, the need for the crash alert to more aggressively warn (and potentially annoy) 
the driver increases. Furthermore, as the crash alert becomes more aggressive (i.e., occurs later 
or at a closer distance), the need for reliable/accurate crash alert information increases. 

Requirements for FCW system information not directly related to crash alerts (i.e., system 
malfunction, system limitation condition) are discussed in a more general fashion in Section 
4.2.5. Section 4.2.8 briefly discusses how the FCW system driver interface should be integrated 
with non-FCW systems (e.g., adaptive cruise control). Overall, these requirements are intended 
to address the need for a clear and relevant set of human factors requirements for FCW systems. 
All cited references are alphabetically listed in Section 4.8 

These minimum driver interface requirements, as well as interface recommendations, are based 
primarily on data from the four CAMP human factors studies described in detail in Chapter 3. 
(This is particularly true for the specific requirements focused on crash alert timing and crash 
alert modality discussed in Sections 4.2.1 through 4.2.4).  These CAMP Human Factors data 
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were gathered under highly valid, controlled, realistic conditions involving a wide range of 
drivers braking to a realistic crash threat. 

These preliminary functional requirements have been formulated through reviews and analyses 
of the best-available data, and in this sense, should be considered state-of-the-art. Given a 
manufacturer has decided to implement a FCW system, these requirements should be used as a 
tool for designing a FCW system which allows the driver to take full advantage of FCW system 
technology for reducing the frequency and severity of rear-end crashes. 

Each section presents a definition of the requirement, discussion of the supporting rationale for 
the requirement, followed by the requirement itself. The requirement is enclosed in a box. 
When possible, a quantitative requirement is presented either as a point value or as a range. If 
this was not possible, the requirement is presented qualitatively in more general terms. In 
addition, there were cases where the level of available data obtained in the four CAMP human 
factors studies discussed in Chapter 3 suggested a driver interface recommendation (i.e., an 
“optimum” interface design) which exceeded the minimum requirement, but the level of 
available data to support this recommendation was not deemed sufficient for a minimum 
requirement. These “CAMP recommended approaches” are indicated in italicized font in the 
bottom of the requirement box. 

4.2.1 Crash Alert 

The crash alert refers to a mechanism by which the driver is informed via some type of alert or 
alerts (e.g., a tone and visual warning) of the likelihood of an impending collision if no evasive 
vehicle control action (e.g., braking or steering) is taken. Irrespective of the form or modality of 
the crash alert, this information is of high priority and must be clearly conveyed to the driver in a 
timely and effective manner. The preliminary requirements for the number of crash alert stages, 
timing, and the method of presenting these alerts are discussed in Sections 4.2.2, 4.2.3, and 4.2.4, 
respectively. 

At this point it should be mentioned that the remainder of this driver-interface requirements 
section addresses crash alerts in the situation when the driver is in immediate danger of 
impacting the lead vehicle, rather than tailgating situations in which the driver is following 
closely but is not expected to impact the lead vehicle in the immediate future. The philosophy 
taken in these minimum functional requirements is that although “closing” crash alerts are 
required, a tailgating advisory would be optional. (It should be noted, that Wilson, Butler, 
McGehee, and Dingus (1997) also do not consider such an advisory to be a minimum 
requirement for a FCW system.) 

In terms of the preliminary functional requirements for a FCW system driver interface 
incorporating a tailgating advisory, the following general comments can be made. First, a 
warning used for a closing crash alert should not be presented in tailgating situations, since the 
driver should only be issued a closing alert when a collision is likely to occur if evasive vehicle 
control action (e.g., braking) is not taken immediately (see Section 4.2.2). Second, due to the 
anticipated annoyance factor associated with a tailgating advisory, the criterion for this advisory 
should be adjustable with a separate control from the crash alerts, and this control should include 
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an “off” position. Third, for similar reasons, the tailgating advisory should be presented to the 
driver via the visual modality only rather than employing either the auditory or haptic modalities. 

4.2.2 What Should be the Number of Crash Alerts Stages? 

Most systems described in the literature (particularly production systems) use a 2-stage FCW 
system alert scheme (Eaton VORAD, 1996; Frontier, 1995; International Standards 
Organization, 1996a; Lerner, Kotwal, Lyons, and Gardner-Bonneau, 1996b; NHTSA, 1996; 
Watanabe, Kishimoto, Hayafune, Yamada, and Maede, 1995). The first, relatively less urgent, 
stage is referred to as a “cautionary” alert. This alert is presented when a collision is likely to 
occur if evasive vehicle control action (e.g., braking) is not taken soon. The second, relatively 
more urgent, stage is referred to as an “imminent” alert. This alert is presented when a collision 
is likely to occur if evasive vehicle control action (e.g., braking) is not taken immediately. 
Irrespective of the nature of the adjustability of the crash alert timing, the cautionary crash alert 
should generally occur at a greater distance than the imminent crash alert. It should be noted that 
some FCW systems proposed have included more than two stages of alert (Graham et al., in 
press; Landau, 1995; McGehee et al., 1993; Nakajima, Satoh, Kikuchi, Manakkal, Igarashi, and 
Chiang, 1996). 

One potential advantage of a 2-stage alert over a 1-stage crash alert approach is that the driver is 
provided the opportunity (via a cautionary alert) to avoid a situation where evasive vehicle 
control action (e.g., braking) must be taken immediately. However, one potential large 
disadvantage of a 2-stage crash alert approach is that drivers may find a certain percentage of 
cautionary alerts annoying, whereas they may rarely find imminent alerts annoying (discussed 
further below). For this reason, consumer acceptance could ultimately dictate a 1-stage warning 
scheme. It should also be noted that with the exception of a series of studies conducted at the 
TNO Human Factors Research Institute (Horst, 1990; Janssen and Nilsson, 1990; Janssen and 
Thomas, 1994; Nilsson et al., 1991), 1-stage warning schemes have received relatively little 
attention in human factors research. 

The CAMP Task 4 driver interface studies focused exclusively on examining 1-stage warnings. 
The rationale for evaluating 1-stage rather than multiple-stage (e.g., a 2-stage cautionary 
alert/imminent alert approach) crash alert types was based in part on results from CAMP Study 
1. These results suggest that the 50th percentile required deceleration value observed in that 
study under “hard braking” driver instructions appeared very promising as an appropriate (not 
too early/not too late) single point estimate of the assumed driver braking onset range (or 
distance) for crash alert timing purposes. The required deceleration measure was defined as the 
constant deceleration level required for the driver to avoid the crash at braking onset. This 
measure was calculated by using the current speeds of the driver’s vehicle and the lead vehicle, 
and assuming the lead vehicle continued to decelerate at the prevailing deceleration value (i.e., at 
the current “constant” rate of slowing). Put in another way, it was felt this required deceleration-
based estimate would ensure that for a high percentage of drivers that the onset of braking in 
response to a crash alert would: 
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°	 Occur at a closer range than their braking onset range during “aggressive” normal 
braking. 

° Allow sufficient range for the driver to avoid the crash. 

The required deceleration data from CAMP Study 1 was modeled (explained further below) and 
provided the basis for assumptions made about driver braking onset range. It is also important to 
note that these required deceleration values were relatively uninfluenced by driver age or gender 
in CAMP Study 1, which is a desirable finding from a production implementation perspective. 
Furthermore, it was felt and later observed that the low percentage of drivers not accommodated 
by (2) above (allowing sufficient range for the driver to avoid the crash) would brake harder in 
response to a crash alert (i.e., they were capable of braking harder) than what was observed 
during their preferred “last-second” hard braking judgment in CAMP Study 1. 

Additional reasons for employing a 1-stage rather than multiple-stage crash alert approach were 
the following. First, with respect to the compatibility of a FCW system integrated with an 
Adaptive Cruise Control (or ACC) system, a 1-stage alert is more consistent with the 1-stage 
ACC system driver alerts being considered (e.g., one possible ACC alert is to warn the driver if 
they have exceeded the maximum braking deceleration authority of the ACC system). Early 
production implementations of FCW systems are likely to be integrated with ACC. Since an 
ACC system alert may be largely consistent with the meaning intended by a FCW system alert 
(i.e., a collision may occur unless evasive control action is taken), the use of a 1-stage alert for 
both ACC and FCW systems may be promising from a customer education, simple “mental 
model” perspective. 

Second, with respect to a “stand-alone” FCW system, a 1-stage alert is much more simple and 
elegant from a customer education (”mental model”) and production implementation perspective. 
For example, the driver only has to interpret the meaning of one (versus more than one) alert. In 
addition, if the alert timing (or criterion) is under driver control, the effect of the driver adjusting 
a 1-stage alert criterion is relatively straightforward. In a multiple-stage alert scheme, the effect 
of such an adjustment is less straightforward. For example, do adjustments effect multiple alert 
stages?  Are adjustments permitted for the most imminent alert? 

Third, a 1-stage alert provides a potential means of reducing in-path (“too early”) nuisance alerts 
and out-of-path nuisance alerts relative to the first stage of  a 2-stage (or multiple-stage) crash 
alert approach. In this case, it is assumed the first stage of a 2-stage (or multiple-stage) alert 
approach would be more conservative (i.e., the alert would occur earlier or at a farther range to 
the vehicle ahead) than a 1-stage alert.  These increases in nuisance alerts could reduce system 
effectiveness (e.g., drivers’ brake RTs to the alert could increase), system usage in FCW-
equipped vehicles (i.e., drivers may turn the system off), and negatively impact driver acceptance 
of FCW systems. On the other hand, it could be argued that, providing these “first stage” 
nuisance alert concerns could be addressed, a properly designed 2-stage approach might give the 
driver an earlier opportunity to avoid “near misses” and situations where evasive control action 
must be taken immediately, as well as respond earlier under poor traction or poor atmospheric 
conditions. However, these potential benefits of a 2-stage crash alert approach may also be able 
to be attained with a 1-stage crash alert with an adjustable crash alert timing feature. 



4-13 

Fourth, based on CAMP experiences during pilot testing attempting to sequence the 1-stage alert 
and the “bail-out” alert (i.e., the alert was used to signal the passenger-experimenter to take over 
and begin braking), which can be thought of as but one example of a 2-stage alert, a concern was 
identified that the extremely short time lag between the two crash alerts might render the 2-stage 
alert distinction meaningless and potentially confusing for the driver. Hence, this raises the 
possibility that under the wide range of vehicle-to-vehicle kinematic scenarios likely to trigger 
crash alerts examined in these CAMP studies, a 2-stage alert may be more confusing than helpful 
for the driver. More generally, rapid sequencing of multi-stage alerts are more likely to occur 
under conditions when the driver’s vehicle is rapidly closing in on the lead vehicle such that the 
difference in speeds between these two vehicles (i.e., the delta velocity) is building up rapidly. 
(Conversely, slower sequencing of multi-stage alerts are less likely to occur under conditions 
when the driver’s vehicle is slowly closing in on the lead vehicle such that the difference in 
speeds between these two vehicles (i.e., the delta velocity) is building up slowly.)  Examples of 
conditions under which rapid sequencing may occur include when the driver of an FCW-
equipped vehicle is approaching a stopped or braking lead vehicle, as well as under various cut-
in/merge and lane change situations. It should be stressed that the distinction between the 
moments at which “soon” and “immediate” evasive control action are required, associated with 
cautionary and imminent crash alerts, respectively, is solely dependent on a particular crash alert 
timing approach. If this distinction is relatively minor under most vehicle-to-vehicle kinematic 
conditions (causing a rapid, potentially confusing sequencing of these alerts), particularly if those 
conditions are relatively more serious in nature, then the merits of a 2-stage alert are 
questionable. It is worth noting that the previous recommendation made by Lerner et al. (1996) 
for 2-stage automotive crash alerts was based on research examining aircraft alerting systems, 
which may have very different alert time-courses (e.g., slower-developing time-courses) relative 
to automotive crash alert systems. 

Indeed, one could argue that multiple-stage (e.g., 2-stage) alerts should be avoided unless the 
advantages of using such alerts outweigh the disadvantages of such alerts. As discussed above, 
potential disadvantages of multiple-stage alerts relative to a 1-stage alert include potential non-
compatibility with ACC system driver alerts, increases in system complexity from a customer 
education (driver mental model) perspective, increases in system complexity from a production 
implementation perspective (e.g., added controls and displays), and increases in nuisance alerts 
which could reduce system effectiveness. 

For these reasons, a 1-stage crash alert approach is recommended. However, multiple-stage 
crash alerts are not prevented by the following minimum requirement, in part because such 
approaches were not evaluated in the CAMP human factors studies for the reasons described 
above. However, if a multiple-stage crash alert is implemented, additional stages shall not 
reduce the effectiveness of the most imminent alert and all CAMP minimum requirements must 
be met for both a fixed FCW system and for the minimum (latest, closest) setting for a FCW 
system which provides crash alert timing adjustability. 

Suggested possible approaches for a multiple-stage crash alert which are most likely to satisfy 
this minimum requirement are presented in the last paragraph of Section 4.2.4 



4-14 

The FCW system shall have at least a 1-stage FCW crash alert. 

The FCW system may have multiple-stage (e.g., 2-Stage) FCW crash alerts provided 
additional stages do not reduce the effectiveness of the most imminent alert and all CAMP 
minimum requirements are met for both a fixed FCW system and for the minimum (latest, 
closest) setting for a FCW system which provides crash alert timing adjustability. 

Recommended Approach: The FCW system should have a one-stage crash alert. (1) 

4.2.3	 When Should Crash Alert Information be Presented to the 
Driver? 

4.2.3.1 Crash Alert Timing and Crash Alert Timing Adjustability 

On the most general level, the position taken in these minimum functional requirements is that 
the FCW system should not be allowed to be turned off by the driver inadvertently or otherwise, 
due to the safety-related aspects of this system. Given this position, it should be stressed that 
great care must be taken in mimimizing both in-path and out-of-path nuisance alerts, since the 
driver will not have the option to turn the system off. (It should be noted that subsequent 
technology experience with FCW systems might suggest allowing the driver the capability of 
turning the system off to reduce nuisance alerts, in which case the FCW system should default to 
a system “on” state at the beginning of an ignition cycle.) 

The crash alert timing (or crash alert criterion) for a FCW system refers to the necessary 
underlying conditions for triggering the onset of crash alerts. The crash alert timing 
adjustability for a FCW system refers to a mechanism by which the driver can adjust the timing 
setting for triggering crash alerts. The following CAMP requirements address the minimum alert 
timing setting (i.e., the latest, closest setting) for a FCW system which is adjustable by the driver, 
as well as the alert timing for a fixed, non-adjustable FCW system. These requirements do not 
address the maximum (i.e., the earliest, farthest) alert setting for a FCW system with an 
adjustable crash alert timing, and leave these maximum settings unconstrained. The implicit 
assumption is that if a driver with an adjustable FCW system perceives the timing of crash alert 
onset is “too early” (i.e., the nuisance alert rate is unacceptable for the driver), the driver will 
adjust the alert timing toward a later, closer setting.  The following minimum requirement places 
a lower cut-off (or bound) on the latest, closest setting for an adjustable FCW system. Hence, 
the driver is not allowed to adjust the crash alert timing below the minimum level specified 
below. 

These timing requirements must be met for the conditions in the objective test procedures 
discussed in Chapter 5 of this report. These timing requirements may not be appropriate for 
conditions outside the bounds of vehicle-to-vehicle kinematic conditions examined in the CAMP 
human factors studies and the objective test procedures discussed in Chapter 5. 
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Under this minimum requirement, the onset of the FCW crash alert must occur anywhere within 
an acceptable crash alert timing zone, where this zone is defined by “too early” and “too late” 
onset range cut-offs (or bounds). This crash alert timing zone concept is illustrated in Figure 4-1 
for the case when a driver of a FCW-equipped vehicle is approaching a parked vehicle. (The 
case in which the lead vehicle is stationary is shown here for illustrative purposes, but the reader 
should note the same concept applies to cases in which the lead vehicle is moving.) It should be 
stressed that this requirement does not specify that any particular crash alert timing approach be 
employed (e.g., the crash alert timing approach employed in the three CAMP driver interface 
studies), but instead, simply requires that whatever crash alert timing approach is used yield 
performance consistent with these minimum timing requirements. The rationale for these “too 
late” onset and “too early” onset range cut-offs will now be discussed in detail. 

Approaching 
FCW-Equipped Parked 

Vehicle  Vehicle 

__________________ __________________________________________________Acceptable Crash Alert Onset Timing Zone 

“too early”  “too late” 
alert onset range alert onset range 
cut-off point cut-off point 

Figure 4-2	 Concept of the Acceptable Crash Alert Onset Timing Zone 
(The case in which the lead vehicle is parked is shown for illustrative purposes.) 

The four human factors studies described in Chapter 3 of this report (as well as the modeling of 
the data gathered in Study 1, which is reported in Appendix A20) provided the underlying 
rationale for establishing the acceptable crash alert onset timing zone. In general, the “too early” 
onset range cut-off is more focused on driver preference considerations (including in-path 
nuisance alerts) for crash alert timing under various vehicle-to-vehicle kinematic situations. In 
contrast, the “too late” onset range cut-off is more focused on driver braking capability (rather 
than driver preference), and was derived from examining drivers’ actual braking under various 
vehicle-to-vehicle kinematic situations. It should be stressed here that driver capability can be 
contrasted with the maximum braking capability of the vehicle (i.e., the braking capability 
yielded by a test driver). The human factors work central to developing this crash alert onset 
timing zone will now be briefly described. The reader interested in a more detailed description 
of this work is referred to Chapter 3 of this report, as well as to Appendix A20, which describes 
the process used for modeling hard braking data obtained in the first human factors study 
(CAMP Study 1) for crash alert timing purposes. 

In developing a crash alert timing approach for a FCW system, two fundamental driver behavior 
parameters have to be considered. The first parameter is the driver deceleration (or braking) 
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behavior in response to the FCW crash alert across a wide variety of initial vehicle-to-vehicle 
kinematic conditions, and the second parameter is the time it takes for the driver to respond to 
the crash alert and begin braking (which includes driver brake reaction time). These two 
parameters serve as input into straightforward vehicle kinematic equations which determine the 
alert range necessary to avoid a crash. These kinematic equations will be discussed following a 
discussion of the rationale for the values used for these two input parameters. 

Rationale Underlying the Assumed Driver Deceleration Values 

The first driver parameter which needs to be considered, driver deceleration (or braking) 
behavior in response to the onset of the FCW crash alert across a wide variety of initial vehicle-
to-vehicle kinematic conditions, was addressed by the first CAMP human factors study (CAMP 
Study 1). In this closed-course, field study, a strategy was employed to initially develop a 
fundamental understanding of the timing and nature of drivers’ “last-second” braking behavior 
without a FCW system, before conducting the subsequent FCW system driver interface studies. 
This strategy was taken so that drivers’ perceptions of “normal” and “hard braking” kinematic 
situations could be properly identified and modeled for FCW system crash alert timing purposes. 
The underlying assumption is that properly characterizing (i.e., modeling) the kinematic 
conditions surrounding hard braking onsets without FCW system crash alert support will lead to 
a proper estimate for the assumed driver deceleration (or braking) behavior in response to a FCW 
system crash alert (across a wide variety of initial vehicle-to-vehicle kinematic conditions). This 
assumption was then evaluated and received strong validation in the subsequent three driver 
interface studies. 

In this CAMP Study 1, drivers were asked to wait to brake until the last possible moment in 
order to avoid colliding with a “surrogate” (lead vehicle) target. Drivers performed these “last-
second” braking judgments while approaching a parked surrogate target at speeds ranging 
between 30 and 60 MPH, and while “normally” following the lead vehicle (travelling at these 
same speeds) which eventually braked at a constant deceleration ranging between -0.15 and -
0.39 g’s. In performing these “last-second” braking judgments, subjects were instructed to use 
either “normal”, “comfortable hard”, or “hard braking” pressure. The use of these different 
braking instructions enabled properly identifying and modeling drivers’ perceptions of “normal 
braking” (albeit “aggressive normal braking”) and “hard braking” for crash alert timing 
purposes. Thirty-six younger (20-30 year old) drivers, 36 middle-aged (40-51 year old) drivers, 
and 36 older (60-71 year old) drivers were tested. Eighteen males and 18 females were tested in 
each age group. Overall, data from over 3,800 last-second braking trials were obtained. A key 
measure in interpreting these results was the “required deceleration” measure. This measure was 
defined as the constant deceleration level at braking onset required for the driver to avoid the 
crash. This measure was calculated by using the current speeds of the driver’s vehicle and the 
lead vehicle, and assuming the lead vehicle continued to decelerate at the prevailing deceleration 
value (i.e., at the current “constant” rate of slowing). 

Converging evidence suggested that the 50th percentile required deceleration value observed in 
CAMP Study 1 under “hard braking” driver instructions appeared very promising as an 
appropriate (not overly aggressive/not “underly” aggressive) estimate of the assumed driver 
braking onset range for crash alert timing purposes. Put in another way, the data suggested this 
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required deceleration-based estimate would ensure that, for a high percentage of drivers, the 
onset of hard braking in response to a crash alert would occur at a closer range than their braking 
onset range during “aggressive” normal braking, and that this estimate would allow sufficient 
range for the driver to avoid the crash by hard braking.  This required deceleration measure 
varied with driver speed and lead vehicle deceleration rates. It is also important to note that 
these required deceleration values were relatively uninfluenced by driver age or gender. 
Additional evidence suggested that drivers with a FCW-equipped vehicle would be capable of 
executing the observed hard braking levels without exceeding their “comfort zone” for hard 
braking. 

The CAMP Study 1 data obtained from the “hard braking instruction” was then modeled. The 
primary goal of this modeling effort (which is described in detail in Appendix A20) was to 
predict “last-second”, “hard braking” onsets across the wide variety of initial vehicle-to-vehicle 
kinematic conditions examined in CAMP Study 1 by using the required deceleration value. 
Braking onset is defined here as the point in time in which the vehicle actually began to slow as a 
result of braking (rather than brake contact). The results of this modeling effort were used 
directly for crash alert timing purposes in the subsequent three FCW system driver interface 
studies. The raw data which were used for this modeling effort included: 

R = Range between the driver’s vehicle and lead (surrogate target) vehicle 

VSV = Speed of the driver’s vehicle (or Subject Vehicle, referred to as the SV) 

VPOV = Speed of the lead vehicle (or Principal Other Vehicle, referred to as the POV) 

decPOV = Deceleration level of the lead vehicle (or POV) 

The resulting equation from this modeling effort, referred to as the CAMP Required Deceleration 
Parameter (RDP) equation, is shown below. In this equation, the following notation and 
measurement units are employed (negative deceleration values indicate braking or slowing): 

decREQ = required deceleration of the SV, expressed in g’s 

decPOV = deceleration level of the POV, expressed in g’s 

VSV = velocity of the SV, expressed in meters/sec 

VPOV = velocity of the POV, expressed in meters/sec 

(the “if POV moving “ variable is explained below) 

CAMP Required Deceleration Parameter (RDP) Equation


decREQ = -0.165 + 0.685(decPOV) + 0.080(if POV moving) - 0.00877(VSV – VPOV)
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In the above equation, the “(VSV – VPOV)” or delta V predictor variable represents the speed 
difference between the SV and POV projected at SV braking onset and “decPOV” represents the 
current POV deceleration level. (The “projection” described here, as well as the projections 
described below, were performed to be consistent with the Study 1 modeling efforts which 
focused on predicting the moment of braking onset.) In addition, the “if POV moving” predictor 
variable is set to 0 if the POV is projected to be stopped at braking onset, and is set to 1 if the 
POV is projected to be moving at braking onset. These predicted required deceleration values 
(expressed in g’s) serve as input into straightforward vehicle kinematic equations (described 
later) which determine the braking onset range necessary to avoid a crash. 

The assumed driver deceleration (or braking) behavior in response to the FCW crash alert for the 
“too early” onset range cut-off is calculated using the RDP equation above. As should be clear, 
this “too early” onset range cut-off assumption is more focused on driver preference 
considerations for crash alert timing. 

The assumed driver deceleration (or braking) behavior in response to the FCW crash alert for the 
“too late” onset range cut-off was based on examining driver’s “actual” deceleration values 
under experimental conditions in which drivers were braking the hardest. The actual 
deceleration is defined as the constant deceleration level needed to yield the actual (observed) 
braking distance. For each speed condition examined in CAMP Study 1 (30, 45, and 60 MPH), 
the mean actual decelerations were highest (i.e., hardest, most intense) in the condition in which 
drivers were following the lead vehicle at their “normal” following distance, and the lead 
(surrogate) vehicle subsequently braked at -0.39 g’s. The overall 85th percentile (milder) actual 
deceleration values were then obtained at each speed condition examined when the lead vehicle 
braked at -0.39 g’s. (The reader should note that the use of 85th percentile actual deceleration 
values in this context corresponds to accommodating 85 percent of the observed driver braking 
capabilities, which corresponds to the 15th percentile actual deceleration value shown earlier in 
Table 3-10.) The relationship between drivers’ mean speed in these three speed conditions and 
these 85th percentile actual deceleration values for this (hard) lead vehicle braking condition was 
linear, and resulted in the following equation derived from standard linear regression techniques. 
This equation will be referred to as the CAMP actual deceleration parameter equation, or CAMP 
ADP equation, which is shown below. In this equation, the following notation and measurement 
units are employed: 

decACTUAL = 	actual deceleration of the Subject Vehicle, expressed in g’s 
(negative values indicate braking) 

VSV = velocity of the Subject Vehicle (or SV), expressed in meters/sec 

CAMP actual deceleration parameter (ADP) equation 

decACTUAL = -0.260 - 0.00727(VSV) 

At driver speeds of 30, 45, and 60 MPH, the above equation generates actual deceleration values 
of –0.36, -0.41, and –0.45 g’s, respectively. As should be clear, this “too late” onset range cut-
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off is more focused on observed driver braking capability considerations, rather than driver 
preference or vehicle capability considerations. 

Rationale Underlying the Assumed Driver Brake Reaction Time Values 

The second fundamental driver behavior parameter which needs to be considered in developing a 
crash alert timing approach was addressed in three subsequent closed-course, field studies 
(CAMP Study 2, Study 3, and Study 4), where a wide range of naive and trained drivers of a 
FCW-equipped vehicle experienced various FCW system crash alert types under both expected 
and unexpected (or surprise) braking event conditions. Across these three driver interface 
studies during the surprise braking event conditions, several strategies were employed to ensure 
the driver experienced the crash alert and create a relatively “inattentive” driver (i.e., the 
criterion for triggering the crash alert was met). During the surprise braking event, the lead 
vehicle traveled at 30 MPH and braked at about -0.37 g’s without brakelights activated. 
Strategies employed to create a relatively “inattentive” driver included engaging the driver in 
natural conversation, asking the driver to respond to some background-type questions, and 
asking the driver to search the head-down, conventional instrument panel for a (non-existent) 
indicator light. In two of the three studies, drivers were completely unaware the vehicle was 
even equipped with FCW system crash alert prior to the unexpected, surprise braking event. 

The assumed driver brake reaction time (or brake RT) values which were used in defining the 
acceptable crash alert timing zone below were derived from the last driver interface study (Study 
4), but also accommodate findings from the two other driver interface studies (Study 2 and Study 
3). This study asked 8 younger, 8 middle-aged, and 8 older drivers who were completely 
unaware the vehicle was equipped with a FCW system crash alert to search for a head-down, 
conventional instrument panel for a (non-existent) indicator light immediately prior to the 
introduction of the surprise braking event described above. The 85th and 95th percentile (i.e., 
longer) driver brake RTs to the crash alert from this study were 1.18 and 1.52 seconds, 
respectively.  These RTs were used in calculating the “too late” and “too early” onset range cut
offs, respectively. It should be noted that the corresponding 85th and 95th percentile driver brake 
RTs in the two remaining driver interfaces studies (which together tested a total of 84 drivers) 
were very close, and slightly shorter, with respect to the relevant crash alert types. 

Furthermore, these upper percentile values correspond well to the 85th-95th percentile driver 
perception-response time value of 1.5 seconds recommended by Olson (1996) for “reasonably” 
straightforward situations. (Olson (1996) provides a review of the driver-perception response 
time literature). More specifically, these values generally accommodate other relevant sources of 
previous “surprise” driver brake RT data (Johansson & Rumar, 1971; Olson & Sivak, 1986), as 
discussed in Chapter 3. 
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Kinematic Equations Employing These Assumed Driver Behavior Parameters 

The assumed driver deceleration (or braking) behavior in response to the FCW crash alert (across 
a wide variety of initial vehicle-to-vehicle kinematic conditions) and the assumed driver brake 
reaction in response to the alert were input into straightforward kinematic equations. Given the 
two assumed driver behavior parameters described above, and assuming current speeds (for both 
the SV and POV) and the prevailing lead vehicle deceleration value, these kinematic equations 
produce a braking onset range such that the difference in speeds between the driver’s vehicle and 
lead vehicle and the distance between the two vehicles reach zero values simultaneously (i.e., 
when the front bumper of the driver’s vehicle barely contacts or touches the rear bumper of the 
lead vehicle). 

The appropriate case equation used to calculate the braking onset range (Case 1, Case 2, or Case 
3) is based on the projected movement state of the POV at braking onset (POV moving or POV 
stationary), and the projected movement state of the POV when the SV barely contacts the POV 
(contact when POV is moving or contact when POV is stationary) under the required 
deceleration prediction (or assumption). The speeds of the SV and POV are also projected at 
braking onset. The braking onset range is then calculated by inputting the predicted required 
deceleration value from the CAMP RDP equation into the appropriate case equation below. It 
should be noted that the variables need to be expressed in common measurement units (e.g., 
meters), which should be consistent with those used in calculating the predicted required 
deceleration values. Also, in these equations negative deceleration values indicate braking or 
slowing. 

In the following case equations, the following notation is used: 

BOR = Braking Onset Range in meters 

VSVP = SV velocity in meters/sec projected at SV braking onset 

VPOVP = POV velocity in meters/sec projected at SV braking onset 

decSVR = deceleration of the SV in meters/sec2 in response to the alert 

decPOV = POV deceleration in meters/sec2 
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Kinematic Case Equations Used to Calculate Braking Onset Range 

Case 1: POV Stationary ‚ 

Case 2: POV Moving, contact when POV is moving ‚ 

Case 3: POV Moving, contact when POV is stationary‚ 
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In calculating the braking onset range for the “too early” onset range cut-off, the decSVR is 
substituted by the calculated decREQ (or CAMP RDP equation) value described above.  Similarly, 
in calculating the braking onset range for the “too late” onset range cut-off, the decSVR is 
substituted by the calculated decACTUAL value described above. 

This braking onset range, calculated as shown above, is added to a “delay time range” (described 
below), to calculate the warning range. The assumed “delay time range” between crash alert 
criterion violation and vehicle braking is then the expected decrease in range during a delay time 
(defined below), assuming current speeds (for both the SV and POV) and the prevailing lead 
vehicle deceleration value.  The equation for this delay time range equation is shown below 
(where decSVM represents the current SV deceleration level), where negative deceleration values 
indicate slowing or braking. 

Equation Used to Calculate Delay Time Range 

Delay Time Range=((VSV - VPOV)(Delay Time))+(0.5 (decSV - decPOV)((Delay Time)2)) 

The assumed delay time is the composite sum of two separate delay times, the driver brake RT 
delay and the brake system delay time. The driver brake RT delay is defined as the time between 
crash alert onset and when the brake switch is triggered by the driver. Based on discussions 
above, this delay was assumed to be 1.52 and 1.18 seconds for the “too early” and “too late” 
range cut-offs, respectively.  The brake system delay time is defined as the time between braking 
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onset and vehicle slowing, and is assumed to be 200 milliseconds. (The reader should note that 
the interface delay time, defined as the time between when the crash alert criterion was violated 
and when the crash alert was presented to the driver, is not directly relevant to meeting this 
requirement that the alert occur within the acceptable zone, but is obviously a factor which needs 
to be considered in the design of a FCW system.) 

This delay time range is then added to the previously described braking onset range to calculate 
the warning range. That is, 

WARNING RANGE = BRAKING ONSET RANGE +DELAY TIME RANGE 

A FCW is likely to need the following information to meet these timing requirements: Range 
between the SV and the POV, SV speed, POV speed (or the time derivative of range), and 
approximate knowledge of POV (lead vehicle) deceleration. The level of knowledge needed to 
pass the tests of Chapter 5 is described in that chapter. Briefly, the ability to “bin” the level of 
lead vehicle deceleration to within approximately +/-0.05g with minimal time delay (about one 
second) should have enough information to meet the proposed minimum requirements. To 
compute approximate values for lead vehicle deceleration may require a FCW system to have 
better sensing or better processing capability than a system without such capability.  This may 
mean the FCW system needs more complex technology to pass the requirements proposed here 
than if lead vehicle deceleration were not considered, which introduces the possibility of delayed 
time-to-deployment. This disadvantage, however, is outweighed by two arguments for the use of 
approximate knowledge of lead vehicle deceleration in the requirements. First, the human 
factors studies show that the timing model for driver’s decisions to brake at the last second is 
strongly dependent on lead vehicle deceleration information. Second, the simulation and 
modeling work reported in Appendix C suggests that this knowledge allows FCW design to 
provide more potential reduction in harm for the same incidence of in-path nuisance alerts. That 
is, a system with the ability to consider lead vehicle deceleration is expected to give more 
satisfactory  alert timing to drivers and therefore lead to more successful deployment. 

Summary of Crash Alert Timing Requirement 

In summary, this minimum requirement defines the acceptable crash Alert Zone for a FCW 
system without crash alert timing adjustability (which is allowed), and the latest, closest setting 
for a FCW system with crash alert timing adjustability.  Hence, the driver is not allowed to adjust 
the crash alert timing below (or later than) the minimum level specified by this requirement. 

Both the “too early” and “too late” onset range cut-offs, which define the boundaries of the 
acceptable crash-timing, are calculated based on inputting two fundamental driver behavior 
parameters into the straightforward kinematic “Case” equations described above. These two 
driver behavior parameters are the assumed driver deceleration (or braking) behavior in response 
to the FCW crash alert and the assumed time it takes for the driver to respond to the crash alert 
and begin braking (or driver brake RT). The reader should be reminded that this requirement 
does not specify that any particular crash alert timing approach be employed, but instead, simply 
requires that whatever crash alert timing approach is used yield performance consistent with the 
these minimum timing requirements. 
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For the “too early” onset range cut-off, the assumed driver deceleration in response to the crash 
alert is based on the CAMP RDP equation and an assumed driver brake RT to the crash alert of 
1.52 seconds (a 95th percentile driver brake RT). This is essentially identical to the crash alert 
timing approach which was employed during the surprise braking event trials in the three driver 
interface studies reported in Chapter 3 (the only negligible difference is that a 1.50 second brake 
RT was used in these studies). The reader should be reminded that these assumed brake RT 
values were based on surprise braking event data gathered with naive drivers who were 
completely unaware the vehicle was equipped with a FCW system, and who were distracted via a 
request to search the head-down, conventional instrument panel for a (non-existent) indicator 
light. 

For the “too late” onset range cut-off, the assumed driver deceleration in response to the crash 
alert is based on the CAMP ADP equation (which generates a 85th percentile “hard” actual 
deceleration as a function of driver speed) and an assumed driver brake RT to the crash alert of 
1.18 seconds (an 85th percentile driver brake RT). As mentioned above, at driver speeds of 30, 
45, and 60 MPH, the CAMP ADP equation generates actual deceleration values of –0.36, -0.41, 
and –0.45 g’s, respectively. 

The CAMP recommended crash alert approach is to design a FCW system with assumed driver 
behavior input parameters to the kinematic equations described above, as follows. First, the 
assumed deceleration in response to the crash alert should be predicted by the CAMP RDP 
equation (under the domain of validity for this equation, discussed further below). This braking 
onset assumption was employed throughout the three driver interface studies reported in Chapter 
3. Second, the assumed driver brake RT in response to the crash alert should be 1.18 seconds, 
which corresponds to the 85th percentile driver brake RT described above. 

It should be noted that combining an Xth (e.g., 85th) percentile driver deceleration in response to 
the crash alert (either required or actual deceleration) and an Xth (e.g., 85th) percentile brake RT 
does not necessarily imply an assumed “overall” Xth (e.g., 85th) percentile driver. Indeed, under 
surprise braking event conditions, the Pearson correlation coefficients between required 
deceleration values and brake RTs across all three driver interface studies ranged between -0.13 
and +0.64, and the corresponding correlation coefficients between actual deceleration values and 
brake RTs ranged between +0.48 and +0.62. A positive correlation here indicates longer brake 
RTs were associated with harder (required or actual) decelerations. Together, these data suggest 
that the current CAMP assumptions for both the “too early” and “too late” onset range cut-offs 
may account for higher than an 85th percentile “overall” driver from both a driver preference 
perspective and a driver capability (rather than vehicle capability) perspective, respectively. 

On a final note, for readers concerned with the details of implementing crash alert timing 
equations, it should be noted that the kinematic equations shown above are focused on closing 
scenarios. In a production implementation, a crash alert algorithm will be exposed to a wide 
variety of driving situations, which will include the key closing scenario elements shown above, 
as well as the additional logic and equations required so that inappropriate alerts do not occur in 
normal, non-braking situations (e.g., when the range between the vehicles is increasing), and so 
that alerts are presented in more unusual circumstances with crash alert timing that is equivalent 
to that described here. The interested reader is referred to Appendix B for a more detailed 
discussion of computing alert timing values and the domain of validity for these equations. This 
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appendix presents the explicit instructions for computing timing requirements, and also includes 
a few subtleties that are not presented here in the interest of brevity, but that prove significant in 
some situations. 

The driver should not have the ability to turn off the FCW system and associated FCW 
crash alerts inadvertently or otherwise (It should be stressed that subsequent technology 
experience with FCW systems might suggest allowing the driver the capability of turning 
the system off to reduce nuisance alerts, in which case the system should default to an 
“ON” state with each ignition cycle.) 

The FCW system may have a feature which allows the crash alert timing to be adjustable 
by the driver. 

For a FCW system without crash alert timing adjustability, the crash alert timing shall fall 
within the “too early” and “too late” onset range cut-offs as defined above. (The “too late” 
cut-off does not need to be more than 100 meters range, for reasons described later, in 
Section 4.3.2.1. ) 

For a FCW system with crash alert timing adjustability, the minimum (latest, closest) crash 
alert timing setting shall fall within the “too early” and “too late” onset range cut-offs as 
defined above. 

Note: These cut-offs were based on inputting the following driver behavior parameters into 
the straightforward kinematic equations described above. (The reader is referred to 
Chapter 6, Appendix B for a discussion of the domain of validity of these equations.) 
For the “too early” onset range cut-off, the assumed driver deceleration in response 
to the crash alert is based on the CAMP RDP equation and an assumed driver brake 
RT of 1.52 seconds (a 95th percentile driver brake RT). For the “too late” onset 
range cut-off, the assumed driver deceleration in response to the crash alert was 
based on the CAMP ADP equation and an assumed driver brake RT of 1.18 seconds 
(an 85th percentile driver brake RT). 

Recommended Approach: The FCW system should be designed with assumed driver behavior 
input parameters to the kinematic equations described above, as follows. The assumed driver 
deceleration in response to the crash alert should be predicted by the CAMP RDP equation, 
and the assumed driver brake reaction time should be 1.18 seconds (corresponding to an 85th 
percentile driver brake RT). The domain of validity of this equation is discussed in the text. 

(2) 

4.2.3.2 Control for Adjusting Crash Alert Timing 

For a FCW system with crash alert timing adjustability, the corresponding control and crash alert 
timing setting should be clearly and easily comprehended by the driver. The adjustment of the 
control could allow the driver to have continuous control, or the control could be limited to a 
fixed number of settings (e.g., 2 or 3). A rotary control, slide, or a thumbwheel control should be 
the type of control used (MIL-STD-1472D, 1987; Sanders and McCormick, 1987). In order to 
be consistent with strong population stereotypes for these controls reported by Wierwille and 
McFarlane (1991), the following recommendations are offered, although further research is 
suggested in this area. Dependent on the orientation, operation, and type of control, either an 
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“up”, “right”, or “forward” movement should result in an earlier (farther) crash alert criterion, 
with the opposite analogous movements corresponding to a later (closer) crash alert criterion. 

Nomenclature used to indicate minimum (latest, closest) and maximum (earliest, farthest) 
settings of the crash alert criterion on the associated control might include “CLOSER” and 
“FARTHER”, or “NEAR” and “FAR”. The former nomenclature was used for an adaptive 
cruise control system in the University of Michigan Transportation Research Institute (UMTRI) 
field trials (J.R. Sayer, personal communication, February 18, 1996), and the latter nomenclature 
received some support in a driver preference study examining labels of adjustable distance 
controls for an adaptive cruise control system (Serafin, 1997). Interestingly, this latter study was 
not able to find a symbolic manner of labeling the controls (i.e., using arrows or chevrons) which 
outperformed the “NEAR” and “FAR” word labeling.  However, one strong advantage of 
symbology relative to word labeling is their relatively universal applicability across international 
driving populations. Expert judgment suggests that, providing they are legible, words should be 
spelled out, in order to increase the driver’s comprehension of the control setting.  At this point, 
no firm recommendations are made with respect to control labeling nomenclature. 

If the FCW system allows the driver the ability to adjust the crash alert criterion, the 
associated control and the crash alert criterion shall be clearly labeled and easily 
comprehended by the driver. 

A rotary control, slide, or thumbwheel control should be the type of control provided for 
this crash alert timing adjustment. 

This crash alert timing control and the associated control labeling should be consistent with 
population stereotypes for control/display relationships. (3) 

4.2.4	 How Should Crash Alert Information be Presented to the 
Driver? 

Visual, audio, and/or haptic alerts have all been suggested as potential means of providing the 
driver with crash alert information. Haptic alerts refer to any warning that is presented through 
the proprioceptive (or kinesthetic) senses, such as a brake pulse deceleration (vehicle jerk), 
accelerator pushback or vibration, steering wheel vibration, or seat vibration. 

The CAMP driver interface studies focused exclusively on examining multi-modality (primarily 
dual-modality) crash alerts. The rationale for evaluating dual-modality warnings in these studies 
was based on the notion that an omnidirectional component of the crash alert (i.e., an auditory or 
haptic component) was required which was independent of where the driver was directing visual 
attention. Inattentive or distracted drivers (who play large roles in rear-end crashes) may not 
detect a visual crash alert display, since their visual attention may be directed elsewhere (e.g., at 
an instrument panel display) at the same time the alert is initially presented. In addition, it was 
felt that including a (non-omnidirectional) visual crash alert component was a prudent strategy 
for a crash alert modality approach. A visual crash alert is recommended in order to 
accommodate drivers who may not hear the alert sound either due to hearing impairments (e.g., 
older, hearing-impaired drivers or deaf drivers) and/or competing noises coming from either 
inside or outside the vehicle. One advantage of visual over auditory displays is that whereas 
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driver licensing requirements in most states in the United States generally do require a minimum 
level of visual performance (e.g., 20/40 far acuity, adequate peripheral vision), they generally do 
not require any minimum level of auditory performance. Additional important reasons for 
including a visual alert modality component are to potentially facilitate the driver to look ahead 
in response to the crash alert if they are not currently looking ahead at the forward scene, and to 
help explain the omnidirectional component of the alert to the driver. With respect to this latter 
point, it is currently common industry practice to provide a visual indicator for most telltale-
related sounds. 

Across the three CAMP driver interface studies, six separate crash alert types were evaluated in 
which the driver was simultaneously presented crash alerts from two sensory modalities (with 
one exception involving three modalities), sometimes referred to as a 1-stage, dual-modality 
crash alert. The crash alert type conditions which were tested are indicated below: 

° Head-Up Display + Non-Speech Tone 

° High Head-Down Display + Non-Speech Tone 

° High Head-Down Display + Speech message 

° High Head-Down Display + Brake Pulse 

° High Head-Down Display + Non-Speech Tone + Brake Pulse 

°	 Flashing High Head-Down Display + Non-Speech Tone (for the other crash alert 
types, the HHDD was not flashed and remained steady) 

The visual alert components evaluated included a “high” head-down display (or HHDD) and a 
head-up display (or HUD). The visual format of these displays (discussed in Section 2.4.3) was 
selected from a set of alternatives by using an established ANSI procedure for evaluating 
candidate symbols (see Chapter 3, Appendix A18). The auditory alert components evaluated 
included a non-speech sound and a speech sound (the word “warning” repeated), which were 
played through the front car speakers. These two sounds were selected based on a laboratory 
study involving drivers rating various alternative sounds on crash alert properties (see Chapter 3, 
Appendix A19). The haptic alert evaluated was a brief brake pulse, or “vehicle jerk” alert (see 
Chapter 3). This alert was examined with more of an intent to explore its potential, since unlike 
the visual and auditory alerts examined here, there are important unresolved implementation and 
driver behavior issues surrounding this alert. These issues include alert activation on slippery 
surfaces, onset delays, consequences of moving the driver (and their foot) from their “normal” 
position in the car, inhibiting more appropriate steering responses, and driver annoyance 
(associated with nuisance alerts) surrounding the brake pulse alert. It should be noted that these 
concerns are equally true for other, relatively immature, haptic alerts which have been suggested 
(e.g., accelerator pedal pushback, steering wheel vibration, seat vibration). 

To summarize the interface studies discussed in detail in Chapter 3, of the 1-stage, FCW crash 
alert types examined, the “Flashing HHDD + Non-Speech Tone” is recommended as a near-
term approach (Replacing the flashing HHDD with a “steady” HUD” is also supported by these 
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findings.). The “Steady HHDD + Non-Speech Tone” crash alert type provided good all-around 
performance in terms of both objective data (e.g., fast driver brake RTs) and subjective data 
(e.g., low driver annoyance). The recommendation to flash the HHDD is primarily based on 
improving the noticeability of the HHDD for drivers who may not hear the non-speech tone 
either due to hearing impairments and/or noises coming from either inside or outside the vehicle. 
Other considerations include potentially facilitating the driver to look ahead in response to the 
visual crash alert, and using this visual alert to help explain the non-speech tone to the driver. 
The recommended visual display format (a “car-star-car” crash icon with the word “WARNING” 
printed below) and non-speech tone correspond to those tested in these three interface studies. 

Although a multiple-stage alert is allowed under the proposed requirement, a 1-Stage alert is 
recommended based on the current discovery of a proper “single-point” crash alert timing 
approach, compatibility with 1-stage ACC system driver alerts being considered, 
simplicity/elegance from a customer education (mental model) and production implementation 
perspective, minimizing nuisance alerts (which can reduce system effectiveness), and the rapid 
(potentially confusing) sequencing of multi-stage alerts in many closing scenarios likely to 
trigger crash alerts. Indeed, one could argue that multiple-stage (e.g., 2-stage) alerts should be 
avoided unless the advantages of using such alerts outweigh the disadvantages of such alerts. 

A critical consideration in recommending the “Flashing HHDD + Non-Speech Tone” alert as a 
near-term FCW crash alert approach is that this alert type has favorable qualities from an 
industry-wide, international implementation perspective relative to the HUD, brake pulse, and 
speech crash alert components examined. (In any case, the speech alert component performed 
poorly in terms of both objective and subjective data.) In the near-term, HUDs will not be 
implemented industry-wide. Furthermore, as discussed above, there are important unresolved 
implementation and driver behavior issues surrounding the brake pulse alert (and haptic alerts in 
general). 

For these reasons, the dual-modality (1-stage) Flashing HHDD + Non-Speech crash alert (where 
a HUD can be substituted for the HHDD) is recommended. However, a single-modality alert 
including the CAMP non-speech tone is not prevented by the following minimum requirement, 
in part because such an approach was not evaluated in the CAMP human factors studies. The 
details surrounding the implementation of the CAMP non-speech tone crash alert and the CAMP 
visual crash alert are discussed in greater in Section 4.2.4.1 and Section 4.2.4.2, respectively. 

As was mentioned at the end of Section 4.2.2 the FCW system is allowed (although not 
recommended) to have multiple-stage (e.g., 2-Stage) FCW crash alerts, provided additional 
stages shall not reduce the effectiveness of the most imminent (latest, closest) alert and all 
CAMP minimum requirements are met for both a fixed FCW system and for the minimum 
(latest, closest) setting for a FCW system which provides crash alert timing adjustability.  The 
overall intent is to have any earlier stage alert be clearly distinguishable from subsequent (later, 
closer) alert stages, yet still clearly integrated with this later alert from a simple “mental model”, 
driver comprehension perspective. For example, the driver might observe the light (visual crash 
alert) is first steady and then it flashes as the driver gets closer to the car ahead, or that the non-
speech tone speeds up as the driver gets closer to the car ahead. 
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Some potential multiple-stage approaches which have a better chance of meeting the CAMP 
minimum requirements are to precede the proposed CAMP “flashing” visual crash alert display 
with the corresponding “steady” (or continuous) version of this display, and/or precede the 
proposed CAMP Non-Speech Tone with a less “imminent” version of this sound. Some possible 
approaches to creating a less imminent version of this sound are decreasing the speed or rate of 
the sound, increasing the dead time between sound bursts (see Appendix A18), using lower 
frequencies within the same general sound pattern, and/or increasing the loudness of the tone. (It 
should be noted that if this latter loudness approach is employed, it should be combined with one 
or more of the other approaches suggested above.) 

Finally, unlike the visual and auditory alerts examined here, there are important unresolved 
implementation and driver behavior issues surrounding the brake pulse alert. It should be noted 
that these concerns are equally true for other, relatively immature, haptic alerts which have been 
suggested and were mentioned earlier. If these major issues surrounding the brake pulse alert 
could be satisfactorily resolved, these exploratory results suggest that the “vehicle slowing” 
afforded by the brake pulse during the interval immediately prior to the driver taking evasive 
control action (in response to the crash alert) might be advantageous, and that the brake pulse 
should be “explained” by coupling it with an auditory and visual alert component. 
Consequently, although a haptic alert is allowed under the current minimum requirement 
(however, only as a supplement to the dual-modality approach), it is not currently advised due to 
the numerous unresolved implementation and driver behavior issues surrounding these haptic 
alerts. 

If a single-modality crash alert is implemented, the CAMP non-speech tone shall be used 
for the alert. 

If a dual-modality crash alert is implemented, the CAMP non-speech tone and the CAMP 
visual crash icon (which can be shown on either a HHDD or HUD) shall be used for these 
auditory and visual, respectively. An additional haptic alert may be added to this dual-
modality crash alert, however, due to the unresolved implementation and driver behavior 
issues surrounding this type of an alert, such an approach is not currently advised. 

Recommended Approach: The system should have a dual-modality crash alert as specified 
above, with the exception that the capitalized word “WARNING” should be positioned 
centered and below the crash alert icon. (4) 

4.2.4.1 The CAMP Non-Speech Tone Crash Alert 

Non-speech auditory alerts refer to tones, chimes, beeps, buzzers, and “earcons” (e.g., the sound 
of screeching tires or a horn). That is, any sound that is not a word. Two strong advantages of 
non-speech relative to speech crash alerts are that they do not require familiarity with any 
particular spoken language, and that they provide the advantage of using the same design for 
vehicles sold in international markets. 

The recommendation for the CAMP non-speech tone is based on three lines of reasoning. First, 
this particular non-speech tone was down-sized from a large number of alternatives, which had 
been examined in previous work by Tan and Lerner (1995), and in additional human factors 
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work completed by CAMP (see Chapter 3, Appendix A19 for a detailed description of this 
study). The CAMP sound study built directly upon previous work conducted by Tan and Lerner. 
The CAMP sound study asked subjects to rate sounds on the extent to which each sound was 
associated with various crash alert related attributes. These sound attributes included overall 
effectiveness, noticeability, confusability, attention-getting qualities, startle, interference with 
driver decisions, interference with performing driving actions, annoyance assuming alert 
occurred once a day where no driving action was required, annoyance assuming alert occurred 
once a day where no driving action was required, appropriateness of the alert in a car or truck, 
and alert association with an emergency situation. (The reader should note that the annoyance 
assumptions stated above are consistent with the in-path and out-of-path assumptions stated later 
in this Chapter.) The interior sound of a 1997 Ford Taurus SHO traveling on dry, smooth 
pavement at 70 MPH was used as background noise during these sound ratings. 

In their previous work, Tan and Lerner (1995) examined 26 sounds, including various non-
speech, earcon (car horn and tire skid), and speech sounds. The CAMP sound study, employing 
nearly the identical methodology employed by Tan and Lerner, examined 15 non-speech and 3 
speech sounds, including the 5 top-rated sounds from the previous Tan and Lerner study (which 
were all non-speech sounds). Hence, in some sense, together, these two studies have examined 
39 distinct sounds, including 22 distinct non-speech sounds, 15 distinct speech sounds (all using 
either the word “warning”, “danger”, “look out” , or “hazard”), and 2 distinct earcon-type 
sounds (car horn, tire skid). Hence, the top-rated non-speech and speech sounds observed in this 
CAMP sound rating study provided a sound empirical justification for the selection of the non-
speech sound used in the follow-up, closed-course, driver-interface studies. 

Based on these CAMP findings, the CAMP non-speech tone (Sound #8; which corresponds to 
Stimuli 10 in the earlier Tan and Lerner study) was used for all three driver interface studies (i.e., 
Study 2, Study 3, and Study 4) as the non-speech alert sound, which was played through the front 
speakers. A 1/3 octave band and time series analysis of this non-speech sound can be found in 
the Tan and Lerner paper (see Appendex B, page B-10 in this paper). This 2.1 second long non-
speech sound involved repeating the exact same macro “sound pattern” (or macro sound burst) 
four times. Each repetition of the macro sound pattern was followed by 110 milliseconds of 
silence. Each macro sound pattern in turn involved repeating the exact same micro sound pattern 
(or micro sound burst) four times. These micro sound bursts, which are the building blocks for a 
macro sound burst, consisted of narrow 2500 Hz and 2650 Hz peaks. 

The second basis for the recommendation of the CAMP non-speech tone is that this sound was 
used for all three CAMP driver interfaces studies described in Chapter 3. These studies gathered 
data under highly valid, controlled, realistic conditions involving a wide range of drivers braking 
to a realistic crash threat while experiencing production-oriented crash alert types. Hence, the 
CAMP non-speech tone is well understood in terms of the expected distribution of driver brake 
RTs to a crash alert type including this component under both unexpected (surprise) and 
expected braking event conditions with both trained and naive drivers. (It is assumed that the 
visual alert in these studies played a very minor role, if any, in effecting driver brake RTs, 
particularly under expected braking event conditions.) The brake RT findings obtained with this 
sound included as part of the crash alert type are the underlying basis for the driver brake RTs in 
response to a crash alert assumed previously in Section 4.2.3. These driver brake reaction 
assumptions cannot be automatically assumed to generalize to other sounds. Most importantly, 
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these driver interface studies demonstrated this alert sound was successful in terms of allowing 
both trained and naive FCW system users to avoid impact with the lead (surrogate) vehicle under 
surprise braking event conditions. 

The third basis for the recommendation for the CAMP non-speech tone is that since it is far more 
difficult to commonize the visual alert location across vehicles, and a visual alert is not currently 
required to comply with these minimum requirements, it becomes increasingly important that a 
common sound be used across vehicles to convey FCW system crash alert information. 

As was mentioned above, the CAMP non-speech tone was played through the front speakers 
during the three driver-interface studies. This tone should emanate from the front of the vehicle 
(the direction of the hazard) and not in the median plane, that is perpendicular to the horizontal 
plane that passes through the driver’s ears. A recent laboratory study by Tan and Lerner (1996) 
suggests that both the precise nature of the auditory crash alert (i.e., the warning sound) and the 
acoustic source of this alert (i.e., the speaker location) are important considerations in 
determining whether an auditory crash alert will allow the driver to effectively localize a crash 
threat. Finally, the ISO draft (1996b) suggested that an auditory crash alert should not have the 
ability to be disabled, as it conveys safety-critical information. 

The CAMP non-speech tone shall be used as the auditory crash alert. 

The CAMP non-speech tone shall be presented so that this sound is perceived to emanate 
from the forward direction of travel of the vehicle (i.e., the location of the potential crash 
threat). 

The CAMP non-speech tone shall not have the ability to be turned off inadvertently or 
otherwise. (5) 

Sound Intensity 

Sound intensity, or the sensation of loudness, is measured as a sound pressure level and reported 
in decibels (dB). There are four different decibel scales; A, B, C and D.  The A (dBA) scale is 
most commonly used to measure environmental noise, since it comes closest to approximating 
the response of the human ear. The CAMP non-speech tone was played at approximately 75 
dbA in 2 of the 3 CAMP driver interface studies, including the study from which the underlying 
basis for the driver brake RTs assumed in Section 4.2.3 for crash alert timing purposes are 
derived. Delco also used a 75 dBA sound level in their proposed Forward Collision Warning 
system (Landau, 1995). 

In these CAMP driver interface studies, drivers’ rated the loudness of the sound, overall, as “just 
right” loudness, based on hearing the crash alert while driving at speeds ranging from 
approximately 30 to 60 MPH. However, it should be noted that competing noises from both 
inside and outside the vehicle were primarily limited to road noise (e.g., music was not playing, 
and there was no nearby traffic). Overall, about 3 of 4 subjects felt that the radio should be 
muted during the crash alert. However, it should be noted that these drivers had no direct 
experience with various types of in-path (“too early”) and out-of-path nuisance alerts, which 
could change this preference for radio muting. In a description of a Delco Forward Collision 
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Warning system, Landau (1995) suggests that “other audio systems in the vehicle must be muted 
whenever generating audible warnings.” 

One problem with stating a minimum requirement for sound intensity is that such a requirement 
is dependent on the ambient noise levels, which are dependent on both interior and exterior noise 
levels, which vary from car to car. Antin, Lauretta, and Wolf (1991) reported interior sound 
levels ranging from 42 - 57 dBA while the vehicle was idling and up to 64 - 72 dBA at 60 mph. 
To add to the sound levels, some car stereos have the ability to reach levels over 100 dBA. 
Hence, short of constantly monitoring the noise level and adjusting the output of the alert sound 
accordingly (ISO, 1996b), muting systems which generate significant noise (e.g., car stereos) 
appears the best reasonable near-term solution. However, this recommendation could prove 
problematic if a FCW system produces an excessive amount of in-path (“too early”) and/or out-
of-path nuisance alerts. 

The intensity of the CAMP non-speech tone should be 75 dBA. 

Any vehicle systems which generate significant interior noise and competing auditory 
information to the driver (e.g., stereo system, fan, cellular phone) should be muted during 
the presentation of the CAMP non-speech tone. (6) 

4.2.4.2 The CAMP Visual Crash Alert 

This visual crash alert information could potentially be presented either at conventional head-
down display locations or on a head-up display (or HUD).  The potential head-down locations to 
consider include primarily instrument panel, center-mounted console, or top-of-dashboard 
locations. 

Location 

The location refers to the position of the display in the driver’s forward view, with respect to a 
seated driver who is looking straight ahead at the roadway in front of a vehicle. This location 
may be referred to in either qualitative terms (e.g., centered or centerline to the driver, to the left 
of the driver), or in more quantitative terms (e.g., 5° to the left of the driver). 

The visual crash alert component evaluated in the CAMP driver interface studies included a 
“high” head-down display and a HUD, which are discussed in detail in Chapter 3. These 
displays were chosen as representative of current production displays. The visual format of these 
displays were nearly identical, and are discussed in the following section, Display Format. 

Although a display at the conventional, head-down instrument panel was implemented in the 
CAMP test vehicle employed in the three interface studies, it was not subject to testing because 
of “noticeability” concerns, and because it ran directly counter to facilitating the driver to look 
ahead in response to the crash alert if they are not currently looking ahead at the forward scene. 
The “noticeability” concerns are supported by results from the Grant, Kiefer, and Wierwille et al. 
(1995) road study. In this study (which employed the GM HUD design), during a short 
familiarization drive, an unexpected red brake telltale was presented up to four times during 
either a HUD or a conventional, head-down, dashboard location condition. During the first 1-
second presentation of the telltale, 7 of the 8 drivers fixated the activated telltale in the head- up 
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condition, whereas only 2 of the 8 drivers fixated the activated telltale in the head- down 
condition. These results suggested that driver’s ability to detect FCW system crash alert 
information may be improved by employing a HUD location relative to a conventional, head-
down, dashboard location for this information. 

The high head-down display evaluated in the CAMP driver interface studies was placed on top 
of the instrument panel, close to the cowl of the windshield, and centerline to the driver. With 
respect to the eyellipse centroid, the center of the icon was positioned at a 7.70 look-down angle 
below the driver’s visual horizon, and at a 0.947 meter distance. For a reference point, the look-
down angle to the front hood of the test vehicle (i.e., where the hood visually occludes the 
roadway) was also 7.70, and the center of the conventional, head-down, instrument panel display 
was at a 19.30 look-down angle. This implies that for a 5th percentile female driver, the HHDD 
as implemented would occlude a small portion of the visual field directly in front of the driver, 
and potentially be visually occluded by the steering wheel. This indicates the difficult challenge 
of implementing a HHDD which can be viewed by shorter drivers such that it is not obscured by 
the top of the steering wheel, and it does not interfere with their normal view of the road ahead. 

The head-up display (or HUD) image evaluated in the CAMP driver interface studies was 
projected off a combiner and appeared below the driver’s line of sight and centerline to the 
driver. With respect to the eyellipse centroid, the HUD image appeared at approximately a 1.214 
meter image distance. The HUD look-down angle (relative to the driver’s visual horizon) was 
adjustable by the driver, and was not measured individually for each subject (which is a time-
consuming procedure). Since the aftermarket HUD used was not designed for the test vehicle, 
there is no straightforward way to characterize the HUD look-down angle. However, given that 
subjects were instructed to, and were able to, adjust the HUD to be positioned above the front 
hood, a lower bound for the bottom of HUD crash alert display is the look-down angle to the 
front hood, which was 7.70 relative to the eyellipse centroid. Based on previous HUD 
experience, the “nominal” look-down angle to this HUD crash alert was likely to be about 40 to 
50. 

It should also be noted that, although there are technical challenges associated with HUD 
visibility (ensuring visibility under a wider range of driving conditions), the HUD has the 
advantage (relative to a head-down display) of not being obscured by the steering wheel or the 
driver’s hands provided the HUD eye box size is adequate. (See Beyerlein (1995) for a 
discussion of HUD luminance limitations/technological challenges). 

Although there were no significant driver performance advantages found between the HUD 
relative to the HHDD visual alert across the CAMP driver interface studies, the HUD 
consistently outperformed the steady HHDD and flashing HHDD visual crash alerts on driver 
preference-related measures. 

Finally, given the challenges of implementing either a HHDD or HUD in some vehicles, some 
discussion is merited regarding how a “low” head-down display (or LHDD) might also be used 
to augment the CAMP non-speech tone. A LHDD refers primarily to displays located at the 
conventional, instrument panel, dashboard location, or at center-mounted console areas in the 
vehicle. If the LHDD is the only viable option for a visual display associated with the activation 
of the FCW crash alert, it should not be presented simultaneously with the tone since it may 
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direct the driver’s eyes away from the forward scene precisely at a time when they should be 
attending to the forward scene. Instead, the LHDD presentation period shall begin immediately 
after the crash alert criterion is no longer violated following a crash alert activation. The purpose 
of this “post-alert confirmation display” is to help explain to the driver the association between 
the tone and the FCW system (the CAMP visual alert icon should be used), which is consistent 
with current common industry practice to provide a visual indicator for most telltale-related 
sounds. The implementation details surrounding the presentation duration and the underlying 
criterion for triggering the onset of this LHDD needs further development, and no 
recommendations along those lines are provided here. 

If a visual crash alert is used as part of a dual-modality approach (which is not required, 
but recommended), the CAMP visual crash alert icon shall be presented at either a HUD or 
HHDD location. A LHDD shall not be used for visual crash alert purposes, but may be 
used for a “post-alert” confirmation display (explained in text above). This LHDD shall 
also use the CAMP visual crash alert icon. 

If the visual crash alert is presented at the HHDD location, the alert should be located as 
follows. To the extent possible, for a 5th percentile (shorter) female driver, the top of the 
HHDD should be located centerline to the driver such that it is not obscured by the steering 
wheel (or other vehicle structures), and such that it is below the look-down angle to the 
front hood (i.e., where the hood visually occludes the roadway for this shorter driver). This 
recommendation generally implies a top-of-dashboard location for the HHDD. 
Qualitatively, the intent of this objective is to allow shorter drivers the capability of viewing 
the entire HHDD slightly below the front hood while minimizing any potential obscuration 
to the forward scene associated with the HHDD for these shorter drivers. 

If the visual crash alert is presented at a HUD location, the alert should be located as 
follows. To the extent possible, the alert should be located centerline to the driver, and at 
front bumper distance (or about 2.4 m). Furthermore, the top of the HUD image should 
be 4.5° or more below the drivers' line-of-sight, and the bottom of the HUD image should 
be above the hoodline. Qualitatively, the intent of this latter vertical image location 
objective is to allow drivers the capability of viewing the HUD image slightly above the 
front hood. (7) 

Display Format 

Display format refers to the words and/or icons used as the symbology for the visual crash alert. 
Icons refer to picture symbols commonly used as substitutes for words for identifying controls 
and displays (e.g., telltales). Three strong advantages of using icons over words is that they do 
not require familiarity with any particular written language, icons generally require less display 
space than words, and icons provide the advantage of using the same design for vehicles sold in 
international markets. In general, crash alert icons should be intuitive, meaningful, and visually 
simple (space constraints in today’s vehicles argues against any complex symbology), and 
quickly and accurately recognized under relatively brief viewing conditions. 

If a visual crash alert is presented (which is recommended), the requirement for the CAMP visual 
crash alert icon is based on human factors work completed by CAMP. This icon, Symbol 1 
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below, was downsized from the set of 10 alert candidates shown below. (See Appendix A19 for 
a detailed description of this visual display format selection process.) 

1. 2. 3. 4. 5. 

6. 7. 8. 9. 10. 

Figure 4-3 Candidate FCW Alert Icons 

The design of the 10 candidate icons initiated with a review of the visual crash alerts tested in a 
previous study (Jovanis, Campbell, Klaver, & Chen, 1997), production symbols contained in ISO 
2575/1 (1996), and symbols proposed for adaptive and conventional cruise control systems. 
“Crude” candidate icon drawings were then forwarded to designers from the Controls and 
Displays Center at the General Motors Design Center, who assisted with the symbol review and 
design process. These designers were familiar with ISO graphics constraints and ISO vehicle 
orientation stereotypes. 

These icons were then evaluated in accordance with the American National Standards Institute 
(ANSI) Z535.3 (1997) procedure for evaluating candidate symbols. The first stage in this 
process is a comprehension estimation procedure used for the purpose of identifying poor 
symbols prior to open-ended comprehension testing. The procedure involves informing 
participants of the intended message of a symbol and then asking them to estimate the percentage 
of the population they believe would understand the message of the symbol. According to the 
standard, only symbols with mean comprehension estimations of 65% or greater merit further 
testing in the second stage of this ANSI Z535.3 process, which involved an open-ended 
comprehension procedure. In this latter procedure, participant are provided a symbol with the 
appropriate context, and asked to provide written open-ended interpretations of the symbol. The 
ANSI Z535.3 recommended criterion for acceptance of a symbol is that 85% of participants 
provide correct interpretations of the symbol, and that a maximum of 5% of participants provide 
interpretations considered critical confusions for the symbol. 

As a result of both the comprehension estimation and open-ended comprehension test procedures 
administered in accordance with ANSI Z535.3 process, the CAMP visual crash alert icon 
mentioned above was selected as the top choice of the 10 icons evaluated. It was also found that 
adding the capitalized word WARNING to this icon increased comprehension estimates by about 
20%. Hence, the CAMP visual crash alert icon with the capitalized word “WARNING” 
(positioned directly below the icon, centered relative to the icon) was used for all three driver 
interface studies as the visual crash alert display format. These CAMP results provided a sound 
empirical justification for the selection of the visual display format used in the follow-up, closed-
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course, driver-interface studies, and provided a sound empirical justification for the minimum 
requirement stated below. 

Crash alert icons should also be large enough so that under rapid viewing conditions drivers can 
quickly and accurately recognize the icon. General recommendations for icon size are difficult 
to specify since it will depend upon many factors, including the icon familiarity, importance, 
criticality, time-course of presentation, level of detail/complexity, and color. 

International Standards Organization (ISO) standards are sometimes incorporated into 
International Regulations, which are requirements for selling cars in many countries. ISO 
standards suggest an illuminated area for a variety of displays of at least 18 mm2 (inside which 
the display can be identified), with the amount of driver head movement permitted (to overcome 
any obscurations) dependent on telltale criticality. These displays include the automatic gear 
position, choke, high beam indicator, turn signals, and a variety of telltales (brake, parking brake, 
hazard warning, seat belt, passive restraint readiness, engine coolant temperature, oil pressure, 
and electrical or battery charge). (It should be noted that these requirements for the illuminated 
telltale area sometimes conflict with minimum size requirements for identifying words or 
symbols contained within these areas.) This minimum size guideline (18 mm2) subtends an area 
of 0.34° by 0.34°area. In the three CAMP driver interface studies, the area encompassed by the 
HHDD visual icon subtended a 0.3° high by 0.9° wide visual angle area, whereas the area 
encompassed by the HUD visual icon subtended a 0.7° high by 2.5° wide visual angle area. 

In addition to these requirements, for cars sold in the United States, there are FMVSS size 
requirements for various instrument panel displays, including the high beam indicator, turn 
signals, and brake telltale. These head-down display requirements are stated in terms of 
minimum absolute size, and assume a 28-inch (or 711 mm) viewing distance. For example, the 
letters used in brake telltales must be 1/8 inch in height. The letter height corresponding to this 
28-inch distance is a 0.26° visual angle. In the three CAMP driver interface studies, the area 
encompassed by the word “WARNING” on the HHDD subtended a 0.2° high by 1.2° wide 
visual angle area. The corresponding area subtended by the HUD was a 0.5° high by 3.4° wide 
visual angle area. 
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If a visual crash alert is used, the CAMP visual alert icon shall be used, which is shown to 
the right: 

The CAMP visual alert icon shall be filled (as opposed to outlined). 

The size of the CAMP visual alert icon should correspond to the total area subtended by a 
minimun of a 0.34°°°° high by 0.90°°°° wide area. 

If words are used to supplement the CAMP visual alert icon, the capitalized word 
“WARNING” is suggested, which should be positioned directly below the icon, and 
centered relative to the icon.  these letters shall subtend a 
minimum of 0.26°°°°. 

Recommended Approach: If provided, the visual crash alert should include both the visual 
CAMP crash alert icon and the word “WARNING” as specified above. (8) 

In addition, the height of

Flash Rate 

Flash rate is defined as the number of times per second a visual crash alert reaches an on and off 
state. Based on pilot work done in preparation for the last two CAMP driver interface studies, 
which examined the “Flashing HHDD + Non-Speech Tone” crash alert type, a flash rate of 4 
times per second was employed in these studies. Sanders and McCormick (1987) recommends a 
flash rate of 3 to 10 flashes per second, with 4 per second optimal. In human factors 
experimentation, both McGehee et al. (1993) and Frontier (1995) have previously employed a 
flash rate of 4 times per second. 

The flash rate for the CAMP visual alert display should be 4 times per second. (9) 

Color 

Our sensation or perception of color is derived from variations in the wavelength or spectral 
composition of light. Color perception can be described in terms of three psychological 
dimensions: hue, saturation, and brightness. Hue is related to the dominant wavelength of the 
stimulus and is typically equated with the word “color”. Saturation is related to the degree of 
color purity (i.e., the extent to which multiple wavelengths contribute to a color sensation), such 
that desaturated colors are perceived as closer to white (i.e., more pale) while saturated colors are 
perceived as more vivid. Brightness is related to the amount of light emitted from a stimulus. 

North American population stereotypes (or meaning associations) for the color green include 
go/power on/proceed/normal safe conditions/fully operational system; for the color yellow 
include proceed with caution/slow down/prepare to stop/potential hazard exists or developing; 
for the color blue include cold/information only; and for the color red include 
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warning/stop/hazard, danger, or failure exists/malfunction or error/urgent, immediate action 
required/vehicle parameter outside of recommended range. 

This use of color convention is commonly applied to various types of driver displays, including 
telltale indicators, gages (i.e., out-of-range markings), and interior temperature controls. In 
addition, there are FMVVS color requirements for certain displays which conform to these color 
stereotypes, including turn signals (green), seat belt and brake telltales (red or red-orange), anti-
lock brake telltale (yellow), and high beam indicator (blue, green, or blue-green). 

Color coding can also potentially be an effective and quick means to direct an operator’s 
attention to important information, but this advantage is highly situation-specific (Boff and 
Lincoln, 1988; Christ, 1975; Stokes et al., 1990; Weitzman, 1985). Situations where color 
coding may be particularly useful for drivers include warning the driver of a hazardous event 
(e.g., activating an amber or red telltale on a primarily a blue-green display), facilitating visual 
search, and perceptually grouping similar information. 

Based on these considerations, the color recommended for the CAMP visual alert display shall 
be yellow, orange, yellow/orange, or amber. The color red is not recommended for the visual 
crash alert because of the potential color association with a vehicle system (especially a brake 
system) failure. 

The color for the CAMP visual alert display shall be yellow, orange, yellow/orange, or 
amber. (10) 

Contrast 

Contrast refers to the difference between the luminance of a symbol and the luminance of the 
symbol’s background. Luminance refers to the amount of light reflected by or emitted from a 
surface. For the automotive HUD, symbol luminance refers to the light emitted from the HUD 
image source which is ultimately reflected from the windshield, as measured after the final 
reflection with the windshield (e.g., from the eye box of the HUD). There are many definitions 
and formulas for contrast (see Boff and Lincoln (1988) for examples). The formula used in the 
requirement below is the ratio of the symbol luminance to the symbol background, that is, 

Contrast Ratio = (Luminance Image ÷ Luminance Background): 1 

Since a HUD is translucent or “see-through,” the value of Luminance Image is the sum of the 
real-world background luminance and the symbol luminance. 

During daytime driving, the critical design issue with respect to display contrast is being able to 
generate enough luminance to meet minimum legibility requirements. Failure to meet daytime 
symbol contrast objectives will mean that the display may not be visible under some conditions, 
many of which may be transitory or short-lived. During nighttime driving, the critical design 
issue is to ensure that the display is not so bright that it becomes a discomfort and/or disability 
glare source to drivers, particularly for older drivers. This suggests that a luminance mode 
mechanism should be provided. This refers to some mechanism (e.g., a day/night light sensor) 
by which the different ranges of display luminance are activated (e.g., daytime and nighttime 
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luminance ranges). This mechanism is typically headlight-based (i.e., no headlights=daytime 
mode, headlights=nighttime mode) and/or luminance day/night sensor-based. 

Sanders and McCormick (1987) suggest that any warning light should be twice as bright as the 
immediate background. Older drivers generally have less contrast sensitivity than younger 
drivers. Thus, the requirement specified below assumes that, all other factors being equal, 
contrast values that meet the legibility needs of older drivers will always meet the legibility 
needs of younger drivers. 

FMVSS and ISO standards also need to be considered. Currently, four automotive displays 
(high beam indicator, turn signals, seat belt telltale, and the brake telltale) need to be visible 
under all driving conditions (whenever the underlying condition is present). A precise definition 
of “visibility” compliance is not provided. Furthermore, the driver must not be able to dim these 
four displays (inadvertently or otherwise) to a level that is invisible. This requirement should 
apply equally well to FCW system crash alerts. 

The minimum contrast ratio for the CAMP visual alert display should be 2:1. 

The driver shall not be able to dim the CAMP visual alert display (inadvertently or 
otherwise) to a level that is invisible. 

A daytime and nighttime display luminance mechanism shall be provided. (11) 

4.2.5	 What Non-Crash Alert FCW-Related Information Should be 
Provided to the Driver? 

Primarily visual displays are likely to be involved in providing the driver non-crash alert FCW-
related information (i.e., system malfunction and system limitation conditions). This section 
provides a general discussion of human factors considerations for this type of information, 
without a detailed discussion of human factors symbol design considerations (e.g., symbol 
contrast, height, width-to-height ratio, strokewidth-to-height ratio, spacing, font, color). Overall, 
these displays should be designed with the goal of ensuring that the driver can obtain the relevant 
information in a timely (“at-a-glance”) and effective manner (i.e., without errors). In addition, 
the design goals of ensuring international drivers are accommodated is an important 
consideration. 

4.2.6 System Malfunction 

The system malfunction state for a FCW system refers to a mechanism by which the driver can 
be informed that the FCW system is not working properly and needs service. For example, this 
state is attained if, for whatever reason, the FCW system crash alerts are not functioning 
properly. In this case, it may be advisable to allow the drivers diagnostic capability for testing 
the visual and auditory FCW crash alerts. Since drivers may potentially change their behavior 
when driving with versus without a FCW system, this information is of high priority and must be 
clearly conveyed to the driver (irrespective of the form or modality of the information). A brief, 
momentary auditory tone should be used to indicate the onset of the FCW system malfunction 
condition. In addition, depending on the complexity of the malfunction information, 
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accompanying text messages may also become advisable. Any FCW system malfunction 
information should remain displayed until the underlying system malfunction conditions are no 
longer present. Furthermore, diagnostics information at vehicle-start up should allow drivers to 
determine whether or not the visual displays associated with the FCW system malfunction are 
functional. 

A FCW system malfunction (e.g., a crash alert display failure) shall be visually indicated in 
a clear, continuous fashion whenever the underlying malfunction conditions are present. 

A brief, momentary auditory tone shall be used to indicate the onset of the FCW system 
malfunction which should be distinctly different from the CAMP non-speech tone used for 
crash alert purposes. 

Upon application of vehicle power (i.e., during vehicle start-up when the vehicle displays 
briefly flash) the FCW system malfunction visual displays shall be displayed in a manner 
which allows drivers to clearly determine whether these displays are functional. (12) 

4.2.7 System Limitation Condition 

The system limitation condition for a FCW system refers to a mechanism by which the driver can 
be informed that the FCW system, although not in a system malfunction state, is not currently 
working properly, at full capability, and/or being used with design intention. This may occur 
under a variety of conditions, including under adverse weather conditions. Since drivers may 
change their behavior when driving with the FCW system in a system limitation condition, this 
information is of high priority and must be clearly conveyed to the driver (irrespective of the 
form or modality of the information). A brief, momentary auditory tone should be used to 
indicate the onset of the FCW system limitation condition. In addition, depending on the nature 
of the system limitation (e.g., the frequency and duration), accompanying text messages may 
also become advisable. Any FCW system limitation information should remain displayed until 
the underlying limitation conditions are no longer present. Furthermore, diagnostics information 
at vehicle-start up should allow drivers to determine whether or not the visual displays associated 
with the FCW system limitation are functional. 

A FCW system limitation condition shall be visually indicated in a clear, continuous 
fashion whenever the underlying system limitation conditions are present. 

A brief, momentary auditory tone shall be used to indicate the onset of the FCW system 
limitation condition, which should be distinctly different from the CAMP non-speech tone 
used for crash alert purposes. 

Upon application of vehicle power (i.e., during vehicle start-up when the vehicle displays 
briefly flash) FCW system limitation visual displays shall be displayed in a manner which 
allows drivers to clearly determine whether these displays are functional. (13) 
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4.2.8	 How Should the FCW System Driver Interface be Integrated 
With Non-FCW Systems? 

4.2.8.1 Compatibility With Systems Closely Related to the FCW System 

A FCW system provides somewhat similar functionality to the driver as the adaptive cruise 
control (ACC) system when the driver is not in a cruise control mode. For example, both the 
ACC and FCW systems are likely to provide the driver many of the same types of information, 
including driver alerts (discussed below), distance adjustability/settings, and system 
malfunction/limitation information. A notable functionality difference between ACC and FCW 
systems is that an ACC system might provide the driver continuous display of cruise speed 
information. 

However, there are also a number of important differences between ACC and FCW systems. 
First, the nature of any adjustable alert criterion is likely to be fundamentally different across the 
ACC and FCW systems. The time headway criterion associated with ACC is not likely to play 
any dominant role in any FCW crash alert timing approaches. Second, the range of target types 
which will elicit crash alerts to the driver may be different across ACC and FCW systems. The 
ACC system is specifically designed to track a lead vehicle target, whereas a FCW system is 
designed to avoid/mitigate rear-end crashes. Third, while the ACC system will control the 
velocity of the vehicle (either via throttle position, transmission shifting, and/or brake 
application), it is anticipated that initial market introductions of FCW systems will not provide 
any form of vehicle velocity control. 

In light of these differences, if FCW system display space and alerts are shared with an ACC 
system, drivers need to clearly understand whether or not the ACC or FCW system is activated, 
since this information may have implications for appropriate driver behavior (e.g., braking 
judgments) when encountering a slowing lead vehicle which may be a rear-end crash threat. 
More generally, these differences suggest any integration of ACC and FCW systems with respect 
to the driver interface (e.g., using a common, shared alert) need to be carefully understood from a 
compatibility perspective.  For example, one possible ACC alert is to warn the driver if they have 
exceeded the maximum braking deceleration authority of the ACC system. Since this type of 
ACC system alert may be largely consistent with the meaning intended by a FCW system alert 
(i.e., a collision may occur unless evasive control action is taken), the use of a 1-stage alert for 
both ACC and FCW systems may be promising from a customer education, simple “mental 
model” perspective. 

In addition, careful consideration should be given to the possibility of sharing reconfigurable 
display space and auditory alerts to present both ACC and FCW system information. An equally 
important side-effect of this information integration is the amount of valuable display space 
saved and the amount of visual clutter reduced in the driver’s forward view relative to displaying 
this same set of information in a non-integrated fashion. 

In designing a complete set of FCW system displays and alerts, the overall design goal should be 
to ensure that international drivers can easily identify and intuitively understand the information 
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displayed, and appropriately act in a timely (“at-a-glance”) and effective manner in response to 
this information. A possible strategy for attaining this goal may be presenting ACC- and FCW-
related information in an integrated fashion. 

4.2.8.2 Compatibility With Systems Not Closely Related to the FCW System 

Overall, a design goal to ensure the integration of the FCW system (and perhaps, further 
integration with ACC) does not compromise other types of information conveyed to the driver, 
whether it be conventional driver information (e.g., radio, climate control) or more advanced 
driver information (e.g., navigation/route guidance, night vision). With respect to the latter type 
of information, of particular concern is ensuring FCW systems and other collision warning 
systems (e.g., backing, side, and intersection warning systems) are appropriately integrated so 
that when a crash alert (or alerts) occurs, the driver can respond appropriately in a timely and 
effective fashion (without making errors) to the appropriate collision threat. Other potential 
vehicle integration issues include muting certain vehicle systems which generate significant 
interior noise and competing auditory information to the driver (e.g., stereo system,) during the 
presentation of crash alerts in order to ensure the driver can hear the auditory alert. 

4.3 Alert Zone Boundaries 
An obstacle is any fixed or moving object that is in the anticipated path of the subject vehicle. 
The classes of obstacles considered in these performance specifications are other vehicles such 
as motorcycles, large trucks, cars, and vans. Other possible obstacles are not considered 
explicitly in these minimum functional requirements and recommendations. Some examples 
include fallen tree limbs, pedestrians, pedacyclists and large animals. An FCW system that 
satisfies these requirements may also help prevent or mitigate collisions with these objects. 

A major consideration in the FCW requirements development under the project was to define the 
boundaries relative to the SV within which POVs should be considered as potential crash threats. 
Figure 4-4 depicts a simplified geometric model of a FCW system sensor’s field-of-view (i.e. 
Coverage Zone). No explicit assumptions are made regarding the full shape and size of the 
Coverage Zone of the system. Within the Coverage Zone is the Alert Zone, which is the region 
where objects may cause an alert. 

Coverage Zone 

Alert Zone 

Figure 4-4 Coverage and Alert Zone of a FCW System 
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The Alert Zone covers the anticipated path of the vehicle. It is a region ahead of the SV where 
alerts are required if the obstacle meets the crash alert timing criteria.  This zone moves smoothly 
with the vehicle as it changes lanes. 

d1 

k1 

k2 

Alert Zone 

w 

d0 

d1 

w 

d0 

Alert Zone Boundaries 

Alert Zone 

Figure 4-5 Alert Zone Horizontal and Vertical Shape and Size 

As shown in Figure 4-5, the horizontal dimensions of the Alert Zone follow the lane that the SV 
is traveling in while the vertical dimensions follow the road surface. A vehicle is defined to be 
in the Alert Zone if any part of its rear end is within the lateral, longitudinal and vertical extent of 
the Alert Zone. The Alert Zone can begin at some distance, d0, ahead of the SV. The maximum 
allowable value for this distance is called the Minimum Longitudinal Alert Zone Extent. The 
distance, d1, to which the Alert Zone must extend, the Maximum Longitudinal Alert Zone Extent 
is defined as the distance at which an alert must occur when the SV approaches a stopped 
obstacle.  For a vehicle in the Alert Zone, alert onset timing requirements from Section 2 apply. 
Alerts are not allowed to be triggered by objects entirely outside the Alert Zone. 
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4.3.1	 General Requirements for Lateral Characteristics of the Alert 
Zone 

Drivers use a variety of cues to select the path they choose to follow. Lane markings such as

stripes and retroreflectors are often the primary indicator of the road direction. The edge of the

road, cracks within the road, and even wear marks and oil tracks contribute information that the

driver uses to select the path to follow.


Three alternatives have been reviewed extensively by the program participants for the required

lateral extent of the Alert Zone. One alternative defines the Alert Zone to cover the width of the

lane in which the SV is currently traveling.  This approach provides a well-defined border for the

Alert Zone as long as the vehicle is clearly traveling in one lane on a road with clear,

unambiguous markings. However, this definition becomes more complex when the lane edges

are ambiguous, as the SV is changing lanes or when the SV wanders near lane edges.


A second alternative for defining the Alert Zone is to require that it proceed ahead of the SV with

a curvature that corresponds to the current turning radius of the SV with a width that is equal to

the width of the SV plus some buffer zone. While perhaps easiest to implement, this approach is

not thought to correspond well with the suggested mental model of a FCW system.


A third approach for defining the lateral extent of the Alert Zone is to require that it follow the

curvature and direction of the road with a width that corresponds to the width of the SV plus

some buffer zone. This definition is clear as long as the general direction of the road is

unambiguous. It is still ambiguous at forks in the road and as the width of the road changes (e.g.,

at transitions where the number of lanes changes).


Note that both the first and third of these definitions assume that the heading angle of the SV is

small with respect to the direction of the road so that it is reasonable to require that the Alert

Zone follow the direction of the road regardless of the heading angle of the SV.


To be consistent with the suggested mental model of a FCW system, the width of the SV should

be adequate to provide warnings when a conscientious passenger would consider the anticipated

path of the vehicle to be a near miss while not producing nuisance alerts as the SV drives by

other vehicles and roadside objects. The minimum zone width is the width of the vehicle and the

maximum zone width is 3.6 meters, a standard lane width, with the zone centered on the front of

the vehicle.


Since perfect sensing is not possible, the idea of the Alert Zone as two regions is introduced.

The inner region is where an appropriate crash alert is required. The second region encompasses

the first region and extends further outward. The crash alert is permissible but not required in the

outer region. This relates to the concept discussed in the previous section as a timing zone.

Figure 4-5 illustrates the region within a region. More details can be found in Chapter 6.


The Alert Zone center should be centered on the front of the SV. (27) 

The Alert Zone shall be at least the width of the SV and should not be more than 3.6 
meters. (28) 
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The Alert Zone should follow the curvature of the road in both vertical and horizontal 
directions. This is to apply on roads that are consistent with AASHTO guidelines for 
highway design, which consider speed, vertical and horizontal curvatures and driveways. 

(29) 

4.3.2 Longitudinal Conditions for Alerts 

4.3.2.1 Minimum And Maximum Longitudinal Alert Zone Extent 

As illustrated in Figure 4-5, the Alert Zone can begin at some distance ahead of the SV. 
Obstacles closer than this range are not required to cause an alert.  The maximum allowable 
value for this distance is called the Minimum Longitudinal Alert Zone Extent. 

Consistency with the mental model of a FCW system described in Chapter 2 suggests that a 
FCW system should always produce a Crash Alert if a ever-vigilant passenger would have 
enough time to react. Using this philosophy empirical data can be used to set the Minimum 
Longitudinal Alert Zone Extent. The 5th percentile of driver RT is approximately 0.5 seconds 
(Olson and Sivak, 1986) and the minimum speed at which rear-end collisions with other vehicles 
cause significant damage is 10 mph (assuming the POV is stopped and both vehicles have 5 mph 
bumpers). Using these values leads to a recommended: 

Recommended Minimum Longitudinal Alert Zone Extent should be no greater than 2.2 
meters. Alerts to objects closer than this are not required. (21) 

As illustrated in Figure 4-5, the Maximum Longitudinal Alert Zone Extent is defined as the 
distance at which an alert must occur when the SV approaches a stopped obstacle. The scenarios 
that most influence this requirement are the distracted and inattentive driver scenarios. 
Consistency with the mental model of a FCW system described previously suggests that a FCW 
system always be able to produce alerts consistent with the SV and POV speeds regardless of 
how fast of slow the SV is moving. However, expert opinion suggests that the sensing 
technologies available for FCW systems will not be able to satisfy this expectation. 

Another approach could be to assume that drivers expect FCW systems to be able to produce 
alerts consistent with the SV and POV speeds when they are traveling at the highest posted speed 
limits for roads in the United States. For example, many states have a maximum speed limit of 
70 mph. The minimum distance for a crash alert when approaching a stopped POV at this speed 
using information from Section 4.2.3.1 would mean that the Maximum Longitudinal Alert Zone 
Extent is 146 meters. 

A third approach for determining the required Maximum Longitudinal Alert Zone Extent is to 
study the potential reduction in harm that FCW systems could provide for alternative ranges. 
Three studies have addressed the question of the required sensing range of a FCW sensor, based 
on modeling and simulation of countermeasure performances. Farber and Huang (1995) found 
diminishing returns in benefits around 300 feet (91m). That study does not address false alarms. 
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Work at Frontier Engineering (Sanimar et. al. 1997) recommended a 130m working range, based 
on their modeling and simulation of FCW countermeasure effectiveness. A third study is an 
elaboration of Farber and Huang (1997) conducted by CAMP (LeBlanc 1997, also see Appendix 
C). This suggests that diminishing returns in the benefits and increased in-path nuisance alerts 
occurs at 75 m. 

An argument can be made that Sanimar, et. al. 1997 and LeBlanc 1997 provide bounds for a 
reasonable requirement. This is based on the occurrences of stopped lead vehicles in the 
respective studies. Sanimar et. al. 1997 assumes that lead vehicle braking begins, essentially, at 
about a three or four second headway, and that lead vehicle braking occurs at levels of 0.33g and 
higher. This approach may over-emphasize the lead vehicle stopped case, which pushes required 
sensor ranges to larger values. LeBlanc 1997 simulated lead vehicle braking with initial vehicle 
pair headway from a FHWA database constructed from loop detectors on a New Mexico 
freeway. By definition, this included no stopped vehicles, and the occurrence of lead vehicles 
stopping before an alert sounds was much less frequent (about 20 to 30%) than the occurrence of 
lead vehicle stopped cases in the known crash databases (about 70%). Thus, it can be argued 
that LeBlanc 1997 may underestimate the sensor range. Modeling of FCW performance reported 
early in the Project, and included here as Appendix C, found that a target sensor that can support 
warnings at a 75 meter range provides 94% of the benefits of a sensor with unlimited range. 
That work, however, also states that more accurate modeling of stopped lead vehicle situations 
might indicate benefits of a longer working range. For this reason, a sensor range of 100 meters 
will be used as a working requirement for the FCW specification. 

The FCW system Alert Zone maximum longitudinal extent should be at least 100 meters in 
front of the SV. Alerts to POVs beyond this distance are not required. (22) 

The Crash Alerts shall be before the POV distance is “too late” and not before the distance 
is “too early” as defined by the criteria for causing alerts. (See Section 4.2.3 and Appendix 
B) (2, 15, 16) 

4.3.2.2 Illustration of POV Locations for Which Alert Onset Should and Should 
Not Occur 

Crash alert onset timing requirements and the Alert Zone requirements and boundaries have been 
defined (Chapter 4). A diagram is now presented to visualize some of these requirements by 
describing four regions in which crash alert onset is required, allowed, or not allowed. No new 
requirements are presented in this section. 

The figure shows the Alert Zone in front of the SV. For illustration, a straight road situation is 
used (recall the Alert Zone follows the road geometry).  Assume that a POV, not shown in the 
figure, is in front of the SV and the SV is either closing or expected to close shortly on the POV. 
According to requirements, alert onset is required if any part of the POV is inside the Alert Zone 
and the range to the POV is equal to or less than a “too late” cutoff range. (The “too late” cutoff 
is the minimum allowed range at alert onset, and is described in Chapter 4, Section 2). The Alert 
Zone must be at least as wide as the SV and cannot be wider than 3.6 m. Thus if any part of the 
POV is within Region 1 in the figure, crash alert onset must have already occurred or the alert is 
too late. 
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If the POV is entirely outside the Alert Zone, the FCW must not issue an alert based on the POV. 
In the figure, this corresponds to Region 2. Alerts issued to POVs entirely in this region are out-
of-path nuisance alerts. 

If the POV’s lateral position, relative to the SV, puts in inside the Alert Zone, but the POV is at a 
distance greater than either the “too late” cutoff, an alert should not occur. This is Region 3 in 
the figure. Alerts triggered to the rear-end of a POV in this region is an in-path nuisance alert. 

If part of the rear end of the POV is laterally within the maximum allowed Alert Zone lateral 
extent (3.6m), and it is also in front of the SV and longitudinally closer than the “too early” 
cutoff range, a crash alert onset may occur. This is Region 4 in the figure. This region 
represents the tolerance in the alert onset requirements in both the longitudinal and lateral 
directions. 

Note that the requirements involve both the longitudinal and lateral position of the POV, relative 
to the SV. A POV that barely enters Region 4, the outer portion of the Alert Zone, from an 
adjacent lane may vary well be at a range that is less than the “too late” cutoff. Yet, alert onset is 
not required until the POV moves laterally in further, so that it enters the inner portion, Region 1. 

Figure not to scale 
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Figure 4-6 POV Locations for Which Crash Alerts are Required, Allowed, and Not Allowed 
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4.3.2.3 Computer Modeling of FCW Performance Using REAMACS 

To help identify and understand the important parameters of countermeasures in rear-end 
crashes, modeling and simulation work was performed and reported using the computer tool 
REAMACS (Rear-end Accident Model and Countermeasure Simulation). This work was done 
early in the Project and included in this final report as Appendix C. The results influenced 
direction on choosing the Alert Zone maximum longitudinal extent, the need for FCW systems to 
estimate lead vehicle deceleration, and deepened the understanding of the tradeoffs between 
providing maximum warning capability while not producing so many nuisance alerts that driver 
acceptance is negatively affected. 

REAMACS computes the potential reduction in relative harm for a countermeasure design, 
based on a quasi-Monte Carlo analysis of rear-end crash scenarios. REAMACS provides an 
analytical framework for evaluating such factors as warning algorithms, system range 
requirements, driver reaction time assumptions, and knowledge of lead vehicle decelerations. A 
new companion simulation tool was developed during the Project to estimate the relative rates of 
in-path nuisance alerts for a variety of FCW designs. In-path nuisance alerts are alerts that are 
triggered by vehicles in the host vehicle’s path, but that occur with a timing considered 
inappropriate by a driver. 

Three results in particular impacted the remaining work of the CAMP project: 

1.	 Simulation results suggest it is possible to define a FCW warning algorithm capable 
of triggering alerts which are timely enough to significantly reduce rear-end crash 
harm while not producing so many in-path nuisance alerts that drivers reject the 
system, nullifying any overall benefit. 

2.	 Modeling of FCW performance reported early in the Project, and included here as 
Appendix C, found that a target sensor that can support warnings at a 75 meter range 
provides 94% of the benefits of a sensor with unlimited range.  That work, however, 
also states that more accurate modeling of stopped lead vehicle situations might 
indicate benefits of a longer working range. 

3.	 Information about a lead vehicle’s deceleration level can improve the performance of 
a FCW system. A FCW algorithm using this information can achieve higher potential 
reduction in relative harm for the same incidence of in-path nuisance alerts than is 
achievable with an algorithm that does not use lead vehicle deceleration information. 

The modeling work used assumptions based on the best available information at the time. 
That data did not include either the human factors studies of Chapter 3 or the Adaptive 
Cruise Control (ACC) Field Operational Test results (Fancher et. al., 1998). 
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4.4 Requirements Induced by Crash Scenario 
Analysis 

As mentioned previously, the primary objective of these minimum functional requirements is to 
define requirements that will result in FCW systems that satisfy driver expectations. One of 
those expectations is that FCW systems will help avoid or mitigate crashes without annoyances. 
To aid in developing requirements that satisfy this objective the Crash Scenarios from Chapter 2 
were analyzed. This section reports the results of that analysis. 

From each scenario a set of performance goals are derived. For most of these FCW system 
design goals, limited empirical data are available, so expert judgment played a significant role in 
defining the requirements. Where possible the results of computer simulations, driving simulator 
studies, test track experiments and field trials were reviewed to support the decisions. 

The FCW System Functionality chapter documents the process used to define the set of crash 
scenarios considered most significant in the derivation of FCW system performance 
requirements. Table 4-1 contains a prioritized list of those scenarios from the FCW System 
Functionality chapter that are relevant to FCW systems. The numbers in the first column are 
scenario designations from the “44 Crashes” report. (Recall that the column headings 
“functional years lost” and “direct cost” are, respectively, indices of human injury and direct 
economic costs of the crashes.) These relevant crash scenarios satisfy three conditions. First, 
they are observable by a FCW system. Second, a warning would help a driver avoid or mitigate 
an impending collision. Third, these crash scenarios have high frequency and severity. 

Table 4-1 Prioritized List of Relevant Scenarios Based on Functional Years Lost 

Number Name Frequency (%) Functional years 
lost  (%) 

Direct Cost (%) 

62 Inattentive rear-end 12.0 4.9 10.2 
56 Distracted rear-end 2.0 1.7 1.9 
78 Visibility rear-end 2.0 1.6 1.7 
66 Aggressive driver 

rear-end 
1.5 0.5 1.1 

52 Tailgate 1.0 0.3 0.8 
80 Lane change (cut-in) 

rear-end 
1.0 0.2 0.5 

This section summarizes the important characteristics from each of these relevant crash 
scenarios. It also adds to the previous work by: 

°	 Listing the key characteristics of each scenario that influence the requirements for 
FCW systems, 

° Explaining the characteristics that distinguish each scenario from the others 

°	 Listing a set of possible functional and performance requirements that could be 
induced from the key characteristics and distinguishing characteristics 
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It is important to note that the suggested requirements in this section are considered to be 
ideal. They may not be technically feasible and/or may not result in a driver-acceptable 
balance between adequate warning and unacceptable annoyance. Section 4.2.4 discusses 
tolerances for deviations from this ideal. 

The following descriptions refer to the Subject Vehicle and Principal Other Vehicle as defined in 
the “44 Crashes.” The Subject Vehicle (SV) is the host vehicle containing the FCW system. The 
Principal Other Vehicle (POV) is the vehicle/obstacle that poses the primary risk of collision. 

The scenarios are presented in the rank order from Table 4-1. 

4.4.1 Inattentive Rear-End Collision 

This scenario corresponds to “44 Crashes” scenario #62. The definition states: "SV, following 
POV, is not paying attention. POV slows or stops and SV strikes the rear-end of POV." An 
inattentive driver has chosen "…to direct his attention elsewhere for some non-compelling 
reason". Inattention may include "unnecessary wandering of the mind, or a state of being 
engrossed in thought matters not of immediate importance to the driving task" (Treat et al., 1977, 
p. 202). 

For this analysis the following key characteristics of this type of collision are assumed: 

° Initially the SV is behind POV at a distance that is not tailgating. 

° The SV may be traveling above, below, or at the posted speed limit. 

°	 The driver of the SV is inattentive to the driving task for some non-compelling 
reason. S/he may or may not have their eyes on the road but his/her reaction time to 
the precipitating event is slow because of the inattention. 

°	 The POV may be moving at a steady speed, may suddenly begin braking, or may 
have been stopped for a long time. 

°	 The SV approaches the POV and the driver of the SV does not react in time to 
prevent a collision with the POV 

This scenario is distinct from the distracted driver rear-end scenario in that the reason the driver 
is not paying attention is "non-compelling." For the purposes of these minimum functional 
requirements, this is assumed to mean that the driver is not performing a visual or manual task 
other than driving.  This scenario is distinct from all but the distracted driver rear-end crash 
scenario in that the driver's reaction time to the precipitating event (approaching the POV) is 
much longer. It is not clear whether the distribution of driver's reaction times to an alert will be 
longer than for other scenarios. 
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The functional and performance requirements induced by this scenario are: 

The CAMP non-speech tone should be presented so that this sound is perceived to emanate 
from the forward direction of travel of the vehicle (i.e., the location of the potential crash 
threat) and from the driver’s FCW system. The CAMP non-speech tone should not have 
the ability to be turned off inadvertently or otherwise. (5) 

The FCW system shall generate an Alert for POVs that are in the Alert Zone, which also 
meet the other criteria for causing alerts. (See Section 4.2.3 and Appendix B) (14) 

The FCW system shall alert if the POV distance meets the criteria for causing alerts. (See 
Section 4.2.3 and Appendix B) (17) 

The Alert Zone should follow the curvature of the road in both vertical and horizontal 
directions. This is to apply on roads that are consistent with AASHTO guidelines for 
highway design, which consider speed, vertical and horizontal curvatures and driveways. 

(29) 

4.4.2 Distracted Rear-End Collision 

This scenario corresponds to “44 Crashes” scenario #56. The definition is “SV following POV is 
distracted. POV slows or stops and SV strikes the rear-end of POV.” For a distracted driver 
"some event, activity, object or person within his vehicle [or outside the vehicle], compelled, or 
tended to induce the driver's shift of attention away from the driving task" (Treat et al., 1977, p. 
203). 

For this analysis the following key characteristics of this type of collision are assumed: 

° Initially the SV is behind POV at a distance that is not tailgating. 

° The SV may be traveling above, below, or at the posted speed limit. 

° The driver of the SV is distracted performing some task that requires visual attention. 

°	 The POV may be moving at a steady speed, may suddenly begin braking, or may 
have been stopped for a long time. 

°	 The SV approaches the POV and the driver of SV does not react in time to prevent a 
collision with the POV. 

This scenario is distinct from the distracted driver rear-end scenario in that the reason the driver 
is not paying attention is "compelling." For the purposes of these minimum functional 
requirements, this is assumed to mean that the driver is performing some visual or manual task 
other than driving.  This scenario is distinct from the others in that the driver may not be looking 
in the direction of the SV’s path or the instrument panel. Because the inattention to the driving 
task is for a compelling reason, a distracted driver's reaction time to an alert may be slower than 
that for an inattentive driver. It is, therefore, assumed that the distribution of the perception-
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reaction times to an alert will be longer than for other scenarios because, unlike other scenarios, 
the driver may have to turn forward to assess the situation before deciding to brake. 

The functional and performance requirements induced by this scenario are: 

The CAMP non-speech tone should be presented so that this sound is perceived to emanate 
from the forward direction of travel of the vehicle (i.e., the location of the potential crash 
threat) and from the driver’s FCW system. The CAMP non-speech tone should not have 
the ability to be turned off inadvertently or otherwise. (5) 

The FCW system shall generate an Alert for POVs that are in the Alert Zone, which also 
meet the other criteria for causing alerts. (See Section 4.2.3 and Appendix B) (14) 

The FCW system shall alert if the POV distance meets the criteria for causing alerts. (See 
Section 4.2.3 and Appendix B) (17) 

The Alert Zone should follow the curvature of the road in both vertical and horizontal 
directions. This is to apply on roads that are consistent with AASHTO guidelines for 
highway design, which consider speed, vertical and horizontal curvatures and driveways. 

(29) 

4.4.3 Visibility Rear-End Collision 

This scenario corresponds to “44 Crashes” scenario #78. The definition states: "Visibility is 
limited. SV, following POV, cannot see that POV has slowed or stopped. SV strikes the rear-
end of POV." 

For this analysis the following key characteristics of this type of collision are assumed: 

° The SV is traveling near or below posted speed limits at a steady speed. 

° The POV may be stopped, traveling at a steady slow speed, or may be braking. 

°	 Due to atmospheric conditions, the driver of SV does not see the POV until the SV is 
too close for the SV to stop without a collision. 

In this scenario the lack of visibility may be caused by darkness, snow, rain, fog, spray, or dust in 
the air. 

This scenario is distinguished from the other scenarios by the lack of visibility due to 
atmospheric conditions. This may mean that even an alert driver would not see the POV until 
the SV is too close to be able to stop in time to prevent a crash. 
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The functional and performance requirements induced by this scenario are: 

The FCW system shall function in all weather conditions or warn if its operation is limited. 
(30) 

The FCW system shall operate during day, night, sunrise, and sunset conditions or warn if 
its operation is reduced. (31) 

The FCW system may generate an alert when a POV is beyond the distance the driver can 
see clearly. (32) 

4.4.4 Aggressive Rear-End Collision 

This scenario corresponds to “44 Crashes” scenario #66. The definition states: "SV is driving 
aggressively, perhaps too fast. POV has slowed or stopped. SV does not have enough time to 
stop and strikes the rear-end of POV." 

For this analysis there are two conditions considered to be in this category. 

°	 The SV is moving much faster than the prevailing speed of preceding vehicles in the 
same lane or 

°	 The SV is weaving in an attempt to achieve travel much faster than the surrounding 
traffic. 

For this analysis the following key characteristics of this type of collision are assumed: 

°	 The SV operations include fast accelerations and frequent braking, as well as frequent 
and/or sudden lane changes. 

°	 The POV is ahead of the SV and may be moving at a steady speed that is at or below 
the prevailing traffic speed when it suddenly begins braking or it may have been 
stopped for a long time. 

°	 The SV approaches the POV and the driver of the SV does not react in time to 
prevent a collision with the POV. 

This scenario is distinct from tailgating in that the distances and relative speeds are larger. This 
scenario is distinct from the distracted and inattentive driver in that there are many rapid 
maneuvers and the reaction time of the driver to the traffic conditions is faster. This scenario is 
distinct from the other crash scenarios in that there are more frequent and higher rates of lateral 
and longitudinal acceleration of the SV. 

The functional and performance requirements induced by this scenario are: 

The FCW system shall alert if part of the POV encroaches into the Alert Zone. (18) 

The FCW system should alert to the nearest POV in the Alert Zone if it meets the criteria 
for causing alerts. (See Section 4.2.3 and Appendix B) (19) 
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The FCW system shall generate an alert quickly if the conditions change so that they 
satisfy the crash alert criteria. (See Section 4.2.3 and Appendix B) (20) 

The FCW system Alert Zone shall move smoothly with the SV as the SV changes lanes. 
(26) 

4.4.5 Tailgate 

This scenario corresponds to “44 Crashes” scenario #52. The definition is “SV is following POV 
too closely.  POV slows or stops and SV strikes the rear-end of POV.” 

For this analysis the following key characteristics of this type of collision are assumed: 

° The SV is following behind the POV at approximately the same speed, 

° The vehicles may be traveling above, below, or at the posted speed limit. 

°	 The distance between the SV and POV is small, (i.e., the gap between the rear end of 
the POV and the front end of the SV is insufficient to allow the driver of the SV to 
respond to prevent significant damage or injury should the POV suddenly brake). 

° The POV suddenly applies braking. 

This scenario is distinct from all other scenarios except the aggressive driver scenario in that the 
SV and POV are in closer proximity at the start of the scenario. It is distinct from the aggressive 
driver scenario in that the close proximity may be maintained for a longer period of time. This 
scenario is also distinguished from the inattentive and distracted driver scenarios in that the 
driver of the SV is alert and attending to the driving task. 

The functional and performance requirements induced by this scenario are: 

The FCW system shall alert if part of the POV encroaches into the Alert Zone. (18) 

The FCW system should alert to the nearest POV in the Alert Zone if it meets the criteria 
for causing alerts. (See Section 4.2.3 and Appendix B) (19) 

The FCW system shall generate an alert quickly if the conditions change so that they 
satisfy the crash alert criteria. (See Section 4.2.3 and Appendix B) (20) 

The FCW system Alert Zone recommended minimum longitudinal extent should be no 
greater than 2.2 meters in front and centered on the SV. Alerts to objects closer than this 
are not required. (21) 

4.4.6 Lane Change Rear-End Collision 

This scenario corresponds to “44 Crashes” scenario #80, but in these minimum functional 
requirements, the definition is changed slightly to better reflect the purpose of this requirement. 
The revised definition states: "POV moves into an adjacent lane. SV, who is in the lane POV 
moved into, does not have enough time to slow. SV strikes the rear-end of POV." 
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For this analysis the following key characteristics of this type of collision are assumed: 

° The POV is ahead of and in an adjacent lane to that of the SV. 

° The SV may be traveling above, below or at the posted speed limit. 

° The POV is going slower than the SV. 

°	 The POV moves into the SV’s path and the driver of SV do not react in time to 
prevent the SV from striking the POV. 

° During the maneuver POV may maintain constant speed, accelerate, or decelerate. 

This scenario is distinct from all of the other scenarios in that the precipitating event is a lateral 
maneuver of the POV. This results in another distinction from all but the aggressive driver 
scenario in that the POV may enter the Alert Zone from the side and at a short range. It may also 
be going much slower than the SV when this happens. 

The functional and performance requirements induced by this scenario are: 

The FCW system shall alert if part of the POV encroaches into the Alert Zone. (18) 

The FCW system Alert Zone shall move smoothly with the SV as the SV changes lanes. 
(26) 

The FCW system Alert Zone center should be centered on the front of the SV. (27) 

The FCW system Alert Zone shall be the width of the SV and should not be more than 3.6 
meters. (28) 

The Alert Zone should follow the curvature of the road in both vertical and horizontal 
directions. This is to apply on roads that are consistent with AASHTO guidelines for 
highway design, which consider speed, vertical and horizontal curvatures and driveways. 

(29) 

4.5 Nuisance Alert Limits 
This section covers the maximum tolerance for nuisance alerts due to objects outside the Alert 
Zone and the minimum requirement for the probability of detection of a threatening situation due 
to a vehicle inside the Alert Zone. 

The previous sections serve to define situations in which an ideal system should produce an alert 
and other situations in which an ideal system should not produce an alert. When the actual 
performance of a system is evaluated in those situations four measures of performance can be 
defined (Table 4-2). A true positive alert is one that occurs under circumstances in which an 
ideal system would cause an alert. A false positive alert is one that occurs in situations in which 
an ideal system would not cause an alert. Here we are particularly concerned with situations in 
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which the system may incorrectly evaluate the position or other characteristics of an object or 
may incorrectly assess whether the object is in the path of the SV. 

Table 4-2 Definitions of Alert Performance Metrics 

Threatening Situation Non-Threatening Situation 
Alert Produced True Positive False Positive (Nuisance Alert or False 

Alert) 
No Alert 
Produced 

False Negative (Missed 
Alert) 

True Negative 

True positives can be defined in terms of the probability of detection. If a threatening situation is 
presented to the system, the True Positive probability is the conditional probability of an alert 
given a threatening situation. The False Negative probability is the conditional probability that 
an alert does not occur given that an ideal system should produce an alert. The measurement of 
these probabilities must account for the distribution of conditions in which a threatening situation 
can occur. Thus, real world closing rate alerts can occur either with the lead vehicle stopped or 
with the lead vehicle moving. Furthermore, if the lead vehicle decelerates its initial distance 
ahead of the SV will have some distribution. Tests to determine if a system meets the minimum 
requirements must factor in these considerations. 

4.5.1 Out-of-Path Nuisance Alert Tolerances 

The following requirements are motivated by the need to keep nuisance alerts at a low level 
when vehicles travel past objects that are not in their path. Consistency with the suggested 
mental model of a FCW system as an ever-vigilant passenger would suggest that there should be 
no alerts in these situations. 

However, determining what drivers consider an excessive amount of nuisance alarms for a 
passenger car application is a formidable challenge. CAMP conducted a pilot survey of six users 
of the Eaton VORAD Collision Warning System for heavy vehicle applications. In a telephone 
survey, users were asked to estimate the encounter frequency and crash alert rates for eight 
different operational scenarios. They received illustrations of each scenario in advance of the 
telephone conversation. They were also asked to indicate for each scenario the acceptability of 
the current alert rate. Results indicated the following. First, overall, the encounter frequency 
and crash alert rate estimates varied widely, possibly in part due to the inherent difficulty in 
describing a scenario in a very specific fashion (e.g., describing a curve without a curve radius). 
Depending on the scenario the average estimates ranged from 2% to 88% of encounters would 
produce an alert. For these same eight scenarios, the alert rates were most often judged “very 
acceptable” (which was the highest point on a 5-point scale). Consequently, at least for these 
drivers, it appears these alarms were not perceived as a problem, and indeed a significant portion 
of the drivers indicated that they actually desired them. Given some of these drivers were 
averaging close to 3000 miles of driving per week, it seems quite likely these alarms may serve 
to increase the drivers’ vigilance during long periods of driving.  Consequently, although 
nuisance alarms may be quite acceptable for heavy truck drivers, the extent to which these 
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alarms would be judged acceptable for passenger car drivers, who do substantially less driving, 
remains largely unclear. 

Recently, Lerner et al. (1996a) made a very preliminary attempt to understand the effects of 
various inappropriate alarm rates on passenger car driver’s subjective estimates of alarm 
noticeability, annoyance, and acceptability.  These alarms were presented at random times in the 
driver’s own personal vehicle over a 9-week period, independent of any relevant crash avoidance 
context (e.g., any threat or object which would trigger a crash avoidance alarm).  Two auditory 
alarms were examined: a rapidly beeping tone (a low fuel aircraft warning) and a “check light” 
voice warning.  When a blinking light occurred concurrently with the auditory alarm (meant to 
correspond to a “real alarm”), the driver was given $4 for pressing a response button within 20 
seconds. When the auditory alarm occurred without a blinking light (mean to correspond to an 
“inappropriate” alarm), the driver was penalized $1 for pressing the button. Inappropriate alarm 
rates evaluated for the tone included 1 alarm every 0.25 hours, 1 alarm every 1 hour, 1 alarm 
every 4 hours, and 1 alarm every 8 hours, respectively.  Only the 1 alarm every 1 hour conditions 
were evaluated for the voice condition. The real alarm rates depended on the number of hours of 
driving per week per subject, which are not reported. However, drivers were recruited under the 
assumption they drive at least 8 hours per week, and they did experience 3 real alerts during their 
first 8 hours of driving per week (i.e., 1 real alarm every 2.7 hours during the first 8 hours of 
driving per week). 

Subjective ratings for alarm noticeability did not differ across conditions, whereas annoyance 
(and unacceptable) ratings for the tone were relatively higher in the highest inappropriate alarm 
rate condition (1 alarm every 0.25 hours) relative to the remaining inappropriate alarm alert rate 
conditions (which did not differ). Voice alarms were found more annoying than tone alarms, and 
are not discussed here (see Section 4.2.4). These results would seemingly suggest that an 
inappropriate alarm rate of 1/hour (in the context of the real alarm rate examined) might be a 
starting point for deciding on acceptable inappropriate alarm rates. Unfortunately, the extent to 
which a “real alarm” in a crash avoidance context would offset driver’s concerns about 
inappropriate alarms, and the extent to which a meaningful inappropriate alarm would be 
considered acceptable, are left largely unaddressed. 

In practice, the requirements could be stated in terms of the number of nuisance alerts 
permissible if an SV is driven through an instance of the scenario a number of times. Different 
numbers could be specified for driving past the objects on a straight road, on a curved road, and 
at the transition between a straight and curved road segment for the following two reasons. First, 
it is more difficult to avoid nuisance alerts on curves and much more difficult to avoid them at 
the transition between a straight and curved road segment. Second, most driving is done on 
straight roads so FCW systems will be exposed to stationary objects on these roads much more 
often than on curves or at transitions between straight and curved road segments. 

The following suggested requirement is presented as the current best judgment of the CAMP 
participants. This requirement was refined using results from human factors studies and expert 
guidance that was evaluated during the project.  The suggested acceptable alert rate for out-of-
path nuisance alerts is less than one alert per week for a typical representative sample of driving 
conditions. Horowitz (1986) estimated that the average U.S. driver covers 201 miles per week. 
This requirement, like the alert timing requirements, applies to 
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°	 alerts given by a 1-stage FCW system with any driver-adjustable timing settings at 
the minimum (latest, closest) setting, and 

°	 the most imminent alert given by a multiple-stage alert FCW system, with any driver-
adjustable timing settings at the minimum (latest, closest) setting. 

The recommended acceptable nuisance alert rate for crash warnings due to objects outside 
of the Alert Zone should be less than one alert per week when the SV is presented with a 
representative sample of driving conditions. If the FCW system has multiple stages of 
alerts, this requirement applies only to the most imminent alert. If the FCW system allows 
driver-adjustable alert timing, this requirement applies only to the minimum (latest, 
closest) setting. (36) 

It is not known whether drivers’ tolerance of nuisance alerts will depend on their perception of 
the source of the nuisance alert. For example, will drivers be more tolerant of a nuisance alert 
that occurs at the same location on their daily drive to work?  Will drivers recognize when 
nuisance alerts occur in particular traffic situations, and have a different tolerance to those alerts? 
If indeed driver tolerance to nuisance alerts is later found to depend on characteristics of the 
situation, an improved requirement set would consider these differences. 

Finally, it is noted that no requirements are given here for acceptable levels of nuisance alerts 
generated by earlier stages in a multiple-alert FCW system, or for earlier settings of a driver-
adjustable system. Earlier alert timings are likely to increase the number of both out-of-path and 
in-path nuisance alerts. These nuisance alerts may create significant negative effects on driver 
acceptance and effectiveness of FCW systems. 

4.5.2 In-Path Nuisance Alerts 

In-path nuisance alerts are defined as crash alerts that are in fact triggered by vehicles in the 
Alert Zone, but are given too early (as described earlier). Such nuisance alerts may result from a 
FCW system mishandling either simple closing situations, in which a slowed or stopped lead 
vehicle is in the travel lane, or more complex situations, such as when a faster moving vehicle 
cuts into the subject vehicle’s lane. The suggested allowable in-path nuisance alerts rate is less 
than one alert per week, for a typical representative sample of driving conditions. 

The recommended acceptable nuisance alert rate for crash warnings due to object in-path 
of the Alert Zone should be less than one alert per week when the SV is presented with a 
representative sample of driving conditions. If the FCW system has multiple stages of 
alerts, this requirement applies only to the most imminent alert. If the FCW system allows 
driver-adjustable alert timing, this requirement applies only to the minimum (latest, 
closest) setting. (37) 

The remarks made in the previous section regarding requirements to address earlier stages or 
driver settings, or for different types of nuisance alerts, also apply here. 
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4.6 Requirements Induced by Operational Scenarios 
While the purpose of a FCW system is to provide warning information to the driver when 
confronted by a relevant scenario, the response of the system to other common, non-crash 
operational scenarios is also important. Chapter 2 documents the definition of a set of 
operational scenarios considered significant in the derivation of FCW system performance 
requirements. These operational scenarios are used to modify the functional requirements based 
on the relevant crash scenarios. The operational scenarios also generate additional functional 
requirements. 

The objective of the set of requirements generated in this document is to characterize a FCW 
system that meets the assumed expectations of a driver. Therefore the requirements must not 
depend on the sensing technology used by the FCW, since a driver is not expected to tailor their 
expectations to the type of sensor employed. Also, the FCW system should signal the driver if 
atmospheric conditions, rain, snow, fog, etc., cause it to not respond to objects properly at its 
designed distance. Given that some technologies are able to detect objects beyond the distance 
that the driver can see clearly, the system is allowed to produce an alert when the driver’s vision 
is limited by lack of light or weather conditions. The FCW system is required to respond to the 
nearest vehicle in the Alert Zone regardless of other traffic.  This includes situations where the 
other vehicle is a motorcycle that is traveling behind a larger vehicle such as a car, van, or truck. 
The system should not over look a motorcycle or small a vehicle that is in the Alert Zone when 
there are larger vehicle on ether side of the Alert Zone at approximately the same distance. FCW 
systems should not confuse large objects in both adjacent lanes at the same distance with a single 
object in the same lane as the FCW system. 

This section provides brief definitions of the operational scenarios. It also adds to the previous 
work by: 

°	 Listing the key characteristics of each scenario that influence the requirements for 
FCW systems 

° Explaining the characteristics that distinguish each scenario from the others 

°	 Listing a set of functional and performance requirements that could be derived from 
the key characteristics and distinguishing characteristics 

It is important to note that the suggested requirements in this section are considered to be 
ideal. They may not be technically feasible or result in a tolerable balance between 
adequate warning and unacceptable annoyance. Section 4.2.4 discusses tolerances for 
deviations from this ideal. 

It is assumed that a high incidence of nuisance alerts will erode driver confidence in a FCW 
system, and eventually lead drivers to modify their reactions to appropriate warnings. Such 
actions, if they occur, will degrade the overall system effectiveness to assist drivers in avoiding 
or mitigating crashes. Nuisance alerts are defined to be warnings given by a FCW system when 
an object is present, but not perceived as threatening by a driver. While no quantitative data is 
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publicly available regarding acceptable nuisance alert rates, minimizing their number represents 
a major challenge to fielding FCW technology given the current state-of-the-art. 

Two types of nuisance alerts are considered in these requirements. One type of nuisance alert is 
due to objects that are actually in the anticipated path of the Alert Zone. A nuisance alert due to 
these objects may occur if the thresholds for alerts are not commensurate with the evaluation of 
the driver or if the system does not properly measure the range and speed of the obstacle. 
Section 4.2.4 discusses minimum requirements for the thresholds for alerts. 

Another type of nuisance alert is due to objects that are outside the Alert Zone. An alert may be 
generated due to these objects if the system does not properly determine the location of the 
object or if the path prediction is incorrect. This type of nuisance alert is addressed in this 
section. 

4.6.1 Overhead Object 

In this scenario, the SV is traveling near posted 
speed on an urban or a rural road. The SV is 
approaching an overhead object such as an 
overpass, suspended bridge, sign or traffic light. 

For this analysis the following key characteristics 
of this type of scenario are assumed: 

CAMP 
1 MILE 

Subject Vehicle 

° The objects are stationary and either discrete or 
continuous. 

° The SV is traveling at a speed consistent with Figure 4-7 Overhead Obstacle 
the design of the road. 

°	 The objects are vertically above the actual SV path at a height consistent with 
AASHTO standard roadway construction and UTCD sign practices. 

° The size of the objects may vary drastically (e.g., traffic light to overhead bridge). 

This scenario is distinct from the other scenarios in that the object that should not be confused as 
an obstacle is above the lane in which the SV is traveling.  The objects with minimum height that 
an SV may be driving under at a significant speed (e.g., over 20 kph) may be those associated 
with parking structures and garages. Parking garages often have a maximum vehicle height of 
2.4 meters. Therefore, the Alert Zone should extend to 2.4 meters above the road surface. FCW 
systems should not produce alerts for objects that do not extend into the vertical extent of the 
Alert Zone. These include overhead signs, streetlights, traffic lights, and bridges. 

The functional and performance requirements induced by this scenario are: 

The FCW system Alert Zone vertical extent shall be at least as high as the SV. (24) 
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The FCW system Alert Zone vertical extent should not be higher than 2.4 meters above the 
road surface. (25) 

The FCW system that generate alerts due to objects outside of the Alert Zone such as cars 
parked on the side of the road, mailboxes, lamp posts, roadside signs, guardrails, POV in 
adjacent lane, overhead signs, or bridges shall be counted as an out of path nuisance alert. 

(34) 

4.6.2 Road Surface and Debris 

In this scenario the SV is traveling on a sag vertical

curve (i.e., where the grade changes rapidly such as

at the beginning or end of a hill or at the end of a

driveway) so that the road surface is higher relative

to the direction of travel than on a level road.


For this analysis the following key characteristics of

this type of scenario are assumed: Figure 4-8 Steep Hill


°	 There is a sudden upward change in the grade of 
the road. 

°	 There are irregularities or road surface objects (such as manhole covers) in the lane of 
the SV. 

This scenario is distinct from the other scenarios in that the SV is able to pass over the objects 
that should not be confused as obstacles. 

The functional and performance requirements induced by this scenario are: 

The FCW system Alert Zone vertical extent should begin 0.1 meter above the road surface. 
(23) 

The FCW system Alert Zone vertical extent shall be at least as high as the SV. (24) 

The FCW system Alert Zone vertical extent should not be higher than 2.4 meters above the 
road surface. (25) 

The Alert Zone should follow the curvature of the road in both vertical and horizontal 
directions. This is to apply on roads that are consistent with AASHTO guidelines for 
highway design, which consider speed, vertical and horizontal curvatures and driveways. 

(29) 

A FCW system that generate alerts due to any part of the road surface regardless of 
construction materials or in-surface objects shall be counted as an out of path nuisance 
alert. (35) 

Subject Vehicle 

Coverage Zone 
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4.6.3 Adjacent Lane Traffic 

In this scenario, the SV is traveling near posted 
speed on an urban or a rural street. The SV is 
approaching a curved section of road wherein a 
POV is traveling in the adjacent outside lane. 
Adjacent lane traffic may be on either side of 
the SV's path or simultaneously on both sides. 
It may occur on straight or curved road 
segments. There may be a single vehicle in an 
adjacent lane or multiple vehicles in the 
adjacent lanes. Adjacent Lane Traffic can 
occur simultaneously with traffic in the Alert 
Zone of the SV. 

Subject Vehicle 

Coverage Zone 

Next Lane Vehicle 
Directly Ahead of 
Subject Vehicle 

Figure 4-9 Adjacent Lane 

For this analysis the following key characteristics of this type of scenario are assumed: 

°	 The curvature could be any value consistent with AASHTO standard urban, rural, or 
highway roadway construction practices for the speed limit. 

° The curvature may be continuously changing (e.g., exit and entrance ramps). 

°	 The non-threatening objects are discrete and moving and may be directly ahead of the 
SV. 

°	 The speeds of SV and POV are may be significantly different if the POV is in a slow 
moving lane. 

This scenario is distinct from the other scenarios in that the object that should not be confused as 
an obstacle is moving and may be directly ahead of the SV even though it is not in the same lane 
as the SV. 

Possible functional and performance requirements that could be induced from this scenario are: 

The Alert Zone should follow the curvature of the road in both vertical and horizontal 
directions. This is to apply on roads that are consistent with AASHTO guidelines for 
highway design, which consider speed, vertical and horizontal curvatures and driveways. 

(29) 

The FCW system that generate alerts due to objects outside of the Alert Zone such as cars 
parked on the side of the road, mailboxes, lamp posts, roadside signs, guardrails, POV in 
adjacent lane, overhead signs, or bridges shall be counted as an out of path nuisance alert. 

(34) 
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4.6.4 Adjacent Vehicles 

In this scenario, the SV is traveling near posted speed 
on straight urban or rural street and approaches two 
large trucks traveling in the right and left adjacent 
lanes. No other vehicles are traveling in the SV path 
between the SV and the two large trucks. 

For this analysis the following key characteristics of 
this type of scenario are assumed: 

° The speeds of SV and POV are similar. 

°	 The SV approaches and then passes between the 
POVs. 

° The size of the POVs is large. 

Trucks 

Subject Vehicle 

Figure 4-10 Adjacent Vehicles 

This scenario is distinct from the other scenarios except the Dense Clutter Scenario in that there 
is no object directly ahead of the SV. This scenario is similar to the Greater Size and Equal 
Distance. Each has vehicles in the adjacent lanes but only one has a vehicle in the Alert Zone 
that should cause an alert. 

Possible functional and performance requirements that could be induced from this scenario are: 

The FCW system Alert Zone shall be the width of the SV and should not be more than 3.6 
meters. (28) 

A FCW system that generate alerts due to any part of the road surface regardless of 
construction materials or in-surface objects shall be counted as an out of path nuisance 
alert. (35) 

The FCW system that confuses large POVs in both adjacent lanes at the same distance as a 
single POV in the same lane as the SV shall be counted as an out of path nuisance alert. 

(40) 
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4.6.5 Roadside Clutter


k1 

k2 

w 

GUARD RAIL 

Center of 
Path of SV 

d 

Figure 4-11 Curved Road-Extended Object 

Extended objects include metal or concrete guardrails. They may occur on either side of the 
roadway.  They may occur on straight or curved roads and may extend across a transition 
between straight and curved road segments. Guardrails may include bumpers or twists at their 
beginnings and ends. In this scenario, the SV is traveling near posted speed on an urban or a 
rural street. The SV approaches a curved section of road where a guardrail is built close to the 
lane. This operational scenario is encountered frequently by almost all drivers. 

For this analysis the following key characteristics of this type of scenario are assumed: 

°	 The curvature could be any value consistent with AASHTO standard urban, rural, or 
highway roadway construction practices for the speed limit. 

° The curvature may be continuously changing (e.g., exit and entrance ramps). 

°	 On urban and rural roads, guardrails may be very close to the roadway.  On highways, 
there is usually a shoulder between the roadway and a guardrail. 

This scenario is distinct from the other scenarios in that the object that the non-threatening object 
is continuous (e.g., extends a relatively long distance along the roadside) and is stationary. 

A possible functional and performance requirements that could be induced from this scenario 
are: 

The Alert Zone should follow the curvature of the road in both vertical and horizontal 
directions. This is to apply on roads that are consistent with AASHTO guidelines for 
highway design, which consider speed, vertical and horizontal curvatures and driveways. 

(29) 
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The FCW system that generate alerts due to objects outside of the Alert Zone such as cars 
parked on the side of the road, mailboxes, lamp posts, roadside signs, guardrails, POV in 
adjacent lane, overhead signs, or bridges shall be counted as an out of path nuisance alert. 

(34) 

4.6.6 U-Turn in a Median 

A limiting case for road curvature is the U-Turn in a Median, shown in Figure 4-12. In this 
scenario, the SV enters a direction reversal lane (U-turn) in the median of a divided road. The 
design speed of the curve is much less than the speed limit of the straight road. As the SV enters 
the reversal lane, the SV driver may decelerate hard to a very low speed or stop before 
proceeding with the left turn. There may be a large sign or pole outside the curve of the reversal 
lane. This type of scenario occurs most often in urban areas. 

d1 

pole 
and 
signr 

d2 

Center of 
Path of SV 

Figure 4-12 Curved Road with Discrete Objects 

For this analysis the following key characteristics of this type of scenario are assumed: 

°	 The curvature of the turnabout is small, consistent with a much lower speed than the 
speed of the straight road. 

°	 The SV may decelerate at anywhere from 0.15g to 0.4g and then travels at low speed 
once in the curve. 

°	 The objects are discrete and stationary and may be directly ahead of the SV as the SV 
approaches the turnabout. 
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°	 The SV may approach the turnabout at a speed that would be too fast to stop before 
the obstacle if the SV did not turn. 

This scenario is distinct from the other scenarios in that the non-threatening object is discrete 
(not extending over a long distance) and stationary, and is off the road but may be directly in 
front of the SV as it decelerates before the turn. It is also distinct from the other curved road 
scenarios in that the design speed of the U-turn is usually lower resulting in a smaller radius of 
curvature. 

This scenario supports a common working assumption that a driver is likely to be aware of any 
obstacles ahead of the vehicle if the brakes are already being applied and that alerts under those 
conditions could be considered a nuisance. 

The functional and performance requirement induced by this scenario is: 

The FCW system that generate alerts due to objects outside of the Alert Zone such as cars 
parked on the side of the road, mailboxes, lamp posts, roadside signs, guardrails, POV in 
adjacent lane, overhead signs, or bridges shall be counted as an out of path nuisance alert. 

(34) 

4.6.7 Dense Clutter Environment 

In this scenario, the SV is traveling near posted speed 
on a narrow urban or rural street where vehicles are 
allowed to park along the street, or where mailboxes 
and lampposts are along the road edge. Stopped or 
parked vehicles may be on the side or shoulder of a 
road or in adjacent lanes on a multi-lane road. They 
may be on either side of the path or simultaneously on 
both sides of the SV. They may occur on straight or 
curved road segments. There may be a single stopped 
vehicle or a line of stopped vehicles such as on an 
urban street or when one lane of traffic is stopped on a 
highway. 

Subject Vehicle 

Parked Vehicle 

Coverage Zone 

Figure 4-13 Dense Clutter Environment 

Other stationary objects that can be beside the road include signs, mailboxes, metal or wooden 
poles, vegetation, and trash. They may be on either side of curved or straight road segments. 
Signs and other objects are placed closer to the road on streets with lower speed limits (80 kph 
and below) that do not have a shoulder. On streets with higher speed limits AASHTO guidelines 
suggest a 3-meter clear zone. 

For this analysis the following key characteristics of this type of scenario are assumed: 

° The street may be narrow. 

° The objects are discrete and stationary. 
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°	 There are a large number of objects per unit distance along the road (e.g., 100 per 
kilometer). 

This scenario is distinct from the other scenarios in that the number and variety of discrete 
objects is large and they can be very close to the edge of the lane in which the SV is traveling. 

Possible functional and performance requirements that could be induced from this scenario are: 

The FCW system Alert Zone shall be the width of the SV and should not be more than 3.6 
meters. (28) 

The FCW system that generate alerts due to objects outside of the Alert Zone such as cars 
parked on the side of the road, mailboxes, lamp posts, roadside signs, guardrails, POV in 
adjacent lane, overhead signs, or bridges shall be counted as an out of path nuisance alert. 

(34) 

4.6.8 Diverse Vehicle Sizes 

Consistency with the suggested mental model suggests that a FCW should not be confused when

there are multiple vehicles that can be observed in the Alert Zone. The following two

operational scenarios are included because they represent complex traffic situations that may

contribute to missed alerts.


In this scenario, the SV is traveling near posted speed

behind a large truck at a long distance. A motorcycle is

traveling between the SV and the truck in the SV path.

The motorcycle is going slower than the SV as it is

approached. This scenario is selected since the FCW

system should not overlook the motorcycle as an obstacle

as the SV approaches it.


For this analysis the following key characteristics of this

type of scenario are assumed: 

Figure 4-14 Greater Size and

Distance 

Truck Motorcycle SVAlert Zone 

°	 The truck and the motorcycle may be traveling at the 
same or different speeds. 

° The motorcycle may be going much slower or at a similar speed to the SV. 

° The target sizes are drastically different. 

This scenario is distinct from the other scenarios in that there are two vehicles in the same lane as 
the SV. It is also distinct from all but the Greater Size and Equal Distance Scenario in that it 
involves a small object that is moving. 
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A possible functional and performance requirements that could be induced from this scenario 
are: 

The FCW system should alert to the nearest POV in the Alert Zone if it meets the criteria 
for causing alerts. (See Section 4.2.3 and Appendix B) (19) 

The FCW system shall generate alerts when the POV is the rear-end of a vehicle such as a 
motorcycle, car, van, or truck. (33) 

A FCW system should generate alerts due to the nearest vehicle in the Alert Zone 
regardless of other traffic. This includes situations where the POV is a motorcycle that is 
traveling behind a larger vehicle such as a car, van, or truck. (38) 

4.6.9 Greater Size and Equal Distance 

POV 

Alert Zone 

SV 

Trucks 

Figure 4-15 Greater Size and Equal Distance 

In this scenario, the SV is traveling near posted speed behind a motorcycle at a long distance. 
The motorcycle is traveling between two large trucks. 

For this analysis the following key characteristics of this type of scenario are assumed: 

° The speeds of SV, the truck, and the motorcycle may be similar or different. 

°	 The target sizes are drastically different, either in physical or sensor cross section 
dimensions. 

This scenario is distinct from all but the Greater Size and Distance Scenario in that it involves 
multiple vehicles that are very different in size. It is distinct from the Greater Size and Distance 
Scenario in that only one vehicle is in the same lane as the SV. A possible functional and 
performance requirements that could be induced from this scenario are: 

The FCW system Alert Zone shall be the width of the SV and should not be more than 3.6 
meters. (28) 

A FCW system shall not overlook a motorcycle or small vehicle that is in the Alert Zone 
when there are larger vehicles on either side of the Alert Zone at approximately the same 
distance. (39) 
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4.7 Requirements Summary 
The requirements developed in the previous sections are listed in the following five tables in the 
order they were presented. Table 4-3 includes the requirements for the driver- vehicle interface. 
Table 4-4 includes the requirements for the conditions that cause alerts. Table 4-5 includes 
requirements for Alert Zone boundaries. Table 4-6 includes requirements for the environment 
around the Alert Zone. 

Table 4-3 Driver-Vehicle Interface Requirements 

Index Description Reference 
Pages 

1 The FCW system shall have at least a 1-stage FCW crash alert. 
The FCW system may have multiple-stage (e.g., 2-Stage) FCW crash 
alerts provided additional stages do not reduce the effectiveness of 
the most imminent alert and all CAMP minimum requirements are 
met for both a fixed FCW system and for the minimum (latest, 
closest) setting for a FCW system which provides crash alert timing 
adjustability. 
Recommended Approach: The FCW system should have a 1-stage 
crash alert 

4-14 

2 For a FCW system without crash alert timing adjustability, the crash 
alert timing shall fall within the “too early” and “too late” onset range 
cut-offs as defined in Section 4.2.3.1. For a FCW system with crash 
alert timing adjustability, the minimum (latest, closest) crash alert 
timing setting shall fall within the “too early” and “too late” onset 
range cut-offs as defined above. The “too late” cut-off range does 
not need to be more than 100 meters, for reasons described in Section 
4.3.2.1. 
Note: These cut-offs were based on inputting the following driver 
behavior parameters into the straightforward kinematic equations 
described above. (The reader is referred to Chapter 6, Appendix B 
for a discussion of the domain of validity of these equations.) For the 
“too early” onset range cut-off, the assumed driver deceleration in 
response to the crash alert is based on the CAMP RDP equation and 
an assumed driver brake RT of 1.52 seconds (a 95th percentile driver 
brake RT). For the “too late” onset range cut-off, the assumed driver 
deceleration in response to the crash alert was based on the CAMP 
ADP equation and an assumed driver brake RT of 1.18 seconds (an 
85th percentile driver brake RT). 
Recommended Approach: The FCW system should be designed with 
assumed driver behavior input parameters to the kinematic equations 
described above, as follows. The assumed deceleration in response 
to the crash alert should be predicted by the CAMP RDP equation, 
and the assumed driver brake reaction time should be 1.18 seconds 
(corresponding to an 85th percentile driver brake RT). The domain 
of validity of this equation is discussed in the text. 

4-24, 4-45 
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Index Description Reference 
Pages 

3 If the FCW system allows the driver the ability to adjust the crash-
alert criterion, the associated control and the crash alert criterion shall 
be clearly labeled and easily comprehended by the driver. 
A rotary control, slide, or thumbwheel control should be the type of 
control provided for this crash alert timing adjustment. 
This crash alert timing control and the associated control labeling 
should be consistent with population stereotypes for control/display 
relationships. 

4-25 

4 If a single-modality crash alert is implemented, the CAMP non-
speech tone shall be used for the alert. 
If a dual-modality crash alert is implemented, the CAMP non-speech 
tone and the CAMP visual crash icon (which can be shown on either 
a HHDD or HUD) shall be used for these auditory and visual crash 
alerts, respectively. An additional haptic alert may be added to this 
dual-modality crash alert, however, due to the unresolved 
implementation and driver behavior issues surrounding this type of 
an alert, such an approach is not currently advised. 
Recommended Approach: The system should have a dual-modality 
crash alert as specified above, with the exception that the capitalized 
word “WARNING” should be positioned centered and below the 
crash alert icon. 

4-28 

5 The CAMP non-speech tone shall be used as the auditory crash alert. 
The CAMP non-speech tone shall be presented so that this sound is 
perceived to emanate from the forward direction of travel of the 
vehicle (i.e., the location of the potential crash threat). 
The CAMP non-speech tone shall not have the ability to be turned off 
inadvertently or otherwise. 

4-30, 4-50, 4-51 

6 The intensity of the CAMP non-speech tone should be 75 dBA. 
Any vehicle systems that generate significant interior noise and 
competing auditory information to the driver (e.g., stereo system, 
fan, cellular phone) should be muted during the presentation of the 
CAMP non-speech tone. 

4-31 
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Index Description Reference 
Pages 

7 If a visual crash alert is used as part of a dual-modality approach 
(which is not required, but recommended), the CAMP visual crash 
alert icon shall be presented at either a HUD or HHDD location. 
LHDD shall not be used for visual crash alert purposes, but may be 
used for a “post-alert” confirmation display (explained in text above). 
This LHDD shall also use the CAMP visual crash alert icon. 
If the visual crash alert is presented at the HHDD location, the alert 
should be located as follows. To the extent possible, for a 5th 
percentile (shorter) female driver, the top of the HHDD should be 
located centerline to the driver such that it is not obscured the 
steering wheel (or other vehicle structures), and such that it is below 
the look-down angle to the front hood (i.e., where the hood visually 
occludes the roadway for this shorter driver). This recommendation 
generally implies a top-of-dashboard location for the HHDD. 
Qualitatively, the intent of this objective is to allow shorter drivers 
the capability of viewing the entire HHDD slightly below the front 
hood while minimizing any potential obscuration to the forward 
scene associated with the HHDD. 
If the visual crash alert is presented at a HUD location, the alert 
should be located as follows. To the extent possible, the alert should 
be located centerline to the driver, and at front bumper distance (or 
about 2.4 m). Furthermore, the top of the HUD image should be 
4.5° or more below the drivers' line-of-sight, and the bottom of the 
HUD image should be above the hoodline. alitatively, the intent 
of this latter vertical image location objective is to allow drivers the 
capability of viewing the HUD image slightly above the front hood. 

4-33 

8 If a visual crash alert is used, the CAMP visual alert icon shall be 
used, which is shown to the right: 

The CAMP visual alert icon shall be filled (as opposed to outlined). 
The size of the CAMP visual alert icon should correspond to the total 
area subtended by a minimum of a 0.34° high by 0.90° wide area. 
If words are used to supplement the CAMP visual alert icon, the 
capitalized word “WARNING” is suggested, which should be 
positioned directly below the icon, and centered relative to the icon? 
In addition, the height of these letters shall subtend a minimum of 
0.26°. 
Recommended Approach: If provided, the visual crash alert should 
include both the visual crash alert icon and the word “WARNING” 
as specified above. 

4-36 

9 The flash rate for the CAMP visual alert display should be 4 times 
per second. 

4-36 

10 The color for the CAMP visual alert display shall be yellow, orange, 
yellow/orange, or amber. 

4-37 

A 

Qu
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Index Description Reference 
Pages 

11 The minimum contrast ratio for the CAMP visual alert display should 
be 2:1. 
The driver shall not be able to dim the CAMP visual alert display 
(inadvertently or otherwise) to a level that is invisible. 
A daytime and nighttime display luminance mechanism shall be 
provided. 

4-38 

12 A FCW system malfunction (e.g., a crash alert display failure) shall 
be visually indicated in a clear, continuous fashion whenever the 
underlying malfunction conditions are present. 
A brief, momentary auditory tone shall be used to indicate the onset 
of the FCW system malfunction. 
Upon application of vehicle power (i.e., during vehicle start-up when 
the vehicle displays briefly flash), the FCW system malfunction 
visual display(s) shall be displayed in a manner which allows drivers 
to clearly determine whether this display(s) element is functional. 

4-39 

13 A FCW system limitation condition shall be visually indicated in a 
clear, continuous fashion whenever the underlying system limitation 
conditions are present. 
A brief, momentary auditory tone shall be used to indicate the onset 
of the FCW system limitation condition. 
Upon application of vehicle power (i.e., during vehicle start-up when 
the vehicle displays briefly flash), FCW system limitation visual 
displays shall be displayed in a manner which allows drivers to 
clearly determine whether these displays are functional. 

4-39 
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From each scenario a set of performance goals are derived. For most of these FCW system 
design goals, limited empirical data was available, so expert judgment played a significant role in 
defining the requirements. Where possible the results of computer simulations, driving simulator 
studies, test track experiments and field trials were reviewed to support the decisions. 

The following descriptions refer to the Subject Vehicle and Principal Other Vehicle as defined in 
the “44 Crashes”. The Subject Vehicle (SV) is the host vehicle containing the FCW system. The 
Principal Other Vehicle (POV) is the vehicle/obstacle that poses the primary risk of collision. 

Table 4-4 Alert Zone Timing Requirements 

Index Description Reference 
Pages 

14 The FCW system shall generate an Alert for POVs that are in the 
Alert Zone, which also meet the other criteria for causing alerts. 

4-50, 4-51 

15 The FCW system shall alert before the POV distance is “too late”, as 
defined by the criteria for causing alerts. 

4-45 

16 The FCW system shall not alert before the POV distance is “too 
early”, as defined by the criteria for causing alerts. 

4-45 

17 The FCW system shall alert if the POV distance meets the criteria for 
causing alerts. 

4-50, 4-51 

18 The FCW system shall alert if part of the POV encroaches into the 
Alert Zone. 

4-52, 4-53, 4-54 

19 The FCW system should alert to the nearest POV in the Alert Zone if 
it meets the criteria for causing alerts. 

4-52, 4-53, 4-67 

20 The FCW system shall generate an alert quickly if the conditions 
change so that they satisfy the crash alert criteria. 

4-53, 4-53 
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Table 4-5 Alerts Zone Boundaries Requirements 

Index Description Reference 
Pages 

21 The FCW system Alert Zone recommended minimum longitudinal 
extent should be no greater than 2.2 meters in front and centered on 
the SV. Alerts to objects closer than this are not required. 

4-44, 4-53 

22 The FCW system Alert Zone maximum longitudinal extent should be 
at least 100 meters in front of the SV. Alerts to POVs beyond this 
distance are not required. 

4-45 

23 The FCW system Alert Zone vertical extent should begin 0.1 meter 
above the road surface. 

4-60 

24 The FCW system Alert Zone vertical extent shall be at least as high 
as the SV. 

4-59, 4-60 

25 The FCW system Alert Zone vertical extent should not be higher than 
2.4 meters above the road surface. 

4-60, 4-60 

26 The FCW system Alert Zone shall move smoothly with the SV as the 
SV changes lanes. 

4-53, 4-54 

27 The FCW system Alert Zone center should be centered on the front 
of the SV. 

4-43, 4-54 

28 The FCW system Alert Zone shall be the width of the SV and should 
not be more than 3.6 meters. 

4-43, 4-54, 4-62, 
4-66, 4-67 

29 The Alert Zone should follow the curvature of the road in both 
vertical and horizontal directions. This is to apply on roads that are 
consistent with AASHTO guidelines for highway design, which 
consider speed, vertical and horizontal curvatures and driveways. 

4-44, 4-50, 4-51, 
4-54, 4-60, 4-61, 
4-63 

Table 4-6 Environment Around the Alert Zone 

Index Description Reference 
Pages 

30 The FCW system shall function in all weather conditions or warn if 
its operation is limited. 

4-52 

31 The FCW system shall operate during day, night, sunrise, and sunset 
conditions or warn if its operation is reduced. 

4-52 

32 The FCW system may generate an alert when a POV is beyond the 
distance the driver can see clearly. 

4-52 

33 The FCW system shall generate alerts when the POV is the rear-end 
of a vehicle such as motorcycles, cars, vans, trucks. 

4-67 

34 The FCW system that generate alerts due to objects outside of the 
Alert Zone such as cars parked on the side of the road, mailboxes, 
lamp posts, roadside signs, guardrails, POV in adjacent lane, 
overhead signs, or bridges shall be counted as an out of path nuisance 
alert. 

4-60, 4-61, 4-64, 
4-65, 4-66 

35 A FCW system that generate alerts due to any part of the road surface 
regardless of construction materials or in-surface objects shall be 
counted as an out of path nuisance alert. 

4-60, 4-62 
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Index Description Reference 
Pages 

36 The recommended acceptable nuisance alert rate for crash warnings 
due to objects outside of the Alert Zone should be less than one alert 
per week when the SV is presented with a representative sample of 
driving conditions. 

4-57 

37 The recommended acceptable nuisance alert rate for crash warnings 
due to object in-path of the Alert Zone should be less than one alert 
per week when the SV is presented with a representative sample of 
driving conditions. 

4-57 

38 A FCW system should generate alerts due to the nearest vehicle in 
the Alert Zone regardless of other traffic. This includes situations 
where the POV is a motorcycle that is traveling behind a larger 
vehicle such as a car, van, or truck. 

4-67 

39 A FCW system shall not overlook a motorcycle or small vehicle that 
is in the Alert Zone when there are larger vehicles on either side of 
the Alert Zone at approximately the same distance. 

4-67 

40 The FCW system that confuses large POVs in both adjacent lanes at 
the same distance as a single POV in the same lane as the SV shall be 
counted as an out of path nuisance alert. 

4-62 
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5	 OBJECTIVE TEST METHODOLOGY FOR 
FORWARD COLLISION WARNING 
SYSTEMS 

5.1 Introduction 
This chapter presents an objective test methodology to evaluate the compliance of a 
Forward Collision Warning (FCW) system with the minimum functional requirements 
developed in Chapter 4. The core of this methodology is a set of 26 vehicle-level test 
procedures that evaluate whether crash alerts are issued with acceptable timing in 
appropriate situations. The tests also evaluate whether crash alerts occur too frequently in 
situations that drivers are expected to find non-alarming. Because these are minimum 
requirements for the functionality described in Chapter 1, the countermeasure either 
passes or fails the testing and no relative rating is provided. 

Possible users of the tests are assumed to include vehicle manufacturers, countermeasure 
suppliers, government organizations, and independent institutions. The tests are designed 
so they can be executed at a variety of vehicle proving grounds and test track facilities 
with minimum impact on the test results. To pass testing, a countermeasure must pass 
each of 17 individual crash alert tests and a set of nine out-of-path nuisance alert tests. 
The crash alert tests simulate situations in which an alert is required. These tests also 
evluate the FCW system based on in-path nuisance alerts. The out-of-path nuisance alert 
tests derive from the operational scenarios and involve simulating common driving 
conditions in which an alert should not occur, but that may challenge the system being 
tested. These tests include combining a variety of vehicle speeds, roadway geometries, 
pavement and lane marking conditions, environmental conditions, out-of-path objects, 
and more. 

The proposed set of tests appear to be practical to execute. The execution time is 
estimated to be no more than four weeks, based on the experience of executing five of the 
tests (as reported later, in Chapter 7). The four week estimate does not include initial 
prop fabrication, set-up, and surveying of test sites. A completely exhaustive set of tests 
that would evaluate an FCW system in all conceivable circumstances would involve 
many more tests, and require much longer testing schedules. This is because there are an 
enormous variety of possible road/vehicle/environment/motion conditions that might 
affect an FCW system performance. The proposed test set is a best attempt to identify the 
key FCW performance behaviors in a testing time frame that is practical for government 
and industry, and is consistent with other safety-related testing regimens. 

Regarding driver-vehicle interface requirements of Chapter 4, the objective test 
procedures presented here address alert onset timing in great depth, but do not address the 
alert modality. Such tests would follow from established industry practice. 
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If a countermeasure fails testing, there is a high probability that the system does not meet 
all the minimum functional requirements. If a countermeasure passes the tests, there is a 
high confidence that the system would meet the requirements over a wide set of 
conditions. Nevertheless, field operational testing will be required to learn about drivers« 
acceptance of the system and its potential effectiveness in the real world. 

This chapter covers the test methodology concerned with instrumentation requirements, 
track and prop requirements, and the test driving maneuvers. An analysis is presented 
that describes the mapping between requirements and the tests. Chapter 6 covers the data 
analysis required to evaluate test data, as well as requirements for reporting on the tests. 
Chapter 7 describes an extensive set of activities undertaken to evaluate and validate the 
test methodology. This exercise resulted in changes to some important test design 
parameters and requirements. 

The remainder of this chapter is organized as follows. First, an overview of the testing 
approach and high-level requirements are discussed. Second, definitions used throughout 
the chapter are presented, along with a set of standard (default) testing conditions. Third, 
the crash alert testing approach and detailed test procedures are described. Fourth, the 
out-of-path nuisance alert testing approach and detailed procedures are presented. Fifth, a 
chart is presented that maps the test procedures back to the functional requirements. 

Throughout this report, the term ƒsubject vehicle≈ (SV) refers to the vehicle on which the 
FCW is mounted, and ƒprincipal other vehicle≈ (POV) refers to another vehicle in the 
vicinity. 

5.2 Test Methodology Overview 
The objective test methodology presented in this chapter includes 26 vehicle level tests in 
which an FCW-equipped subject vehicle (SV) encounters situations in which a crash alert 
is either required or is not allowed. Detailed data collection and analysis is required in 
these tests to determine whether the countermeasure complies with the set of minimum 
functional requirements developed in Chapter 4. 

The test methodology includes several elements that are presented in the remainder of this 
chapter, as well as in the following chapter. These elements include: test instrumentation 
requirements; test site and testing props requirements; driving maneuver instructions; and 
data reporting and analysis requirements. This chapter presents all but the final element, 
which is given in Chapter 6. The reader will note that beginning with Section 5.3, the 
methodology is presented as instructions to a party with responsibility for selecting test 
instrumentation, executing the tests, and analyzing the results to provide the final pass/fail 
result. 

The process used to design the test procedures themselves was described in Chapter 1. 
Briefly, the functional requirements developed in Chapter 4 are tested in situations 
derived from the targeted scenarios of Chapter 2. The parameters of the scenarios, such 
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as road geometry, environmental conditions, relative vehicle motions, and roadway scene, 
are selected from a set of independent variables that attempt to represent the diverseness 
of driving conditions. The tests are selected to exercise a variety of required FCW system 
behaviors, and sometimes the parameters of the scenarios are chosen to test important, 
known technical challenges FCW developers face. The human factors work of Chapter 3 
drives the desired timing of the crash alert onset. 

The objective test methodology includes two types of tests, which are called ƒcrash alert 
tests≈ and ƒout-of-path nuisance alert tests.≈ Crash alert tests are situations in which a 
crash alert must occur with acceptable alert onset timing. Out-of-path nuisance alert tests 
simulate common driving situations in which alerts are not desirable but may occur due to 
technical challenges. 

The remainder of this section presents important concepts in test methodology approach 
and design. 

5.2.1 Criteria for Passing the Testing 

Successful countermeasure performance in testing is defined as passing each of four 
areas: crash alert tests; out-of-path nuisance alert tests; in-path nuisance alert tests; and 
driver-vehicle interface tests. Success in each of these areas is defined below. Detailed 
instructions for computations necessary to determine success in each area are presented in 
later sections. 

5.2.2 Crash Alert Tests 

Crash alert test procedures are driving maneuvers involving two or more vehicles. These 
maneuvers are designed such that the countermeasure-equipped subject vehicle (SV) 
encounters situations that should trigger a crash alert for a countermeasure system that 
meets the minimum functional requirements. (See Chapter 4 for these requirements). 
The significant data from each test trial is a comparison of the time (or position) at which 
the crash alert onset actually occurred (if they occurred) and the time (or position) at 
which the alerts were required to occur. 

Five trials of each test are performed. Alert onsets should be neither ƒtoo late≈ nor ƒtoo 
early,≈ as defined in the timing requirements of Chapter 4, Section 2, and the Alert Zone 
requirements of Chapter 4, Section 3. To pass the testing, a countermeasure must satisfy 
two criteria. First, in general, the crash alert onset cannot be too late for any trial of any 
test. (Exceptions from this rule are described in Section 5.4.4.) Second, the instances in 
which the alert onset occurs too early are weighted by test, and the weighted sum is 
compared to a threshold. If the threshold is exceeded, the countermeasure fails testing. 
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5.2.3 Out-Of-Path Nuisance Alert Tests 

Out-of-path nuisance-alert tests determine whether a countermeasure produces too many 
alerts when confronted with common driving situations. The tests follow closely from 
the operational scenarios described in Chapter 2. The SV is driven past stationary or 
moving objects or vehicles that are kept outside the Alert Zone, so that any alert that 
occurs is an out-of-path nuisance alert. The tests are repeated a specific number of times 
to represent typical exposures of drivers to common objects, as described later. 

The test descriptions include details for the selection and setup of the track and props, 
driving instructions, and data collection requirements. In general, a system that meets the 
minimum functional requirements should not produce any alerts during the execution of 
the tests. If a system does produce alerts during execution of some of the tests, then the 
specific conditions at the time of the alert are recorded. Again, a weighted sum of 
instances in which alerts occur are compared to a threshold. The weights and the 
threshold for out-of-path nuisance alert testing are chosen to estimate the frequency that 
this type of nuisance alert is likely to occur during typical driving patterns on public 
roads. If the threshold is exceeded, the countermeasure fails testing. 

5.2.4 Driver-Vehicle Interface Tests 

The FCW functional specifications in Chapter 4 describe recommendations for the driver-
vehicle interface. The requirements for alert onset timing during an approach are tested 
extensively in the objective test procedures. For the other requirements, however, no 
specific testing procedures are provided here because the tests for these requirements are 
considered straightforward and within the realm of current industry practice. 

5.2.5 FCW Systems With Multiple Alert Stages and/or Driver-
Adjustable Timing 

Throughout the remainder of this chapter and Chapter 6, ƒcrash alert≈ refers to the most 
urgent level of alert. This is the only alert level for which specific timing requirements 
are developed in Chapter 4, and the only alert level addressed by the test procedures 
presented in Chapter 5. 

If the FCW system provides any sensitivity adjustment, it should be tuned for testing to 
the minimum sensitivity to potential threats ¬ that is, to the setting that minimizes the 
likelihood the unit would issue an alert in a given situation. (This setting might also be 
called the ƒlatest,≈ ƒclosest≈ setting.) Using this setting in testing ensures that a driver 
who turns down the sensitivity to minimize nuisances will still receive timely alerts in 
potentially alarming situations. FCW system suppliers may choose to allow the driver to 
adjust the timing of alerts to accommodate a subset of drivers who may prefer earlier 
alerts; that is, drivers may be willing to trade-off additional nuisance alerts for the ability 
to receive earlier alerts. 
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5.2.6 Independent Variables and Test Procedure Design 

Designing a set of test procedures to evaluate a crash countermeasure involves selecting 
specific examples of key scenarios in which it is desirable to specify and measure 
countermeasure performance. The driving environment is complex and varied, and 
drivers are presumed to expect an FCW system to function properly, independent of their 
driving situation. Therefore, care has been used to ensure that the test procedures explore 
whether or not a countermeasure will perform with minimum functionality across the vast 
majority of conditions associated with driving in the U.S., while minimizing the number 
of tests for feasibility reasons. 

Table 5-1 is a list of the independent variables varied over the course of the testing. Also 
shown are the values taken during at least one test. For example, ambient illumination 
conditions include daytime and nighttime (which are defined in the Definitions section). 
Overhead objects include an overhead road sign and an absence of overhead objects. 
Over 20 independent variables are shown. It is not feasible to test at all combinations. 
Instead, combinations of variables were selected to test countermeasures in challenging 
situations considered important for effectiveness and driver acceptance. All values are 
defined in this chapter. 

For example, one test includes the countermeasure-equipped SV approaching a stopped 
vehicle stopped under a large overhead road sign. This situation is expected to challenge 
FCW systems that use sensor-processing technologies that lack resolution of targets in the 
vertical direction. Yet this driving situation is considered common enough and essential 
enough to successful deployment that the test is included. 

Rare combinations of variables that may well confuse FCW systems and are not required 
for driver acceptance may not be included, in the interests of expediting the deployment 
of acceptable safety systems that may reduce harm due to crashes. 
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Table 5-1 Independent Variables that are Varied in the Test 
Procedures 

Independent Variable Values Required 

Environmental Conditions and Visibility 

Ambient illumination Daytime, nighttime 

Atmospheric visibility Good visibility, fog 

POV rear-end retroreflectors Clean, dusty 

Roadway Geometry and Pavement Conditions 

Horizontal curvature Straight, curved, transition from straight 
to curved, U-turn 

Vertical curvature Flat road, hill crest, hill sag 

Painted lane markings Good quality, poor quality, none 

Road surface wetness Dry, wet 

Road unevenness Pavement in good shape, poorly paved or 
unpaved 

POVs and Objects in Scene 

Type of POVs None, mid-sized sedan, motorcycle, truck 

Type of object(s) on roadside or in 
adjacent lanes 

None, guardrails, concrete barrier, 
mailboxes, road signs, slow vehicles 

Type of object overhead or on the 
road surface 

None, overhead sign, grating in road, 
retroreflectors on road, debris on road 

Motions of SV and POV 

SV initial speeds 120 kph, 100 kph, 80 kph, 72 kph, 50-70 
kph, 30-50 kph, 24 kph. 

Initial closing speed (approaching 
POV) 

0 kph, 24 kph, 33 kph, 40 kph, 68 kph, 
72 kph, 100 kph 

POV deceleration None, -0.15 g, -0.4 g 

Lateral maneuvers before alert None, POV cut-in, SV lane change 
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5.2.7  Approach to Instrumentation Requirements 

The approach used in the development of these procedures is to allow the testing 
organizations as much freedom as possible to develop their own approaches to test 
instrumentation, data processing, and vehicle control. The test procedures levy 
requirements only on the accuracy with which key variables need to be controlled or 
estimated. No requirements are used to stipulate the use of specific instrumentation, data-
processing approaches, and so on. 

One motive for this approach is to allow testing organizations the freedom to develop and 
use innovative approaches to implementing the test procedures. Performing the proposed 
test procedures will involve staging prescribed vehicle motions and measuring relative 
motions between vehicles and/or stationary props and/or roads. The testing involves the 
measurement, estimation, and control of many variables. It seems wise to provide a good 
testing framework without over-constraining its implementation. A second motive for 
not specifying highly detailed instrumentation requirements is that instrumentation 
choices may evolve as technology evolves. 

To illustrate the approach, for example, some tests require a vehicle to be driven within a 
lane such that there is a 95% confidence level that the center of gravity (CG) strays 
laterally no further than 0.50m from the lane centerline. The user is then responsible to 
identify hardware and software approaches, and to document the uncertainties associated 
with the various measurements, and finally to demonstrate in a test report how the 
requirements given in the test procedures were satisfied. Thus, the testing organizations 
bear a burden of calibration, analysis, and documentation that would not exist if more 
specific instrumentation requirements were used. 

This approach also has consequences for the recipient of a test report. The recipient of 
the report will need to examine and assess the validity of arguments in the report 
regarding measurement uncertainty and the satisfaction of requirements in the test 
procedures. 
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Table 5-2 Functions Assigned to Test Procedure Documents, Testing 
Organization, and Recipients of Test Reports 

Test procedures specify 
the following, including 
allowable ranges of key 
variables, where 
appropriate: 

Test conditions allowed (e.g., weather, and illumination). 

Test set-up, including props (e.g., road geometry, POV descriptions). 

Directions for executing tests, and required accuracy values for key 
parameters (e.g., a specified vehicle speed and an allowed deviation 
from that value). 

Requirements for the accuracy values of selected intermediate 
quantities used for countermeasure evaluation (e.g., the accuracy 
with which the difference in crash alert tests between the range at 
alert onset and the minimum required distance for an alert must be 
determined). 

Countermeasure performance metrics to be computed for each test 
trial, for use in countermeasure performance evaluation. 

Instructions for combining the results of individual test runs to 
determine whether the countermeasure performance meets minimum 
functional requirements. 

The testing organization 
must select and/or 
develop the following 
components of testing: 

Instrumentation. 

Any active control devices used to conduct tests. 

Calibration procedures. 

Data processing algorithms for testing purposes. 

Method of modeling and reporting uncertainties. 
Testing organization«s 
responsibilities include: 

Identification of measurement, estimation, control, and modeling 
errors that contribute to uncertainties associated with variables that 
the test procedures levy requirements upon. 

Calibration of equipment, when necessary. 

Describing methods of data processing. 

Describing how uncertainties are determined. 

Demonstrating that requirements on test set-up and execution are 
satisfied, while including the effects of any significant uncertainties 
associated with instrumentation, control, or data processing. 

Evaluating appropriate uncertainties associated with test 
performance metrics. 

Recipient of a test 
report bears these 
responsibilities: 

Assessment of the validity of the testing organization«s arguments 
concerning instrumentation choice and calibration approach. 

Assessment of the validity of the testing organization«s arguments 
concerning the satisfaction of requirements on accuracy levels 
associated with test execution and measurement. 
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5.2.7.1 Handling Measurement Uncertainty Effects 

This section describes the scope of the user«s responsibility to understand and document 
effects of measurement uncertainty. 

The user is required to show that all accuracy requirements given in this document are 
met. This may involve reporting calibration procedures as well as presenting work on 
modeling and analysis. Instructions in this chapter and Chapter 6 should be sufficient to 
guide the user through this process, but the following examples may provide first-time 
readers with an understanding of the approach taken in these procedures to dealing with 
the documentation of calibration and uncertainties. 

Example: Roadway horizontal radius of curvature 

Roadway horizontal curvature is another independent variable that is specified for each 
test. The specification is given in terms of a range of allowable radius of curvature 
values. Users of the test procedures must then report: 

° The measured and/or estimated radius of curvature of the test site. 

°	 The means of determining the radius of curvature, and the error in the 
determination. 

° How the error value was found. 

An argument for a 95% confidence level that the test site radius of curvature satisfies the 
requirement. 

The recipient of the report might choose to examine the claims and justifications related 
to the actual measured value of the radius of curvature, as well as the argument that the 
measurement translates into an acceptable radius of curvature value (with 95% 
confidence). 

Example: Computation of Crash Alert Performance Metric 

For crash alert tests, the metric of countermeasure performance is the difference between 
the range at alert onset and the minimum required range at alert onset (which depends on 
the relative speed between the vehicles). The test procedures require that this metric be 
computed with an accuracy (95% confidence) equal to either 5% of the minimum 
required warning range, or 2.0 m, whichever is larger for the situation. Users of the test 
procedure must then report: 

°	 The means of estimating the metric for each trial, including sensor 
descriptions, data-processing techniques and algorithms. 
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°	 A model of the estimation error associated with the computed metric and a 
justification for the model. 

° Any calibration procedures used to arrive at the estimation error model. 

°	 Any modeling and analysis that supports the algorithm development or the 
specification of the associated estimation error. 

5.2.7.2 Instrumentation Non-interference 

The instrumentation necessary for this test must be installed such that it does not hinder 
operation of the subject vehicle or countermeasure, or the operating characteristics of 
either. 
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5.3 Definitions and Standard Testing Conditions

This section presents detailed definitions of some technical terms used in the chapter. 
First, definitions are presented for some of the independent variables, which are quantities 
used to describe testing conditions. Second, additional definitions are given to aid the 
reader. Throughout this report, the term ƒsubject vehicle≈ (SV) refers to the vehicle on 
which the FCW is mounted, and ƒprincipal other vehicle≈ (POV) refers to another vehicle 
in the vicinity. 

5.3.1 Definitions of some Independent Variables 

Part of the description of each test is the set of values taken on by a set of independent 
variables, which are listed in this section, along with definitions used to refer to particular 
conditions. 

For example, a ƒstraight road≈ is defined as a road with a horizontal curvature of less than 
0.1 deg/100m. Some conditions cannot be described so simply. For example, used to 
represent roadside objects, such as a speed limit sign, require a more lengthy description. 

5.3.1.1 Environmental Conditions 

ƒDaytime illumination≈ is defined as the natural outdoors illumination that occurs from 
30 minutes after sunrise to 30 minutes before sunset. 

ƒNighttime illumination≈ is defined as the natural outdoors illumination available from 
the time beginning one hour after sunset and ending one hour before dawn. 

ƒGood atmospheric visibility conditions≈ are defined as greater than 1-kilometer 
visibility using the Runway Visibility Rating  (RVR) or similar methods. 

ƒPoor atmospheric visibility≈ conditions are defined as less than 200-m visibility using 
the Runway Visibility Rating (RVR) or similar methods. 

ƒVery windy conditions≈ exist if either sustained wind speeds exceed 30 kph or wind 
gusts exceed 40 kph. 

5.3.1.2 Objects in the Scene 

ƒPassenger car≈ is defined arbitrarily as a 1997 Chevrolet Lumina LTZ, or another 
similarly sized mid-sized sedan. 

ƒLarge truck≈ is one similar to the 24-foot bed enclosed moving trucks commonly 
available from rental agencies. An example is a 1995 Ford F-700. 
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ƒMotorcycle≈ is defined as a commercially available 350cc to 650cc-class motorcycle 
without alterations to its reflectors, lights, or fenders, and without after-market add-ons 
that might affect its visibility to countermeasure sensors. 

5.3.1.3 Roadway Description 

ƒStraight road≈ is tentatively set at a horizontal curvature of less than 0.1°/100m. 

ƒFlat road≈ is set at a vertical curvature of greater than 600-m% change in grade. 

ƒSmooth pavement≈ conditions describe any paved track surface with pavement in 
relatively good condition. 

ƒUnpaved≈ conditions describe any surface that is not paved. 

Painted Lane Markings 

ƒPainted lane markings≈ refers to markings that are painted on the road surface or that 
consist of material laid down onto the surface such that the markings appear similar to 
painted markings. Three types are defined here: no lane markings, poor quality painted 
lane markings, and good quality painted lane markings.  The test procedures for each test 
will require that the roadway have one of these particular types of lane markings. In 
general, test sites should have lane markings that are consistent with standard marking 
patterns. 

The center of any marked lane must be parallel to the center of the road. Lane widths and 
variations should comply with AASHTO standards for highways and streets (AASHTO, 
1995). 

Note that these definitions are not intended to provide any sort of classification of actual 
public roadways, or to provide a comprehensive description of situations that do or do not 
challenge countermeasures that may sense lane markers. 



5-19 

No Lane Markings 

For tests to be executed on roadways with ƒno lane markings,≈ the roadway should have 
no painted lane markings and no raised pavement markings (e.g., retroreflectors 
indicating lane edges). The roadway should be no more than 7.4 m wide (equal to the 
width of two 12-foot lanes). The roadway width should also be approximately constant 
and surrounded by surfaces different enough from the roadway so that a driver can easily 
distinguish the road from the surrounding space. Therefore, for example, these tests 
cannot be executed on the wide expanses of pavement commonly used at automotive 
proving grounds for vehicle dynamics testing (sometimes called ƒblack lakes≈). 

Good Quality Painted Lane Markings 

A test to be executed on a roadway with ƒgood quality≈ painted lane markings must be 
executed on a roadway where all of the following conditions apply to the travel lane: 

°	 The painted lane markings must be either single solid (continuous) lines or 
single dashed lines. Neither side of any lane used in the test can be marked 
with double-solid lines nor a combination of parallel solid and dashed lines, 
such as the markings found on a two-way, two-lane road, with no passing in 
one direction. 

° The painted lane markings must be either yellow or white. 

° Raised pavement markers are acceptable but not required. 

° The painted lane markings must be between 3.5 and 5.5 inches wide. 

° If a painted lane marker is dashed, the following must hold: 

° The length of all dashes must be between two and 10 meters. 

°	 The space between two dashes cannot be less than twice the 
length of either dash or greater than four times the length of 
either dash, where the length of each dash is its ƒideal≈ length, 
which is not reduced by wear or torn off sections of marker. 

°	 The integrity of the painted surfaces must be as follows:  Let the area of an 
ideal painted marker be the area of a continuous strip with a width equal to the 
average width of the lane marker. For a solid line the area of paint or material 
that makes up the actual lane marker is then required to be at least 25% of the 
area of the ideal continuous strip. This should be true over any 20 m length of 
lane marking. For a dashed line, the area of actual paint should be at least 
10% of an ideal continuous stripe. (Note that if the spaces between dashes are 
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four times the length of the dash, and each dash is missing half its original 
painted surface, the area of actual paint is 10% of an ideal continuous stripe.) 

These requirements are based on engineering judgment. A computer vision image 
processing system that identifies lane markings typically use both intensity contrast 
between pavement and lane markings, as well as the continuity of the marker in each 
image and in an image sequence. Therefore, the difference in the percentage area 
requirements for solid and dashed lines, reflects an educated opinion; that systems in the 
near-term will have less difficulty identifying the appropriate contrast threshold for a 
solid line than for a dashed line, because the continuity of a solid line aids the process. 

Poor Quality Painted Lane Markings 

For tests to be executed with ƒpoor quality painted lane markings,≈ the roadway must 
meet all the conditions for good quality painted lane markings, except: 

° No raised pavement markers are allowed. 

°	 The integrity of the painted surfaces must be as follows: For solid lines, the 
area of the actual remaining marker should be between 5% and 25% of an 
ideal continuous stripe. For dashed lines, the area should be between 3% and 
10% of an ideal continuous stripe. These values are again based on 
engineering judgment. 

5.3.1.4 Vehicle Motions 

ƒVehicle speed≈ is identical to ƒLongitudinal velocity≈ in SAE J670e, ƒVehicle dynamics 
terminology,≈ (Last revision July 1976). 

ƒVehicle acceleration≈ refers to ƒLongitudinal acceleration≈ in the same reference. 

ƒRange≈ is the distance from the front of the FCW-equipped vehicle to the rear of 
another vehicle. 

5.3.2 Other Definitions 

ƒAlert zone≈ is defined in Chapter 4, Section 4.3. 

"Testing distance" for the out-of-path nuisance alert tests is defined when stationary 
objects are used. The testing distance begins when the SV is 200 m from the stationary 
object(s), and ends when the SV has passed the last stationary object used in the test. 
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5.3.3 Standard Testing Conditions


Unless specified otherwise, all tests should be run under the following conditions:


5.3.3.1 Standard Roadway Geometry and Conditions 

For individual test trials, both the roadway geometry parameters and the roadway 
conditions must meet the specifications given in the testing procedures. Unless specified 
otherwise, the road surface should be dry (without visible moisture on the surface). 
Unless a particular test specifies otherwise, the roadway should be straight, flat, with 
pavement in good condition (where these properties are described in the Definitions 
section). The surface itself should be constructed from asphalt or concrete. The road 
surface should be free from potholes, bumps, and cracks that could cause the SV to pitch 
excessively. 

Painted lane markings of ƒgood quality≈ ¬ as defined in the Definitions section ¬ should 
exist on the roadway. 

5.3.3.2 Standard Environmental Conditions 

Unless a particular test specifies otherwise, the tests should be ran during daylight hours, 
with good visibility. There should not be very windy conditions, and the ambient 
temperature should be between ¬18 deg C (0 deg F) and 38 deg C (100 deg F). See the 
Definitions section for specific definitions of these conditions. 
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5.4 Crash Alert Test General Requirements 
This section addresses issues common to a wide array of the crash alert tests. The first 
major subsection defines standard testing conditions that are to be used in the crash alert 
tests, unless otherwise specified later, under the description of the individual tests in the 
section Crash Alert Tests. For example, this section defines the default value for required 
ambient illumination as ƒDaytime illumination.≈ Later, in the detailed test procedures, a 
few crash alert tests stipulate ƒNight-time illumination.≈ 

The second major subsection below addresses requirements for test instrumentation. The 
variables to be measured or estimated for most crash alert tests are listed; special needs 
for specific tests are given later in the Section 5.2.2. The level of specificity of the 
instrumentation requirements is consistent with the discussion in Section 5.2.6. 

5.4.1 Track and Prop Preparation 

5.4.1.1 Principal Other Vehicles 

The test procedures specify the type(s) of principal other vehicles (POVs) to be used for 
each test. There are three types: Mid-size sedan, Motorcycle, and Truck. Readers should 
consult the Definitions for specific definitions of the POV types. Unless the POV type 
for a particular crash alert test is otherwise specified, the default value for the POV type 
in crash tests is Mid-size sedan. 

Unless a specific crash alert test specifies otherwise, the POVs should be clean and 
without alterations that might affect the ability of a countermeasure to sense and track the 
vehicle. 

5.4.1.2 Instructions for Preparing a Stopped-POV Test 

Several crash alert tests involve a stationary POV. To prepare for these tests, park the 
POV in the center of a travel lane, with its longitudinal axis oriented parallel to the 
roadway edge, and the POV facing the same direction as the front of the SV, so the SV 
approaches the rear of the POV. The configuration should satisfy the following: 

°	 The CG of the POV must be no more than 0.30-m, from the center of the lane 
of travel. 

°	 The angle between the POV«s geometric longitudinal axis and the local road 
edge cannot exceed 2.5 degrees. 
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5.4.1.3 Other Objects in the Scene 

Unless stated otherwise, all crash alert tests should be conducted such that there are no 
overhead signs, bridges, or other significant structures over, or near, the track for the 
duration of the test. (Test duration is defined in the detailed procedures of each test). The 
track setup and the test execution should also ensure that roadside clutter effects are 
negligible. For instance, the SV should not be driven on the outside lane of a track with 
guardrails located quite close to the lane, since guardrails are potential sources of out-of-
path nuisance alerts, and those alerts are addressed in a different test set. 

5.4.2 Instrumentation Requirements 

5.4.2.1 Instrumentation Requirements for Test Validity Analysis 

Instrumentation should support the determination that independent variables meet 
requirements (e.g., that the roadway satisfies the ƒflat road≈ specification). 
Instrumentation must also support the determination that the tolerances specified in the 
driving instructions for a particular test are satisfied during the execution of each test 
trial. 

Any additional instrumentation requirements needed for a particular crash alert test are 
stated within the procedures for each test. 

Additional instrumentation requirements to characterize countermeasure performance are 
described in the next section. Data rates are not specified: the user of these procedures 
selects the data rates. 

5.4.2.2	 Instrumentation Requirements For Determining 
Countermeasure Performance 

Instrumentation for crash alert tests must support the determination of whether the crash 
alert occurs, and if so, whether the alert occurs for appropriate targets with appropriate 
timing. Each crash alert onset must occur at a range which is no less than the minimum 
allowable range at alert onset and still no greater than the maximum allowed range at alert 
onset (from considerations of in-path nuisance alerts, as discussed in Chapter 4). 

The minimum and maximum allowed range at alert onset are discussed in Chapter 4, 
Section 2. Appendix B presents detailed instructions to compute these alert timing 
requirements, given measurements of vehicle speeds and accelerations. 

Knowledge of the relative lateral position is used to determine whether the POV was 
within the Alert Zone at any instant of interest. The accuracy requirements for locating 
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the lateral position of the POV relative to the SV, in road coordinates, near the time when 
an alert is expected, is suggested to be 0.2m (with 95% confidence). 

Consider now accuracy requirements associated with determining whether an alert occurs 
at a range that satisfies the minimum functional requirements in Chapter 4. Let R  denote 
the range from the SV to the POV at the time of an alert onset. Let Rwarn ,min  denote the 

minimum range at which alert onset is allowed, under the prevailing kinematic 
conditions. (See Chapter 4 for the minimum required warning range and the maximum 
allowed warning range, expressed as a function of SV and POV speeds and 
accelerations.) Let e R  be the difference between the range at alert onset and the 

minimum required alert range at that moment, e R = R - Rwarn ,min . This is illustrated in the 

figure below. This difference e R  is an essential metric used to evaluate countermeasure 
performance. Requirements are now levied on the accuracy with which this metric 
should be computed: 

°	 The 3-sigma uncertainty in e R , the difference between the range at which the 
required crash alert occurs, and the minimum range for the required crash alert 
cannot exceed 5% of the minimum warning range or 2.0 m, whichever is 
greater. 

These requirements will drive the accuracy needs associated with computing range, range 
rate, and the vehicle accelerations. Accuracy needs for other quantities, such as the 
vehicle speeds and the knowledge of the timing of the alert onset, may be driven by the 
above requirements. 

Likewise, let Rwarn ,max  be the maximum allowed range for the onset of an alert, given the 

instantaneous range, range rate, and relative longitudinal acceleration. Let e IPNA  be the 

difference between the range at alert onset and the minimum required alert range at that 
moment, e IPNA = R - Rwarm ,max . (The subscript ƒIPNA≈ stands for in-path nuisance alert.) 

Consider the following accuracy requirement: 

° The 3-sigma uncertainty in e IPNA , the difference between the range at which 

the crash alert occurs and the maximum allowed range for the crash alert 
onset, cannot exceed 5% of the maximum allowed warning range, or 2.0 m, 
whichever is greater. 

5.4.3 Data Analysis and Reporting 

Data reported must demonstrate ƒtest validity,≈ that is, that the test run meets 
specifications given for each test in the Driving instructions. Reporting of these variables 
is required. 
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SV POV 

Vsv 

Rwarn 

R 

eR 

Vpov 

Figure 5-1 Metric for Countermeasure Performance for Crash Alert Tests 

Data analysis must also evaluate and document the performance of the countermeasure 
for the required crash alerts. For test scenarios without significant lateral maneuvers, 
these four quantities generally suffice, unless stated otherwise in the Chapter 6: 

°	 The performance metric eR 

which the alert occurs and the minimum range for the alert onset. 
, which is the difference between the range at 

° The uncertainty associated with the metric eR . 

°	 The performance metric e IPNA 

which the alert occurs and the maximum allowed range for the alert onset. 

, which is the difference between the range at 

° The uncertainty associated with the metric e IPNA . 

Individual tests may have special instructions in addition to these variables. See Chapter 
6 for detailed instructions on all data reporting and analysis requirements. 

5.4.4 Crash Alert Test Repetition Requirements 

Each crash alert test must be executed five times, and possibly more, depending on the 
results of the five trials. For each test, the countermeasure must issue the alert ƒsoon 
enough≈ for each trial. (Requirements for alert onset timing are described in Chapter 4; 
an algorithm to compute requirement values for specific speeds and accelerations is given 
in Appendix B.) Should the system be ƒlate≈ on one trial, 15 additional trials are required 
with no allowed instances of being too late before the system can pass the testing. Fifteen 
trials are required to show that the ƒlate≈ performance is a rare event (due, perhaps, to test 
instrumentation inaccuracies). If the system passes the additional trials, there is no need 
for an explanation or analysis of the single ƒlate≈ trial. 

The countermeasure should not issue alert onsets ƒtoo early,≈ either. A weighted sum of 
the instances in which alert onsets occur too early is compared to a threshold, as 
described in Chapter 6. If more than five trials are required for any test, the weighting 
method described in Chapter 6 allows the additional trials to be included in the weighted 
sum in a manner that does not penalize the need for extra trials. 
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5.5 Crash Alert Tests 
Crash alert tests investigate the countermeasure«s compliance with functional 
requirements that address the timing of crash alert onset timing and poor visibility 
functions. The list of crash alert tests is given below. 

Test Test name 
C-1 100 kph to POV stopped in travel lane (night) 

C-2 80 kph to POV at 16 kph (uneven surface) 

C-3 100 kph to POV braking moderately hard from 100 kph 

C-4 100 kph to POV stopped under overhead sign 

C-5 100 kph to slowed or stopped motorcycle 

C-6 SV to POV stopped in transition to curve (wet pavement) 

C-7 SV to POV stopped in a curve without lane markings 

C-8 SV to slower moving POV, in tight curve 

C-9 POV at 67 kph cuts in front of 100 kph SV 

C-10 SV at 72 kph changes lanes and encounters stopped POV 

C-11 100 kph to stopped POV, with fog. 

C-12 POV brakes while SV tailgates at 100 kph. 

C-13 Greater size and equal distance (100 kph SV approaches 32 kph 
motorcycle that is alongside two 32 kph trucks) 

C-14 Greater size and greater distance (100 kph SV approaches 32 kph 
motorcycle that is behind a 32 kph truck) 

C-15 100 kph to 32 kph truck 

C-16 SV to POV stopped in transition to curve (poor lane markings) 

C-17  24kph SV to stopped POV. 

Table 5-3 List of Crash Alert Tests 

Test requirements and procedures are now given for each of these tests. 
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5.5.1 Test C-1 100 kph to POV Stopped in Travel Lane (Night) 

5.5.1.1 Test Overview and Purpose 

This test consists of a SV traveling on a straight, flat road at highway speed toward a 
vehicle which is parked in the middle of the lane of travel. The test should be performed 
at night. The test is to determine whether the countermeasure crash alert onset occurs at a 
range that is consistent with the alert onset timing requirements described in Chapter 4, 
Section 2. The test is also used to estimate the expected exposure to in-path nuisance 
alerts for the countermeasure. The test assures that the countermeasure functions 
appropriately at the maximum speed and sensing ranges described in Chapter 4. The test 
also ensures that the FCW functions appropriately even with nighttime lighting. . 

SV POV, stopped 

In same lane 

Figure 5-2 Test Maneuver Diagram for Test C-1 

This test addresses Chapter 2 crash scenarios that include the following: Distracted driver 
rear-end (RE), Inattentive driver RE, and Aggressive driver RE. 

5.5.1.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 

POV Description 

POV type: Midsize sedan 

5.5.1.3 Environmental Conditions 

Use standard conditions, per Section 5.3.3.2, except run this test with nighttime 
illumination and no direct lighting (e.g., no ƒstreetlights≈ are permitted). 
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5.5.1.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

Additional instrumentation requirements for this test include: 

°	 The location and orientation of the stopped POV should be as stipulated in the 
general crash alert requirements. 

5.5.1.5 Driving Instructions 

The POV should be parked in the lane of travel, as described in Crash Alert Tests General 
Requirements. The position of the stationary POV should be determined, if necessary. 
(Only the relative position of the SV with respect to the POV is needed, and some 
measurement approaches will make absolute knowledge of the POV position 
unnecessary.) 

Drive the SV at a nominal speed of 27.8 m/sec (100 kph) in the center of the lane of 
travel, toward the parked POV. The test begins when the SV is 200m from the POV and 
ends when either of the following occurs: 

° The required crash alert occurs. 

°	 The range to the POV falls to less than 90% of the minimum allowable range 
for the onset of the required crash alert. 

After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

For the nominal SV speed, the maximum allowed alert onset range is 146.1m and the 
minimum allowed range for alert onset for the crash alert is 100.0m. (Appendix B gives 
instructions for computing alert onset timing requirements for the crash alert tests as a 
function of the actual speeds and accelerations measured during a test trial.) 

For the trial to be valid, the following must hold throughout the test: 

°	 The SV vehicle speed cannot deviate from the nominal speed by more than 
two kph (0.6 m/sec) during the test (with a confidence level of 95%). 

°	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

°	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity normal 
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to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

°	 The SV driver cannot touch the brake pedal before the required crash alert 
occurs, or before the range falls to less than 90% of the minimum range 
allowed for onset of the required crash alert. 

5.5.2 Test C-2 80 kph to POV at 16 kph on uneven road 

5.5.2.1 Test Overview and Purpose 

This test consists of a SV traveling on a straight, flat road toward a single POV, which is 
moving in the same lane at a much slower speed. The test is performed on a road that is 
either unpaved or poorly paved. The test is to determine whether the countermeasure 
crash alert occurs at a range that is consistent with the alert onset timing requirements of 
Chapter 4. The test is also used to estimate the expected exposure to in-path nuisance 
alerts for the countermeasure. The test also ensures that the FCW can operate on 
pavements that will induce pitching motions of the SV. 

SV POV 

Vsv Vpov<Vsv 

Figure 5-3 Test Maneuver Diagram for Test C-2 

This test addresses Chapter 2 crash scenarios that include the following: Distracted driver 
RE, Inattentive driver RE, and Aggressive driver RE. 

5.5.2.2 Track and Prop Setup 

Roadway Geometry Conditions 

Use standard conditions, per Section 5.3.3, except that an unpaved or poorly-paved road 
segment should be used. The purpose of this is to induce vehicle vibrations that may 
pose a challenge to some countermeasures. The term ƒpoorly paved≈ is intended to 
suggest a public road in poor repair. This test is not intended to be executed on extremely 
uneven pavement situations, such as those available at many proving ground facilities for 
chassis testing. 
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POV Description 

POV type: Midsize sedan 

5.5.2.3 Environmental Conditions 

Use standard conditions, per Section 5.3.3.2. 

5.5.2.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

5.5.2.5 Driving Instructions 

Throughout the test, the POV is to be driven at a constant 22.2 m/sec (80 kph) in the 
center of the lane of travel. 

The SV is to be driven at 4.4 m/sec (16 kph) in the center of the lane of travel, toward the 
slower-moving POV. The test begins when the SV is 150m from the POV and ends 
when either of the following conditions is satisfied: 

° The required crash alert has occurred. 

°	 The range to the POV falls to less than 90% of the minimum allowable range 
at alert onset for the required crash alert. 

After one of these events occurs, the SV driver is to steer and/or brake to keep the SV 
from striking the POV. 

For the nominal SV speed, the maximum allowed alert onset range is 97.6 m and the 
minimum allowed range for alert onset for the crash alert is 62.9m. (Appendix B gives 
instructions for computing alert onset timing requirements for the crash alert tests as a 
function of the actual speeds and accelerations measured during a test trial.) 

For the trial to be valid, the following must hold from the beginning until the end of the 
test: 

°	 The POV vehicle speed cannot deviate from the nominal speed by more than 
two kph (0.6 m/sec) during the test (with a confidence level of 95%). 

°	 The SV vehicle speed cannot deviate from the nominal speed by more than 
two kph (0.6 m/sec) during the test (with a confidence level of 95%). 

°	 The CG of the POV cannot deviate more than 0.30m away from a line parallel 
with the lane centerline (with a confidence level of 95%). 
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°	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

°	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

°	 The SV driver cannot touch the brake pedal before the required crash alert 
occurs, or before the range falls to less than 90% of the minimum range 
allowed for onset of the required crash alert. 

5.5.3  Test C-3 100 kph to POV Braking Moderately Hard 
from 100 kph 

5.5.3.1 Test Overview and Purpose 

This test begins with the SV traveling on a straight, flat road at highway speed. Ahead of 
the SV, in the same lane, is a single POV, which is initially traveling at the same speed as 
the SV. The SV is following at a moderate distance. The POV then begins to brake 
moderately hard, so that the SV begins closing on the POV. The SV maintains a constant 
speed until the required crash alert is triggered or the range decreases to less than the 
minimum allowed range for alert onset. 

The test determines whether the countermeasure«s required crash alert occurs at a range 
that is consistent with the alert onset timing requirements of Chapter 4. This test 
especially explores the ability of the countermeasure to issue timely warnings with a 
decelerating lead vehicle (see also Test C-12.) The test is also used to collect data for use 
in estimating expected exposure to in-path nuisance alerts for the countermeasure. 

This test addresses Chapter 2 crash scenarios that include the following: Distracted driver 
RE; Inattentive driver RE; Aggressive driver RE. 

Initially, SV Then POV 
follows POV. begins to brake. 

Vsv Vpov= Vsv, for t < t* 
Vpov< Vsv, for t > t* 

Figure 5-4 Test Maneuver Diagram for Test C-3 
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5.5.3.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 

POV Description 

POV type: Midsize sedan. 

For this test, the rear of the POV (and especially the brake lamps and retroreflective 
surfaces) should be dusty. This may challenge some countermeasure sensing systems. 

5.5.3.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

5.5.3.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

5.5.3.5 Driving Instructions 

To begin the test, the SV and the POV are each to be driven at a constant 27.8 m/sec (100 
kph) in the center of the lane of travel. The headway from the SV to the POV should be 
2.0 seconds. The POV then begins a braking maneuver of moderate intensity; the 
deceleration profile is described below. During the test, both vehicles should remain near 
the center of the lane. Allowable tolerances are given below. 

The test begins seven seconds before the POV begins the braking maneuver, and ends 
when either of the following conditions is satisfied: 

° The required crash alert has occurred. 

°	 The range to the POV falls to less than 90% of the minimum allowable range 
at alert onset for the required crash alert. 

After one of these events occurs, the SV driver is to steer and/or brake to keep the SV 
from striking the POV. 

For the nominal initial speeds and assuming an ideal POV braking profile ¬ a step change 
from constant speed to ¬0.32g ¬ the maximum allowable range for onset of the crash alert 
would be 54.1 m and the minimum allowed range at alert onset would be 49.5 m. 
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(Appendix B gives instructions for computing alert onset timing requirements for the 
crash alert tests as a function of the actual speeds and accelerations measured during a test 
trial.) 

For the trial to be valid, the following must be satisfied: 

°	 The initial POV vehicle speed cannot deviate from the nominal speed by more 
than 2 kph (0.6 m/sec) during the test (with a confidence level of 95%). 

°	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 

°	 The difference between the initial SV and POV speeds cannot be larger than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 

°	 The range between the SV and POV, during the seven seconds before the 
POV begins to brake, must be equivalent to a headway of 1.85 to 2.15 
seconds, based on the SV speed. 

°	 The CG of the POV cannot deviate more than 0.30m away from a line parallel 
with the lane centerline during the entire test. 

° The braking profile of the POV must satisfy the following: 

°	 1.5 sec after the braking maneuver begins, the deceleration 
should nominally be -0.32g, with an acceptable error 
magnitude of 0.03g, until the test is over (see above for 
definition of the end of the test). 

°	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

°	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

°	 The SV driver cannot touch the brake pedal before the required crash alert 
occurs, or before the range falls to less than 90% of the minimum allowable 
range for onset of the required crash alert. 
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5.5.4 Test C-4 100 kph to POV Stopped Under Overhead Sign 

5.5.4.1 Test Overview and Purpose 

This test consists of a SV traveling on a straight, flat road at highway speed toward a 
POV which is parked under an overhead sign, in the middle of the lane of travel. The test 
explores the countermeasure«s ability to distinguish threats in the roadway from non-
threatening objects over the roadway. The test is also used to collect data for use in 
estimating expected exposure to in-path nuisance alerts for the countermeasure. 

SV 

POV, 
stopped 

Overhead sign 

Figure 5-5 Test Maneuver Diagram for Test C-4 

This test addresses Chapter 2 crash scenarios that include the following: Distracted driver 
RE, Inattentive driver RE, and Overhead object (operational scenario). 

The countermeasure should provide the required crash alert at a range that is consistent 
with the alert onset timing requirements of Chapter 4. 

5.5.4.2 Track and Prop Setup 

Road Geometry and Conditions 

Use conditions per Test N-1. 

POV Description 

POV type: Midsize sedan 

Prop Description 

Other Objects in the Scene: Overhead sign (see Test N-1). 
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5.5.4.3 Environmental Conditions Requirements 

Use the same conditions as in Test N-1. 

5.5.4.4 Instrumentation Requirements 

Test Validity 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

Additional instrumentation requirements include: 

°	 The location and orientation of the parked POV in the roadway, as stipulated 
in the general crash alert requirements. 

5.5.4.5 Driving Instructions 

The POV should be parked in the lane of travel, as described in Crash Alert Tests General 
Requirements. The position of the stationary POV should be determined, if necessary. 
(Only the relative position of the SV with respect to the POV is needed, and some 
measurement approaches will make absolute knowledge of POV position unnecessary.) 

Drive the SV at a nominal speed of 27.8 m/sec (100 kph) in the center of the lane of 
travel, toward the parked POV. The test begins when the SV is 200m from the POV and 
ends when either of the following occurs: 

° The required crash alert has occurred. 

°	 The range to the POV falls to less than 90% of the minimum allowable range 
at alert onset, for the required crash alert. 

After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

For the nominal SV speed, the maximum allowed alert onset range is 146.1m and the 
minimum allowed range for alert onset is 100.0m. (Appendix B gives instructions for 
computing alert onset timing requirements for the crash alert tests as a function of the 
actual speeds and accelerations measured during a test trial.) 

For the trial to be valid, the following must hold throughout the test: 

°	 The SV vehicle speed cannot deviate from the nominal speed by more than 
two kph (0.6 m/sec) during the test (with a confidence level of 95%). 
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°	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

°	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

°	 The SV driver cannot touch the brake pedal before the required crash alert 
occurs, or before the range falls to less than 90% of the minimum allowed 
range for onset of the required crash alert. 

5.5.5 Test C-5 100 kph to Slowed or Stopped Motorcycle 

5.5.5.1 Test Overview and Purpose 

This test consists of a SV traveling on a straight, flat road at highway speed toward a 
stationary POV, which is a motorcycle with a rider. The test examines the 
countermeasure«s ability to issue timely alerts to targets with small sensor cross-sections 
on an open roadway. The countermeasure should provide the required crash alerts at a 
range that is consistent with the alert onset timing requirements of Chapter 4. The test 
data is also used in estimating expected exposure to in-path nuisance alerts for the 
countermeasure. 

Stopped POV, 
SV motorcycle 

Vsv 

Figure 5-6 Test Maneuver Diagram for Test C-5 

This test addresses Chapter 2 crash scenarios that include the following: Distracted driver 
RE and Inattentive driver RE. 

5.5.5.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 
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POV Description 

POV type: Motorcycle with rider. 

5.5.5.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

5.5.5.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

5.5.5.5 Driving Instructions 

The POV should be parked in the lane of travel, as described in Crash Alert Tests General 
Requirements. The position of the stationary POV should be determined, if necessary. 
(Only the relative position of the SV with respect to the POV is needed, and certain 
measurement approaches may make absolute knowledge of POV position unnecessary.) 

Drive the SV at a nominal speed of 27.8 m/sec (100 kph) in the center of the lane of 
travel, toward the parked POV. The test begins when the SV is 200m from the POV and 
ends when either of the following occurs: 

° The required crash alert has occurred. 

°	 The range to the POV falls to less than 90% of the minimum allowed range at 
the onset of the required crash alert. 

After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

For the nominal SV speed, the maximum allowed alert onset range is 146.1m and the 
minimum allowed range for alert onset is 100.0m. (Appendix B gives instructions for 
computing alert onset timing requirements for the crash alert tests as a function of the 
actual speeds and accelerations measured during a test trial.) 

For the trial to be valid, the following must hold throughout the test: 

°	 The SV vehicle speed cannot deviate from the nominal speed by more than 
2kph (0.6 m/sec) during the test (with a confidence level of 95%). 

°	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 
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°	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity normal 
to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

°	 The SV driver cannot touch the brake pedal before the required crash alert 
occurs, or before the range falls to less than 90% of the minimum range 
allowed for the onset of the crash alert. 

5.5.6	 Test C-6 Moderate-Speed SV to POV Stopped in 
Transition to a Curve (Wet Pavement) 

5.5.6.1 Test Overview and Purpose 

In this test, the SV approaches a POV parked in a zone of transition from a straight road 
segment to a curved road segment, as shown in Figure 5-7 below. Both vehicles should 
be near the center of the same lane; the pavement is wet. If successful, the 
countermeasure should issue the required crash alert at a range consistent with the alert 
onset timing requirements in Chapter 4. The test data is also used in estimating expected 
exposure to in-path nuisance alerts for the countermeasure. 

The test studies the countermeasure«s ability to track targets through changes in 
curvature. Wet pavement is used to ensure that countermeasures are able to identify 
curvature changes even in non-ideal situations. This test addresses Chapter 2 crash 
scenarios that include the Distracted driver RE and Inattentive driver RE scenarios. 

5.5.6.2 Track and Prop Setup 

Road Geometry and Conditions 

Standard values per Section 5.3.3 apply, except the road surface should be wet and the 
roadway horizontal curvature must meet the requirements given below. 

The test site for this test should consist of a straightaway of at least 200m followed by a 
sudden transition (less than 20m in length) to a constant curvature road section with a 
radius of curvature between 182 and 300 m. The lane in which the POV is stopped 
cannot have superelevation greater than 12% deg. (This superelevation limit is the 
maximum recommended by AASHTO for open highways in regions where snow and ice 
are not factors (see Policy on Geometric Design of Highways and Streets (1994)). This 
value is allowed here since proving ground facilities often do not have lower 
superelevation for curves of this radius.) 
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POV Descriptions 

POV type: Midsize sedan. 

5.5.6.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

Curve 

Straight 

SV 

POV, 
parked 

Figure 5-7 Schematic of Test Maneuver for Test C-6 

5.5.6.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

Road curvature measurements must provide a 95% confidence that the test site meets 
specifications. 

Instrumentation should support the determination that the POV is placed as required, 
relative to the transition of curvature, as given below in Driving Instructions. 
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5.5.6.5 Driving Instructions 

The test begins with the POV stopped near the center of a lane of travel at a location just 
beyond the transition from a straight road segment to a curve. The SV travels at a 
constant speed, in the same lane as the POV, and approaches along the curve. The alert 
onset will be required in a region very near the transition, as described below. 

The SV vehicle speed and POV location along the road depend on the curvature at the 
specific test site, as shown in the table below. The dependence on curvature is used to 
reduce the sensitivity of test results to the specific test site. The values in the table follow 
from two relationships. First, AASHTO guidelines are used to select the radius of 
curvatures that correspond to moderate speeds of 65 to 80 kph, which is the range of 
speeds of interest for the scenario. The radii in the table correspond approximately to the 
minimum radius recommended for a 4% superelevation curve for the corresponding 
speeds in the table, and therefore represent challenging but realistic road geometries. The 
second consideration leads to the required placement of the parked POV down-road from 
the transition. Based on the curve/speed selection, the POV is placed in slightly different 
locations. The values shown in the table all provide a maximum azimuth angle (angle 
between the SV«s direction of travel and the line of sight from the SV to the POV) that is 
approximately the same across the allowed values of radii (8.2 deg). This requires the 
same sensor coverage to pass the test, independent of the test site. 

Radius of 
curve 

Required SV 
speed 

POV placement ¬ rear-end 
location, down-road from the 

transition from straight to 
curve 

182 ¬ 206 m 65 kph 58 m 

207 ¬ 250 m 70 kph 68 m 

251 ¬ 288 m 75 kph 77 m 

288 ¬ 300 m 80 kph 86 m 
Table 5-4 Curve and SV Speed Requirements for Test C-6 

The test begins when the SV is 150 m from the POV. The test ends when either of the 
following occurs: 

° The required crash alert has occurred. 

°	 The range to the POV falls to less than 90% of the minimum range allowed 
for the crash alert. 

After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

The range at which alert onset occurs must be consistent with the timing requirements of 
Chapter 4. Depending on the exact SV speed during a test trial, the latest allowed alert 
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will be somewhere between 60 and 90 m. Appendix B gives instructions for computing 
alert onset timing requirements for the crash alert tests as a function of the actual speeds 
and accelerations measured during a test trial. 

For the trial to be valid, the following must hold throughout the test: 

°	 The SV vehicle speed cannot deviate from the nominal speed by more than 
two kph (0.6 m/sec) (with a confidence level of 95%). 

°	 The lateral distance of the CG of the POV and the heading angle of the POV 
must meet the requirements for a parked POV test situation, as described in 
Section 5.4.1.2. 

°	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

°	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.30 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity normal 
to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.30deg) (with a confidence level of 95%). 

°	 The SV driver cannot touch the brake pedal before the required crash alert 
occurs, or before the range falls to less than 90% of the minimum range 
allowed for onset of the crash alert. 

5.5.7 Test C-7 Highway-Speed SV to POV Stopped in a Curve 

5.5.7.1 Test Overview and Purpose 

In this test, the SV, traveling through a curve at highway speed, approaches a stationary 
POV parked near the center of a lane in a curve, as shown below in Figure 5-8. 
Throughout the test, the SV travels near the center of the lane in which the POV is 
parked, and the SV remains at constant speed. The lane does not have painted lane 
markings. The test verifies the countermeasure«s ability to identify a threat on a curved 
road segment without painted lane markings. If successful, the countermeasure would 
issue the required crash alert at a range consistent with the alert onset timing requirements 
of Chapter 4. The test data is also used in estimating expected exposure to in-path 
nuisance alerts for the countermeasure. 

This test addresses Chapter 2 crash scenarios that include the Distracted driver RE and 
Inattentive driver RE scenarios. 
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5.5.7.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3, except a moderate value for roadway 
horizontal curvature is desired, and the test should be run with ƒno lane markings,≈ a 
condition defined in detail in the Definitions section. 

The test site for this test should be a constant curvature road section with a radius of 
curvature between 456 and 700 m. The lane in which the POV is stopped cannot have 
superelevation greater than 12% deg. (This superelevation limit is the maximum 
recommendation by AASHTO for open highways in regions where snow and ice are not 
factors (see Policy on Geometric Design of Highways and Streets (1994)). This value is 
allowed here since proving ground facilities often do not have lower superelevation for 
curves of this radius.) 

POV Descriptions 

POV type: Midsize sedan. 

5.5.7.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

5.5.7.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

Road curvature measurements must provide a 95% confidence that the test site meets 
specifications. 

5.5.7.5 Driving Instructions 

The POV is parked in a curve, at least 400m from the beginning of the curve, near the 
center of a lane of travel. The SV, traveling in the same lane, approaches the POV at a 
speed that depends on the test site road curvature, as shown in the table below. 
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Curve 

SV 

POV, 
stationary 

Figure 5-8 Schematic of Test Maneuver for Test C-7 

The SV speed depends on the curvature at the test site in order to reduce the sensitivity of 
test results to the curvature of the test site, but still provide a realistic curvature scenario. 
Values in the table are chosen using two relationships. First, AASHTO guidelines are 
used to select radius of curvatures that correspond to speeds of 90 to 110 kph, which is 
the range of speeds of interest for the scenario. The radii in the table correspond 
approximately to the minimum radius recommended for a 4% superelevation curve for 
these speeds, and therefore represent challenging but realistic road geometries. The table 
shows that the azimuth angle (angle between the SV«s direction of travel and the line of 
sight from the SV to the POV) at a range of 100m varies from approximately 4.1 to 6.3 
deg. This variation should not affect repeatability across test sites since a countermeasure 
will need more azimuth coverage than this to pass another test, Test C-6, which requires 
approximately 8 deg azimuth to one side of the longitudinal axis. 

Radius of 
curve 

Required SV 
speed 

Approximate azimuth angle 
at 100 m range 

456 ¬ 478 m 95 kph 6.3 deg 

479 - 541 m 100 kph 5.7 deg 

541 - 641m 105 kph 4.9 deg 

640 - 700 m 110 kph 4.1 deg 
Table 5-5 Curve and SV Speed Requirements for Test C-7 



5-44 

The test begins when the SV is 200 m from the POV. The test ends when either of the 
following occurs: 

° The required crash alert has occurred. 

°	 The range to the POV falls to less than 90% of the minimum allowed range 
for onset of the required crash alert. 

The alert onset should occur at a range that is between the minimum and maximum 
allowed values, as described in the alert onset requirements of Chapter 4. These values 
depend on the actual SV speed during a test trial, but the minimum allowed value is likely 
to be the 100.0m limit on required warning range. See Appendix B for instructions on 
computing the alert onset timing requirements as a function of the actual SV speed. 

For the trial to be valid, the following must hold throughout the test: 

°	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) (with a confidence level of 95%). 

°	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

°	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.60 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.60deg) (with a confidence level of 95%). 

°	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum allowable 
range for onset of the crash alert. 

5.5.8	 Test C-8 Moderate-Speed SV to Slower Moving POV, in 
Tight Curve 

5.5.8.1 Test Overview and Purpose 

In this test, the SV approaches a slower-moving POV in a tight curve. Both vehicles are 
traveling near the center of the same lane. The test investigates the countermeasure«s 
ability to identify moving targets in tight curvature situations. If successful, the 
countermeasure would issue the required crash alert at a range consistent with the alert 
onset timing requirements of Chapter 4. The test data is also used in estimating expected 
exposure to in-path nuisance alerts for the countermeasure. 
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Tight Curve 

SV 

POV 

Figure 5-9 Schematic of Test Maneuver for Test C-8 

This test addresses Chapter 2 crash scenarios that include the Distracted driver RE and 
Inattentive driver RE scenarios. 

5.5.8.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3, except for the roadway geometry. 

The roadway geometry here is intended to represent a relatively tight curve, such as those 
found on cloverleaf interchanges. The test site for this test should consist of a 
straightaway of at least 200m followed by a sudden transition to a constant curvature road 
section with a radius of curvature between 182 and 300 m. The lane in which the POV is 
stopped cannot have superelevation greater than 12% deg. (This superelevation limit is 
the maximum allowed by AASHTO standards for public roads (see Policy on Geometric 
Design of Highways and Streets (1994)). This value is allowed here since proving 
ground facilities often do not have lower superelevation curves of this radius.) 

POV Descriptions 

POV type: Midsize sedan. 

5.5.8.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 
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5.5.8.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

Road curvature measurements must provide a 95% confidence that the test site meets 
specifications. 

5.5.8.5 Driving Instructions 

The test begins with the SV and POV each traveling at constant speed near the center of 
the same travel lane. The initial speed of the SV depends on the curvature of the test site, 
as described below. The POV speed should be 40kph less than the SV speed. The 
maneuver should be executed so that the required crash alert is triggered while both 
vehicles are in the tightly curved section. 

The SV speed should be based on the radius of curvature of the test site, as shown in the 
table below. This dependence is used to reduce the dependence of test results on the 
specific curvature at a test site, while still testing the countermeasure«s performance in a 
realistic and challenging curve scenario. Values in the table are chosen using two 
relationships. First, AASHTO guidelines are used to select radius of curvatures that 
correspond to speeds of 65 to 80 kph, which is the range of speeds of interest for the 
scenario. The radii in the table correspond approximately to the minimum radius 
recommended for a 4% superelevation curve for these speeds. The table shows that the 
azimuth angle (angle between the SV«s direction of travel and the line of sight from the 
SV to the POV) at the minimum allowed range for crash alert onset varies from 2.7 to 4.6 
deg. This variation should not affect repeatability across test sites since a countermeasure 
will need more azimuth coverage than this to pass another test, Test C-6, which requires 
approximately 8 deg azimuth to one side of the longitudinal axis. 

Radius of 
curve 

Required SV 
speed 

Required POV 
speed 

Approximate azimuth 
angle at minimum 

allowed range for alert 
onset 

182 ¬ 206 m 65 kph 25 kph 4.6 deg 

207 ¬ 250 m 70 kph 30 kph 3.7 deg 

251 ¬ 288 m 75 kph 35 kph 3.1 deg 

288 ¬ 300 m 80 kph 40 kph 2.7 deg 
Table 5-6 Curve and SV Speed Requirements for Test C-8 

The test begins when the SV is 150 m from the POV. The test ends when either of the 
following occurs: 

° The required crash alert has occurred. 
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°	 The range to the POV falls to less than 90% of the minimum range allowed at 
onset of the crash alert. 

The onset of the crash alert should occur at a range that is between the minimum and 
maximum allowed alert onset distances, per the alert onset timing requirements of 
Chapter 4. Appendix B gives instructions for computing the alert onset timing 
requirements as a function of the speeds and accelerations of the vehicles during an actual 
test trial. 

For the trial to be valid, the following must hold throughout the test: 

°	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) (with a confidence level of 95%). 

°	 The POV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) (with a confidence level of 95%). 

°	 The lateral distance of the CG of the POV, relative to the center of the lane, in 
road coordinates, cannot exceed 0.30m (with a confidence level of 95%). 

°	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

°	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.60 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.60deg) (with a confidence level of 95%). 

°	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum allowed range 
at onset of the required crash alert. 

5.5.9 Test C-9 POV at 67 kph Cuts in Front of 100 kph SV 

5.5.9.1 Test Overview and Purpose 

In this test, the SV is initially traveling at constant speed in a given lane on a straight, flat 
road. A slower-moving POV, which is initially traveling in an adjacent lane, changes 
lanes so that it cuts in front of the SV. 

The test determines whether the countermeasure crash alert occurs at an appropriate 
times. The appropriate time is a function of both the lateral position of the POV, relative 
to the SV, and the combination of range, range rate, and relative longitudinal acceleration 
between the two vehicles. The requirements are described in the alert onset timing 
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requirements section of Chapter 4. The test data is also used in estimating expected 
exposure to in-path nuisance alerts for the countermeasure. 

SV 

POV 
POV lane-
change/cut-in 

alert zone 

Vsv 

Vpov <Vsv 

Figure 5-10 Test Maneuver Diagrams for Test C-9 

This test addresses the Chapter 2 crash scenario: Lane Change RE (POV cut-in). 

Criteria for Successful Countermeasure Performance 

Chapter 4 describes the Alert Zone and the alert onset timing requirements. Given a test 
trial that meets the requirements given below, the onset of the crash alert must not violate 
either the requirements on allowable lateral locations of targets or the requirements on 
alert onset timing. 

5.5.9.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 

POV Description 

POV type: Midsize sedan 

5.5.9.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 
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5.5.9.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

5.5.9.5 Driving Instructions 

In this test, the SV is initially traveling at a constant speed of 27.8 m/sec (100 kph) near 
the center of a given lane on a straight, flat road. A slower-moving POV (at 18.6 m/sec, 
or 67 kph), which is initially traveling near the center of an adjacent lane, changes lanes 
so that it cuts in front of the SV. The closing speed is nominally 9.2 m/sec, or 33 kph. 
For the nominal speeds, the maximum allowed range at alert onset range is 41.6 m and 
the minimum allowed range for alert onset is 21.9 m. (Appendix B gives instructions for 
computing alert onset timing requirements for the crash alert tests as a function of the 
actual speeds and accelerations measured during a test trial.) 

The initial lateral offset between the vehicle CGs should be a standard U.S. lane-width 
(3.66 m), with an allowable deviation of 0.50 m. There should be a confidence level of 
95% that this condition is met for a 3.0 sec duration before the POV begins its cut-in. 

The SV«s Alert Zone is centered about the vehicle longitudinal axis and extends 
symmetrically to a width of 3.66m, as described in Chapter 4. The part of the SV«s Alert 
Zone in which a crash alert must occur (assuming appropriate relative motion in the 
longitudinal direction) extends laterally to the edge of the SV«s physical boundary. When 
the POV first begins to enter the Alert Zone, the range from the SV to the POV should be 
between 32m and 42m (95% confidence required). When entering the Alert Zone, the 
lateral speed of the POV should be between 0.75 and 1.5 m/sec, measured in the roadway 
coordinates. The POV should cross laterally into the part of the Alert Zone in which 
alerts are required at a range of between 24m and 34m. 

The test begins when the SV is 90 m from the POV and ends when either of the following 
occurs: 

°  The required crash alert has occurred. 

° 	 The range to the POV falls to less than 90% of the minimum range allowed 
for the onset of the crash alert. 

After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

For the trial to be valid, the following must hold for the duration of the test: 

° 	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 
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° 	 The POV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 

° 	 The variation in the lateral distance of the CG of the SV, relative to the travel 
lane centerline, cannot exceed 0.50 m (with a confidence level of 95%). 

° 	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

° 	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum allowed range 
for the onset of the crash alert. 

5.5.10 	 Test C-10 SV at 72 kph Changes Lanes and Encounters 
Stopped POV 

5.5.10.1 Test Overview and Purpose 

This test begins with a SV traveling at 72 kph near the center of a lane on a straight, flat 
road. A stationary POV is parked in an adjacent lane. When the SV is not far from the 
parked POV, it abruptly changes lanes, in an imitation of an aggressive driver. The test 
examines the countermeasure«s ability to quickly identify threats and warn the driver in 
situations in which the SV itself is performing maneuvers. This test addresses the 
Aggressive driver RE crash scenario. 

stopped POV 

SV 

Aggressive 
lane-change 

Figure 5-11 Test Maneuver Diagram for Test C-10 

Criteria for Successful Countermeasure Performance 

The countermeasure should provide the required crash alert when two conditions are 
satisfied: (1) the range to the POV is within the bounds of the alert onset timing 
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requirements (Chapter 4), and (2) the POV has crossed laterally into that part of the Alert 
Zone in which crash alerts are required when condition (1) is satisfied. (See Chapter 4 for 
a description of the regions of the Alert Zone in which the crash alert is required, allowed, 
and not allowed.) 

The test data is also used in estimating expected exposure to in-path nuisance alerts for 
the countermeasure. 

5.5.10.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 

POV Descriptions 

POV type: Midsize sedan. 

5.5.10.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

5.5.10.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

Instrumentation needs for this test also include measuring: 

° 	 Location and orientation of the parked POV with respect to either the lane of 
travel, or the roadway, whichever applies, as stipulated in the general crash 
alert requirements. 

5.5.10.5 Driving Instructions 

The POV should be parked in the lane of travel, as described in Crash Alert Tests General 
Requirements. The position of the stationary POV should be determined, if necessary. 
(Only the relative position of the SV with respect to the POV is needed, and certain 
measurement approaches may make absolute knowledge of POV position unnecessary.) 

Drive the SV toward the parked POV at a nominal speed of 20.0 m/sec (72 kph); the SV 
should be kept near the center of a lane adjacent to the lane in which the stopped POV is 
parked. The SV should change lanes early enough so that there is overlap in the lateral 
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direction between the edges of the SV and the POV at a range of more than 100m, but 
less than 120m. The test begins when the SV is still 200m from the POV and ends when 
either of the following occurs: 

°  The required crash alert occurs. 

° 	 The range to the POV falls to less than 90% of the minimum range allowed 
for the onset of the crash alert. 

After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

For the nominal SV speed, the alert onset timing requirements of Chapter 4 call for the 
alert to begin at a range that is between 77.9 and 94.2 m. 

For the trial to be valid, the following must hold throughout the entire test: 

° 	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 

° 	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum range allowed 
for the onset of the crash alert. 

In addition, the following must hold in the initial few seconds of the test, before the SV 
begins to change lanes: 

° 	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 3.66+0.50m = 4.16m (with a confidence level 
of 95%). 

° 	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

Finally, the SV lane-change should be such that: 

° 	 When the SV is within 70m of the POV, the lateral distance of the CG of the 
SV, relative to the CG of the POV, in road coordinates, cannot be larger than 
0.50 m (with a confidence level of 95%). 
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5.5.11  Test C-11 100 kph to Stopped POV, With Fog 

5.5.11.1 Test Overview and Purpose 

This test consists of a SV traveling on a straight, flat road at highway speed toward a 
vehicle which is stopped in the middle of the lane of travel. The atmospheric visibility is 
poor, due to fog. The test investigates whether the countermeasure complies with the 
minimum functional requirement (from Chapter 4) that states that the FCW must either 
(1) operate without reduced operating range, or (2) signal the driver that it is unable to 
function to its fullest operating range 

SV 

Atmospheric visibility is poor 

POV stationary 
alert zone 

Figure 5-12 Test Maneuver Diagram for Test C-11 

This test addresses the Chapter 2 crash scenario: Visibility RE 

Criteria for Success of Test 

The countermeasure should have one of two responses. The first acceptable response is 
that the countermeasure provides the crash alert such that its onset is consistent with the 
timing requirements of Chapter 4, and is within 10% of the nominal warning ranges the 
system has under these conditions (see Test C-1). The second acceptable response is that 
the system signals the driver that it cannot operate to its full operating range. 

5.5.11.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3, except ¬ due to the need for fog ¬ the roadway 
is allowed to be wet if necessary, as long as the safety of the test is not compromised 
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POV Descriptions 

POV type: Midsize sedan 

5.5.11.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2, except the atmospheric visibility should be 
poor (see Definitions for a precise description of allowable visibility measures). For this 
test, the visibility should be poor due to naturally occurring or artificially created fog. 

5.5.11.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

Additional instrumentation requirements for this test include: 

° 	 Location and orientation of the parked POV with respect to either the lane of 
travel, or the roadway, whichever applies, as stipulated in the general crash 
alert requirements. 

Instrumentation should support that the local atmospheric conditions satisfy the definition 
of ƒpoor visibility,≈ as described in Definitions. This will involve a measurement of the 
instantaneous visibility at the specific testing site. Also, it is necessary to detect whether 
the countermeasure signals the driver that it is unable to function to its full range due to 
the reduced visibility. Determining whether the system is signaling in such a way can be 
a manual function requiring no instrumentation. 

5.5.11.5 Driving Instructions 

The POV should be parked in the lane of travel, as described in Crash Alert Tests General 
Requirements. The position of the stationary POV should be determined, if necessary. 
(Only the relative position of the SV with respect to the POV is needed, and some 
measurement approaches will make absolute knowledge of POV position unnecessary.) 
Atmospheric visibility should be ƒpoor,≈ as defined in the Definitions section. 

Drive the SV at a nominal speed of 27.8 m/sec (100 kph) in the center of the lane of 
travel, toward the parked POV. The test begins when the SV is 200m from the POV and 
ends when any of the following occurs: 

°  The required crash alert occurs. 

° 	 The range to the POV falls to less than 90% of the minimum range allowable 
for the onset of the crash alert. 
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°  The countermeasure signals the driver that it cannot operate at its full range. 

After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

For the nominal SV speed, the maximum allowed range at alert onset is 146.1m and the 
minimum allowed range for alert onset is 100.0m. (Appendix B gives instructions for 
computing alert onset timing requirements for the crash alert tests as a function of the 
actual speeds and accelerations measured during a test trial.) For the trial to be valid, the 
following must hold throughout the test: 

° 	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 

° 	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

° 	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

° 	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum range allowed 
for the onset of the crash alert. 

5.5.12  Test C-12 POV Brakes While SV Tailgates at 100 kph 

5.5.12.1 Test Overview and Purpose 

This test begins with a SV following a POV that is traveling at constant speed on a 
straight, flat road. The POV begins to brake while the SV maintains its speed. The test 
determines whether the countermeasure issues the crash alert with a timing that is 
consistent with the alert onset timing requirements described in Chapter 4. This test 
especially explores the ability of the countermeasure to issue timely warnings with a 
decelerating lead vehicle (see also Test C-3.) The test data is also used to estimate the 
expected exposure to in-path nuisance alerts for the countermeasure. 
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SV, POV begins 
tailgating to brake 

Tailgating RE 

Figure 5-13 Test Maneuver Diagram for Test C-12 

This test addresses the Chapter 2 crash scenario: Tailgate RE 

5.5.12.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 

POV Descriptions 

POV type: Midsize sedan 

5.5.12.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

5.5.12.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

5.5.12.5 Driving Instructions 

Drive the POV at a nominal speed of 27.8 m/sec (100 kph) in the center of the lane of 
travel. The SV should also be at the same constant speed, at a headway of 1.0 seconds. 
After this configuration is held for at least 5.0 seconds, the POV should begin a 
deceleration with a nominal value of ¬0.15g. The test ends when one of the following 
occurs: 

°  The required crash alert occurs. 

° 	 The range to the POV falls to less than 90% of the minimum range allowable 
for onset of the required crash alert. 
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After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

For the nominal initial speeds and assuming an ideal POV braking profile ¬ a step change 
from constant speed to -0.15g ¬ the maximum allowable range for onset of the crash alert 
would be 24.9 m and the minimum allowed range at alert onset would be 17.9 m. 
(Appendix B gives instructions for computing alert onset timing requirements for the 
crash alert tests as a function of the actual speeds and accelerations measured during a test 
trial.) 

For the trial to be valid, the following must hold before the POV braking maneuver 
begins: 

° 	 The POV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 

° 	 The headway between the SV and POV, during the seven seconds before the 
POV begins to brake, should be between 0.85 to 1.15 seconds. 

The braking profile of the POV must satisfy the following: 

° 	 1.5 seconds after the POV begins to decelerate, its deceleration should remain 
within 0.03 g of the nominal deceleration level of ¬0.15g. This should 
continue until the test is over (see above for definition of the end of the test). 

For the trial to be valid, the following must hold throughout the test: 

° 	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 

° 	 The lateral position of the CG of the POV, relative to the road edge, cannot 
exceed 0.30 m (with a confidence level of 95%). 

° 	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

° 	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

° 	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum range allowed 
at the onset of the crash alert. 
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5.5.13  Test C-13 Greater Size and Equal Distance 

5.5.13.1 Test Overview and Purpose 

This test includes a POV with a small sensor cross-section (a motorcycle) traveling 
between two POVs with large sensor cross-sections (trucks). All three POVs are 
traveling at the same speed and each POV is near the center of its lane, as shown in the 
figure below. The SV is moving faster, and approaches the three POVs at constant speed 
while traveling in the same lane as the small sensor cross-section POV. The test 
determines whether the countermeasure issues the crash alert at a range that is consistent 
with the alert onset timing requirements of Chapter 4. The test data is also used to 
estimate expected exposure to in-path nuisance alerts for the countermeasure. 

This test is one of two tests that explore the countermeasure«s ability to resolve in 
azimuth a target with a small sensor cross-section, while traveling in traffic. (The other 
test is an out-of-path nuisance alert test, without the motorcycle.) 

Truck 

Motorcycle 

Vpov 

SV 

Vsv Vpov < Vsv 

Vpov 

Truck 

Figure 5-14 Schematic of Test Maneuver for Test C-13 

This test addresses Chapter 2 crash scenarios Distracted driver RE and Inattentive driver 
RE, as well as the operational scenario Greater size and Equal Distance RE. 

5.5.13.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 



5-59 

POV Descriptions 

POV types: Trucks (2), Motorcycle (1). 

5.5.13.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

5.5.13.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

5.5.13.5 Driving Instructions 

The test begins with the three POVs traveling side-by-side at a constant speed of 8.9 
m/sec (32 kph), each in the center of their respective lanes of travel. The SV approaches 
the POVs at 27.8 m/sec (100 kph), also traveling near the center of its lane. The test 
begins when the SV is 150 m from the POVs. The test ends when either of the following 
occurs: 

°  The required crash alert occurs. 

° 	 The range to the POV falls to less than 90% of the minimum range allowable 
for the onset of the required crash alert. 

For the nominal speeds, the alert onset range should be between 65.4m and 104.9m. 
(Appendix B gives instructions for computing alert onset timing requirements for the 
crash alert tests as a function of the actual speeds and accelerations measured during a test 
trial.) 

For the trial to be valid, the following must hold throughout the test: 

° 	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) (with a confidence level of 95%). 

° 	 The vehicle speed of each of the three POVs cannot deviate from the nominal 
speed by more than 2 kph (0.6 m/sec) (with a confidence level of 95%). 

° 	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 
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° 	 The lateral distance of the CG of the primary POV (the motorcycle), relative 
to the centerline of its respective lane, in road coordinates, cannot exceed 0.30 
m (with a confidence level of 95%). 

° 	 The lateral distance of the CG of the secondary POVs (the trucks), relative to 
the centerline of its respective lane, in road coordinates, cannot exceed 0.50 m 
(with a confidence level of 95%). 

° 	 The lateral position of the CG of the SV, relative to the lateral position of the 
primary POV, in road coordinates, cannot exceed 0.50 m (with a confidence 
level of 95%). 

° 	 The longitudinal position of the rear-most point on each of the three vehicles 
must all fall within 3.0m of each other (with a confidence of 95%). 

° 	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum range allowed 
for onset of the crash alert. 

5.5.14  Test C-14 Greater Size and Greater Distance 

5.5.14.1 Test Overview and Purpose 

This test includes a POV with a small sensor cross-section (a motorcycle) traveling 
behind a POV with a large sensor cross-section (a truck). The two POVs are traveling at 
the same speed and each POV is near the center of the same lane, as shown in the figure 
below. A faster-moving SV approaches the POVs from behind, at constant speed, 
traveling in the same lane. The test determines whether the countermeasure can 
distinguish between the two POVs, identify the motorcycle as the immediate target, and 
issue the required crash alert at a range consistent with the Chapter 4 alert onset timing 
requirements. The test data is also to estimate the expected exposure to in-path nuisance 
alerts for the countermeasure. 

This test explores an aspect of the countermeasure«s ability to resolve targets with small 
sensor cross-sections in traffic. 
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SV Motorcycle Truck 

Vsv 

Vpov < Vsv Vpov 

Figure 5-15 Schematic of Test Maneuver for Test C-14 

5.5.14.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 

POV Descriptions 

POV types: Truck (1), Motorcycle (1). 

5.5.14.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

5.5.14.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

5.5.14.5 Driving Instructions 

The test begins with the two POVs each traveling at the same constant speed of 8.9 m/sec 
(32 kph). The motorcycle follows the truck at a nominal range of 20 m (with tolerances 
given below), and both POVs remain near the center of the lane of travel. 

The SV approaches the POVs at 27.8 m/sec (100 kph), also traveling near the center of 
the same lane as the POVs. The test begins when the SV is 150 m from the POVs. The 
test ends when either of the following occurs: 

°  The required crash alert occurs. 
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° 	 The range to the POV falls to less than 90% of the minimum range allowed 
for onset of the crash alert, where the appropriate target is the motorcycle. 

For the nominal SV speed, the maximum allowed range at alert onset is 104.9m and the 
minimum allowed range for alert onset is 65.4m. (Appendix B gives instructions for 
computing alert onset timing requirements for the crash alert tests as a function of the 
actual speeds and accelerations measured during a test trial.) 

For the trial to be valid, the following must hold throughout the test: 

° 	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) (with a confidence level of 95%). 

° 	 The vehicle speed of each of the two POVs cannot deviate from the nominal 
speed by more than 2 kph (0.6 m/sec) (with a confidence level of 95%). 

° 	 The distance at which the motorcycle follows the truck cannot deviate from 
the nominal range by more than 5.0m (with a confidence level of 95%). 

° 	 The lateral distance of the CG of the SV, relative to the CG of the primary 
POV (the motorcycle), in road coordinates, cannot exceed 0.50 m (with a 
confidence level of 95%). 

° 	 The lateral distance of the CG of the primary POV (the motorcycle), relative 
to the centerline of its respective lane, in road coordinates, cannot exceed 0.30 
m (with a confidence level of 95%). 

° 	 The lateral distance of the CG of the secondary POVs (the trucks), relative to 
the centerline of its respective lane, in road coordinates, cannot exceed 0.50 m 
(with a confidence level of 95%). 

° 	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

° 	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum range allowed 
for onset of the required crash alert. 
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5.5.15  Test C-15 100 kph to 32 kph Truck 

5.5.15.1 Test Overview and Purpose 

This test includes a POV with a large sensor cross-section (a truck). A faster-moving SV 
approaches the POVs from behind, at constant speed, traveling in the same lane. This test 
serves as a complement to Test C-14, since this test determines the range at alert onset for 
the truck alone. For successful performance, the countermeasure should issue the alert at 
a range consistent with the alert onset timing requirements of Chapter 4. The test data is 
also used to estimate expected exposure to in-path nuisance alerts for the countermeasure. 

SV Truck 

Vsv 

Vpov < Vsv 

Figure 5-16 Schematic of Test Maneuver for Test C-15 

5.5.15.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3. 

POV Descriptions 

POV types: Truck (1). 

5.5.15.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2. 

5.5.15.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 
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5.5.15.5 Driving Instructions 

The test begins with the large POV traveling at a constant speed of 8.9 m/sec (32 kph), 
and remaining near the center of the lane of travel. 

The SV approaches the POV at 27.8 m/sec (100 kph), also traveling near the center of the 
same lane as the POV. The test begins when the SV is 150 m from the POV. The test 
ends when either of the following occurs: 

°  The required crash alert occurs. 

° 	 The range to the POV falls to less than 90% of the minimum range allowed 
for the onset of the crash alert. 

For the nominal SV speed, the maximum allowed range at alert onset is 104.9m and the 
minimum allowed range for alert onset is 65.4m. (Appendix B gives instructions for 
computing alert onset timing requirements for the crash alert tests as a function of the 
actual speeds and accelerations measured during a test trial.) 

For the trial to be valid, the following must hold throughout the test: 

° 	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) (with a confidence level of 95%). 

° 	 The vehicle speed of each of the POV cannot deviate from the nominal speed 
by more than 2 kph (0.6 m/sec) (with a confidence level of 95%). 

° 	 The lateral position of the CG of the POV, relative to the road edge, should 
not vary by more than 0.30m. (with a confidence level of 95%). 

° 	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 

° 	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

° 	 The SV driver cannot touch the brake pedal before either the required crash 
alert occurs or the range falls to less than 90% of the minimum range allowed 
at the onset of the required crash alert. 
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5.5.16 	 Test C-16 SV to POV Stopped in Transition to Curve 
(Poor Lane Markings) 

5.5.16.1 Test Overview and Purpose 

This test is similar to Test C-6, except here the test should be executed on dry pavement 
with poor lane markings. In this test, the SV approaches a POV stopped in a zone of 
transition from a straight road segment to a curved road segment, as shown earlier in 
Figure 5-7. Both vehicles should be near the center of the same lane. The test studies the 
countermeasure«s ability to track targets through changes in curvature. If successful, the 
countermeasure should issue the required crash alert at a range consistent with the alert 
onset timing requirements in Chapter 4. The test data is also used in estimating expected 
exposure to in-path nuisance alerts for the countermeasure. 

This is a common driving situation that may challenge some countermeasures« ability to 
detect curvature changes. This test addresses Chapter 2 crash scenarios that include the 
Distracted driver RE and Inattentive driver RE scenarios. 

5.5.16.2 Track and Prop Setup 

Road Geometry and Conditions 

Standard values per Section 5.3.3.1 apply, except the roadway horizontal curvature and 
the quality of the lane markings. 

The roadway geometry should meet the same requirements given for Test C-6. 

ƒPoor quality lane markings≈ should be used. A detailed definition of this condition is 
given in the Definitions section. Note that good quality lane markings can be made into 
poor quality lane markings (as defined in this chapter) by obscuring the lane markings, for 
example, by sand. 

POV Descriptions 

Same requirements as for Test C-6. 

5.5.16.3 Environmental Conditions Requirements 

Same requirements as for Test C-6. 
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5.5.16.4 Instrumentation Requirements 

Instrumentation requirements are identical to those of Test C-6. 

Countermeasure Performance Evaluation 

Same as for Test C-6. 

5.5.16.5 Driving Instructions 

Same as for Test C-6. 

5.5.17  Test C-17 24 kph to Stopped POV 

5.5.17.1 Test Overview and Purpose 

This test consists of a SV traveling on a straight, flat road at low speed toward a vehicle 
which is parked in the middle of the lane of travel. The test is to determine whether the 
countermeasure crash alert onset occurs at a range that is consistent with the alert onset 
timing requirements described in Chapter 4. The test is also used to estimate the 
expected exposure to in-path nuisance alerts for the countermeasure. 

SV POV, stopped 

In same lane 

Figure 5-17 Test Maneuver Diagram for Test C-17 

This test addresses Chapter 2 crash scenarios that include the following: Distracted driver 
RE; and Inattentive driver RE. 

5.5.17.2 Track and Prop Setup 

Road Geometry and Conditions 

Use standard conditions, per Section 5.3.3.1. 

POV Description 

POV type: Midsize sedan 
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5.5.17.3 Environmental Conditions 

Use standard conditions, per Section 5.3.3.2. 

5.5.17.4 Instrumentation Requirements 

The standard instrumentation requirements for crash alert tests are given in Section 5.4.2. 

In addition, instrumentation accuracies should support the determination of whether or 
not the location and orientation of the stopped POV are as stipulated in the general crash 
alert requirements. 

5.5.17.5 Driving Instructions 

The POV should be parked in the lane of travel, as described in Crash Alert Tests General 
Requirements. The position of the stationary POV should be determined, if necessary. 
(Only the relative position of the SV with respect to the POV is needed, and some 
measurement approaches will make absolute knowledge of the POV position 
unnecessary.) 

Drive the SV at a nominal speed of 6.7 m/sec (24 kph) in the center of the lane of travel, 
toward the parked POV. The test begins when the SV is 100m from the POV and ends 
when either of the following occurs: 

°  The required crash alert occurs. 

° 	 The range to the POV falls to less than 90% of the minimum allowable range 
for the onset of the required crash alert. 

After one of these events occurs, the SV driver must then steer and/or brake to keep the 
SV from striking the POV. 

For the nominal SV speed, the maximum allowed alert onset range is 21.6m and the 
minimum allowed range for alert onset for the crash alert is16.5m. (Appendix B gives 
instructions for computing alert onset timing requirements for the crash alert tests as a 
function of the actual speeds and accelerations measured during a test trial.) 

For the trial to be valid, the following must hold throughout the test: 

° 	 The SV vehicle speed cannot deviate from the nominal speed by more than 2 
kph (0.6 m/sec) during the test (with a confidence level of 95%). 

° 	 The lateral distance of the CG of the SV, relative to the CG of the POV, in 
road coordinates, cannot exceed 0.50 m (with a confidence level of 95%). 



5-68 

° 	 Either (1) the variation in the heading angle of the SV, measured relative to 
the travel lane centerline, cannot exceed 0.75 degrees (with a confidence level 
of 95%), or (2) the variation in the component of the SV CG«s velocity 
normal to the road edge cannot exceed the SV vehicle speed multiplied by 
sin(0.75deg) (with a confidence level of 95%). 

° 	 The SV driver cannot touch the brake pedal before the required crash alert 
occurs, or before the range falls to less than 90% of the minimum range 
allowed for onset of the required crash alert. 
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5.6 Nuisance Alert Test General Requirements 

5.6.1  Other Objects in the Scene 

The out-of-path nuisance-alert tests should be conducted with no other traffic on the 
track, except the vehicles needed for the test itself. (Exceptions are allowed if other 
traffic is more than 400 m from all vehicles during the testing itself). Unless required for 
the tests, there should be no overhead objects such as signs or bridges near the testing 
zones. Roadside objects such as signs and markers should be minimized. The locations 
of roadside objects near the track that cannot be removed should be documented. Unless 
otherwise required, tests should be run in lanes that are not adjacent to concrete barriers 
and guardrails. 

5.6.2  Instrumentation Requirements 

In general, instrumentation and data processing should be adequate to show a 95% 
confidence level that the setup and execution of each test satisfies the specifications for 
the test. This includes both the specifications for the vehicle maneuvers and prop setup 
given with each test. 

If an alert occurs the instrumentation and data recording must be adequate to verify that 
the object(s) that caused the alert were the objects intentionally placed in the scene for the 
purposes of the test. 

5.6.3  Nuisance Alert Test Repetition Requirements 

In general, each out-of-path nuisance alert test must be repeated to provide an estimate of 
the probability that an alert will occur under each test condition. The number of 
repetitions required depends upon the expected exposure of FCW systems to each 
combination of conditions. In addition, where appropriate, the out-of-path objects are 
presented to the FCW system at a variety of distances. Chapter 6 includes a detailed 
development of the specifications for the required number of repetitions and the required 
distribution of distances for each out-of-path nuisance-alert test. Briefly, the number of 
repetitions is designed to expose the FCW system to potential sources of out-of-path 
nuisances equivalent to 3 weeks worth of driving (approximately 600 miles of driving). 
The number of trials and the acceptable number of alerts are based upon the projected 
exposure and a statistical analysis of the number of exposures required to achieve 
adequate confidence in the test results. The typical exposure estimates are based upon a 
pilot experimental study performed by CAMP. The details of the pilot experimental 
study and the statistical analysis are provided in Chapter 6. 
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5.7 Nuisance Alert Tests 
Out-of-path nuisance alert tests investigate the countermeasure's compliance with 
functional requirements that address operational scenarios. The list of out-of-path 
nuisance alert tests is given below. Test requirements and procedures are now given for 
each of these tests. 

Out-Of-Path Nuisance Alert Tests 

N-1 Overhead sign at crest of hill 

N-2 Road surface objects on flat roads 

N-3 Grating at bottom of hill 

N-4 Guard-rails and concrete barriers along curve entrance 

N-5 Roadside objects along straight and curved roads (dry & wet pavement) 

N-6 U-turn with sign directly ahead 

N-7 Slow cars in adjacent lane, in transition to curve 

N-8 120 kph between two 60 kph trucks in both adjacent lanes 

N-9 Slow cars in adjacent lane at a curve (poor lane markings) 

Table 5-7 List of Out-of-Path Nuisance-Alert Tests 

5.7.1  Test N-1: Overhead Sign at Crest of a Hill 

5.7.1.1 Test Overview and Purpose 

This test is used to determine the sensitivity of an FCW system to objects commonly 
found over the traffic lanes of roads. The test covers the difficult condition wherein a 
crest curve causes the overhead object to appear directly ahead of the SV. The test is 
conducted using an overhead sign, which is used to representative both signs and bridges 
commonly found over urban and rural roads. 

This test also verifies that the Alert Zone is at least as high as the top of the vehicle. 

When the sign is at normal heights, the countermeasure should not produce alerts as the 
SV approaches and then passes under the overhead object. When the sign is set just 
above the height of the vehicle an alert should occur as the SV approaches the sign. The 
results of this test are to be compared with Test C-4, 100 kph to POV stopped under 
overhead sign, in which an alert is required to occur. 
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5.7.1.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Select a hill with a vertical curvature that allows the sign to be directly ahead of the SV as 
the SV approaches the crest. The preferred vertical curvature is the 15th percentile for 
vertical curves on public roads. The actual vertical curvature of the track should be 
measured before testing begins. The horizontal curvature, superelevation, and crown of 
the track should meet the definition of a straight road. 

The maximum vertical curvature will determine the speed at which the SV is driven over 
the hill. The track should be long enough so that the SV can reach the desired speed 
before coming within 200 m of the test object. 

Use the following table to determine the speed at which the test is run. Choose the speed 
that is associated with the entry in the table that is closest to the minimum value of K 
found on the crest curve. 

Rate of Vertical 
Curvature, K, 

(length (m) per % change 
in grade) 

SV Speed 
(km/h) 

3 30 

5 40 

9 50 

14 60 

22 70 

32 80 

43 90 

62 100 

80 110 

102 120 
Table 5-8	 Vertical Curvature and SV Speed Requirements 

for Test N-1 

Overhead Sign 

This test requires an overhead sign that is similar in both optical and radar characteristics 
to the large direction and intersection information signs found on interstate highways. A 
standard design should be used to minimize variation in test results. Until a standard 
design is developed, the following guidelines are suggested. The sign itself should be 
approximately 2 m high by 4 m wide. It should be made with a metal back and coated 
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with green retroreflective material with white lettering. There should be a vertical 
support on either side of the road. The vertical support structure on each side should be 
constructed using a single cylindrical pole. The horizontal support structure should be 
constructed from one or two cylindrical poles. If the sign is movable it may be held in 
place using guy wires that are attached at the top of the vertical poles and extend away 
from the road. 

Place the overhead sign so that it is directly ahead of the SV and perpendicular to its 
direction of travel as the SV approaches the crest of the hill. Measure the position of the 
sign relative to the road and crest. 

Measure the height of the bottom-center of the sign above the road. Measure the tilt of 
the sign relative to vertical and the angle of the sign relative to the direction of the road. 
Document the devices and techniques used to make these measurements. 

5.7.1.3 Environmental Conditions Requirements 

Use standard conditions, per Section 5.3.3.2 except run this test with nighttime 
illumination, as specified in the Definitions section. 

5.7.1.4 Instrumentation Requirements 

As the SV travels the "testing distance", instrumentation must support a 95% confidence 
level that the following variables remain within their allowed values (as specified in the 
Driving Instructions): 

ß SV speed 

ß Lateral position of the SV relative to the sign, in road coordinates 

ß Heading angle of the SV relative to the road 

ß	 SV brake pedal application (the pedal cannot be applied during testing, since this may 
disable the alerts for some FCW systems). 

5.7.1.5 Driving Instructions 

Begin with the SV at a location so that the required speed can be achieved before the SV 
is within 200 m of the sign. Accelerate to the required speed. Align the SV so that the 
center of the vehicle is at the same lateral position on the road as the center of the sign. 
Hold the required speed within ê2 km/h and keep the lateral position within ê0.5 m of the 
center of the sign until you pass under it. Note whether any alerts are generated by the 
FCW system. 
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5.7.1.6 Test Repetitions 

The test is repeated with the sign at four different heights using the height and exposure 
distribution below. To test that the Alert Zone is at least as high as the SV, the test is 
then repeated once with the sign low enough to be sure an alert occurs but high enough to 
miss the top of the vehicle and any antennas on the vehicle. 

Sign Height Above Road (meters) 4.4-4.65 4.65-4.9 4.9-5.15 5.15-5.4 

Average Exposure per day 7 7 7 7 

Number of Exposures for Test N-1 147 147 147 147 
Table 5-9 Overhead Sign Height Exposure Requirements for Test N-1 

5.7.1.7 Data Reporting and Analysis 

Data reported must demonstrate the validity of the test run. The reported measurements 
and analysis must demonstrate the following: 

1. The road geometry met the requirements for the test 

2.	 The SV speed was within the required limits for the vertical curvature from the time it 
came within 200 m of the sign until it passed under it. 

3.	 The SV lateral offset was within the specified limits from the time the SV came 
within 200 m of the sign until it passed under it. 

If an alert occurs, the data analysis and reporting must demonstrate whether the sign 
caused it. 

5.7.2 Test N-2: Road Surface Objects on Flat Roads 

5.7.2.1 Test Overview and Purpose 

This test is used to determine the sensitivity of an FCW system to road surface markings 
and small objects that vehicles frequently drive over. The representative objects include 
lane-marking retro-reflectors, a railroad crossing or similar painted marking, tire debris, 
beverage cans, and a piece of wood. The test is conducted on a straight section of track. 

The countermeasure should not produce alerts as the SV approaches and then drives over 
these objects. 
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5.7.2.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Select a flat, straight, track that is at least two lanes wide and 0.5 km long. The horizontal 
curvature, vertical curvature, superelevation, and crown of the track should meet the 
definition of a straight, flat road. 

Retroreflectors and Road Surface Markings 

The retroreflectors should have optical characteristics equivalent to those of Stimsonite 
Model 88AW white construction-work-zone markers. 

There should be retroreflectors along both sides of the test lane at approximately 80-ft. 
intervals consistent with lane demarcation. If there are also lines delineating lane 
boundaries they should be broken lines with dimensions in accordance with Chapter 3 
(ƒMarkings≈) of the U.S. DOT Federal Highway Administration«s Manual of Uniform 
Traffic Control Devices (see References). The MUTCD suggests lines that are 4" to 6" 
wide with broken lines formed by segments and gaps in a 1:3 ratio (typically 10-foot 
segments and 30-foot gaps). 

There should be 2 separate regions; one with retroreflectors interspersed between white 
lane markings (3 m white paint lines separated by 9 m spaces), a second with 
retroreflectors spaced as in the first but without the markings. Each region should be at 
least 100 m long. 

There should be a railroad crossing or similarly sized sign on the surface using highly 
reflective adhesive tape or paint (see Figure 5-18). The sign should conform to the shape 
and size guidelines as suggested in the MUTCD. 

Survey the locations of the line segments and retroreflectors. Document the devices and 
techniques used to make these measurements. 

Debris 

Place a beverage can, piece of tire, and a piece of wood along the lane with at least 100 m 
separation. 

The beverage can should be an empty 12 fl. oz. (355 ml) can that is not crushed. Place 
the can in the center of a lane so that the axis of the cylinder is horizontal and 
perpendicular to the direction of travel. The can may be held in place as long as the 
mechanism is not visible from the vehicle as it approaches the can. 
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Figure 5-18 Typical Railroad Crossing Warning on Pavement

The piece of tire should be a section of truck tire tread 30 cm long by 10 cm wide.  
the piece of tire in the center of the lane so that it rests naturally on the road with its long
axis perpendicular to the direction of travel.

The piece of wood should be approximately 2 cm by 5 cm by 30 cm.  lace it in the
center of the lane so that its long axis is horizontal and perpendicular to the direction of
travel.

Measure the location of each piece of debris.  
to make these measurements.

5.7.2.3 Environmental Conditions Requirements

Use standard conditions, per Section 5.3.3.2 except run this test at night.

5.7.2.4 Instrumentation Requirements

As the SV travels the "testing distance", instrumentation must support a 95% confidence
level that the following variables remain within their allowed values (as specified in the
Driving Instructions):

° SV speed.

° Lateral position of the SV relative to the debris and retroreflectors, in road
coordinates.

Place

P

Document the devices and techniques used
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°	 SV brake pedal application (the pedal cannot be applied during testing, since 
this may disable the alerts for some FCW systems). 

5.7.2.5 Driving Instructions 

Begin at a location so that the required speed can be achieved before you are within 200 
m of the first debris item. Accelerate to 100 km/h while following the center of the test 
lane. Hold the speed within ê2 km/h of 100 km/h as you drive through the testing 
distance. After entering the "testing distance" drive the car in a weaving pattern so that it 
passes completely into the next lane and back, going over the retroreflectors. Drive the 
car over each of the pieces of debris so that they pass approximately under the center of 
the vehicle. 

Note whether any alerts are generated by the FCW system. 

5.7.2.6 Test Repetitions 

The following table indicates an estimated distribution for exposure to road surface 
objects during a typical day of driving and the resulting number of exposures that should 
be used in the tests. The number of times the FCW system is run through the course will 
depend upon the number of reflectors and debris passed each time. 

Road Surface 
Retroreflectors 

Debris 

Average Exposure Per Day 100 0.5 
Number of Exposures for Test N-2 2100 11 

The number of trial exposures for each type of object (retroreflectors or debris) is the 
number of each type of object on the course multiplied by the number of passes through 
the course. 

5.7.2.7 Data Reporting and Analysis 

Data reported must demonstrate the validity of the test run. The reported measurements 
and analysis must demonstrate the following: 

ß The road geometry met the requirements for the test 

ß The retroreflectors and debris were located within the required limits. 

ß	 The SV speed was within the required limits from the time it came within 200 m of 
the test area until it passed the last piece of debris or retroreflector. 

ß The debris passed under the SV within 0.5 m of the front-center of the vehicle. 
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ß The SV passed over at least 4 retroreflectors. 

If an alert occurs the data analysis and reporting must demonstrate which retroreflector or 
piece of debris caused it. 

5.7.3 Test N-3: Grating at Bottom of Hill 

5.7.3.1 Test Overview and Purpose 

This test is used to determine the sensitivity of an FCW system to metal road surface 
objects, such as a grating, that vehicles frequently drive over. The test is conducted under 
the difficult condition where a sag vertical curve increases the visibility of the road 
surface ahead of the FCW system. 

The countermeasure should not produce alerts as the SV approaches and then drives over 
the grating. 

5.7.3.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Select a section of track that has a sag curve. The preferred a change of grade is the 85th 

percentile for the change of grade in sag curves on public roads. The preferred vertical 
curvature is the 15th percentile for vertical curves on public roads. Measure the vertical 
curvature of the track before testing begins. The horizontal curvature, superelevation, and 
crown of the track should meet the definition of a straight road. Document the devices 
and techniques used to make these measurements. 

The maximum vertical curvature will determine the speed at which the SV is driven over 
the curve. The track should be long enough so that the SV can reach the desired speed 
before coming within 200 m of the test object that is placed just after the sag curve. 

Use the following table to determine the speed at which the test is run. Choose the speed 
that is associated with the entry in the table closest to the minimum value of K found on 
the sag curve. 
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Rate of Vertical�
Curvature, K, (length (m)�
per % change in grade)�

SV Speed (km/h)�

4 30 

8 40 

11 50 

15 60 

20 70 

25 80 

30 90 

37 100 

43 110 

50 120 

Table 5-10� Overhead Sign Height Exposure Requirements for Test N-3�

Grating 

This test requires a road surface that is similar in both optical and radar characteristics to 
the metal grating sometimes used on bridges over rivers. A standard design should be 
used to minimize variation in test results. Until a standard design is developed the 
following guidelines are suggested. The grating itself should be at least as wide as the 
lane and at least the length of a car. It should be made with metal slats running 
perpendicular to the road direction. The grating should be of a thickness common to 
those used for bridges (perhaps 2 or 3 cm). A shallow wedge shaped ramp should be put 
in front of the grating so that the front edge of the grating is not exposed to the FCW 
sensor as the SV approaches it and so that the SV can easily drive over the grating. 

Place the grating immediately after the location with the maximum vertical curvature so 
that it is directly ahead of the SV and perpendicular to its direction of travel as the SV 
approaches the sag curve. Measure the position of the grating relative to the road and sag 
curve. Document the devices and techniques used to make these measurements. 

5.7.3.3 Environmental Conditions Requirements 

Use standard conditions per Section 5.3.3.2. 
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5.7.3.4 Instrumentation Requirements 

As the SV travels the "testing distance", instrumentation must support a 95% confidence 
level that the following variables remain within their allowed values (as specified in the 
Driving Instructions): 

ß SV speed 

ß Lateral position relative to the grating, in road coordinates 

ß Heading angle of the SV relative to the road. 

ß	 SV brake pedal application (the pedal cannot be applied during testing, since 
this may disable the alerts for some FCW systems). 

5.7.3.5 Driving Instructions 

Begin at a location so that the required speed can be achieved before you are within 200 
m of the grating. Accelerate to the required speed. Align the car so that it is on the road 
so that its center of the vehicle is at the same lateral position on the road as the center of 
the grating. Hold the required speed within ê2 km/h and keep the lateral position within 
ê0.5 m of the center of the grating until you pass over it. Note whether any alerts are 
generated by the FCW system. 

5.7.3.6 Test Repetitions 

The following table indicates an estimated distribution for exposure to gratings in a road 
during a typical day of driving and the resulting number of exposures that should be used 
in the tests. 

Gratings In Road�
Average Exposure per Day� 1 
Number of Exposures for Test N-3� 21 

5.7.3.7 Data Reporting and Analysis 

Data reported must demonstrate the validity of the test run. The reported measurements 
and analysis must demonstrate the following: 

ß The road geometry met the requirements for the test 

ß	 The SV speed was within the required limits for the vertical curvature from the time it 
came within 200 m of the grating until it passed over it. 
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ß	 The SV lateral offset was within the specified limits from the time the SV came 
within 200 m of the grating until it passed over it. 

If an alert occurs the data analysis and reporting must demonstrate whether the grating 
caused it. 

5.7.4 Test N-4: Guardrails and Concrete Barriers 

5.7.4.1 Test Overview and Purpose 

This test is used to determine the sensitivity of an FCW system to roadside barriers that 
vehicles frequently pass. The representative barriers include metal guardrails and 
concrete dividers. The test is conducted on a section of track that transitions from straight 
to curved to represent the difficult conditions of a highway exit where the barriers are 
directly in front of the vehicle as it approaches the curve. 

The countermeasure should not produce alerts as the SV approaches and then drives past 
these objects. 

5.7.4.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Select a track that includes a flat, straight section that transitions to a curve. The straight 
section should be long enough so that the SV can reach the desired speed before coming 
within 200 m of the roadside barriers. The preferred minimum radius of curvature in the 
curve is the 15th percentile for curves in highway interchanges that use a cloverleaf. The 
curve should be at least 90 degrees with a superelevation of no more than 4%. Current 
engineering judgment suggests this radius of curvature should be appropriate for a design 
speed of 50 km/h to 70 km/h. According to AASHTO guidelines this corresponds to 
radius of curvature values from 100 m (for 50 kph with 4% superelevation) to a curvature 
of 2000 m (for 70 kph with no superelevation). For additional details on the relationship 
between design speed, superelevation, and radius of curvature, see Tables III-7 to III-11 
of the AASHTO Policy on Geometric Design of Highways and Streets (1994). 

Survey the road to determine the actual minimum radius of curvature and superelevation 
of the curve. The actual minimum radius of curvature in the turn will determine the 
speed at which the SV is driven around the curve. Determine the design speed for the 
measured combination of minimum radius of curvature and superelevation. 
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Barriers 

The concrete barrier should be placed alongside the straight part of the track for a length 
of 50 m that ends just before the curve. The barrier should start at a safe distance from 
the side of the lane (for the start of a barrier). It should taper toward the lane to a distance 
equivalent to the 15th percentile of the distance of concrete barriers from traffic lanes on 
public roads (thought to be about 1m). 

The concrete barrier should include retroreflectors that extend from the side 
approximately every 12 m at an elevation of approximately 1 m from the road. 

The metal barrier for this test should have optical and radar characteristics similar to 
semi-rigid longitudinal barriers used along highways and major arteries to redirect errant 
vehicles. A standard design should be used to minimize variation in test results. Until a 
standard design is developed the following guidelines are suggested. The barrier should 
be constructed with wooden posts and a metal cushion. The cushion should be the same 
height above the road surface as is typical for this kind of barrier (thought to be about 20 
cm). Reflectors should be placed on the cushion approximately every 12 m. The barrier 
may be built in sections and with a plate at the bottom of each post so that it is portable. 
The plates must be of a design that does not significantly change the optical or radar 
characteristics of the mailbox. 

The metal barrier should be placed on the outside of the curve. The metal barrier should 
begin before the beginning of the curve and extend at least far enough so that it is directly 
ahead of the vehicle as it approaches on the straight part of the track. The beginning of 
the barrier should be a safe distance from the side of the lane. It should taper to the 15th 

percentile of distances of barrier from traffic lanes on cloverleaf intersections (thought to 
be 3m). 
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Test Track 

Metal Barrier 

Concrete Barrier 

Driving Direction 

Figure 5-19 Barriers on Curve 

The design and location of the barriers must be documented. Document the devices and 
techniques used to measure the locations of the barriers relative to the roadway. 

5.7.4.3 Environmental Conditions Requirements 

Use standard conditions per Section 5.3.3.2. 

5.7.4.4 Instrumentation Requirements 

As the SV travels the "testing distance", instrumentation must support a 95% confidence 
level that the following variables remain within their allowed values (as specified in the 
Driving Instructions): 

ß SV speed 

ß Lateral position of the SV relative to the lane in road coordinates 

ß	 SV brake pedal application (the pedal cannot be applied during testing, since this may 
disable the alerts for some FCW systems). 

5.7.4.5 Driving Instructions 

Begin at a location so that the required speed can be achieved before you are within 200 
m of the concrete barrier. Accelerate to the required speed. Align the car so that it is in 
the center of the lane. Hold the speed within ê2 km/h of the design speed of the curve 
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and keep the center of the car within ê0.5 m of the center of the lane. Follow the lane 
until you have passed turned 90 degrees through the curve. 

Note whether any alerts are generated by the FCW system. 

5.7.4.6 Test Repetitions 

The following table indicates an estimated distribution for exposure to guardrails and 
barriers during a typical day of driving and the resulting number of exposures that should 
be used in the tests. 

Distance of object from Alert Zone (meters) 0.5-1.5 1.5-2.5 2.5 to 3.5 3.5 to 4.5 

Guardrails (typical exposure per day) 5 5 5 5 

Number of Guardrail Exposures for Test N-4 105 105 105 105 

Concrete Barriers (typical exposure per day) 1 1 1 1 

Concrete Barrier Exposures for Test N-4 21 21 21 21 
Table 5-11 Requirements for Exposure to Extended Roadside Objects for Test N-5 

5.7.4.7 Data Reporting and Analysis 

Data reported must demonstrate the validity of the test run. The reported measurements 
and analysis must demonstrate the following: 

ß The road geometry and barrier locations met the requirements for the test 

ß	 The SV speed was within the required limits for the horizontal curvature and 
superelevation of the curve from the time it came within 200 m of the first barrier 
until it passed through 90 degrees of the curve 

ß	 The SV lateral offset was within the specified limits from the time the SV came 
within 200 m of the first barrier until it passed through 90 degrees of the curve. 

If an alert occurs the data analysis and reporting must demonstrate whether one of the 
barriers caused it. If one of the barriers caused the alert the data analysis and reporting 
must determine whether the alert occurred on the straight road, in the transition, or along 
the curve. 
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5.7.5	 Test N-5: Roadside Objects by Straight and Curved 
Roads 

5.7.5.1 Test Overview and Purpose 

This test is used to determine the sensitivity of an FCW system to common roadside 
objects that vehicles frequently pass. The representative objects include small and large 
signs, mailboxes, and construction barricades. The test is conducted on a track that 
includes straight and curved sections. The placement of the objects is as close to the road 
as permitted for business and residential districts under the FHWA Manual on Uniform 
Traffic Control Devices (see References) 

The countermeasure should not produce alerts as the SV approaches and then drives past 
these objects. 

5.7.5.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Select a track that includes a flat, straight section that transitions to a curve. The straight 
section should be long enough so that the SV can reach the desired speed before coming 
within 200 m of the roadside props. The preferred radius of curvature in the curve is the 
15th percentile for curves on roads in residential and business districts. The curve should 
be at least 90 degrees.. The rate of curve should be the 95th percentile in terms of degrees 
of turn per 100m on public roads. Current engineering judgment suggests this radius of 
curvature should be appropriate for a design speed of 40 km/h to 60 km/h. The AASHTO 
Policy on Geometric Design of Highways and Streets recommends that the minimum 
radius of curvature for roads designed for these speeds are 800 m to 1520 m when there is 
no superelevation. 

Survey the road to determine the actual minimum radius of curvature and superelevation 
of the curve. The actual minimum radius of curvature in the turn will determine the 
speed at which the SV is driven around the curve. Determine the design speed for the 
measured combination of minimum radius of curvature and superelevation. 

At least 15% of the length of the test course should have ƒno lane markings.≈ This 
condition is defined in detail in the Definitions section. Any testing that occurs near 
transitions in curvature should have ƒgood quality painted lane markings,≈ per the 
Definitions section. 
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Props 

The mailboxes for this test should have optical and radar characteristics similar to 
roadside mailboxes used along residential streets in suburban and rural areas. A standard 
design should be used to minimize variation in test results. Until a standard design is 
developed or a particular manufacturers part number is selected, the following guidelines 
are suggested. The mailbox should be of metal construction approved by the U.S. postal 
service. Seven digits of reflective numbering at least 5 cm high should be put on the side 
facing traffic. The mailboxes should be mounted on a 1.5 m vertical wooden post. A 
base may be attached to the post so that the mailbox is portable. The base must be of a 
design that does not significantly change the optical or radar characteristics of the 
mailbox. 

Mailboxes should be placed every 20 m along the straight and curved part of the track. 
The mailboxes should be placed so that the front of the mailbox is 0.5 m from the edge of 
the lane. 

The construction barricades should be a Type I barricade with an A-frame construction as 
defined in the FHWA Manual on Uniform Traffic Control Devices (see References). A 
series of 6 barriers should be placed on either side of the straight part of the track at 20 m 
intervals. The first one should be at 3 m from the edge of the lane and with subsequent 
barricades placed a successively closer distances to a minimum of 0.0 m from the lane. 
Place these barricades perpendicular to the direction of travel. 

The signs should correspond to the 85th percentile dimensions for signs found adjacent to 
public roads. They should be placed every 50 m along the straight and curved part of the 
track. They should be placed at the 15th percentile distance for signs found along public 
roads. Tentatively, engineering judgment suggests the signs should be a 24" x 30" no-
parking sign and a 36" x 36 " diamond-shaped road-narrows symbol like W4-2 in the 
FHWA Manual on Uniform Traffic Control Devices (see References). The tentative 
distance is 0.5 m from the road edge at that Manual«s recommended height of 1.5 m 
measured from the bottom of the sign to the ground. 

The design and location of each prop must be documented. Document the devices and 
techniques used to measure the locations of the props relative to the roadway. 

5.7.5.3 Environmental Conditions Requirements 

Use standard conditions per Section 5.3.3.2. 

5.7.5.4 Instrumentation Requirements 

As the SV travels the "testing distance", instrumentation must support a 95% confidence 
level that the following variables remain within their allowed values (as specified in the 
Driving Instructions): 
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° SV speed. 

° Lateral position of the SV relative to the lane in road coordinates. 

°	 SV brake pedal application (the pedal cannot be applied during testing, since 
this may disable the alerts for some FCW systems). 

5.7.5.5 Driving Instructions 

Begin at a location so that the required speed can be achieved before you are within 200 
m of the first roadside object. Accelerate to the required speed. Align the car so that it is 
in the center of the lane. Hold the speed within ê2 km/h of the design speed of the curve 
and keep the center of the car within ê0.5 m of the center of the lane. Follow the lane 
until you have passed turned 90 degrees through the curve. 

Note whether any alerts are generated by the FCW system. 

5.7.5.6 Test Repetitions 

The following table indicates an estimated distribution for exposure to roadside objects 
during a typical day of driving. 

Distance of Object from Alert 
Zone (Meters) 

0.5-1.5 1.5-2.5 2.5 to 3.5 3.5 to 4.5 

Small signs per day 50 50 50 50 

Large signs per day 16 16 16 16 

Mailboxes per day 11 11 11 11 

Construction barricades per day 24 24 24 24 

Table 5-12 Estimated Distribution for Exposures to Discrete Roadside Objects 

The following table indicates the number of exposures that should be used in the tests. 
The number of times the FCW system is run through the course will depend upon the 
number of reflectors and debris passed each time. 

Distance of Object from Alert Zone 
(Meters) 

0.5-1.5 1.5-2.5 2.5 to 3.5 3.5 to 4.5 

Small signs for Test N-5 1050 1050 1050 1050 

Large signs for Test N-5 336 336 336 336 

Mailboxes for Test N-5 121 121 121 121 

Construction barricades for Test N-5 504 504 504 504 
Table 5-13 Requirements for Exposures to Roadside Objects in Test N-5 
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The number of trial exposures for each type of object (retroreflectors or debris) is the 
number of each type of object on the course multiplied by the number of passes through 
the course. 

5.7.5.7 Data Reporting and Analysis 

Data reported must demonstrate the validity of the test run. The reported measurements 
and analysis must demonstrate the following: 

° The road geometry and prop locations met the requirements for the test. 

°	 The SV speed was within the required limits for the horizontal curvature and 
superelevation of the curve from the time it came within 200 m of the first 
prop until it passed through 90 degrees of the curve. 

°	 The SV lateral offset was within the specified limits from the time the SV 
came within 200 m of the first barrier until it passed through 90 degrees of the 
curve. 

If an alert occurs, the data analysis and reporting must demonstrate whether one of the 
props caused it. If one of the props caused the alert, the data analysis and reporting must 
determine whether the alert occurred on the straight road, in the transition, or along the 
curve. 

5.7.6 Test N-6: U-Turn With Sign 

5.7.6.1 Test Overview and Purpose 

This test is used to determine the sensitivity of an FCW system to signs found near U-
Turn lanes in the median of a road. The signs are placed so that they are directly in front 
of the SV as it approaches the U-Turn, at a distance of 3 meters from the edge of the 
roadway. The SV approaches the U-turn at a high speed (80 kph), decelerates at the last 
moment, and then negotiates the turn. 

The U-Turn should have a curvature consistent with a design speed between 20 and 50 
kph. The SV approaches the U-Turn at 80 kph, brakes at 0.5g to reach the design speed 
just before entering the U-Turn, and then negotiates the turn. 
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5.7.6.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Select a track that includes a straight segment leading into a very tight curve. The curve 
should represent a U-turn through a median between 12 m and 15 m wide, corresponding 
to a U-turn for passenger cars, busses, and medium semi-trailers in a divided road with 2 
lanes in each direction (see AASHTO Figure IX-69, see References). There should be a 
curb on the outer edge of the U-turn curve. 

Survey the road to determine the actual minimum radius of curvature and superelevation 
of the curve. The actual minimum radius of curvature in the turn will determine the 
speed at which the SV is driven around the curve. Determine the design speed for the 
measured combination of minimum radius of curvature and superelevation. 

Signs 

Place a 36" by 12"one-way sign on the outside of the curve so that it is directly ahead of 
the vehicle as it travels the straight part of the track. Place the sign perpendicular to the 
straight section of the track 1m away from the curb. 

The design and location of the sign must be documented. Document the devices and 
techniques used to measure the locations of the sign relative to the roadway. 

5.7.6.3 Environmental Conditions Requirements 

Use standard conditions per Section 5.3.3.2. 

5.7.6.4 Instrumentation Requirements 

As the SV travels the "testing distance", instrumentation must support a 95% confidence 
level that the following variables remain within their allowed values (as specified in the 
Driving Instructions): 

° SV speed. 

° Lateral position of the SV relative to the lane in road coordinates. 

°	 SV brake pedal application (the pedal cannot be applied during testing, since 
this may disable the alerts for some FCW systems). 
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5.7.6.5 Driving Instructions 

Begin at a location so that 80 km/h can reach before you are within 200 m of the U-turn. 
Accelerate to the required speed. Align the car so that it is in the center of the lane. Hold 
the speed steady within ê2 km/h and keep the center of the car within ê0.5 m of the 
center of the lane. At the last moment, brake at a comfortable-hard rate (tentatively set at 
0.5g ê0.05g) to make the widest turn possible while staying on the track, and come to a 
stop after completing the turn. 

Note whether any alerts are generated by the FCW system. 

5.7.6.6 Test Repetitions 

The following table indicates an estimated number for exposure to the U-turn scenario 
and during a typical day of driving and the resulting number of exposures that should be 
used in the tests. 

U-Turns 
Average Exposure per Day 2 
Number of Exposures for Test N-6 42 

5.7.6.7 Data Reporting and Analysis 

As the SV travels toward and through the turn, instrumentation must support a 95% 
confidence level that the following variables remain within their allowed values (as 
specified in the Driving Instructions): 

° SV speed and deceleration rate. 

° Lateral position of the SV relative to the lane in road coordinates. 

°	 SV brake pedal application. The pedal can be applied only once during the 
test and, once applied, must be held steady until the vehicle comes to a stop. 

5.7.7	 Test N-7: Slow Cars in Adjacent Lane at a Curve (Wet 
Pavement) 

5.7.7.1 Test Overview and Purpose 

This test determines the sensitivity of an FCW system to slower moving traffic in 
adjacent lanes. The test is difficult because, before the SV enters the curve, the slower 
vehicles in the adjacent lane are already directly ahead of the SV. The wet pavement 
makes it more difficult for some systems to properly handle this situation. 
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The countermeasure should not produce alerts as the SV approaches and then passes the 
traffic in the adjacent lane. 

5.7.7.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Select a track that is at least two lanes wide and that includes a straight segment that 
transitions to a curve. The curve should have a curvature and superelevation consistent 
with the AASHTO Policy on Geometric Design of Highways and Streets. The preferred 
radius of curvature in the curve is the 15th percentile for curves on public roads. Current 
engineering judgment suggests this radius of curvature should be appropriate for a design 
speed of 50 km/h to 70 km/h. According to AASHTO guidelines, this corresponds to 
radius of curvature values from 100 m (for 50 kph with 4% superelevation) to a curvature 
of 2000 m (for 70 kph with no superelevation). For additional details on the relationship 
between design speed, superelevation, and radius of curvature, see Tables III-7 to III-11 
of the AASHTO Policy on Geometric Design of Highways and Streets (1994). 

There should be a straight segment leading into the curve that is at least 200 m long. The 
straight segment should have a crown, curvature, and superelevation consistent with a 
straight, flat road. 

The road surface should be wet. The standard lane marking condition ¬ ƒgood quality 
painted lane markings≈ ¬ should be used (see Definitions section). 

Survey the road to determine the actual minimum radius of curvature and superelevation 
of the curve. The actual minimum radius of curvature in the turn will determine the 
speed at which the SV is driven around the curve. Determine the design speed for the 
measured combination of minimum radius of curvature and superelevation. 

Traffic 

Several midsize passenger vehicles should be used. 

5.7.7.3 Environmental Conditions Requirements 

Use standard conditions per Section 5.3.3.2. 
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5.7.7.4 Instrumentation Requirements 

As the SV travels toward and through the curve, instrumentation must support a 95% 
confidence level that the following variables remain within their allowed values (as 
specified in the Driving Instructions): 

° SV and POV speeds. 

° Lateral position of the SV relative to the POVs, in road coordinates 

° Heading angle of the SV relative to the road. 

°	 SV brake pedal application (the pedal cannot be applied during testing, since 
this may disable the alerts for some FCW systems). 

5.7.7.5 Driving Instructions 

Drive a row of POVs around the track at half the design speed of the curve. Hold the 
speed within ê2 km/h of this speed. Maintain a lateral position within ê0.5 m of the 
center of the outer of the two lanes. Maintain a headway time of 1.5 s ê0.1 s between the 
POVs. 

Drive the SV at the design speed for the inner lane of the curve. Maintain a lateral 
position within ê0.5 m of the center of the inner of the two lanes. The distances between 
the POVs and SV should be timed so that the SV approaches the curve while the POVs 
are on the part of the curve that is directly ahead of the straight part of the track. 

The speeds and lateral positions of the POVs and SV should be maintained until the SV 
passes the POVs. Note whether any alerts are generated by the FCW system as it passes 
the slower traffic. 

5.7.7.6 Test Repetitions 

The following table indicates an estimated distribution of exposures to slow moving cars 
in adjacent lanes during a typical day of driving and the resulting number of exposures 
that should be used in the tests. If the test is run with a line of POVs then the number of 
exposures is calculated by multiplying the number of runs past the line of POVs by the 
number of POVs in the line. 

Distance from Alert Zone (meters) 0.0-0.5 0.5-1.0 1.0-1.5 
Average Exposure per Day 9 9 9 
Number of Exposures for Test N-7 189 189 189 

Table 5-14 Requirements for Exposure to Slow Cars in Adjacent Lane, Test N-7 
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5.7.7.7 Data Reporting and Analysis 

Data reported must demonstrate the validity of the test run. The reported measurements 
and analysis must demonstrate the following: 

° The road geometry met the requirements for the test. 

° The POVs maintained the required speed, lateral, and longitudinal positions. 

°	 The SV speed and lateral position was within the required limits from the time 
it came within 200 m of the curve until it passed the leading POV. 

If an alert occurs the data analysis and reporting must demonstrate whether it was caused 
by the slower moving vehicles and which one caused it. 

5.7.8 Test N-8: Trucks in Both Adjacent Lanes 

5.7.8.1 Test Overview and Purpose 

This test is used to determine the sensitivity of an FCW system to slower traffic that is at 
the same distance in both adjacent lanes. The test is difficult because the adjacent 
vehicles may be mistakenly interpreted as one vehicle directly ahead of the SV. 

The countermeasure should not produce alerts as the SV approaches and then passes 
between the traffic in the adjacent lanes. 

5.7.8.2 Track and Prop Setup 

Roadway Geometry and Conditions 

Select a flat, straight, track that is at least three lanes wide and 0.5 km long. The 
horizontal curvature, vertical curvature, superelevation, and crown of the track should 
meet the definition of a straight, flat road. 

Principal other vehicles 

The POVs should be two large trucks (Section 5.3.1.2 characterizes large trucks). 

5.7.8.3 Environmental Conditions Requirements 

Use standard conditions per Section 5.3.3.2. 
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5.7.8.4 Instrumentation Requirements 

As the SV travels toward and passes between the trucks, the instrumentation must support 
a 95% confidence level that the following variables remain within their allowed values 
(as specified in the Driving Instructions): 

° SV and POV speeds 

° Lateral position of the SV relative to the POVs, in road coordinates 

° Heading angle of the SV relative to the road 

°	 SV brake pedal application (the pedal cannot be applied during testing, since this may 
disable the alerts for some FCW systems). 

5.7.8.5 Driving Instructions 

Drive the trucks at 60 km/h so that they are aligned with the center of the lanes adjacent 
to the lane the SV will use. Maintain the lateral positions within ê0.5 m of the center of 
each lane. Maintain the speeds so that they are within ê2 km/h of 60 km/h and within ê1 
km/h of each other. Maintain the longitudinal positions of the trucks so their rear ends 
are within 0.5 m of each other. 

Begin with the SV at least 200 m behind the trucks traveling at 120 km/h. Align the 
center of the SV with the center of the center lane. Maintain the lateral position of the SV 
within ê0.5 m of the center of its lane. Maintain the speed of the SV within ê2 km/h of 
120 km/h as it approaches and then passes between the trucks. 

Note whether any alerts are generated by the FCW system as it passes the slower traffic. 

5.7.8.6 Test Repetitions 

The following table indicates an estimated distribution of exposures to the scenario 
during a typical day of driving and the resulting number of exposures that should be used 
in the tests. 

Distance from Alert Zone (Meters) 0.0-0.5 0.5-1.0 1.0-1.5 
Average Exposure per Day 1 1 1 
Number of Exposures for Test N-8 21 21 21 

Table 5-15 Requirements for Exposure to Trucks in Adjacent Lanes, Test N-8 
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5.7.8.7 Data Reporting and Analysis 

Data reported must demonstrate the validity of the test run. The reported measurements 
and analysis must demonstrate the following: 

° The road geometry met the requirements for the test. 

° The POVs maintained the required speed, lateral, and longitudinal positions. 

°	 The SV speed and lateral position was within the required limits, from the 
time it came within 200 m of the POVs until it passed between them. 

If an alert occurs, the data analysis and reporting must demonstrate whether it was caused 
by the slower moving vehicles. 

5.7.9	 Test N-9: Slow Cars in Adjacent Lane at a Curve (Poor 
Lane Markings) 

5.7.9.1 Test Overview and Purpose 

This test is used to determine the sensitivity of an FCW system to slower moving traffic 
in adjacent lanes. The test is difficult because, before the SV enters the curve, the slower 
vehicles in the adjacent lane are already directly ahead of the SV. The poor quality lane 
markings make it more difficult for some systems to properly handle this situation. This 
test is identical to Test N-7 except that (1) the pavement should be dry for this test, and 
(2) ƒpoor quality painted lane markings≈ should be used (as described in the Definitions 
section). All other requirements and instructions are the same as Test N-7. Note that 
good quality lane markings can be made into poor quality lane markings (as defined in 
this chapter) by obscuring the lane markings, for example, by putting sand onto the 
surfaces. 

5.7.9.2 Test Repetitions 

The following table indicates an estimated distribution of exposures to the scenario 
during a typical day of driving and the resulting number of exposures that should be used 
in the tests. 

Distance from Alert Zone (meters) 0.0-0.5 0.5-1.0 1.0-1.5 
Average Exposure per Day 3 3 3 
Number of Exposures for Test N-9 63 63 63 

Table 5-16 Requirements for Exposure to Roadside Objects, Test N-9 
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5.8 Requirements Coverage Analysis 
The purpose of the objective test methodology is to create a set of vehicle-level tests that 
evaluate whether or not a FCW system complies with the minimum functional 
requirements of Chapter 4. The only driver-vehicle interface requirements addressed by 
these tests involve crash alert onset timing (as stated in Sections 5.1 and 5.3). This 
section presents a chart that shows that all other requirements are all addressed by the 
proposed tests procedures. 

Down the left column of Table 5-17 on the following page are the indices of the 
minimum functional and performance requirements that are taken from the requirements 
summary of Chapter 4, Section 7. Across the top of the table are the test numbers. The 
shaded boxes indicate which test procedures address each requirement. The driver-vehicle 
interface requirements not addressed in these tests are Requirements 1 and Requirements 
3 through 12. These are not included on the chart. 

The table shows that the test procedures address all of the intended functional 
requirements. 

5.9 Summary 
This chapter presents a set of objective test procedures that describe vehicle-level testing 
activities to evaluate the compliance of a FCW countermeasure with the minimum 
functional requirements developed in Chapter 4. Seventeen crash alert tests and nine out-
of-path nuisances alert tests are described. The chapter reviews instrumentation 
requirements, track and prop set-up instructions, driving maneuver requirements, and data 
recording requirements. A coverage analysis shows the mapping from individual tests to 
the functional requirements in Chapter 4. 

This test methodology is designed to provide repeatable countermeasure evaluations, and 
the sensitivity of results to the test site (proving ground) is minimized in the design. Test 
execution is estimated to require two to four weeks, not including initial prop fabrication, 
set-up, and surveying of test sites. Possible users of the tests may include vehicle 
manufacturers, countermeasure suppliers, government organizations, and independent 
institutions. 

The following chapter, Chapter 6, covers the data analysis required to evaluate test data, 
as well as requirements for reporting on the tests. Chapter 7 describes an extensive set of 
activities undertaken to evaluate and validate the test methodology. This exercise 
resulted in changes to some important test design parameters and requirements. 
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Table 5-17 Functional Requirements and Associated Tests

C-, Crash Alert Test number N-, Nuisance Alert Test numberRquire-

ment 1 7 0 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

65432 198
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6	 DATA ANALYSIS AND REPORTINGý
REQUIREMENTS FOR THE OBJECTIVE TESTý
METHODOLOGYý

6.1ý Introductioný
A set of objective test procedures was proposed in Chapter 5 to evaluate the compliance of a 
Forward Collision Warning (FCW) system with the minimum functional requirements from 
Chapter 4. The vehicle-level test procedures include a detailed description of data collection 
requirements to support this testing. In this chapter, a set of requirements for data analysis is 
presented to support the test procedures. This analysis results in a pass/fail outcome for the FCW 
system. 

6.2	 Approach to Evaluating Countermeasureý
Performanceý

Section 6.2.1 summarizes key FCW system functional requirements in the context of evaluating 
test data. Section 6.2.2 describes the approach to using the outcomes of individual test trials to 
assess whether the countermeasure passes or fails the testing. 

6.2.1 Minimal Functional Requirements 

A set of minimum functional requirements for forward collision warning (FCW) systems are 
developed in Chapter 4. These requirements and corresponding tests may be partitioned into four 
groups: 

°	 Driver-vehicle interface issues (How and when should an alert be presented to a 
driver?) 

° Required crash alerts (When must an alert occur?) 

°	 Out-of-path nuisance alerts (Alerts should not be triggered by objects outside the 
vehicle’s path) 

°	 In-path nuisance alerts (Alerts should not be triggered by vehicles in the Alert Zone 
unless the relative longitudinal motion would be considered alarming by drivers) 

Driver-vehicle interface requirements include alert onset timing, alert modality, and other driver 
interface issues. The alert onset timing requirements are tested in the crash alert tests. Other 
driver-vehicle interface issues are not part of the test procedures. See Chapter 5, Section 2 for 
further discussion of the rationale for this approach. 

The remainder of this section reviews the FCW system requirements associated with crash alerts, 
out-of-path nuisances, and in-path nuisances, from the perspective of using test measurements to 
assess a countermeasure’s compliance with the functional requirements. 
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6.2.2 Evaluating Countermeasure Performance Using Test Results 

A countermeasure passes the entire set of objective tests only if it passes each of three evaluation 
segments – crash alert tests, out-of-path nuisance alert tests, and in-path nuisance alert tests. If the 
results of one or more of these segments are not satisfactory, the countermeasure fails the entire set 
of tests. 

Testing consists of executing several trials of each test scenario. For each individual test trial, the 
result is a pass/fail for one or more of the three evaluation segments. For crash alert test trials, the 
results are pass/fail for crash alerts (not too late/ too late) and for in-path nuisance alerts (not too 
early/ too early). For out-of-path nuisance alert test trials, the result is pass/fail for out-of-path 
alerts. 

The following subsections describe briefly how each of the three segments use results of individual 
test trials to determine pass/fail outcomes. Obtaining results for a single test trial is discussed later, 
in Section 6.3 (crash alert tests) and Section 6.4 (out-of-path nuisance alert tests), and is also 
covered in each test procedure description (Chapter 5). 

6.2.2.1 Pass/Fail Criteria for Crash Alert Test Segment 

The crash alert test portion of the test procedures presents the countermeasure with 17 situations 
that should produce alerts in accordance with minimum functional requirements. 

Successful countermeasure performance in the crash alert test portion requires that, for each of the 
five trials performed for each of the seventeen test scenarios, the onset of the crash alert should 
never be late. If the crash alert onset is late for one trial, fifteen more trials of that test must be run 
with no incident of late crash alerts, or the countermeasure fails the entire crash alert segment of 
the testing. If the crash alert onset is late for two trials, thirty more trials are required with no late 
crash alerts, and so forth. 

These requirements are proposed because it is assumed that drivers will expect the FCW system 
will provide them with adequate braking distance (for good traction conditions). 

Data collected during crash alert testing is also used for in-path nuisance alert evaluation, which is 
discussed next. 

6.2.2.2 Pass/Fail Criteria for In-Path Nuisance Alert Segment 

The data from all crash alert test trials is used to evaluate compliance with the in-path nuisance 
alert requirements. 

In-path nuisance alerts are crash alerts that are triggered by vehicles inside the Alert Zone and that 
occur in situations drivers do not consider alarming. A suggested requirement from Chapter 4 on 
the frequency of in-path nuisance alerts is: less than one in-path nuisance alert per “week.” (That 
is, for a driving duration and exposure to traffic patterns representative of an “average” U.S. driver 
during a week). 
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The results of testing must be mapped to the requirement “fewer than one alert per week” in some 
manner. If the expected exposure to each test scenario during the theoretical representative driving 
week was known, then the number of in-path nuisances observed during testing could be scaled to 
give an expected in-path nuisance rate. This could then be compared to the requirement of less 
than one alert per week. 

Unfortunately, the expected exposure to crash alert test scenarios is presently unknown. Instead, 
an estimate of the proper scaling and threshold parameters is shown later (Section 6.3.1.2). The 
result has the same form as the ideal method of mapping -- the occurrences of in-path nuisances 
are weighted by test scenarios and summed together. If the sum is less than a threshold, the system 
passes the in-path nuisance segment of testing. If not, it fails the in-path nuisance evaluation, and 
hence, the entire set of tests. 

6.2.2.3 Pass/Fail Criteria for Out-of-Path Nuisance Alert Testing Segment 

The out-of-path nuisance alert test procedures present the countermeasure with a set of situations 
representative of commonly occurring driving experiences in which objects or vehicles outside the 
Alert Zone may trigger out-of-path nuisance alerts. 

Chapter 4 states that a very small number of out-of-path nuisance alerts are allowed. The 
requirement in the chapter is: less than one out-of-path nuisance alert per “week” (that is, for a 
driving pattern and duration equal to the average driving of a U.S. driver during a week), under 
representative conditions. Horowitz (1986) estimates the average U.S. driver covers 201 miles per 
week. 

Mapping of the out-of-path nuisance alert test trial, results to the requirement “fewer than one alert 
per week” is done. Compared with the in-path nuisance evaluation, however, two steps toward 
better mapping have been made. First, the number of repetitions necessary to establish confidence 
has been estimated based on a pilot experimental study by CAMP (Appendix E). Second, the out-
of-path objects are placed at various lateral distances from the Alert Zone to create a distribution of 
events. These distributions are described in Section 6.4.1.3 (also see Chapter 5). 

With this mapping approach, a confidence of satisfactory performance for out-of-path nuisance 
alerts requires the system to produce no more than three crash alerts when the FCW equipped 
vehicle is exposed to three times the number of exposures expected in a week. 

6.3 Crash Alert Tests – Data Analysis and Reporting 
Chapter 5 describes 17 crash alert test scenarios. These are each repeated five times, and possibly 
more (see Chapter 5, Crash alert test repetition requirements). 

This section describes general data reporting and analysis requirements, such as calibration issues 
and data processing issues that apply across most (if not all) crash alert tests. Next, each of the 
crash alert tests is addressed and any additional data reporting or analysis requirements are given. 
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6.3.1 Data Analysis and Reporting – General Requirements 

Some data reporting and analysis requirements apply across many crash alert tests. This includes 
generic issues such as calibration requirements as well as detailed requirements on data reporting 
and analyses that apply across tests. Section 6.3.1.1 below describes general requirements for 
documenting “test validity,” that is, reporting data and calculations to show test trials meet the 
specifications given in the procedures of Chapter 5. That section also levies requirements for 
documenting test execution. The third subsection below, Section 6.3.1.2, describes general 
requirements for reporting countermeasure performance metrics for individual crash alert test 
trials. 

For each crash alert test, additional requirements appear later in Section 6.3.2. 

6.3.1.1 Test Validity Analysis 

Test validity analysis refers to the measurements and computations necessary to show that a test 
trial is valid, i.e., meets the requirements described in Chapter 5. 

Calibration Documentation 

Users of the test procedures should document compliance with all accuracy requirements given in 
the detailed test procedures of Chapter 5. Those requirements address the accuracy values of 
significant measurements, estimates, and controlled variables. The documentation of test results 
should describe calibrations and computations needed to show that the requirements are satisfied. 

The list of uncertainties that need to be quantified will depend on the specific implementation of 
the test procedures. 

Environmental Conditions Documentation 

For each crash alert test, Chapter 5 specifies allowable values of various parameters describing 
ambient conditions. The user of the test procedures is responsible for gathering necessary 
measurements to verify that these conditions are met during the running of each trial. 
Documentation of these conditions for each test trial is required. 

Vehicles, Props, and Test Site Documentation 

Information on the vehicles and props involved in testing, as well as information on the test site 
itself, should be documented for each test design. Here some necessary information is listed and 
described. 

Test Site – Requirements for the test site are given for each test in Chapter 5. The requirements 
are given in terms of a set of independent variables, which are defined in the Definitions section of 
that chapter. To show that the testing sites comply with these requirements, the user should 
describe the methods of measuring or determining the values of appropriate test site parameters. 
The user should also show that the resulting accuracy values support the determination that the test 
site characteristics are acceptable. 
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The following variables should be reported for each test site. The detailed procedures in Chapter 5 
provide requirements for the ranges for each variable. 

° Test site location 

° Horizontal curvature 

° Vertical curvature 

°	 Descriptions of the type of lane markings present at the test site and the quality of the 
lane markings 

° Lane width and lane width variation 

° Roadway unevenness and superelevation parameters 

Test Execution Documentation 

Parameters Describing Vehicle Motions – Crash alert tests involve scripted maneuvers that are 
designed to trigger crash alerts in SVs equipped with countermeasure systems that satisfy the 
minimal functional requirements. For each crash alert test, Chapter 5 defines the maneuver, in part 
by describing allowable bounds on significant kinematics quantities, such as speeds, range, lateral 
position, and so forth. The required documentation associated with these specified motions is now 
described. 

For any variable describing SV and/or POV motion for which Chapter 5 provides allowable 
bounds, there should be documentation that the measurements indicate that the bounds are 
satisfied. For each variable, three items should be included: 

° The maximum deviation of the variable from the specification, 

° The uncertainty associated with the measurement and/or estimation of the variable. 

°	 Analysis that shows the variable was kept within the bounds given in Chapter 5 with a 
95% confidence level. 

For instance, if the SV speed is specified to be a constant 26.8 m/sec, with an allowable tolerance 
on either side of 0.67 m/sec, the documentation should report the maximum deviation from 26.8 
m/sec, the estimated uncertainty in measuring SV speed (with justification), and a demonstration 
that the maximum deviation was less than 0.67 m/sec, with 95% probability. 

Braking or Evasive Maneuvers – For each test run, one of the following questions must be 
answered in the positive, and documented, in order for the trial to apply: 

° Does the required crash alert occur before the brake switch is triggered on the SV? or 

°	 Does the range from the SV to the primary POV fall to less than 90% of the minimum 
range allowed for the onset of the crash alert before the brake switch is triggered on the 
SV (and before any other evasive action is taken by the driver of the SV)? 

It is important to continue the driving maneuvers until one of the two situations above are attained, 
since countermeasures may use a variety of clues to help infer driver intentions. 
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6.3.1.2 Countermeasure Performance Analysis 

Metrics to Report for Crash Alert Tests 

For individual crash alert trials, the following items should be reported. In each case, the method 
of measurement and estimation should be documented. 

° Estimated range from the SV to the POV at the time of alert onset. 

°	 Estimated minimum required range at onset of alert. (See Chapter 4, Section 2 or 
Appendix B for instructions on computing this variable.) 

° Difference between the range at alert onset and the minimum required warning range. 

° Uncertainty in this difference. 

°	 Estimated maximum allowed range at alert onset (to evaluate in-path nuisance alert 
events). See Chapter 4, Section 2 or Appendix B for discussion of this variable. 

°	 Difference between the maximum allowed warning range and the actual range at onset 
of alert. 

° Uncertainty in this difference. 

It is also important to know the lateral position of the POV when the crash alerts are first presented 
to the driver, so that the compliance of the alerts with requirements can be determined. The 
following items should be reported: 

°	 Estimated lateral distance between the nearest points on the POV and the SV, when the 
alert begins. Lateral distance is the difference in lateral positions, and lateral positions 
are measured with respect to the travel lane. Along with the quantities in the previous 
subsection, the lateral distance helps to determine whether an alert is required, allowed, 
or not allowed (Chapter 4, Section 3). 

°	 Uncertainty in the above value (including effects of possible errors in knowing when 
the alert occurred, etc.). 

Pass/Fail for Individual Crash Alert Test Trials 

The metrics above should be used to locate the POV at the time of alert onset, and therefore allow 
the user to determine whether the crash alert onset met the requirements of Chapter 4. (The figure 
in Chapter 4, Section 3 illustrate a method of classifying a crash alert based on the POV location at 
the time of alert onset.) If the alert begins while the POV is in the “allowed” region of the figure 
in Chapter 4 (Region 4), the countermeasure passes the test trial. For all other results, the 
countermeasure fails the test trial. 

Crash Alert Test C-11 may be passed another way.  The test involves a SV approaching a stopped 
POV in poor visibility conditions. As described, a countermeasure passes this test if either the 
alert occurs at appropriate ranges or the countermeasure indicates to the driver that it cannot 
operate to its full function in the visibility conditions. 



6-11 

Pass/Fail Criteria for Individual In-Path Nuisance Alert Trials 

Crash alert test trial results are examined, using the metrics above, to locate the POV at the time of 
alert onset and determine whether a crash alert onset is considered to be “too early,” that is, a in-
path nuisance alert. The “too early” cutoff is described in Chapter 4, Section 2. Appendix B gives 
detailed instructions to compute the cutoff. If the alert is an in-path nuisance alert, this is included 
in a weighted sum of such instances, as described in the following subsection. If the weighted sum 
exceeds a threshold value, the FCW system fails the in-path nuisance alert segment of testing, and 
therefore fails overall. 

The following subsection develops the weights and thresholds used to combine results of 
individual test trials to decide whether the FCW system passes this segment of testing evaluation. 

Pass/Fail for the In-Path Nuisance Alert Segment Using Individual Test Trial Results 

This section describes the details of combining results of in-path nuisance alert occurrences seen 
during testing to determine whether the countermeasure passes or fails the in-path nuisance 
segment. Section 6.2.2.2 explains that the approach described here uses a preliminary estimate of 
the exposure to situations similar to the crash alert test. Thus in-path nuisance alerts seen during 
testing can be “mapped” to expected rates during a hypothetical average drive. 

There are 17 crash alert tests described in Chapter 5. For each trial, there is no distinction made 
between alerts that are very early and alerts that are slightly early. For the ith crash alert test, let 
pi  denote the proportion of trials in which the crash alert is considered to be an in-path nuisance. 

Let wi  be a scalar weighting associated with the ith test. Let the weighted sum of in-path nuisance 

occurrences in all tests be a metric of the countermeasure’s performance in the in-path nuisance 
segment of the tests. The countermeasure is considered to pass if the weighted sum does not 
exceed a threshold TIPNA : 

If ∑ wi pi ≤ TIPNA , the countermeasure passes in-path nuisance segment. 
i 

The choices of weights and threshold are now described. Ideally, weights assigned to the crash 
alert tests would be based on the relative exposure of drivers to the different test situations. In the 
absence of comprehensive data on driver braking behavior, weights are chosen by estimating the 
relative exposures of drivers to the testing situations. This is done using engineering judgment and 
the logic that follows. Weights are assigned to the crash alert tests based on (1) initial closing 
speeds, (2) POV braking severity, (3) presence or absence of lateral maneuvering. Weights do not 
consider roadway geometry and POV type since these parameters affect sensing and sensory 
interpretation performance, and in-path nuisance alerts involve alert timing. 

To begin, a weight is assigned to each test based on the closing speed at the beginning of the test. 
Initial closing speeds vary from 0 to 100 kph. Weights are chosen to decrease as closing speeds 
increase; this is based on an assumption that the most common closing speed is zero, and as 
closing speeds increase, the probability that a driver is exposed to the closing speed decreases. 
The following table shows relative weights assigned to ranges of initial closing speeds. 
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Initial Closing 
Speed (kph) 

Weight 
Assigned 

0 – 25 

26-50 

51-75 

76-100 

100 

50 

20 

10 

Second, the weights are scaled by POV braking intensities, again based on an engineering sense of 
relative exposure to lead vehicle deceleration levels. The following scaling factors are used: 

POV Braking 
Level 

Scaling Factor 

0.0 to –0.1g 

-0.11g to –0.30g 

-0.31g to –0.50g 

1 

0.30 

0.05 

Third, the weights are reduced for tests with lateral maneuvers, based on the simple assumption 
that crash alerts are more likely to happen when neither vehicle is changing lanes. 

Lateral Maneuver 
Occurs? 

Scaling Factor 

No lateral maneuvers 

SV lane change 

POV cut-in 

1.0 

0.3 

0.3 

Table 6-1 shows the resulting weights to use for each test scenario. 

Given the proportion of tests in which the crash alert tests produced an in-path nuisance alert, the 
system’s performance is compared to a threshold, TIPNA

, as described earlier. The threshold is 
chosen here as follows. Assume, based only on engineering judgment, that “representative 
driving” for the U.S. (201 miles, Horiwitz) involves 10 incidents per week in which a driver 
approaches a situation in which a crash alert may be triggered. The requirements of Chapter 4 
propose that in-path nuisance alerts should not occur more than once per week, for the week of 
“representative driving.” Thus, given the normalized weighting of the tests shown in the table 
below, only one tenth of these incidences can be allowed to produce an in-path nuisance alert. 
Therefore the threshold is chosen to be 1/10, or TIPNA = 0.10. 

The choice of threshold, as well as the weightings, would be improved through the use of real-
world data, such as that collected in the ICC Field Operational Tests (see References). The data 
might be used to better infer exposures to the scenarios represented by the crash alert tests, as well 
as provide a basis for a better estimate of how often drivers approach the “too early” bound of the 
crash alert onset requirements of Chapter 4. 
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Table 6-1 Weighting the Results Of Crash Alert Tests To Evaluate In-Path Nuisance Alerts 

Test Test Name Scale Factor 
for Initial 

Closing Speed 

Scale Factor 
for POV 
Braking 

Scale Factor 
for Lateral 
Maneuvers 

Total 
Test 

Weight 

Normal
ized 

Weight 

C-1 100 kph to POV stopped in 
travel lane 

10 1 1 10 0.0266 

C-2 80 kph to POV at 16 kph 20 1 1 20 0.0532 

C-3 100 kph to POV braking 
moderately  hard from 100 
kph 

100 0.05 1 5 0.0133 

C-4 100 kph to POV stopped 
under overhead sign 

10 1 1 10 0.0266 

C-5 100 kph to slowed or 
stopped motorcycle 

10 1 1 10 0.0266 

C-6 SV to POV stopped in 
transition to curve 

20 1 1 20 0.0532 

C-7 SV to POV stopped in a 
curve 

10 1 1 10 0.0266 

C-8 SV to slower POV, in tight 
curve 

50 1 1 50 0.1330 

C-9 POV at 67 kph cuts in front 
of 100 kph SV 

50 1 0.3 15 0.0399 

C-10 SV at 72 kph changes lanes 
and encounters parked POV 

20 1 0.3 6 0.0160 

C-11 100 kph to stopped POV, 
with fog. 

10 1 1 10 0.0266 

C-12 POV brakes while SV 
tailgates at 100 kph. 

100 0.3 1 30 0.0798 

C-13 100 kph to 32 kph 
motorcycle between two 
trucks 

20 1 1 20 0.0532 

C-14 100 kph to 32 kph 
motorcycle behind a truck 

20 1 1 20 0.0532 

C-15 100 kph to 32 kph Truck 20 1 1 20 0.0532 

C-16 SV to POV stopped in 
transition to curve (poor 
lane markings) 

20 1 1 20 0.0532 

C-17 24 kph SV to stopped POV 100 1 1 100 0.2660 

Sums: 376 1.00 
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6.3.2 Data Analysis and Reporting for Specific Crash Alert Tests 

Unless otherwise specified, the quantities specified above in Section 6.3.1 should all be 
documented. Some tests require additional measurement and reporting; this section describes 
these unique requirements. 

Refer to Chapter 5 for descriptions of the test procedures and objectives for these tests. 

6.3.2.1 Test C-1: 100 kph to POV Stopped in Travel Lane 

Additional Requirements to Demonstrate Test Validity 

Stationary POV Location and Orientation – This test involves a stationary POV. The user is 
responsible for demonstrating that the POV location and orientation meets the requirement given 
in Chapter 5, under Crash Alert Test General Requirements. 

Countermeasure Performance Evaluation 

Only those requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.2 Test C-2: 80 kph to POV at 16 kph 

Additional Requirements to Demonstrate Test Validity 

None. 

Countermeasure Performance Evaluation 

Only those requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.3 Test C-3: 100 kph to POV Braking Moderately Hard From 100 kph 

Additional Requirements to Demonstrate Test Validity 

None. 

Countermeasure Performance Evaluation 

Only those requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.4 Test C-4: 100 kph to POV Stopped Under Overhead Sign 

Additional Requirements to Demonstrate Test Validity 

Overhead Sign – The overhead sign should be constructed and hung as defined in Chapter 5 (see 
in the Nuisance Alert sections); documentation should provide support for a statement that the 
overhead sign meets specifications. 
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Stationary POV Location and Orientation – This test involves a stationary POV. The user is 
responsible for demonstrating that the POV location and orientation meets the requirement given 
in Chapter 5, under Crash Alert Test General Requirements. 

Countermeasure Performance Evaluation 

Only those requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.5 Test C-5: 100 kph to Slowed or Stopped Motorcycle 

Additional Requirements to Demonstrate Test Validity 

Motorcycle -- The motorcycle should be as defined in Chapter 5. 

Stationary POV Location and Orientation – This test involves a stationary POV. The user is 
responsible for demonstrating that the POV location and orientation meets the requirement given 
in Chapter 5, under Crash Alert Test General Requirements. 

Countermeasure Performance Evaluation 

Only those requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.6 Test C-6: SV to POV Parked in Transition to a Curve 

Additional Requirements to Demonstrate Test Validity 

Longitudinal Location of Vehicles – The longitudinal position of each vehicle should be 
recorded. Document the method used to locate the transition from the straight road segment to the 
curve. 

Wet Pavement – Document whether the pavement is wet due to rain or artificial wetting of the 
road. 

Countermeasure Performance Evaluation 

Only those requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.7 Test C-7: SV to POV Parked on a Curve, No Lane Markings 

Additional Requirements to Demonstrate Test Validity 

Stationary POV Location and Orientation – This test involves a stationary POV. The user is 
responsible for demonstrating that the POV location and orientation meets the requirement given 
in Chapter 5, under Crash Alert Test General Requirements. 

No Lane Markings – The user should document that the test is executed on a roadway that meets 
the requirement of a site with “no lane markings.” (See Chapter 5, Definitions.) 
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Countermeasure Performance Evaluation 

Only those requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.8 Test C-8: SV to Slower-Moving POV, in Tight Curve 

Additional Requirements to Demonstrate Test Validity 

None. 

Countermeasure Performance Evaluation 

Only those requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.9 Test C-9: POV at 67 kph Cuts in Front of 100 kph SV 

Additional Requirements to Demonstrate Test Validity 

None. 

Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.10 Test C-10: SV at 72 kph Changes Lanes and Encounters Parked POV 

Additional Requirements to Demonstrate Test Validity 

Stationary POV Location and Orientation – This test involves a stationary POV. The user is 
responsible for demonstrating that the POV location and orientation meets the requirement given 
in Chapter 5, under Crash alert Test General Requirements. 

Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.11 Test C-11: 100 kph to Stopped POV, With Fog 

Additional Requirements to Demonstrate Test Validity 

Stationary POV Location and Orientation – This test involves a stationary POV. The user is 
responsible for demonstrating that the POV location and orientation meets the requirement given 
in Chapter 5, under Crash Alert Test General Requirements. 

Visibility – The user is responsible for demonstrating that the atmospheric visibility at the time of 
the tests meets the requirements given for this test in Chapter 5. 
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Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. In 
addition, the driver of the SV should observe whether the countermeasure indicates to the driver 
that the system cannot function at full functionality. 

6.3.2.12 Test C-12: POV Brakes While SV Tailgates at 100 kph 

Additional Requirements to Demonstrate Test Validity 

None. 

Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.13 Test C-13: Greater Size and Equal Distance 

Additional Requirements to Demonstrate Test Validity 

Motorcycle – The motorcycle should satisfy the requirements levied on motorcycles used in 
testing, per Chapter 5. Evidence that the motorcycle meets specifications should be included in the 
test documentation. 

Trucks – Both trucks must meet the specifications of trucks to be used in the testing, per Chapter 
5. Evidence that the trucks meet specifications should be included in the documentation. 

Vehicle Longitudinal Locations – For this test Chapter 5 requires that the distance along the 
direction of travel between the rear of the three POVs should not exceed a specified amount. The 
testing organization should document support for an argument that the actual distances fall within 
that bound. 

Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.14 Test C-14: Greater Size and Greater Distance 

Additional Requirements to Demonstrate Test Validity 

Motorcycle – The motorcycle should satisfy the requirements levied on motorcycles used in 
testing, per Chapter 5. Support that the motorcycle meets specifications should be included in the 
test documentation. 

Trucks –Both trucks should meet the specifications of trucks to be used in the testing, per Chapter 
5. Support that the trucks meet specifications should be included in the documentation. 

Vehicle Longitudinal Locations – The maximum and minimum values for the estimated range 
between the motorcycle and the truck should be reported. Chapter 5 provides an allowable set of 
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values that range can take on. The testing organization should document support for an argument 
that the actual range falls within that bound. 

Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.15 Test C-15: 100 kph to 32 kph Truck 

Additional Requirements to Demonstrate Test Validity 

Truck – The truck should meet the specifications on trucks to be used in the testing, per Chapter 5. 
Support that the truck meets specifications should be included in test documentation. 

Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.16	 Test C-16: SV to POV Parked in Transition to a Curve, Poor Quality 
Painted Lane Markings 

Additional Requirements to Demonstrate Test Validity 

Longitudinal Location of Vehicles – The longitudinal position of each vehicle should be 
recorded. Document the method used to locate the transition from the straight road segment to the 
curve. 

Painted Lane Markings of Poor Quality – The user should document the method used to 
determine whether the test roadway meets the requirements of a roadway with poor quality lane 
markings. Appropriate measurements and computations should be recorded and documented. 

Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 

6.3.2.17 Test C-17: 24 kph to Stopped POV 

Additional Requirements to Demonstrate Test Validity 

Stationary POV Location and Orientation – This test involves a stationary POV. The user is 
responsible for demonstrating that the POV location and orientation meets the requirement given 
in Chapter 5, under Crash Alert Test General Requirements. 

Countermeasure Performance Evaluation 

Requirements that apply to all crash alert tests (Section 6.3.1.2) are needed for this test. 
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6.4 Out-of-Path Nuisance Tests – Data Analysis and 
Reporting 

Out-of-path nuisance-alert tests are used to evaluate the countermeasure's compliance to the limits 
on alerts caused by objects that are not in the Alert Zone. Chapter 5 described nine out-of-path 
nuisance-alert tests. The data analysis and reporting requirements described here include 
documentation to show that each test was run properly and documentation and analysis to 
demonstrate that the number of alerts were within the required limits. Some of the data analysis 
and reporting requirements apply to all of the tests while others are test specific. Section 6.4.1 
covers the requirements that apply to all of the out-of-path nuisance-alert tests. 

6.4.1 Data Analysis and Reporting – General Requirements 

6.4.1.1 Test Validity Analysis 

Calibration Documentation 

Users of the test procedures must show that the quantities listed below meet the specifications 
given Chapter 5. Documentation should include the calibration procedures used, calibration 
results, and methods used to estimate the uncertainty for each of the following measurements: 

° Uncertainty of lateral and longitudinal position of each stationary prop. 

°	 Uncertainty of SV lateral position relative to each stationary prop as the SV drives 
through the test scene. 

° Uncertainty of the SV speed as the SV drives through the test scene. 

°	 Uncertainty of lateral position of moving POVs relative to the SV while the SV drives 
through the test scene. 

° Uncertainty in the time of any alerts that are generated. 

Principal Other Vehicles Documentation 

Chapter 5 includes requirements for the types of vehicles that are used as the POVs. The make and 
model of each vehicle should be documented. Any options or configuration alternatives that could 
enhance or degrade the ability of a FCW system to sense the vehicles should be documented. 

Documentation of Props 

Chapter 5 includes requirements for the props that are used during the testing.  The make and 
model of each purchased prop shall be recorded. The materials and dimensions of each prop that 
is constructed shall be documented. The vertical and horizontal displacement of props relative to 
the lanes of travel, including their position relative to any required vertical or horizontal curves, 
shall be documented. 
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Test Site Documentation 

Chapter 5 includes requirements for the road surface characteristics. The road surface material and 
its roughness should be documented. The presence, location, and quality of painted lane markers 
or lane marking retroreflectors should also be documented. The individual tests also have limits 
on horizontal curvature, vertical curvature, and superelevation of the test track. The methods of 
measuring these characteristics and their values should be documented. 

Test Execution 

Each of the out-of-path nuisance-alert tests involves a scripted maneuver that causes the FCW 
equipped vehicle to approach an object that could, potentially, cause a nuisance alert. For each test 
scenario, Chapter 5 includes bounds on several significant kinematic quantities, such as speed and 
lateral position. The data analysis must include an analysis of the kinematic data, including an 
estimate of the measurement error, to demonstrate with a 0.95 level of significance that the 
maneuver was performed within the specified bounds. 

6.4.1.2 Countermeasure Performance Analysis 

The requirements in Chapter 4 state that a FCW system should produce less than one out-of-path 
nuisance alert per week when subjected to an average distribution of driving conditions. Chapter 5 
describes how to expose a FCW system to representative scenarios that could generate out-of-path 
nuisance alerts. Each scenario is run multiple times using a distribution of distances between the 
objects and the Alert Zone. A system passes the out-of-path nuisance alert test segment if the sum 
of the number of alerts produced during all the repetitions is below a threshold. 

This and the following sections explain how the required number of test repetitions and the 
distance distributions were derived. The number of repetitions is based upon three factors: 

•	 An estimate of the daily or weekly exposure of a FCW system to each out-of-path nuisance 
alert scenario. 

• An estimate of the distribution of distances of each type of object from the path of the SV. 

•	 A statistical analysis of the number of trial exposures needed to have adequate confidence that 
a FCW system satisfies the limits for out-of-path nuisance alerts. 

Several sources have been used to support estimates for the distribution of exposure rates. The 
research by Horowitz (1986) was used for the average miles driven in a week (201) and the 
average number of trips (27). 

The values for exposure per day are based upon the findings of a pilot study performed by CAMP 
in suburban Detroit. Details of the study methods and results are included in Appendix D. The 
results of the pilot study are considered to be very preliminary, and therefore, the values presented 
here are likely to change when additional data becomes available. 

The distribution of distances was derived by considering standard construction practices and using 
engineering judgements to translate these construction practices into reasonable distance 
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distributions. The roadway configurations recommended by AASHTO were used to derive lane 
widths, roadway markings, as well as distances between the traveled roadway and guardrails or 
concrete barriers. The MUTCD was used for requirements on the locations of signs, raised 
retroreflectors, and portable construction barriers. 

The statistical analysis for the required number of trials is presented in Section 6.4.1.3. Briefly, 
demonstration of satisfactory performance for alerts requires the system produce no more than 
three crash alerts when the FCW equipped vehicle is exposed to three times the number of 
exposures expected in a week. 

9 

3 ≥ I ≡ ∑ I k : k = N1 ... N9 Equation 6-1 

k = 1 

where: 

Ik is the number of crash alerts generated during the kth test, 

I is the total number of alerts generated during the tests 

6.4.1.3 Repetitions Needed for Out-of-Path Nuisance Alert Tests 

The following analysis derives the requirements for the number of repetitions for each of the out-
of-path nuisance alert tests. 

The analysis is based upon the following considerations. First, it is assumed to be important that 
the number of trials is not excessive, so that the tests are feasible to execute. The introduction to 
Chapter 5 suggested that four weeks (for all tests) is a practical testing period, therefore two-weeks 
is assumed to be a practical duration for out-of-path nuisance alert testing. 

Second, it is assumed that alerts are independent events. That is, whether an alert occurs in an 
encounter with one type of object is independent of the time since the last alert occurred or the 
presence of other objects. 

Third, the SV is presented with essentially the same set of conditions several times. The trial 
repetitions provide the data required to estimate the likelihood that an alert will be produced under 
those conditions. Sets of trials are conducted for each of several distances between the objects and 
the Alert Zone. Successful performance in the out-of-path nuisance alert tests is based on the 
performance for all valid trials of the tests. 

Suppose that the requirement for out-of-path nuisance alerts is that there be less than one alert in 
some time, Ti, of driving.  Suppose that the number of encounters with sources of out-of-path 
nuisance alerts in time Ti is Ni. Then the requirement corresponds to a limit of 1/Ni on the 
probability that an encounter will cause a crash alert. 
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Terminology 

A scenario is a general term that designates a combination of a driving pattern, a set of 
environmental conditions, and a set of objects or other vehicles that could cause a FCW system to 
produce an alert. Examples of scenarios include driving under a sign or approaching a stopped 
motorcycle. 

An incident, or encounter, is a specific instance of a scenario. For example, each time a vehicle 
drives under a sign is one incident. 

A trial, run or repetition is a specific experiment in which a vehicle equipped with a FCW system 
is driven toward one or more objects. A single trial can involve exposing the system to multiple 
incidents, such as driving past a row of slowly moving cars or over a series of road surface objects. 

A test involves performing one or more repetitions of a scenario. The repetitions may be done so 
that each repetition is as similar as possible to the other repetitions. Alternatively, the repetitions 
may be done with one or more independent variables changed, such as when each run is closer 
than the previous to some roadside object. 

A sample is the result of an experiment. An experiment may be one incident, one run, or one test. 

A sample space is the set of all possible outcomes of an experiment. In statistics an event is a 
subset of the sample space. If an experiment involves exposing a FCW system to three incidents 
then sample space is the set of all possible combinations of outcomes from the three incidents and 
an event may be any outcome in which the FCW satisfies the minimum requirements all three 
times. 

An exposure rate or exposure frequency is the number of times per day, week, or year that a FCW 
system is likely to experience a particular combination of conditions. For example, a system may 
be exposed to 500 roadside signs per week. Similarly, a system may be exposed to 20 cut-ins per 
week. 

Trial Repetition Analysis 

We want to conduct an experiment that will demonstrate whether or not a FCW system meets the 
requirements. So, an experiment will be conducted to estimate the frequencies of alerts. 

Let pi be the actual probability of an alert in one exposure. Let qi = 1 – pi be the probability that an 
encounter will not generate an alert. 

Let n be the number of trial exposures to sources of out-of-path nuisance alerts. Let xi be the 
number of alerts generated in n exposures. The probability of x alerts in n exposures, p(x) is a 
binomial distribution. For large n the binomial distribution can be approximated by the Poisson 
distribution with mean µ = np and variance σ2 = np. In addition, if np ≥ 5 and nq ≥ 5 then the 
binomial distribution can be approximated by a normal distribution with mean µ = np and variance 
σ2 = npq. However, since we want to minimize the number of trials, we hope that we can use n < 
5Ni, in which case the normal distribution approximation will not be very accurate. 
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The formula for the Poisson distribution is given by: 

α x 

× e − α 
Equation 6-2 

p ( x ) = 
x ! 

where 

α = np 

We will use the maximum likelihood estimator of pi which is x/n. The test specification will be 
that a system passes the test if xi/n ≤ 1/Ni. 

The question is to determine a value for n that adequately discriminates between systems that meet 
the requirements and those that do not. Figure 6-1 shows a set of operating characteristic curves 
for different values of n. 

Figure 6-1 Test Procedure Operating Characteristic Curves 
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The operating characteristic curves show the relationship between the true performance of a FCW 
system and its likelihood of passing the tests for different values of n. In Figure 6-1, the number of 
exposures is shown as an integer multiple of Ni. The tradeoff for selecting n involves examination 
of the likelihood that systems that exceed or do not meet the requirements by some amount will 
pass. It was decided to consider systems whose true nuisance alert rates are either half or twice the 
requirement. It is also informative to consider the likelihood of passing for a system whose 
performance is just at the limit for passing. 

Consider a test set where n=Ni. Then a system whose pi is 1/Ni will have a 74% chance of passing 
the test. Also, a system that has pi = 1/2Ni will have a 91% chance of passing and one that has pi = 
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2/Ni has a 40% chance of passing. As the number of exposures increases, the likelihood that a 
system will pass goes down if it has pi exactly at the limit or twice the limit. Also, as the n 
increases the likelihood that a system that has a pi that is half the limit will pass goes up. A value 
of n=3Ni would provide less than a 15% chance that a system with twice the acceptable nuisance 
alerts would pass. Also, if n=3Ni, there is an 89% chance that a system with half the acceptable 
nuisance alerts will pass. This was judged by CAMP to provide adequate discrimination between 
systems that meet and those that do not meet the nuisance-alert rate requirements. 

6.4.2	 Data Analysis and Reporting For Specific Out-Of-Path Nuisance 
Alert Tests 

6.4.2.1 Test N-1: Overhead Sign at Crest of Hill 

This procedure test the sensitivity of a FCW system to objects commonly found over the traffic 
lanes of roads. The test covers the difficult condition wherein a crest curve causes the overhead 
object to appear directly ahead of the SV. The test is conducted using an overhead sign, which is 
used to representative both signs and bridges commonly found over urban and rural roads. 

Additional Requirements to Demonstrate Test Validity 

The test involves selecting a driving speed that corresponds to the design speed for the vertical 
curvature of the hill. The profile of the hill and the minimum rate of vertical curvature (in meters 
per % change in grade) must be reported. 

The test should be run with the sign directly ahead of the SV and perpendicular to the grade of the 
hill before the crest. The report must include analysis of the orientation and position of the sign to 
show that the sign position and orientation satisfied this requirement when the tests were run. 

If an alert occurs, verify that the sign caused the alert by comparing the measured distance between 
the SV and the sign with the reported distance to the object that caused the alert. 

Countermeasure Performance Evaluation 

The following table indicates a hypothetical distribution of heights that should be used in the tests. 
The total exposure is based upon the pilot study's estimated exposure of 12 overhead signs and 16 
overhead traffic signals per day. 

The height distribution is based upon an assumption that sign heights are evenly distributed 
between the minimum bridge height recommended by the AASHTO guidelines and a height 1 m 
above the minimum. The AASHTO guidelines recommend a minimum clearance for underpasses 
of 4.4 m with 5.0 m indicated as more desirable. In addition some roadways, including freeways 
and arterial systems, are parts of systems or routes for which a minimum vertical clearance of 4.9 
m has been established for underpasses. The Manual on Uniform Traffic Control Devices 
(MUTCD) requires a minimum height of 17 feet (5.18m) unless the sign is placed on another 
lower structure such as a bridge. 
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The number of alerts generated during 21 days worth of exposure is IN-1 in equation 6-1. 

Sign height above road (meters) 4.4-4.65 4.65-4.9 4.9-5.15 5.15-5.4 

Average exposure per day 7 7 7 7 

6.4.2.2 Test N-2: Road Surface Objects on Flat Roads 

This test is used to determine the sensitivity of a FCW system to small objects that vehicles 
frequently drive over. The representative objects include lane-marking retro-reflectors, tire debris, 
beverage cans, and a piece of wood. The test is conducted on a straight section of track. 

Additional Requirements to Demonstrate Test Validity 

Report the manufacturer and model of the retroreflectors used in the test. 

Report whether the vehicle passed over each of the types of road surface objects. 

Countermeasure Performance Evaluation 

When retroreflectors are used on rural roads, the AASHTO guidelines suggest that they be placed 
at intervals that are twice the interval for broken line segments. The recommendation is that 
broken line segments consist of 10' segments and 30' gaps. Therefore, when retroreflectors are 
present on rural roads the recommended spacing is one every 80' (24.4 m). Horowitz (1986) 
reported an average driving distance of 201 miles/week (323 km/week). However, typically only a 
fraction of the distance traveled would have raised retroreflectors as lane markings. The pilot 
study found no retroreflectors on the route traveled. To provide a meaningful test, The following 
table assumes that approximately 5% of the distance traveled would have raised retroreflectors. 

The pilot study found no instances of debris in the through-traffic lanes of the route taken. To 
provide a meaningful test the frequency at which vehicles drive over debris such as beverage cans, 
pieces of wood, or pieces of tires is assumed to be less than once every other day (i.e., about once 
every 57 miles of travel). 

The following table indicates a hypothetical distribution for exposure to road surface objects that 
should be used in the tests. 

Road Surface 
Retroreflectors 

Debris 

Average Exposure Per Day 100 0.5 

The number of trial exposures for each type of object (retroreflectors or debris) is the number of 
each type of object on the course multiplied by the number of passes through the course. 

The number of alerts generated during 21 days worth of exposure is IN-2 in equation 6-1. 
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6.4.2.3 Test N-3: Grating at Bottom of Hill 

This test is used to determine the sensitivity of a FCW system to metal road surface objects, such 
as a grating, that vehicles frequently drive over. The test is conducted so that the visibility of the 
grating is increased by its location on a sag vertical curve. 

Additional Requirements to Demonstrate Test Validity 

Document the construction of the grating to demonstrate it meets the requirements set forth in 
Chapter 5. 

Countermeasure Performance Evaluation 

Although gratings and manhole covers are common, they are less commonly found in the center of 
a lane at the bottom of a hill. No such instances were found during the pilot study. The following 
table indicates a hypothetical distribution for the typical exposure of FCW systems, to gratings at 
the bottom of a hill. 

Grating at Bottom of Hill 

Average Exposure per Day 1 

The number of alerts generated during 21 days worth of exposure is IN-3 in equation 6-1. 

6.4.2.4 Test N-4: Guardrails and Concrete Barriers 

This test is used to determine the sensitivity of a FCW system to roadside barriers such as metal 
guardrails and concrete dividers. 

Additional Requirements to Demonstrate Test Validity 

Document the construction of the guardrails and Concrete Barriers to demonstrate that they 
conform to the requirements contained in Chapter 5. 

Countermeasure Performance Evaluation 

The following table indicates a hypothetical distribution for the typical exposure of FCW systems 
to guardrails and concrete barriers. The total exposure is based upon the pilot study, which 
suggests vehicles are exposed to 19 guardrails and 5 concrete barriers per day in the near vicinity 
to the lane they are traveling in. 

The distribution of distances from the Alert Zone is based upon an assumption that the distribution 
of barriers from the edge of a lane is evenly distributed from the minimum recommended by the 
AASHTO guidelines to the maximum that is 4 meters from the edge of the lane. The AASHTO 
guidelines suggest that barriers on highways be placed no closer to the roadway than the 
recommended shoulder width. On local roads and streets barriers may be as close as 0.5 m from 
the roadway. The minimum shoulder width in the median of highways is 1.2m on four lane 
highways with a minimum of 3.0 m on six lane highways. For the right hand shoulder the 
recommended minimum shoulder width for the lowest volume roadways is 0.6 m with a preferred 
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width of 1.2 to 2.4 m. For high-volume high-speed roadways the recommended minimum is 3.0 m 
with a preferred width of 3.6 m. 

Distance of Object from Alert Zone (meters) 0.5-1.5 1.5-2.5 2.5 to 3.5 3.5 to 4.5 

Guardrails (Typical Exposure per Day) 5 5 5 5 

Concrete Barriers (Typical Exposure per Day) 1 1 1 1 

The number of alerts generated during 21 days worth of exposure is IN-4 in equation 6-1. 

6.4.2.5 Test N-5: Roadside Objects by Straight and Curved Roads 

This test is used to determine the sensitivity of a FCW system to common roadside objects. The 
representative objects include small and large signs, mailboxes, and construction barricades. 

Additional Requirements to Demonstrate Test Validity 

No Lane Markings – The user should document that the test is executed on a roadway that meets 
the requirement of a site with “no lane markings.” (See Chapter 5, Definitions, for a definition.) 

Countermeasure Performance Evaluation 

The following table indicates a hypothetical distribution for the typical exposure of FCW systems 
to roadside objects. The total exposure for each type of object is based upon the pilot study results. 

The distributions of distances from the Alert Zone are based upon an assumption that sign 
locations are evenly distributed between the minimum distance from the roadway to a distance 2 m 
farther than the minimum. The MUTCD recommends that signs should not be closer than 6 feet 
(1.8 m) from the edge of the shoulder, or if no shoulder is present, no less than 12 feet (3.65 m) 
from the edge of the traveled way. In urban areas, where necessary, a clearance of 1 foot (0.3 m) 
from the curb face is permissible. The table takes into consideration that vehicles do not always 
travel in an outside lane and do not normally travel along the edge of a lane. In addition it is 
assumed, for lack of a better estimate, that there are an average of 8 small signs, 4 large signs, and 
4 mailboxes per mile of travel. Based on Horowitz (1986) the average distance driven per day is 
28.7 miles. 

Part VI of the MUTCD includes recommended practices for the location of temporary barricades 
to divert traffic in road maintenance zones. The guidelines include recommended practices for 
shoulder tapers and tapers for shifting lanes. In general, there will not be a shoulder between 
temporary barriers and the traveled way.  Therefore, the table assumes that the barriers will be on 
the edge of the traveled way.  The recommended practice is to space the barriers so that the 
distance between them (in feet) does not exceed the speed (in mph) when used for a taper and 
should not exceed twice the speed when used for tangent channeling. The table assumes, for lack 
of a better estimate, that FCW equipped vehicles will pass an average of 0.5 km of road with 
construction barriers per day spaced at 40-ft intervals. 
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Distance of Object from 
Alert Zone (Meters) 

0.5-1.5 1.5-2.5 2.5 to 3.5 3.5 to 4.5 

Small signs 50 50 50 50 

Large signs 16 16 16 16 

Mailboxes 11 11 11 11 

Construction barricades 24 24 24 24 

The number of alerts generated during 21 days worth of exposure is IN-5 in equation 6-1. 

6.4.2.6 Test N-6: U-Turn with Sign 

This test is used to determine the sensitivity of a FCW system to signs found near U-turn lanes in 
the median of a road. The signs are placed so that they are directly in front of the SV as it 
approaches the U-turn, at a distance of 3 meters from the edge of the roadway.  The SV approaches 
the U-turn at a high speed, decelerates at the last moment, and then negotiates the turn. 

Additional Requirements to Demonstrate Test Validity 

None. 

Countermeasure Performance Evaluation 

The following table suggests a hypothetical distribution for the typical exposure of FCW systems 
to this scenario. The total exposure is based upon the pilot study, which suggests that two U-turns 
per day. 

U-Turns 

Average Exposure per Day 2 

The number of alerts generated during 21 days worth of exposure is IN-6 in equation 6-1. 

6.4.2.7 Test N-7: Slow Cars in Adjacent Lane at a Curve 

This test is used to determine the sensitivity of a FCW system to slower moving traffic in adjacent 
lanes. The test is conducted where a curve puts slower traffic directly ahead of the SV as it 
approaches the curve. 

Additional Requirements to Demonstrate Test Validity 

The make and model of the slow cars must be recorded. If they are not the same as the standard 
vehicles then their optical or radar cross sections (whichever is appropriate for the sensing 
technology) should be demonstrated to be within 20% of the cross sections for the standard 
vehicle. 

The test is to be executed on wet pavement. Report whether the pavement is wet due to rain or 
artificial wetting. 
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Countermeasure Performance Evaluation 

No statistical data or guideline information was available to support a value for the total exposure 
to slow moving cars in adjacent lanes. The pilot test indicated a total exposure of 2 slow moving 
and 16 parked or stopped vehicles in adjacent lanes per day.  To provide a more meaningful test 
the frequency which vehicles drive past slow moving cars was assumed to be 20. There are two 
tests for this scenario, one with wet pavement (with good lane markings) and one with poor quality 
lane markings (and dry pavement). For the purposes of these tests, the total exposure is divided 
with 75% on dry pavement and 25% on wet pavement. 

The following table indicates a hypothetical distribution of the distances of cars in adjacent lanes 
from the Alert Zone. The table is based upon an assumption that the lateral distances between cars 
will be evenly distributed with an average equivalent to the distance if both vehicles were in the 
center of their lane and with a minimum of 0.5 m. Assuming an average lane width that is half 
way between the AASHTO minimum for low-volume low-speed streets, (3.0 m) and the 
recommended width for interstate highways (3.6m) and an average vehicle width of 2.1 m yields 
an average separation of 1.2 m. The values in the following table are adjusted to account for the 
distance that the Alert Zone extends beyond the side of the FCW equipped vehicle and rounded for 
convenience. 

Distance from Alert Zone (meters) 0.0-0.5 0.5-1.0 1.0-1.5 

Average Exposure per Day 9 9 9 

The number of alerts generated during 21 days worth of exposure is IN-7 in equation 6-1. 

6.4.2.8 Test N-8: Trucks in Both Adjacent Lanes 

This test is used to determine the sensitivity of a FCW system to slower traffic that is at the same 
distance in both adjacent lanes. The test determines whether adjacent vehicles may be mistakenly 
interpreted as one vehicle directly ahead of the SV. 

Additional Requirements to Demonstrate Test Validity 

The make and model of the trucks must be recorded. If they are not the same as the standard 
trucks then their optical or radar cross sections (whichever is appropriate for the sensing 
technology) should be demonstrated to be within 20% of the cross sections for the standard trucks. 

Countermeasure Performance Evaluation 

No statistical data or guideline information was available to support a value for the total exposure 
to situations where there are slow moving vehicles at the same distance in both adjacent lanes. 
The pilot study did not experience any events of this type. To provide a reasonable test, it was 
assumed that a typical driver would experience this scenario three times during an average day of 
driving (28.7 miles). 
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The following table indicates a hypothetical distribution of distances of cars in adjacent lanes from 
the Alert Zone. The distribution of distances is based upon the same logic as was used for the 
table in Section 6.4.2.7. 

Distance from Alert Zone (meters) 0.0-0.5 0.5-1.0 1.0-1.5 

Average Exposure per Day 1 1 1 

The number of alerts generated during 21 days worth of exposure is IN-8 in equation 6-1. 

6.4.2.9 Test N-9: Slow Cars in Adjacent Lane at a Curve, Poor Quality Painted 
Lane Markings 

This new test is identical to N-7, except that this test is to be run on a dry roadway with poor 
quality painted lane markings. 

Additional Requirements to Demonstrate Test Validity 

The make and model of the slow cars must be recorded. If they are not the same as the standard 
vehicles then their optical or radar cross sections (whichever is appropriate for the sensing 
technology) should be demonstrated to be within 20% of the cross sections for the standard 
vehicle. 

The test is to be executed at a test site with poor lane markings. Document all measurements and 
observations made that support the claim that the lane markings meet the requirements for such a 
test site. 

Countermeasure Performance Evaluation 

All remarks for Test N-7 apply here. 

Distance from Alert Zone (meters) 0.0-0.5 0.5-1.0 1.0-1.5 

Average Exposure per Day 3 3 3 

The number of alerts generated during 21 days worth of exposure is IN-9 in equation 6-1. 

6.5 Conclusions 
This chapter specifies requirements for analysis and reporting of data collected during the 
execution of the objective tests. The outcome is a determination of whether or not a FCW system 
meets the set of minimum functional requirements developed in Chapter 4. 
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7	 FORWARD COLLISION WARNING SYSTEMS 
TEST PROCEDURES EVALUATION 

7.1 Introduction 
This chapter describes activities that focused on validating and improving the objective test 
methodology described in Chapters 6 and 7. The methodology includes twenty-six vehicle-level 
tests designed to evaluate the compliance of a FCW system with the set of minimum functional 
requirements developed in Chapter 4. There are several areas of the methodology that were 
evaluated. 

The philosophy set forth when the test procedures for FCW systems were developed was that the 
tests should be executable by a variety of organizations and at a variety of existing track facilities. 
This required test specifications that would be interpreted the same way by different test engineers 
and that would accommodate the differences in the tracks and standard practices at different 
testing facilities. In addition, the tests were designed to be independent of the sensing technology 
used by the FCW system. In particular they need to be applicable to systems based upon 
millimeter wave radar, laser radar or video sensors. A major consideration was to devise tests that 
would produce consistent results when executed at different locations. Three sites were selected 
as representative of those accessible by the organizations that would execute the tests. These were 
the G.M. Milford Proving Ground near Milford, MI, the Ford Motor Company's Michigan 
Proving Ground near Romeo, MI, and the Transportation Research Center near East Liberty, 
Ohio. 

The primary focus of the evaluation reported here is to provide an initial assessment as to whether 
the tests are practical to execute and provide a reasonable certainty that a FCW system which 
passes the tests actually satisfies the minimum functional requirements. Another concern 
addressed is whether the test results will be repeatable. 

A major focus of the validation work was the execution of five key tests from among the twenty-
six proposed. These tests were conducted using both a laser radar system and a microwave radar 
FCW system. The laser radar FCW system was installed on a vehicle instrumented to collect 
independent estimates of vehicle motion and position. The microwave radar system was installed 
on a different vehicle with identical instrumentation. The FCW systems were acquired from 
Mitsubishi Electronics of America (laser radar) and Eaton Vorad (microwave radar) solely for the 
purpose of validating the methodology.  Performance evaluation of those specific systems was not 
the focus of the testing and no performance results are reported here. 

Section 7.2 describes the process of selecting instrumentation for the vehicle testing activities. 
Section 7.3 presents the resulting testing setup. Section 7.4 describes the validation procedure and 
activities. This includes both the testing work and the work away from the track. The work 
reported here led to improvements in several test procedures presented in Chapter 5. The 
methodological approach and scope, however, remain intact. 
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7.2 Instrumentation Selection Process 
Included in this section are discussions of measurements, props, test track facility requirements, 
challenges and a brief description of the process used to determine the instrumentation. 

Test definition 
process 

Conditions 

Functional 
Requirements 

Crash 
Scenarios 

Operational 
Scenarios 

�� 
�������� 
�������� 
�������� 
�������� 

Independent variables 

Instrumentation 
plan development 

Test scenario 
definitions 

Required 
system 
performance 

Tests 
Required 
measurements 
and accuracies 

Instrument 
plan Required 

props, aids 

Facility 
requirements 

Figure 7-1 Instrumentation Plan Development Process 

Figure 7.1 illustrates the process used to develop the tests and the list of instrumentation. The test 
procedures include variations of the Crash and Operational Scenarios. The variations are selected 
so that the ranges of values of each of the independent variables are represented adequately 
amongst the tests. The test definitions include the test scenario definitions, conditions that must 
be controlled when running the test, and the required system performance. These were then used 
to define the required measurements and accuracy’s documented herein. 

The purpose of conducting the tests is to evaluate the test procedures. The required measurements 
were selected so that it could be determined, first, whether a system passed the test, and second, 
that the test was conducted properly. This process required measurements of sufficient accuracy to 
both exercise the procedures (through evaluation of two FCWs) and to evaluate the procedures 
themselves. The test conditions, passing criteria, and background for each test were analyzed to 
determine the accuracy requirements for each measurement.  Finally, alternative instrumentation 
approaches for each type of measurement were evaluated to determine which could satisfy the 
accuracy requirements. The resulting list of instrumentation used for the CAMP testing is 
provided in Appendix E. 
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7.2.1 Required Measurements and Accuracy 

This section presents and justifies required measurements, accuracy, and data rates to support the 
testing. The abbreviation “SV” refers to the “subject vehicle,” the vehicle equipped with the FCW 
under test. The abbreviation “POV” refers to “principal-other-vehicle,” which includes any other 
vehicles in the immediate vicinity. 

Figure 7-2 is a schematic of the onboard instrumentation on the test vehicles. Table 7-1 
summarizes the required measurements and the corresponding accuracy and data rates. These 
results are developed in the remainder of the section, with supporting materials included in 
Appendix E. 
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Figure 7-2 Block Diagram of In-Vehicle Instrumentation 
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Table 7-1 Summary of Required Measurement Accuracy and Data Rates 

Measurement 
Accuracy 
(3 sigma) 

Onboard 
Data Rate 
Required 

Supporting 
Section 

Longitudinal position of SV, POVs, and 
clutter 

6 cm 10 Hz 7.2.2 

Longitudinal speed of SV and POVs 0.09m/s 10 Hz 7.2.2 
Longitudinal acceleration of SV and POVs 0.10 m/s/s 10 Hz 7.2.2 
Lateral position of clutter, stationary POVs 
and road 

3 cm NA 7.2.3 

Lateral position of SV and moving POVs 10.5 cm 4 Hz 7.2.3 
Yaw rate of SV and POV 1.8°/s 20 Hz 7.2.4 
Visibility 10 m NA 7.2.5 
Brake pedal actuation time 0.10 sec 10 Hz 7.2.6 
Roadway horizontal curvature (direction 
change) 

1° NA 7.2.7 

Roadway elevation change (for super-
elevation and vertical curvature) 

5 mm/5m NA 7.2.8 

Note that Table 7-1shows requirements in terms of absolute positions or speeds, whereas the 
requirements addressed position and speed variables which are primarily relative quantities. The 
requirements in Chapter 4 define an “Alert Zone”, which is a zone stretching in front of the SV 
and following the shape of the road. Objects within this zone must trigger alerts under certain 
conditions (based on the range and range rate). Objects outside the Alert Zone should not trigger 
alerts. Therefore, when evaluating the performance of a FCW system, it is important to know 
whether objects or POVs are within the Alert Zone, as well as knowing the range and range rate to 
the object or POV. These are relative measurements, e.g., lateral position of a roadside object 
with respect to the SV. 

During the process of developing measurement strategies, accuracy and instrumentation concepts, 
it became clear that the use of Differential Global Positioning System (DGPS) would best meet 
the combined set of requirements, including accuracy for these relative measurements, cost, 
flexibility during testing and testing design, availability, and schedule.  Thus, Table 7-1 and the 
remainder of Section 7.2 are based on the approach of measuring motion with respect to an earth-
fixed frame. Section 7.2.10 discusses the selection of a GPS approach and addresses the issues of 
choosing from among GPS solutions. 

The following sections address the individual measurements listed in Table 7-1. 

7.2.2 Longitudinal Position, Speed, and Acceleration 

The requirements for measurement accuracy of longitudinal motion variables of the tes vehicles 
are driven by crash scenario testing.  The crash scenario tests involve maneuvers designed to 



7-9 

trigger crash alerts. The FCW is then evaluated based on the range at which the alert occurred. 
For tests in which an alert in the SV is expected or desired, the crash alert timing criterion in 
Chapter 4 describes a minimum range at which the alert must occur (Section 4.2.3.1). The 
minimum required range is a function of range rate and parameters of a model describing the 
driver’s anticipated reaction time and braking level. The FCW meets the requirement as long as 
the alert occurs at a range that is equal to, or greater than, the minimum range given by the 
requirements in Chapter 4. The required minimum range for an alert may be as small as 2.2 
meters or as great as 100 meters (these are, respectively, the minimum and maximum longitudinal 
extents of the Alert Zone suggested in Chapter 4). 

Figure 7-3 shows an SV and a POV at the moment a FCW issues an alert. To evaluate whether a 
FCW system meets this requirement, the difference between the actual range at alert onset, R, and 
the minimum required range for the situation, Rwarn , is computed. If R ≥ Rwarn  , then the FCW 

passes the test trial. If, however, R < Rwarn  , then the FCW fails the test trial. Let εR  denote the 

difference, εR = R − Rwarn . This difference is the basic metric to be used in evaluating the FCW 

system’s compliance with the minimum warning range requirement. 

SV POV 

At the instant an alert occurs: 

Vsv Vpov 

Rwarn 

R 

εR 

Figure 7-3 Comparing Actual Warning Range to the Minimum Required Warning Range 

Measurement accuracy’s should support the computation of the metric εR  so that evaluation of 
the FCW system’s warning range performance on a trial will be correct “almost always.”  When 
using data from an individual test trial to determine whether the FCW passed the trial, the 
following requirement is suggested: 

The following 3-sigma requirement is levied: measurement error effects on the computation of the 
difference between the true range at the instant of alert and the minimum warning range cannot be 
greater than 5% of the minimum warning range, or 2.0 meters, whichever is greater. 

Let ε̂R denote the computed value of the metric, based on measurements. Then data from a test 
trial would be evaluated as follows: 

If ε̂R > max( 0.05* Rwarn , 2.0m ) , then FCW passes trial (high confidence), 
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If ε̂R < max( −0.05* Rwarn , − 2.0m ) , then FCW fails trial (high confidence), and 

If ε̂R ≤ max( 0.05* Rwarn , 2.0m )  , then there may not be enough confidence to state that the 

FCW passed or failed the trial. 

The “high confidence” is quite high – if the error in the metric is assumed to follow a normal 
distribution, for instance, the probability that the conclusion is correct is 99.7%. 

The third condition above corresponds to cases in which the estimated range at alert time is quite 
close to the estimated minimum required range at alert time, and the effect of measurement 
uncertainties is large enough to call into question any conclusions. The frequency with which 
results fall into this region depends on both the measurement accuracy and the closeness of the 
FCW performances to the required warning ranges. By tightening measurement accuracy, this 
region of uncertainty can be shrunk but not eliminated. 

There is a tradeoff, however, between tightening measurement requirements and keeping 
equipment cost and testing feasibility within practical ranges. Appendix E lists the equipment 
selected for validation testing of the test procedures; the equipment choices are largely driven by 
requirements of ground-truthing lateral positions during lateral maneuvers.. The boxed 
requirement above can be met with the equipment listed in Appendix E, assuming that the 
minimum warning range is closing-speed dependent.  Testing occurred with a draft set of alert 
timing requirements that depended on closing speed. Appendix E, Section E.3 demonstrates that 
the boxed requirement above is satisfied for the draft set of timing requirements. The analysis in 
the appendix develops an analytical expression for the metric of warning range performance, then 
computes a 3-sigma value for the uncertainty in the metric, given instrument accuracy and data 
rates: 

°  Vehicle position, longitudinally: 0.06m, 3 sigma (SV, all POVs) 

°  Vehicle speed, longitudinally: 0.09m/s, 3 sigma (SV, all POVs) 

° 	 Longitudinal acceleration: 0.10 m/s2, 3 sigma (SV, POV – only one vehicle brakes during 
testing at any one time) 

°  Time at which the alert occurred: 0.050 sec, 3 sigma 

The analysis assumes upper bounds on the following test conditions and variables: 

°  Range rate < 33 m/sec (120kph), 

° 	 Relative acceleration between vehicles in the longitudinal direction, magnitude no greater than 
0.3g, 

° 	 Time between onset of alert and collection of measurements of vehicle positions, speeds, and 
accelerations: <0.250 sec 
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The above requirements are also sufficient for tests with a stationary POV since the location of the 
POV can be surveyed to within a few centimeters. The above requirements on longitudinal 
motions are also more than adequate to provide measurements for documenting test execution, for 
purposes of investigating anomalies, proving “acceptable” execution of the tests, or for validating 
the test procedures 

7.2.3  Moving SV and POV Lateral Positions 

Most of the test scenarios require measurement of the lateral position of the SV. However there 
are two types of tests with much tighter requirements. These are (1) the tests that involve the SV 
driving by stationary objects that are just outside the Alert Zone, and (2) the tests that involve 
lateral maneuvers, either by the SV or the POV. Although the analysis shows that the lateral 
maneuvers have the tightest position measurement requirements, the development of both 
requirements are presented here for review. 

The requirements state that the Alert Zone extends along the path of the road with a width that 
extends beyond the width of the SV on either side (maximum width of 3.6 meters). An alert 
should occur if a POV is in the Alert Zone and the longitudinal distance and relative velocity 
requirements are met. Furthermore, alerts should not occur due to objects that are outside the 
Alert Zone. 

7.2.3.1  Lateral Position Relative to Stationary Objects 

For scenarios with stationary objects that always remain outside of the Alert Zone, the procedures 
will require that the SV pass within some distance from the other object. There is an implicit 
lateral tolerance on how accurately the SV must be driven. The requirement is that the SV drive 
by the stationary objects so the Alert Zone stays between 0.0 m and 0.5 m lateral offset from the 
objects. 

The measurements must be accurate enough to provide assurance that the actual path of the SV 
was within this 0.5 m band. However, the accuracy with which the SV can be driven has an 
impact on the accuracy requirements for the lateral position measurements (Figure 7.4). 

For now we can assume that the position of the stationary objects can be determined much more 
accurately than the position of the moving SV. Surveying techniques that measure the position of 
stationary objects with a 3σ accuracy of 3 cm should be used. 

Suppose that the SV can be driven so that the maximum lateral deviation from the desired path is 
10 cm. To allow for the variation in the actual path and the uncertainty of the position 
measurements, the desired path is selected to put the Alert Zone 0.25 m from the stationary object. 
Then it is required that the 3 sigma measurement error be such that a vehicle that is 10 cm from 
the desired path should produce measurements that are inside the 0.0 m to 0.5 m limits. This 
would be accomplished if 3σ = 25 cm – 10 cm or 15 cm. 

Then, for the stationary object tests, a 3σ lateral offset accuracy of 15 cm is required. 



7-12 

Desired Path of SV 

Actual Path of SV 

Edge of Alert Zone 
for Desired Path 

Edge of Alert Zone 
for Maximum Error 

in Actual Path 

Variation in 
Actual Path 

Lateral Position 
Measurement 

Variance 

Variation in Path 
± Measurement 

Variance 

Edge of Alert Zone 
Including Variation in Actual Path 

and Measurement Variance 

Stationary ObjectPosition Uncertainty 

SV 

Alert Zone 

for Stationary Object 

Figure 7-4	 Tolerance Stackup for Lateral Position Measurements with Stationary Object Outside the 
Alert Zone 

7.2.3.2  Lateral Position During Lateral Maneuvers 

In section 4.3.1, the requirements state that the Alert Zone extends along the path of the road with 
a minimum width corresponding to the width of the vehicle and a maximum width that extends 
beyond either side of the SV to a maximum width of 3.6 meters. The requirements indicate an 
alert should occur no later than when the path of the SV or the POV are such that the POV crosses 
into the minimum width of the Alert Zone from the side (see Figure 4.6). 

Considering the likely vehicle width, these requirement might allow a lateral tolerance of 0.5 m 
for when the alert must occur on a cut-in. In other words, an alert should not occur before a POV 
enters the outer limit for the Alert Zone from the side and it must occur before the side of the 
POV gets less than the inner limit of the Alert Zone, if the speed and distance conditions are met. 

Next, engineering judgment suggests that the measurement uncertainty be less than 10% of the 
width of the tolerance zone. This will provide a high level of confidence that, when an alert 
occurs, it is certain whether the side of the POV was between the limits for the width of the Alert 
Zone. Then σ = 0.1 x 50 cm = 5 cm. Therefore, the instrumentation must provide a lateral offset 
accuracy less than 5 cm. Since absolute position measurements from 2 vehicles will be required to 
achieve the lateral offset calculation, each must have an accuracy of 0.707 x 5 cm = 3.5 cm. 
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So, for lateral maneuvers, the required measurement accuracy for lateral position would be 3.5 cm 
for each vehicle. 

7.2.4  Yaw Rate 

Yaw rate is required to measure vehicle positions when GPS is not available and to improve 
position interpolation between GPS readings. The maximum yaw rate can be estimated by 
assuming a maximum turn rate with a lateral acceleration of 0.3g. Experts at Ford and GM have 
suggested that this is the highest comfortable value for most drivers. For a curvature, R, and 
speed, V, the lateral acceleration is V2/R. The yaw rate, ω, is V/R=a/V. 

The yaw rate accuracy requirement is derived from the need to know the lateral position of a 
vehicle relative to the road or another vehicle. The lateral position of the Alert Zone relative to the 
road depends on the lateral position of the SV. Consider the simple case where the vehicle is 
supposed to be going straight. If the actual lateral yaw rate of the SV is ω then the lateral offset, l, 
that occurs between samples is: 

l = (V/ω) { cosθo – cos (θo + ωT) }+ lo 

Where T is the time between samples, θo is the initial yaw angle and lo is the initial lateral offset. 
The sensitivity, sω, of the lateral offset estimate to errors in ω is: 

sω = dl /dω  = - (V/ω2) { cosθo – cos (θo + ωT) } - (V/ω) T sin (θo + ωT) 

The standard deviation in lateral position estimates, σl, that occurs between samples would be: 

σl = |sω| σω 

σω = σl / |sω| = σl / |- (V/ω2) { cosθo – cos (θo + ωT) } - (V/ω) T sin (θo + ωT)| 

Assuming that T=0.25 sec, σl = 2 cm; that ω, and θo are zero; and that V is 110 kph then 

σω ≅ σl / (VT2) 

σω ≅ 0.0105 rad/s = 0.600°/s 

So a yaw rate sensor with a 3σ accuracy of 1.8°/s would be adequate. 

7.2.5  Visibility 

Visibility measurements are required to provide repeatability for the low visibility tests. Fog, rain, 
or dust should be generated to simulate low visibility conditions. Instrumentation is required to 
measure visibility of approximately 200m. The requirements state that the systems must either 
operate normally or indicate that they cannot function properly under the current conditions. It 
seems reasonable that a 10% variation in the visibility conditions will still produce repeatable 
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results. Therefore the visibility instrumentation must have an accuracy that is better than 10% at 
200m visibility. 

7.2.6  SV Brake Pedal Actuation Time 

SV brake activation time is needed to determine whether a test driver suppressed an alert by 
applying the brake (perhaps in maneuvering for safety). The brakes are not to be applied, except 
for evasive maneuvers required after the desired test results have been collected. To ensure this is 
the case, a brake pedal switch is recommended. The 0.1-second accuracy will be adequate. 

7.2.7  Roadway Horizontal Curvature 

Roadway curvature measurements are required to determine the speeds at which test vehicles 
must be driven around curves. The AASHTO policy defines guidelines for the relationship 
between design speed, radius of curvature, and super-elevation. Tables III-7 to III-11 of the 
AASHTO Policy on Geometric Design of Highways and Streets indicate radius of curvature for 
various design speeds and super-elevation slopes. 

The test procedures call for curves similar to a tight highway cloverleaf. They also specify limits 
on the curvature for tests intended for straight roads. The Federal Highway Administration 
Highway Performance Monitoring System (HPMS) database indicates that 85% of the curves on 
rural highways, freeways, and arteries have a curvature of less than 4.4°/100m. This corresponds 
to a radius of curvature of 1302 meters. 

Although it might be argued that an 85th percentile curve is adequate for testing of FCW systems, 
it was decided that tight cloverleaf curves are important for testing the number of nuisance alarms 
produced by a system. Observations on local highways indicate that a curve corresponding to a 40 
kph design speed should be included in the test scenarios. The AASHTO guidelines suggest that 
the radius of curvature for a curve with a design speed of 40 kph with a 4% super-elevation should 
be no less than 60 meters. 

Therefore the instrumentation should be able to measure radius of curvature between 60m and 
1300m. For a small radius of curvature, the angle change over a fixed distance of road can be 
measured. For longer radii, the distance can be measured for which a 1° change in road direction 
occurs. In either case, the ability to measure distances up to 300 m to 1 cm and angles to 1° will 
provide adequate information to determine the design speed of a curve. 

7.2.8  Roadway Super-Elevation on Curves and Vertical Curvature 

Super-elevation measurements are required to determine the speeds at which test vehicles must be 
driven around curves. The AASHTO Policy on Geometric Design of Highways and Streets 
defines guidelines for the relationship between super-elevation, design speed, the radius of 
curvature, and side friction factor of a road.  Tables III-7 to III-11 of the policy guidelines indicate 
super-elevation requirements to 0.1 % for design speed increments of 10 kph. Therefore, slope 
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measurements with an accuracy of 0.1 percent will be needed to determine the design speed of a 
curve to within ±5 kph. 

Vertical curvature measurements will also be required to determine the speed at which test 
vehicles must be driven at a sign at the top of a hill. The AASHTO policy defines guidelines for 
the relationship between vertical curvature (sag & crest curves) and design speeds. The vertical 
curvatures are expressed in meters per percent change in grade. To distinguish whether a vertical 
curve is for a design speed of 110 kph vs 120 kph, the measurements must be accurate enough to 
distinguish between roads with curvatures of 202 m/% and 151 m/%. 

Since the test specifies a constant car speed, the curvature only needs to be measured often enough 
to know that the car was at the right speed about once a second. If the car is traveling 120 kph 
then the grade only needs to be measured at points separated by 0.5 to 1 second or approximately 
every 15 to 30 meters. 

Another way to determine how often the grade needs to be measured is to assume it should be 
about 20% of the maximum length of the Alert Zone, or 20 m. Over 20m the slopes for hills 
designed for 110 kph and 120 kph would have a change of grade of 0.099% and 0.132% 
respectively.  Putting this in terms of angles the difference in slopes that must be distinguished is 
between 0.0567 degrees and 0.0756 degrees, a difference of 0.0189 degrees. 

The simplest way to measure the vertical radius of curvature would be to measure elevation 
relative to the top of the hill at various points along the road. If elevation is measured every 5 
meters then the change in slope over 20 meters can be measured. Over 5 meters a slope 
measurement with an accuracy of 0.1% would require measuring the change in elevation to 5mm. 

Therefore, equipment is required that can measure changes in elevation with an accuracy of 5 mm 
over distances of 5 meters and to measure distances of up to 20 meters between elevation 
measurement locations. 

7.2.9  Sampling Rate for Onboard Data Acquisition Systems 

The most pressing data rate requirement for the onboard acquisition system is driven by the need 
to measure vehicle-to-target lateral offsets during tests with lateral maneuvers, for instance, for a 
test with a POV cutting into the host SV’s lane. Since the critical vehicle handling bandwidth will 
be less than 2 Hz, the required data rate is selected as ten times that bandwidth, or 20 Hz. 

Appendix E develops the individual data rate requirements for each required measurement of 
Table 2.1. This demonstrates that the 20 Hz rate is sufficient. 

7.2.10  Ground Truth 

As part of the FCW test procedure validation, measurements were recorded to verify that the 
alerts occurred at the appropriate relative distance. The FCW systems could provide this 
information, but due to system delays and other limiting information, a separate independent 
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method was needed. Several differential Global Positioning Systems were found to have the 
potential measurement and accuracy capability to meet the requirement. 

For these instruments, the advertised DGPS accuracy is 3cm with baseline distances less than 
10km to a base station. By placing a DGPS receiver on each moving vehicle and having a 
stationary reference base station, the position of the moving vehicles and stationary objects can be 
recorded during the test procedure. 

7.2.10.1 DGPS Data Collected at a 4 hz Rate 

The data output rate from a DGPS receiver depends on the type of receiver. If a dual frequency, 
real-time position measurement is used, then a 4 Hz output can be expected. For a single 
frequency with only data logging then a 20 Hz output can be expected. 

For the best accuracy, it was decided to post-process the DGPS data. Post–processing eliminates 
errors from communication delays between base and mobile receivers. Commercial software was 
used to process the GPS information. 

7.2.10.2 GPS Options 

A comparison of three GPS receivers was made for the purpose of selecting a receiver that would 
meet the measurement accuracy requirements. All three are specified to be dual frequency, real-
time kinematics, and high accuracy receivers. Each receiver was selected from a different 
manufacturer. They are Trimble model 7400Msi, Ashtech Z-12, NovAtel Millenium RT-2. The 
estimated cost shown in the table below is for four receivers that are needed to perform the 
testing. 

Trimble Ashtech NovAtel 

Position Accuracy 3 cm 3 cm 2 cm 

Data Rate 5 Hz 10 Hz 4 Hz 

Velocity Accuracy 0.03 m/s 

Est. Cost $77,800 $80,700 $79,400 

7.2.10.3 GPS Selection 

All receivers selected for the comparison would have met the needs. The estimated costs are 
about the same. It appears that the selection of a DGPS receiver is not critical, but limited to dual 
frequency, real time kinematics for the best accuracy. 
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7.2.10.4 Required Supporting Measurement 

Interference of GPS satellite signals by trees, bridges, and tunnels are a common problem. Other 
GPS users recommend that other vehicle state sensors be used to help bridge the gap when the 
satellite signals are not available for short periods of time. For this reason the following sensors 
were used in addition to the DGPS for ground truth metrics: accelerometers, ABS wheel speed 
sensors, and gyros for vehicle yaw, pitch, and roll rates. 

7.2.10.5 Software Development 

The integration of vehicle state information, DGPS, and radar information into one data file was a 
custom software job. Each device had its own unique format that was combined to a common 
data format. Synchronization of the data had to be addressed because some of the devices had 
different update rates. 

Instrumentation Overview 

DGPS 
Base 

Station 

SV at 60MPH, 
Equipped with RECW, 

Waits for an alert before slowing, 
Records alert, speed, yaw rate, 

acceleration, brake switch, 
forward video image, and DGPS 

Test Procedure using multiple vehicles on a 
section of straight track, three lanes wide 

POV at 40 MPH 
Records speed, acceleration, 
yaw rate, side video image, 

and DGPS 

Alert Zone 

Base Station to record GPS 
for better position accuracy 

when post process. 

POV at 40 MPH 
Records speed,and DGPS 

POV at 40 MPH 
Motorcycle 

only instrumentation 
is driver radio 

Figure 7-5 Use of Vehicle Instrumentation for a Complex Test 

7.3 CAMP Testing Equipment/Instrumentation 
The test procedures place requirements upon the type of information that must be collected and 
the accuracy of the measurements. Validating the test procedures imposed additional 
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instrumentation requirements. The instrumentation was selected to meet these requirements. The 
data collection rates were selected by considering the vehicle dynamics limits. 

Figure 5 illustrates how the vehicle instrumentation was used for a complex test scenario. Vehicle 
motion during dynamic testing was determined by vehicle speed, brake pedal switch, yaw-pitch-
roll rates, acceleration in three axis, and relative position on a test track from DGPS. By knowing 
the precise vehicle motion and relative position during the testing, the motion of the Alert Zone 
was calculated. Evaluation of the data collected during the test procedure showed when objects 
moved into and/or out of the Alert Zone during the dynamic testing.  The FCW systems provided 
real-time feed back to aid in performing the test procedures. 

The photographs that follow illustrate how the equipment was installed into the test vehicles. 
Appendix E includes a list of equipment used and selected manufacturers’ data sheets. 

7.3.1  Basic Instrumentation 

The data collected from the vehicles includes vehicle speed and brake pedal action. An 
accelerometer is installed to provide acceleration in three axes and rotation rates about the axes. 
This information is collected as analog inputs through a signal conditioning front-end to the data 
acquisition computer. The video recorder, Global Positioning System (GPS) receiver, and 
countermeasure device are interfaced to the computer through serial ports. When multiple cars 
are used for a test, the data acquisition computer establishes a network link to control the 
beginning and end of each test from one car. Communication with other drivers is through hand-
held radios. 

The data acquisition program was developed using National Instruments LabView software. 
When the data acquisition program is started, the operator in each vehicle identifies which vehicle 
the equipment was installed (SV, POV1, POV2). The operator in the SV uses that computer to 
control the computers in the other vehicles. The driver of the SV selects a data rate and controls 
the start and stop of data collection for the GPS receivers and all other instruments. A reference 
GPS site was used to collect data at the same time so correction can be made to the GPS data 
during post processing. The GPS site is referred to as the base station and is not shown here. 

7.3.1.1  Photographs of Instrumented Vehicles 

This photograph shows the three CAMP Test Cars. From left to right, they are the 1996 
Mitsubishi Diamante 30RSE, and the two 1997 Chevrolet Lumina LTZs. 
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This photograph shows the two trucks and a motorcycle used for testing.  These vehicles 
were rented for one week of testing. 

7.3.1.2  Countermeasure Systems Installation 

The Chevrolet Lumina LTZ was equipped with a microwave radar FCW system commercially 
available, the Eaton Vorad EVT-200. These photographs show where the equipment was 
installed. The display is on top of the instrument panel to the right of the driver. The controller is 
located under the instrument panel on the hump between the driver’s and passenger’s feet. The 
wires are on the passenger side of the vehicle to prevent interference with the driver’s pedals. 

Antenna Display Controller 
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The Mitsubishi Diamante 30RSE is equipped with a Laser Radar FCW System. The FCW 
system was acquired from Mitsubishi Electronics of America, and was a specially enhanced 
version of the system sold on the vehicle in Japan in the 1996 model year. The display was an 
integrated part of the instrument panel next to the clock. The Laser Radar was mounted on top of 
the instrument panel on the passenger’s side of the vehicle. 

Laser Radar 

Display 

7.3.2  Equipment Location in the Vehicles 

Shown in this group of photographs is the typical equipment installation in a car. The data 

Antenna Mount 
Signal Conditioning 

Computer 

Accelerometers 
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acquisition computer is placed on a pedestal on the passenger side of the car, and is positioned so 
the driver can operate the program. The antennas were mounted over the center of the car so the 
GPS antenna was directly over the accelerometer. The accelerometer was mounted in the center 
of the car between the driver and passenger seats. The rest of the equipment was mounted to a 
rack and placed in the trunk of the car. 

7.3.2.1  Truck One Installation 

These photographs show how the equipment was installed in the trucks for executing Test C-13, 
for which the POV is a motorcycle travelling between two trucks. 

The Truck in the Left Lane 

GPS Antenna 

Camera 

Computer and VCR 

It was important to place the GPS antenna at the back of the truck and have the camera looking in 
the direction of the motorcycle. This provided relative information for the location of the 
motorcycle during the test. 



7-22 

7.3.2.2  Truck Two Installation 

Only GPS information was necessary for the second truck. The GPS antenna was mounted over 
the cab. The drivers of the trucks were instruction to maintain a relative position with each other 
by being able to observe the other driver during the test. 

Truck in the Right Lane 

Computer and GPS Receiver GPS Antenna 

7.4 Evaluating the Test Methodology 
This section describes the approach that was used to evaluate the FCW system test procedures and 
data analysis methods developed by CAMP. There are several areas that were evaluated. The 
primary focus of the evaluation is whether the tests provide a reasonable certainty that a FCW 
system satisfies the minimum functional requirements. Additional concerns are that the tests be 
repeatable and practical to execute. Execution of the plan described provides an initial assessment 
of how well the test procedures and data analysis procedures satisfy these concerns. Chapter 5 
covered the Test Methodology and Chapter 6 covered the Vehicle Countermeasure Data Analysis. 
The test procedures are to evaluate whether a FCW system complies with the minimum functional 
and performance requirements developed in Chapter 4. For completeness, the test procedures 
were evaluated to determine whether there is at least one test for each of the requirements 
included in Chapter 4. 

The philosophy set forth when the test procedures for FCW systems were developed was that the 
tests should be executable by a variety of organizations and at a variety of existing track facilities. 
This required test specifications that would be interpreted the same way by different test engineers 
and that would accommodate the differences in the tracks and standard practices at different 
testing facilities. In addition, the tests were designed to be independent of the sensing technology 
used by the FCW system. In particular they need to be applicable to systems based upon 
millimeter wave radar, laser radar or video sensors. The tests are for use by FCW system 
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suppliers during the development of products, by vehicle manufacturers to qualify systems, and by 
independent organizations to evaluate FCW systems.. A major consideration was to devise tests 
that would produce consistent results when executed at different locations. Three sites were 
selected as representative of those accessible by the organizations that would execute the tests. 
These were the G.M. Milford Proving Ground near Milford, MI, the Ford Motor Company's 
Michigan Proving Ground near Romeo, MI, and the Transportation Research Center near East 
Liberty, Ohio. 

Evaluations were performed in five areas: 

Completeness of the tests (coverage of all requirements) 

Correlation to performance during typical driving 

Test procedure understandability 

Test procedure executability, including driving maneuvers, cost, and time required 

Test procedure sensitivity, including sensitivity to site and props, test team, path 
tolerances, FCW system settings and pass/fail criteria. 

Some aspects of the Testing Methodology were evaluated by executing tests while others were 
done by expert review and analysis. The evaluation issues that did not require actually executing 
tests included the following: 

Determining conflict between the test procedures and established practices at each of the 
proving grounds 

Verification that sites exist for all tests at all three test facilities 

Analysis of cost 

Analysis of sensitivity of final pass/fail to selected test weights 

Public road testing to verify that the tests reflect real-world countermeasure performance 

In addition, this section covers the results of the evaluation and suggested improvements to the 
functional requirements and test procedures based upon the experience of actually running some 
of the tests on two different FCW systems. 

It is noted that the performance of the countermeasures used during testing is not discussed. The 
performance of specific systems is not a primary interest in this project, except for the insight or 
understanding that unexpected behaviors provide. Furthermore, agreements with the 
countermeasure suppliers prevent any performance data from being released. 

7.4.1  Test Procedure Execution 

This section describes the details of the evaluations that were conducted by executing tests on a 
test track. To select the tests that were executed, candidate tests were rated as to how likely it was 
that their execution would expose issues that would suggest improvements to the test 
methodology.  This rating was done by the staff at CAMP after consultation with the staffs at the 
GM and Ford proving grounds. The issues that were considered included (1) safety, (2) driving 
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maneuver tolerances, (3) set-up and execution time, and (4) sensitivity to site, props, testing team, 
path or FCW system settings. This ranking identified five tests that were highly likely to expose 
issues that would suggest improvements to the test methodology.  The highlighted tests in Table 
7-2 and Table 7-3 are those that were selected and executed. 

Test Test name Use to Address Priority 

C-1 100 kph to POV stopped in travel lane Sens. to props low 

C-2 80 kph to POV at 16 kph 

C-3 100 kph to POV braking moderately from 100 kph  Safety HIGH 

C-4 100 kph to POV parked under overhead sign 

C-5 100 kph to slowed or stopped motorcycle 

C-6 SV to POV stopped in transition to curve (wet) (a) Safety 
(b) Sens. to teams 

(a) HIGH 
(b) medium 

C-7 SVto POV parked on a curve 

C-8 SV to slower POV, in tight curve (a) Sens. to site 
(b) Sens. to teams 

(a) medium 
(b) low 

C-9 POV at 67 kph cuts in front of 100 kph SV (a) Safety 
(b) Sens. to path 
(c) Executability 

(a) HIGH 
(b) HIGH 
(c) HIGH 

C-10 SV at 72 kph changes lanes and encounters parked 
POV 

C-11 100 kph to stopped POV, with poor visibility. 

C-12 POV brakes lightly while SV tailgates at 100 kph. 

C-13 Greater size and equal distance (2 trucks, 1 m’cycle) Safety HIGH 

C-14 Greater size and greater distance (1 truck, 1 m’cycle) 

C-15 100 kph to 32 kph Truck 

C-16 C-6, but with dry pavement and poor markings 

C-17 24 kph to stopped vehicle Sens. to FCW 
setting 

medium 

Table 7-2 High-Priority Crash Tests Selected for Evaluating the Test Methodology 
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Test Test name Use to address Priority 

N-1 Overhead sign at crest of hill Sens. to site medium 

N-2 Road surface objects on flat roads Sens. to props very low 

N-3 Grating at bottom of hill 

N-4 Guardrails and concrete barriers (a) Sens. to path 
(b) Sens. to FCW 
setting 

low 

low 

N-5 Roadside objects along straight and curved roads (wet) (a) Sens. to prop 
design 
(b) Sens. to site 

(a) medium 
(b) low 

N-6 U-turn with sign 

N-7 Slow cars in adjacent lane, in curve (a) Sens. to site, 
(a) Sens. to team 

(a) HIGH 
(b) HIGH 

N-8 Trucks in both adjacent lanes 

N-9 N-5, except with poor lane markings 

Table 7-3 High-Priority Nuisance Alert Test Selected for Evaluating Test Methodology 

The five selected tests were executed at the sites indicated in Table 7-4. They were all executed 
with two different commercial FCW systems, one based upon a microwave radar and the other 
based upon a laser radar and video camera. A combination of engineers from CAMP and test 
drivers from the proving ground was used to execute the tests. 

The following sections describe the execution of the five tests. Findings that affected the final set 
of proposed test procedures are reported. 

Test Site(s) 
Tests Executed? 

Radar IR 

(C-3) 100kph to POV braking 
moderately hard from 100kph 

GM Yes Yes 

(C-6) SV to POV stopped in 
transition to curve (wet) 

TRC 
GM 

Yes Yes 

(C-9) POV at 67kph cuts in 
front of 90kph SV 

GM Yes Yes 

(C-13) Greater size, equal 
distance (2 trucks & motorcycle) 

TRC Yes Yes 

(N-7) Slow cars in Adjacent 
Lanes 

TRC Yes Yes 

Table 7-4 Sites and Countermeasures Used to Execute High-Priority Tests 
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7.4.1.1 Test C-3: 100 kph to POV Braking Moderately Hard from 100 kph 

Validation Issues and Findings 

In Test C-3, the SV follows at a fixed headway behind a POV at 100 kph (see Chapter 5 for 
detailed test procedures). The POV begins to brake moderately hard and the SV continues at 
constant speed until either the crash alert is triggered or the range drops to less than the “too late” 
onset cutoff of Chapter 4. This test explores the ability of the countermeasure to function as 
required with a decelerating lead vehicle. The test is also used to collect data for use in estimating 
expected exposure to in-path nuisance alerts for the countermeasure. 

This test was selected for inclusion in the validation work to determine whether such a maneuver 
was safe for execution by professional drivers. In this test, the POV initiates the conflict, so 
careful coordination is required. The result of the test track validation experiments was an 
understanding that the maneuver is safe, with care and planning. 

Test Execution and Discussion of Data 

Test C-3 has been revised since it was performed for validation purposes; the maneuvers are now 
milder than those that were executed and reported in this section. The test was executed with a 
lead vehicle deceleration of –0.4g; the revised procedures use –0.32g. (The revision was to 
accommodate the alert onset timing requirements based on the human factors experiments of 
Chapter 3. )Thus the finding that the test is executable at the higher deceleration level ensures that 
the test is executable at the lower deceleration level. 

The test involves the SV and POV traveling on a straight, level, dry road with clear lane markings 
at approximately 100 kph with the SV lagging behind the POV by 2 to 2.5 seconds. The POV 
suddenly begins to brake at approximately 0.4 g while the SV continues at a constant speed. The 
test ends when the most imminent crash alert occurs or the SV comes within 90% of the minimum 
acceptable most imminent crash alert distance, whichever comes first. If the test conditions are 
nominal then the minimum acceptable most imminent crash alert distance would occur when the 
vehicles are about 40 meters apart, using the requirements at the time. They reach a condition of 
90% of the minimum distance (as the POV continues to decelerate) when they are 34 meters apart. 
The test procedure includes tolerance for the speeds, range at braking onset, lateral offset, lateral 
position in the lane, and heading angle. There are also tolerances on the flatness and straightness 
of the roadway.  (With revision of the test, the target range is 54 m, compared to the 34 m 
assumed in this section.) 

The test trials were conducted on the 1.6 km (1 mile) long Military Straightaway at GM's Milford 
Proving Ground. Both the TRC and Ford's Romeo Proving Ground have straight tracks of similar 
length. Each trial began at one end of the track with the SV and POV stationary and about 65 
meters apart. The data recording equipment was started and then the drivers would accelerate to 
100 kph. The driver of the POV would then engage the cruise control, drive to the other end of 
the track and then brake at 0.4 g.  While the POV was at a constant speed, the driver of the SV 
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would adjust the cruise speed or use the accelerator until the SV was between 60 and 65 meters 
behind and traveling the same speed as the POV. When the POV began to brake, the driver of the 
SV would continue driving at the POV at a constant speed until the minimum alert distance was 
achieved. 

To achieve the desired headway, the driver of the SV would engage the cruise control at slightly 
under 100 kph. The range between the SV and POV was continuously displayed to the driver of 
the SV. This range reading was used to guide the driver who would adjust the cruise control 
speed or use the accelerator to achieve the target distance. Typically, this synchronization could 
be achieved by the time the vehicles had traveled 1 km from the start. 

To guide the drivers in the braking maneuver, markers (construction cones) were placed by the 
side of the road as shown in Figure 7-6. On the right side of the road was a marker (A) at which 
the driver of the POV was to start braking.  The digital display from an accelerometer was placed 
on the dashboard of the POV so the driver could have real-time feedback for controlling the 
deceleration. Further down the road was a marker (B) at a distance corresponding to the travel if 
the POV braked for four seconds at 0.4 g.  When the POV came abreast of this marker the driver 
would take his foot off the brake and swerve ½ lane to the right. The four second delay between 
the first marker and the second marker on each side were calculated to bring the relative speeds 
and distances between the POV and SV to a condition such that the range at that time was less 
than 90% of the minimum acceptable most imminent crash alert distance. On the left side was a 
marker (A) 62.5 meters before the first marker on the right. The driver of the SV would check 
that the SV was even with this marker at the time the POV began braking.  Further down the road 
was a second marker (B) on the left side of the road. This marker was at a distance corresponding 
to the travel of the SV at 100 kph for four seconds. When the SV came abreast of this marker the 
driver would swerve ½ lane to the left and then begin braking. 

For practice runs, the position of the second marker was placed closer to the first. Practice began 
with a delay of 1 second from the onset of braking until the evasive maneuver. The second cone 
on each side was moved down the track between trials until the delay from onset of braking to the 
evasive maneuver was four seconds. 

It was found that the digital display of the lead vehicle deceleration was updated too slow to 
provide good real-time adjustment of the braking level. Instead, the driver of the POV would read 
the braking level during a trial and use that to adjust the pressure he placed on the brake during 
the next trial.  A mechanical acceleration indicator such as those which use a fluid in a U-shaped 
glass tube has been found to provide better real-time feedback to the driver. Another alternative 
would be to install an automatic braking system in the POV as was done for the human factors 
studies in this project. 
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Test C-3: 100 kph to POV braking moderately from 100 kph 

SV at constant speed, POV begins 
2.25 sec headway braking, -0.4g 

1) Test begins. 

2) Range falls until 
alert is required. 

SV maintains speed. 

������� 

��������������������������� 

Crash 
Alert Required 

Alerts Optional 

3) Evasion 
maneuver 
follows the test. 

��������������������������������������������������� 
��������������������������������������������������� 

Figure 7-6 Driving Cues for Test C-3 

Seventeen trials were performed once the orchestration and practice phases were complete, 
including 7 trials with the radar-based countermeasure and 10 with the laser radar system. An 
example of the vehicle motions and alert requirements during the trials is shown in Figure 7-7. 
Data showing the longitudinal motions and requirements are shown in the top plot of the figure, 
and lateral components are shown in the bottom half. In this example, the SV and POV speeds 
are initially near 100kph and the range between the vehicles is approximately 61 meters, per the 
specifications in the interim test procedures. The POV begins to brake near the 8 second mark in 
the plots, as shown by the deceleration levels and the falling POV speed. The range between the 
vehicles also begins to fall. 

The lower plot in Figure 7-7 includes two traces representing the lateral positions of the center of 
the vehicles, measured relative to the road. In this example the SV runs slightly to the right of the 
POV as they approach the point of braking, but within the test specifications of 0.5 meter. 

In both plots, notice the vertical line at about 11.5 seconds. This indicates the moment that the 
most imminent alert becomes allowed by the requirements in Chapter 4. This change is due to the 
decrease in the range that is caused by the slowing lead vehicle. A bar running along the abscissas 
changes from light shading (most imminent alert prohibited) to a hatched pattern to indicate that 
the most imminent alert is now permissible. About one second later, a second vertical line 
indicates that the most imminent alert is now required. The bar changes from hatched to solid 
black. The alert requirement changes in this test due to the decreasing range. 

Consider the kinematic conditions at  the moment that the most imminent alert becomes required: 
the SV is closing on the POV at 50kph (13.9 m/s) and the range for the various trials falls between 
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35 and 38 meters. Thus the time to collision is less than three seconds. As the POV continues to 
brake, the range and the time to collision drop quickly; the drivers of these 17 trials felt safe with 
this test, but there is a need for careful orchestration and execution. 

Returning to Figure 7-7, as the goal of reaching the crash alert minimum required range is 
achieved, the POV steers to its right and the SV to its left in the planned evasive maneuver. 
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Figure 7-7	 Vehicle Motions and Alert Requirements During a Test Trial: 
Test C-3 100 kph to POV Braking Moderately From 100 kph 
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The POV has released its brakes slightly before this goal. In the 17 trials, several trials showed 
one or both vehicles beginning there evasive maneuver slightly early (80 to 250 msec early). This 
can be avoided by placing the evasion cue cones slightly further down the road – the difference 
between an ideal step input braking maneuver and the actual first-order type response left the 
POV traveling slightly faster than predicted by the simple cone-placement analysis. 

To evaluate the definition of the Test C-3 test maneuver that was given in the Chapter 5, the trial 
data was examined closely.  Specified values and tolerances had been proposed for ten variables, 
including SV and POV speeds, headway, POV deceleration profile, SV heading angle, SV and 
POV lateral positions, SV brake switch, and the required range to achieve before beginning the 
evasive maneuver. The data shows that three requirements were sometimes not satisfied during 
execution. None of these, however, suggest substantive changes to the test. Two requirements 
sometimes violated are the average speeds of the vehicles before braking begins. This was caused 
by the POV speedometer being in error by a few kph at the test speeds, and so both vehicles 
typically traveled 102 kph with deviations of less than 0.5 kph. A speedometer calibration or 
more accurate in-vehicle speed indicator would correct this. The third requirement sometimes 
violated was the requirement that the range should drop to 90% of the minimum required range 
before any evasive maneuver occurs. The cause and solution for this issue were described earlier. 

7.4.1.2 Test C-6: SV to POV Parked in Transition to Curve (wet) 

Validation Issues and Findings 

In Test C-6, the SV, initially in a straightaway, approaches a curve. The POV is a stopped car 
approximately 60 to 90 m into the curve. This test studies the countermeasure’s ability to track 
targets through changes in curvature. A wet road is used to ensure that the FCW system is able to 
sense the curvature change with wet roads, a common condition that may challenge some sensing 
modalities. 

This test was selected for execution during the validation phase in order to investigate two key 
issues: executability and sensitivity to the test site (curve radius). The primary concerns 
regarding executability were (1) the safety of running a test involving an evasive lateral maneuver 
in a curve on wet pavement, and (2) the ability to hold a prescribed lateral position in a transition 
to a curve. The primary concern involving test site curvature was to minimize the possibility that 
a test executed on different curves would give different pass/fail results. Executing this test 
would require addressing the availability of curves at the different sites. allowed the opportunity 
to to determine how to promote repeatability of the test across different test sites (proving 
grounds). The test procedures proposed in the interim report required that this test be run at a 
fixed speed (72 kph) on a track with a radius of curvature that falls within a prescribed bound. 
The data from executing this test was expected to provide feedback regarding this approach. 
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Data is presented and discussed in detail below, but the key findings are now stated. The 
executability issues did not lead to any revisions of the test procedures. It was found that the 
evasive maneuver (steering around the POV) involves no discomfort for the driver and presents 
no significant safety concerns beyond common testing work. It is argued that drivers can meet the 
required lateral position tolerance (0.5 m) with the help of driver aids, even though a tendency to 
“cut the curve” appears at the transition to the curve. 

Significant revisions were motivated by the investigation of curvature issues, however. These 
revisions are incorporated in the test procedures of Chapter 5, and follow from two findings. 
First, the available curves at the test track sites considered are rather limited and are not 
representative of public roads either in the radius of curvature values or the superelevations. This 
is especially true when looking for transitions into or out of curves. The available curves are 
typically tighter than required in the first proposed test procedures, with larger superelevations 
than assumed in the original instructions (which used AASHTO guidelines for 
speed/curve/superelevation relationships). The second finding was that the radius of curvatures 
available at the different facilities are quite different in some cases, and without care the 
procedures will not provide a FCW system the same “look” at different sites. For example, at the 
moment of required alert, the POV may appear 8 deg to the left of the SV’s heading at one test 
site and 4 deg at another. This is considered an important element of tests involving curves, and 
the variation was considered unacceptable. 

The speed and radius of curvature requirements were revised (e.g., Test C-6) to resolve these 
concerns. See the test description of Test C-6 in Chapter 5 for the approach taken. With the new 
approach, the azimuth angle to the POV at critical moments in the test is approximately the same 
across a wide range of allowed curvatures. SV heading angle tolerances were tightened to 
improve the repeatability of these tests between trials at the same site. Together, the revisions 
based on these findings provide requirements that allow testing on a wider set of curves, provide 
the FCW similar “looks” at different curves, and still involve curvature/speed settings that are 
realistic public road scenarios. 

A secondary observation involved lane markings at the testing sites. It was found that the 
pavement geometry at both locations satisfied the test requirements but the lane markings at those 
locations did not meet the requirements. At the GM Proving Ground there was a distance of 
about 100 m between the end of the lane markers on the straight section and the beginning of the 
curve. Furthermore, the SV had to cross over markings for the curve that lead into the black lake 
area. At the TRC there was a jog of about 1.5 m in the lanes at the transition and there was a 
spiral section between the straight and circular sections of the path. These conditions are not 
consistent with normal public road marking conventions and were, therefore, not within the test 
requirements. These deficiencies could be remedied by changing the lane markers (either 
permanently or with temporary striping techniques) at each location to meet the test requirements. 

Test Execution Description and Data Discussion 

The test is conducted on a track with a straight section that leads into a curved section. The POV 
is parked in a traffic lane on the curve near the end of the straight section (see Figure 7-8). The 
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straight and curved track leading up to and around the POV are wet. A trial begins with the SV 
traveling down the straight track - the validation trials were executed at 72 kph, as required by the 
original test procedures. (Changes to the speed and curvature requirements of the test, based on 
the validation work, are discussed below.) A trial ends when either the crash alert occurs or the 
SV has come within 90% of the minimum allowed distance for crash alert onset. Once the trial 
has ended the SV driver steers to avoid the POV. 

Test C-6: 72 kph to POV stopped in 
transition to curve (wet) 
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Figure 7-8 Required Test Maneuver for Test C-6 

The tests were conducted at two site: the Vehicle Dynamics Test Area (VDTA) at GM's Milford 
Proving Ground, and the Vehicle Dynamics Area (VDA) at the TRC. Both locations include a 
large paved “black lake” area with loops at opposite sides of the rectangle (see Figure 7-9 and 
Figure 7-10). At both locations there is a marked two-lane straight section on the black-lake area 
of the track. This straight section leads into the 2-lane curved section of road. A similar track 
exists at Ford's Michigan Proving Ground. 

The POV was placed 100 m from the beginning of the curve. A traffic cone was placed where the 
SV could begin its avoidance maneuver (90% of the minimum allowed crash alert onset distance). 
Since the trials were run assuming the original timing requirements, this was 64.2 m from the 
POV, as shown in Figure 7-8. For each trial, the SV accelerated to speed. The driver engaged the 
cruise control and the SV approached and entered the curve while staying near the center of the 
lane. When the marker was along side the SV, the driver would turn to avoid the POV. It was 
raining when the test was run at the GM Proving Ground. At the TRC, a water truck was used to 
keep the track wet. 
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Test Choreography at TRC 
Test C6: Parked car on wet transition to a curve 

Vehicle Dynamics Area 

Transition 

Cone marking 
end of trial 

Parked Car 

Figure 7-9 Test Site at Transportation Research Center for Test C-6


Test Choreography at Milford Proving 
Grounds 

Test C6: Parked car on wet transition to a curve 
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Vehicle Dynamics Test Area 
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Figure 7-10 Test Site at GM Milford Proving Ground for Test C-6
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Sixteen trials were executed at the original SV speed of 72 kph at the TRC. This included eight 
each for the laser radar and the microwave radar FCW systems. Another 8 trials total were run at 
88 kph (55 mph) and six trials total for 56 kph (35 mph), again split evenly between the two FCW 
systems. Figure 7-11 shows results from eight of the 72 kph trials, split evenly between the FCW 
systems.. 

The top plot in Figure 7-11 shows the lateral position of the SV, relative to the road, plotted 
against the distance the SV has traveled along the road from an arbitrary reference point (“down-
road distance”). Both values are computed from onboard DGPS measurements and a survey of 
the test site. The path of the SV for a particular trial  is represented by a trace that begins at the 
left of the figure and moves to the right as the SV travels toward the POV. The trace moves 
downward when the SV drifted right in the lane, and moves upward when the SV drifted left. 
The leftmost vertical line on the plot indicates the down-road position at which the SV front 
bumper crosses the transition from straightaway to curve, which is close to the 760 m point. At 
that point, it is 100 m from the rear of the POV, which is represented by the rightmost vertical line 
(at 860 m). As the trials begin (left region), the range from the SV to the POV is great enough 
that crash alert onset is not allowed, using the requirements of Chapter 4. It is not until the SV 
crosses the transition to the curve and travels another 10 m that a crash alert onset is allowed, and 
yet another 15 m before the crash alert onset is required. The middle two vertical lines indicate 
these points, which are approximately 90 and 75 m from the POV. Note that 72 kph is 20 m/sec, 
so that the crash alert onset must begin within a 0.75 sec window. 

Two results are clear from the top plot in Figure 7-11. First, driving the SV to within the required 
distance (63m here) involves no discomfort for the drivers, who usually went within 50 m before 
beginning the maneuver. Second, the requirement on SV lateral position (within 0.5m of the lane 
center) is not met. The variation in the lateral position among the eight trials shown, at any given 
down-road position, does remain within 0.5m of a downroad position-dependent offset, but this 
offset varies. Two factors contribute to this. First, “cutting the curve” is seen in the data here and 
in other tests. Without aids for lane-keeping, drivers tend to cut the curves by a fraction of a 
meter. Second, the survey of the road geometry was hindered by the non-standard lane markings 
described above. The surveying involved dead reckoning of lane position near the transition. 
Both of these are considered by-products of the pilot nature of this testing, and did not lead to 
revisions of test procedures. 

The bottom figure plots an “azimuth” angle against the down-road distance. The azimuth angle is 
defined here as the angle, at the SV, between the SV heading direction and the line of sight 
between the SV and the POV. (The heading direction is computed using DGPS position estimates 
of the CG.) Azimuth angle is important because FCW sensing modalities currently have limited 
field of views that may be challenged by this test. As the POV approaches the transition to the 
curve, the azimuth builds to a maximum value of about 6 degrees (positive indicates the POV 
appears “to the right” from the SV perspective). The azimuth then drops as the SV begins to turn 
toward the POV. The avoidance maneuver is clearly seen in this trace at about 800 to 820 m, as 
the SV turns toward its left. 
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Figure 7-11	 SV Lateral Position and the Azimuth Angle To The POV: 
Test C-6 Parked Car in Transition to a Curve 

7.4.1.3  Test C-9: 67 kph POV Cuts in Front of 100 kph SV 

In this test, the SV is initially traveling at constant speed in a given lane on a straight, flat, dry 
road. A slower-moving POV, which is initially traveling in an adjacent lane, changes lanes so that 
it cuts in front of the SV. The POV enters the Alert Zone at a range which is less than the 
minimum required range for a crash alert, as shown in Figure 7-12 below. The test determines 
whether the countermeasure crash alerts occur at appropriate times. The appropriate times are a 
function of both the lateral position of the POV, relative to the SV, and the combination of range, 
range rate, and perhaps relative longitudinal acceleration between the two vehicles. 

The test specification requires that the slow vehicle (the POV) travel at 65 kph while the fast one 
travels at 100 kph. The test requirements include tolerances on the range and lateral speed of the 
POV when it crosses the outer and inner boundaries of the Alert Zone. It also includes tolerances 
on the speeds and the heading angle of the SV. 
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Test C-9: POV at 67 kph cuts in 
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Figure 7-12 Sequence of Required Vehicle Motions for Test C-9 (Cut-In) 

The test trials were conducted using the north end of the Vehicle Dynamics Test Area at GM's 
Milford Proving Ground. This test is more difficult to stage than the two described previously. 
Vehicles traveling at different speeds must arrive simultaneously at their respective locations for 
the start of the lateral maneuver. To accomplish this a circular track was set up with markings 
that helped the drivers get synchronized. There were 8 marks around the circle for the SV and 12 
marks around the circle for the POV. The vehicles would be synchronized if they were passing 
their respective markings simultaneously. Each trial began with the vehicles parked at the 
location marked start. The data recording equipment was started and then the drivers would 
accelerate to their respective speeds. The drivers of the vehicles would then engage their cruise 
control. A radio was used to communicate between the drivers so that one could tell the other 
each time a mark was passed. The other driver could then adjust the speed slightly to get 
synchronized. The POV would travel around the circle 1 ¾ times and then head into the straight 
track section of track. The SV would travel around the circle 2 ¾ times and then head into the 
straight section of track. 

In the straight section of track there were markers indicating where each vehicle should be when 
the POV began its lateral maneuver (B). There were also markers to indicate the lateral position 
and location where the POV should reach its maximum incursion into the lane of the SV (C). 
Finally there were markers that indicated where both vehicles should be when the distance 
between the POV and SV had reached 90% of the minimum acceptable crash alert distance (D). 
This last marker was used as the location where the POV would turn to exit the lane of the SV. 
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Figure 7-13 Test Choreography for Test C-9 (Cut-In) 

The primary concern regarding execution of this test was safety. Therefore, the final test 
condition was approached in steps. First, the vehicles traveled the course without a cut-in 
maneuver. This assured that the proper synchronization had been achieved. Once 
synchronization was accomplished repeatedly the next set of trials included a small lateral 
maneuver. Immediately after the lateral maneuver was initiated both vehicles would turn away 
from each other. After several trials the lateral maneuver was increased until the POV was about 
half way into the lane of the SV. Once there was confidence that this could be done repeatedly 
then the turn to get out of the lane was delayed in stages. The final choreography had the POV 
move about half way into the lane of the SV and stay there long enough for the SV to approach 
within 90% of the minimum acceptable most imminent crash warning.  Under the conditions used 
to execute the test, this distance was 9.94 meters. At that point the POV would move back out of 
the lane of the SV while the SV continued on a straight path. 

Several issues were identified when planning and executing this test. One concern is that the 
maneuver was performed on a blacktop surface that does not have typical road edges nearby. 
Furthermore, there were no lane markings to mark the straight section of the course. The lack of 
lane markings could be corrected with temporary or permanent lane stripes. However, the lack of 
typical roadside features could not be corrected so easily. 

Another concern is that the rules at the GM proving ground limited traveling the circle to 88.5 kph 
(55 mph). This is less than the 100 kph specified in the test procedure. Furthermore, the SV and 
POV traveled the circle in different lanes. This caused the speeds to be different than those 
specified in the test procedure. The nominal speeds used in the validation were 88.5 kph for the 
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SV and 60 kph for the POV. These limits suggest that the test procedures should be modified to 
allow a wider range of speeds to be used in the tests. 

Several alternatives to the staging of this test are possible.  First, the SV and POV could travel the 
circle in the same lane. This would cause them to be driving the same radius and make the ratio 
of their speeds independent of the radius of the circle. Another alternative could be to use a long 
straight track to provide the time to synchronize. The total distance traveled by the SV when 
driving around the circle to achieve synchronized was 2.4 miles. A 2 mile straight track would 
likely provide adequate distance for synchronization before the lateral maneuver. 

Fourteen trials were performed once the orchestration and practice phases were complete, 
including 10 trials with the radar-based countermeasure and 4 with the laser radar system. An 
example of the vehicle motions and alert requirements during the trials is shown in Figure 7-14. 
The top plot in the figure shows variables describing the longitudinal motions and requirements; 
lateral components are shown in the bottom plot in the figure. The figure begins with the vehicles 
emerging from the circular synchronizing loop onto the straightaway. The SV and POV speeds 
are approximately 90 and 60 kph, respectively, and the range decreases at about 9 m/sec, 
beginning on the plot at 62 meters at the 0 second mark. The difference between the SV and POV 
vehicle speeds is fixed during this test. Because the requirements for alert timing used in this 
validation depend only on closing speed, the maximum and minimum allowable ranges at onset of 
the most imminent alert remain constant, at about 39 and 20 meters, respectively, as shown in the 
top plot of Figure 7-14. Because the POV is initially in the left lane and the SV in the right lane, 
however, the range falls below these requirements-related ranges and still no alert is required. 

Near the 4 second mark in Figure 7-14, the POV initiates the cut-in maneuver. Near the 5.2 
second mark, the POV has shifted far enough toward the SV that an alert is permissible (indicated 
by the leftmost vertical line and the changing of the bar from lightly shaded to hatched). The 
POV continues to move farther into the SV’s lane and soon the alert is required. At this point the 
test is over and the SV begins its evasive maneuver, steering to its right. The POV also steers 
away so that by the time the range drops to zero the vehicles are once again in different lanes. 

As with the previous tests, Chapter 5 specifies several variables to define the vehicles’ paths and 
the test maneuver. The unique requirements for this test include the definition of the POV’s 
lateral motion and requirements for the ranges at which the POV encroaches into the Alert Zone. 
One minor change is suggested by experience executing the test. The test procedures called for 
the POV to execute a complete lane change and settle into the center of the SV’s lane. This is not 
required, since the most imminent alert is required before the POV reaches the lane center, and 
thus the test is effectively over. For this reason, and to increase the safety margin, the POV now 
aborts the lane change at a time when the test is complete. 

Regarding the remainder of the requirements unique to this test, the data shows mixed success in 
satisfying these. Generally the lateral velocity during the cut-in is acceptable, but often at times 
the range does not fall within the specified bounds as the POV crosses the two Alert Zone 
boundaries. Sometimes the range is too large, sometimes too small, sometimes it is acceptable. 
This does not suggest a flawed test or even a flawed method of orchestrating the scenario. The 
test can be executed successfully by running two to five trials to get one “acceptable” trial, and/or 
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the drivers’ aids can be improved to create a tighter synchronization and a more repeatable 
vehicle-to-vehicle spacing. 
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Figure 7-14 Vehicle Motions and Alert Requirements During a Test Trial: 
Test C-9 60 kph POV Cuts in Front of 90 kph SV 

7.4.1.4 Test C-13: Greater Size and Equal Distance 

This test requires that the SV travel at 100kph as it approaches a motorcycle between two trucks 
traveling at 32kph. The test is one of two, which explore the countermeasure’s ability to resolve 
in azimuth a target with a small sensor cross-section, while traveling in traffic. (The other test is a 
nuisance alert test, without the motorcycle.) All three POVs are traveling at the same speed, and 
each POV is near the center of its lane. The SV is moving faster, and approaches the three POVs 



�������������������������������

���������������������������������

������

7-40 

at constant speed while traveling in the same lane as the motorcycle. The test must be conducted 
on a three lane straight, flat, dry track. 

Each trial begins with the SV 200 meters behind the other vehicle. The trial ends when the most 
imminent crash alert occurs or the SV comes within 90% of the minimum most imminent crash 
alert distance, whichever comes first. 

Test C-13: Greater size and equal distance 

SV at 100 kph approaches a motorcycle traveling at 32 kph. 
The motorcycle is between two trucks that are also at 32 kph. 

SV 
approaches 

SV ��������������������������������� 
��������������������������������� 

������ 

Range falls below the 

��� ��� ����� ��� ��� ��� ��� ��� ��� ��

minimum allowed for 
imminent alert onset 

Test is over. 
SV brakes and 
changes lanes 

Figure 7-15 Staging Test C-13: Greater Size and Equal Distance 

The test trials were conducted at the Skid-Pad area of the TRC. This is a 6 lane straight track 
approximately 1.5 km long. Two Ford 1995 Model F-700 trucks (24 ft beds, 18,000 lb GVW) 
were used. The motorcycle was a 1985 Honda Nighthawk, 650 cc motorcycle provided by the 
TRC. The instrumentation package in the left truck was as previously described for the POV. 
The video camera was attached to the right rear of the truck so that it could monitor the location 
of the motorcycle between the trucks. The GPS antenna was placed at the center-rear on top of 
the truck. A GPS antenna was also placed on the roof of the center-front on top of the right truck 
with a receiver and computer in the cab to record the GPS data. 

Each trial began with the SV parked at one end of the track in the center lane. The other vehicles 
drove down the track in formation at 32 kph. The trucks stayed in the center of their lanes with 
their front ends even. The motorcycle would maintain a position in the center of its lane so that its 
rear end was even with the rear end of the trucks. When the other vehicles were about 500 meters 
down the track the SV would accelerate to 100 kph and engage the cruise control. A passenger in 
the SV would monitor a range sensor. As the SV approached the other vehicles the passenger 
would read the distance between the SV and POVs to the driver. When the distance reached 45 to 
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50 meters, the driver of the SV would brake hard. This distance was calculated to bring the 
distances between the POVs and the SV to less than 90% of the minimum acceptable most 
imminent crash alert distance.  As the SV slowed the driver would change lanes to be behind one 
of the trucks. The lateral maneuver was to make sure the motorcyclist was safe, even if the brakes 
of the SV failed. 

The staging of this test was straight forward. There were two desirable improvements to the 
instrumentation that were identified. First, the specified speed of the POVs is below the 
minimum set speed for the vehicles. It would be advisable to provide a cruise control that could 
be set at the specified speed or to provide a better speed measurement device so that the speed 
could be controlled more easily. Second, the range measurements used to guide the timing of the 
braking in the SV were those provided by the countermeasures. It would be advisable to provide 
an alternative range measurement device, preferably one with a fast update rate (e.g., 10 Hz) and 
analog gage for the display. 

7.4.1.5 Test N-7: Slow Cars in Adjacent Lane at Transition into a Curve 

This test is used to determine the sensitivity of a FCW system to slower moving traffic in adjacent 
lanes. The test requires that a faster moving SV pass two slower vehicles as the SV enters the 
inner lane of a curve. The test is conducted on a 2-lane track with a straight section that leads into 
the curved section, as shown in Figure 7-16. 
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Figure 7-16 Vehicle Maneuver for Test N-7, Slow Cars in Adjacent Lanes 
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This test was conducted at two locations, GM's Milford Proving Ground and the TRC. At the 
Milford Proving Ground a track called the Hill Loop was used. This includes a 4.2% down hill 
grade leading into a curve with approximately a 90 meter radius. The superelevation in the curve 
was small, similar to that found on public roads. 

At TRC a route marked on the VDA was used. It includes two lanes with white solid lines on the 
outside and a dashed lane marking between the lanes. It includes a straight section that leads into 
a 110 meter radius curve. 

In both locations a set of markers was placed along the track leading to the curve. It was found 
that at least 45 seconds of travel was necessary to achieve synchronization. One minute would 
have been better. The markers were placed at intervals beginning at 10 seconds, decreasing to 5 
seconds and then to 2 seconds as the vehicles approached and entered the curve. 

There were several issues identified while staging this test. The workload on the drivers is high 
for this test. The drivers of the POVs must maintain their lateral position in the lane as they enter 
and traverse the curve. At the same time they must maintain a constant speed, a set distance 
between the first and second POV, and must communicate their position to the driver of the SV so 
that it can get synchronized. The difficulty is increased because the target speeds for the POVs 
were below the minimum set point for their cruise control systems. Therefore the driver of the 
lead POV had to maintain speed and lateral position manually. The workload was decreased 
somewhat by putting a passenger in the lead POV who would communicate the position to the 
driver of the SV as the POV passed the markers. The workload could have been reduced further 
if the POVs were modified so the set speed on their cruise control could be set as low as 15 mph. 
This combined with an adaptive cruise control on the second POV would have left the drivers 
only to watch their lateral position in the lane. It would still leave the driver of the SV with a 
heavy workload; controlling lateral position and adjusting the speed so the SV passes the marks 
synchronized with the times the POV passes its marks. A longer approach, perhaps a minute or 
two, would make this more practical. 

Finally, this test is a nuisance alert test. As such it needs to be repeated hundreds of times to 
demonstrate that the frequency of nuisance alerts will be less than the maximum. The current test 
specification indicates that there should be 567 exposures representing 3 weeks of typical driving. 
Since several POVs can be used the number of pass can be reduced accordingly. If two POVs are 
used, as was done in these experiments, and if it takes approximately 2 to 3 minutes per pass, then 
it would take approximately 9.5 to 14.2 hours to perform this test. 

Over 20 trials were performed once the orchestration and practice phases were complete; these 
trials were split evenly between the radar-based countermeasure and the laser radar system. An 
example of the vehicle motions and alert requirements during a test trial is shown in Figure 7-18. 
The top plot in the figure shows variables describing the longitudinal motions and requirements; 
lateral components are shown in the bottom plot in the figure. 
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Figure 7-17 Cone Placements Used to Perform Test N-7, Slow Cars in Adjacent Lanes 

Figure 7-18 shows data for the SV and both POVs. The top plot shows that the SV and POV 
speeds are approximately 57 and 28 kph, respectively; the range falls at about 8 m/sec. The top 
plot shows the range to the rear of both POVs (the difference in the ranges is approximately 15m). 
Also shown on the plot are ranges associated with the alert timing requirements, as described in 
earlier sections. The maximum and minimum ranges at alert onset are approximately 18 and 35 
meters, respectively. For this test, the single vertical line in the plots indicates the moment when 
the front of the SV crosses the transition of this track from a straightaway to a constant-curvature 
curve; this occurs near 5.5 seconds in the figure. 

No alert is ever permissible or required in this trial because the POVs keep to the center of the 
right lane and the SV passes while traveling in the center of the left lane. The second plot in the 
figure shows the lateral positions of the vehicles, with the SV approximately a lane width (3.6m) 
to the left of the POVs. Note that all vehicles maintain lateral position rather well, even through 
the transition. 

A major goal of this test is to present a countermeasure with the challenging but common 
situation in which a vehicle in a different lane briefly appears to be immediately in front of the SV 
at the same time as the SV is about to encounter a change in road curvature. The example trial 
was successful in creating this situation with the lead POV. The second set of traces in the bottom 
plot represent the azimuth angle of the line of sight from the SV to the two POVs during the trial. 
The angle is measured relative to the SV’s instantaneous heading, and is positive when the POV is 
to the right. The plot shows that the azimuth angle to the lead vehicle initially undergoes a 
transition that is due to a bend in the track, and then settles to about 2 degrees between 1 and 4 
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seconds in the plots.  ins the turn it appears to swing in front of the SV, thus the
azimuth drops toward zero between 4 and 5 seconds.  hen the SV reaches the transition, the lead
POV is almost directly in front of it (azimuth near zero), which is the intended situation.  
that moment, the SV begins its turn and with the small range, the POV appears to swing rapidly
away to the right as the SV begins to pass.

As with the previous tests, Chapter 5 specifies several variables to define the vehicles’ paths and
the test maneuver.  
synchronize the SV and POV longitudinal positions at low speeds; and the need for simultaneous
manual control of both POV speed and lateral position.  gestions above addressed these items.
The data indicates variability in speeds and lateral positions, as well as variations in the azimuth
angles when the SV crossed the transition in curvature.  ing these drivers’ aids issues are
addressed, however, test execution data does not appear to require significant changes to the test.

Figure 7-18 Vehicle Motions and Imminent Alert Requirements During a Test Trial
Test N-7 Slow Cars in Adjacent Lanes
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7.4.2 Validation Results 

7.4.2.1 Understandability 

The test methodology contained in Chapter 5 is a framework that can be adapted as the functional 
and performance requirements are refined and as FCW systems improve. It is considered a draft 
that will be refined and adjusted. Even so, as part of the test procedure evaluation, a review of the 
procedures was conducted by staffs at the proving ground of each of the partner companies. 

Test engineers at Ford and GM were given a copy of the contents of Chapter 5 and a briefing 
summarizing the contents. They were asked to use the descriptions to determine if there were 
tracks at their facilities that meet the requirements for the tests. They were also asked to 
determine if the test procedures could be run within the safety and other work environment 
standards at their facility. 

There was one area identified where the test procedure descriptions should be improved. The first 
is that the track geometry descriptions for the Nuisance Alert Tests include many references to the 
AASHTO Guidelines. In particular, there are references to tables in the guidelines that should be 
used to determine the speed at which tests should be run. The speeds depend upon the radius of 
curvature and super-elevation of the curves available at the testing facility. The next version of 
the procedures should summarize the guidelines and provide tables that are more easily 
interpreted by anyone who want to run the test. 

Other observations included that the procedure descriptions need to be clarified and made more 
consistent. The test engineers thought that most of the procedures could be executed at their 
facilities. An exception was that the Ford engineers thought their work rules would prohibit 
placing the guardrails close enough to the track to satisfy the requirements for test N-4. 

7.4.2.2 Executability 

Five of the tests proposed in Chapter 5 were executed. Some of the tests were selected because 
they were considered to be potentially challenging tests to perform. The selected tests were 
demonstrated to be executable, in terms of the critical events of the tests. Regarding the overall 
paths the vehicles were required to follow, the execution suggests some changes to the test 
methodology and tolerances. Some changes to the roadway configuration requirements were 
made to make it possible to use existing tracks. The individual sections 7.4.1.1 through 7.4.1.5 
address some possible specific changes; analysis and discussion was used to propagate the 
changes to all tests. 

7.4.2.3 Cost 

The total cost to create and integrate the instrumentation packages for the SV and two POVs was 
approximately $257,000. This included approximately $134,000 for commercially available 
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equipment listed in Appendix E. The remainder of the cost was for custom brackets, assembly, 
and on-board data acquisition software. Not included is the cost for CAMP software development 
for post-test data analysis. 

Some instrumentation and props that would be necessary for full implementation of the test 
procedures were not necessary for the tests that were executed for this study. One significant piece 
of instrumentation would be necessary for test C-11, to measure the visibility. Visibility meters 
such as those used in meteorology studies, can be acquired for around $10,000. If they did not 
already exist at the testing facility, full implementation of the test procedures would have to 
include purchase of additional props, including some portable concrete barriers, metal guardrails 
and an overhead sign. 

7.4.2.4 Time Required 

The time required could be divided into planning, setup, execution, and data analysis. The total 
time to execute and analyze a complete set of tests is estimated to be less than 4 weeks. The 
initial planning, surveying, and construction of props is not included in the 4 weeks. The table 
below provides estimates of the time required to execute the selected tests. Estimates include 
surveying the initial and repeat placement of cones, driving practice time, and test maneuver 
execution for one trial and for all trials. 

Test Survey Repeat Setup Practice 
Execute 
Once 

Total 
Execution 

C-3: Lead vehicle braking 1 hour 15 minutes ½ day 5 minutes ½ day 

C-6: Stopped vehicle in 
transition to wet curve 

½ hour 5 minutes 1 hour 5 minutes 2 hours 

C-9: Cut in ½ day 1 hour 1 day 15 minutes ½ day 

C-13: Greater Size, Equal 
Distance (2 trucks & 
M'cycle) 

none none 1 hour 5 minutes 2 hours 

N-7: Slow cars in adjacent 
lane at a curve 

2 hours ½ hour 2 hours 3 minutes 15 hours 

Table 7-5 Test Procedure Execution Time Estimates 

Data analysis time is not included in the table.  Data analysis time for these tests will depend on 
the overall system design for data acquisition, file transfer, and data analysis. If the tests become 
an accepted means for evaluating countermeasures, it is reasonable to expect that software will be 
developed to provide a semi-automated means to transform the raw test measurement data into a 
results sheet documenting test trial validity and countermeasure performance. With this 
assumption, the data analysis time is expected to fall within the estimated 4-week duration of 
testing. 

The level of data reduction assumed above was not achieved during testing activities -- the data 
analysis software was developed only to support the validation efforts, and the software needed to 
be a flexible analysis and learning tool to support study of the procedures themselves. 
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7.4.3 Sensitivity Analysis 

The results of testing an FCW system should not vary, as long as the execution of the tests 
satisfies the requirements given in the test procedures. To look for undesirable sensitivities of 
testing results, Chapter 6 suggested that five areas of sensitivity be examined. These areas are 
discussed below. 

7.4.3.1 Site & Props 

The sensitivity of the test results to differences in test sites and to variations in the props is 
studied. Sensitivity to sites relates to three characteristics, (1) differences in surrounding clutter, 
(2) differences in road geometry, and (3) differences in road markings. 

The site chosen for execution of test C-13 demonstrated that surrounding clutter can cause 
unexpected results. A sprinkler system designed to wet the test track tended to cause one of the 
countermeasures to generate alerts as it was passed. Once the cause of the alerts was identified, it 
was simple to run the tests on a different part of the track. There were no other instances where 
surrounding clutter seemed to affect test results. 

The primary concern regarding road geometry is whether differences in horizontal or vertical 
curvature can impact test results. Two tests (C-6 and N-7) were each run at two locations. In test 
N-7 (slow cars in adjacent lanes) the vehicle speeds are a function of the radius of curvature of the 
available track. In test C-9 (parked car on a wet transition to a curve) the speed of the SV is 
constant while the requirements place bounds on the curve that can be used. 

The last concern regarding sites was whether test results would be sensitive to the type or quality 
of the road markings. In the tests performed, only the Laser Radar system has optical sensors to 
detect the road markings. There was no observed sensitivity to the differences in the qualities of 
the lane markings at the test tracks. However, it is recognized that differences in road markings 
could become more important for future FCW systems. 

The only props used during the execution of the tests were the other vehicles. It was observed that 
there is some sensitivity to the characteristics of the POVs. This led to the conclusion that the test 
specifications must be more specific regarding the characteristics of the vehicles that are used in 
the tests. 

7.4.3.2 Test Team 

The sensitivity of test results to changes in the particular team of engineers and drivers who would 
execute the tests. This proposal was part of the overall desire to look for possible failures of the 
test methodology to produce repeatable results. Consider three ways in which the evaluation of a 
countermeasure’s performance in a test may vary among teams of testing staffs: 

1. Different interpretations of the testing maneuvers and prop layouts could occur. 
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2.	 Different ways of conducting a test could occur if organizations use different assumptions 
about how tests are conducted. 

3. Different vehicle motions could result from individual differences in driving patterns. 

These three separate pieces were addressed in different ways. For the first two items, (1) and (2), 
feedback from proving ground staff at each company was received after they reviewed an interim 
version of the test procedures document, as described earlier. There were no clear differences in 
interpretation between the two companies, though it is possible that such differences would 
become apparent if the groups executed the tests. For item (3), test execution of both Tests C-6 
and N-7 was done using different drivers. No significant effect of using different drivers was seen 
in the countermeasure evaluation results. 

7.4.3.3 Path Tolerances 

The differences in test results stemming from allowed differences in vehicle path is to be 
minimized. Consider three elements of the vehicle paths: vehicle speeds, vehicle decelerations, 
and vehicle lateral positions. Let us consider these elements individually. 

First, there is not likely to be sensitivity of test results to allowed variations in vehicle speeds. In 
practice, vehicle speed variations are quite small due to cruise control systems. Also, for crash-
alert timing, performance criteria are given as a function of vehicle speeds, thus compensating for 
the small differences in speed that are seen. For nuisance alert tests, it is thought to be unlikely 
that the small changes allowed in vehicle speed (2 kph) will affect the occurrence of nuisance 
alerts. 

Second, the sensitivity of results to vehicle decelerations addresses possible passing or failing of 
systems during the two tests that include lead vehicle decelerations (Tests C-3 and C-12). Any 
answers to this are likely to be analytical products because such a sensitivity is likely to be 
possible only if either the timing requirements or the countermeasure itself include a dependence 
on vehicle accelerations. Indeed, real sensitivity is likely to result if only one of these 
(requirements, or countermeasure algorithms) include vehicle deceleration effects. For now, 
however, the proposed requirements for alert timing depend only on the closing speed and not 
accelerations. With countermeasures that use only speeds in their timing algorithms, there can be 
sensitivity to deceleration levels only when the deceleration tolerances allow significant variations 
in speed profiles, which is not allowed in the procedures. With countermeasures that employ 
estimates of vehicle accelerations, there may be variations in performance, but the relative 
significance of the amount is not available from the evaluation work conducted here. 

7.4.3.4 System Settings 

Some FCWs include driver-adjustable settings to control, for example, the relative timing of 
alerts. One of the systems used by CAMP includes a rotary dial to adjust alert timing; the other 
system does not. The Chapter 5 suggested the following approach to testing a system that 
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includes adjustable settings: Testing is conducted with the system set at minimum sensitivity. 
The reasoning was that crash alerts must occur soon enough, per the minimum requirements, no 
matter how a driver adjusts the system, and that the driver should be able to maintain that 
performance while not encountering too many nuisance alerts. Thus there can be no sensitivity of 
a countermeasure’s assessment to any ability to adjust system settings. 

Another possible advantage of conducting tests at different settings during the test procedure 
evaluation phase is to look for unwanted sensitivities within particular tests. Because there was no 
electronic access to one of the systems alert timing signals, however, such an investigation is not 
possible. 

7.4.3.5 Pass/Fail Criteria 

Chapter 6 included an analysis of the impact of small changes in the results from individual tests 
upon the overall results. A related concern is whether any of the pass/fail criteria have an 
inordinate impact upon the overall results. There was no indication from the tests that were 
executed, that small changes in the pass/fail criteria would alter the overall assessment of the 
unites used in the testing.  It was found that, for any particular test, the countermeasures used in 
this study either passed the tests easily or had far more alerts than would be acceptable. This 
suggests that small changes in the weights would not change whether a system passes or fails. 

7.4.4 Correlation With Performance During Typical Driving 

The work described in this section was performed to demonstrate that the test procedures subject 
FCW systems to a set of scenarios similar to public road situations that may trigger crash alerts. 
The two FCW systems described in 7.3.1 – a laser radar-based system, and a microwave radar-
based system -- were each driven on roads with normal traffic to identify conditions that 
frequently produce alerts. The vehicles were driven in both urban and rural areas, on residential, 
feeder, arterial and limited access roads in heavy and light traffic conditions during the day and at 
night. Data similar to that collected from the SV during track tests was collected during these 
driving conditions. The videotapes and collected data were analyzed to identify conditions that 
produce alerts. The test procedures were analyzed to determine if these conditions are 
represented. Subjective judgments were made regarding whether the results from the track tests 
are similar to the results from driving on public roads. 

A route was selected through southeastern Michigan that is approximately 320 km (200 miles) 
long. This corresponds to the average distance traveled by a passenger car in one week 
(Horowitz, 1986). The route characteristics closely approximate the distribution of local, arterial, 
and highway miles in urban and rural areas during the day and at night, as reported in Stewart and 
Burgett, 1989. The breakdown of the road types included in the route is shown in Table 7-6. A 
detailed description of the route is included in the Appendix E, Section E.2. 
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Road Type Daytime distance 
(km) 

Nighttime distance 
(km) 

Total (km) 

Urban-Local 32.2 7.8 40.0 

Urban-Arterial 87.2 17.7 104.9 

Urban-Highway 44.4 7.5 51.9 

Rural-Local 22.9 6.6 29.5 

Rural-Arterial 43.7 11.0 54.7 

Rural-Highway 34.4 6.7 41.1 

Total for all highways: 264.8 57.3 322.1 

Table 7-6 Average Distribution of Driving Conditions 

The data collection and analysis were performed by CAMP staff members who have worked on 
the human factors aspects of the project. The daytime route was driven between 8 a.m. and 4 p.m. 
on December 14, 1998. The night time route was driven between 7 p.m. and 9 p.m. on December 
15, 1998. During the drive one of the researchers drove while the other recorded the time of each 
alert and the apparent cause. 

While driving the selected route the following types of data were collected: 

° GPS to provide approximate location 

° Vehicle speed 

°	 Video showing movement of vehicles ahead of the SV and roadway clutter in the field 
of view of the sensor. The video was time stamped to correspond closely with GPS 
time (within 2 seconds). 

° Lateral and longitudinal location of all objects, as observed by the FCW sensor. 

° Time and level of each FCW system alert. 

° The lateral and longitudinal offset of the primary object when each alert occurs. 

Once the data was collected the researchers reviewed the collected data to identify any alerts that 
occurred for which the cause was not clear. For each of these alerts the ancillary data was 
reviewed to identify the likely causes. For example, the lateral and longitudinal information about 
the cause of the alert and the time history of observed objects was used to determine the location 
and motion of the cause of the alert. Then the video was examined to see what objects had similar 
motion. This analysis produced a list of conditions that caused alerts. To determine the total 
exposure to similar conditions the video and other data were again reviewed to determine the total 
number of times each set of conditions was encountered (including those times when an alert was 
not generated). 

To validate part of the specifications for Test C-9, the cut-in test, the video tape was used to 
estimate lateral velocities when vehicles changed lanes in front of the SV. While reviewing the 
video tape, the researchers looked for cut-in instances. They measured how fast the POV made 
the cut-in by noting how long it took to cross the lane markers in each instance and the 
approximate width of the vehicle.  These provided an estimate of the distribution of lateral 
velocities when vehicles change lanes in traffic. 
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The proposed test procedures were reviewed to determine whether they include scenarios similar 
to those that triggered alerts on the public roads. Two alert-producing conditions were found that 
were not represented at the time in the test procedures. Modifications to the test procedures were 
made to include these situations. (Disclosure of the specific conditions is prohibited by 
agreements with the suppliers of the FCW systems.) 

7.5 Summary 
This chapter describes activities and testing conducted to validate a test methodology proposed to 
provide an objective vehicle-level assessment of forward collision warning systems (FCWs). This 
methodology is described in Chapter 5. 

The primary purpose of the validation effort is to assess whether the test procedures are practical 
to execute and provide a reasonable certainty that a FCW system that passes the tests satisfies the 
preliminary minimum functional requirements. The proposed methodology is intended to provide 
repeatable assessments of FCW systems. The tests are designed to be independent of the sensing 
technology used by the FCW system – in particular, to systems based on millimeter wave radar, 
laser radar, or computer vision sensors. The tests are for use by FCW system suppliers during the 
development of products, by vehicle manufacturers to qualify systems, and by independent 
organizations to evaluate FCW systems. A major consideration was to devise tests that would 
produce consistent results when executed at different locations. Three sites were selected as 
representative of those accessible by the organizations that would execute the tests. These were 
the General Motors Milford Proving Ground near Milford, MI, the Ford Motor Company's 
Michigan Proving Ground near Romeo, MI, and the Transportation Research Center near East 
Liberty, OH. 

A subset of the proposed tests was executed as part of this validation work. Five tests were 
conducted; each test was performed using two different countermeasure systems installed on 
separate test vehicles. The countermeasures included a microwave radar-based system and a laser 
radar-based system. Testing was done at two proving ground facilities. This report describes the 
testing and subsequent test data analysis that was used to study whether the tests are practical and 
repeatable. Other activities not associated with the execution of tests included cost and time 
analyses, comparison of proposed test procedures with a study of public road experiences, and 
investigations into whether the test requirements are inconsistent with existing test track facilities. 
The work conducted to date provides reason to expect that the test methodology, with minor 
revisions and refinements, can meet the initial set of goals. 

The results and conclusions contained herein reflect the current best judgment of the Project. 
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A / STUDY 1 

Subject Information Letter 

Dear Participant, 

You have been asked to participate in research on driver’s braking maneuvers. As a test 
participant, you will drive a real car at speeds ranging from 30-60 mph. The object you will be 
driving behind is an “artificial” rear-end of a vehicle made of a rubber compound. This 
“artificial car” will be towed about 40 feet (or one and one half car lengths) behind a real car. 
You will be asked to make “last-second” braking judgments in order to avoid colliding with the 
artificial car. The passenger in the car you will be driving will be a trained General Motors 
Milford Proving Ground test driver. The test driver will have access to passenger-side brakes 
and will override your braking judgments to avoid collisions with the artificial car. Whenever 
the test driver overrides your braking judgments, the lead vehicle towing the artificial car will 
immediately accelerate. If you do collide with the lead vehicle, you should know that the 
artificial car is constructed of a “soft” material such that, if struck, it is designed not to cause 
injury to either the test participant or researchers. Furthermore, the artificial car and towing 
vehicle are connected with a beam that is designed to collapse and absorb the collision impact if 
the artificial car is struck. At the conclusion of this study you will be asked to complete a 
questionnaire about your experience. At no time will you be asked to perform any unsafe driving 
actions. 

You must have a valid, unrestricted, U.S. drivers license (except for corrective eye glasses), have 
a minimum of 2 years driving experience, be over the age of 18, pass hearing and vision tests 
(with correction allowed), be able to drive an automatic transmission vehicle without assistive 
devices or special equipment, be able to give informed consent, and not be under the influence of 
alcohol, drugs, or any other substances (e.g., antihistamines) which may impair your ability to 
drive. In addition you must not have a history of heart condition or prior heart attack, lingering 
effects of brain damage from stroke, tumor, head injury, or infection, epileptic seizures in the 
past 12 months, shortness of breath or chronic medical therapy for respiratory disorders, a history 
of motion sickness, a history of inner ear problems, dizziness, vertigo, or balance problems, 
diabetes for which insulin is required, chronic migraine or tension headaches, or be pregnant. 
You must not have used alcohol, drugs, or any other substances (e.g., antihistamines) which will 
impair your ability to drive for a period of no less than 24 hours prior to participation. 

Risks: There are some risks and discomforts to which you expose yourself in volunteering for 
this research. This includes the risk of an accident normally associated with driving and braking 
a vehicle in response to a stopped or slowing lead vehicle. Unlike in normal driving, this stopped 
or slowing lead vehicle will be a “soft” artificial vehicle attached to a collapsible beam (as 
described above), and your passenger will be a trained General Motors Milford Proving Ground 
test driver. This test driver will have access to passenger-side brakes and will override your “last 
second” braking judgments to avoid collisions with the artificial car. Whenever the test driver 
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overrides your brakes, the (lead) tow vehicle will be instructed to immediately accelerate. If an 
accident does occur, the experimenters will arrange medical transportation to the Milford Proving 
Ground Medical facility. You will be required to undergo examination by medical personnel in 
the emergency room. You will be responsible for making arrangements for payment of the 
expenses of such treatment. 

Benefits: There are no direct benefits to you from this research other than payment. However, by 
participating in this study, you are lending your experience as a driver to research on driver’s 
braking behavior under certain conditions. You will not be informed as to the results of this 
study. 

Payment: You will be paid $150 for participation in this study. The study will take about 2-2 ½ 
hours. Payment will be made by check at the time of participation. 

Withdrawal:  Participation in this study is voluntary.  You may withdraw at anytime, for any 
reason, without penalty. Should you withdraw, you will be paid, in full, for any portion of the 
study you either completed or started. 

Confidentiality: The data gathered in this study will be treated with anonymity. Shortly after 
you have participated, your name will be separated from your data and it will be given a number. 
Only the Principle Investigator will have access to this coding information. Your name will not 
appear in any reports or papers written about the project. Any videotapes of your data will be 
kept until they are no longer needed. 

The researchers hope that you will agree to participate in this study. If you have any questions, 
please feel free at any time to ask the experimenter. 

Once you have had your questions answered, please let the experimenter know whether you are 
interested in participating in this study. If you are willing to participate, the experimenter will 
ask you some questions to ensure that your background and experience match our research needs. 
If it is determined that you qualify to participate, you will be asked to read and sign an Informed 
Consent Form before you can actually participate in the study. 
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Informed Consent 

I,  , agree to participate in research on driver’s braking 
maneuvers. 

1. You are being asked to volunteer to be a subject in a research project whose purpose and 
description are contained in the Information Letter: The purpose of this experiment is to 
investigate driver’s braking maneuvers. As a test participant, you will drive a real car at speeds 
ranging from 30-60 mph. The object you will be driving behind is an “artificial” rear-end of a 
vehicle made of a rubber compound. This “artificial car” will be towed about 40 feet (or one and 
one half car lengths) behind a real car. You will be asked to make “last-second” braking 
judgments in order to avoid colliding with the artificial car. The passenger in the car you will be 
driving will be a trained General Motors Milford Proving Ground test driver. The test driver will 
have access to passenger-side brakes and will override your braking judgments to avoid 
collisions with the artificial car. Whenever the test driver overrides your braking judgments, the 
lead vehicle towing the artificial car will immediately accelerate. If you do collide with the lead 
vehicle, you should know that the artificial car is constructed of a “soft” material such that, if 
struck, it is designed not to cause injury to either the test participant or researchers. Furthermore, 
the artificial car and towing vehicle are connected with a beam that is designed to collapse and 
absorb the collision impact if the artificial car is struck. At the conclusion of this study you will 
be asked to complete a questionnaire about your experience. At no time will you be asked to 
perform any unsafe driving actions. 

There are some risks and discomforts to which you expose yourself in volunteering for this 
research. These include the risk of an accident normally associated with driving and braking a 
vehicle in response to a stopped or slowing lead vehicle. Unlike in normal driving, this stopped 
or slowing lead vehicle will be a “soft” artificial vehicle attached to a collapsible beam (as 
described above), and your passenger will be a trained General Motors Milford Proving Ground 
test driver. This test driver will have access to passenger-side brakes and will override your “last 
second” braking judgments to avoid collisions with the artificial car. Whenever the test driver 
overrides your brakes, the (lead) tow vehicle will be instructed to immediately accelerate. 

3. The following precautions will be taken during your drive: 

The experimenter will always be present in the test vehicle and will monitor your driving.  They 
will ask you to discontinue participation if they feel the risks are too great to continue. However, 
as long as you are driving the research vehicle, it remains your responsibility to drive in a safe, 
legal manner. 

The front seat experimenter will have an override brake pedal. 

The vehicle is equipped with dual airbags and anti-lock brakes. Air bags inflate with great force, 
faster than the blink of an eye. If you’re too close to an inflating air bag, it could seriously injure 
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you. Safety belts help you keep in position before and during a crash. You should always wear 
your safety belt, even with air bags. You will be required to wear your lap and shoulder belt 
system during this test anytime the car is on the road. You should sit as far back as possible 
while still maintaining control of the vehicle. 

The vehicle is equipped with a fire extinguisher and first-aid kit. The lead vehicle has a cellular 
phone. 

If an accident does occur, the experimenters will arrange medical transportation to the Milford 
Proving Ground Medical facility. You will be required to undergo examination by medical 
personnel in the emergency room. You will be responsible for making arrangements for payment 
of the expenses of such treatment. 

Trained medical personnel will be immediately accessible by phone at all times during testing. 

4. The data gathered in this study will be treated with anonymity. Shortly after you have 
participated, your name will be separated from your data and it will be given a number. Only the 
Principle Investigator will have access to this coding information. Your name will not appear in 
any reports or papers written about the project. Any videotapes of your data will be kept until 
they are no longer needed. It is possible that, should you be involved in an accident during 
testing, the researchers will have to release your data on your driving in response to a court order. 

5. You will be paid $150 for participation in this study. The study will take about 2-2 ½ 
hours. Payment will be made by check at the time of participation. 

6. There are no direct benefits to you from this research other than payment. However, by 
participating in this study, you are lending your experience and expertise as a driver to investigate 
driver’s braking maneuvers. You will not be informed as to the results of this study. 

7. By agreeing to participate, you certify that you possess a valid, unrestricted, U.S. drivers 
license (except for corrective eye glasses), have a minimum of 2 years driving experience, are 
over the age of 18, have normal hearing and vision (with correction allowed), are able to drive an 
automatic transmission vehicle without assistive devices or special equipment, are able to give 
informed consent, and are not under the influence of alcohol, drugs, or any other substances (e.g., 
antihistamines) which may impair your ability to drive.  You also certify that you do not have a 
history of heart condition or prior heart attack, lingering effects of brain damage from stroke, 
tumor, head injury, or infection, epileptic seizures in the past 12 months, shortness of breath or 
chronic medical therapy for respiratory disorders, a history of motion sickness, a history of inner 
ear problems, dizziness, vertigo, or balance problems, diabetes for which insulin is required, 
chronic migraine or tension headaches, or are pregnant. Additionally, you have not used alcohol, 
drugs, or any other substances (e.g., antihistamines) which will impair your ability to drive for a 
period of no less than 24 hours prior to participation. 

8. The experimenters will answer any question that you might have about this project and 
you should not sign this informed consent form until you are satisfied that you understand all of 



A-11 

the previous descriptions and conditions. You may contact the principal investigator at the 
following address and telephone number: 

Raymond J. Kiefer, Ph.D.

CAMP

Discovery Centre

39255 Country Club Drive

Suite B-30

Farmington Hills, MI 48331

(810) 848-9595 ext. 15


9. If information becomes available which might reasonably be expected to affect my 
willingness to continue participating in this study, this information will be provided to me. 

10. Participation in this study is voluntary.  You may withdraw from this study at any time, 
and for any reason, without penalty. Should you withdraw, you will be paid, in full, for any 
portion of the study you either completed or started. 

11. By signing this form you certify, to the best of your knowledge, you have no physical 
ailments or conditions which could either be further aggravated or adversely affected by 
participation in this study. 

I have read and understand the scope of this research program and I have no other questions. I 
hereby give my consent to participate, but I understand that I may stop at anytime, if I choose to 
do so. 

Participant: 

Name: 

Address: 

Telephone: 


Signature: Date: 


Researcher:


Signature: Date: 
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Test Instructions 

We would like now to go over the instructions of the study. The purpose of this study is to 
understand how drivers brake under certain conditions. All of the testing will be conducted on a 
test track, which will be closed, to all other traffic during testing.  The study is being conducted 
jointly by General Motors and Ford. 

During the test, you will be asked to drive a Ford Taurus, which will be equipped with various 
equipment designed to measure your driving performance. When you arrive at the test track, you 
will be given some time to become familiar with this vehicle while the car is parked, and then 
while it is moving. The passenger in the car you will be driving will be a trained General Motors 
Milford Proving Ground test driver. This test driver will be giving you further instructions 
throughout the test. 

During some portions of the test, you will be asked to try and maintain a certain speed, either 30, 
45, or 60 mph. Please accelerate in a comfortable, quick manner to the instructed speed. During 
other parts of the test, you will be told to just drive at a comfortable distance behind an object. 
Throughout the test, the object you will be driving behind is an “artificial” rear-end of a vehicle. 
This lead “artificial” car will be towed about 40 feet (or one and one half car lengths) behind a 
“real” towing vehicle. You will be asked to make both “normal” and “last-second” braking 
judgments in order to avoid colliding with the lead car. When making your braking judgments, 
please respond as if the lead car was a real car. The lead car will sometimes be stationary (or 
parked) and other times be moving. When the lead car is moving, it will at times brake and come 
to a complete stop. The lead car is equipped with working brake lights/stop lamps. The lead car 
driver will brake with various braking intensities throughout the test, ranging from normal 
braking to relatively hard braking. 

The test driver will have access to passenger-side brakes. When necessary, the test driver will 
override your braking judgments to avoid collisions with the lead car. Should this occur during 
your “last-second” braking judgments, please do not be concerned of frustrated, just do the best 
you can. Whenever the test driver does override the brakes, the towing vehicle ahead of the lead 
car will immediately accelerate. The towing vehicle will also be driven by a trained General 
Motors Milford Proving Ground test driver. If you do collide with the lead car, you should know 
that this vehicle is constructed of a “soft” material such that, if struck, it is designed not to cause 
injury to either the test participant or researchers. Furthermore, the lead car and the towing 
vehicle are connected with a beam, which is designed to collapse and absorb the collision impact 
if the lead car is struck. At no time will you be asked to perform any unsafe driving actions. 

After the test is completed, you will be returned here. You will then be given a chance to refresh, 
and receive further explanation about the study. You will then be paid $150 by check and 
dismissed. Your total participation time will be 2-2 ½ hours. 

If you now have any questions about the test, please do not hesitate to ask. 
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Brief Review of Test Instructions 

The object you will be driving behind is an “artificial” rear-end of a car. This car is equipped 
with working brake lights/stop lamps. This lead car will sometimes be stationary (or parked), 
and other times this car will be moving. 

Before each set of tests, I will be giving you instructions as to whether I want you to maintain a 
certain specific speed while following or approaching this lead car, or whether I want you to just 
drive at a comfortable distance behind this car. Please accelerate in a comfortable, quick manner 
to the instructed speed. I will also be giving you instructions as to when I would like you to 
brake in response to the slowing or stopping of the lead car. For example, during some portions 
of the test, I will ask you to brake in response to the lead car exactly the way you normally would 
during driving.  During other portions of the test, I will ask you to brake at the “last second” to 
the slowing or stopping of the lead car. When making your braking judgments, please respond as 
if the lead car was a real car. The lead car driver will brake with various braking intensities 
throughout the test, ranging from normal braking to relatively hard braking. 

Please note I will have access to passenger-side brakes. When necessary, I will override your 
braking judgments to avoid collisions with the lead car. You will normally here a beeping sound 
before I apply the brakes. This sound is my signal to apply the brakes. This signal is turned on 
based on the distance needed to stop our car and the current distance between our car and the lead 
car. If I do override your brakes during braking, please do not panic. Just continue to safely steer 
the car, while I brake the car to a complete stop. Also, please do not be concerned or frustrated if 
I do override your brakes during some tests. Just continue to do the best you can throughout the 
entire testing. 

Whenever the beeping sound is turned on, the driver of the towing vehicle will immediately 
accelerate. This driver is also a trained General Motors Milford Proving Ground test driver. If 
you do collide with the lead car, you should know that this car is constructed of a “soft” material 
such that, if struck, it is designed not to cause injury to either the test participant or researchers. 
Furthermore, the lead car and towing vehicle are connected with a beam, which is designed to 
collapse and absorb the collision impact if the lead car is struck. 
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Detailed Description of the Surrogate Target 

(Provided by Roush Industries, Inc.) 

Objective - The objective was to construct a surrogate target that was capable of absorbing 
energy from a 20-mph impact from a 3,500-lb. vehicle and not be destroyed. The target had to 
look like a real vehicle when viewed from the rear. This includes functional taillights and clear 
vision when viewed through the rear window of the target. The target had to be transportable via 
common shipping methods. The target had to be able to absorb energy without deploying the 
airbag in either the Subject Vehicle (SV) or the Principal Other Vehicle (POV). The target had 
to be able to be towed by a 1997 Ford Taurus SHO (POV), which was equipped with a class 2 
hitch and a 2-inch ball for towing. 

Body - In order for the target to absorb energy due to a rear collision, the simulated body sheet 
metal was designed to deform upon impact and return to its original shape. To accomplish this, a 
flexible polyurethane material (Linex) was selected to mold the rear body sheet metal geometry 
of the target. To create the body of the target, a high temperature epoxy mold was taken directly 
from the rear section of a 1997 Mercury Sable. 

Four coats of Linex Polyurethane were sprayed into the open cavity mold. After the initial four 
coats of Linex were applied, a PVC frame structure designed to support the body shell was 
placed into the mold. Foam padding blocks were placed between the frame and the shell prior to 
permanently bonding the PVC frame to the shell. The foam padding was also used to create 
structural reinforcing ribs across the rear deck and roof areas for added support. With the frame 
in place, five more coats of Linex were applied to the mold to attach the body shell to the PVC 
frame structure. The entire frame and shell assembly was cured in the mold for 24 hours before 
removal. After the Linex had fully cured, cutouts for the taillights were made and the production 
taillight assemblies were installed into the surrogate body shell. 

A rear window was created by vacuum forming a piece of clear polycarbonate over a plaster 
mold. This was incorporated into the body shell using a hinge at the top center of the window 
and 1/8-inch rivets evenly spaced 12inches on center around the perimeter of the window. This 
design feature was incorporated to allow the window to break away from the body shell upon 
impact and return to its original position. 

The body was attached to the trailer with four U-bolts and four Through bolts. The 4 U-bolts 
fastened the plywood header at the front of the shell body to the hoop of the trailer. Two of the 
Through bolts mate the plywood header to the top of the hoop. The other two Through bolts 
were used at the back of the trailer to locate the body laterally on the trailer. Two cables were 
used to help support the mass of the body shell while it is mounted on the trailer. These cables 
were attached at the front of the trailer, run through guides in the top of the trailer hoop, and 
down to eyebolts located in the rear of the PVC frame. Turnbuckles were incorporated into the 
cables to allow tension adjustment. 

Frame - A trailer was designed to carry the simulated vehicle body shell during test maneuvers. 
The trailer frame was constructed using 2-inch x 2-inch x 120-inch mild steel tubing. Refer to 



A-18 

the end of this Appendix for detail drawings of the trailer frame. A 1/2-inch thick sheet of 
exterior grade plywood was mounted onto the mild steel frame to establish a horizontal deck 
surface. A rear bumper was added to the trailer frame to prevent the SV from lodging itself 
underneath the trailer in the event of a rear collision. The addition of the bumper also insured 
that collision impact loads will act along the axis of the trailer. The bumper height was designed 
to be slightly less than that of the SV. The steel bumper is suspended 15 inches off the rear of 
the trailer by four 2.5-inch springs rated at 250 lb./inch. A sliding joint was incorporated into the 
trailer frame to support the mass of the bumper and insure that all bumper motion was in the 
axial direction. A foam absorber was molded and installed between the steel trailer bumper and 
the polyurethane body shell. This foam bumper was molded using a high-density 2-part 
expandable foam material. 

The design of the trailer originally incorporated three energy absorbers between the front and rear 
section of the trailer frame. By incorporating the rear spring bumper, this feature was deemed 
unnecessary, and these parts have been deleted from the design. 

Telescoping Boom - The trailer tongue assembly was designed with a telescoping boom feature 
that functioned as an energy absorber during a rear collision with the target. Refer to the end of 
this Appendix for detail drawings. The telescoping boom is designed to collapse axially upon 
rear impact loading.  The boom consists of 4 sections of 1/4-inch thick aluminum tubing, and a 
small hitch section. The first, second, and fourth sections were all constructed using six-inch 
diameter aluminum tubing, each section being ten feet long. The first section incorporated the 
ball hitch receiver and attached to the second section via mating flanges. The mating flanges 
consist of 1/2-inch thick aluminum plates that were welded to the end of each aluminum tube 
section (except for the hitch section, which is made of steel). The second section incorporated a 
flange at the first and second section interface only.  The second to third section interface did not 
include a flange to allow for a slip fit with the third section. The third section consists of an 
aluminum tube having a 5.5-inch diameter by ten feet in length. The tube diameter was 
machined down to 5.5 inches to allow for a slip fit between the second and fourth sections. Four 
1/2-inch through holes were drilled into the third tube section to accept through bolts. The 
second and fourth sections were slotted horizontally along the axis of each tube to act as a guide 
for the through bolts located in section three. The fourth section is also open at the third and 
fourth section interface and is flanged at the trailer interface where it is it is bolted to the trailer. 
All mating flanges were bolted together with (4) 2-inch x1/2-inch bolts at each corner of the 
flanges. Large 1/2-inch washers were used between the bolt heads and the nuts to prevent 
gouging of the outer tubes as the bolts slide through the slots. Two bolts were used at either end 
to prevent sagging in the boom and insure that the tube will collapse and slide along the axis of 
the boom during an impact. 

Brakes - An electric trailer braking system was used to improve braking stability and improve 
safety during test maneuvers. The trailer brakes are primarily activated directly from the brakes 
of the POV but can also be activated independently through a manual override system. In the 
linked mode, the braking system utilizes a sensor that proportions the braking force of the trailer 
with that of the POV. This sensor is adjustable to allow brake proportioning between the trailer 
and the tow vehicle.  This was used to calibrate the braking system to the weight of the Surrogate 
Target assembly. In the independent mode, the trailer brakes can be activated separately from the 
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POV via a manual switch. This would allow the brakes of the trailer to be activated 
independently without activating the brakes in the POV. 

Electrical - All electrical wiring was custom fabricated to be modular in design. Quick 
disconnect, all weather connectors were used to ease installation and removal of the body. The 
production taillights used the production wiring sub-assemblies, which were easily disconnected 
from the main harness of the trailer. Quick disconnect, all weather connectors were also used in 
the wiring harness at the end of each boom section in case the boom needed to be shortened or 
lengthened. The wiring harness was covered with a protective shield of convolute tubing and 
secured to the trailer. All wiring was tested to insure all lights functioned properly.  All wiring 
required to support the trailer brakes, taillights and high-mounted stoplight was constructed and 
fastened to the deck of the trailer. Quick-disconnect connectors were used to ease installation 
and removal of the body. Quick-disconnect connectors were used in the wiring harness at the 
end of each section of the boom. Wiring was made modular in case the boom was to be 
shortened by sections. 
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Component List 

(1) 55 gallon drum Linex part B 
(1) 55 gallon drum Linex part A 
(1) Right taillight – part # F6DZ13404B 
(1) Left taillight – part #FF6DZ13405B 
(1) Right reflector – part #F7DZ13A565AB 
(1) Left reflector – part #F7DZ13A565AA 
(1) High mount third brake light – part 

#F6DZ13A613AD 
(2) Stop signal sockets – part #F6DZ13410B 
(2) Turn signal sockets – part 

#F6DZ13411A 
(4) Brake & turn bulbs – part #F5DZ13466B 
(2) Side marker bulbs – part #CZAZ13466C 
(2) High mount third brake light bulb – part 

#D7TZ13466A 
(1) 3,500-lb. Class 2 hitch 
(48 feet) 2” x 2” .120” steel tubing 
(24 feet) 1” x 1” x .090” steel tubing 
(12 feet) 1” x 2” x .090” steel tubing 
(1) 2’ x 4’ .25’ steel plate 
(30) feet 6” x .25 6061-T6 aluminum pipe 
(10 feet) 5.5” x .25 6061-T6 aluminum pipe 
(1) 2’ x 4’ x .50 aluminum plate 
(36 feet) 2.5” PVC pipe 
(18) 90-degree PVC elbow fittings 
(12) PVC “T” fittings 
(1) 2” 3,500-lb. trailer hitch coupler 
(2) Light duty ratcheting tie downs 
(1) Set 7” brakes 
(2) 7” brake drums 
(2) Brake flanges 
(1) Brake controller 
(1) 15 amp inline fuse 
(1) Circuit breaker 
(2) 5.30 x 12 B tires and rims 
(1) 2,000-lb. axle assembly 
(1) Sheet ½” CDX plywood 
(4) Eiback 250 lb./in. 2.55” x 14” coil 

springs – part #1400-250-0250 

(4) 7” x ½” x 13 grade 8 bolts

(16) 2” x ½” x 13 grade 8 bolts

(20) ½” x 12 grade 8 bolts

(40) ½” flat washers

(1) 6” x 1” hinge

(1) Sheet 1/8” polycarbonate

(2) ¼” turnbuckles

(25 feet) ¼ steel cable

(1) Gallon foam, part A

(1) Gallon foam, part B
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A1 / STUDY 2 - SUBJECT INFORMATION LETTER


Dear Participant, 

Last year (between mid-August and mid-October) you participated in a research project that was 
conducted at the Milford Proving Grounds in Milford, Michigan. That project examined driver’s 
braking maneuvers, and is one of a continuing program of research being conducted by Ford and 
GM. The purpose of this research program is to understand how to properly design a feature for 
cars which could reduce the frequency and severity of rear-end accidents. Such a feature would 
have the potential to greatly improve traffic safety. In the United States, rear-end accidents 
account for about 25% of all accidents and 5% of all fatal accidents. The previous study in 
which you participated was aimed at understanding driver’s braking judgments without a crash 
avoidance feature. The data from this study provided us with an essential building block for 
understanding how to design a crash avoidance feature for rear-end accidents. 

The current project is a follow-up to this earlier project, and is similar in many respects. As a test 
participant, you will again be driving a real car at speeds ranging from 30-60 mph. The object 
you will be driving behind is an “artificial” rear-end of a vehicle identical to the “artificial car” 
you previously experienced. This “artificial car” will be towed about 40 feet (or one and one half 
car lengths) behind a real car. You will be asked to brake in response to rear-end crash alerts in 
order to avoid colliding with the artificial car. We will be testing several different types of crash 
alerts. 

The passenger in the car you will be driving will again be a trained General Motors Milford 
Proving Ground test driver. As before, the test driver will have access to passenger-side brakes 
and will override your braking to avoid collisions with the artificial car. If you do collide with 
the lead vehicle, you should know that the artificial car is constructed of a material such that, if 
struck, it is designed not to cause injury to either the test participant or researchers. Furthermore, 
the artificial car and towing vehicle are connected with a beam, which is designed to collapse and 
absorb the collision impact if the artificial car is struck. During this study you will be asked to 
complete a questionnaire about your experience. At no time will you be asked to perform any 
unsafe driving actions. 

You must have a valid, unrestricted, U.S. drivers license (except for corrective eye glasses), have 
a minimum of two years driving experience, be 20 years of age or older, have normal hearing 
and vision (with correction allowed), be able to drive an automatic transmission vehicle without 
assistive devices or special equipment, be able to give informed consent, and not be under the 
influence of alcohol, drugs, or any other substances (e.g., antihistamines) which may impair your 
ability to drive. 

In addition you must not have a history of heart condition or prior heart attack, lingering effects 
of brain damage from stroke, tumor, head injury, or infection, epileptic seizures in the past 12 
months, shortness of breath or chronic medical therapy for respiratory disorders, a history of 
motion sickness, a history of inner ear problems, dizziness, vertigo, or balance problems, 
diabetes for which insulin is required, chronic migraine or tension headaches, or be pregnant. 
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You must not have used alcohol, drugs, or any other substances (e.g., antihistamines) which will 
impair your ability to drive for a period of no less than 24 hours prior to participation. 

Risks: There are some risks and discomforts to which you expose yourself in volunteering for 
this research. This includes the risk of an accident normally associated with driving and braking 
a vehicle in response to a stopped or slowing lead vehicle. Unlike in normal driving, this stopped 
or slowing lead vehicle will be an artificial vehicle attached to a collapsible beam, and your 
passenger will be a trained General Motors Milford Proving Ground test driver. This test driver 
will have access to passenger-side brakes and will override your braking in order to avoid 
collisions with the artificial car. If an accident does occur, the experimenters will arrange 
medical transportation to the Milford Proving Ground Medical facility. You will be required to 
undergo examination by medical personnel there. You will be responsible for making 
arrangements for payment of subsequent treatment. 

Benefits: There are no direct benefits to you from this research other than compensation for your 
time and effort. However, by participating in this study, you are lending your experience as a 
driver to research aimed at understanding how to properly design a feature for cars which could 
reduce the frequency and severity of rear-end accidents. You will not be informed as to the 
results of this study. 

Payment: You will be paid $150 for participation in this study. The study will take about 2-2 ½ 
hours. Payment will be made by check at the time of participation. 

Withdrawal:  Participation in this study is voluntary.  You may withdraw at anytime, for any 
reason, without penalty. Should you withdraw, you will still be paid in full. 

Confidentiality: The data gathered in this study will be treated with anonymity. Shortly after 
you have participated, your name will be separated from your data and it will be given a number. 
Only the Principle Investigator will have access to this coding information. Your name will not 

appear in any reports or papers written about the project. Any videotapes of the data, which will 
include video of the your head and face, will be kept until they are no longer needed. 
Confidentiality of this video information will be protected. 

The researchers hope that you will agree to participate in this study. If you have any questions, 
please feel free at any time to ask the experimenter. 

Once you have had your questions answered, please let the experimenter know whether you are 
interested in participating in this study. If you are willing to participate, the experimenter will 
ask you some questions to ensure that your background and experience match our research needs. 
If it is determined that you qualify to participate, you will be asked to read and sign an Informed 

Consent Form before you can actually participate in the study. 
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A2 / STUDY 2 - INFORMED CONSENT 
STATEMENT 

I,  , agree to participate in research aimed at understanding 
how to properly design a feature for cars which could reduce the frequency and severity of rear-
end accidents. 

1. You are being asked to volunteer to be a subject in a research project whose purpose and 
description are contained in the Information Letter. The purpose of this research program is to 
understand how to properly design a feature for cars which could reduce the frequency and 
severity of rear-end accidents. As a test participant, you will drive a real car at speeds ranging 
from 30-60 mph. The object you will be driving behind is an “artificial” rear-end of a vehicle. 
This “artificial car” will be towed about 40 feet (or one and one half car lengths) behind a real 
car. You will be asked to brake in response to rear-end crash alerts in order to avoid colliding 
with the artificial car. The passenger in the car you will be driving will be a trained General 
Motors Milford Proving Ground test driver. The test driver will have access to passenger-side 
brakes and will override your braking judgments to avoid collisions with the artificial car. If you 
do collide with the lead vehicle, you should know that the artificial car is constructed of a 
material such that, if struck, it is designed not to cause injury to either the test participant or 
researchers. Furthermore, the artificial car and towing vehicle are connected with a beam, which 
is designed to collapse and absorb the collision impact if the artificial car is struck. During the 
test you will be asked to complete a questionnaire about your experience. At no time will you be 
asked to perform any unsafe driving actions. 

There are some risks and discomforts to which you expose yourself in volunteering for this 
research. These include the risk of an accident normally associated with driving and braking a 
vehicle in response to a stopped or slowing lead vehicle. Unlike in normal driving, this stopped 
or slowing lead vehicle will be an artificial vehicle attached to a collapsible beam (as described 
above), and your passenger will be a trained General Motors Milford Proving Ground test driver. 
This test driver will have access to passenger-side brakes and will override your braking in order 

to avoid collisions with the artificial car. 

3. The following precautions will be taken during your drive: 

The experimenter will always be present in the test vehicle and will monitor your driving.  They 
will ask you to discontinue participation if they feel the risks are too great to continue. 
However, as long as you are driving the research vehicle, it remains your responsibility to drive 
in a safe, legal manner. 

The front seat experimenter will have an override brake pedal. 

The vehicle is equipped with a driver-side airbag and anti-lock brakes. Air bags inflate with 
great force, faster than the blink of an eye. If you’re too close to an inflating air bag, it could 
seriously injure you. Safety belts help you keep in position before and during a crash. You 
should always wear your safety belt, even with air bags. You will be required to wear your lap 
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and shoulder belt system during this test anytime the car is moving. You should sit as far back as 
possible while still maintaining control of the vehicle. 

The vehicle is equipped with a fire extinguisher and first-aid kit. The lead vehicle has a cellular 
phone. 

If an accident does occur, the experimenters will arrange medical transportation to the Milford 
Proving Ground Medical facility. You will be required to undergo examination by medical 
personnel in the emergency room. You will be responsible for making arrangements for payment 
of the expenses of such treatment. 

Trained medical personnel will be immediately accessible by phone at all times during testing. 

4. The data gathered in this study will be treated with anonymity. Shortly after you have 
participated, your name will be separated from your data and it will be given a number. Only the 
Principle Investigator will have access to this coding information. Your name will not appear in 
any reports or papers written about the project. Any videotapes of the data, which will include 
video of your head and face, will be kept until they are no longer needed. Confidentiality of this 
video information will be protected. 

It is possible that, should you be involved in an accident during testing, that the researchers will 
have to release your data on your driving in response to a court order. 

5. You will be paid $150 for participation in this study. The study will take about 2-2 ½ 
hours. Payment will be made by check at the time of participation. 

6. There are no direct benefits to you from this research other than payment. However, by 
participating in this study, you are lending your experience as a driver to research aimed at 
understanding how to properly design a feature for cars which could reduce the frequency and 
severity of rear-end accidents. You will not be informed as to the results of this study. 

7. By agreeing to participate, you certify that you possess a valid, unrestricted, U.S. drivers 
license (except for corrective eye glasses), have a minimum of 2 years driving experience, be 20 
years of age or older, have normal hearing and vision (with correction allowed), are able to drive 
an automatic transmission vehicle without assistive devices or special equipment, are able to give 
informed consent and are not under the influence of alcohol, drugs, or any other substances (e.g., 
antihistamines) which may impair your ability to drive.  You also certify that you do not have a 
history of heart condition or prior heart attack, lingering effects of brain damage from stroke, 
tumor, head injury, or infection, epileptic seizures in the past 12 months, shortness of breath or 
chronic medical therapy for respiratory disorders, a history of motion sickness, a history of inner 
ear problems, dizziness, vertigo, or balance problems, diabetes for which insulin is required, 
chronic migraine or tension headaches, or are pregnant. Additionally, you have not used alcohol, 
drugs, or any other substances (e.g., antihistamines) which will impair your ability to drive for a 
period of no less than 24 hours prior to participation. 

8. The experimenters will answer any question that you might have about this project and 
you should not sign this informed consent form until you are satisfied that you understand all of 
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the previous descriptions and conditions. You may contact the principal investigator at the 
following address and telephone number: 

Raymond J. Kiefer, Ph.D.


CAMP


Discovery Centre


39255 Country Club Drive


Suite B-30


Farmington Hills, MI 48331


(248) 848-9595 ext. 15


9. If information becomes available which might reasonably be expected to affect your 
willingness to continue participating in this study, this information will be provided to me. 

10. Participation in this study is voluntary.  You may withdraw from this study at any time, 
and for any reason, without penalty. Should you withdraw, you will still be paid in full. 

11. By signing this form you certify, to the best of your knowledge, you have no physical 
ailments or conditions which could either be further aggravated or adversely affected by 
participation in this study. 

I have read and understand the scope of this research program and I have no other questions at 
this time. I understand that I am free to ask questions at any time. I hereby give my consent to 
participate, but I understand that I may stop at anytime, if I choose to do so. 

Participant: 

Name: 

Address: 

Telephone: 


Signature: Date: 


Researcher:


Signature: Date: 
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A3 / STUDY 2 - TEST INSTRUCTIONS 

The purpose of this study is to understand both when and how to present crash warning 
information to drivers. All of the testing will be conducted on a test track, which is closed to all 
other traffic during testing.  The study is being conducted jointly by General Motors and Ford. 

During the test, you will asked to drive a Ford Taurus, which has been equipped with various 
devices designed to measure your driving performance. Once you get into the vehicle, you will 
be given some time to become familiar with it. The passengers in the car with you while you’re 
driving will be a trained General Motors Milford Proving Ground test driver and also myself. 
Both the test driver and myself will be giving you further instructions throughout the test. 

Throughout the test, you will be experiencing crash alerts while approaching a stationary 
artificial car. You will be asked to approach the artificial car at either 30 or 60 mph. Please 
accelerate in a comfortable, quick manner to reach the speed instructed. 

Your task is to keep your foot on the accelerator and maintain a steady speed until the crash alert 
occurs. When the crash alert occurs, you should brake immediately by quickly moving your foot 
from the accelerator to the brake. Please brake the car to a complete stop such that you do not 
collide with the artificial car. Please brake the car in any way you are comfortable and that you 
feel is appropriate to avoid colliding with the artificial car. Once again, it is extremely important 
that you keep your foot on the accelerator and maintain a steady speed until the crash alert 
occurs. 

Because you will be expecting the crash alert to occur, your RT to the crash alert will be faster 
than what it would be under normal driving conditions. Because of these faster RTs, we have 
shortened the warning distances so that you can experience when you might begin braking if your 
vehicle had a crash alert system (show illustration). Each time you complete a braking event, I 
will ask you two questions about the alert. One question is about the timing of the alert and the 
other is about the urgency level of the alert. When answering both of these questions, please rate 
the timing and urgency level of the alert based on your own experience during the test as a highly 
alert driver that is expecting the alert to occur. Please keep in mind that you will be experiencing 
when you might begin braking if your vehicle had a crash alert system (show illustration). 

The test driver in the car with you will have access to passenger-side brakes. When necessary, 
the test driver will override your braking to avoid collisions with the artificial car. But if that 
should happen, please do not become concerned or frustrated, just do the best you can. If you do 
collide with the artificial car, you should know that it is constructed of a “soft” material such that, 
if struck, it is designed not to cause injury to either you or the test drivers. At no time will you be 
asked to perform any unsafe driving actions. 

After the test is completed, you will be returned here. You will then be given a chance to refresh, 
and receive further explanation about the study. You will then be paid $150 by check and 
dismissed. Your total participation time will be 2-2 ½ hours. 

If you now have any questions about the test, please do not hesitate to ask. 
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A4 / STUDY 2 - ALERT MODALITY 
APPROPRIATENESS QUESTIONNAIRE 
(EXCERPTS) 

Assume that the crash alerts you just experienced are going to be implemented in a vehicle. Use 
the rating scale below to respond to each question about the warning.  Mark the number from the 
scale that corresponds to your response in the space provided at the beginning of each question. 

     
1 2 3 4 5 

Terrible Poor Fair Good Excellent 

USED FOR BOTH HHDD AND HUD VISUAL ALERTS 
_______ How would you rate the intensity or brightness of this display? 
_______ How would you rate the size of this display? 
_______ How would you rate the color of this display? 
_______ How would your rate the location of this display? 

USED FOR BOTH SPEECH AND NON-SPEECH AUDITORY ALERTS 
_______ How would you rate the loudness of this warning? 

       
1 2 3 4 5 6 7 
Extremely  Moderately  Slightly  Just Slightly  Moderately  Extremely 
Soft Soft Soft  Right  Loud  Loud Loud 

_______ How would you rate the duration or length of this warning? 

       
1 2 3 4 5 6 7 
Extremely  Moderately  Slightly  Just Slightly  Moderately  Extremely 
Short Short Short  Right  Long  Long  Long 

USED FOR THE BRAKE PULSE ALERT 
_______ How would you rate the strength of the vehicle jerk that occurred during this warning? 

       
1 2 3 4 5 6 7 
Extremely  Moderately  Slightly  Just Slightly  Moderately  Extremely 
Weak Weak Weak  Right  Strong  Strong  Strong 

_______ How would you rate the duration or length of this warning? 

       
1 2 3 4 5 6 7 
Extremely  Moderately  Slightly  Just Slightly  Moderately  Extremely 
Short Short Short  Right  Long  Long  Long 



take (brake, steer, brake and steer, do nothing)

‰ ‰ ‰ ‰ ‰ ‰ ‰
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A5 / STUDY 2 – CRASH ALERT APPROPRIATENESS QUESTIONNAIRE 
Please indicate the extent to which you agree with the following statements for each method of presenting crash alert information you experienced in the study. 
Please consider both the conditions when you expected the alert and when the alert was a surprise event. 
Use the numbering on the scale below to make your responses.  Place your response in the appropriate column below. 

‰ ‰ ‰ ‰ ‰ ‰ ‰ 
1  2  3  4  5  6  7 

                Strongly        Moderately          Perhaps            Neutral              Perhaps        Moderately          Strongly 
               Disagree         Disagree            Disagree                                       Agree                Agree                 Agree  

Head-Up 
Display & 
Tone 

High 
Head 
Down & 
Tone 

High 
Head 
Down & 
Speech 

High 
Head 
Down & 
Pulse 

1. This is a good method for presenting crash alerts to drivers. 

2. This method would be clearly noticeable in the car. 

3. This method would NOT be confused with other events happening either inside or outside the car. 

4. This method would get my attention immediately if I was distracted and not concentrating on the driving task. 

5. This method would NOT startle me, that is, cause me to blink, jump, or make a rapid reflex-like movement. 

6. This method would NOT interfere with my ability to make a quick and accurate decision about the safest driving action to 

7. This method would NOT interfere with my ability to perform a quick an accurate emergency driving action. 

8. This method would NOT annoy me if the alert came on once a week in a situation where no driving action was required. 

9. This method would NOT annoy me if the alert came on once a day in a situation where no driving action was required. 

10. This method would NOT appear out of place in a car or truck. 

11. This method would clearly tell me that I am in danger and need to react immediately. 

12. This method of presenting crash alert information has great potential for preventing me from getting in a rear-end accident. 

13. This method of presenting crash alert information would get my attention without being overly annoying. 

14. If cost was not an issue, I would be likely to purchase this type of crash alert feature when I purchased a vehicle. 
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A6 / STUDY 2 - BUILD AN INTERFACE 
QUESTIONNAIRE 

In this study, you were instructed to pay attention to the alerts. However, in normal driving 
situations, the crash alert would probably occur when drivers are not concentrating on the driving 
task. 

If you could design your own crash alert system, which alert or combination of alerts used in this 
study do you think would be most effective for getting your attention and prompting you to 
respond appropriately in dangerous driving situations? 

Below is a list of the different types of crash alerts you experienced. Please check the crash 
alert(s) you would use to design your own system. 

£  Head-Up Display £  Tone Warning 
(symbol projected onto windshield) 

£  Speech Warning 
£  High Head-Down 

(symbol illuminated on dashboard display) £  Brake Pulse 

Now instead of the single alerts you experienced today, assume that the alert had two stages -- a 
cautionary stage and an imminent stage.  The first-stage cautionary alert would probably come on 
just about a second earlier than the one-stage alert. Then, if the driver does not correct the 
dangerous situation, the cautionary alert would transition into the second-stage imminent alert. 

The difference between one- and two-stage alerts is that a more aggressive driving maneuver will 
probably be required when a one-stage alert comes on than when a cautionary alert of the two-
stage alert comes on. However, if the second-stage imminent alert comes on, a very aggressive 
driving maneuver will probably be required. In addition, because a cautionary alert is more 
conservative in its timing, the alert will probably come on more often possibly making it 
annoying to some drivers. 

We would like your help designing a two-stage crash alert system. Please check the crash alert(s) 
below that you think would be most effective as a first-stage cautionary alert and a second-stage 
imminent alert. You can choose any combination of alerts for either stage that you wish, 
however, the first and second stages need to be distinguishable. 

CAUTIONARY ALERT (First stage) IMMINENT ALERT (Second stage) 

£  Head-Up Display £  Tone Warning £  Head-Up Display £  Tone Warning 

£  High Head-Down £  Speech Warning £  High Head-Down £  Speech Warning 

£  Brake Pulse £  Brake Pulse 
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A7 / STUDY 2 - NAME THE SYSTEM 
QUESTIONNAIRE 

Now that you have some idea about what a warning system would be like, we would your 
opinion about what to name it. The name should clearly identify the system for users. 

The proposed system would function very much like the system you experienced in the study. 
That is, when a driver approaches a slower or stopped vehicle, the system would alert the driver 
to the dangerous situation. 

What do you think would be a good name for this system? 

________________________________________________________________________ 

(The following was shown on the following page of the questionnaire) 

Listed below are other names that have been proposed for the new warning system. Please 
choose three names that you think would be good choices. 

Number your choices 1 (best), 2 (second best), and 3 (third best). 

______ Forward Collision Warning System 

______ Forward Crash Warning System 

______ Forward Accident Warning System 

______ Rear-end Collision Warning System 

______ Rear-end Crash Warning System 

______ Rear-end Accident Warning System 

______ Front-end Collision Warning System 

______ Front-end Crash Warning System 

______ Front-end Accident Warning System 
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A8 / STUDY 3 - SUBJECT INFORMATION LETTER


Dear Participant, 

You are being asked to participate in research which will examine the distance a driver normally 
follows the vehicle ahead under a variety of situations. The data from this study will provide us 
with an essential building block for understanding how to design a feature for cars that would 
automatically adjust the distance between your vehicle and the vehicle ahead. This feature can 
be thought of as an enhancement to the cruise control feature, which is offered to enhance 
driver’s comfort in many current vehicles. 

As a test participant, you will drive a real car at speeds ranging from 30-60 mph. As a safety 
precaution, the object you will be driving behind is an “artificial” rear-end of a vehicle. This 
“artificial car” will be towed about 40 feet (or one and one half car lengths) behind a real car. 
You will be asked to simply follow this artificial car at your normal following distance under a 
variety of conditions. The passenger in the car you will be driving will be a trained General 
Motors Milford Proving Ground test driver. The test driver will have access to passenger-side 
brakes and will override your braking in the event it becomes necessary. If you do collide with 
the lead vehicle, you should know that the artificial car is constructed of a material such that, if 
struck, it is designed not to cause injury to either the test participant or researchers. During the 
testing you will be asked to complete a questionnaire about your experience. At no time will you 
be asked to perform any unsafe driving actions. 

You must have a valid, unrestricted, U.S. drivers license (except for corrective eye glasses), have 
a minimum of 2 years driving experience, be 20 years of age or older, have normal hearing and 
vision (with correction allowed), be able to drive an automatic transmission vehicle without 
assistive devices or special equipment, be able to give informed consent, and not be under the 
influence of alcohol, drugs, or any other substances (e.g., antihistamines) which may impair your 
ability to drive. 

In addition you must not have a history of heart condition or prior heart attack, lingering effects 
of brain damage from stroke, tumor, head injury, or infection, epileptic seizures in the past 12 
months, shortness of breath or chronic medical therapy for respiratory disorders, a history of 
motion sickness, a history of inner ear problems, dizziness, vertigo, or balance problems, 
diabetes for which insulin is required, chronic migraine or tension headaches, or be pregnant. 
You must not have used alcohol, drugs, or any other substances (e.g., antihistamines) which will 
impair your ability to drive for a period of no less than 24 hours prior to participation. 
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Risks: There are some risks and discomforts to which you expose yourself in volunteering for 
this research. This includes the risk of an accident normally associated with driving and braking 
a vehicle in response to a stopped or slowing lead vehicle. Unlike in normal driving, this stopped 
or slowing lead vehicle will be an artificial vehicle attached to a collapsible beam, and your 
passenger will be a trained General Motors Milford Proving Ground test driver. This test driver 
will have access to passenger-side brakes and will override your braking in order to avoid 
collisions with the artificial car. If an accident does occur, the experimenters will arrange 
medical transportation to the Milford Proving Ground Medical facility. You will be required to 
undergo examination by medical personnel there. You will be responsible for making 
arrangements for payment of subsequent treatment. 

Benefits: There are no direct benefits to you from this research other than compensation for your 
time and effort. However, by participating in this study, you are lending your experience as a 
driver to research aimed at understanding how to properly design a feature for cars which would 
automatically adjust the distance between a driver’s vehicle and the vehicle ahead. You will not 
be informed as to the results of this study. 

Payment: You will be paid $150 for participation in this study. The study will take about 2-2 ½ 
hours. Payment will be made by check at the time of participation. 

Withdrawal:  Participation in this study is voluntary.  You may withdraw at anytime, for any 
reason, without penalty. Should you withdraw, you will still be paid in full. 

Confidentiality: The data gathered in this study will be treated with anonymity. Shortly after 
you have participated, your name will be separated from your data and it will be given a number. 
Only the Principle Investigator will have access to this coding information. Your name will not 
appear in any reports or papers written about the project. Any videotapes of the data, which will 
include video of the your head and face, will be kept until they are no longer needed. 
Confidentiality of this video information will be protected. 

The researchers hope that you will agree to participate in this study. If you have any questions, 
please feel free at any time to ask the experimenter. 

Once you have had your questions answered, please let the experimenter know whether you are 
interested in participating in this study. If you are willing to participate, the experimenter will 
ask you some questions to ensure that your background and experience match our research needs. 
If it is determined that you qualify to participate, you will be asked to read and sign an Informed 
Consent Form before you can actually participate in the study. 
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A9 / STUDY 3 - INFORMED CONSENT 

I,  , agree to participate in research aimed at understanding 
how to properly design a feature for cars which would automatically adjust the distance between 
a driver’s vehicle and the vehicle ahead. 

1. You are being asked to volunteer to be a subject in a research project whose purpose and 
description are contained in the Information Letter. The purpose of this research program is to 
understand how to properly design a feature for cars that would automatically adjust the distance 
between a driver’s vehicle and the vehicle ahead. As a test participant, you will drive a real car at 
speeds ranging from 30-60 mph. As a safety precaution, the object you will be driving behind is 
an “artificial” rear-end of a vehicle. This “artificial car” will be towed about 40 feet (or one and 
one half car lengths) behind a real car. You will be asked to simply follow this artificial car at 
your normal following distance under a variety of conditions. The passenger in the car you will 
be driving will be a trained General Motors Milford Proving Ground test driver. The test driver 
will have access to passenger-side brakes and will override your braking in the event it becomes 
necessary. If you do collide with the lead vehicle, you should know that the artificial car is 
constructed of a material such that, if struck, it is designed not to cause injury to either the test 
participant or researchers. During this testing, you will be asked to complete a questionnaire 
about your experience. At no time will you be asked to perform any unsafe driving actions. 

There are some risks and discomforts to which you expose yourself in volunteering for this 
research. These include the risk of an accident normally associated with driving and braking a 
vehicle in response to a stopped or slowing lead vehicle. Unlike in normal driving, this stopped 
or slowing lead vehicle will be an artificial vehicle attached to a collapsible beam, and your 
passenger will be a trained General Motors Milford Proving Ground test driver. This test driver 
will have access to passenger-side brakes and will override your braking in order to avoid 
collisions with the artificial car. 

3. The following precautions will be taken during your drive: 

The experimenter will always be present in the test vehicle and will monitor your driving.  They 
will ask you to discontinue participation if they feel the risks are too great to continue. However, 
as long as you are driving the research vehicle, it remains your responsibility to drive in a safe, 
legal manner. 

The front seat experimenter will have an override brake pedal. 

The vehicle is equipped with a driver-side airbag and anti-lock brakes. Air bags inflate with 
great force, faster than the blink of an eye. If you’re too close to an inflating air bag, it could 
seriously injure you. Safety belts help you keep in position before and during a crash. You 
should always wear your safety belt, even with air bags. You will be required to wear your lap 
and shoulder belt system during this test anytime the car is moving. You should sit as far back as 
possible while still maintaining control of the vehicle. 
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The vehicle is equipped with a fire extinguisher and first aid kit. The lead vehicle has a cellular 
phone. 

If an accident does occur, the experimenters will arrange medical transportation to the Milford 
Proving Ground Medical facility. You will be required to undergo examination by medical 
personnel in the emergency room. You will be responsible for making arrangements for payment 
of the expenses of such treatment. 

Trained medical personnel will be immediately accessible by phone at all times during testing. 

4. The data gathered in this study will be treated with anonymity. Shortly after you have 
participated, your name will be separated from your data and it will be given a number. Only the 
Principle Investigator will have access to this coding information. Your name will not appear in 
any reports or papers written about the project. Any videotapes of the data, which will include 
video of your head and face, will be kept until they are no longer needed. Confidentiality of this 
video information will be protected. It is possible that, should you be involved in an accident 
during testing, that the researchers will have to release your data on your driving in response to a 
court order. 

5. You will be paid $150 for participation in this study. The study will take about 2-2 ½ 
hours. Payment will be made by check at the time of participation. 

6. There are no direct benefits to you from this research other than payment. However, by 
participating in this study, you are lending your experience as a driver to research aimed at 
understanding how to properly design a feature for cars which would automatically adjust the 
distance between a driver’s vehicle and the vehicle ahead. You will not be informed as to the 
results of this study. 

7. By agreeing to participate, you certify that you possess a valid, unrestricted, U.S. drivers 
license (except for corrective eye glasses), have a minimum of 2 years driving experience, be 20 
years of age or older, have normal hearing and vision (with correction allowed), are able to drive 
an automatic transmission vehicle without assistive devices or special equipment, are able to give 
informed consent and are not under the influence of alcohol, drugs, or any other substances (e.g., 
antihistamines) which may impair your ability to drive.  You also certify that you do not have a 
history of heart condition or prior heart attack, lingering effects of brain damage from stroke, 
tumor, head injury, or infection, epileptic seizures in the past 12 months, shortness of breath or 
chronic medical therapy for respiratory disorders, a history of motion sickness, a history of inner 
ear problems, dizziness, vertigo, or balance problems, diabetes for which insulin is required, 
chronic migraine or tension headaches, or are pregnant. Additionally, you have not used alcohol, 
drugs, or any other substances (e.g., antihistamines) which will impair your ability to drive for a 
period of no less than 24 hours prior to participation. 

8. The experimenters will answer any question that you might have about this project and 
you should not sign this informed consent form until you are satisfied that you understand all of 
the previous descriptions and conditions. You may contact the principal investigator at the 
following address and telephone number: 
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Raymond J. Kiefer, Ph.D.

CAMP

Discovery Centre

39255 Country Club Drive

Suite B-30

Farmington Hills, MI 48331

(248) 848-9595 ext. 15


9. If information becomes available which might reasonably be expected to affect your 
willingness to continue participating in this study, this information will be provided to me. 

10. Participation in this study is voluntary.  You may withdraw from this study at any time, 
and for any reason, without penalty. Should you withdraw, you will still be paid in full. 

11. By signing this form you certify, to the best of your knowledge, you have no physical 
ailments or conditions which could either be further aggravated or adversely affected by 
participation in this study. 

I have read and understand the scope of this research program and I have no other questions at 
this time. I understand that I am free to ask questions at any time. I hereby give my consent to 
participate, but I understand that I may stop at anytime, if I choose to do so. 

Participant: 

Name: 

Address: 

Telephone: 


Signature: Date: 


Researcher:


Signature: Date: 
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A10 / STUDY 3 - TEST INSTRUCTIONS 

Before we begin, I would like you to become familiar with this vehicle.  Please adjust your seat, 
steering wheel, and mirrors so that you are comfortable and prepared to drive. Please make sure 
that your seat belt is securely fastened 

Our session today will be conducted on this test track which is closed to all other traffic during 
the session. This study is being conducted jointly by General Motors and Ford. That is why we 
are having you drive a Ford Taurus today.  The passengers that will be in the car with you are 
(Test Driver Name) who is a trained General Motors Proving Ground test driver and myself. 
And I will be giving you directions as we go through the testing session. 

The purpose of this study is to examine the distance a driver normally follows the vehicle ahead 
under a variety of conditions. The conditions will be at speeds ranging from 30 to 60 mph. This 
information will be used to understand how to design a feature for cars that would automatically 
adjust the distance between your vehicle and the vehicle ahead. This feature will be used to 
enhance the cruise control feature on an automobile. 

There will be a total of four segments to your session today.  During these segments you will be 
asked to follow the lead car at your normal following distance.  The lead car will be travelling at 
30, 40, 50, or 60 mph. At each of these four speeds, you will follow the lead vehicle at your 
normal following distance for approximately 15 minutes. This driving period will allow the 
computerized distance control feature to “learn” how you like to drive normally. After this 
learning period, you will drive with the vehicle’s cruise control system and the new distance 
control feature controlling the vehicles speed and following distance.  After experiencing the 
distance control feature at each speed we will ask you questions regarding your preferences about 
the system. 

At no time during the session are we going to ask you perform any unsafe driving actions. In 
addition, we would like you to know that there are a number of precautions we have taken to 
ensure your safety today.  Your test-driver passenger (Name), has access to passenger-side brakes 
in the event of an emergency.  Also, the vehicle you are following is constructed of a “soft” 
material that is designed to not cause injury to other vehicles or their occupants when struck. All 
of our procedures have been designed with safety as the top priority. 

Do you have any questions so far? 
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A11 / STUDY 3 - NAME THE SYSTEM 
QUESTIONNAIRE 

The purpose of this research is to understand how to properly design a feature that would reduce 
one common type of accident. This accident type occurs when a driver is following another car 
on a straight road, and then crashes into the back end of that car. 

Now that you have some idea about what such a feature would be like, we would like your 
opinion about what to name the feature. Listed below are names that have been proposed for the 
new system. When picking the name, please keep in mind that this feature is not designed to 
detect pedestrians, and this feature would occasionally alert or warn the driver under conditions 
that pose no threat to the driver. 

Please choose three names that you think would be good choices. Number your choices 
1 (best), 2 (second best), and 3 (third best). 

______ Forward Collision Warning System 

______ Forward Collision Alert System 

______ Forward Crash Warning System 

______ Forward Crash Alert System 

______ Front-end Collision Warning System 

______ Front-end Collision Alert System 

______ Rear-end Collision Warning System 

______ Rear-end Collision Alert System 
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A12 / STUDY 4-SUBJECT INFORMATION LETTER


Dear Participant, 

Last year (between mid-August and mid-October) you participated in a research project that was 
conducted at the Milford Proving Grounds in Milford, Michigan. That project examined driver’s 
braking maneuvers, and is one of a continuing program of research being conducted by Ford and 
GM. You are now being asked to participate in research that will examine the distance a driver 
normally follows the vehicle ahead under a variety of situations. The data from this study will 
provide us with an essential building block for understanding how to design a feature for cars 
that would automatically adjust the distance between your vehicle and the vehicle ahead. This 
feature can be thought of as an enhancement to the cruise control feature, which is offered to 
enhance driver’s comfort in many current vehicles. 

As a test participant, you will drive a real car at speeds ranging from 30-60 mph. As a safety 
precaution, the object you will be driving behind is an “artificial” rear-end of a vehicle. This 
“artificial car” will be towed about 40 feet (or one and one half car lengths) behind a real car. 
You will be asked to simply follow this artificial car at your normal following distance under a 
variety of conditions. The passenger in the car you will be driving will be a trained General 
Motors Milford Proving Ground test driver. The test driver will have access to passenger-side 
brakes and will override your braking in the event it becomes necessary. If you do collide with 
the lead vehicle, you should know that the artificial car is constructed of a material such that, if 
struck, it is designed not to cause injury to either the test participant or researchers. During the 
testing you will be asked to complete a questionnaire about your experience. At no time will you 
be asked to perform any unsafe driving actions. 

You must have a valid, unrestricted, U.S. drivers license (except for corrective eye glasses), have 
a minimum of 2 years driving experience, be 20 years of age or older, have normal hearing and 
vision (with correction allowed), be able to drive an automatic transmission vehicle without 
assistive devices or special equipment, be able to give informed consent, and not be under the 
influence of alcohol, drugs, or any other substances (e.g., antihistamines) which may impair your 
ability to drive. 

In addition you must not have a history of heart condition or prior heart attack, lingering effects 
of brain damage from stroke, tumor, head injury, or infection, epileptic seizures in the past 12 
months, shortness of breath or chronic medical therapy for respiratory disorders, a history of 
motion sickness, a history of inner ear problems, dizziness, vertigo, or balance problems, 
diabetes for which insulin is required, chronic migraine or tension headaches, or be pregnant. 
You must not have used alcohol, drugs, or any other substances (e.g., antihistamines) which will 
impair your ability to drive for a period of no less than 24 hours prior to participation. 

Risks: There are some risks and discomforts to which you expose yourself in volunteering for 
this research. This includes the risk of an accident normally associated with driving and braking 
a vehicle in response to a stopped or slowing lead vehicle. Unlike in normal driving, this stopped 
or slowing lead vehicle will be an artificial vehicle attached to a collapsible beam, and your 
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passenger will be a trained General Motors Milford Proving Ground test driver. This test driver 
will have access to passenger-side brakes and will override your braking in order to avoid 
collisions with the artificial car. If an accident does occur, the experimenters will arrange 
medical transportation to the Milford Proving Ground Medical facility. You will be required to 
undergo examination by medical personnel there. You will be responsible for making 
arrangements for payment of subsequent treatment. 

Benefits: There are no direct benefits to you from this research other than compensation for your 
time and effort. However, by participating in this study, you are lending your experience as a 
driver to research aimed at understanding how to properly design a feature for cars which would 
automatically adjust the distance between a driver’s vehicle and the vehicle ahead. You will not 
be informed as to the results of this study. 

Payment: You will be paid $150 for participation in this study. The study will take about 2-2 ½ 
hours. Payment will be made by check at the time of participation. 

Withdrawal:  Participation in this study is voluntary.  You may withdraw at anytime, for any 
reason, without penalty. Should you withdraw, you will still be paid in full. 

Confidentiality: The data gathered in this study will be treated with anonymity. Shortly after 
you have participated, your name will be separated from your data and it will be given a number. 
Only the Principle Investigator will have access to this coding information. Your name will not 
appear in any reports or papers written about the project. Any videotapes of the data, which will 
include video of the your head and face, will be kept until they are no longer needed. 
Confidentiality of this video information will be protected. 

The researchers hope that you will agree to participate in this study. If you have any questions, 
please feel free at any time to ask the experimenter. 

Once you have had your questions answered, please let the experimenter know whether you are 
interested in participating in this study. If you are willing to participate, the experimenter will 
ask you some questions to ensure that your background and experience match our research needs. 
If it is determined that you qualify to participate, you will be asked to read and sign an Informed 
Consent Form before you can actually participate in the study. 
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A13 / STUDY 4 - INFORMED CONSENT 

I,  , agree to participate in research aimed at understanding 
how to properly design a feature for cars which would automatically adjust the distance between 
a driver’s vehicle and the vehicle ahead. 

1. You are being asked to volunteer to be a subject in a research project whose purpose and 
description are contained in the Information Letter. The purpose of this research program is to 
understand how to properly design a feature for cars that would automatically adjust the distance 
between a driver’s vehicle and the vehicle ahead. As a test participant, you will drive a real car at 
speeds ranging from 30-60 mph. As a safety precaution, the object you will be driving behind is 
an “artificial” rear-end of a vehicle. This “artificial car” will be towed about 40 feet (or one and 
one half car lengths) behind a real car. You will be asked to simply follow this artificial car at 
your normal following distance under a variety of conditions. The passenger in the car you will 
be driving will be a trained General Motors Milford Proving Ground test driver. The test driver 
will have access to passenger-side brakes and will override your braking in the event it becomes 
necessary. If you do collide with the lead vehicle, you should know that the artificial car is 
constructed of a material such that, if struck, it is designed not to cause injury to either the test 
participant or researchers. During this testing, you will be asked to complete a questionnaire 
about your experience. At no time will you be asked to perform any unsafe driving actions. 

There are some risks and discomforts to which you expose yourself in volunteering for this 
research. These include the risk of an accident normally associated with driving and braking a 
vehicle in response to a stopped or slowing lead vehicle. Unlike in normal driving, this stopped 
or slowing lead vehicle will be an artificial vehicle attached to a collapsible beam, and your 
passenger will be a trained General Motors Milford Proving Ground test driver. This test driver 
will have access to passenger-side brakes and will override your braking in order to avoid 
collisions with the artificial car. 

3. The following precautions will be taken during your drive: 

The experimenter will always be present in the test vehicle and will monitor your driving.  They 
will ask you to discontinue participation if they feel the risks are too great to continue. However, 
as long as you are driving the research vehicle, it remains your responsibility to drive in a safe, 
legal manner. 

The front seat experimenter will have an override brake pedal. 

The vehicle is equipped with a driver-side airbag and anti-lock brakes. Air bags inflate with 
great force, faster than the blink of an eye. If you’re too close to an inflating air bag, it could 
seriously injure you. Safety belts help you keep in position before and during a crash. You 
should always wear your safety belt, even with air bags. You will be required to wear your lap 
and shoulder belt system during this test anytime the car is moving. You should sit as far back as 
possible while still maintaining control of the vehicle. 
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The vehicle is equipped with a fire extinguisher and first-aid kit. The lead vehicle has a cellular 
phone. 

If an accident does occur, the experimenters will arrange medical transportation to the Milford 
Proving Ground Medical facility. You will be required to undergo examination by medical 
personnel in the emergency room. You will be responsible for making arrangements for payment 
of the expenses of such treatment. 

Trained medical personnel will be immediately accessible by phone at all times during testing. 

4. The data gathered in this study will be treated with anonymity. Shortly after you have 
participated, your name will be separated from your data and it will be given a number. Only the 
Principle Investigator will have access to this coding information. Your name will not appear in 
any reports or papers written about the project. Any videotapes of the data, which will include 
video of your head and face, will be kept until they are no longer needed. Confidentiality of this 
video information will be protected. It is possible that, should you be involved in an accident 
during testing that the researchers will have to release your data on your driving in response to a 
court order. 

5. You will be paid $150 for participation in this study. The study will take about 2-2 ½ 
hours. Payment will be made by check at the time of participation. 

There are no direct benefits to you from this research other than payment. However, by 
participating in this study, you are lending your experience as a driver to research aimed at 
understanding how to properly design a feature for cars which would automatically adjust the 
distance between a driver’s vehicle and the vehicle ahead. You will not be informed as to the 
results of this study. 

7. By agreeing to participate, you certify that you possess a valid, unrestricted, U.S. drivers 
license (except for corrective eye glasses), have a minimum of 2 years driving experience, be 20 
years of age or older, have normal hearing and vision (with correction allowed), are able to drive 
an automatic transmission vehicle without assistive devices or special equipment, are able to give 
informed consent and are not under the influence of alcohol, drugs, or any other substances (e.g., 
antihistamines) which may impair your ability to drive.  You also certify that you do not have a 
history of heart condition or prior heart attack, lingering effects of brain damage from stroke, 
tumor, head injury, or infection, epileptic seizures in the past 12 months, shortness of breath or 
chronic medical therapy for respiratory disorders, a history of motion sickness, a history of inner 
ear problems, dizziness, vertigo, or balance problems, diabetes for which insulin is required, 
chronic migraine or tension headaches, or are pregnant. Additionally, you have not used alcohol, 
drugs, or any other substances (e.g., antihistamines) which will impair your ability to drive for a 
period of no less than 24 hours prior to participation. 

8. The experimenters will answer any question that you might have about this project and 
you should not sign this informed consent form until you are satisfied that you understand all of 
the previous descriptions and conditions. You may contact the principal investigator at the 
following address and telephone number: 
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Raymond J. Kiefer, Ph.D.

CAMP

Discovery Centre

39255 Country Club Drive

Suite B-30

Farmington Hills, MI 48331

(248) 848-9595 ext. 15


9. If information becomes available which might reasonably be expected to affect your 
willingness to continue participating in this study, this information will be provided to me. 

10. Participation in this study is voluntary.  You may withdraw from this study at any time, 
and for any reason, without penalty. Should you withdraw, you will still be paid in full. 

11. By signing this form you certify, to the best of your knowledge, you have no physical 
ailments or conditions which could either be further aggravated or adversely affected by 
participation in this study. 

I have read and understand the scope of this research program and I have no other questions at 
this time. I understand that I am free to ask questions at any time. I hereby give my consent to 
participate, but I understand that I may stop at anytime, if I choose to do so. 

Participant: 

Name: 

Address: 

Telephone: 


Signature: Date: 


Researcher:


Signature: Date: 
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A14 / STUDY 4 - PART 1 TEST INSTRUCTIONS 

Before we begin, I would like you to become familiar with this vehicle.  Please adjust your seat, 
steering wheel, and mirrors so that you are comfortable and prepared to drive. Please make sure 
that your seat belt is securely fastened. 

Our session today will be conducted on this test track which is closed to all other traffic during 
the session. This study is being conducted jointly by General Motors and Ford. That is why we 
are having you drive a Ford Taurus today.  The passengers that will be in the car with you are 
(Test Driver Name) who is a trained General Motors Proving Ground test driver and myself. 
And I will be giving you directions as we go through the testing session. 

The purpose of this study is to examine the distance a driver normally follows the vehicle ahead 
under a variety of conditions. The conditions will be at speeds ranging from 30 to 60 mph. This 
information will be used to understand how to design a feature for cars that would automatically 
adjust the distance between your vehicle and the vehicle ahead. This feature will be used to 
enhance the cruise control feature on an automobile. 

There will be a total of four segments to your session today.  During these segments you will be 
asked to follow the lead car at your normal following distance.  The lead car will be traveling at 
either 30, 40, 50, or 60 mph. At each of these four speeds, you will follow the lead vehicle at 
your normal following distance for approximately 15 minutes. This driving period will allow the 
computerized distance control feature to “learn” how you like to drive normally. After this 
learning period, you will drive with the vehicle’s cruise control system and the new distance 
control feature controlling the vehicle speed and following distance.  After experiencing the 
distance control feature at each speed we will ask you questions regarding your preferences about 
the system. 

At no time during the session are we going to ask you perform any unsafe driving actions. In 
addition, we would like you to know that there are a number of precautions we have taken to 
ensure your safety today.  Your test-driver passenger (Name), has access to passenger-side brakes 
in the event of an emergency.  Also, the vehicle you are following is constructed of a “soft” 
material that is designed to not cause injury to other vehicles or their occupants when struck. All 
of our procedures have been designed with safety as the top priority. 

Do you have any questions so far? 
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A15 / STUDY 4 - PART 2 TEST INSTRUCTIONS 

We would like now to go over the instructions for the rest of the study. The real purpose of this 
study is to understand both when and how to present crash warning information to drivers. 
Throughout the test, you will be asked to brake in response to crash alerts while approaching the 
lead “artificial” car. This lead car will be moving. The lead car will be traveling either at 30, 45, 
or 60 mph. You should follow the lead vehicle, maintaining your normal following distance just 
as you did before. Please accelerate in a comfortable, quick manner to reach your normal 
following distance. The lead car driver will brake with various braking intensities throughout the 
test, ranging from normal braking to relatively hard braking. 

It is extremely important that you keep your foot on the accelerator and maintain a steady speed 
until the crash alert is presented. Once the crash alert is presented, please quickly move your foot 
from the accelerator to the brake, and brake the car to a complete stop such that you do not 
collide with the lead “artificial car”.  Please brake the car in any way you are comfortable and 
that you feel is appropriate to avoid colliding with the artificial car. Once again, it is extremely 
important that you keep your foot on the accelerator and maintain a steady speed until the crash 
alert occurs. 

The test driver will have access to passenger-side brakes. When necessary, the test driver will 
override your braking to avoid collisions with the lead car. Should this occur, please do not be 
concerned of frustrated, just do the best you can. 

If you now have any questions about the test, please do not hesitate to ask. 
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A16 / THE TIME-COURSE OF THE BRAKE PULSE 
ALERT 

Table 1	 The Time-Course of the Brake Pulse Alert Using 7 Samples at Each Speed With the 
Highest and Low Values Removed at Each Speed to Reduce Effect of Extreme Values 

Brake Pulse Measure 

Speed 

Overall30 mph 45 mph 60 mph 

Mean SD Mean SD Mean SD Mean SD 

Time between alert criterion 
violation and start of pulse 
(sec) 

0.34 0.07 0.26 0.03 0.31 0.12 0.30 0.08 

Time between alert criterion 
violation and attaining -0.10 
g’s due to pulse (sec) 

0.42 0.07 0.37 0.02 0.43 0.09 0.41 0.07 

Time between alert criterion 
violation and attaining -0.20 
g’s due to pulse (sec) 

0.49 0.07 0.47 0.06 0.54 0.07 0.50 0.07 

Time between alert criterion 
violation and attaining peak 
deceleration level due to pulse 
(sec) 

0.60 0.08 0.53 0.00 0.60 0.07 0.58 0.06 

Time between alert criterion 
violation and end of pulse 
(sec) 

0.91 0.08 0.87 0.02 0.93 0.12 0.90 0.08 

Peak deceleration value 
attained due to brake pulse (g) 

0.26 0.01 0.23 0.01 0.23 0.02 0.24 0.02 
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Table 2 Time-Course of the Brake Pulse Alert Using All 7 Samples at Each Speed 

Brake Pulse Measure 

Speed 

Overall30 mph 45 mph 60 mph 

Mean SD Mean SD Mea 
n 

SD Mean SD 

Time between alert criterion 
violation and start of pulse 
(sec) 

0.38 0.16 0.27 0.05 0.31 0.13 0.32 0.12 

Time between alert criterion 
violation and attaining -0.10 
g’s due to pulse (sec) 

0.46 0.17 0.37 0.03 0.43 0.12 0.42 0.12 

Time between alert criterion 
violation and attaining -0.20 
g’s due to pulse (sec) 

0.53 0.16 0.47 0.06 0.53 0.11 0.51 0.12 

Time between alert criterion 
violation and attaining peak 
deceleration level due to pulse 
(sec) 

0.64 0.16 0.53 0.02 0.60 0.09 0.59 0.11 

Time between alert criterion 
violation and end of pulse 
(sec) 

0.95 0.17 0.88 0.06 0.92 0.14 0.92 0.13 

Peak deceleration value 
attained due to brake pulse (g) 

0.26 0.02 0.23 0.02 0.24 0.02 0.24 0.02 
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A17 / DETAILED BREAKDOWN OF DRIVERS’ 
RESPONSES 

Table 3	 Detailed Breakdown of Drivers’ Responses to the Alert Noticeability Questionnaire for Study 
3 and Study 4 (Study 4 shown in parentheses) 

Post-Surprise Trial Question and 
Driver’s Response 

Crash Alert Type 
HHDD 

+ 
Non-Speech 

HHDD 
Flashing 

+ 
Non-Speech 

HHDD 
+ 

Speech 

HUD 
+ 

Non-Speech 

HHDD 
+ Non-

Speech + 
Br. Pulse 

If the driver noticed visual alert? Yes 5/12 (3/12) 8/12 (10/12) 3/12 10/12 4/12 
What color was the indicator? 

Red, Orange, or Amber for HHDD 
Blue or Green for HUD 

4/12 (3/12) 5/12 (7/12) 2/12 
9/12 

4/12 

Where was indicator located? (Correct) 3/12 (2/12) 5/12 (7/12) 1/12 9/12 1/12 
Were there letters or a picture, or 
letter and picture on the indicator? 

Letters Only 
Picture Only 
Letter + Picture 

1/12 (0/12) 
0/12 (1/12) 
0/12 (2/12) 

1/12 (1/12) 
0/12 (2/12) 
2/12 (1/12) 

0/12 
0/12 
0/12 

3/12 
1/12 
4/12 

2/12 
0/12 
0/12 

If you saw letters, what word or words did 
they spell? “Warning” 1/12 (2/12) 2/12 (1/12) 0/12 5/12 1/12 
If you saw a picture, please draw or 
describe the picture? 

Star (part correct) 
Arrows + Star 
Other 

0/12 
0/12 

0/12 (3/12) 

0/12 
0/12 

2/12 (3/12) 

0/12 
0/12 
0/12 

1/12 
1/12 
3/12 

0/12 
0/12 
0/12 

If the driver noticed the auditory 
alert? Yes 

12/12 (12/12) 12/12 (12/12) 11/12 12/12 11/12 

What was the type of sound you 
noticed? (Correct) 12/12 (12/12) 12/12 (12/12) 11/12 12/12 11/12 
Please describe the sound. Tone 12/12 (12/12) 12/12 (12/12) N/A. 12/12 11/12 
Please say the word. “Warning” N/A. N/A. 10/12 N/A. N/A. 

If driver noticed the brake pulse alert? Yes N/A. N/A. N/A. N/A. 12/12 
Please describe sensation. 

Braking 
Jerk 
Vehicle Hesitation 
Like ABS 
Bump 
Pulse-like sensation-related description 

provided, however, unlike the 
descriptions provided above, drivers 
were unsure of source of sensation 

N/A. N/A. N/A. N/A. 
1/12 
1/12 
4/12 
1/12 
2/12 
3/12 
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A18 / PROCESS FOR SELECTING THE VISUAL 
DISPLAY FORMAT USED FOR CRASH 
ALERTS IN THE THREE DRIVER 
INTERFACE STUDIES 

Symbol Design 

The design of the candidate visual crash alerts initiated with a review of the visual crash alerts 
tested in a previous study (Jovanis, Campbell, Klaver, & Chen, 1997), production symbols 
contained in the ISO 2575/1 (1996), and symbols proposed for adaptive and conventional cruise 
control systems. “Crude” candidate icon drawings were forwarded to designers from the 
Controls and Displays Center at the General Motors Design Center who assisted with the symbol 
review and design process. These designers were familiar with ISO graphics constraints and ISO 
vehicle orientation stereotypes. This brainstorming process resulted in the 10 refined candidate 
visual crash alerts shown and numbered in Figure 1. Symbols 1, 2, 4, 5, 8, and 9 were created by 
altering current or proposed symbols. 

1. 2. 3. 4. 5. 

6. 7. 8. 9. 10. 

Figure 1 Visual Crash Alert Candidates 

In general, the symbols conformed to the ISO 3461 (1976) guidelines for graphical symbols. 
With the exception of the tapered lines on the star-like crash symbol (symbols 1, 4, and 7), the 
symbols were designed using lines at least 2 mm in thickness. The symbols were then reduced to 
fit a 10-mm by 10 mm square, which was the size of the symbols used throughout the study. 

Symbol Screening Process 

The symbol screening process employed the ANSI Z535.3 (1997) procedures for evaluating 
candidate symbols. The first stage in this process is a comprehension estimation procedure used 
for the purpose of identifying poor symbols prior to open-ended comprehension testing.  The 
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procedure involves informing participants of the intended message of a symbol and then asking 
them to estimate the percentage of the population they believe would understand the message of 
the symbol. According to the standard, only symbols with mean comprehension estimations of 
65% or greater merit further testing in the second stage of this ANSI Z535.3 process, which 
involved an open-ended comprehension procedure. In this latter procedure, participant are 
provided a symbol with the appropriate context, and asked to provide written “open-ended” 
interpretations of the symbol. The ANSI Z535.3 recommended criterion for acceptance of a 
symbol is that 85% of participants provide correct interpretations of the symbol, and that a 
maximum of 5% of participants, provide interpretations considered critical confusions for the 
symbol. 

Comprehension Estimation Testing 

To conduct the comprehension estimation procedure, the 10 symbols shown in Figure 1 were 
printed on one sheet of paper with the intended message stated as follows. “You may be in 
danger of hitting the vehicle ahead unless you react immediately.” The instructions explained 
that a symbol intended to convey the collision alert message would be shown as a display in a 
vehicle.  Participants were asked to estimate the percentage of drivers they believed would 
quickly and accurately understand the intended message for each of the 10 symbols. The 
instructions stated that any number between 0 and 100 could be used for the estimation and that a 
number could be used as often as desired. 

Two groups of participants completed the comprehension estimation procedure. The first group 
consisted of 12 males and 20 females working outside of the automobile industry. These 
individuals were operators at a hospital telephone center and students in an introductory 
engineering class at Wayne State University. These test participants ranged from 20 to 74 years 
old, with a mean age of 37.4 years (standard deviation=11 years). The second group of 
participants consisted of 42 male and 11 female industry experts working at General Motors 
Corporation and Ford Motor Company (The gender of 4 participants included in this analysis 
were not reported.). These experts had backgrounds in human factors, safety, adaptive cruise 
control systems, and/or forward collision warning systems. These test participants ranged from 
24 to 63 years old, with a mean age of 41.9 years (standard deviation=11 years). These two 
participant groups provided an opportunity to view the representation of judgments made by 
industry insiders to that of naive individuals. 

The mean comprehension estimates for each symbol are shown in Figure 2. The mean 
comprehension estimates for the two participant groups, non-automotive and industry experts, 
are shown separately. The pattern of comprehension estimates for the 10 symbols were similar 
for both groups. However, overall, the industry experts were more conservative than the non-
automotive participants in their estimates. The two symbols with the highest mean 
comprehension estimates in both groups were symbols 1 and 5. For symbol 1, the two partial 
vehicles separated by a crash symbol, the non-automotive and industry groups provided mean 
comprehension estimates of 78.6% and 59.9%, respectively.  For symbol 5, the two partial 
vehicles separated by curved lines resembling radar waves, the non-automotive and industry 
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groups provided mean comprehension estimates of 62.3% and 46.9%, respectively.  None of the 
other eight candidate symbols had mean comprehension estimates over 50%. 

Open-Ended Comprehension Testing 

Symbols 1 and 5 were carried over from the comprehension estimation procedure as the 
candidate symbols for the second stage of testing required by ANSI Z535.3, an open-ended 
comprehension procedure. Symbol 1 clearly exceeded the 65% comprehension estimation 
criterion, whereas symbol 5 fell just below this criterion for the relevant, “non-expert” non-
automotive group. 

Two versions of a paper and pencil survey, one for each symbol, were constructed for the open-
ended comprehension testing. The two versions of the survey were identical except for the 
symbol presented in this test. The survey contained two sections. The first section was an open-
ended comprehension test requiring participants to provide written interpretations of the symbol, 
in accordance with the ANSI Z535.3 procedure. The second section of the survey employed the 
comprehension estimation procedure employed above to explore the effects of adding the 
capitalized word “WARNING” to the symbols. 

In the instructions at the beginning of the survey, the importance of completing the survey in 
sequence was stressed. Participants were explicitly instructed to complete each page of the 
survey before turning to the next page. The instructions also included a discussion about how 
symbols are used to communicate messages without using words as recommended by the ANSI 
Z535.3 procedure. Examples of an incomplete and a complete message for a common symbol 
(i.e., fingers caught between gears) were given to introduce participants to the open-ended 
message writing task. 

For the open-ended comprehension test, the symbol was presented along with a description of the 
context in which the symbol would appear. A given subject experienced the same symbol in 
three different contexts. Each successive description provided more contextual information. 
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Figure 2 Mean Percentage of Population Estimated to Understand the Crash Alert Candidates for Industry and Outside Groups 



A18-75 

Context 1: “You are driving your car. You suddenly notice the following yellow/amber 
indicator on your dashboard light up.” 

Context 2: “You are driving your car. But you are distracted from the driving task. You 
are not concentrating on driving.  You suddenly notice the following yellow/amber 
indicator on your dashboard light up.” 

Context 3: “You are driving your car. But you are distracted and you are not 
concentrating on driving.  Your car is approaching another car. You suddenly notice the 
following yellow/amber indicator on your dashboard light up.” 

Each context, along with the symbol, was on a separate page. Context 1 was presented first 
followed by context 2 and then context 3. Participants were asked two questions for each 
context, which are shown below: 

1. What would this dashboard indicator mean to you? 

2. If you saw this indicator light on your dashboard would you take any action? 

If so, how soon would you take the action described? 

Nine response choices were given for this forced-choice question, shown 
below. (Participants were instructed to select one response.) 

° Immediately 

° Sometime before ending my drive 

° Immediately after ending my drive 

° Later that same day 

° The next day 

° Within 2-3 days 

° Within one week 

° Sometime after one week 

° Whenever it was convenient 

The first question was an open-ended question that required participants to write out their 
interpretation of the symbol’s message. Participants were instructed to provide as much detail as 
possible in their written responses. 

In the second section of the survey, participants were shown four symbols; symbols 1 and 5 with 
and without the capitalized word “WARNING” printed below the symbol. The letters of this 
word were 3.2 mm in height, and the entire word extended approximately 3.5 mm beyond the left 
and right boundaries of the 10-mm by 10 mm square. The instructions informed participants that 
a symbol may be displayed in a vehicle as part of a collision alert system intended to reduce the 
number and severity of rear-end crashes. Participants were instructed that the symbol would be 
used to tell the driver the following message, “you may be in danger of hitting the vehicle ahead 
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unless you react immediately.” Participants were then asked to estimate the percentage of drivers 
they believed would quickly and accurately understand this message for each of the four symbols. 
This page in the survey was covered by an extra sheet of paper to prevent participants from 
accidentally viewing the four symbols in this section before they completed the first open-ended 
section of the survey. 

To recruit participants, members of CAMP recruited their families and acquaintances as contacts 
to then solicit naive participants for the survey. The contacts hand-delivered the surveys to 
participants, who mailed the completed surveys back to the experimenters in self-addressed 
stamped envelopes. Participants completed the surveys on a volunteer basis. 

Thirty-four participants completed the version of the survey testing symbol 1, the crash symbol, 
and 30 completed the version testing symbol 5, the radar wave symbol. The crash symbol group 
of participants consisted of 14 males and 20 females, ranging from 18 to 73 years old, with a 
mean age of 44.7 years. The radar wave symbol group of participants consisted of 13 males and 
17 females, ranging from 23 to 73 years old, with a mean age of 51.7 years. 

For each of the three contexts, the responses to question (1) above were categorized into one of 
six general categories. The six categories were; responses mentioning a collision, responses 
mentioning proximity, responses mentioning warning, responses stating only an action, responses 
mentioning a possible error response, and other types of responses. Subcategories within each 
category are also reported here to provide more detail about the nature of the responses. 
Responses that included messages from more than one category were categorized into the 
category closest to the intended meaning of the symbol. For example, consider the following 
response given for symbol 5; “that at the speed you are going and the distance between cars it 
will be difficult to slow down in time without hitting the car in front of you.” This response was 
categorized as “mentioning a collision” even though both proximity and the possibility of a 
collision were stated. Table 4 provides a sampling of the responses in each category. 

The majority of open-ended responses for question (1) above were interpretations of the meaning 
of the symbol, and not simply statements about a driver’s reaction to the symbol. Thus, few 
responses were classified in the action category.  Further, participants were very descriptive in 
their interpretations of the symbols. Very few responses stated that the symbol was a warning 
without going into more detail about the nature of the warning (i.e., a warning about distance or a 
collision). 

The percentage of responses classified into each response category for both symbols are shown in 
Table 5. For the crash symbol (symbol 1), the possibility of a collision was the most frequent 
response in each context. For the radar wave symbol (symbol 5), proximity to another vehicle or 
an object was the most frequent response. The crash symbol met the ANSI Z535.3 criteria of 
85% correct responses in Context 1, Context 2, and Context 3, assuming collision, proximity, 
and action (brake the car) responses are correct. The crash symbol also generally met the ANSI 
Z535.3 criteria of no more than 5% errors, which are considered critical confusions for the 
symbol for both Context 1 and Context 3. For Context 2, two responses (5.9% of the total) 
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Table 4	 Examples of Responses for the Six Response Categories Used in the Open-Ended 
Comprehension Test 

Category Example of response 

Collision 

a) Not specific “I’m going to hit another car.” 

b) Rear-end vehicle ahead “Caution, you are about to hit a vehicle in front of you.” 

c) Head on “Oncoming car is going to head on crash with me.” 

Proximity 

a) To car ahead “You are following the car in front of you too closely.” 

b) Not specific “Vehicle is in close proximity to another.” 

Warning 

a) Slow/stopped ahead “The car ahead is slowing down...” 

b) Object ahead “I think it means that there is an object directly in front of you probably 
less than 5 feet.” 

Action “Head up immediately and prepare to swerve or brake.” 

Error 

a) Rear-end from behind “Proceed with caution, you are getting very close to the vehicle behind 
you.” 

b) Vehicle behind too close “A vehicle is tail gating too closely.” 

Other “Low fluids.” 



A18-78 

Table 5	 Percentage of Responses in Each Category for Symbol 1 (Crash Symbol) and Symbol 5 
(Radar Waves) 

Crash Symbol Radar Waves 

Response Category Context 1 Context 2 Context 3 Context 1 Context 2 Context 3 

Collision 
Not specific 23.5% 41.2% 32.3% 10.0% 13.3% 20.0% 
Rear-end vehicle ahead 17.7% 17.6% 17.7% 0.0% 3.3% 3.3% 
Head-on 8.8% 5.9% 5.9% 3.3% 3.3% 3.3% 

Total collision responses 50.0% 64.7% 55.9% 13.3% 20.0% 26.6% 

Proximity 
To car ahead 32.3% 26.5% 32.3% 70.0% 40.0% 53.3% 
Not specific 0.0% 0.0% 0.0% 6.7% 13.3% 3.3% 

Total proximity responses 32.3% 26.5% 32.3% 76.7% 53.3% 56.6% 

Warning 
Slow / stopped ahead 0.0% 0.0% 5.9% 0.0% 3.3% 0.0% 
Object ahead 0.0% 0.0% 0.0% 3.3% 0.0% 0.0% 

Total warning responses 0.0% 0.0% 5.9% 3.3% 3.3% 0.0% 

Action 2.9% 0.0% 2.9% 0.0% 6.7% 13.3% 

Error 
Rear-end from behind 0.0% 5.9% 0.0% 3.3% 0.0% 0.0% 
Vehicle behind too close 2.9% 0.0% 0.0% 0.0% 0.0% 0.0% 

Total error responses 2.9% 5.9% 0.0% 3.3% 0.0% 0.0% 

Other 11.8% 2.9% 2.9% 3.3% 16.7% 3.3% 
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Table 6 Summary of Actions Stated for Each Context 

Action Context 1 

Slow down/increase distance 41.2% 

Brake only 20.6% 

Brake, steer, chg. lanes 8.8% 

Pay attn., use caution 2.9% 

Stop 2.9% 

Not specific 8.8% 

Pull off road 0.0% 

Other (e.g., check lights, manual, etc.) 14.7% 

None given 

Speed up 

Action 

Slow down/increase distance


Brake only


Brake, steer, chg. lanes


Pay attention, use caution


Stop


Not specific


Pull off road


0.0% 

0.0% 

Context 1 

56.7% 

20.0% 

3.3% 

0.0% 

6.7% 

3.3% 

3.3% 

Other (e.g., check lights, manual, etc.) 3.3% 

None given 0.0% 

Speed up 3.3% 

Crash Symbol 

Context 2 

26.5% 

29.4% 

5.9% 

11.8% 

0.0% 

14.7% 

2.9% 

5.9% 

0.0% 

2.9% 

Radar Waves 

Context 2 

30.0% 

36.7% 

0.0% 

6.7% 

3.3% 

3.3% 

3.3% 

13.3% 

3.3% 

0.0% 

Context 3 

35.3% 

29.4% 

8.8% 

0.0% 

5.9% 

17.6% 

0.0% 

0.0% 

2.9% 

0.0% 

Context 3 

46.7% 

26.7% 

3.3% 

3.3% 

6.7% 

0.0% 

3.3% 

3.3% 

6.7% 

0.0% 
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stated that the driver’s vehicle may be rear-ended (One similar response occurred in Context 1.) 
The responses classified into the other category mentioned the airbag, low fluids, headlights, or 
the seat belts. 

For question (2) above, across the three contexts, an action was indicated in 99.0% and 96.6% of 
the responses to the crash symbol and radar wave symbol, respectively.  Table 6 is a summary of 
the responses given for the action question. In each context for both symbols, the most common 
responses were that the driver would either slow down to increase the distance between vehicles 
or apply the brakes. Some participants stated that they would either brake, steer, or change lanes 
depending on the situation. The higher rate of “not specific” responses for the crash symbol 
compared to the radar wave symbol was a result of more responses such as, “yes, as soon as 
possible,” being given for the crash symbol. When specifying how soon they would take the 
stated action in response to the crash symbol, for Context 1, Context 2, and Context 3, 91%, 
94%, and 97% of participants responded they would take action immediately.  The corresponding 
percentages in response to the radar wave symbol were 93%, 83%, and 90%, respectively. 

In the second section of the survey, participants were asked to estimate the percentage of drivers 
in the population that they believed would quickly and accurately comprehend the intended 
meaning of the symbols. Participants provided estimates for both the crash symbol and the radar 
wave symbol, with and without the capitalized word “WARNING” printed below it. Table 7 
shows the mean estimates for each group of survey participants. Both groups estimated the crash 
symbol with the word WARNING would be understood by the largest percentage of drivers, with 
estimates across the two groups within 2% of each other. In contrast, the estimates for the radar 
wave symbol appear to be strongly influenced by whether participants saw the symbol in the 
open-ended response portion of the survey. In all cases, adding the word WARNING to the 
symbol increased comprehension estimates by about 20%. 

Table 7	 Mean Percentage of Driving Population Estimated to Comprehend Symbols by Open-Ended 
Comprehension Survey Participants 

Symbol only Symbol with word 
WARNING 

Symbol in survey Crash Symbol Radar Waves Crash Symbol Radar Waves 

Crash Symbol 60.0% 31.2% 81.4% 58.1% 

Radar Waves 58.0% 52.0% 79.2% 73.8% 
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Summary of Results from the Visual Display Format 
Selection Process 

As a result of both the comprehension estimation and open-ended comprehension test procedures 
administered in accordance with ANSI Z535.3 process Symbol 1 (the two partial vehicles 
separated by a crash symbol with the capitalized word “WARNING”) was used for all three 
driver interfaces studies (i.e., Study 2, Study 3, and Study 4) as the visual crash alert display 
format. In conclusion, these results provided a sound empirical justification for the selection of 
visual display format used in the follow-up, closed-course driver-interface studies. 
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A19 / PROCESS FOR SELECTING THE SOUNDS 
USED FOR CRASH ALERTS IN THE THREE 
DRIVER INTERFACE STUDIES 

Auditory Alert Development 

A total of 18 sounds were tested as candidates for an auditory crash alert, which are listed and 
briefly described in Table 8. The 18 sounds were from five categories: 

(1) Standard production vehicle chime 

(2) The five top-rated sounds (all Non-Speech) evaluated by Tan and Lerner (1995) 

(3) Production-oriented non-speech sounds 

(4) Speech message alerts 

(5) Non-speech sounds developed by the General Motors Noise and Vibration 
laboratory 

The various sounds within each of these last 4 categories will now be discussed in turn. The five 
Category (2) sounds evaluated were composed of the top 5 (of the 26) rated sounds evaluated in 
the Tan and Lerner (1995) laboratory study. In this previous study, participants were asked to 
rate sounds on various attributes including annoyance, appropriateness, discretion, startle, and 
urgency.  (A modified version of this procedure was employed here.) The mean rating on each 
attribute was then weighted according to “expert” rankings of the importance of each attribute to 
an auditory crash alert. The five sounds included in the present study received the five highest 
total weighted scores. These top sounds were all non-speech sounds, which received higher total 
weighted ratings than any of the ear con (car horn, tire skid) and speech sounds examined. 
Unlike the current study, the sounds evaluated in the Tan and Lerner study were examined for 
their merit as a “master” auditory crash alert, which was intended to precede a subsequent alert 
indicating direction of threat (e.g., forward). 

The seven Category (3) sounds evaluated were modified standard production chimes. These 
modified chimes had frequencies of 750 Hz, 2000 Hz, or both. In general, the attack/decay 
characteristics and the cadence of the production chimes were modified to create warning-like 
sounds (e.g., ambulance, and alarm clock). 

The three Category (4) sounds evaluated were the speech alerts “danger”, “warning”, and “look 
out”. To create these candidates, a male professional broadcaster repeated these warnings three 
times in sequence. Reverberation was added to the recording of each alert. 

The two Category (5) sounds evaluated developed by the General Motors Noise and Vibration 
laboratory specifically for this test. These sound candidates were created by mixing pulses at 
frequencies of 2000 Hz and 2500 Hz. The two sounds were identical except that one had a faster 
cadence. 



A19-84 

All 18 sounds were digitized with the assistance of the General Motors Noise and Vibration 
Center. With the exception of the Category (4) sounds, each of the sounds were 2.10 seconds in 
length. The category (4) speech alert sounds “danger”, “warning”, and “look out”, were 2.60, 
2.49, and 2.42 seconds in length, respectively. 

Loudness Adjustment Procedure 

A staircase threshold procedure was conducted to attempt to equate the sounds for subjective 
loudness, so that sounds could be subsequently evaluated for their “pure” crash alert properties 
independent of subjective loudness. Previous work has indicated that subjective loudness is 
highly correlated with crash alert properties (e.g., a louder sound is perceived as more urgent) 
(Tan and Lerner, 1995). The loudness adjustment procedure involved comparing each candidate 
sound to the standard production chime and judging whether the candidate sound was louder or 
softer than the standard chime. On each presentation of a sound pair, the loudness of the 
candidate sound was adjusted one decibel until the rater’s response changed. The initial direction 
of the decibel change, increasing or decreasing, was randomly varied across the candidate 
sounds. Once the rater’s response changed, the direction of the loudness adjustment was 
reversed. This adjustment sequence continued until five response changes occurred. The decibel 
level of the last four response changes was averaged for each candidate sound. This average 
represented the decibel level at which the rater judged the loudness of the candidate sound to be 
equal to that of the standard chime. The loudness adjustment procedure was used with four 
raters (2 females, average age 30; 2 males, average age 40). The mean of the four raters’ average 
decibel levels for each sound was then used to compute the decibel adjustment. The decibel 
adjustments for the candidate sounds were as follows: #4, -6 dBa; #5, -7 dBa; #6, -4 dBa; #7, -6 
dBa; #8, -4 dBa; #12, -1 dBa; #19, 0 dBa; #20, -1 dBa; #21, -1 dBa; #22, -4 dBa; #24, -8 dBa; 
#25, -10 dBa; #26, -10 dBa; #27, -7 dBa; #28, -10 dBa; #29, -2 dBa; and #30,-2 dBa. 
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Table 8 Brief Description of Collision Alert Sound Candidates 

Sound # Description 

Standard Production Chime 

1 2000 Hz production chime, cadence 3.3 per second 

The five top-rated sounds (all Non-Speech) evaluated by Tan and Lerner (1995) 

4 Stimuli 1 (low fuel warning) 

5 Stimuli 4 (high-pitched, ambulance-like siren) 

6 Stimuli 5 (low-pitched, ambulance-like siren) 

7 Stimuli 8 (2500 & 7500 Hz 100 ms broad pulse of 110 ms each, repeated at 8 ms intervals, 
pause of 110 ms) 

8 Stimuli 10 (2500 & 2650 Hz peaks, temporally similar to preceding sound) 

Production Oriented Non-Speech Sounds 

12 2000 Hz production chime, pulse=7.5 ms attack followed by 142.5 ms decay, cadence 3.3 
per second 

19 Same as sound 12, using 750 Hz zone 

20 Sounds 12 & 19 together (2000 & 750 Hz) 

21 Beep 4H33, 2000 Hz, cadence 100 (3.3 sec) 

22 2000 Hz production chime, pulse=7.5 ms attack followed by 142.5 ms decay, 4 pulse 
sequence separated by 110 ms silent pause 

27 2000 & 750 Hz production chime overlaid, cadence 3.3 per sec 

28 750 & 2000 Hz chimes, alternating (ambulance-like siren) 

Speech Message Alerts 

24 “Danger, danger, danger” 

25 “Look out, look out, look out” 

26 “Warning, warning, warning” 

GM Noise and Vibration Laboratory 

29 2000 & 2500 Hz triangular wave tones overlaid 

30 Same as sound 29, faster cadence 
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Sound Evaluation Ratings 

Ten DAT recordings of the 18 candidate sounds were created for the sound evaluations. A 
different random order of the candidate sounds was used for each recording.  The interior sound 
of a 1997 Ford Taurus SHO traveling on dry, smooth pavement at 70 mph was used as 
background noise for the recordings. The background noise was presented continuously on each 
recording.  The candidate sounds were presented at 12-second intervals “on top of” (or overlaid 
upon) the background noise. 

After listening to verbal instructions (which are described below), participants were asked to rate 
each sound on the 13 statements shown in Table 9. The order of the statements shown in this 
table corresponds to the order in which the participants experienced the statements. Participants 
provided their general opinion of each sound by rating the sounds on the statement, “this sound is 
a good choice for a collision warning sound.” The participants rated each sound on this general 
opinion statement twice, initially on the first trial (Statement 1) and then again on the second 
from last trial (Statement 12). The practice statement, “this sound is very musical”, was used to 
acquaint participants to the sounds and the sound rating procedure. 

Eleven of the 12 remaining statements were related to attributes considered critical for an 
effective warning sound. These attributes were notability, confusability, attention-getting, startle, 
interference, annoyance, appropriateness, emergency, and loudness. With the exception of the 
annoyance and interference attributes, each attribute was addressed by one corresponding 
statement. For the interference attribute, one statement asked whether the sound would interfere 
with the driver’s ability to decide on an emergency driving action (Statement 6). Another related 
statement asked whether the sound would interfere with the driver’s ability to perform an 
emergency driving action (Statement 7). For the annoyance attribute, one statement asked 
whether the sound would annoy the driver if the alert came on when no driving action was 
required once a day (Statement 8). Another related statement asked whether the sound would 
annoy the driver if the alert came on when no driving action was required once a week 
(Statement 9). One critical difference between the current study and the Tan and Lerner (1995) 
study which should be stressed is that drivers in the latter study were told to assume “minimal” 
false alarms, where minimal was left undefined. It is quite possible that the Tan and Lerner 
participants idea of “minimal” corresponded to a false alarm (or nuisance alert) frequency of 
substantially less than once a week. 
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Table 9 Rating Scale and Statements Used for Sound Ratings 

| | | | | | | 
-3  -2  -1  0  1  2  3 

Strongly Moderately Perhaps  Neutral Perhaps  Moderately Strongly 
Disagree  Disagree Disagree  Agree Agree Agree 

Practice: This sound is very musical. 

1. This sound is a good choice for a collision warning sound. 

2. 	 This sound would clearly stand out and be noticeable among the other noises inside 
and outside the vehicle such as engine noise, the fan blowing, talking and music on 
the radio, horns, and sirens. (Notability) 

3. 	 This sound would be confused with other sounds inside and outside the vehicle such 
as engine noise, talking and music on the radio, horns, sirens, car phones, or other 
electronic devices. (Confusability) 

4. This sound would get my attention immediately. (Attention-getting) 

5. 	 This sound would startle me, that is, cause me to blink, jump, or make a rapid reflex-
like movement. (Startle) 

6. 	 This sound would NOT interfere with my ability to make a quick and accurate 
decision about the safest driving action to take. (Interference) 

7. 	 This sound would NOT interfere with my ability to quickly and accurately perform an 
emergency driving action. (Interference) 

8. 	 This sound would annoy me if it came on once a day in a situation where NO driving 
action was required. (Annoyance) 

9. 	 This sound would annoy me if it came on once a week in a situation where NO 
driving action was required. (Annoyance) 

10. This sound would appear out of place as a warning in a car or truck. 
(Appropriateness) 

11. This sound would clearly tell me that I’m in danger and I need to react immediately. 
(Emergency) 

12. This sound is a good choice for a collision warning sound. 

13. This sound seemed louder than the other sounds in the test. (Loudness) 
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At the start of the session, the experimenter told participants that the evaluation was part of the 
selection process for a collision warning sound. The text of the verbal instructions are shown on 
the last page of this Appendix.  As a means of explaining the context and requirements of the 
warning sound, participants were asked to recall their experiences from CAMP Study 1 in which 
they had to brake hard at the last second possible to avoid colliding with a lead (surrogate) 
vehicle. They then were told to imagine that they were driving on a real road and to suppose that 
they were distracted or not paying attention to their driving.  Further, when their vehicle rapidly 
approached a slower or stopped vehicle, the collision warning would sound to alert them to the 
situation. The instructions stated that once the warning sounded, a driver would have to decide 
upon the appropriate driving action to take. If braking was appropriate, they were told they 
would have to use hard braking as in the previous study. Participants were told that this 
depiction demonstrated that the warning sound must get the driver’s attention while allowing the 
driver to respond appropriately. The possibility of false alarms, or instances when the warning 
may sound in response to non-threatening events (such as a guardrail on a sharp curve) was then 
described to explain that the warning sound needed to be attention-getting without being overly 
annoying. 

The participants were then instructed that they would be listening to the candidate warning 
sounds and rating the extent to which they agreed with various statements made about the 
sounds. Participants were asked to rate the extent to which they agreed with each statement for 
each sound using a 7-point scale which ranged from strongly agree (3) to strongly disagree (-3), 
shown in the top portion of Table 9. The attributes related to each statement (which were not 
shown to the subjects) are shown in parentheses. The statements are listed in Table 9in the order 
they were presented during each evaluation session. Participants were instructed to circle a 
number on the scale to reflect their agreement with the statement for that sound. For example, 
using the practice statement “this sound is very musical,” participants were told that they should 
circle the response on the scale that reflected the extent to which they agreed that the sound was 
very musical. After the practice trial, participants were encouraged to ask questions about the 
procedure and rating scale. 

At the beginning of each trial, subjects would hear the experimenter read the statement aloud to 
the group. The participants then listened to each 18 candidate alert sounds examined (presented 
in a random order) and rated each sound on the statement. Between each sound presentation, 
subjects were provided ample time to make sound ratings. All the sounds were rated on a 
statement before the next statement was introduced. The 13 statements were presented in the 
order shown in Table 9. Thus, subjects rated each of the 18 sounds 13 times for a total of 234 
sound rating trials. 

Fifteen females and 20 males participated in the evaluation of the alert sounds. All of these 
individuals had previously participated in CAMP Study 1, in which they were asked to make last-
second hard braking judgements while approaching the slowing or stopped CAMP surrogate 
(lead vehicle) target. The mean age of the participants was 49 years old (standard deviation=16 
years). Participants were either in their 20s, 40s or 60s, which corresponds to the three age 
groups tested in CAMP Study 1. The 20s group consisted of 8 males and 1 female, the 40s group 
consisted of 5 males and 6 females, and the 60s group consisted of 7 males and 8 females. Eight 
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individuals from each gender by age category were originally recruited. However, thirteen 
individuals (including 7 young females) did not appear for testing.  All participants reported 
normal hearing ability. Participants received $35 for completing the 75-minute testing session. 

The evaluation sessions were conducted with small groups of one to six participants, depending 
on participant turnout. Participants were seated in a conference room with their backs to a large 
table. The seating arrangement prevented participants from viewing each other’s facial reactions 
to the sounds. The sounds were presented using a DAT player, amplifier, and headphones. 
Participants provided written responses to the statement ratings using clipboards. 

The mean agreement rating for each candidate alert sound on each of the 13 statements is shown 
in Table 10. On Statement 1, which asked participants whether they agreed that a sound was a 
good choice for a collision alert sound, all of the sounds had a mean rating between +1 and -1. 
Thus, overall, none of the sounds were strongly favored on the first trial by the participants in 
general. The sounds which received mean ratings greater than zero, in order of the highest rating, 
were #7, #30, #26, #6, #8, #29, #24, #4, and #21. These sounds had mean ratings ranging 
between +0.09 and +0.51. On Statement 12, participants were again asked whether each sound 
would be a good choice for a collision warning sound. The results for this question differed from 
those from Statement 1. Three sounds had mean ratings greater than positive one. These sounds 
were #26, #24, and #25, which correspond to each of the three speech alert sounds examined. 
Only three other sounds (#8, #30, and #6) had positive mean ratings on this statement. It should 
be noted that, with respect to interpreting the absolute (as opposed to the relative) ratings 
provided on the 7-point scale employed, a general preference for speech alerts may have 
penalized the ratings for all non-speech alerts. That is, if speech alerts had not been included in 
the set of sounds examined, it seems quite likely that the non-speech sounds would have received 
higher absolute ratings on the rating scale provided. 

Results from Statement 12 are considered the most informative for two primary reasons. First, 
by the time they completed this statement, participants had been “educated” about the desirable 
attributes of a collision warning.  Second, by this time, participants had heard each sound 12 
times, which gave them additional sound experiences to make relative comparisons between 
alerts, and gave them a chance to determine which alerts still “stuck out” as having alerting 
qualities during this somewhat lengthy, monotonous rating task. Table 11 lists the sounds in 
rank order according to the mean ratings on Statement 1 and Statement 12. Three sounds, #26 
(“warning”, “warning”, “warning”), #8 and #30, were in the top five rankings as good choices for 
a warning at both the beginning and the end of the evaluation. 

There are two striking differences between these findings and those reported in Tan and Lerner 
(1985). First, the top-rated sound from the Tan and Lerner (1995) study, an off-the-shelf low fuel 
aircraft warning (#4 in this study), fell in the middle of the pack of the sounds rated, and was 
rated particularly poorly on the annoyance and interference statements. This difference in studies 
is undoubtedly due to the difference in assumptions provided to raters across studies with respect 
to nuisance alert frequency.  (However, overall, it should be noted that the 5 non-speech sounds 
carried over from the Tan and Lerner (1985) study performed quite well relative to the 18 sounds 
examined.) Second, the speech alert sounds in this study were rated substantially higher than the 
male and female synthesized and digital speech alerts examined in the Tan and Lerner study 
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(none of which were among the top five highest total ratings in this previous study) . This is 
unlikely due to the relatively minor procedural differences between studies, but instead, in all 
likelihood is due to differences across studies in the specific nature of the speech stimuli 
employed. 

The last statement asked participants whether a sound seemed louder than the other sounds in the 
evaluation. The mean ratings for the candidate sounds on the loudness statement ranged from 
+1.69 to -1.97. Thus, even though the decibel levels of the sounds had been adjusted in an 
attempt to equate them for subjective loudness prior to the evaluations, participants still reported 
that some sounds appeared louder or softer than others. A scatter plot, shown in Figure 1, shows 
the relationship between perceived loudness and participants’ final rating of the candidate sounds 
(Statement 12). The plot incorporates a regression line, which describes the final rating for the 
candidate sound as a function of the loudness rating.  In general, sounds located above the line 
were rated more highly as a choice for a collision alert than would be expected if the rating was 
based solely on the perceived loudness of the sound. Conversely, sounds located below the line 
were rated more poorly as a choice for a collision alert than would be expected if the rating was 
based solely on the perceived loudness of the sound. The observation that appears most striking 
in this scatter plot is participants’ preference for speech alerts (i.e., #24, #25, and #26). 
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Table 10	 Mean Agreement Rating for Each Candidate Crash Alert Sound Across Each of the 
Thirteen Sound Rating Statements 

Sound Rating Statement Number 

Sound 
Number 

1 2 6 10 11 12 13 

1 -0.94 -0.76 1.17 -0.51 -1.53 1.30 0.64 0.75 0.45 0.58 -1.27 -1.74 -0.40 

4 0.10 1.74 -0.81 2.40 1.93 -0.97 -0.79 2.51 1.97 0.87 2.03 -0.18 1.69 

5 -0.76 0.43 1.10 0.57 -0.65 1.03 0.90 1.06 0.63 0.77 0.27 -1.03 -0.14 

6 0.37 1.26 0.26 1.74 1.03 0.17 -0.09 1.71 1.54 0.11 1.37 0.03 1.54 

7 0.51 1.43 -0.46 1.43 0.57 0.69 0.63 1.31 1.11 0.00 1.14 -0.09 1.14 

8 0.31 1.53 -0.49 1.86 1.20 0.29 0.43 1.54 1.51 -0.74 1.46 0.66 1.51 

12 -0.03 -0.49 1.46 -0.06 -1.73 1.48 1.71 -0.20 -0.47 -0.51 -0.44 -0.73 -0.80 

19 -0.09 -0.11 0.83 0.29 -1.28 1.34 1.47 -0.20 -0.06 -0.50 -0.30 -0.87 0.17 

20 -0.03 0.54 0.43 0.49 -1.09 1.60 1.54 0.03 -0.14 -0.86 0.14 -0.09 0.06 

21 0.09 -0.74 1.29 0.43 -1.51 1.49 1.40 0.09 -0.17 -0.80 -0.49 -0.91 -0.54 

22 -0.29 -0.74 1.00 -0.26 -1.57 1.63 1.46 -0.11 -0.86 -0.11 -0.77 -0.74 -0.97 

24 0.21 1.54 -2.03 2.31 0.69 0.57 1.29 0.66 0.14 -1.49 2.40 1.77 0.91 

25 -0.50 1.45 -2.03 2.37 1.13 0.46 0.77 0.97 0.46 -1.23 2.72 1.26 0.91 

26 0.40 1.57 -2.03 2.27 0.23 1.06 1.26 0.29 -0.03 -1.44 2.13 1.86 0.26 

27 -1.17 -1.83 1.74 -1.29 -2.00 1.49 1.57 -0.20 -0.31 0.66 -1.69 -2.20 -1.94 

28 -0.29 -0.65 1.63 -0.33 -1.43 1.54 1.28 -0.07 -0.30 -0.03 -0.46 -1.40 -1.97 

29 0.23 0.40 -0.31 1.06 0.10 1.31 1.20 0.40 -0.10 -1.00 0.17 -0.09 1.20 

30 0.51 0.86 -0.46 1.34 -0.06 0.83 1.17 0.60 0.03 -1.00 0.69 0.26 0.86 

5 4 3 9 8 7 
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Table 11	 Sounds Ranked on Mean Ratings for

Statement 1 and Statement 12


Rank Statement 1 Statement 12 

1 30 26 

2 7 24 

3 26 25 

4 6 8 

5 8 30 

6 29 6 

7 24 7 

8 4 29 

9 21 20 

10 12 4 

11 20 12 

12 19 22 

13 22 19 

14 28 21 

15 25 5 

16 5 28 

17 1 1 

18 27 27 
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Weighted Sound Ratings 

In addition to viewing participant’s ratings for the sounds on each statement separately, a total 
score, or sum of the mean ratings on various attributes, was created for each sound. Each mean 
rating was weighted according to expert judgments about the importance of the attribute to an 
auditory alert. The weights used in this study were adapted from the Tan and Lerner (1995) 
study. To create the attribute weights, Tan and Lerner asked 36 experts in the human factors and 
safety community to rate the importance of thirteen attributes on a scale of 1 to 10. The mean of 
the experts’ importance ratings for each attribute became the weight for the attribute. Eight 
attributes from the Tan and Lerner study corresponded closely to eight statements rated in the 
present study. Table 12 shows the attribute and weighting from the Tan and Lerner study along 
with the corresponding statement from the present study. A ninth statement, Statement 8, which 
asked whether a sound would be annoying if it occurred once a day as a nuisance alert, was also 
included in the set of weighted attribute statements. Because a nuisance alert rate of once a day 
depicts a situation where annoyance may become a critical negative attribute, this statement was 
set equal to the highest weight from the group of eight attributes (i.e., 9.43 / Noticeability). In 
this weighting analysis, the “once a week” nuisance alert assumption was assumed to correspond 
to the general “minimal” false alarm assumption used by Tan and Lerner (1995). 

To create the weighted attribute totals, the ratings were first transformed to a scale of 0, strongly 
disagree, to 6, strongly agree. This was accomplished by adding 3 to each mean rating.  Also, the 
weights for the attributes discriminability and appropriateness, which were positive weights in 
the Tan and Lerner (1995) study, were changed to negative weights. This change was made 
because, as negatively worded statements, higher ratings for Statement 3 and Statement 10 
reflected more of a negative attribute for the sound. Finally, each mean rating was multiplied by 
its attribute weight. Two weighted attribute totals were then summed. A total of the weighted 
mean ratings excluding the mean rating for the annoyance - once per day statement (i.e., 
assuming nuisance alerts occur once a week), and a total excluding the mean rating for the 
annoyance - once per week statement (i.e., assuming nuisance alerts occur once a day). 

Table 13 shows the two weighted mean rating totals for each sound in rank order as well as the 
sounds in rank order according to their mean ratings on Statement 12. The three sounds that 
ranked highest according to these weighted mean attribute ratings were #26, #24, and #25. These 
sounds were all speech alerts, corresponding to “warning”, “danger”, and “look out”, 
respectively.  Of the three speech sounds, #26 (“Warning”, “Warning”, “Warning”) slightly 
outperformed the other speech sounds, as is evident in Table 13. In contrast to these speech 
alerts, the rank order of the remaining non-speech alerts was somewhat influenced by the 
annoyance attribute. Based on the drivers’ overall ratings provided for the non-speech sounds 
(Statement 12), sounds #8 and #30 appear most promising, coming in fourth and fifth 
respectively in the final overall ratings. A closer look at the individual statement ratings (shown 
in Table 10) suggested that Sound #8 may more appropriate for more of an imminent-type or 1-
stage alert crash sound, whereas sound #30 may be more appropriate for more of a cautionary-
type crash alert. 
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Figure 3	 Scatter Plot of Final (Statement 12) Ratings by Loudness Ratings for Each of the 
Candidate Alert Sounds 

Fina l R a ting X  Loudness  R a ting 
3 

2 

1 

0 

-1  

-2  

-3  

26 24 

25 

20 
30 

29 

8 

7 6 
4 

22 
21

12 
5 

19 

28 

27 

1 

Fi
na

l R
at

in
g 

-3 -2 -1 0 1 2 

Loudness  R a ting 

3



A19-95 

Table 12 Attribute and Weight with the Corresponding Sound Rating Statement 

Weight Attribute  Sound Rating Statement 
(Sound # in the current study) 

9.43 Noticeability This sound would clearly stand out and be 
noticeable among  the other noises inside and 
outside the vehicle such as engine noise, the fan 
blowing, talking and music on the radio, horns, and 
sirens (#2) 

-9.23 Discriminability This sound would be confused with other sounds 
inside and outside the vehicle such as engine noise, 
talking and music on the radio, horns, sirens, car 
phones, or other electronic device (#3) 

8.80 Urgency This sound would get my attention immediately 
(#4) 

-7.60 Startle This sound would startle me, that is, cause me to 
blink, jump, or make a rapid reflex-like movement 
(#5) 

8.63 Natural Response This sound would not interfere with my ability to 
make a quick and accurate decision about the 
safest driving action take (#6) 

-9.43 Annoyance This sound would annoy me if it came on once a 
day in a situation where NO driving action was 
required (#8) 
(Note: See text for explanation of this weighting.) 

-4.37 Annoyance This sound would annoy me if it came on once a 
week in a situation where NO driving action was 
required (#9) 

-5.66 Appropriateness This sound would appear out of place as a warning 
in a car or truck (#10) 

7.63 Emergency 
Relationship 

This sound would clearly tell me that I’m in danger 
and I need to react immediately (#11) 

Note:  Statement 8 was excluded in this weighting analysis because no attribute referred to a sound’s influence on the 
ability to perform an emergency driving action 
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Table 13	 Sounds Ranked by Weighted Mean Rating Totals for Attribute 
Statements (Totals weighted mean ratings in parentheses) 

Weighting Analysis Mean Rating Totals 

Annoyance Assumption 
(or Assumed Nuisance Alert Frequency) Overall Rating 

(Statement 12) 
Rank Once per week… Once per day… 

26 (108) 26 (90) 26 

24 (102) 24 (82) 24 

25 (97) 25 (75) 25 

30 (65) 30 (45) 8 

8 (60) 20 (41) 30 

7 (59) 29 (37) 6 

20 (57) 8 (37) 7 

29 (57) 7 (36) 29 

4 (47) 19 (25) 20 

6 (44) 6 (20) 4 

19 (39) 21 (17) 12 

21 (34) 12 (16) 22 

12 (32) 4 (16) 19 

5 (31) 22 (11) 21 

22 (29) 5 (8) 5 

28 (21) 28 (5) 28 

1 (8) 1 (-12) 1 

27 (-9) 27 (-24) 27 
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Summary of Results from the Sound Selection Process 

This study built upon previous work conducted by Tan and Lerner (1995), which examined 26 
sounds, including various non-speech, ear con (car horn, tire skid) and speech sounds. The 
current study, employing nearly the identical methodology employed by Tan and Lerner, 
examined 15 non-speech and 3 speech sounds, including the 5 top rated sounds (which were all 
non-speech) from the previous Tan and Lerner study. Hence, in some sense, together, these two 
studies have examined 39 distinct sounds, including 22 distinct non-speech sounds, 15 distinct 
speech sounds (all using either the word “warning”, “danger”, “look out”, or “hazard”), and 2 
distinct ear con-type sounds (car horn, tire skid). 

As a result of the current study, Sound #26 (“Warning, Warning, Warning”) was used for both 
driver interface studies (i.e., Study 2 and Study 3) which evaluated a speech alert condition. In 
addition, based on the current findings, Sound #8 (which corresponds to Stimuli 10 in the earlier 
Tan and Lerner study) was used for all three driver interfaces studies (i.e., Study 2, Study 3, and 
Study 4) as the non-speech alert sound. A 1/3 octave band and time series analysis of this non-
speech sound can be found in the Tan and Lerner paper (see Appendix A). This 2.1 second long 
non-speech sound involved repeating the exact same macro “sound pattern” (or macro sound 
burst) four times. Each repetition of the macro sound pattern was followed by 110 milliseconds 
of silence. Each macro sound pattern in turn involved repeating the exact same micro sound 
pattern (or micro sound burst) four times. These micro sound bursts, which are the building 
blocks for a macro sound burst, consisted of 2500 Hz and 2650 Hz peaks. 

In conclusion, these results provided a sound empirical justification for the selection of the non-
speech and speech sounds used in the follow-up, closed-course driver-interface studies. 
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Verbal Instructions Used in the Auditory Crash Alert 
Evaluation Procedure 

The reason we have invited you here today is that we are in the process of trying to select sounds 
to use in vehicles that would serve as a collision warning sound. In a few minutes I am going to 
have you listen to a number of different sounds. Each sound you will hear is being considered as 
a collision warning sound. But before you listen to the sounds it is important that you understand 
the requirements of the sound. 

To help give yourself some frame of reference, try to recall your experience at the General 
Motors Proving Grounds in Milford, MI this past fall. In one part of that study, your task was to 
brake at the last second possible using hard braking to avoid colliding with the lead car. 

Now, imagine that instead of being on the test track you’re driving on a real road. Further, 
suppose your distracted or not paying attention to your driving and you’re rapidly approaching a 
slower or stopped vehicle. The collision warning sound would alert you to this dangerous 
situation. When you hear the warning sound you have to decide upon the appropriate driving 
action to take. The driving action required, for example braking or steering, would depend on 
your driving situation. And going back to what you did on the test track, if braking is the 
appropriate action, you would need to brake hard immediately. 

So as you see, the warning sound needs to get the driver’s attention while at the same time 
allowing the driver to respond appropriately. 

In addition, it is also possible that the warning may sound in an inappropriate situation. In other 
words, when it is a “false” alarm.  For our purposes, assume that false alarms could occur as 
often as once a day to once a week, depending on the driver. A false alarm could be caused by a 
non-threatening event such as, approaching a guard-rail or sign on a sharp curve. In this case, the 
collision warning system may mistake the guardrail or sign for a stopped vehicle. It would not be 
the case that the warning would sound periodically without any reason at all. 

But because false alarms may occasionally occur, the warning sound needs to get the driver’s 
attention without being overly annoying. 

Okay, we are now ready to listen to the sounds. For each sound you hear, you will be asked to 
rate the extent to which you agree with a statement made about that sound. For example, 
consider the practice statement “This sound is very musical.” You will hear a sound. Then you 
will rate that sound on a scale ranging from Strongly Agree to Strongly Disagree based on the 
extent to which you agree that the sound is very musical. And in just a moment we will go over 
the scale in more detail. 

But before we begin I would like to stress upon you to remember that the warning sound needs to 
immediately get your attention and allow for an appropriate response but not be overly annoying 
when false alarms occur. Please keep this information in mind as you make your judgments 
about each sound. 
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Do you have any questions so far? 

You are going to be listening to the sounds over these headphones. But wait just a few more 
moments until were done with the directions to put them on and adjust them. 

During the session each one of you will be sitting with your back to the table. We are doing this 
primarily to keep the equipment and cords out of your way.  But I should mention that the 
headphone cords are delicate so it would be very helpful if you are careful with them. The 
headphones are marked for right and left ear and you should wear them that way.  One last thing, 
while you’re listening to the sounds, try to avoid touching the outside of the earphones because 
that will distort the sounds. 

When the tape begins, the first sound you will hear is the interior sound of the Taurus that you 
drove at the proving grounds traveling at 70 mph. This is the actual ambient noise that is present 
inside the vehicle while you are traveling.  All of the test sounds have been recorded on top of the 
ambient noise so this noise will be continuous. You will hear the first warning sound a few 
seconds after the ambient noise begins. The warning sounds may at times appear strange but I 
am going to ask that you refrain from making any comments about them during the test. 

Okay we are now ready to go through an actual practice run. The practice statement on your 
answer sheet is THIS SOUND IS VERY MUSICAL. As you hear each warning sound you 
should circle your response for that sound on the scale provided. That is, you should circle the 
response on the scale ranging from Strongly Agree to Strongly Disagree that reflects the extent to 
which you agree that the sound is very musical. You will hear each sound in sequence. After 
you have rated all the sounds on the first statement we will follow the same procedure for the 
second statement and so on. The sounds used for practice are the same sounds being tested. Any 
questions? Please put your headphones on now. 
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A20 / MODELING CAMP STUDY 1 DATA FOR 
CRASH ALERT TIMING PURPOSES 

Background of Modeling Effort 

The primary goal of the first CAMP human factors study (CAMP Study 1) was to develop a 
crash alert timing approach for a FCW system by exploring various driver behavior measures. In 
CAMP Study 1, a strategy was employed to initially develop a fundamental understanding of the 
timing and nature of drivers’ “last-second” braking behavior without a FCW system, before 
conducting the subsequent FCW system driver interface studies. This strategy was taken so that 
drivers’ perceptions of “normal” and “hard braking” kinematic situations could be properly 
identified and modeled for FCW system crash alert timing purposes. This initial step of 
understanding drivers’ “last-second” braking behavior without a FCW system was the focus of 
CAMP Study 1. 

More specifically, in developing a crash alert timing approach for a FCW system, two 
fundamental driver behavior parameters have to be considered. The first parameter is the time it 
takes for the driver to respond to the crash alert and begin braking (which includes driver brake 
reaction time), and the second parameter is the driver deceleration (or braking) behavior. In 
response to this alert across a wide variety of initial vehicle-to-vehicle kinematic conditions, this 
second parameter was addressed by CAMP Study 1, which is also the focus of this modeling 
effort. 

Characterization of Database Modeled 

In CAMP Study 1, under closed-course conditions, drivers were asked to make “last-second” 
braking judgments while approaching a slowing or stopped “surrogate” (lead vehicle) target, 
which is described below. Subjects experienced trials in which the lead vehicle (or Principal 
Other Vehicle) was parked (or stationary), and trials in which the Principal Other Vehicle (POV) 
was moving. These two general types of test trials will be referred to as Stationary Trials and 
Moving Trials, respectively.  During Stationary Trials, subjects were asked to approach the 
parked surrogate target at an instructed speed, either 30, 45, or 60 mph. During Moving Trials, 
subjects followed a lead vehicle which towed the surrogate target at these same three speeds, and 
were given ample time to maintain and stabilize at what they considered to be their “normal” 
following distance. Next, the POV driver enabled the POV to automatically brake to a stop 
according to a prespecified braking profile, which resulted in a constant deceleration of either -
0.15, -0.28, or -0.39 g’s. At that point, the test participant was asked to wait to brake the subject 
vehicle (or SV) until the last possible moment in order to avoid colliding with the surrogate 
target. When both vehicles came to a complete stop, data collection was halted and the trial was 
ended. During Stationary Trials, subjects were asked to make these same braking judgments 
while approaching the parked surrogate target. 
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Drivers were asked to make these last second braking judgments under three different braking 
instruction conditions, “normal” braking, “comfortable hard” braking, and “hard” braking.  Each 
instruction differed on the instructed braking intensity or pressure. Under one instruction, the 
driver was asked to brake with normal braking intensity or pressure. Under a second instruction 
(the “comfortable hard braking” instruction), the driver was asked to brake with the hardest 
braking intensity or pressure that they felt comfortable. Under a third instruction (the “hard 
braking” instruction), the driver was asked to brake with hard braking intensity or pressure. 
Three instruction conditions were included to provide insight into when drivers should be 
presented crash alert information, when drivers should not be presented crash alert information 
(in order to avoid in-path nuisance alerts or any tendency the driver may have to ignore an alert 
which does in fact signify an alarming situation), and to also explore drivers’ interpretations of 
“hard” braking and “comfortable hard” braking levels. That is, the use of different braking 
instructions enabled properly identifying and modeling drivers’ perceptions of “normal braking” 
(albeit “aggressive normal braking”) and “hard braking” for crash alert timing purposes. 

The surrogate (lead vehicle) target was designed to mimic a real vehicle as much as possible with 
the constraint that it would allow for safe impacts at low impact velocities. The experimenter 
had access to add-on brakes and an audible crash alert. Thirty-six younger, 36 middle-aged, and 
36 older drivers were tested. Eighteen males and 18 females were tested in each age group. 
Overall, data from over 3800 last-second braking trials were obtained. The critical need for 
obtaining this type of data under controlled conditions is dictated by the infrequency of 
near/actual rear-end crashes (and associated “black box” data), the lack of data available to 
support FCW system “benefits” modeling, and the inherent difficulties associated with accident 
reconstruction. 

Study 1 Results Influential to Modeling Approach 

Converging evidence suggested that the 50th percentile required deceleration value observed in 
CAMP Study 1 under “hard braking” driver instructions appeared very promising as an 
appropriate (not too early/not too late) estimate of the assumed driver braking onset range for 
crash alert timing purposes. The required deceleration measure was defined as the constant 
deceleration level required for the driver to avoid the crash at braking onset. This measure was 
calculated by using the current speeds of the driver’s vehicle and the lead vehicle, and assuming 
the lead vehicle continued to decelerate at the prevailing decelerating value (i.e., at the current 
“constant” rate of slowing). 

This required deceleration measure varied with driver speed and lead vehicle deceleration rates, 
which is in sharp contrast to the “constant (or fixed) driver deceleration level” assumption 
routinely employed in FCW system warning algorithms and “benefits” modeling.  It is also 
important to note that these required deceleration values were relatively uninfluenced by driver 
age or gender, which is a desirable finding from a production implementation perspective. 
Additional evidence suggested that drivers with a FCW-equipped vehicle would be capable of 
executing the observed hard braking levels without exceeding their “comfort zone” for hard 
braking. 



A20-103 

In the modeling described below, only data from the “hard braking instruction” condition were 
used, for two primary reasons. First, in educating drivers how to brake (if braking is appropriate) 
to a FCW system crash alert, using “hard braking” terminology seems to be the most appropriate 
approach (whereas “comfortable hard” is relatively ambiguous). Second, driver’s braking 
behavior during the “comfortable hard braking” instruction was heavily influenced by the order 
in which drivers experienced the three braking instruction conditions above (this was not true for 
the “hard braking” instruction). 

Goals of Current Modeling Effort 

The primary goal of this modeling effort was to predict “last-second”, “hard braking” onsets 
across the wide variety of initial vehicle-to-vehicle kinematic conditions examined in CAMP 
Study 1 using the required deceleration value (for reasons described above). These will 
subsequently be referred to as the Required Deceleration Parameter (or RDP) modeling efforts. 
The results of this portion of the modeling effort were used directly for crash alert timing 
purposes in the subsequent three FCW system driver interface studies. The underlying 
assumption is that properly characterizing (i.e., modeling) the kinematic conditions surrounding 
these hard braking onsets without FCW system crash alert support will lead to a proper estimate 
for the assumed driver deceleration (or braking) behavior in response to a FCW system crash 
alert (across a wide variety of initial vehicle-to-vehicle kinematic conditions). The data that was 
used for this modeling effort included each of the following driver performance measures 
obtained at SV braking onset: 

° Range between the driver’s vehicle and lead (surrogate target) vehicle 

° Speed of the driver’s vehicle (or Subject Vehicle), referred to as SV speed 

° Speed of the lead vehicle (or Principal Other Vehicle), referred to as POV speed 

°	 Deceleration level of the lead vehicle (or Principal Other Vehicle), referred to as POV 
deceleration 

It should be noted that SV braking onset was not defined relative to the brake switch trigger 
point, since it was observed that some subjects had a tendency to momentarily ride the brakes 
during their last-second braking decision. Instead, SV braking onset was defined as the point in 
time in which the vehicle actually began to slow as a result of braking.  Based on a manual 
analysis of 10% of the entire data set, SV braking onset was defined as five 30 Hz data samples 
(or 165 ms) prior to SV crossing the .10 g deceleration level. 

A secondary, though important, goal of this modeling effort was to explore the ability to predict 
these “last-second”, “hard braking” onsets based on a subset of the available “raw” data 
described above. The results of this portion of the modeling effort were not used for crash alert 
timing purposes in the subsequent three FCW system driver interface studies, but instead were 
used to explore the consequences of a FCW system with less than an “ideal” level of knowledge 
of the current kinematic conditions (e.g., limited knowledge of lead vehicle deceleration rates). 
(This “ideal” level of knowledge was explored with the RDP modeling efforts discussed above). 
Two modeling attempts were made which examined a “binning” approach for the assumed lead 
vehicle deceleration. These will subsequently be referred to as Binning modeling efforts. In one 
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attempt, it was assumed that the FCW system could discriminate whether the lead vehicle was 
braking higher or lower than –0.25 g’s, as well as whether the lead vehicle was moving or 
stationary. In a second attempt, it was assumed that the FCW system could only discriminate 
whether the lead vehicle was moving or stationary. Finally, four modeling approaches examined 
crash alert timing approaches that assumed both fixed (or constant) driver deceleration rates 
(either 0.3 or 0.5 g’s) and fixed lead vehicle deceleration rates (either 0 or -0.17 g’s). These will 
subsequently be referred to as Fixed modeling efforts. 

Before discussing these modeling efforts, which developed equations for predicting range values 
and required deceleration values at SV braking onset, a few comments about the three potential 
sources of variance for predicting these values are in order. 

First, there are differences between braking event circumstances (e.g., SV speed, POV speed, 
POV deceleration), which will be called situation variance. Minimizing situation variance is the 
focus of this modeling effort. 

Second, there are differences between subjects in risk-aversion, which will be called subject 
variance. Subject variance is orthogonal to situation variance and is the variance that would be 
accommodated by an adjustment knob for use with a FCW system. This variance reflects the 
consistent bias of a given subject to brake early or late relative to other subjects in the exact same 
kinematic situation. The proportion of total variance accounted for by subject variance was 
estimated before performing regressions in order to give an upper limit on the percent of variance 
the model should account for. This upper limit is not a mathematical limit, but a practical limit. 
A model that goes above that limit is suspect because it must be accounting for subject variance 
in addition to situation variance. 

Third, there is random variance, either due to measurement error or due to the subject braking at 
a slightly different time than intended due to perceptual error. Nothing can be done about 
random error, except to estimate the magnitude of its contribution to the total variance. 

Each of the Required Deceleration Parameter (RDP), Binning, and Fixed modeling efforts will 
now be discussed in turn in detail. 
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Required Deceleration Parameter (RDP) Modeling 
Efforts 

There were two RDP modeling approaches explored. The first, more complicated approach, 
predicted (or modeled) range where the predicted required deceleration value was part of the 
predictor set of variables. This will subsequently be referred to as the RDP-Range model. The 
second, more straightforward approach, modeled required deceleration directly using a standard 
linear regression approach, and is subsequently referred to as the RDP-Deceleration model. Each 
of these two models will now be described in turn. 

RDP-Range Model 

The first modeling approach taken was to model required deceleration in terms of its effect on 
range at braking onset. That is, this model predicted required deceleration values by minimizing 
errors in the predicted range values, which are a function of the required deceleration values. In 
order to do this, the three equations linking range to required deceleration (and other variables) 
had to be put into the same general structure. 

The appropriate case equation used to calculate the braking onset range (Case 1, Case 2, or Case 
3) is based on the projected movement state of the POV at braking onset (POV moving or POV 
stationary), and the projected movement state of the POV when it contacts the SV barely contacts 
the POV (contact when POV is moving or contact when POV is stationary) under the required 
deceleration prediction (or assumption). The braking onset range is then calculated by inputting 
the predicted required deceleration value into the appropriate case equation below. It should be 
noted that the variables need to be expressed in common measurement units (e.g., feet), which 
should be consistent with those used in calculating the predicted required deceleration values. In 
this equation, braking deceleration values are represented as negative values. In the following 
case equations, the following notation is used: 

R = Braking Onset Range (or Distance) in feet 

VSV = SV velocity in feet/sec at braking onset 

VPOV = POV velocity in feet/sec at braking onset 

decREQ = required deceleration of the SV in feet/sec2 

decPOV = POV deceleration in feet/sec2 
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Case 1: POV Stationary ‚ 

(VSV)2 

_____________R =
-2*(decREQ) 

Case 2: POV Moving, contact when POV is moving ‚ 

(VSV – VPOV)2 

________________________R =
 -2*(decREQ - decPOV) 

Case 3: POV Moving, contact when POV is stationary ‚ 

(VSV)2  (VPOV)2 

______________ ______________R = —
-2*(decREQ) -2*(decPOV) 

Each of these Case equations can be fit into a more general format, referred to subsequently as 
the generalized equation, as follows: 

x 
_________________R = — z 
-2*(decREQ- y) 

The decREQ is predicted (or modeled), and the values for x, y, and z are determined by the Case 
situations above, as follows: 

for Case 1: x = VSV
2, y = 0, and z = 0. 

for Case 2: x = (VSV – VPOV)2, y = decPOV, and z = 0. 

for Case 3: x = VSV 
2, y = 0, and z = ((VPOV)2/-2*(decPOV)). 

Each hard braking onset observation (or trial) was defined as belonging to one of the three Cases 
described above, and the x, y, and z portions of the equations were then calculated. This left 
range expressed as a function of one unknown, required deceleration. The modeling process 
was directed at fitting an equation to predict required deceleration. The models considered were 
all linear with respect to required deceleration. However, when the prediction equation replaced 
required deceleration in the generalized equation to predict range, the function becomes 
nonlinear. Thus, a nonlinear fitting procedure was required to determine the best-fit model. The 
loss function was squared error in range. The portion of the best-fit model that predicts required 
deceleration is shown below. The right half of this equation can replace required deceleration in 
the generalized equation in order to predict range at braking onset. 
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decREQ = -2.727 + 0.897(decPOV) + 2.38(if POV moving) - 0.113(VSV – VPOV) 

The equation above accounts for 76% of the variance in range. (The “if POV moving” predictor 
variable is set to 0 if the POV is projected to be stopped at braking onset , and is set to 1 if the 
POV is projected to be moving at braking onset). It is important to note that although the loss 
function and percent variance accounted for were calculated with respect to range, the equation 
itself predicts required deceleration. In this equation, braking deceleration values are represented 
as negative values. 

Percent subject variance was estimated for the range by calculating the sum of squares for the 
mean of each subject across conditions. This sum of squares, expressed as a percentage of the 
total sum of squares (adjusted for the grand mean), gives the percentages of variance accounted 
for by subject differences (i.e., the extent to which there is a consistent bias of a given subject to 
brake early or late relative to other subjects in the exact same kinematic situation). The percent 
of variance accounted for by subject variance (or subject differences) was 14%. Hence, the 
amount of situation variance left over which could potentially be accounted for by this model 
was 86%. As mentioned above, the amount of situation variance actually accounted for by the 
RDP-Range model was 76%. 

RDP-Deceleration Model 

The modeling procedure for the RDP-Deceleration model followed standard linear regression 
techniques. The results of the RDP-Range modeling exercise were used to guide the modeling 
process, but not to the exclusion of other models. Fortunately, the same combination of 
independent variables produced the best-fit model. The coefficients are somewhat different 
because the loss function is given in terms of required deceleration instead of range. The 
equation, which accounts for 63% of the variance in required deceleration, is shown below. 
(Braking deceleration values are represented as negative values.) 

decREQ = -5.308 + 0.685(decPOV) + 2.57(if POV moving) - 0.086(VSV – VPOV) 

Like the RDP-Range model, the right half of this equation can be entered into the generalized 
equation to predict range.  As with the range, percent subject variance was estimated for required 
deceleration by calculating the sum of squares for the mean of each subject across conditions. 
The percent of variance accounted for by subject differences was 26%. Hence, the amount of 
situation variance left over which could be potentially accounted for by this model was 74%. As 
mentioned above, the amount of situation variance actually accounted for by RDP-Range model 
was 63%. 

Comparison of RDP-Range & RDP-Deceleration Models 

The RDP-Range and RDP-Deceleration Models are generally very similar. They are identical in 
structure, which, while not surprising, suggests that they are capturing variability that is 
consistent across somewhat different measures. The percent variance accounted for in each case 
cannot be directly compared (76% for the RDP-Range model versus 63% for the RDP-



A20-108 

Deceleration models) because the total variance is in different measures (range versus required 
deceleration). However, by applying the model to the data and using them both to predict both 
range and required deceleration, it is possible to more directly compare these two models. Table 
14 shows the average residuals (i.e., the observed minus the predicted values) in range and 
required deceleration for the two models overall, as well as for the three general subtypes of 
trials. (Note that a positive number in this table implies braking was harder than predicted, and 
hence, a result in a conservative direction.) Not surprisingly, the RDP-Range model performs 
slightly better in predicting range and the RDP-Deceleration model performs slightly better in 
predicting required deceleration. On the other hand, both models perform reasonably (and 
similarly) well at predicting both variables. 

Table 14	 Range and Required Deceleration Residuals (Observed 
Minus Expected Values) for Both the RDP-Range and RDP-
Deceleration Models 

RDP Range model RDP Deceleration 

Trial Type Req. Dec. (g) Range 
(feet) 

Req. Dec. (g) Range (feet) 

Overall +0.005 +2 0.000 +7 

Case 1 Trials +0.025 -3 0.000 +10 

Case 2 Trials +0.009 +2 -0.013 +20 

Case 3 Trials -0.004 +3 +0.005 +1 

The left-hand portion of Table 15provides average range residuals, a somewhat more intuitive 
measure than the required deceleration residuals to interpret, for both the RDP-Range and RDP-
Deceleration Models across all POV speed/POV deceleration combinations examined in CAMP 
Study 1. (For a point of reference, 1 mid-size car length is about 16 feet.). The left-hand portion 
of Table 16 provides predicted hard braking onset ranges, once again, across all POV 
speed/POV deceleration combinations examined in CAMP Study 1. In this table, the delta V 
assumption (VSV – VPOV) shown in the second column corresponds to the mean value found for 
the particular POV speed/POV deceleration combination. In addition, the third column in this 
table corresponds to the mean braking onset range found for the particular POV speed/POV 
deceleration combination examined in CAMP Study 1. Overall, across both models, the 
predicted braking onset range is within 1 mid-size car length from the observed hard braking 
range for about 70% of these nominal POV speed/POV deceleration combinations. Once again, 
as can be seen in Table 15 and Table 16, overall, both models perform very similarly at 
predicting braking onset range. 

Another opportunity to make relative comparisons across these two models is to examine 
whether the predicted hard braking onset ranges are “too early” or “too late”. In this “too 
early/too late” analysis, a too early predicted “hard” braking onset range is defined to occur when 
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the predicted “hard” braking onset range is greater than the observed braking onset range during 
the last-second, “normal braking instruction” condition. In addition, a too late predicted “hard” 
braking onset range is defined to occur when the predicted “hard” braking onset range is less than 
the observed “hard” braking range during the last-second, “hard braking instruction” condition. 

Overall, the percent “too early” predicted “hard” braking onsets for the RDP-Deceleration and 
RDP-Range models were 5.3% and 6.4%, respectively.  Overall, the percent “too late” predicted 
“hard” braking onsets for the RDP-Deceleration and RDP-Range models were 13.9% and 12.1%, 
respectively.  These results correspond well to the underlying rationale for modeling the required 
deceleration measure explained in the Task 4-CAMP Study 1 portion of this document.  Results 
from this too early/too late analysis are shown in the left-hand columns of Table 17 for each POV 
speed/POV deceleration combination examined in CAMP Study 1. 

On the whole, the RDP-Deceleration and RDP-Range models are clearly very similar, with 
similar coefficients and similar results in terms of residuals, and the estimated “too early” and 
“too late” predicted hard braking onset ranges. The RDP-Deceleration model was ultimately 
chosen for crash alert timing purposes in the subsequent three FCW system driver interface 
studies for the following reasons. The first reason was that the RDP-Deceleration model tended 
to predict slightly later (i.e., slightly more aggressive) braking onsets under kinematic situations 
when the POV braked at -0.15 g’s. Relative to the other more intense POV braking profiles 
examined (-0.28 and -0.39 g’s), this braking profile may be more representative of normal lead 
vehicle braking intensities drivers encounter during real-world driving.  It was suspected drivers 
were capable of braking harder than what was observed in Study 1 when the POV braked at -0.15 
g’s, and hence, presenting the alert slightly later under these commonly encountered conditions 
provided a potential way to minimize in-path nuisance alerts. A second reason for choosing the 
RDP-Deceleration over the RDP-Range model was the relatively more straightforward, and 
accessible approach used to develop the model. 

Binning Modeling Efforts 

Measuring POV deceleration, as well as utilizing POV deceleration information in real-time are 
difficult technical problems. Hence, a model that predicts required deceleration accurately 
without using POV deceleration knowledge would be particularly useful. Unfortunately, the 
Analysis of Variance results reported in Chapter 3 of this document suggest that achieving this 
goal may be challenging, because these results clearly indicate the strong dependence of drivers 
braking onsets on the POV braking profile. Nonetheless, the data were modeled in an attempt to 
explore the consequences of a FCW system with less than an “ideal” level of knowledge of the 
current kinematic conditions such as POV deceleration level. 

Two modeling attempts were made which examined a (non-fixed) “binning” approach for the 
assumed lead vehicle deceleration. In one attempt, it was assumed that the FCW system could 
discriminate whether the lead vehicle was braking higher or lower than -0.25 g’s, and whether or 
not the lead vehicle was moving or stationary. In this modeling process, the data were put into 
two groups. One group, the “hard” braking group, contained data in which the POV 
decelerations were harder than or equal to -0.25 g’s. The second group, the “light” braking 
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group, contained the remaining data, in which the POV decelerations were less than to -0.25 g’s. 
This will subsequently be referred to as Binning Model 1. A stepwise regression produced the 
following model, which accounts for 58% of the variance in required deceleration. 

decREQ = -4.681 – 4.574(if hard braking) – 1.059(if POV moving) - 0.095(VSV – VPOV) 

In this equation, the “if hard braking” predictor variable is set to 0 if the POV is braking “light”, 
and is set to 1 if the POV is braking “hard”. It should be stressed that the relatively high amount 
of variance accounted for by this model (58%) is misleading, since the distinction between light 
and hard braking was optimized for this particular CAMP Study 1 data set. This in effect 
artificially inflates the amount of variance accounted for. Hence, although this modeling exercise 
proved interesting in light of the technical challenges in measuring POV deceleration, because of 
this caveat, this model will not be discussed in any further detail. 

In a second “binning” modeling attempt, it was assumed that the FCW system could only 
discriminate whether the lead vehicle was moving or stationary. This will subsequently be 
referred to as Binning Model 2. This model simply removed the required deceleration variable 
from consideration. A stepwise regression produced the following model, which accounts for 
23% of the variance in required deceleration, is as follows: 

decREQ = -2.718 - 5.412(if POV moving) - 0.126(VSV – VPOV) 

The left-middle portion of Table 15 provides average range residuals for Binning Model 1 and 
Binning Model 2 across all POV speed/POV deceleration combinations examined in CAMP 
Study 1. The left-middle portion of Table 16 provides predicted hard braking onset ranges for 
these Binning models across all POV speed/POV deceleration combinations examined in CAMP 
Study 1. Finally, results from the too early/too late analysis for these Binning models are shown 
in the left-middle portion of Table 17 for each POV speed/POV deceleration combination 
examined in CAMP Study 1. The most striking, although not surprising, result from these tables 
with respect to Binning Model 2 is the high percentage of “too early” predicted “hard” braking 
onsets when the POV braked at -0.39 g’s, and the high percentage of “too late” responses when 
the POV braked at -0.15 g’s. 
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Table 15	 Average Range Residuals (Expected - Observed) in Feet for the Various Models Examined (Corresponding Standard Deviation are Shown in 
Parentheses) Across all POV Speed/POV Deceleration Combinations Examined in CAMP Study 1 

Model 

POV Speed / POV 
Deceleration 
Combination 

RDP-
Decel. 
Model 

RDP-Range 
Model 

Binning 
Model 1 

Binning 
Model 2 

Fixed Model 
1 

(decSV= -.3 g, 
decPOV= -.17g) 

Fixed Model 
2 

(decSV= -.3 g, 
decPOV= 0 g) 

Fixed Model 
3 

(decSV= -.5 g, 
decPOV= -.17 g) 

Fixed Model 
4 

(decSV= -.5 g, 
decPOV= 0 g) 

30 mph /Stat.  0 (22) +19 (22) +2 (22) +10 (22) +120 (28) -7 (22) -16 (22) -46 (23) 

30 mph/0.15 g -2 (22) +16 (23) +2 (23) -20 (18) -16 (20) -29 (17) -30 (17) -33 (17) 

30 mph/0.28 g -1 (19) +1 (18) -10 (21) +1 (19) -15 (21) -33 (17) -34 (17) -39 (17) 

30 mph/0.39 g -8 (18) -12 (18) -2 (19) +11 (20) -15 (21) -32 (16) -36 (16) -41 (17) 

45 mph/Stat. -8 (57) +7 (57) -7 (57) -9 (58) +313 (53) +19 (52) -1 (53) -71 (57) 

45 mph/0.15 g -17 (35) +9 (36) -13 (34) -44 (32) -33 (33) -55 (33) -57 (33) -62(34) 

45 mph/0.28 g +1 (33) +1 (30) +16 (33) +3 (32) -27 (40) -58 (29) -60 (28) -68 (27) 

45 mph/0.39 g -7 (30) -16 (30) +6 (31) +32 (32) -25 (40) -60 (27) -63 (27) -72 (27) 

60 mph/Stat. -23 (62) -18 (63) -26 (63) -41 (63) +56 (77) +67 (61) +33 (61) -85 (62) 

60 mph/0.15 g -32 (44) -7 (45) -26 (43) -63 (42) -48 (43) -74 (41) -76 (42) -83 (44) 

60 mph/0.28 g +2 (48) -4 (46) -31 (47) +5 (46) -43 (56) -87 (44) -90 (43) -101 (43) 

60 mph/0.39 g +3 (44) -17 (44) +29 (46) +68 (48) -32 (63) -82 (45) -86 (44) -99 (44) 
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Table 16	 Comparison of the Mean Observed Hard Braking Onsets (which are in bolded font) to the Predicted Hard Braking Onset Ranges (in Feet) for the 
Various Models Examined Using the Mean Delta V’s (VSV–VPOV) Observed Across all POV Speed/POV Deceleration Combinations Examined in CAMP 
Study 1 

Model 

POV Speed/POV 
Deceleration 
Combination 

Delta V Assumption in 
mph (not relevant to 

Fixed models) 

Mean Observed 
Hard Braking 

Onset Range for 
Cond. 

RDP-
Decel. 
Model 

RDP-
Range 
Model 

Binning 
Model 1 

Binning 
Model 2 

Fixed Model 1 
(decSV= -.3 g, 
decPOV= -.17g) 

Fixed Model 2 
(decSV= -.3 g, 
decPOV= 0 g) 

Fixed Model 3 
(decSV= -.5 g 

decPOV= -.17 g) 

Fixed Model 4 
(decSV= -.5 g 
decPOV= 0 g) 

30 mph /Stat. 29.8 106 106 124 116 108 228 99 90 59 

30 mph/0.15 g 8.6 39 35 56 16 38 19 8 7 5 

30 mph/0.28 g 10.4 48 49 49 50 36 28 12 11 7 

30 mph/0.39 g 11.2 52 45 41 64 51 32 14 13 8 

45 mph/Stat. 44.6 205 196 211 195 196 511 222 201 133 

45 mph/0.15 g 11.4 77 53 80 26 56 33 14 13 9 

45 mph/0.28 g 13.1 85 84 83 84 58 44 19 17 11 

45 mph/0.39 g 14.2 90 84 74 120 95 52 22 20 13 

60 mph/Stat. 58.0 318 287 293 269 284 865 375 341 225 

60 mph/0.15 g 11.8 96 55. 83 27 59 36 16 14 9 

60 mph/0.28 g 15.7 122 119 114 115 76 63 27 25 16 

60 mph/0.39 g 16.3 124 121m 104 176 139 68 30 27 18 
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Table 17	 Percent “Too Early” Hard Braking Onsets / Percent “Too Late” Predicted Hard Braking Onsets (the “Too Late” Onsets are in 
Bolded Font) Across all POV Speed/POV Deceleration Combinations Examined in CAMP Study 1 

Definitions of “Too Early” and “Too Late” Predicted Hard Braking Onset Ranges 

A too early predicted “hard” braking onset range is defined to occur when the predicted “hard” braking onset range is 
greater than the observed braking onset range during the last-second, “normal braking instruction” condition. 

A too late predicted “hard” braking onset range is defined to occur when the predicted “hard” braking onset range is 
less than the observed “hard” braking range during the last-second, “hard braking instruction” condition. 

Model 

POV Speed / 
POV Deceleration 

Combination 

RDP-
Decel. Model 

RDP-Range 
Model 

Binning 
Model 1 

Binning 
Model 2 

Fixed Model 
1 

(decSV= -.3 g, 
decPOV= -.17g) 

Fixed Model 
2 

(decSV= -.3 g, 
decPOV= 0 g) 

Fixed Model 
3 

(decSV= -.5 g, 
decPOV= -.17 g) 

Fixed Model 
4 

(decSV= -.5 g, 
decPOV= 0 g) 

30 MPH /Stat. 5 / 16 8 / 4 5 / 10 6 / 6 88 / 1 2 / 29 0 / 38 0 / 99 
30 MPH/0.15 g 2 / 12 18 / 1 2 / 11 0 / 66 0 / 53 0 / 98 0 / 99 0 / 100 
30 MPH/0.28 g 5 / 9 6 / 10 19 / 28 6 / 9 1 / 41 0 / 99 0 / 99 0 / 100 
30 MPH/0.39 g 4 / 30 3 / 41 7 / 20 36 / 6 2 / 52 0 / 98 0 / 98 0 / 100 

45 MPH/Stat. 3 / 13 5 / 8 3 / 12 3 / 13 99 / 0 8 / 7 3 / 9 0 / 89 
45 MPH/0.15 g 1 / 11 7 / 3 2 / 11 0 / 91 0 / 58 0 / 100 0 / 100 0 / 100 
45 MPH/0.28 g 8 / 7 8 / 6 13 / 15 11 / 7 1 / 32 0 / 93 0 / 97 0 / 99 
45 MPH/0.39 g 10 / 15 5 / 25 23 / 8 56 / 5 2 / 47 0 / 99 0 / 99 0 / 99 

60 MPH/Stat. 1 / 22 1 / 22 1 / 25 0 / 35 100 / 0 21 / 1 11 / 6 0 / 69 
60 MPH/0.15 g 0 / 19 3 / 2 1 / 20 0 / 95 0 / 64 0 / 100 0 / 100 0 / 100 
60 MPH/0.28 g 6 / 5 7 / 6 11 / 10 16 / 4 0 / 24 0 / 94 0 / 97 0 / 100 
60 MPH/0.39 g 20 / 10 6 / 16 36 / 6 66 / 1 3 / 38 0 / 96 0 / 98 0 / 100 
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Fixed Modeling Efforts 

Four modeling approaches examined crash alert timing approaches that 
assumed both fixed (or constant) driver decelerations rates (decSV ) and 
fixed lead vehicle (or POV) decelerations (decPOV) rates. These 
deceleration assumptions are characteristic of current crash alert timing 
approaches. The four combinations of the assumed driver deceleration and 
lead vehicle deceleration rates are shown below, along with the 
corresponding model name. It should be noted that Fixed Model 2 and Fixed 
Model 4 below were the working assumptions for cautionary and imminent 
crash alert timing as part of CAMP’s initial 2-stage alert timing approach, 
prior to the results obtained from the CAMP Task 4 Human Factors Studies 
discussed in this report. 

Table 18 Fixed Modeling Efforts 

Model Name Assumed decSV Assumed decPOV 

Fixed Model 1 -0.30g’s -0.17g’s 

Fixed Model 2 -0.30g’s 0 g’s 

Fixed Model 3 -0.50g’s -0.17g’s 

Fixed Model 4 -0.50g’s -0g’s 

These assumptions were input into the Case 2 equation discussed above, which is shown again 
below, to calculate the predicted hard braking onset range. 

(VSV - VPOV)2 

_______________________R =
 -2*( decSV - decPOV) 

The right half of Table 15 provides average range residuals for each of these Fixed models across 
all POV speed/POV deceleration combinations examined in CAMP Study 1. The right half of 
Table 16 provides predicted hard braking onset ranges for these models across all POV 
speed/POV deceleration combinations in CAMP Study 1. Finally, results from the too early/too 
late analysis for these Fixed models are shown in the right half of Table 17 for each POV 
speed/POV deceleration combination in CAMP Study 1. These results indicate that the predicted 
hard braking onsets are substantially later relative to the RDP Models discussed earlier across 
nearly all POV speed/POV deceleration combinations. Results from the too early/too late 
analysis indicate, across nearly all POV speed/POV deceleration combinations, a near total 
absence of “too early” predicted “hard” braking onsets, and an extremely high percentage of “too 
late” responses (particularly when the lead vehicle is moving). 
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Summary of Modeling Efforts 

Together, results from these eight models clearly indicate that a great deal of predictive value is 
lost if lead vehicle (POV) deceleration cannot be measured. In each of the Required Deceleration 
Parameter (RDP) and Binning modeling efforts discussed above, POV deceleration was the first 
variable entered into a stepwise regression, since it accounted for the most variance. 

The RDP-Deceleration model was ultimately chosen for crash alert timing purposes in the 
subsequent three FCW system driver interface studies. This model is distinctly different from 
commonly employed FCW warning algorithms used for crash alert timing approaches (as well as 
“benefits” modeling), which assume fixed driver deceleration rates independent of driver speed 
and lead vehicle deceleration rates. Under the RDP-Deceleration model, the assumed driver 
deceleration varies as a function of both the speed difference between the two vehicles (i.e., delta 
V) and lead vehicle deceleration levels. In the remainder of this report, the equation resulting 
from this RDP-Deceleration model will subsequently be referred to as the CAMP RDP equation 
for brevity purposes. Earlier in this appendix, this equation predicted required deceleration 
values in feet/second2. The equation below provides an equivalent, perhaps more accessible, 
version of this equation, which predicts required deceleration in g’s. In this equation, braking 
deceleration values are represented as negative values, and the following notation and 
measurement units are employed: 

decREQ = required deceleration of the SV, expressed in g’s (negative for braking) 

decPOV = deceleration level of the lead vehicle (or Principal Other Vehicle), 
expressed in g’s 

VSV = velocity of the Subject Vehicle (or SV), expressed in meters/sec 

VPOV = velocity of the Principal Other Vehicle (or POV) velocity, 
expressed in meters/sec 

(“if POV moving” is set to 0 if the POV is projected to be stopped at braking onset, and is set to 
1 if the POV is projected to be moving at braking onset). 

CAMP RDP Equation 

decREQ = -0.165 + 0.685(decPOV) + 0.080(if POV moving) - 0.00877(VSV – VPOV) 

On a final note, the reader should be reminded that the underlying assumption is that properly 
characterizing (i.e., modeling) the kinematic conditions surrounding these hard braking onsets 
without FCW system crash alert support (i.e., the RDP-Deceleration model) will lead to a proper 
estimate for the assumed driver deceleration (or braking) behavior in response to a FCW system 



A20-116 

crash alert across a wide variety of initial vehicle-to-vehicle kinematic conditions. This 
assumption eventually received strong support in the subsequent three FCW system driver 
interface studies, both from a driver performance and driver preference perspective. Hence, these 
results clearly indicate the added value obtained by gathering data under highly valid, controlled, 
realistic conditions involving a wide range of typical drivers braking a real car on a real road to a 
realistic crash threat. 
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B	 COMPUTING ALERT ONSET TIMING 
REQUIREMENTS 

B.1 Introduction 
This appendix presents equations to compute ranges (distances) at which a forward collision 
warning (FCW) system needs to present crash alerts to a driver. These ranges depend on the 
speeds and accelerations of the FCW-equipped vehicle and another vehicle that is ahead. These 
equations are quite similar to those in Chapter 4, Section 4.2.3.1 (Crash Alert Timing and Crash 
Alert Timing Adjustability). There are differences, however, that may be significant when 
actually computing requirements for specific situations. These differences include: 

ñ A precise description of the domain of validity of the equations is provided, 

ñ The equations may be used in some non-closing situations (e.g., when the lead 
vehicle is accelerating), unlike those in the report body, 

ñ A specific computation is presented to determine which kinematic ƒcase≈ is expected, 
that is, whether the lead vehicle is expected to be stopped or moving at impact, and 

ñ The equations handle all special cases that fall within the stated domain of validity 
(e.g., all divide-by-zero errors and ambiguities are eliminated). 

The equations in this appendix are referenced throughout the body of the report. In Chapter 3, the 
alerts presented to subjects in the human factors experiments are consistent with these equations. 
Chapter 4 recommends alert onset timing requirements; the equations in this appendix allow one 
to compute the requirements for all conditions within the stated domain of validity. Because 
those requirements are a basis for the objective test procedures described in Chapter 5 and 
evaluated in Chapter 6, the equations are referenced in those chapters as well. 

Note that although the computational procedure presented in this appendix could serve as a 
starting point for designing alert onset timing for FCWs, the algorithm is not required to be part 
of an FCW system. Furthermore, the algorithm presented in this chapter is not intended to 
handle all potential rear-end collision situations, nor is it intended to handle all possible 
operational situations. Further remarks on this subject are found later in this appendix. 

Two sections follow within this appendix. First, the approach to alert onset timing requirements 
presented in Chapter 4 is reviewed. Second, the algorithm is presented and limits of the validity 
of the equation are described. 
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B.2 Review of Approach to Alert Onset Timing 
Requirements 

Chapter 4 describes the circumstances in which FCW alerts are required, allowed, or not 
allowed. Many factors are considered in this determination, including aspects of the SV«s 
motion, the presence of a potentially threatening object and its characteristics, and the relative 
positions and motion between the SV and the threat. (See Chapter 4 for a complete description 
of requirements.) In this appendix, however, assume that all conditions are such that 
determining whether an alert is required, prohibited, or is allowed, depends only on the alert 
onset timing ¬ that is, the longitudinal distance between the vehicles and their speeds and 
accelerations. 

The approach to minimum requirements for alert onset timing that is presented in Chapter 4 
requires that the onset of FCW crash alerts occurs with a timing that is neither ƒtoo early≈ nor 
ƒtoo late,≈ given the existing speeds and accelerations of the vehicles. A key finding in the first 
human factors study in Chapter 3 is that the timing of drivers« decisions to begin last-moment 
braking can be modeled well by considering the deceleration required to avoid impact. Since a 
driver requires a finite time to perceive the alert, react, and finally press the brake pedal, it 
follows that a valid approach to last-moment alerts is one in which an alert is given at the last 
moment possible to account both for the driver reaction time and the distance that the driver«s 
vehicle closes on the lead vehicle before the driver can bring the vehicle«s speed down to that of 
the lead vehicle. 

The requirement specifications of ƒtoo early≈ and ƒtoo late≈ are each expressed using an alert 
range that is computed using the two vehicles« speeds and the accelerations. The same set of 
equations is used to compute the two bounds, however, a pair of parameters within the equations 
is assigned one set of values for ƒtoo early≈ and another set for ƒtoo late.≈ Consider a lead 
vehicle ¬ a ƒprincipal other vehicle≈ (POV) ¬ and a following ƒsubject vehicle≈ (SV) which is 
equipped with an FCW system. The two specifications each correspond to the minimum range at 
which an alert would be required to bring the SV speed down to the POV«s speed with no range 
remaining (just touching bumpers) under the following assumptions: 

° SV braking would begin only after a known delay time after the alert onset. 

°	 SV braking (after the delay) may be modeled as a constant acceleration value that 
may depend on vehicle speeds and acceleration values at the time of alert onset. 

°	 The minimum range considers the POV«s acceleration at the time of alert onset, and 
assumes that the POV acceleration will remain constant throughout the event, unless 
the POV comes to a stop (in which case the POV is assumed to remain at rest). 

Up to this point, the approach stated above is not new to this project. The unique aspect of the 
timing approach suggested in this report is that the parameters used to describe the delay time 
and the SV braking level is based on the human factors experiments (as described in Chapter 4 
and elaborated on later in this appendix). 

Those experiments: 
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1.	 Demonstrated that the general timing approach is consistent with a model of last-
second braking decisions by drivers without an FCW. 

2.	 Generated sets of parameters that can be used in the equations that yield alert timing 
that is simultaneously timely and not annoying (the parameters describe driver 
braking reaction times and braking levels). 

3.	 Demonstrated driver acceptance and acceptable performance, given alert timings with 
such an approach. 

B.3 Equations to Compute Alert Timing Requirements

The approach to alert onset timing requirements is based on observed braking decisions of 
drivers, as described in Study 1 of Chapter 3. To compute numerical values for the alert 
requirements for a given situation, however, requires using a set of equations that may appear 
somewhat lengthy, and that become more complicated as more sets of initial conditions are 
addressed. The straightforward application of the simple kinematics and the simple model of 
driver response to alerts require handling many possible ƒcases≈ of initial, intermediate, and final 
kinematic states. The number of cases that is to be handled is familiar to any designer or analyst 
that has translated the simple timing approach above into a warning algorithm, and tested the 
algorithm either in simulation or in a vehicle. The inclusion of the new driver response 
parameters does not significantly complicate the computations. 

This section presents a set of equations that should be used to evaluate the alert onset timing of 
an FCW being evaluated with the vehicle-level objective test procedures described in Chapter 5. 
The equations provide the ƒtoo early≈ and ƒtoo late≈ alert onset ranges for any given set of 
vehicles speeds and accelerations that fall within the limited set of initial conditions described. 
This set of initial conditions includes those that will occur at or near alert onset in the objective 
test procedures. These equations do not constitute a complete warning algorithm and should not 
be used as such. Although the equations also provide suitable alert timing for many common 
potential rear-end crash situations ¬ including the conditions seen both in the human factors 
experiments and in the objective test procedures of Chapter 5 ¬ there will be other potential rear-
end crash situations in which a more complete set of equations is needed. In addition, the 
equations in this appendix do not include additional logic used to handle situations in which the 
driver is already braking the host vehicle. 

B.3.1 Equations to Compute Alert Timing Requirements 

The requirements are valid over a restricted domain of initial conditions. This domain of validity 
is now presented. Let VSV and VPOV denote the initial speeds of the SV and the POV, 
respectively, as shown in Figure 1. Let decSV and decPOV be the initial decelerations of the SV 
and the POV, respectively  (negative values for braking). Let ƒDelay Time≈ denote the total 
delay time between the crash alert onset and when the driver decelerates the vehicle in response 
to the crash alert. The total delay time includes both the driver«s reaction time and the nominal 
brake system lag. The driver«s deceleration response is denoted decSVR, and this is negative for 
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braking. The equations address the computation of the alert requirements; the following 
conditions are assumed: 

° SV speed is initially at least 16 kph. 

° POV speed is positive or zero, but is not negative. 

°	 SV speed is expected to be greater than the POV speed at the end of the total delay 
time. 

°	 SV acceleration at crash alert onset has an absolute magnitude that is no greater than 
0.1g. This should hold during nearly all normal non-braking driving conditions. 

° SV speed is not expected to go to zero during the delay. 

° If the POV is initially moving, it will not come to rest during the delay. 

° The POV is either decelerating or not accelerating more than 0.08g. 

If any of these conditions do not hold, the equations that follow are not applicable for computing 
the requirements for alert timing. 

SV(subject vehicle) POV(principal other vehicle) 

Vsv, decsv Vpov, decpov 

Figure 1 Initial Situation of Vehicle Pair 

To compute alert requirements, four steps are suggested. 

1. Project values for the speeds from the initial conditions to the end of the total delay time. The 
predicted speeds at the time of SV deceleration onset are: 

VSVP = VSV + decSV*Delay Time 

VPOVP = VPOV + decPOV*Delay Time 

2. Evaluate the expected driver braking response, decSVR, and the total delay time. As described 
in Chapter 4, the total delay time should be the sum of the assumed driver reaction time, plus an 
0.200 sec value that represents a typical delay time between a rapid brake pedal application and 
deceleration of the vehicle. Chapter 4 states that to compute the minimum range at which the 
alert can begin, one should use a driver reaction time of 1.18 sec and a driver braking level 
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described by the CAMP ADP equation (the predicted values for speeds are to be used in the 
ADP equation): 

Delay Time = 1.18 + 0.20 = 1.38 sec. 

decSVR (g«s)= -0.260g ¬( 0.00725g/m/s)VSVP 

To compute the maximum range at which the alert may begin (for the minimum FCW setting), 
Chapter 4 states that a driver reaction time of 1.52 should be used, along with the CAMP RDP 
equation (with predicted speed values): 

Delay Time = 1.52 + 0.20 = 1.72 sec. 

decSVR (g«s)=-0.165g+(0.685g/g)*decPOV*(decPOV<0)*(VPOVP>0) 

+0.080g*(VPOVP>0) +(-0.00877g/m/s)*(VSVP ¬ VPOVP) 

The conditional expressions in the equation above should be evaluated as one if the inequality is 
true, and evaluated to zero if it is false. For instance, the second term above includes two 
conditional expressions so that the term (0.685g/g)*decPOV is included only if the POV will be 
both moving and decelerating after the total delay time. 

3. Compute the minimum range at which an alert would be needed so that the model of driver 
response would just bring the closing speed to zero as the range went to zero. (Derivations of the 
following equations are not presented. The equations follow from a straightforward application 
of kinematics using the simple models presented, and assuming the conditions above apply.) 

The alert range, R, is the sum of the desired range at SV deceleration onset (ƒbraking onset 
range,≈ or BOR), plus the amount that the range will decrease during the total delay time (ƒdelay 
time range,≈ or DTR). The delay time range is 

DTR = (VSV ¬ VPOV)*Delay Time + 0.5*(decSV ¬ decPOV)*(Delay Time)2 

Brake onset range can be computed using one of two possible expressions. These correspond to 
whether the POV is expected to be moving or stopped when the ƒcontact≈ occurs (contact is the 
moment at which the models predict the range rate and range both go to zero). The following 
conditional determines which of these two cases is expected: 

If decPOV*VSV <= decSVR*VPOV ¬ decPOV*Delay Time*(decSV ¬ decSVR), 

Contact expected when POV is stopped (Case 3 in Chapter 4, Section 4.2.3.1) 

Else, 

Contact expected when POV is moving (Case 2 in Chapter 4, Section 4.2.3.1) 

This inequality is based on a simpler equation that compares the expected stopping time for the 
POV with the sum of the total delay time and the expected stopping time of the SV. It was 
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necessary to rearrange the inequality so it provides the correct answer (true/false) even when 
POV speed and/or POV acceleration is zero. 

Contact with a stopped POV includes cases in which the POV is initially stopped as well as cases 
in which the POV decelerates to a stop during the SV«s braking maneuver. In this case, the 
braking onset range BOR is the difference between the SV«s expected stopping distance and the 
POV«s expected stopping distance: 

If decPOV = 0, 

BOR = (VSVP)2/(-2*decSVR) 

Else, 

BOR = (VSVP)2/(-2*decSVR) ¬ (VPOVP)2/(-2*decPOV) 

The case in which contact is expected when the POV is moving includes cases in which the POV 
is not decelerating, and in fact is accelerating within the conditions assumed earlier. It also 
includes cases in which the POV is decelerating, but conditions are such that contact is still 
expected before the SV deceleration can occur quickly enough. One common situation leading 
to this case is when the SV is tailgating at higher speeds and the POV begins braking at 
significant levels. If contact is expected when the POV is moving the braking onset range is: 

BOR = (VSVP ¬ VPOVP)2/(-2*(decSVR ¬ decPOV)). 

Regardless of which braking onset range equation is used, the alert onset range R is to be 
computed using: 

R = BOR + DTR. 

4. Apply other applicable requirements that may affect requirements of the range at alert 
onset (Chapter 4, Section 4.7). For example, if the first three steps above yield a 
maximum range (ƒtoo late≈ cut-off) that is greater than the maximum longitudinal extent 
of the alert zone (100 meters), then the ƒtoo late≈ cut-off is adjusted to this value. The 
reader is advised to be familiar with all requirements of Chapter 4, Section 4.7, which 
puts these computational procedures into context. 
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C	 ANALYSIS OF FORWARD COLLISION 
WARNING PERFORMANCE METRICS USING 
REAMACS 

C.1 Foreword 
To help identify and understand the important parameters of countermeasures in rear-end 
crashes, modeling and simulation work was performed and reported using the computer tool 
REAMACS (Rear-end Accident Model and Countermeasure Simulation). This work was done 
in 1997, early in the project, and made use of the best available information at the time. The 
results influenced direction on choosing the Alert Zone maximum longitudinal extent, the need 
for FCW systems to estimate lead vehicle deceleration, and deepened the understanding of the 
tradeoffs between providing maximum warning capability while not producing so many nuisance 
alerts that driver acceptance is negatively affected. 

°	 Because the modeling work was completed early in the project, the reader should 
keep in mind the following while reading: 

°	 In this document, ƒcautionary≈ and ƒimminent≈ alert warning algorithms refer to two 
specific warning algorithms. These are both based on closing speed, and were 
assumed to be candidates for specifying alert onset requirements for a single-stage 
alert. ƒImminent≈ alert does not correspond to the proposed alert onset timing 
requirements of Chapter 4, nor does ƒcautionary.≈ 

°	 The alert onset timing requirements proposed in Chapter 4 are not specifically 
included in this appendix«s analysis. These requirements were developed in the final 
stages of the project and a re-computation of these results is outside the project scope. 
The algorithm closest to the type of timing requirements suggested in Chapter 4 may 
be the ƒlead vehicle deceleration≈ algorithm with a parameter set ƒRT=1.5 sec, asv = 
-0.3g≈. 

C.2 Summary of Findings 
This document reports modeling and simulation work that estimates performance measures of 
Forward Collision Warning (FCW) systems. 

This work studies relative performance effects of warning algorithm types, maximum warning 
ranges, and sensitivity to modeling assumptions. Warning algorithms considered include a first 
(earlier) alert, the ƒcautionary≈ crash alert, and a second set of parameters to define a second 
(last-moment) alert, termed the ƒimminent≈ crash alert. Performance metrics are computed here 
for a FCW that issues single alerts based on various warning algorithms, including the cautionary 
and imminent crash alerts as well as basic variants of these designs. Also included are warning 
algorithms that make use of lead vehicle deceleration information. 
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The metrics used to compare performance of countermeasures are the potential to reduce relative 
harm, and the relative frequency of in-path nuisance alerts. Relative harm is computed over a set 
of potential rear-end crash scenarios; relative harm is defined as the ratio of the sum of squared 
impact speeds in crashes with vehicles equipped with a FCW system to the same metric 
computed for vehicles not equipped with a FCW. In-path nuisance alerts are alerts triggered by 
vehicles in the path of the host vehicle in situations that the driver does not regard as alarming. 
The modeling work assumes perfect sensing by the FCW system and 100% compliance of 
drivers to warnings. It is argued, however, that to understand the likely benefit of FCWs in 
practice, future work is needed to consider the possible effects that nuisance alerts may have on 
reducing driver usage and compliance with the crash warning system. This report does not 
attempt to include these effects and reduction in harm and in-path nuisance alerts rates are 
computed separately. 

The modeling work here builds on a simulation tool named REAMACS, which has been 
developed and used at Ford since 1993. REAMACS is an acronym for Rear-end Accident 
Model and Countermeasure Simulation. Simulation results are based on rear-end crash scenarios 
generated using a database of actual vehicle pair speeds and headways collected from Interstate 
40 near Albuquerque by the Federal Highway Administration (FHWA). This is the only 
comprehensive database available to CAMP at this time, and it is not known to what degree the 
reliance on this database has biased the simulation results. The database was generated using 
loop detectors, and thus leads to a simulation crash set with a significant under-representation of 
rear-end crashes in which the lead vehicle is stopped when struck. Also, the database is highway 
data and therefore may not represent vehicle pair behaviors characteristic of other roadway types. 

Simulation work findings include: 

1.	 A target sensor that can support warnings at a 75-meter range provides 93% of the 
benefits of a sensor with unlimited range. A more accurate representation of stopped 
lead vehicle situations, however, might indicate that there are benefits of a longer 
working range. 

2.	 There is a potential for FCWs to reduce relative harm by up to 67 percent using the 
cautionary crash alert as the only warning, along with a sensor that supports a 75 
meter warning range. When used as the only warning, the imminent crash alert has a 
potential to reduce relative harm by only 20% ¬ this alert occurs too late for much 
benefit with decelerating lead vehicles. Effectiveness estimates may decrease when 
considering the effects of nuisance alerts on driver usage of, and compliance with, 
FCWs. 

When lead vehicle information is considered, there is a potential to reduce relative 
harm up to 81% using a set of algorithm parameters corresponding to both the 
cautionary and imminent parameters, and a sensor that supports a 75 m warning 
range. 

3.	 Estimates of the expected exposure of a driver to in-path nuisance alerts are sensitive 
to modeling assumptions regarding braking levels that drivers are comfortable using 
in situations they consider non-alarming. For the cautionary crash alert design, a 
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rough scaling analysis estimates that 28 in-path nuisance alerts would occur for every 
rear-end crash with an impact speed of ten miles per hour or greater. This scales to 
one in-path nuisance alert per 4.2 years per vehicle. The imminent crash alert design 
leads to only 1.3 in-path nuisance alerts per rear-end crash with at least a ten mile per 
hour impact speed. This illustrates a tradeoff between increasing the potential to 
reduce relative harm and reducing the estimated in-path nuisance rates. Future 
experimental work is needed to allow more accurate scaling from in-path nuisance 
alert rates computed in simulation to rates likely to be seen in practice. Thus in-path 
nuisance alert results should be used only for comparison between countermeasure 
designs. 

4.	 The simulation work suggests that information about a lead vehicle«s deceleration 
level can improve the performance of a FCW system. By adding lead vehicle 
information to the imminent crash alert, the potential for reduction in relative harm 
increases from 20% to 81%, however, the corresponding in-path nuisance alert rate 
increases from 1.3 to 13.5 per rear-end crash with impact speed of ten miles per hour 
or more. By adding both lead vehicle deceleration information and varying the 
warning algorithm design, a potential reduction in relative harm nearly equal to that 
of the cautionary crash alert can be achieved (79%). While the in-path nuisance rate 
drops from 28 to 2.3 alerts per rear-end collision with impact speed of ten miles per 
hour or greater. 

In practice, in-path nuisance alert rates may be different than reported here for warning 
algorithms that use lead vehicle deceleration information. There are two reasons. First, this 
work studies a particular class of such warning algorithms, which is those algorithms that assume 
the lead vehicle will continue braking at its current deceleration until it stops. The simulated 
situations, however, match this same scenario ¬ the lead vehicle brakes completely to a stop. In 
practice, many nuisance alerts will occur for these algorithms when the lead vehicle brakes only 
momentarily, and so the in-path nuisance rate is likely to be higher in practice for this set of 
algorithms. Second, warning algorithms can use different assumptions about the future braking 
levels of the lead vehicle. These other algorithms are not studied here. 

The simulation results suggest it is possible to define a FCW warning algorithm capable of 
triggering alerts which are timely enough to significantly reduce rear-end crash harm while not 
producing so many in-path nuisance alerts that drivers reject the system, nullifying any overall 
benefit. This conclusion is based on a proposed model that defines alarming situations by the 
braking levels necessary to avoid a collision. Results of the ongoing human factors experiments 
portion of this Project will provide a sounder basis for such models, and may affect the 
conclusion. 

There is a lack of comprehensive field data on actual vehicle-following and braking behavior. 
More data is needed to improve confidence in predictions of potential benefits of FCW 
deployment. 
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C.3 Introduction 
This study was produced as part of the Development and Validation of Functional Definitions 
and Evaluation Procedures for Collision Warning/Avoidance Systems Project, which is a 
cooperative effort between the Ford/General Motors Crash Avoidance Metrics Partnership 
(CAMP) and the National Highway Traffic Safety Administration (NHTSA). The purpose of 
this project is to accelerate the implementation of automotive rear-end crash avoidance 
countermeasures [1]. The main purpose of the modeling and simulation work reported in this 
document is to support the definition of functional requirements for forward collision warning 
systems (FCWs). 

The work reported here uses two primary metrics associated with rear-end countermeasure 
performance. The first primary metric is the potential reduction in relative harm that FCWs may 
provide. Relative harm is computed over a set of potential rear-end crash scenarios; relative harm 
is defined as the ratio of the sum of squared impact speeds in crashes with vehicles equipped 
with a FCW system to the same metric computed for vehicles not equipped with a FCW. 
Consider a ƒsubject vehicle≈ (SV) which is following another vehicle, which will be called the 
ƒprincipal other vehicle≈ (POV). Let Vsv  and V pov  denote the speeds of the SV and the POV, 

respectively, as shown in Figure 1, so that if a rear-end collision occurs, the impact speed is 
Vsv -V pov . The terms ƒsubject vehicle≈ (SV) and ƒfollowing vehicle≈ could be used 

interchangeably, but this report uses ƒSV≈. Likewise, the terms ƒprincipal other vehicle≈ (POV) 
and ƒlead vehicle≈ could be used interchangeably, but again, this report uses ƒPOV.≈ 

Let A denote a set of potential rear-end crash scenarios. Then the relative harm associated with a 
particular FCW can be expressed as: 

ƒ(Vsv -V pov )
2 with FCW 

Relative Harm = A X 100% 
ƒ(Vsv -V pov )

2 without FCW 
A 

The reduction in relative harm associated with a countermeasure or algorithm is expressed as a 
percent reduction in relative harm: 

Reduction in Relative Harm = 100% - Relative Harm 

The potential for reduction in relative harm for an effective countermeasure is then between 0% 
(no effect) and 100% (all crashes eliminated). The word potential is a qualifier to indicate 
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SV (subject vehicle) POV (principal other vehicle) 

Vsv Vpov 

Figure 1 Vehicle Pair Illustration 

that the reductions in harm conveyed by the simulation results are only provisional and that 
realizable reductions in harm depend on many operational and psychological factors not 
considered here. The potential for reduction in relative harm is used to make relative 
comparisons between different countermeasure designs, and is intended to provide insight into 
how different countermeasures might impact actual harm occurring in real-world collisions. 
Reduction in the number of crashes is also reported in this document since some researchers use 
this metric instead of harm. 

The second primary metric is the relative frequency of in-path nuisance alerts that may result 
from use of FCWs. For this report, an in-path nuisance alert is defined as an alert issued by a 
FCW in response to a POV located in the host vehicle«s path, but issued in a situation considered 
by the driver to be non-alarming. In-path nuisance alerts are likely to occur for any FCW since 
the countermeasure must issue alerts in time for an inattentive driver to take preventive action, 
and countermeasures currently cannot distinguish between drivers unaware of impending danger 
and drivers aware of the situation. 

The results for potential reduction in relative harm reported in this document do not take into 
account the possible effect of nuisance alerts on the willingness of drivers to heed the warnings 
or even to use the system. Therefore the results reported here are only a first-order estimate of 
benefits, and may be an upper bound on the actual benefits that may occur with deployment. A 
key premise of CAMP, is the realizable reduction in relative harm; that would result from the 
deployment of FCWs, would depend not only on the apparent benefits, but also on the possible 
effect of nuisance alerts, on the willingness of drivers to use a FCW and heed the warnings. The 
benefits accrued when considering this effect might be called ƒsecond-order≈ benefits. 

Figure 2 illustrates the concept of factoring in-path nuisance alerts into estimates of realizable 
reductions in harm. The solid line in the figure represents the estimates made in this report, as 
well as in similar work by others ¬ the potential for reduction in relative harm is computed 
assuming ideal compliance and 100% use of FCWs. This apparent reduction in relative harm 
can be made to increase by changing warning algorithm design to provide 
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Figure 2	 Possible Effect of FCW In-Path Nuisance Alerts in Reducing 
Realizable Reductions in Harm 

earlier alerts. With earlier alerts, in-path nuisances will tend to increase, perhaps discouraging 
drivers from using the system and/or complying with warnings. The effects of nuisance alerts on 
overall system effectiveness are not well understood; one possible effect is illustrated in Figure 
3, in which usage and compliance of a FCW is shown to decrease with earliness of the alert. To 
compute a realizable reduction in harm, the nuisance alerts must be factored into the assumed 
levels of deployment, usage, and compliance. The dotted line in Figure 2 illustrates the net 
realizable reduction in relative harm that would result if nuisance alert effects like that shown in 
Figure 3 are considered. This estimation of second-order benefits is not completed in this report. 
The first-order results reported do provide information, however, that may be used with the 
results of the human factors studies currently underway to estimate a realizable reduction in 
harm. 

The simulation results reported here are based on the use of REAMACS (Rear-end Accident 
Model and Countermeasure Simulation). REAMACS uses headway and vehicle speed field 
data, processed with experimentally based models, to generate a set of vehicle 
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Figure 3 Concept: In-Path Nuisances May Reduce FCW Usage 

pairs with potential to become rear-end collisions. Actual vehicle pair speed and headways 
collected from Interstate 40 near Albuquerque by the Federal Highway Administration (FHWA) 
are used as initial conditions for vehicle pairs. Computer simulation introduces POV braking for 
each vehicle pair from the database, and statistical distributions of SV driver reaction time and 
POV braking level are used to evaluate the outcome of the scenario. The effectiveness of a 
collision warning can then be estimated. The modeling work assumes perfect sensing by the 
FCW system and 100% compliance of drivers to warnings. By studying the variation of 
performance for different rear-end collision warning algorithms, algorithm parameters, and target 
sensing ranges, insight is gained into practical design issues as well as higher level issues of 
technical feasibility and upper bounds of possible deployment benefits. The modeling approach 
continues work on REAMACS by Farber and colleagues at Ford [2][3][4][5][6][7]. This earlier 
work and other studies [8][9] have contributed first-order estimates of the potential reduction of 
relative harm from use of FCWs. The present document contributes a definition of in-path 
nuisance alerts, and develops a method to estimate in-path nuisance alerts, thereby providing 
information for possible estimation later of second-order benefits. 

The exclusive use of the FHWA database in generating vehicle pair conflict situations introduces 
two important caveats into any interpretation of the simulation results. First, while the database 
is the only comprehensive database available to CAMP at the time of these analyses, the 
database is generated using loop detectors, and thus no vehicle acceleration data is available. 
With REAMACS, then, this leads to a simulation crash set with a significant under-
representation of rear-end crashes in which the POV is stopped when struck. With REAMACS 
about one in three or four ƒcrashes≈ include a POV which is stationary when struck. Reference 
[10] estimates that 67% of police reported rear-end crashes in the U.S. include stationary POVs. 
Second, the database is highway data and therefore does not represent vehicle pair characteristics 
of other roadway types. 
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Another caveat on the results is that the in-path nuisance alerts studied here are just one type of 
unnecessary alert. Many types of unnecessary alerts are likely to occur with FCW deployment. 
Out-of-path nuisance alerts are common in today«s systems. For example, an overhead bridge 
may fool a radar system, or a laser radar system may interpret a roadside sign on a curve as a 
vehicle. False alarms may also occur for other reasons including as sensor noise or cross-talk 
with other FCWs. The frequency of these sensor and sensing-interpretation errors may diminish 
as sensor technology and sensor processing algorithms develop. In-path nuisance alerts are 
likely to remain, though, since FCWs cannot distinguish between drivers unaware of possible 
danger and drivers already aware of the situation, and alert timing must always account for the 
perception-reaction time delay of an inattentive driver. What makes FCW feasible is the fact that 
vehicles are capable of much higher levels of braking than the discretionary levels of braking 
used by alert drivers. This makes it possible to delay a warning well beyond the point at which 
most alert drivers would normally begin to brake. 

Major findings include: 

1.	 A target sensor that can support warnings at a 75 meter range provides 94% of the 
benefits of a sensor with unlimited range. With a more accurate representation of 
stopped POV situations, however, a longer working range may be beneficial. 

2.	 There is a potential for FCWs to reduce relative harm by up to 67 percent in FCW-
equipped vehicles using the cautionary crash alert and an error-free sensor supporting 
a 75 meter warning range. When used as the only warning, the imminent crash alert 
has a potential to reduce relative harm by only 20% ¬ this alert occurs too late for 
much benefit with decelerating POVs. 

When lead vehicle information is considered, there is a potential to reduce relative 
harm up to 81% using a set of algorithm parameters corresponding to both the 
cautionary and imminent parameters, and a sensor that supports a 75 m warning 
range. 

3.	 Estimates of the expected exposure of a driver to in-path nuisance alerts are sensitive 
to modeling assumptions regarding braking levels that drivers are comfortable using 
in situations they consider non-alarming. Also, in-path nuisance alert rates estimated 
in this report are likely to be low, since simulation work here assumes all POVs brake 
to a stop, while in reality many, if not most, nuisances will occur when POVs brake 
only momentarily. For the cautionary crash alert design considered , a rough scaling 
analysis estimates that 28 in-path nuisance alerts for every rear-end crash with an 
impact speed of ten miles per hour or greater. This scales to one in-path nuisance 
alert per 4.2 years. The imminent crash alert design leads to only 1.3 in-path nuisance 
alerts per rear-end crash with at least a ten mile per hour impact speed. Future 
experimental studies are needed to provide more reliable scaling factors to use 
simulation results to predict real-world experience. 

4.	 Simulation suggests that use of information about POV deceleration by a rear-end 
collision warning algorithm has the potential to improve FCW performance. This 
includes a possible increase in the potential reduction in harm as well as an easing of 
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the need to tradeoff between reducing relative harm and increasing the in-path 
nuisance alert rate. By adding POV deceleration information to the imminent crash 
alert, the potential for reduction in relative harm increases from 20% to 81%, 
however, the corresponding in-path nuisance alert rate increases from 1.3 to 13.5 per 
rear-end crash with impact speed of ten miles per hour or more. By adding both POV 
deceleration information and varying the warning algorithm design, a potential 
reduction in relative harm nearly equal to that of the cautionary crash alert can be 
achieved. (79%). While the in-path nuisance rate drops from 28 to 2.3 alerts per rear-
end collision with impact speed of ten miles per hour or greater. 

In practice, in-path nuisance alert rates may be different than reported here for 
warning algorithms that use lead vehicle deceleration information. There are two 
reasons. First, this work studies a particular class of such warning algorithms, which 
is those algorithms that assume the lead vehicle will continue braking at its current 
deceleration until it stops. The simulated situations, however, match this same 
scenario ¬ the lead vehicle brakes completely to a stop. In practice, many nuisance 
alerts will occur for these algorithms when the lead vehicle brakes only momentarily, 
and so the in-path nuisance rate is likely to be higher in practice for this set of 
algorithms. Second, warning algorithms can use different assumptions about the 
future braking levels of the lead vehicle. These other algorithms are not studied here. 

5.	 The simulation results suggest it is possible to define a FCW warning algorithm 
capable of triggering alerts which are timely enough to significantly reduce rear-end 
crash harm while not producing so many in-path nuisance alerts that drivers reject the 
system, nullifying any overall benefit. This conclusion is based on a proposed model 
that defines alarming situations by the braking levels necessary to avoid a collision. 
Results of the ongoing human factors experiments portion of this Project will provide 
a sounder basis for such models, and may affect the conclusion. 

6.	 There is a lack of comprehensive field data on actual vehicle-following and braking 
behavior. More data is needed to improve confidence in predictions of potential 
benefits of FCW deployment. 

These conclusions are drawn from simulation studies. To map these results into predictions of 
actual deployment results, the reader must consider the correspondence of the assumptions used 
in the analyses with actual traffic situations and driver behavior in the real world. 

The remainder of the document is as follows. Section C.4 describes the modeling and simulation 
components. Section C.5 presents the two warning algorithm designs that are studied; three sets 
of parameters are also introduced. Section C.6 presents results of the potential reduction in 
relative harm for the two warning algorithms and several sensing ranges. Section C.7 describes a 
simulation tool that is derived from REAMACS and used to estimate the frequency of in-path 
nuisance alerts that accompany FCW deployment. That section also contains simulation results 
for in-path nuisance rates, as well as discussions of the combined harm-reduction and nuisance 
rate findings. Section C.8 presents a set of studies exploring the sensitivity of the results to the 
database set and two model parameters. Section C.9 summarizes findings. 
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C.4 Estimating the Potential Reduction in Relative 
Harm 

A FCW installed on a host ƒsubject vehicle≈ (SV) should issue warnings if a lead vehicle ¬ the 
ƒprincipal other vehicle≈ (POV) ¬ is in an ƒAlert Zone≈ and is also at a distance less than a 
specified range. One option for computing this specified range is to use the instantaneous 
difference in vehicle speeds ¬ the closing speed ¬ and two parameters which can be interpreted 
as parameters of a model of the expected reaction by a driver to an alert. Another option is to 
factor in knowledge of lead vehicle deceleration to improve the timeliness. In support of 
developing minimum functional requirements for FCW systems, the simulation work here 
estimates the potential for reducing relative harm that is possible for different collision warning 
algorithms, each with three different parameter sets, as well as sensing ranges of 20 to 300 
meters. 

Two specific warning algorithms are given names here: an earlier ƒcautionary crash alert≈ and a 
later ƒimminent crash alert≈; the difference between the two alert timings being the numerical 
values of the two parameters. Both the cautionary crash alert and imminent crash alert are 
studied in this report, and they are studied separately, as single-alert systems. Four other alert 
designs are studied as well; more details of the crash warning algorithms and parameter sets are 
provided in Section C.5. Studying these alerts in a single-alert context is a start, and can make 
use of the literature on perception-reaction times to single events. 

This report does not consider the effects of an adaptive cruise control system on the performance 
of the FCW. This work is possible, but is outside of the scope of the Project. 

The modeling and simulation in this report consists of several components: the FHWA database 
of vehicle pair headway and speeds; the simulation tool REAMACS; a set of warning algorithms 
and associated parameter sets and a set of possible sensor ranges; and discussions that address 
how the simulation results may relate to FCW effectiveness in the real world. These components 
are addressed in the following sections. 

C.4.1 FHWA Database 

The vehicle pair database is a FHWA database generated using a pair of loop detectors on 
Interstate I-40 in Albuquerque, New Mexico. Two days of data were collected, each 
representing about 35,000 vehicle pairs. The data for each vehicle pair in the database includes 
each vehicle's speed, time headway, following distance, time interval, time of day, average traffic 
flow, and the mean speed of vehicles over a relatively long time period. The loop detectors 
provide no information regarding either vehicle«s acceleration. REAMACS does not use time of 
day, flow, or mean speed. Figure 4 shows the data collected for three vehicle pairs, as an 
example. The September 25, 1991 data was used for the work in this report; Section 0 looks at 
the sensitivity of results to using the second day of data (July 11, 1993). 
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Lane Veh 1 Veh 2 Headway Follow Interval Time Flow Mean 
Speed Speed (sec) Distance (sec) (hr) Speed 
(mph (mph) (ft) (mph) 

1 98.643 70.765 59.902 4238.978 -27.877 5 8 76.20 

1 70.765 73.703 4.433 326.707 2.937 5 8 76.20 

1 73.703 70.765 14.005 991.044 -2.937 5 8 76.20 

Figure 4 Excerpt from FHWA Database 

C.4.2 REAMACS Approach 

REAMACS is an acronym for "Rear-end Accident Modeling and Countermeasure Simulation." 
REAMACS is a quasi-Monte Carlo simulation tool designed to estimate the possible efficacy of 
rear-end collision warning (FCW) and/or adaptive cruise control (ACC) systems in helping 
drivers avoid or mitigate rear-end crashes [2][3][4][5][6][7]. For this work and for previously 
published work with REAMACS, the FHWA database of actual vehicle pair speeds and 
headways is used to provide initial conditions for generating potential crash scenarios. 
REAMACS then applies a POV deceleration and a driver reaction to that braking event. Those 
scenarios which are found to be potential rear-end situations are re-simulated using a 
countermeasure in parallel with the driver«s reaction to the POV braking. Comparison of the 
outcomes between the driver-alone simulation and the driver-plus-countermeasure simulation 
provides an estimate on the potential for relative harm reduction. This comparison, in this report, 
is valid under ideal circumstances of countermeasure design and implementation, usage, and 
driver compliance. The phrase ƒpotential for reduction in harm≈ in this report carries with it all 
the assumptions of this ideal setting; these assumptions are stated throughout the report. 

The work reported here adds to previous results in the following ways. First, for estimates of 
potential reduction in harm, this report examines the specific warning properties of several 
algorithms. This includes warning algorithm parameter sets, which are not considered by earlier 
REAMACS reports. Second, minor revisions in the code improve the random distribution 
sampling and add a 1.2 second time delay to the warning algorithm which uses POV 
deceleration. Third, and most importantly, an approach to estimating the frequency of in-path 
nuisance alerts has been proposed and used to generate estimates of how often drivers will 
encounter alerts, especially those they will consider ƒnuisances,≈ during operations with a FCW-
equipped vehicle. This is described in Section C.7. 

The potential for reduction in harm that is computed here is based on SVs equipped with FCW 
systems which always identify appropriate targets, and issue warnings exactly as intended, 
except for limits on the sensing range and time delays between sensing and computation. Out-
of-path effects are not treated here. All vehicle pairs treated consist of two vehicles traveling in 
the same lane, and the only evasive maneuver treated is braking. No effects of driver compliance 
changes due to nuisance alerts are included; there is scant literature for modeling how drivers 
may not accept, not use, or not obey FCW systems. 
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The models and simulation logic used to compute reduction in harm estimates are generally 
identical to recent work by Farber and colleagues, with differences noted where appropriate. The 
first run-through of database vehicle pairs is to generate potential rear-end crash scenarios. 
When information on a vehicle pair is read from the database, the first step is to reject data that 
includes very unlikely spacing and relative speeds, such as that resulting from occasional trailer 
configurations that were not screened out during database generation. Vehicle pair data is 
rejected if the following distance is less than 4.6m, or if a deceleration of more than 0.30g by the 
following vehicle is required to avoid a crash, since it is assumed that drivers will not place 
themselves in such a situation. Of approximately 36,000 vehicle pairs in the September data set, 
230 pairs are rejected. To create a sufficiently large pool of potential crashes for the quasi-
Monte Carlo approach, the database is cycled through one hundred times, representing over 3.5 
million POV braking events. With the parameter sets described below, about four to six hundred 
potential crash pairs are identified, representing about one potential crash scenario for every 
6000 vehicle pairs. 

REAMACS, of course, could use other databases, if they were available. Use of a single 
database based on loop detector data carries with it consequences. The simulation results cannot 
reflect FCW performance for different roadway or traffic conditions. Since the loop detectors 
will not record any stopped vehicles, crash scenarios with stopped POVs can only be generated 
as a byproduct of POVs decelerating within the simulation to a stop. Consequently, the model 
yields a smaller proportion of crash scenarios with stopped POVs (about one in three or four 
simulated crashes) than that described by statistical studies of the rear-end crash problem (67%, 
as reported in [10]). An area of potential follow-on work is the revision of REAMACS to create 
more cases of stopped POVs. Another consequence of the use of vehicle pairs is that no 
multiple-vehicle crash scenarios are addressed in this work. 

Given valid data from a vehicle pair, the simulation begins a braking deceleration by the POV. 
The braking level is drawn from a normal distribution of mean -0.17g and standard deviation of 
0.10g, based on field measurements of over 4000 vehicles at 12 sites of discretionary braking [6]. 
In simulation, this distribution is sampled until a draw between -0.06g and -0.80g is made. In the 
simulation, the POV continues braking to a stop. (Section C.8.2 looks at the sensitivity of results 
to POV deceleration levels, as does [3]). 

The SV driver«s response to the lead car braking; is quantified by the perception reaction time 
and the braking intensity. Driver reaction time to lead car braking is modeled as a sample from a 
lognormal distribution with a headway-dependent mean and standard deviation. This model is 
based on work of Olson [11], which presented subject drivers with a surprise roadway obstacle 
and measured time until the brake was touched. The lognormal distribution provides a 
significant "tail" of long response times to model inattentive or distracted drivers. The 
dependence on headway is intended to model increased alertness for tailgating drivers; this effect 
is not well understood and is examined in only two studies [12][13]. The mean and standard 
deviation of the log-normal distribution are assumed to be linearly increasing with headway 
between 0.5 and 3.0 seconds. The log-mean ranges from ln(1.1) = .096 to ln(1.5 sec) = .405 as 
headway varies from .5 sec to 3 seconds. The log-SD varies from 0.15 to 0.4 over the same 
headway range. For headways greater than 3 seconds, the distribution parameters do not change, 
and are directly from [11]. 
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Braking intensity applied by the SV driver is modeled as 0.7g to represent a driver's attempt to 
avoid a crash by braking hard. A delay of 0.2 seconds is applied between the driver«s brake 
application and a change in the SV deceleration; this represents the dynamics of the braking 
system. Given the simulated SV driver's response to the lead car braking, the simulation 
computes whether a rear-end collision occurs. If so, the vehicle pair and its associated randomly 
sampled POV deceleration level and following driver reaction time to the braking event becomes 
one member of the crash data set. The impact speed is stored for later comparison with the 
response of an FCW-aided driver. 

Two assumptions are implied by the SV driver model just described. First, it is assumed that the 
pavement will support a 0.7g braking event ¬ i.e., that for those cases where this level is 
required, dry pavement is implicitly assumed. Approximately eighty percent of police-reported 
rear-end collisions occur on dry pavement [14]. Second, the computer simulation assumes that 
braking is the only countermeasure taken by the driver ¬ the possibility that steering might be 
used successfully to avoid a crash (either with or without a FCW present) is not addressed. 

Once all vehicle pairs in the database have been processed in this fashion, the combinations of 
vehicle pairs define the potential crash scenarios and random number draws that led to crashes. 
These cases are used in a second simulation pass, this time with a FCW present. The second 
pass re-uses the values for the lead car braking level and the SV driver response time to the 
braking event. Models are added for range sensing and computation of the warning algorithm. 
Sensing of the range and range rate to the lead car is modeled as ideal, except for an upper bound 
on the range at which the sensor can help provide warnings, which is varied from 20 to 300 
meters. A delay of 0.20 seconds is also associated with the availability of range and range rate 
data. The simulation assumes perfect identification of appropriate targets. The warning 
algorithms are described in Section C.5. 

In the second pass through the potential crash scenarios, the SV driver may be motivated to 
brake either by his or her reaction to the lead car braking (as in the first pass), or by an alert from 
the warning algorithm. Response time to the alert is drawn from a normal distribution with mean 
and standard deviation of 1.10 and 0.305 seconds, respectively. This follows from [11]. The 
driver is assumed to brake based on whichever response time finishes first and the same 0.7g 
braking level is used. If the response to the alert occurs first, then the 0.2 sec braking system is 
applied again, and the crash may be mitigated or prevented due to the alert. The potential for 
reduction in harm is the percent decrease in the sum over all crash data sets of the squared impact 
speed, as described in Section C.3. 

C.4.3 Outputs of the REAMACS Tool 

To illustrate the outputs of the REAMACS tool, Figure 5 shows the output listing from a single 
REAMACS run using the closing speed warning algorithm and the cautionary crash alert 
parameter set. The upper section of the output of Figure 5 reports baseline tallies. These 
include: the number of vehicle pair scenarios investigated (100 iterations of 35,683 vehicle pairs, 
or over 3.5 million total pairs); the number of warnings that are triggered by vehicle pair state 
values as read directly from the database (1600, or 448 per million vehicle pairs); and the 
number of crashes that occur without a FCW to aid the driver (669, or 187.5 per million vehicle 
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pairs). The second and third sections provide statistical counts of the number of crashes with and 
without a FCW; in this example, system ranges of zero (no FCW) to 300m are studied. ≈Police 
Crashes≈ (or ƒPR≈ crashes, for ƒpolice-reportable≈) are simulated crashes with a relative impact 
speed of 4.6m/sec or greater (about 10 mph), since this is roughly the speed at which significant 
vehicle damage can be expected. For instance, in the last column in the first large table, it is seen 
that a system with a 100m range reduces ƒPolice≈ crashes by 51% in the simulation. The bottom 
table in Figure 5 includes two results of note. First, for each system range, the simulated crashes 
are sorted into bins reflecting the impact speeds, for example, for a system range of 0m (no 
FCW), there are 407 crashes with impact speeds of 10 mph or less. Second, the table presents 
the relative harm computed for each system range. The figure show, for example, that the 
normalized relative harm for a FCW with a 100m range is 30%, for a potential 70% reduction in 
relative harm. 

The second table in Figure 5 shows that with a system range of zero (no FCW), there are 250 PR 
crashes, or 250/3.57million = 70.1 PR crashes per million REAMACS braking events. An 
earlier REAMACS paper, Farber and Paley [4], reported 65 PR crashes per million events (the 
number is slightly larger in this report due to an improved random distribution clipping routine, 
as described earlier). In [4], Farber and Paley estimate the actual frequency on U.S. roads as 
between 4 and 40 PR crashes, based on Farber«s estimate of one PR rear-end crash per 2.5 
million foot-off-throttle events, and one full stop in every 10 or 100 such events. Thus 
REAMACS generates rear-end crashes at a higher rate than actual traffic by a factor of about 2 
to 18, depending on assumptions. Recall, though, that REAMACS is used here primarily to 
compare different warning algorithms and to approximate the potential for reducing harm. It 
does not necessarily provide accurate predictions of absolute performance, such as absolute 
reductions in crashes. 

C.4.4 Regarding Interpretation of Simulation Results 

Modeling is by definition a simplified version of reality. Some issues that may be important in 
real-world reduction in harm are not treated in this work. A few of these are: 

° Non-ideal values for deployment and use of FCWs by drivers are not treated. 

°	 The analysis does not treat the possibility that some drivers will not always comply 
with FCW warnings with prompt braking. (False alarm rates may reduce the drivers 
reflexive use of brakes to a warning, reducing effectiveness even of timely warnings.) 

°	 No risk compensation effects are treated in this work. (Risk compensation may have 
a variety of effects on actual benefits.) 

°	 Sensing imperfections by the FCW target sensing system are assumed to include only 
range limitations and time delay. Errors in identifying and tracking in-path targets are 
not treated. 
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Reamacs4f - CRA - 0.0 Minimum Headway 
08-18-1997 07:49:00 

CAMP algorithm, cautionary level -0.3g, 2.5sec 

File size = 35683 veh pairs

Number of iterations = 100

Total count = 3568300

Total warnings =  1600

Warnings/million vehicle pairs =  448

Total crashes = 669

Crashes/million vehicle pairs =  187.5

Warnings per crash = 2


Run time = 2006.602 

Percent Reduction in
System Total Police Crashes Mean Impact 

Crashes 
Range (m) Crashes Number Percent 

Speed (mph) 
Total Police 

0 669 250 37.4 11.6 0.0 0.0 
20 526 218 41.4 12.6 21.4 12.8 
50 486 184 37.9 11.2 27.4 26.4 
75 442 130 29.4 8.8 33.9 48.0 

100 432 122 28.1 8.4 35.6 51.6 
150 431 121 28.1 8.4 35.6 51.6 
300 431 121 28.1 8.4 35.6 51.6 

System Range (m)DeltaV (mph) 
000 20 50 75 100 150 300 

0 to 10 407 299 293 302 300 300 300 
10 to 20 153 120 104 98 96 96 96 
20 to 30 54 52 54 36 31 31 31 
40 to 50 18 18 6 1 1 0 0 
50 to 60 8 8 0 0 0 0 0 
60 to 70 0 0 0 0 0 0 0 
70 to 80 0 0 0 0 0 0 0 
80 to 90 0 0 0 0 0 0 0 

Relative Harm 100 % 93% 63% 33% 30% 29% 29% 

Potential for 0% 7% 37% 66% 70% 71% 71% 
Reduction in 
Relative Harm 

Figure 5 Sample REAMACS Output. Closing Speed Algorithm, Cautionary Crash Alert 
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°	 Dry pavement is assumed for simulating hard braking to avoid collisions. (Eighty 
percent of crashes occur on dry pavement [14], but there has been no attempt here to 
model the reduced braking capability wet pavement can support ¬ this can be 
expected to reduce the benefit by several percent.) 

°	 The computation of metrics uses braking as the sole countermeasure, although 
evasive steering action can be more effective in some situations. Studies have shown 
that drivers are more likely to use braking alone than steering alone [15]. (The effect 
of this is unknown. On one hand, this assumption may exaggerate the effects of the 
warnings, as drivers who react late to a rear-end collision situation may avoid a crash 
by steering, whereas the analyses here assume only braking is available. On the other 
hand, a FCW may also alert a driver in time to use steering effectively.) 

°	 Driver-interface design effects are not considered. Drivers are assumed to always 
understand and respond appropriately to alerts. 

°	 Multiple-vehicle rear-end collisions are not studied. Whether the effectiveness of 
FCWs will be greater or less is not known. 

C.5 Warning Algorithms Used in the Analysis 
This section presents the two warning algorithms considered in this report, a "closing speed" 
algorithm, and a "POV deceleration" algorithm. These two algorithms are often used by 
researchers studying rear-end collision countermeasures. Other algorithms studied by other 
researchers include warning algorithms based on time-to-collision, algorithms using headway 
terms, and algorithms using assumptions regarding POV and subject vehicle decelerations that 
are different than those used in the POV deceleration algorithm described here. These other 
algorithms are not treated here, but remarks regarding a few of them are offered later in this 
section. 

C.5.1 Warnings Based on Closing Speed 

The closing speed warning algorithm in the subject vehicle (SV) issues a warning when the 
following distance to the lead vehicle, or the "principal other vehicle" (POV), falls below a 
threshold. The threshold depends on the closing speed, as well as on parameters of a model 
describing a model of the SV driver«s reaction to the alert. Assume the SV driver reacts so that 
the SV begins a step acceleration of magnitude asv < 0  (negative for braking) at a time RTw after 
the alert sounds. Let Vsv  and V pov  denote the speeds of the SV and the POV, respectively. 

Consider a warning issued when two conditions are satisfied: (1) the SV is closing on the POV, 
Vsv > V pov , and (2) the range R from the SV to the POV becomes equal to or less than a warning 

threshold, Rw : 

Equation (1) 

(Vsv -V pov )
2 

Warn when Vsv > V pov and R Ç Rw = RTw ∂(Vsv -V pov ) + - 2asv 
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The first term in the expression for the threshold Rw  is the distance the SV closes on the POV 
during the design value of the driver's perception-reaction time. The second term is the distance 
the SV closes on the POV before a deceleration by the SV of design value asv  brings the closing 
speed to zero. Therefore if the SV and its driver behave exactly as the algorithm design model 
assumes ¬ i.e., a time RTw  after the alert is issued, an acceleration asv < 0  is applied ¬ then the 
range and range rate will go to zero at the same instant, and the SV will barely touch the POV. 
That is, the alert occurs at the last possible instant for the modeled SV and SV driver to avoid a 
collision. If the actual driver«s response is more aggressive than the model assumes, no contact 
will occur. If the driver«s response is less aggressive than the model assumes, an impact occurs, 
although the impact is likely to be less severe than if no collision warning was issued. 

Three parameter sets are studied in this report. Two sets correspond to the "cautionary crash 
alert" and the "imminent crash alert" requirements. A third set is also studied in this document; 
this set is called the "intermediate≈ set, and uses driver reaction parameter values between the 
cautionary and imminent requirements: 

(Equation 2) 
(RTw , asv ) = (2.5 sec, -0.3g) "cautionary crash alert" 

(1.5 sec, -0.5g) "imminent crash alert" 

(1.5 sec, -0.3g) "intermediate" 

A major drawback of the closing speed algorithm; is that any deceleration of the POV that occurs

between the moment of alert and the time at which the closing speed is brought to zero, violates

the assumptions made in deriving the algorithm ¬ any POV deceleration during this period

requires a more aggressive driver response than that described by the design parameter set

(RTw , asv ). Therefore this algorithm requires a design tradeoff between performance in

situations of decelerating POVs and situations with constant speed POVs (including the case of a

stopped POV). The alert may feel ƒlate≈ when the POV is decelerating, or an increase of in-path

nuisance alerts may result in situations of non-decelerating POVs.


C.5.2 Warnings Using Information on POV Deceleration 

The tradeoff that the closing speed algorithm requires between performance with decelerating 
and non-decelerating vehicles is eased if information regarding the POV«s deceleration is 
available. This information may be gathered by estimation using ranging sensor measurements 
(e.g., differentiating range rate), through assumptions or inferences of POV deceleration, or 
received by cooperative means (e.g., from a transponder on the POV). Regardless of the 
technology, the use of POV deceleration can provide timely alerts with fewer in-path nuisance 
alerts. 

Consider a warning algorithm that uses the same model as before to describe the SV driver's 
reaction to an alert, but now assumes that POV deceleration, a pov Ç 0 , is known, and that the 

POV will continue to decelerate to a stop. Assume also that the SV acceleration between the 
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moment of the alert and the beginning of the SV driver«s deceleration response is zero. A 
conditional algorithm results, as shown in Equation 3. 

Equation (3) 

For a pov = 0  and Vsv > Vpov : 

(Vsv -Vpov )
2 

Rw = - 2asv 
+ RTw (Vsv -Vpov ) 

For a pov = 0  and Vsv Ç Vpov : 
Rw = 0 

For a pov < 0 : 

If Vsv > Vpov + a pov RTw  and -
Vsv <-

V pov 
+RTw : asv a pov 

≈ ’ 
Δ (Vsv -Vpov - asvRTw )

2
1 2 ÷Rw = max 

ΔΔ 
0, 

2( a pov - asv ) 
+ 

2 
asvRTw ÷÷ 

« ◊ 

Else 
≈ 2 2 ’ 
Δ Vsv V pov ÷

Rw =max 
ΔΔ 
0, 
- 2asv 

-
- 2a pov 

+ Vsv RTw ÷÷ 
« ◊ 

If the POV does indeed maintain constant braking deceleration until it stops, and the SV driver«s 
braking response matches exactly the design model, then again the range and the range rate will 
both go to zero at the same instant ¬ the SV will barely touch the POV. This can be seen in the 
equation above. If the first conditional statement applies, the algorithm is identical to the closing 
rate algorithm. The last two equations for the warning threshold Rw  apply if the POV is 
decelerating; the two equations apply when, respectively, the potential collision would happen 
while both vehicles are moving, or when the POV has come to rest. 

In practice, the potential benefits of using POV deceleration in a warning algorithm may not be 
fully achieved, due to implementation issues. For example, obtaining POV deceleration may 
involve differentiating noisy range and/or range-rate information as well as lowpass filtering to 
remove noise and provide a reliable signal. This adds significant lag, on the order of one to two 
seconds in some current radar- or laser radar systems. In addition, even if perfect instantaneous 
knowledge of POV braking deceleration is available, the warning algorithm still cannot predict 
whether the POV will continue to decelerate, or is simply engaging in a short braking event. The 
warning algorithm is based on assumptions of the future braking forces; these assumptions will 
influence the algorithm's performance over the variety of actual driving situations. 
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C.5.3 Remarks on Warning Algorithms and Parameters 

Many warning algorithms studied here have been proposed by researchers. Many algorithms are 
similar to the two described above in that warnings are issued based on a model of the 
kinematics of the vehicle pair during and after the time of the alert. Various assumptions may be 
made regarding information available to the warning algorithm (e.g., acceleration measurements 
for one or both vehicles), the deceleration profiles before and after the SV driver«s response to 
the alert, and the model of the SV driver«s perception-reaction time. At least one algorithm ¬ 
that based on time-to-collision [16] ¬ is not based on a model of the driver response. Another 
algorithm assumes a POV deceleration value, without direct measurement or estimation. This 
algorithm [9] attempts to combine the advantages of using POV deceleration information with 
the simpler hardware and software requirements of the closing speed algorithm. Although there 
are many variations of warning algorithms, even if time and resources were available, an 
extensive comparison of these various algorithms may not be justified since there may not be 
enough data about actual braking behavior to construct a meaningful comparison between similar 
algorithms. 

C.6 Results for Potential Reduction in Relative Harm

The previous sections described the database and models used to estimate the potential reduction 
in harm. This Section reports simulation results for the two warning algorithms and three sets of 
warning algorithm parameters presented in the previous section over sensor ranges from 20 to 
300 meters. Sensor range is defined as the range limitation of the system, i.e., the range beyond 
which the system cannot provide warnings. Later in the report a method of estimating in-path 
nuisance alerts for these same algorithms and conditions is described and results presented 
(Sections C.7 and C.8.) 

Table 1 summarizes the different results for estimating the potential reduction in relative harm 
for the closing speed algorithm. Each cell of the table represents a single run of REAMACS; the 
example described in Section C.4.3 appears on the bottom row, under the 100m column. 
Consider first the effect of sensor range on the potential to reduce relative harm. It is seen that 
for all three sets of algorithm parameters, there is small additional benefit for systems with a 
range greater than75m. With regard to the influence of the warning parameters, the earlier alerts 
provided by the cautionary parameter set yields a much higher potential than the other two sets. 
Clearly, the selection of the warning parameters has a strong influence on the potential reduction 
in harm. 

Table 2 presents corresponding results of the reduction in the number of crashes from the same 
set of simulation runs. The first column shows that there are 70.1 police-reportable (PR) crashes 
per million REAMACS braking events when no FCW is present. For the 100m Alert Zone 
extent, the second column of Table 2 shows corresponding numbers with the FCW simulated. 
The third column shows that the effect of the FCW on the number of PR crashes depends 
strongly on the parameter set ¬ the cautionary set provides a 51% reduction in the number of PR 
crashes, while the imminent set provides only a 5% reduction. Note that a 0.5% increase in non-
PR crashes occurs with the imminent crash alert ¬ this is not a cause for concern, since though 
many non-PR crashes are eliminated with the FCW, many crashes which were PR crashes 
become non-PR crashes with the introduction of the FCW. Note, too, that the values for 
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reduction in relative harm reported in Table 1 are generally greater than the values for reduction 
in crashes reported in Table 2. The harm metric measures effects of eliminating crashes and 
mitigating crashes. The harm metric also reflects that it is more important to reduce the impact 
speed in a severe crash than to eliminate a minor crash. 

Table 1 Potential Reduction in Relative Harm for Closing Speed Warning Algorithm 

Potential for Reduction in Relative Harm (Versus Cases with Crash 
Potential) 

Maximum Warning Range 

Warning Algorithm 
Parameter Values: 

20m 50m 75m 100m 150m 300m 

-0.5g, 1.5sec 
Imminent 

2% 18% 20% 20% 20% 20% 

-0.3g, 1.5sec 
Intermediate 

3% 27% 42% 44% 45% 45% 

-0.3g, 2.5sec 
Cautionary 

7% 37% 67% 70% 
(see Fig 4) 

71% 71% 

Note: Each run consists of 100 iterations through the entire database. 

Now consider the warning algorithm that uses POV deceleration information, Equation 3 in 
Section C.5. Table 3 and Table 4 present simulation results for the potential for reduction in 
relative harm and the possible reduction in the number of crashes. In Table 3, notice that the 
benefit of the FCW increases significantly up to about ranges of 75m or 100m. For the 
cautionary set, there is a 90% potential for reduction in relative harm with a 100m system, and 
Table 4 shows that 87% of PR crashes are avoided with the FCW in these experiments. In fact, 
for all algorithms considered a system range of 75m gives at least 94% of the total potential 
possible with an unlimited (300m) range. One caveat, however since REAMACS and the 
database that is used combine to under-represent the situation in which a POV is stopped at 
collision time. The 75m value described here, as being the ƒknee≈ of the curve may be lower 
than the range found if POV -stopped cases were properly represented. 

It should also be noted that the difference in the reduction in relative harm numbers is smaller 
between the parameter sets than it was for the closing rate algorithm. This is because the use of 
any of the three-parameter sets provides a quite effective FCW for these simulated situations. As 
stated in Section C.5; after the initial 1.2-second time delay in the simulated algorithm, the FCW 
ƒknows≈ exactly the kinematics of the situation, and since the ƒdrivers≈ comply perfectly, 
crashes can only happen when either the reaction times drawn exceed the design times of 1.5 or 
2.5 seconds, or when the time delay of the FCW impacts its effectiveness (which is not often, in 
these simulations). 
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Table 2	 Reduction in Number of Crashes: Closing Speed Warning Algorithm. 
100m Alert Zone Extent 

No FCW With FCW Percent Change with 
FCW 

PR crashes (impact speed > 4.6m/sec), per Million REAMACS braking events 
Imminent 
1.5sec RT, 

-0.5g 

70.1 66.4 -5.2% 

Intermediate 
1.5sec RT, 

-0.3g 

ƒ 58.0 -17% 

Cautionary 2.5sec 
RT 

-0.3g 

ƒ 34.2 -51% 

Non - PR crashes (impact speed < 4.6m/sec): 
Imminent 
1.5sec RT, 

-0.5g 

117 118 +0.5% 

Intermediate 
1.5sec RT, 

-0.3g 

ƒ 116 -1.2% 

Cautionary 2.5sec 
RT 

-0.3g 

ƒ 86.9 -26% 

All Crashes 
Imminent 
1.5sec RT, 

-0.5g 

187 184 -1.6% 

Intermediate 
1.5sec RT, 

-0.3g 

ƒ 174 -7.2% 

Cautionary 
2.5sec RT 

-0.3g 

ƒ 121 -35% 
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Table 3 Potential Reduction in Relative Harm for Warning Using POV Deceleration Estimates (Delay 
in Getting POV Deceleration = 1.2 sec.) 

Potential for Reduction in Relative Harm 
(Versus Cases with Crash Potential) 

Max Warning Range 

Warning 
Algorithm 

Parameter Values: 

20m 50m 75m 100m 150m 300m 

-0.5g, 1.5sec 
Imminent 

3% 36% 81% 85% 87% 87% 

-0.3g, 1.5sec 
Intermediate 

3% 37% 81% 86% 87% 87% 

-0.3g, 2.5sec 
Cautionary 

7% 41% 85% 90% 91% 91% 

Table 4	 Potential Reduction in Crashes:  Warning Using POV Deceleration Estimates ¬ 100m 
Alert Zone Extent 

No FCW With FCW Percent Change 
with FCW 

PR  Crashes (Impact Speed > 4.6m/Sec), per Million REAMACS Braking Events 
Imminent 
1.5sec RT, 

-0.5g 

70.1 14.3 -80% 

Intermediate 
1.5sec RT, 

-0.3g 

ƒ 13.5 -81% 

Cautionary 
2.5sec RT 

-0.3g 

ƒ 9.25 -87% 

Non- PR Crashes (Impact Speed < 4.6m/sec): 
Imminent 
1.5sec RT, 

-0.5g 

117 106 -9.3% 

Intermediate 
1.5sec RT, 

-0.3g 

ƒ 103 -13% 

Cautionary 
2.5sec RT 

-0.3g 

ƒ 74.8 -36% 

All Crashes 
Imminent 
1.5sec RT, 

-0.5g 

187 121 -36% 

Intermediate 
1.5sec RT, 

-0.3g 

ƒ 116 -38% 

Cautionary 
2.5sec RT 

-0.3g 

ƒ 84.1 -55% 
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Comparing Table 3 to Table 1, it is seen that the potential for reducing relative harm is 
significantly higher for the warning algorithm that uses POV deceleration than for the closing 
speed algorithm. This is because the alert is an ƒearlier≈ alert for the same parameter set. That 
is, for a given scenario of POV braking, an alert that uses POV deceleration will almost always 
occur before an alert based only on closing rate. In fact in a 100m range system, the potential 
reduction in harm is larger for the POV deceleration algorithm using the ƒimminent≈ parameters 
(85%) than the closing speed algorithm using the cautionary parameters (70%). It is clear that 
the additional information of POV deceleration may be very useful for a warning algorithm. 
However, it must be noted that this algorithm assumes that the POV will brake all the way to a 
stop and thus may be more likely to produce nuisance alarms under a given set of conditions than 
the closing speed algorithm. 

C.7 Estimating In-Path Nuisance Alerts 
A new simulation tool was created to compute in-path nuisance alerts, using the same database 
and scenarios used in REAMACS. This has been named In-Path Nuisance Alert Code (IPNAC). 
This section describes the modeling of in-path nuisance alerts, and presents results for the same 
conditions as those addressed for REAMACS in the previous section. 

C.7.1 Definition 

For this early study, in-path nuisance alerts are defined as follows. An in-path nuisance alert is 
any alert which occurs in a situation in which the driver ¬ reacting either to the POV braking 
event itself or to the alert ¬ can brake with his or her ƒnormal≈ braking intensity and avoid a 
collision. We assume for now that application of the brakes suppresses a rear-end collision alert, 
so that if the driver touches the brake pedal in response to his or her perception of the POV 
braking before the alert sounds, then the alert will not sound during that braking event. 

This definition of in-path nuisance alert allows two ways for a nuisance alert to occur during a 
braking-to-POV -deceleration event. In the first, the driver perceives the need to brake, but 
before he or she touches the brake pedal, the alert sounds; furthermore, a collision is avoided 
using only "normal" braking. In the second case, the alert sounds before the driver either notices 
the situation or before he or she has decided to brake, but nevertheless, the collision is avoided 
using only ƒnormal≈ braking. The next subsection clarifies the definition by posing a 
comprehensive framework into which all alerts that occur with the REAMACS approach can be 
categorized. 

In-path nuisance alerts are very likely with FCWs because warning systems cannot distinguish 
between drivers who are aware of the traffic situation and drivers who are not aware, due to 
inattentiveness, distraction, or other reasons. The alert must occur soon enough, to allow for the 
unaware driver«s perception-reaction time to an alert. Thus the FCW will occasionally annoy 
those drivers who are aware of the situation and do not consider themselves in danger. Because 
vehicles are capable of much higher levels of braking than the discretionary levels of braking 
normally used by alert drivers, it is possible to delay a warning well beyond the point at which 
most alert drivers would normally begin to brake. Because of the need to allow for a 
continuously decelerating POV, the algorithm may give a warning at a time that will allow a 
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crash to be avoided with moderate braking. Such alarms are likely to be regarded as nuisances 
by alert drivers. A practical algorithm design will seek- to minimize these instances by delaying 
alerts as long as possible, while still allowing enough time for an inattentive driver to respond 
safely. It is believed unlikely that the in-path nuisances will be completely eliminated, and those 
that do occur may affect the driver acceptance, system usage, and compliance with non-nuisance 
alerts. This report does not include an attempt to estimate this effect. The analysis here is 
restricted to the estimation of in-path nuisance alerts that may accompany the algorithms. We 
anticipate that further work will be necessary to estimate the effects of nuisance alarms on 
realizable harm reduction. 

C.7.2 Partitioning Warning Alerts 

In the REAMACS scenario, the POV of a vehicle pair begins braking at a randomly chosen 
discretionary braking level, and continues to brake to a stop. The SV is assumed to be in the 
same lane as the POV, so that it too must brake to a stop if a rear-end crash is to be avoided. 
Recall that only braking is considered as a crash avoidance response, and steering maneuvers are 
not treated. Here a partitioning of the set of all alerts that may occur in braking-to-POV-
deceleration events is described. Alerts are partitioned into three categories: ƒbeneficial≈ alerts, 
in-path nuisance alerts, and alerts which are neither. Alerts are partitioned based on three 
factors: 

1. When the alert occurs, with respect to the onset of lead car braking. 

2.	 What causes the following car driver to begin braking (the onset of lead car braking 
or the alert). 

3. The level of braking needed to avoid a collision. 

First, consider only factors (1) and (2). Three cases are used to describe when an alert occurs 
during a braking-to-POV event, and what causes the driver to brake during that event. Let Case 
1 describe REAMACS events in which the driver brakes due to his or her perception of POV 
braking, and braking is soon enough so that the alert is suppressed. (It is assumed that brake 
pedal application suppresses any un-issued alert.) The timeline at the top of Figure 6 describes 
this case. In the figure, the driver«s reaction time to lead car braking is completed before the 
alert sounds. 

Consider a second situation, Case 2, in which the alert sounds just before the brake pedal is 
applied, but braking is due to the driver«s own detection of lead car braking. This is illustrated in 
the center box of Figure 6. Finally consider Case 3, in which the alert sounds before the driver 
has perceived the need to brake and therefore provides the stimulus for brake application. This is 
shown in the bottom box of Figure 6. 

The third factor listed above is the amount of braking intensity necessary to avoid an impact. 
Two generic levels of braking are suggested for purposes of partitioning the alerts. Let braking 
levels be described as ƒNormal (or less)≈ and ƒHard≈ braking. The corresponding deceleration 
rates will be specified later in the report. With the three cases of alert timing and braking stimuli 
described in the previous paragraphs and the two levels of braking suggested here, a partitioning 
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of alerts into six subsets is now proposed and illustrated in Table 5. The three cases of alert 
timing and braking stimulation define the three columns in Table 5; the two braking levels define 
two rows. The six cells are now discussed. 

The first column of Table 5 denotes braking events in which the driver brakes before the alert 
sounds; for now, the braking level is irrelevant, since the immediate objective is to estimate in-
path nuisance alerts. The second column of Table 5 corresponds to Case 2 above ¬ i.e., 
situations in which the driver perceives the need to brake, but before the brake pedal can be 
applied, the alert sounds. In this case, it is suggested that if the driver can avoid impact using 
only normal braking, he or she will consider the alert a nuisance. This is shown in Table 5. If, 
however, ƒHard≈ braking is required, drivers may not consider the alert a nuisance ¬ perhaps 
some may welcome the alert as an indication that the FCW was ready to assist them. Finally, for 
Case 3, which denotes situations in which the alert causes the driver to brake, it seems obvious 
that when ƒHard≈ braking is required, drivers will generally perceive the alert as ƒhelpful,≈ since 
a crash may be averted or mitigated by the alert. If ƒNormal≈ braking is sufficient to avoid a 
crash, the driver is assumed to consider the alert a nuisance, and this is indicated in Table 5. 

Table 5 Partitioning Alerts into Six Cells 

Braking Level 
Required to 
Avoid Crash 

Timing of FCW Alert and Cause of Subject Vehicle Braking 

Case 1 Case 2 Case 3 

No FCW Alert. 
Braking is due to driver 

reaction to POV braking. 
Braking suppresses FCW 

alert. 

FCW Alert occurs, but 
Braking is due to driver 

reaction to POV braking. 
Braking occurs after alert, 

but before RT to alert. 

FCW Alert occurs. 
Braking is due to 
driver reaction to 

alert. 

Normal (or 
less) 

No In-Path Nuisance 
Alert 

In-Path Nuisance alert In-Path Nuisance 
alert 

Hard  No In-Path Nuisance 
Alert 

Not an in-path Nuisance. 
(Event validates alarm for 

driver) 

Not an In-Path 
Nuisance. (Alert 
mitigates/prevents 

crash) 
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Lead car 
brakes 

End of RT to Lead 
car braking 

time 

Alert would«ve 
occurred 

= Following car 
braking begins 

Case 1. iver brakes before alert 
occurs -- alert is suppressed. 

Lead car brakes 
End of RT to Lead 
car braking 

time 

Case 2. iver brakes after alert 
occurs -- but braking is caused by 
driver«s perception of lead car 
braking 

Alert occurs End of RT to alert 

Case 3. lert occurs and causes driver to brake -- before 
s/he would have without RECW. 

Lead car brakes 
End of RT to Lead 
car braking 

time 

Alert occurs End of RT to alert 

Dr

Dr

A

Figure 6 Three Cases of When Alerts May Occur and the Corresponding Stimuli for Braking 



C-33 

C.7.3 Simulation Logic 

Here we describe a method to estimate the in-path nuisance alert rate. To estimate the frequency 
of in-path nuisance alerts, the simulation tool IPNAC uses the FHWA database in the same 
manner, as does REAMACS. In IPNAC, for each vehicle pair, the following car driver brakes in 
response to either the lead car braking (using the same driver reaction time to braking model as 
before) or the collision alert (using the same driver reaction time to an alert, as before). The 
stimulus for braking is the event for which the driver«s reaction time is completed first. No 
matter the stimulus, a ƒNormal≈ braking intensity is selected for the following car deceleration. 
If an alert occurs and the collision is avoided, then according to the previous definition of an in-
path nuisance alert, that simulated case represents an occurrence of an in-path nuisance alert. 

The model of the ƒnormal≈ following car braking is a random sample drawn from a normal 
random variable distribution with a mean of -0.25g and a standard deviation of 0.025g.  These 
values are chosen based on a very small sample of Task 4, Study 1 data. This is the average and 
standard deviation of the first six subjects« required decelerations to avoid a collision when 
making last-moment braking decisions at ƒcomfortable≈ braking levels. Values outside the 
domain [-0.12g, -0.40g] are re-drawn; values outside this domain are assumed to be beyond 
normal, comfortable braking. Later in this report, the sensitivity of computed nuisance rates to 
these model parameters is explored. Once the SV begins to brake, the simulation is allowed to 
play out until either a collision occurs or does not occur. The results of each simulated braking 
event is then tabulated in a table like Table 5 described earlier. 

To describe how simulation is used to evaluate in-path nuisance alerts, consider a single 
simulation study. The closing speed warning algorithm (Equation 1) is used with the cautionary 
settings (Equation 2), and an Alert Zone extent of 100m. In-path nuisance alerts are tallied for 
two to twenty cycles through the database, representing between 70,000 and 700,000 events of 
braking to a POV. The number of passes through the database is found by trial and error for 
each algorithm/parameter/range case, by running three Monte Carlos, and using each run for the 
number of cycles through the database required, so that the variation among the three runs is 
about five percent or less. 

The averaged results are tabulated in Table 6 using the form of Table 5. The first column of the 
table shows that about 98% of the braking events for this example do not include a triggering of 
the alert ¬ which is consistent with the fact that drivers almost always avoid rear-end collisions. 
The second column indicates that in 1.8% of the simulated cases the alert occurs but braking is 
due to the driver«s own perception of the situation. Of these, 1,804 alerts per million events 
occur in situations where ƒnormal≈ braking is sufficient to avoid an impact. These are in-path 
nuisances, as discussed in the previous subsection. The remaining 16,253 events in the second 
column represent cases in which ƒNormal≈ braking is not sufficient to avoid a collision. These 
cases then require at least ƒHard≈ braking, so that these cases represent drivers braking harder 
than normal, based on their own perception of lead car braking, but with the alert sounding 
shortly before they can touch the brake pedal. Our assumption is that these would not be 
regarded as nuisances, but would be perceived as justifiable alerts. 
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Table 6	 Example of Partitioning Alerts. Closing Speed Warning Algorithm, Cautionary 
Settings. Perfect Sensing with Alert Zone Limited to 100m 

Braking Level 
Required to 
Avoid Crash 

Timing of FCW Alert, and Cause of Subject Vehicle Braking 

No FCW Alert. 
Braking is due to driver 

reaction to POV braking. 
Braking suppresses 

FCW alert. 

FCW Alert occurs, but 
Braking is due to driver 

reaction to POV braking. 

Braking occurs after alert, 
but before RT to alert. 

FCW Alert occurs. 

Braking is due to 
driver reaction to 

alert. 

Normal (or 
less) 

(-0.25g mean) 

819,993 alerts per 106 

braking events 
1,804 alerts per 106 braking 

events 
6 alerts per 106 

braking events 

Hard 161,767 alerts per 106 

braking events 
16,253 alerts per 106 

braking events 
176 alerts per 106 

braking events 

The third column of Table 6 describes events in which the alert triggers the driver«s braking; 
these total 182 per million simulations. Of these, there are six in-path nuisance alerts and there 
are 176 cases in which the alert causes the driver to brake in a situation in which higher-than-
normal braking intensity is required to avoid an impact. These latter cases may be perceived by 
the driver as beneficial alerts, i.e., not in-path nuisance alerts. 

For this case, Table 7 summarizes simulation results for potential for reduction in relative harm 
and in-path nuisance alerts. The first four rows were reported earlier: 51% reduction in PR 
crashes (from 70 to 36 per million REAMACS events), and 70% potential for reduction in 
relative harm. There are also 1,810 in-path nuisance alerts per million REAMACS events, 182 
instances of alerts stimulating the braking, and 18,239 total alerts. Thus, about 90% of all alerts 
for this example are neither nuisances nor beneficial alerts. Instead, these alerts occur while the 
driver is in the process of responding to their own perception of the need to brake. Table 7 
shows that there are 26 nuisance alerts per PR crash without the FCW. When all alerts are 
considered, there are 261 alerts per PR crash. These ratios provide a rough idea of how often in-
path nuisances occur. 

Table 8 shows corresponding results for a warning algorithm that uses POV deceleration 
information (Equation 3) with the cautionary parameter set (Equation 2). About 63,000 in-path 
nuisance alerts occur, with 5,161 alerts that stimulate braking, and there total of 125,000 total 
alerts. There are 901 in-path nuisance alerts per PR crash, and 1781 total alerts per PR crash. 
This alert is an ƒearlier≈ alert, hence a higher number of total alerts and in-path nuisance alerts. 
The ratio of nuisance alerts to alerts is lower, however, possibly because the algorithm can 
identify the cases in which the POV is decelerating hard, which are often dangerous cases. 
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C.7.4 Basic Simulation Results for In-Path Nuisance Alerts 

Simulation results for in-path nuisance alerts are now presented for the same set of warning 
algorithms, algorithm parameters, and sensor ranges as reported earlier for potential reduction in 
relative harm. Table 9 shows in-path nuisance alerts per million REAMACS braking events for 
the closing speed algorithm (Equation 1), over the three parameter sets already defined (Equation 
2), and for sensor ranges from 20 to 300m. These cases are the same as those studied for 
potential reduction in relative harm, Table 1 and Table 2. The example described in the previous 
section appears in the shaded cell of Table 9. Table 10 show results for the warnings issued 
using POV deceleration information (Equation 3); these cases are the same as those studied in 
Table 3 and Table 4. The example described in the previous section appears in the shaded cell of 
Table 10. 

For Table 9, which shows results for the closing speed algorithm, two results are worth noting. 
First, in-path nuisance alerts rates are independent of sensor range for the cases studied using the 
closing speed algorithm. Second, in-path nuisance alerts rates are strongly dependent on the 
parameter set. As the alert becomes an ƒearlier≈ alert, more in-path nuisances occur. For 
instance, for an Alert Zone extending 100m, Table 9 shows 79.3 and 1,810 in-path nuisance 
alerts per Million REAMACS braking events for the imminent and cautionary settings, 
respectively. Since there are 70.1 PR crashes per Million REAMACS braking events, the ratio 
of these nuisances to PR crashes varies from about 1 to 26. 

Table 10 shows the results for the warning algorithm with POV deceleration information 
included. Three remarks are in order. First, nuisances now increase with an increase of the Alert 
Zone«s maximum range for the intermediate and cautionary parameter sets. Second, there is 
again a strong increase in the nuisance rate as the algorithm parameter set results in earlier and 
earlier alerts. Third, the number of nuisances becomes very large for these earlier alerts ¬ for the 
cautionary parameter setting, with a 100m extent, 63,100 in-path nuisances occur per million 
experiments, or 901 in-path nuisance alerts per PR crash. This is 35 times the in-path nuisance 
rate seen with the closing speed algorithm. On the other hand, the imminent parameter set with 
the lead vehicle deceleration algorithm produces fewer nuisance alarms and a larger reduction in 
relative harm than the closing speed algorithm with the cautionary parameter set (see Table 1 and 
Table 2). This result is discussed further in the next section. 
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Table 7 Summary: Potential Reduction in Relative Harm and Accompanying Alert 
Results. Closing Speed Warning Algorithm with Cautionary Setting. Alert Zone 
Extent 100m 

Percent reduction in PR crashes 51 percent 
Reduction in Relative harm 70 percent 
PR crashes without FCW 70 per Million REAMACS events 
Reduction in PR crashes 36 per Million REAMACS events 

In-path Nuisance Alerts introduced 1,810 per Million REAMACS events 
Alerts stimulating braking at any level 182 per Million REAMACS events 
Total number of Alerts 18,239 per Million REAMACS events 

In-path Nuisance Alerts per PR crash 26 
Total number of Alerts per PR crash 261 

Table 8	 Summary: Potential Reduction in Relative Harm and Accompanying Alert Results. 
Warning Algorithm with POV Deceleration Information, with Cautionary Setting. 
Alert Zone Extent 100m 

Percent reduction in PR crashes 87 percent 
Reduction in Relative harm 90 percent 
PR crashes without FCW 70 per million REAMACS events 
Reduction in PR crashes 61 per million REAMACS events 

In-path Nuisance Alerts introduced 63,056 per million REAMACS events 
Alerts stimulating braking at any level 5,161 per million REAMACS events 
Total number of Alerts 124,655 per million REAMACS events 

In-path Nuisance Alerts per PR crash 901 
Total number of Alerts per PR crash 1781 
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Table 9	 Closing Speed Algorithm: In-Path Nuisance Alerts per Million Simulated Braking Events 
(Mean of individual Monte Carlo Trials) 

In-Path Nuisance Alerts per Million Simulated Braking Events 

Maximum Warning Range 

Warning 
algorithm 
parameter 

values: 

20m 50m 75m 100m 150m 300m 

-0.5g, 1.5sec 
Imminent 

88.3 89.6 89.2 79.3 82.2 75.4 

-0.3g, 1.5sec 
Intermediate 

201 200 198 187 181 195 

-0.3g, 2.5sec 
Cautionary 

1,810 1,910 1,950 1,810 1,830 1,780 

Table 10	 Warnings Using POV Deceleration: In-Path Nuisance Alerts per Million Simulated 
Braking Events (Mean of Individual Monte Carlo Trials) 

In-Path Nuisance Alerts per Million Simulated Braking Events 

Maximum Warning Range 

Warning 
algorithm 
parameter 

values: 

20m 50m 75m 100m 150m 300m 

-0.5g, 1.5sec 
Imminent 

833 897 948 943 1,020 922 

-0.3g, 1.5sec 
Intermediate 

3,650 14,700 19,600 21,700 22,900 22,900 

-0.3g, 2.5sec 
Cautionary 

8,250 38,000 54,400 63,100 67,800 67,900 
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C.7.5	 Balancing Potential Reduction in Relative Harm and In-Path 
Nuisance Alerts 

Examination of the two tables just discussed indicates the possibility of finding an algorithm to 
produce a high potential reduction in relative harm and also keep the in-path nuisance alert rate 
relatively low. A simulation study was conducted to compute relative harm reduction and 
nuisance rates using POV deceleration and a variety of parameter sets that describe warning 
algorithm design models of ƒfast and firm≈ driver responses. These results appear in Tables 11 
and 12. Consider an algorithm using a model for the driver«s response to the alert as including a 
1.25 second perception-reaction time and a braking intensity of ¬0.6g. The tables show a 79% 
potential for reduction in relative harm and 161 in-path nuisances per million REAMACS 
braking events, demonstrating that such a search for a more ƒoptimal≈ algorithm may be useful. 
The point is not that this algorithm is considered ƒbest,≈ but rather to clarify that POV 
deceleration information allows more flexibility in tuning the algorithm, and that the apparently-
higher nuisance alert rates in Section C.7.4 cannot be considered a reason to not use POV 
deceleration. 

Table 11	 Potential for Reduction in Relative Harm for Various Warning Algorithm Parameter 
Sets. Warnings Issued Using POV Deceleration Information. 100m Alert Zone Range 
Assumed. 

asv, Parameter 
for Warning 
Algorithm 

RTw, Parameter For Warning Algorithm 
(Blank cells indicate computations were not made for that case) 

1.0 sec 1.25 sec 1.5 sec 2.5 sec 
-0.3g 86% 90% 
-0.5g 75% 85% 
-0.6g 79% 
-0.7g 41% 79% 

Table 12	 In-Path Nuisance Alerts per Million REAMACS Braking Events, for Various Warning 
Algorithm Parameter Sets. Warnings Issued Using POV Deceleration Information. 100m 
Alert Zone Range Assumed. 

asv, Parameter For 
Warning Algorithm 

RTw, Parameter for Warning Algorithm 
(Blank cells indicate computations were not made for that case.) 

1.0 sec 1.25 sec 1.5 sec 2.5 sec 

-0.3g 21,700 63,100 

-0.5g 61 943 

-0.6g 161 

-0.7g 12 301 



C-39 

C.7.6 Metrics to Describe Frequency of In-Path Nuisance Alerts 

So far the in-path nuisance alert results have been used to make comparisons between sensor 
ranges and alert algorithms, and thus the use of the unit ƒalerts per Million REAMACS events≈ 
has been sufficient. To express the simulation results as the frequency that such alerts occur per 
unit driving time, two simple approaches are used. First, the REAMACS database and braking 
scenarios are ƒcalibrated≈ to real-world crash data to map ƒMillion REAMACS events≈ to miles 
traveled. 

Exposure to Police-Reported Rear-End Crashes 

Reference [10] analyzes crash involvements using data primarily from the 1989-93 GES. For 
rear-end crashes, Table 4 and Table 5 in [10] state that the rate of vehicle involvement (as a 
striking vehicle (SV)) in actual police-reported rear-end crashes, per 100 million vehicle miles 
traveled (VMT) is 44.46 and 21.92 when the POV is stopped and moving, respectively. This 
yields a total expected vehicle involvement in real-world police reported rear-end collisions 
(as the SV) of 66.38 per 100 Million VMT, or once per 1.51 Million VMT. 

The same tables indicate that expected involvement of a driver as the SV driver in a police-
reported rear-end crash, over a driver«s career (assumed to be 58 years), is 0.7308 and 0.3603 for 
POV stopped and POV moving, respectively. Section C.1 shows that these numbers are 
mislabeled, and they are actually the involvement of drivers of any vehicle involved in police-
reported crashes. When only involvement as an SV is considered, the rate of vehicle (or driver) 
involvement per 58-year long driving career [10] are 0.3321 and 0.1637 for POV stopped and 
moving, respectively, for a total involvement as SV driver of 0.4958 police-reported rear-end 
crashes per driving career. Thus, under the assumptions of [10], the expected involvement of a 
driver, as the driver of the striking vehicle in a police-reported rear-end crash, is once per 117 
years. 

Correction to Wang et al, 1996: Rear-End Collision Involvement 

This section presents a correction to two numbers in Wang et al [10] which describe expected 
driver involvement in the striking vehicle (SV) in a police-reportable (PR) rear-end collision. 
These numbers are used in Section C.7.6, ƒEstimated Exposure to In-Path Nuisance Alerts,≈ to 
approximate, for the average driver, the time and mileage driven between in-path nuisance alerts. 
The present authors have discovered no other necessary corrections to [10]. 

Table 4 and Table 5 in [10] present statistics on two types of rear-end collision, respectively: 
rear-end, lead vehicle stopped (RE-LVS) crashes and rear-end, lead vehicle moving (RE-LVM) 
crashes. Among the statistics within each of the two tables is ƒExpected Involvement as SV in 
PR crashes ¬ Per Driver over Driver Career≈. This is given for all vehicles combined; no 
breakdown between vehicle types is provided. For the RE-LVS and RE-LVM cases, 
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respectively, reference [10] states the exposures as 0.7308 and 0.3603, which we will show is 
incorrect. The correct numbers are, respectively, are 0.3321 and 0.1637. 

The miscalculation in [10] appears to be that exposures are computed for driver involvement in 
any vehicle involved in a PR rear-end, and not just in the SV. The reference states the formula 
used (p. 7, [10]): 

Expected number = Average annual number of involvements X Average driving career (years) 
Average number of registered drivers 

The average driving career is estimated in [10] as 58 years; the average number (over the five 
years of statistics) of registered drivers used is not specifically stated, but can be backed out of 
other exposure rates as 170.1 Million. The average annual number of involvements of all 
vehicles is in RE-LVS crashes is 2.144 Million. The average annual number of involvements as 
the SV is 0.974 Million. Using the formula above gives the involvements per driver career as 
0.7308 and 0.3603, respectively. The involvements for RE-LVM can be computed similarly. 

As a check, consider that there were 1.454 million police-reported rear-end crashes annually 
[10]. Given that there are 170.1 million registered drivers in the U.S. (figure derived from [10]), 
then the expected number of drivers involved as the SV in a police-reported rear-end crash in a 
year is 1.454 M / 170.1 M = 0.00854 (which is 1/117). 

Estimated Exposure to In-Path Nuisance Alerts 

To estimate how often a driver might experience in-path nuisance alerts with a FCW, a scaling of 
results from simulation to ƒreal world≈ is now performed. Recall that with no countermeasure in 
place, REAMACS produced 70.1 ƒpolice-reportable≈ crashes per Million REAMACS events, as 
reported in Table 2. Let this crash rate be denoted Cr. For the warning algorithm design 
selected in Section 0 (POV deceleration information available, and alerts based on a driver 
response model of 1.25 sec RT and ¬0.6g braking), 161 in-path nuisance alerts per Million 
REAMACS events were computed. Let this rate be denoted Nr, Nr = 161 IPNAs/106 

REAMACS events. We use these two results, along with results from the previous subsection, to 
estimate the expected exposure of drivers to in-path nuisance alerts. 

Let C denote a driver«s expected annual involvement as the driver of the SV in a PR rear-end 
crashes, computed above, C = 1/117 PR crash/driving year. Let N be the estimated number of 
in-path nuisance alerts experienced annually by a driver. Then N = Nr (C/Cr), or 

N = 
161nuisances 

X 
1PR crash / 117 years ,

M REAMACS events 70.1PR crashes/M REAMACS events 

N =1in - path nuisance alert per 50.9 years  . 
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Similarly, we can compute one in-path nuisance alert per 657,000 vehicle miles traveled. Table 
13 shows results computed for two other cases as well ¬ the two warning algorithms with the 
cautionary parameter setting. These numbers all indicate relatively rare in-path nuisance alerts. 

These numbers are rough approximations. These computations assume that REAMACS 
produces two types of braking-to-POV events in the same proportions as they occur in U.S. 
traffic; these events are (1) police-reportable crashes (with no FCW in use), and (2) braking 
events which result in in-path nuisance alerts. This is illustrated in Figure 7. The frequency with 
which PR crashes occur depends primarily on the following variables: range, POV speed, SV 
speed, POV braking profile, and following driver reaction time to POV braking. The frequency 
of in-path nuisance alerts depends on the same variables, plus the warning algorithm and the 
driver«s reaction time to the warning. If we assume that the REAMACS traffic database 
represents actual speed and headway behavior of drivers, then the assumption that events (1) and 
(2) occur in proper proportion. The simulation reduces the assumption that the reaction time 
distributions in the simulation are correct, and the POV braking profile is correct. 

C.7.7 Previous REAMACS-Based Metrics for In-path Nuisance Alerts 

Previous REAMACS reports used a different metric to estimate in-path nuisance alert rates [4]. 
This earlier approach is now described and the results compared to those presented above. The 
earlier method computes how often the initial conditions of the vehicle pair at time (directly from 
the database) causes a crash alert. For the cautionary setting of the closing speed algorithm, 
Figure 5 showed that 448 warnings were issued at time To, per million vehicle pairs, based on 
the vehicle pair speeds and gaps reported directly from the FHWA database. The reason for 
using this metric as an indication of in-path nuisance alerts is based on an assumption that in 
almost all cases, the following driver of the vehicle pair chose to be at that headway, and that 
furthermore almost all of them were not alarmed. Thus, the argument went, the 448 warnings 
per million vehicle pairs were almost all unnecessary and would be considered nuisances. Since 
Figure 5 shows 187.5 crashes per million vehicle pairs, the estimate of in-path nuisance alerts 
would then be 448 ¬ 187.5 = 260.5 ƒnuisance alerts≈ per million vehicle pairs. This number 
compares with 1,810 in-path nuisance alerts, per million REAMACS braking events (Table 9) 
computed with the approach of this report. This larger number is more accurate, since now alerts 
at times other than the initial conditions are considered. Also note that the previous method of 
counting nuisance alerts did not address the possibility that some alerts that occur at initial 
conditions may be in truly alarming situations. The current analysis identifies these cases. 
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Table 13 Approximate Time- and Miles-Between In-Path Nuisance Alerts 

(See assumptions in Section C.7.6) 

Warning Algorithm Parameter Set for 
Warning 

Expected Time 
Between In-Path 
Nuisance Alerts 

Expected Vehicle 
Miles Between In-

Path Nuisance Alerts 
Using POV 
deceleration 

Special 
1.25sec RT 
-0.6g decel 

50.9 years 657,000 mi 

Using POV 
deceleration 

Cautionary 
2.5sec RT 
-0.3g decel 

0.13 years 1,700 mi 

Closing speed 
algorithm 

Cautionary 
2.5sec RT 
-0.3g decel 

4.53 years 58,500 mi 

N: in-path 
nuisances 
exposure in 
real-world 

C: RE crash 
exposure in 
real-world 

Cr: RE crash 
exposure in 
REAMACS 

Nr: in-path 
nuisances 
exposure in 
simulation 

Concept only ¬ charts do not 
suggest actual exposure rates. 

����������������� 
����������������� 

All REAMACS 
braking events 

All real-world 
braking events 

���������� 
���������� 

Assumption used to scale results: 
Cr/Nr = C/N 

Figure 7	 Assumption that the Ratio of Driver Exposures to PR Rear-End Crashes and in-Path 
Nuisances is the Same in Simulation and Actual U.S. Highway Experience 
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C.7.8 In-Path Nuisances and Sensor Range Requirements 

In Section C.6, an alert range of 75m was suggested, based on the diminishing returns (i.e., 
potential for reduction in harm) that result from longer ranges. Consider whether the in-path 
nuisance rates of Table 9 and Table 10 affect this recommendation. First, sensor range does not 
affect nuisance rates for the closing speed algorithm, so these results have no impact on a sensor 
range recommendation. Second, it was noted earlier that in-path nuisance alerts increase with 
sensor range for the algorithm using POV deceleration. These increase by an insignificant 
amount for the alert resulting from the imminent set of parameters, but more than double for the 
cautionary set. Section C.7.5, though, argued that with POV deceleration information, a 
parameter set chosen to give a ƒlate≈ alert would provide both high potential for reduction in 
relative harm and a minimal number of in-path nuisance alerts. Therefore, since any alert using 
POV deceleration information is likely to be such an alert, results reported in this document do 
not suggest a significant influence on sensor range requirements from in-path nuisance alert 
rates. 

C.8 Sensitivity of Simulation Results to Database and

Model Assumptions 

In this section the sensitivity of results to three model assumptions is explored. The three 
assumptions are: expected value of the POV deceleration, expected value of the SV braking 
intensity, and the assumption that important conclusions are largely independent of the day of 
database collection. Table 14 summarizes the studies; the following subsections report the work. 

Table 14 Sensitivity Studies Performed 

Variable Result To Investigate 
Potential for Reduction in 

Relative Harm 
In-Path Nuisance Alerts 

SV deceleration No Yes 
POV deceleration Yes Yes 
Database data: day of collection Yes Yes 

C.8.1 SV Braking Intensity 

In Section C.7, in-path nuisance alerts were defined as alerts occurring in situations in which 
ƒnormal≈ braking is sufficient to avoid a collision. Normal braking for that section was 
described as having an upper limit described by a normal distribution with mean ¬0.25g and 
standard deviation 0.025g. Here the sensitivity to the in-path nuisance rates is examined when 
both of these model parameters are varied. 

When the model is reduced to a fixed, deterministic braking level of 0.25g (i.e., the standard 
deviation is reduced to zero), the results are very similar to the original model. This is shown in 
the first two columns of Table 15, with the original model values in the second column and the 
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values corresponding to zero standard deviation appearing in the first column. The six rows of 
data correspond to the two warning algorithms, each run with all three parameter sets. 

Table 15	 In-Path Nuisance Alert Rates per Million Braking Events Using Different Braking Intensity 
Models for the Following Car Driver 

Following Car Braking Intensity Distribution Mean and Std Dev 
(Normal distribution assumed. Resampled if draws are not between -0.12 and -0.40g) 

Mean = -.25g 
Std dev = 0g 

Mean = -.25g 
Std dev = 

.025g 

Mean = -.27g 
Std dev = 

.025g 

Mean = -.30g 
Std dev = 

.025g 

Mean = -.35g 
Std dev = 

.025g 
CAMP Closing Speed Warning Algorithm 

Imminent: 
1.5sec RT, 
-0.5g decel 

79.9 79.3 121 214 462 

Intermediate: 
1.5sec RT, 
-0.3g decel 

185 187 294 490 964 

Cautionary: 
2.5sec RT, 
-0.3g decel 

1,790 1,810 2,250 3,870 6,576 

Warning Algorithm with POV Deceleration Information 
Imminent: 
1.5sec RT, 
-0.5g decel 

765 943 1,660 3,480 8,985 

Intermediate: 
1.5sec RT, 
-0.3g decel 

21,500 21,700 32,700 46,100 61,990 

Cautionary: 
2.5sec RT, 
-0.3g decel 

65,300 63,100 76,100 91,300 113,397 
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When the mean of the model is changed to reflect a higher tolerance for braking intensities not 
associated with threatening situations, the results are shown in the third, fourth, and fifth 
columns of Table 15. These numbers correspond to model means of ¬0.27g, -0.30g, and ¬0.35g. 
These values are thought to include a likely upper limit of braking considered to be within the 
realm of non-threatening situations. Reference [6] summarizes results from a 1940 study of 
braking levels [18] as follows: 

Comfortable to passengers√preferred by driver: -0.27g. 

Undesirable but not alarming to passengers√the driver would rather not use: -0.34g. 

Severe and uncomfortable to passengers√driver classifies as an emergency stop: -0.43g. 

Table 15 shows that as drivers view higher braking levels as being non-alarming, the number of 
in-path nuisances increases, as expected. The increase in the nuisance rate as the model mean 
changes from ¬0.25g to ¬0.35g varies from a five-fold increase for the imminent setting of the 
closing speed algorithm to a doubling for the cautionary setting of the algorithm which uses POV 
deceleration information. It is noted that in these braking events, the number of total alerts is not 
likely to change much. The ƒdrivers≈ can simply avoid more impacts using only ƒnormal≈ 
braking. 

The study in this section suggests that if 0.25g is nearer the lighter end of what actual drivers 
consider a non-alarming event, then actual in-path nuisances can be expected to be higher than 
those reported in this paper, perhaps increasing by several times. Field trials with FCW systems 
will provide more reliable information. For now, we expect the in-path nuisance rates reported 
here to be a lower bound on the actual rates that would be experienced with deployed systems on 
the road. 

C.8.2 POV Braking Intensity 

REAMACS typically is used with a POV braking model that is a normal random variable with 
mean ¬0.17g and standard deviation 0.10g, as described in Section C.4.2. This section explores 
the effect on in-path nuisance rates when these POV braking levels are reduced to a mean of ¬ 
0.10g and standard deviation 0.025g. The ¬0.10g rate for POV deceleration was chosen because 
it may approach the lower bound of actual lead car braking on highways. No higher deceleration 
rates are studied because it is thought that a mean of ¬0.17g is near the maximum likely to be 
typically found on highways. Table 16 shows results for both potential reductions in relative 
harm and in-path nuisance alerts for both warning algorithms and the cautionary and imminent 
parameter sets. 

First, it is noted that the number of crashes that occur without the FCW is reduced dramatically 
by the lower POV deceleration rate from 70 to 4.4 PR crashes per million REAMACS braking 
events. This is because more time is available for the SV driver to react to the POV braking 
event. The level of braking required by the SV also decreases since the POV is not decelerating 
as hard. Table 16 shows that after lowering the POV braking intensity, the simulation yields an 
increase in the potential benefits of a FCW. 
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Table 16 shows also that the in-path nuisances, expressed per unit time (see, in Section C.7.6, 
ƒEstimated Exposure to In-Path Nuisance Alerts≈), increase as well. The rates are indeed 
expected to increase, since the following car driver can brake less strenuously and avoid a crash, 
but the warning logic and settings are unchanged. For the closing speed-warning algorithm with 
the cautionary parameter setting, in-path nuisances per unit time increase by a factor of 27, from 
one in 4.5 years to one in two months. Likewise, if warnings include information of POV 
deceleration, the nuisance rate almost triples, from one in 6.8 weeks to one in 2.5 weeks. Clearly 
if POVs actually brake so that the mean rate is less than 0.17g, the upper limit on effectiveness 
will increase, as will the number of nuisance alerts. 

Table 16	 Sensitivity of Results to POV Deceleration Model: Potential for Reduction in Relative 
Harm and In-Path Nuisance Alert Rates. 

(Cautionary parameter settings (2.5s RT, -0.3g decel)) 
(100m limit to Alert Zone) 

POV Braking Intensity Distribution Mean and Std Dev 
(Normal Distribution Assumed. Resampled if Draws are not 

Between-0.04 and -0.80g) 
Less Deceleration than Standard 

Model 
Mean = -0.100g 
Std dev = 0.025g 

Standard Model 
Mean = -0.170g 
Std dev = 0.100g 

Potential for Reduction in Relative Harm 
Closing Speed 
algorithm. 

99% 70% 

Using Lead Veh 
Deceleration in 
warning algorithm 

100% 90% 

In-Path Nuisance Alerts per Driver-Year 
(see Section C.7.6 for method of computing) 

Closing Speed 
algorithm. 

5.98 (1 in 2 months) 0.221 (1 in 4.5 years) 

Using Lead Veh 
Deceleration in 
warning algorithm 

21.2 (1 in 2.5 weeks) 7.69 (1 in 6.8 weeks) 

C.8.3 Day of Database Collection 

Two days of data are discussed ¬ September 25, 1991, which is the data set that results in all 
other sections of this document are based upon, and July 11, 1993, which we use in this section 
for comparison. Reference [3] discusses this issue for REAMACS, and we mention those 
findings in this paragraph. That paper notes that in both days« data, about a quarter of the 
headway values are below one second. Traffic was heavier in the September data set, with 
slower traffic (median speed 54 mph, versus 61 mph for the July set) and smaller median gaps 
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(1.67 seconds, versus 1.97 seconds for the July set). In that study the July data produced 1/3 
more crashes, and PR crashes comprised a higher percentage of the total. Effectiveness was 
found to be higher with a closing-speed type algorithm for the July data. Potential reduction in 
relative harm was 77%, versus 63% for the September data set when a 76m (250ft) sensor 
system was used, and an algorithm quite similar to the closing speed algorithm was used (with a 
ƒcautionary≈ level of parameter values). 

In the work reported here, without a FCW in place, the September set results in 70 PR crashes 
per million REAMACS event, as reported earlier, and the July data set results in 112 PR crashes 
per million REAMACS events, an increase of 58%. The July data set also yields a higher mean 
impact speed, too: 13.7 mph versus 11.9 mph. Table 17 and Table 18 present simulation results 
for both days of the FHWA database. Again, the two warning algorithms studied in this paper 
are used, and for each algorithm, both the cautionary and imminent parameter sets are used. A 
100m Alert Zone extent is assumed. The first column of each table presents the September data 
set results, which have already been presented and discussed in this report. The second column 
includes corresponding July data set results. 

Table 18 presents potential reduction in relative harm results from REAMACS. First notice the 
results for the closing speed algorithm ¬ those numbers in the first two rows of numerical values. 
With the closing speed algorithm, a significantly higher reduction in relative harm is found to be 
potentially available (assuming ideal compliance, etc.) for the July data set. This result is quite 
similar to that described in [3] and stated in the paragraph above, however there is a surprise in 
the second set of results in Table 17. While the potential for reduction in relative harm with the 
algorithm using POV deceleration and the cautionary parameters are used again is larger for the 
July data set than for the original September data set, when the imminent parameters are used, 
the opposite is true. A possible reason for the decrease in the estimated potential for reduction in 
relative harm with the imminent settings is that the July data set leads to generally higher impact 
speeds. Thus the imminent setting, which is a ƒlater≈ alert, may not fare as well as the earlier 
cautionary alert in mitigating crashes in these scenarios. 

Table 18 presents in-path nuisance results for the two days of database collection. The number 
of nuisance alerts decreases across the board when the July data set is used. This is consistent 
with the July data set having less tight headway and containing higher delta-velocities ¬ braking 
events are likely to need more braking to avoid a crash. 

So what conclusions can be drawn by comparing the two data sets?  When both nuisances and 
the potential for reduction in relative harm are considered, the July data set yields results that the 
surface would argue more strongly for FCW development than the September data set: the 
potential for reduction in relative harm is estimated to be larger, and the number of in-path 
nuisances is predicted to be smaller. And yet it is the same highway. The real lesson, perhaps, is 
that the numbers per se depend upon the data set used, and so the specific quantitative results in 
this document should be used with great caution. Also, of course, it is desirable to obtain more 
data sets with a greater diversity of characteristics before using REAMACS to make fine 
distinctions between algorithms or parameter sets. 
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Table 17	 Sensitivity of Results to Date of Traffic Data Collection:  Potential for Reduction in 
Relative harm and In-Path Nuisance Alert Rates per Million Braking Events. 

(100m limit to Alert Zone.) 
Date of Traffic Data Collection in FHWA Database 

Sept 25, 1991 
(This data used for all other 

studies) 

July 11, 1993 
(This data used only for this 

column in this table) 
Camp Closing Speed Warning Algorithm 

Imminent: 
1.5sec RT, -0.5g decel 

20% 34% 

Cautionary: 
2.5sec RT, -0.3g decel 

70% 80% 

Warning Algorithm with POV Deceleration Information 
Imminent: 
1.5sec RT, -0.5g decel 

85% 80% 

Cautionary: 
2.5sec RT, -0.3g decel 

90% 97% 

Table 18	 Sensitivity of Results to Date of Traffic Data Collection: In-Path Nuisance Alert Rates per 
Million Braking Events. 

(100m limit to Alert Zone.) 
Date of Traffic Data Collection in FHWA Database 

Sept 25, 1991 
(This data used for all other 

studies) 

July 11, 1993 
(This data used only for this 

column in this table) 
CAMP Closing Speed Warning Algorithm 

Imminent: 
1.5sec RT, -0.5g decel 

79 38 

Cautionary: 
2.5sec RT, -0.3g decel 

1,810 1,276 

Warning Algorithm with POV Deceleration Information 
Imminent: 

1.5sec RT, -0.5g decel 
943 100 

Cautionary: 
2.5sec RT, -0.3g decel 

63,100 57,917 
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C.9 Summary 
The computer simulation tool REAMACS (Rear-end Accident Model and Countermeasure 
Simulation) has been extended and used to compute metrics of performance that would result 
from ideal deployment and usage of FCW systems]. The work reported here uses two primary 
metrics associated with rear-end countermeasure performance. First, the REAMACS simulation 
tool is used to estimate the potential reduction in relative harm that FCWs may provide. 
Relative harm is computed over a set of simulated rear-end crash scenarios, and is defined as the 
ratio of the sum of the squared impact speeds for a vehicle equipped with a FCW to the same 
metric computed for a vehicle without the FCW. Second the In-Path Nuisance Alert Code 
(IPNAC) tool computes a metric called the relative frequency of in-path nuisance alerts that 
addresses the nuisance alerts likely to accompany the deployment of FCWs. In-path nuisance 
alerts are alerts issued by a FCW in response to a POV located in the host vehicle«s path in 
situations considered to be non-alarming by the driver. 

Simulation studies are done using a warning algorithm based on closing speed and a simple 
model of driver reaction to an alert, and another algorithm which also uses information about the 
POV deceleration. Vehicle pair speed and headways collected from Interstate 40 near 
Albuquerque by the Federal Highway Administration (FHWA) are used as initial conditions for 
the simulation work. Although this is the best database available to CAMP, the degree to which 
the particular database characteristics influence the simulation results is unknown. Because the 
database does not include vehicle accelerations, there are no stopped vehicles, and the simulation 
crash set significantly under-represents the frequency of rear-end crashes with stopped POVs. 
The database also is only highway data and therefore cannot be assumed to represent vehicle pair 
characteristics of other roadway types. These caveats highlight the need for more data on actual 
vehicle-following and braking behavior to provide more accurate estimates of potential benefits 
of FCW deployment. The modeling work also assumes perfect sensing by the FCW system and 
100% compliance of drivers to warnings. Nuisances and false alarms due to out of path objects 
or sensing errors are not treated either. 

The results for potential reduction in relative harm reported in this document do not take into 
account the possible effect of nuisance alerts on the willingness of drivers to heed the warnings 
or even to use the system. Therefore the results reported here are only a first-order estimate of 
benefits, and probably an upper bound on the actual benefits that may occur with deployment. 
The key premise of CAMP, is the realizable reduction in relative harm which would result from 
the deployment of FCWs would depend not only on the apparent benefits, but also on the 
possible effect of nuisance alerts on the willingness of drivers to use a FCW and heed the 
warnings. The benefits accrued when considering this effect might be called ƒsecond-order≈ 
benefits. This estimation of second-order benefits is not done in this report, however the first-
order results reported provide information that may be used with the results of the human factors 
studies currently underway to estimate a realizable reduction in harm. 

It is found that a target sensor that can support warnings at a 75-meter range provides at least 
94% of the potential reduction in relative harm estimated for a sensor with unlimited range. 
There is a potential for FCWs to reduce relative harm by up to 67 percent using only the 
cautionary crash alert proposed, along with a sensor that supports a 75 meter warning range. If 
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used alone, an imminent crash alert, has a potential for only 20% reduction in relative harm ¬ a 
warning of this type, used alone, occurs too late for much benefit with decelerating POVs. When 
lead vehicle information is considered, there is a potential to reduce relative harm up to 81% 
using a set of algorithm parameters corresponding to both the cautionary and imminent 
parameters, and a sensor that supports a 75 m warning range. 

It is possible, however, that if simulation studies included a more accurate representation of the 
frequency of collisions involving stopped lead vehicles, a longer sensing range might be found to 
be beneficial. 

An approach to categorizing all FCW alerts is suggested. In an observation there are more types 
of alerts than simply ƒnuisance≈ alerts and ƒhelpful≈ alerts, and in fact, cases are shown where 
over 80% of all alerts are neither of these, but are perhaps ƒreinforcing≈ alerts issued in 
threatening situations in which the driver is already acting appropriately. 

Estimates of the expected exposure of a driver to in-path nuisance alerts are sensitive to model 
assumptions regarding braking levels that drivers are comfortable using in situations they 
consider non-alarming. For the cautionary crash alert design suggested, a rough scaling analysis 
estimates that 28 in-path nuisance alerts for every rear-end crash with an impact speed of ten 
miles per hour or greater. This scales to one in-path nuisance alert per 4.2 years. For the 
imminent crash alert, simulation predicts 1.3 in-path nuisances per rear-end crash with impact 
speeds of at least ten miles per hour. Future experimental studies are needed to provide a more 
accurate ƒscaling≈ for use with the simulation results. 

Simulation suggests that use of information about POV deceleration by a warning algorithm may 
improve performance of the FCW. Such information has the potential to increase the potential 
reduction in harm and to also reduce the need to tradeoff between reducing relative harm and 
increasing the in-path nuisance alert rate. By adding POV information to the imminent crash 
alert, the potential for reduction in relative harm increases from 20% to 81%, however, the 
corresponding in-path nuisance alert rate increases from 1.3 to 13.5 per rear-end crash with 
impact speed of ten miles per hour or more. By adding both POV deceleration information and 
varying the warning algorithm design; a potential reduction in relative harm nearly equal to that 
of the cautionary crash alert can be achieved. (79%)  While the in-path nuisance rate drops from 
28 to 2.3 alerts per rear-end collision, with impact speed of ten miles per hour or greater. 

In practice, in-path nuisance alert rates may be different than reported here for warning 
algorithms that use lead vehicle deceleration information. There are two reasons. First, this 
work studies a particular class of such warning algorithms, which is those algorithms that assume 
the lead vehicle will continue braking at its current deceleration until it stops. The simulated 
situations, however, match this same scenario ¬ the lead vehicle brakes completely to a stop. In 
practice, many nuisance alerts will occur for these algorithms when the lead vehicle brakes only 
momentarily, and so the in-path nuisance rate is likely to be higher in practice for this set of 
algorithms. Second, warning algorithms can use different assumptions about the future braking 
levels of the lead vehicle. These other algorithms are not studied here. 

The simulation results suggest it is possible to define a FCW warning algorithm capable of 
triggering alerts which are timely enough to significantly reduce rear-end crash harm while not 
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producing so many in-path nuisance alerts that drivers reject the system, nullifying any overall 
benefit. This conclusion is based on a proposed model that defines alarming situations by the 
braking levels necessary to avoid a collision. 

Effects of the sensitivity of the computed results to model parameters representing both lead and 
SV deceleration magnitudes are presented. Differences in results created by using a different 
day«s data set from the same highway are also presented. In both cases, in-path nuisance rates 
may change several-fold, and the reduction in harm values may shift as well. Sensitivity studies 
suggest cautious use of quantitative results from this report; results are best interpreted as 
indicative of the general magnitude and the qualitative dependence of results on parameters. 
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D INTRODUCTION 

The out-of-path nuisance alert requirements for FCW systems refer to exposures similar to those 
experienced by typical drivers. No database or statistics were found for exposure rates for the 
types of objects referred to in the Functional Requirements Report. Some data was needed to 
help set the number of exposures used for testing. 

In April 1998, CAMP staff performed a pilot study. The purpose of the pilot study was to get a 
ballpark estimate of exposures and to test a method that might be used for a more extensive data 
collection effort. This section summarizes the results of the pilot study. 

Methodology 
Initially we attempted to have a passenger count the roadside objects while the vehicle was 
driven on the designated route. This was found to be very difficult and error prone. Too many 
signs went by too fast. 

A second method was tried using videotaping. A passenger vehicle was equipped with a 
videocassette recorder and camera. The camera was placed on the dashboard near the center, 
looking out the windshield. While recording, the vehicle was driven on a route that included 
highways, main roads, and residential streets in Farmington Hills, Michigan. The recording was 
played back several times at slow speed. A form was used to count the number of instances of 
each type of roadside object. Each time through the playback, two staff members each took 
responsibility for counting two, three or four different types of objects. 

Route 
The length of the entire route is about 16.5 miles. The route was as follows:


Start at the parking lot exit nearest to C.A.M.P.

Left onto Country Club Drive

Right onto Northbound Haggerty

Right onto Eastbound 12 Mile Road

U-Turn onto Westbound 12 Mile

Right onto entrance ramp to M-5

South on M-5 to 10 Mile road exit

Left onto Eastbound 10 Mile Road

Fork left onto Eastbound Shiawassee

Left onto Northbound Orchard Lake Road

Right onto the entrance ramp to Westbound I-696

Follow I-696 to the M-5 exit.

Right onto Northbound M-5

Right onto Eastbound 12 Mile Road

Right onto Southbound Haggerty

Left onto Country Club Drive

Finish at the entrance to the CAMP parking lot.
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Collected Data


Number of Instances 
Lanes (in the direction of travel) 1 2 3 4+ 

Small roadside signs 63 72 23 5 
Large roadside signs 14 19 26 17 
Metal light poles 3 19 7 3 
Overhead signs 2 
Overhead traffic signals 3 
Mailboxes 23 4 3 0 
Bridges 0 
Construction barricades 49 14 2 
Guardrails 4 
Concrete barriers 0 
Slow cars in adjacent lanes 0 
Stopped or parked vehicles 4 0 14 2 
Slow vehicles at same distance in both 
adjacent lanes 

0 

Retroreflectors in the road 0 
U-turns 1 
Debris in the lane 0 

9 6 2 
2 7 7 

6 7 1 

6 5 7 
3 5 2 
0 0 1 

0 0 0 

0 0 0 
0 0 0 
0 0 0 

Several definitions are important: 

°	 Small signs were those with no dimensions larger than 21 inches. These typically 
included no-parking signs and speed limit signs on surface roads. 

°	 A single turning lane was not counted as a traffic lane. Two turning lanes, one for 
left and one for right, were considered equivalent to one traffic lane. 

°	 The construction barricades included barrels and sawhorse style units. They were 
primarily in closely spaced groups ranging from 6 to 33 barricades in a group. 

°	 Overhead traffic signals included hanging illuminated signs such as those for no left 
turn. When several signals and hanging signs were at the same distance, they were 
counted as one. 

°	 Small clearance-height signs attached to overpasses were considered part of the 
bridges and not counted as overhead signs. 

° Large signs attached to a bridge were counted separately from the bridges. 

°	 Objects that were more than two lane widths from the side of the road were not 
counted. 

°	 Slow vehicles were those estimated to be going at least 20 mph slower than the test 
vehicle. 
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Other Observations 
For most of the roadside object types, there were no clear distributions for their distances from 
the traveled roadway. The only exception was mailboxes, which tended to either be very close to 
the traveled roadway or just on the other side of a shoulder. 

There were concrete barriers in the median of limited access expressways that were very long 
(e.g., more than a mile). It may be necessary to estimate the distance for these, and guardrails, 
rather than just count their numbers. 

Trashcans were found very near the roadside. Metal trashcans may be as significant as 
construction barriers for sources of out-of-path nuisance alerts. It may be advisable to add these 
to the items counted and to the objects used in the test procedures. 

When the road was divided, a significant proportion of construction barricades, concrete barriers, 
guardrails, and small roadside signs occurred on the left side. It may be advisable to count how 
many of each type of object were on the left and right of the traveled roadway. 

Some signs and their support structures only extended over one lane of a multi-lane roadway. 
Other signs were only over one lane but were supported on a trellis that passed over all lanes. It 
might be better to count bridges and trellises as overhead structures and to count the number of 
lanes each sign is over. 

Exposure 

Assumptions 

A simple approximation would be to assume that vehicles traveling in lanes other than the right-
most lane will not respond to roadside objects. 

It seems reasonable to assume that traffic distributes evenly between lanes when more than one 
lane is available in the direction of travel. 

Estimates 

The following table was prepared as an example of how the collected data might be used. The 
table weights each count of instances by the number of lanes. The exposure per day is calculated 
based upon the typical weekly driving distance of 201 miles found in Horowitz (1986). The 
values are rounded to the nearest integer to reflect the low accuracy in all of the measurements. 
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Weighted 
exposure in 
16.5 miles 

Exposure 
per day 

(28.7 miles) 

Small Roadside Signs 108 188 
Large Roadside Signs 36 63 
Metal Light Poles 16 28 
Overhead Signs 7 12 
Overhead Traffic Signals 9 16 
Mailboxes 26 45 
Bridges 14 24 
Construction Barricades 56 97 
Guardrails 11 19 
Concrete Barriers 3 5 
Slow Cars in adjacent lanes 1 2 
Stopped or Parked Vehicles in adjacent lanes 9 16 
Slow Vehicles at same distance in both adjacent lanes 0 0 
Retroreflectors in the road 0 0 
U-Turns 1 2 
Debris in the lane 0 0 

Total 297 517 

Conclusion 
The pilot study demonstrated that it is feasible to collect videotape from which the required data 
can be extracted. Preliminary estimates for exposure rates were derived from the videotape. 
However, it is not clear how well these preliminary estimates match the results that would be 
found in a more extensive data collection. Future studies should improve the methods to insure 
that the mixes of highway vs. surface street and urban vs. suburban vs. rural streets reflect 
national driving distributions. Future studies should also improve the method for counting 
overhead objects, should have a separate count for objects on each side of the road, and, perhaps, 
should include metal trashcans. 
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E TEST EQUIPMENT 

E.1 Test Equipment List for Test Methodology 
Validation Activities 

The six tables below list equipment used during the testing that supported the validation of the 
objective test methodology. This equipment list supports the discussions in Chapter 7. (Note 
that human factors testing used different vehicles and equipment, as reported in Chapter 3). The 
equipment here is divided into four groups, a group for each test car and another for the GPS 
base station. Also listed are the test vehicles and the radios. Note that the video equipment was 
not necessary for the POV #2 group. Miscellaneous items used during test execution, such as 
traffic cones, are not listed. 

SV Instrumentation Manufacturer Model Cost 

Power Inverter Tripp Lite PV400 $170 

Power Supply Radio Shack 22-127E $30 

Local Area Network Black Box $1,428 

RF modem REPCO, Inc. RDNFSK6U6UC $865 

Dynamic Measurement 
Unit 

Crossbow DMU-6 $2,495 

Chassis National Instruments SCXI-1001 $8,000 

Global Positioning 
System 

NovAtel Propak II RT2 w/ 

502 antenna 

$20,145 

Computer Micron TransPort XKE $4,800 

Video Recorder Sony SVO2100 $2,285 

Monitor Citizen M329 $240 

Camera Elmo MN42H CCD 

CC421E 

$2,442 

Total $42,900 

Table E-1 Instrumentation and Costs for Subject Vehicle 



E-5 

POV #1 
Instrumentation 

Manufacturer Model Cost 

Power Inverter Tripp Lite PV400 $170 

Power Supply Radio Shack 22-127E $30 

Local Area Network Black Box $1,428 

RF modem REPCO, Inc. RDNFSK6U6UC $865 

Dynamic Measurement 
Unit 

Crossbow DMU-6 $2,495 

Chassis National Instruments SCXI-1001 $8,000 

Global Positioning 
System 

NovAtel Propak II RT2 w/ 

502 antenna 

$20,145 

Computer Micron TransPort XKE $4,800 

Video Recorder Sony SVO2100 $2,285 

Monitor Citizen M329 $240 

Camera Elmo MN42H CCD 

CC421E 

$2,442 

Total $42,900 

Table E-2 Instrumentation and Costs for POV #1 

POV #2 
Instrumentation 

Manufacturer Model Cost 

Power Inverter Tripp Lite PV400 $170 

Power Supply Radio Shack 22-127E $30 

Local Area Network Black Box LW0026A $1,428 

RF modem REPCO Inc. RDNFSK6U6UC $865 

Dynamic Measurement 
Unit 

Crossbow DMU-6 $2,495 

Chassis National Instruments SCXI-1001 $8,000 

Global Positioning 
System 

NovAtel Propak 3151RE w/ 

501 antenna 

$6,140 

Computer Micron TransPort XKE $4,800 

Total $23,928 

Table E-3 Instrumentation and Cost for POV #2 

GPS Base Station Manufacturer Model Cost 

Power Inverter Power Star POW200 $100 

Power Supply Interstate Batteries 12 Volt 7.0 AH $115 
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GPS Base Station Manufacturer Model Cost 

Global Positioning 
System 

NovAtel Propak II STD w/ 

503 antenna 

$17,725 

Tripod SECO 5119 $835 

Computer Micron TransPort $4,800 

Total $23,575 

Table E-4 Equipment and Costs for GPS base station 

Radio Items Manufacturer Model Cost 

Unit One NexTel 370i $201 

Unit Two NexTel 370i $201 

Unit Three NexTel 370i $201 

Unit Four NexTel 370i $201 

Total $ 804 

Table E-5 Cost for miscellaneous communication equipment 

Test Vehicles Items Manufacturer Model Cost 

Car One Chevrolet «97 Lumina White $18,222 

Car Two Chevrolet «97 Lumina Blue w/ Eaton 
Vorad microwave radar 

$18,222 

Car Three Mitsubishi Δ96 Diamante 

w/ laser radar 

$12,300 

Truck One Ford «95 F-700 w/ 24« bed, 
GVWR 18,000# 

$915 

Truck Two Ford «95 F-700 w/24« bed, GVWR 
18,000# 

$915 

Motorcycle Honda «84 Nighthawk 650cc $340 

Total $50,914 

Table E-6 Vehicles used in executed tests 

E.1.1 Computer Equipment 

Micron TransPort™ XKE Systems 

° TransPort XKE specifications


° Motherboard: 266MHz Intel Pentium® MMX P55CLM processor


° Notebooks


° Intel(R) PCI 430TX Chipset
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° 512K L2 pipeline burst cache 

°	 60ns EDO RAM (Two user accessible 144-pin SO DIMM slots. Expandable 
by user to 192MB.) The TransPort XKE comes 64MB of memory on the 
motherboard depending on how it is ordered. The amount of memory on the 
motherboard cannot be changed. 

° Phoenix BIOS that can be flash upgraded. 

° Video display specifications: 

° 128 bit graphics accelerator 

° NeoMagic NM2160 video controller 

° Video memory 2MB EDO DRAM 

° Supports hardware MPEG 

° LCD screens: 

‹ 12.1" TFT SVGA LCD color display 

+ 640x480 65,536 colors 

+ 800x600 65,536 colors (Recommended setting) 

+ 1024x768 256 colors 

‹ 13.3" TFT XGA LCD color display 

+ 640x480 65,536 colors 

+ 800x600 65,536 colors 

+ 1024x768 256 colors (Recommended setting) 

° External monitor: 

° 640x480 16,777,216 colors at 85Hz non-interlaced 

° 800x600 16,777,216 colors at 85Hz non-interlaced 

° 1024x768 65,536 colors at 75Hz non-interlaced 

°	 Television output: The TransPort XKE can be used with televisions sets that accept 
National Television Standards Committee (NTSC) output or televisions sets that 
accept PAL output. The NTSC standard is used throughout North America while the 
PAL standard is used in many European countries. 

Internal Bays 

The TransPort XKE has two internal bays facing the front of the machine that are designed to 
hold modular peripherals or batteries. As you face the computer the left modular bay can hold a 
battery or floppy disk drive. The right modular bay can hold a battery, a CD-ROM drive, or a 
hard disk drive. If a peripheral is put in the wrong bay the computer does not recognize it. The 
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TransPort XKE has an internal hard disk drive. Putting a hard disk drive in the right modular bay 
allows you to have two hard disk drives in the computer at the same time. 

Hard Disk Drives 

The TransPort XKE uses a removable internal hard disk drive with an EIDE interface. 
Acceptable drives must have a 2.5-inch platter and be 19mm or less in height. Detailed 
specifications for the hard disk drives available with the TransPort XKE computer can be found 
by going to the TransPort XKE in the Micron Technical Support notebook section and then 
going to Hard Disk Drives. The hard disk drive is removable from the TransPort XKE by taking 
out one screw in the bottom of the case. 

Floppy Disk Drive 

The TransPort XKE has a modular 1.44MB 3.5-inch floppy drive that fits in the computer's left 
side internal modular bay. 

CD-ROM Disk Drive 

The TransPort XKE has a modular 5.25-inch CD-ROM drive that fits in the computer's right side 
internal modular bay. Detailed specifications for the CD-ROM drives available with the 
TransPort XKE computer can be found by going to the TransPort XKE in the Micron Technical 
Support notebook section and then going to CD-ROM Drives. The TransPort XKE CD-ROM 
drive can be used to play audio CDs without turning on the computer. When a headphone plug is 
inserted into the headphone jack on the CD-ROM player the CD-ROM player turns on but the 
rest of the computer remains off. Note the headphones must be inserted into the jack on the CD-
ROM player. If the headphones are installed in the headphone jack on the back of the computer 
the CD-ROM player will not work unless the computer is turned on. 

Built-in Modem 

The TransPort XKE has a built-in 33.6 data/fax Motorola modem.


° Data mode: Full-duplex


° Fax mode: Half-duplex


° Interface: Enhanced 16550 serial port emulation


° Transmit level: -10dbm at modem (permissive RJ11/CA11 or equivalent jack)


° Receive level: Dynamic range -38 dbm


° Power: Average 200ma in active mode, 60ma in sleep mode


° Data Connect Rates:


° Up to 56Kbps receive only (requires a software upgrade) 
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° Up to 33.6Kbps transmit and receive 

° Auto fallback rate from 33,600 bps to 300bps 

° Data standards conformance 

° ITU-T: 

° V.34: 33,600-2400 

° V.32terbo: 19,200, 16,800 (TCM) 

° ITU: 

° V.32bis: 14,400, 12,000, 7200 (TCM) 

° V.32: 9600 (TCM), 4800 (QAM) 

° V.22bis: 2400 (QAM) 

° V.22: 1200 (DPSK) 

° V.21: 300 (FSK) 

° V.23: 600/75, 1200/75 (FSK) 

° Bell 212A: 1200 (DPSK) 

° Bell 103: 300 (FSK) 

° Fax standards conformance: 

°	 Compatibility interface EIA-578 (Asynchronous Facsimile Modem Control Standard, 
Service Class 1 and Class 2) 

° ITU: 

° V.17: 14,400, 12,000, 9600, 7200, (TCM) 

° V.29: 9600 (QAM), 7200 (QAM) 

° V.27terbo: 4800 (DPSK), 2400 (DPSK) 

° V.21 Channel 2: 300 (FSK) 

° Data compression: V.42bis and MNP5 

° Error correction: V.42 (MNP2-4) 

° Cellular error correction: Enhanced Throughput Cellular (ETC) 

° Operating temperature: 32 to 122 degrees Fahrenheit / 0 to 50 degrees Celsius 

° Operating humidity:  10% to 90% non-condensing 

° Connector: Standard RJ-11 connector and cellular phone connector 

°	 Voice modem: Supports independent speaker/mic positioning. Full duplex 
speakerphone, echo cancellation gain maximum supported via IS-101 AT+V 
commands and extensions. 

°	 Voice mode capabilities: TIA/EIA IS-101 AT+V voice command set. U-law, A-law, 
and linear voice data compression. IMA ADPCM compression at 8.0KHz, 16-bit. 

External Connectors 

° Cellular phone connector 
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° Fax/telephone connector for the built-in modem 

° Universal Serial Bus (USB) connector (series A connector) 

°	 Composite video jack. An RCA type jack used to connect the computer to a 
television set. 

°	 S-Video 5-pin connector used to connect the computer to a television set. The S-video 
connector has separate output for red, green, blue, horizontal and vertical signals. It 
generally provides better quality television output than the composite video jack. 

° 15-pin female Game/MIDI port 

° 1/8 inch monaural microphone jack 

° 1/8 inch stereo line-out jack (accepts stereo headphones) 

° 25-pin female Centronics-standard bi-directional parallel port ECP/EPP 

° 9-pin male serial port RS-232C, 16550AF compatible 

°	 2-way Infrared port on front of computer (can be used as either a wireless parallel or 
serial port). Supports both IrDA-I and IrDA-II, also known as Fast Infrared, for 
transfer rates up to 4,000,000bps (4Mbps). 

°	 2-way Infrared port on rear of computer (can be used as either a wireless parallel or 
serial port). Supports both IrDA-I and IrDA-II, also known as Fast Infrared, for 
transfer rates up to 4,000,000bps (4Mbps). 

° 6-pin female mini-DIN PS/2 connector for an external PS/2 mouse 

° 6-pin female mini-DIN PS/2 connector for an external PS/2 keyboard 

° 15-pin female external VGA/SVGA monitor 

° Proprietary port replicator connector 

° Two PC Card (PCMCIA) slots. See PC Card specifications below. 

° Kensington Security lock slot 

Keyboard 

°	 87-key keyboard with cursor control keys, embedded numeric key pad, and 12 
function keys. 

° Connector for external PS/2 keyboard 

° Hot Keys 

° Fn+F2 Switches between the LCD screen, an external monitor, or both. 

°	 Fn+F3 Switches between the pointing devices. Either the touchpad or the 
pointing stick can be active. 

° Fn+F4 Switches between the front and rear infrared ports. 

° Fn+F5 Decreases the volume of the onboard stereo speakers 

° Fn+F6 Increases the volume of the onboard stereo speakers 

° Fn+F7 Decreases the display brightness 

° Fn+F8 Increases the display brightness 
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°	 Fn+F9 Puts the computer into suspend mode to save power. Pressing any key 
on the keyboard will take the machine out of suspend mode. 

°	 Fn+F10 Undock. When the computer is in the port replicator pressing Fn+F10 
will prepare the computer to be removed from the port replicator. After 
pressing Fn+F10 wait for the safe undock light to come on and then it is safe 
to remove the computer from the port replicator. 

°	 Fn+F12 Internal PC speaker volume control. (Not to be confused with the two 
built-in speakers that run off the 16-bit sound card.) Volume can be set to 
high, medium, low, and off. The computer will give you an example beep at 
the set volume when you press the Fn+F12 keys. 

Power Sources 

Only use the Micron TransPort XKE power sources (AC adapter, batteries, and DC adapter) with 
the TransPort XKE notebook computer. Trying to use any other power adapter may damage the 
TransPort XKE notebook computer. 

°	 AC adapter: The AC adapters supplied with the TransPort XKE notebook computer 
will switch voltages automatically when plugged into a 100 to 240 volt AC power 
source operating at a frequency of 50/60 Hz. 

°	 Battery: Batteries are warm swappable. They can be changed while the computer is 
connected to an AC power source. 

° Smart Li-Ion Battery 5400 mAh 

° Battery status indicator built into the battery 

°	 Recharges in approximately 3.5 hours. When two batteries are installed in the 
computer the battery in the right modular bay will charge first and then the 
battery in the left modular bay will charge. The batteries are discharged in the 
reverse order. That is, the battery in the left bay will be discharged first and 
then the battery in the right bay will be discharged. To charge two batteries 
takes approximately seven hours. 

° DC adapter for use in automobiles or airplanes 

PC Card (Also Known as PCMCIA) 

° TI PCI1131 PCI-to-PC Card controller 

°	 Two PC Card slots. The slots will hold two Type I devices, or two Type II devices, or 
one Type III device. (A Type III device is so thick that when inserted into one slot it 
blocks the other slot.) 

° Both slots are CardBus compatible 

° Zoomed Video Support through the bottom PC Card slot 
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Pointing Devices 

° Touchpad pointing device 

° Stick pointing device 

° Connector for external PS/2 mouse 

Sound Specifications 

° Built-in ESS1878 or ESS1879 sound controller (Sound Blaster 16 compatible)


° 16-bit stereo sound


° 1MB wavetable


° 32-voice FM synthesis


° 3D sound


° Two internal speakers 0.3 watts per channel


° Built-in monaural microphone


° Stereo line-out (allows use of stereo headphones)


° 15-pin female Game/MIDI port


Environmental Specifications 

° Temperature 

° Powered on: 50 to 95 degrees Fahrenheit / 10 to 35 degrees Celsius 

° Powered off: 14 to 122 degrees Fahrenheit /-10 to 50 degrees Celsius 

° Humidity 

° Powered on: 40 to 80 percent (no condensation) 

° Powered off: 40 to 80 percent (no condensation) 

Dimensions and Weight 

° TransPort XKE 

° 12.2 x 9.87 x 2.0 inches / 311 x 251 x 51 mm 

° 7.2lbs / 3240 grams (with one battery) 

° TransPort XKE Lithium Ion Battery 

° 4.4 x 6.1 x 0.9 inches / 113 x 156 x 22 mm 

° 1.2lbs / 507 grams 

Last Edited: 2-19-98 

© 1998 Micron Electronics, Inc. All rights reserved. 
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E.1.2	 Signal Conditioning Extensions for Instrumentation (SCXI) 
Chassis 

Product 

SCXI-1200 

SCXI-1120 

SCXI-1141 

SCXI-1181 

SCXI-1001 

SCXI-1126 

SCXI-1327 

SCXI-1320 

SCXI-1352 

SCXI-1300 

SCXI-1302 

SCXI-1360 

SCXI-1361 

SCXI-1370 

Cat.Description 
PG. 

P/N Qty Price 

SCXI Modules and Chassis 

DAQ and Control Module 

8-Ch. Isolation Amp Module 

8-Ch. Ellip. Lowpass Filter 

SCXI Breadboard Module 

SCXI 12-Slot Chassis 

Freq. to Voltage Converter 

3-165 776783-00 1 $895 

3-175 776572-20 1 $1,195 

3-187 776572-41 1 $1,795 

3-224 776572-81 1 $1,95 

3-205 776571-01 1 $1,595 

371 776572-26 1 $1,295 

Terminal Blocks, Cabling, and Accessories


Attenuator Term. Block


Terminal Block


8-Ch. Cable from 1120 Out.


Low-Voltage Terminal Block


Feed through Terminal Block


Front Filler Panel


Rear Filler Panel


12-Slot Rack-Mount Kit


3-212 776573-27 1 $295 

776573-20 1 $150 

3-212 776573-04 1 $35 

3-212 776573-00 1 $185 

3-212 776573-02 1 $175 

3-222 776576-60 7 $84 

3-222 776576-61 10 $100 

3-222 776576-70 1 $50 



SCXI Chassis

SCXI-1000, SCXI-1000DC, SCXI-1001 
Chassis house all SCXI modules Application Software 
Low-noise environment for signal LabVIEW 

conditioning BridgeVIEW 
Shielded enclosure LabWindows/CVI 
Low-noise power system LabWindows 

Rugged, compact chassis Measure 
Forced air cooling ComponentWorks 
Optional rack mounting VirtualBench 

Integrated instrumentation system Lookout 
3 internal analog buses 
Timing bus circuitry for high-speed 

module multiplexing 
Trigger lines for intermodule 

timing signals 
AC, DC, or battery power options 

NI-DAQ Software 
Windows NT

Windows 95

Windows 3.1

Mac OS

DOS


Overview SCXI-1200 module. The 

The SCXI-1000, SCXI-1000DC, and SCXI-1001 are rugged, low- DAQ board or module 

noise chassis. The SCXI-1000 and SCXI-1000DC can house up to programs the control 

four modules; the SCXI-1001 can house 12 modules. You can circuitry of the chassis 

also daisy chain up to eight SCXI chassis with a single MIO board with the number and 

for high channel count applications. order of modules and 

The SCXI-1000DC is a DC-powered chassis that is ideal for channels to scan. 
1SCXI-2000 includes an RS-232/RS-485 communications interface–(see page 391) 
2 PXI-1010 includes 4 SCXI slots and eight PXI slots–(see page 395)

portable applications or where standard AC power is Therefore, using SCXI 
Table1. SCXI Chassis Options

unavailable. The SCXI-1000DC is powered by any 9.5 to 16 VDC will reserve up to four 

battery or power supply, the optional SCXI-1382 battery pack, or digital output lines and one digital input line of your DAQ board 

the optional SCXI-1383 power supply/float charger. or SCXI-1200 module. Alternatively, an SCXI-2400 RS-232/RS-485 

The SCXI-2000, a four-slot chassis with built-in RS-232 and RS- communications module can directly program the chassis via 

485 serial interface, is also available for remote systems. See the SCXIbus. 

page 391 for more information on the SCXI-2000 chassis. The SCXI-1000 and SCXI-1001 are available with a number of 

standard AC power options. The SCXI-1000DC can be powered 

with any 9.5 to 16 VDC power supply. Optionally, you can use

Description the SCXI-1382 12 VDC battery pack, or the optional SCXI-1383 

The SCXI-1000, SCXI-1000DC, and SCXI-1001 chassis integrate power supply/float charger to operate the chassis from an AC 

the operation of an assortment of SCXI modules. The SCXIbus in power outlet. 

the backplane of the chassis includes guarded analog buses for 

signal routing and digital buses for transferring data and timing Accessories 
signals. For example, you can use a plug-in DAQ board or an DC Power Accessories 
SCXI-1200 module to scan and acquire signals from multiple The SCXI-1382 is a 12 VDC, 25 Ah battery pack that attaches 

SCXI signal conditioning modules. In this operation, the SCXI directly to the SCXI-1000DC chassis. The SCXI-1382 can power a 

chassis uses its SCXIbus to synchronize the digitization of the fully loaded SCXI-1000DC chassis for a minimum of 5 hours. The 

conditioned analog signal with the multiplexing and signal SCXI-1382 also includes a dual-stage battery charger, which 

routing from the SCXI modules. charges a completely discharged battery in 8 to 11 hours. The 

The SCXI chassis, along with the SCXI modules, are serially dual-stage charger cannot power the SCXI-1000DC chassis. The 

programmed using digital I/O lines of the DAQ board or SCXI-1383 is a 13.8 VDC, 4 A power supply/float charger for the 
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Chassis Slots Power 
SCXI-1000 

SCXI-1000DC 
SCXI-1001 
SCXI-20001 

PXI-10102 
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SCXI Chassis

SCXI-1000DC. The SCXI-1383 will power the SCXI-1000DC from


115 VAC or 230 VAC power when DC power is unavailable. You Part Numbers

can also combine the SCXI-1382 and the SCXI-1383 to operate SCXI-1000 4-slot chassis


in standby mode and provide uninterruptible power for the U.S. 120 VAC .............................................776570-01


SCXI-1000DC chassis. Swiss 220 VAC ...........................................776570-02


Australian 240 VAC....................................776570-03


Chassis Accessories Universal Euro 240 VAC.............................776570-04


The following rack-mounting and panel mounting hardware, No. American 240 VAC .............................776570-05


filler panels, and a chassis handle are available for the SCXI-1000, United Kingdom 240 VAC.........................776570-06


SCXI-1000DC, and SCXI-1001 chassis. (See page 409 for more Japan 100 VAC..........................................776570-07


information.) SCXI-1000DC 4-slot chassis ...............................776570-00


SCXI-1001 12-slot chassis


Mounting Options U.S. 120 VAC .............................................776571-01


Rack-Mounting kit for Swiss 220 VAC ...........................................776571-02


SCXI-1001...........................................................SCXI-1370 Australian 240 VAC....................................776571-03


SCXI-1000/1000DC ...........................................SCXI-1371 Universal Euro 240 VAC.............................776571-04


two SCXI-1000/1000DC.....................................SCXI-1372 No. American 240 VAC .............................776571-05


Panel-Mounting for United Kingdom 240 VAC.........................776571-06


SCXI-1001,1000, 2000DC..................................SCXI-1373 Japan 100 VAC..........................................776571-07


Chassis Handle ..........................................................SCXI-1374 SCXI-1382 battery pack


Filler Panels without charger ......................................776577-820


Front filler panel..................................................SCXI-1360 with 115 VAC charger*...........................776577-821


Rear filler panel ...................................................SCXI-1361 SCXI-1383 power supply/float charger


U.S. 120 VAC/Japan 100 VAC.................776577-831


Swiss 220 VAC.........................................776577-832


Australian 240 VAC..................................776577-833


Universal Euro 240 VAC...........................776577-834


No. American 240 VAC ...........................776577-835


United Kingdom 240 VAC.......................776577-836


SCXI-1360 front filler panel................................776576-60


SCXI-1361 rear filler panel.................................776576-61


SCXI-1370 rack-mount kit 


for SCXI-1001 .............................................776577-70


SCXI-1371 rack-mount kit 


for SCXI-1000/1000DC..............................776577-71


SCXI-1372 rack-mount kit 


for two SCXI-1000/1000DC.......................776577-72


SCXI-1373 panel-mount kit ...............................776577-73


SCXI-1374 handle kit.........................................776577-74


* With U.S. style three-prong power plug. 

Signal Conditioning 
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Typical for 25º C unless otherwise noted. 

SCXI-1000, SCXI-1000DC, and SCXI-1001 Chassis 
Power Requirements 
Input voltage 

SCXI-1000 and SCXI-1001 ................ 100, 120, 220, or 240 VAC at 50 or 60 Hz 
SCXI-1000DC ................................... 12 VDC nominal (9.5 to 16.0 VDC) 

Operating current, maximum 
SCXI-1000 ........................................ 0.6 A at 100 VAC 

0.5 A at 120 VAC 
0.25 A at 220 or 240 VAC 

SCXI-1000DC ................................... 5.5 A (at 9.5 VDC) 
SCXI-1001 ........................................ 1.25 A at 100 or 120 VAC 

0.7 A at 220 or 240 VAC 
Module power 

+5 V ................................................ 50 mA per slot; 
+18.5 to +25.0 V ............................. 170 mA per slot; 
-18.5 to -25.0 V ............................... 170 mA per slot 

Physical 
Dimensions (including fan)1 

SCXI-1000 and SCXI-1000DC ........... 18.0 by 19.5 by 24.8 cm 
(7.1 by 7.7 by 9.8 in.) 

SCXI-1001 ........................................ 18.0 by 43.9 by 24.8 cm 
(7.1 by 17.3 by 9.8 in.) 

Weight 
SCXI-1000 ........................................ 3.9 kg (8 lb 10 oz) 
SCXI-1000DC ................................... 3.3 kg (7 lb 5 oz) 
SCXI-1001 ........................................ 6.8 kg (14 lb 14 oz) 

SCXI-1382 Battery Pack 
Battery output .................................... 12 VDC, 25 Ah 
Battery type ......................................... Sealed lead-acid 
Minimum run time............................... 5 h (with four SCXI modules) 
Recharge time ..................................... 8 to 11 h (with included charger) 
Input power connection...................... 3 screw terminals, or connector 
Dimensions.......................................... 18.0 by 15.2 by 21.7 cm 

(7.1 by 6.0 by 8.5 in.) 
Weight................................................. 8.6 kg (19 lb) 
SCXI-1383 
Output voltage .................................... 13.8 VDC at 4 A load 
Input voltage ....................................... 115/230 VAC at 60/50 Hz 
Dimensions.......................................... 16.5 by 8.0 by 5.7 cm 

(6.5 by 3.2 by 2.2 in.) 
Environment (all products) 
Operating temperature........................ 0ºto 50º C (0º to 40º C for SCXI-1383) 
Relative humidity ................................. 5% to 90% noncondensing 
Certifications and Compliances 
CE Mark Compliance 
This product meets applicable EU directive(s) as follows: 
Safety isolation....... .............................. Low voltage directive EN 61010 
EMC Directive 

Immunity.......................................... EN 50082-1:1994 
Emissions.......... ............................... EN 55011:1991 Group I Class A at 10 m 

1 Dimensions do not include terminal block mounted to front of chassis, 
which will add 7.5 cm to depth 

Specifications 

Figure 1. SCXI-1000, SCXI-1000DC, SCXI-2000, and Battery 

Pack Dimensions 

Figure 2. SCXI-1001 Dimensions 

Figure 3. SCXI-1000DC, SCXI-1382 Battery Pack and 

SCXI-1374 Handle Accessory 

390 National Instruments 
Phone: (512) 794-0100 • Fax: (512) 794-8411• info@natinst.com • www.natinst.com 

Si
gn

al
 C

on
di

tio
ni

ng
 



X,Y,Z 
Gyro 

X,Y,Z 
Accel 

Temp 

DSP 
& EPROM 

Digital 
Output 

RS-
232 

14 B
it A

/D
 Analog 

Output DAC 

Part# Price 
1-9 

BASE PART 

DMU-6X Dynamic Measurement Unit CALL 

ORDERING INFORMATION 

Figure 1. Block diagram of DMU-6X 
Table 1. 

X, Y, Z, Acceleration, 
Roll, Pitch, Yaw, Angular Rates 
DSP Processing Power 
Analog & Digital Output 
No Calibration Required 

408/324-4830 FAX 408/324-4840 www.xbow.com 

DMU 6X: 
Silicon Inertial Measurement Unit 

The DMU 6X is an intelligent six axis measurement 
system designed for accurate acceleration and 
angle measurement in dynamic environments. The 
DMU 6X employs a high performance Digital Signal 
Processor to provide outputs that are compensated 
for deterministic error sources within the unit. 
Internal compensation includes offsets, scale fac-
tors, and alignment. All six of the DMU-6X sensor 
elements are micro-machined devices. The three 
angular rate sensors consist of vibrating plates that 
utilize the Coriolis force to output angular rate inde
pendently of acceleration. The three MEMS 
accelerometers are surface micro-machined silicon 
devices that use differential capacitance to sense 

acceleration. The DMU-6X has analog and two digi
tal output modes that allow for easy integration. In 
voltage mode, the analog sensor signals are sam-
pled and converted to digital data with 1mV resolu-
tion. In scaled sensor mode, the analog sensor sig
nals are sampled, converted to digital data, com-
pensated, and scaled to engineering units. Digital 
data may be requested via serial command or to be 
transferred continuously. 

Note: Please specify the desired rate (50 - 150°/S) and acceleration (1-50 G) range when ordering. 

DMU Products 

DMU-6X 

DMU-VGX 

DMU-DG 

DMU-FOG 

Description 

Direct digital voltage and 
signal conditioned analog 
outputs. Also outputs cali-
brated engineering units. 

Tilt angle (roll/pitch) is com-
puted. -6X outputs also 
included. 

XYZ Acceleration,3 Axis 
Angular Rate, 3 Axis 
Magnetometer 

High accuracy tilt angle 
(roll/pitch) is computed. -6X 
outputs also included. 

Output 

XYZ Acceleration 
3 Axis Angular Rate 

Roll & Pitch 
XYZ Acceleration 
3 Axis Angular Rate 

Roll, Pitch, Yaw 

Roll & Pitch 
XYZ Acceleration 
3 Axis Angular Rate 

Description of DMU Products 

• • 
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1 Transmit Data 
2 Receive Data 
3 Vcc 
4 GND 
5 X-axis Accelerometer Analog Voltage 
6 Y-axis Accelerometer Analog Voltage 
7 Z-axis Accelerometer Analog Voltage 
8 Roll Rate Analog Voltage 
9 Pitch Rate Analog Voltage 
10 Yaw Rate Analog Voltage 
11 Timing Pulse 
12 Reset 
13-15 GND/Unused 
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DMU 6X: 
Silicon Inertial Measurement Unit 

DMU-6X Specifications 

Power 

Input Supply Voltage 
Input Supply Current 

8 - 30 VDC 
100 mA (max) 

Performance 

Available Full Scale Ranges 
Full Scale Span (analog outputs) 
Full Scale Span (digital output) 
Scale Factor Calibration 
Bandwidth 
Linearity 
Bias Stability (Room) 
Bias Stability (-40 to 85) 
Alignment (to enclosure) 
Resolution 

Gyro 

±50, 100, 150° /S 
±2.0V 
-32,768 to 32,767 
< 1 % 
DC - 10 Hz 
0.5% of FS 
±1 °/sec 
±9 °/sec 
<1° 
0.05 °/sec 

Acceleration 

±1, 2, 4, 10, 25, 50G 
±2.0 
-32,768 to +32,767 
<1% 
DC - 100Hz 
0.2% of FS 
±70 mG 
<1° 

5 mG (FS < 8G), 50mG (FS > 8G) 

Environmental 

Operating Temperature Range 
Storage Temperature Range 
Package 
Weight 
Mechanical Shock 

Vibration 

-40 to 85° 
-55 to 85° C 
Aluminum housing 
475 grams 
1000 G 
(1 ms half sine wave) 

10 G RMS 

Digital Data Output Rate 

Voltage Mode 
Scaled Sensor Mode 
Analog Mode 

166 Hz 
156 Hz 
400 Hz 

408/324-4830 FAX 408/324-4840 www.xbow.com 

Voltage Mode Scaled Sensor Mode 
12 bit, unsigned 16 bit 2’s compliment 

0 Header (255) Header (255)
1 Gyro Voltage X (MSB) Roll Rate, X (MSB) 
2 Gyro Voltage X (LSB) Roll Rate, X (LSB) 
3 Gyro Voltage Y (MSB) Pitch Rate, Y (MSB) 
4 Gyro Voltage Y (LSB) Pitch Rate X (LSB) 
5 Gyro Voltage Z (MSB) Yaw Rate, Z (MSB) 
6 Gyro Voltage Z (LSB) Yaw Rate, Z (LSB) 
7 Accelerometer Voltage X (MSB) Acceleration X (MSB) 
8 Accelerometer Voltage X (LSB) Acceleration X (LSB) 
9 Accelerometer Voltage Y(MSB) Acceleration Y (MSB) 
10 Accelerometer Voltage Y (LSB) Acceleration Y (LSB) 
11 Accelerometer Voltage Z (MSB) Acceleration Z (MSB) 
12 Accelerometer Voltage Z (LSB) Acceleration Z (LSB) 
13 Temp Sensor Voltage (MSB) Temp Sensor Voltage 
14 Temp Sensor Voltage (LSB) (MSB) 
15 Time (MSB) Temp Sensor Voltage (LSB) 
16 Time (LSB) Time (MSB) 
17 Checksum Time (LSB) 
18 Checksum 

Development Software 
Crossbow's X-View software is shipped with DMU products for use on PC's run-
ning MS Windows '95. X-View provides a convenient way to start system devel-
opment, evaluate the performance of the DMU, and perform data acquisition. 
Download a free copy from our website. 

Data Packet Format (v1.2) 

• • 



NovAtel’s RT-2™ represents the pinnacle of high accuracy 

“real-time kinematic” (RTK) performance. Based on the 24 

channel L1/L2 MiLLennium™ GPSCard, the RT-2 computes 

fixed integer carrier phase ambiguity estimates to deliver 2 cm 

accuracy in real-time. Fast and robust “on the fly” (OTF) 

initialization algorithms are employed to guarantee performance 

and ensure ease of use. 

R
T

-2 

RT-2 

NovAtel’s RT-2 delivers high accuracy 
positions. Based on the MiLLennium GPSCard™, 
RT-2 applies the dual frequency advantage to 
deliver the most sophisticated RTK system 
available. Precision positioning based on fixed 
integer carrier phase ambiguity estimates provide 
nominal short baseline accuracy of two 
centimeters. Performance is extended to longer 
baseline applications through the use of dual 
frequency derived ionospheric corrections. Ease of 
use is guaranteed by fast and robust OTF 
initialization algorithms. 

AT NOVATEL, OUR STRENGTH IN 

DEVELOPING PERFORMANCE GPS 
PRODUCTS IS MATCHED BY OUR 

COMMITMENT TO QUALITY 

CUSTOMER SERVICE. 

WE WORK HARD TO RESEARCH AND 

DEVELOP GPS TECHNOLOGY WHICH 

WILL GIVE OUR CUSTOMERS THE 

COMPETITIVE ADVANTAGE IN 

BUSINESS. WHATEVER YOUR 

APPLICATION, YOU CAN COUNT ON 

NOVATEL’S WIDE RANGE OF 

PRODUCTS AND TECHNICAL 

SUPPORT TO BE YOUR SOURCE FOR 

ADVANCED GPS SOLUTIONS. 

To address your integration requirements, 
RT-2’s multiple hardware configurations provide 

Applications 

• Mining and Machine control 
• Survey/GIS 
• Robotics 
• Flight inspection 
• Agriculture 
• Marine/Dredging 
• High precision OEM 

you with the flexibility you need. Available 
modules include a single card OEM platform for 
embedded PowerPak™-II 
ProPak®-II enclosures for standalone applications. 

Advantages 

• 24 channel “all in view” parallel tracking 
• L1-C/A code and L2-P code measurements 
• L1 and L2 full wave carrier measurements 
• Narrow Correlator® technology 
• P-code tracking through Antispoofing (AS) 
• 2 cm RTK accuracy 
• High data output rates 
• Low data latency 
• Accurate and robust L1/L2 RTK with OTF 
• Modest differential data link requirements 
• RTCM message types 18, 19, 20 and 21 
• Ionospherically corrected positions 
• High dynamics 
• Ease of use 
• OEM or standalone configurations 
• Flexible integration 
• Upgradable 

and systems, or 



RT-2 


NovAtel Inc. 

1120 68th Avenue N.E. 

Calgary, Alberta, Canada 

T2E 8S5 

1-800-280-2242

in U.S. & Canada or


(403) 295-4900


Fax: (403) 295-4901


Internet: http://www.novatel.ca 
E-mail: gps@novatel.ca 

Features PowerPak II RT-2


• physical 
size 25.1 cm x 13.0 cm x 6.2 cm 
weight 1.3 Kg 

• temperature 
operating -40�C to +55�C 
storage -40�C to +85�C 

• humidity 95% non-condensing 
• interface 

dual RS232 300 to 115.2 Kbaud 
strobe I/0 TTL level 

• connector type 
communications 10 pin LEMO 

strobes I/O 8 pin LEMO 

antenna TNC female 
power 4 pin LEMO 

• input voltage 10-36 VDC 
• power consumption 12 watts 
• accessories included 

RS232 null modem and straight cable 
strobe I/O cable 
automotive power cable 

• optional accessories 
110/220 Volt AC adapter 

For detailed product technical 
specifications, please call NovAtel’s GPS 
Hotline (403) 295-4900. 

1. Specifications are subject to change without notice. 
Performance specifications are subject to GPS system 
characteristics & U.S. DOD operational degradation. 

2. Accuracy is dependent upon ionospheric and tropospheric 
conditions, satellite geometry, baseline length and 
multipath effects. 

3. See Typical Performance charts above. 
4. Export licensing restricts operation to 60,000 feet maximum 

and 1,000 nautical miles/hour maximum. 

Windows® is a registered trademark of Microsoft Corporation. 

Printed in Canada 

• 2 cm real-time kinematic (RTK) accuracy 
with “on the fly” (OTF) initialization 

• L1-C/A code and carrier tracking 
• L2-P card and full wavelength carrier 

tracking 
• 24 channel “all in view” parallel tracking 
• fast reacquisition 
• patented Narrow Correlator technology 
• 5 or 10 MHz external oscillator input 
• 4 Hz position output rate 
• 4 Hz raw data output rate 
• 1 PPS output 
• event marker 
• RTCM SC104 v 2.1/2.2 
• RTCA SC159 
• RINEX v 2.0 
• NMEA 0183 v 2.0 
• GPSolution™ - Windows® compatible GUI 

Specifications1 

• position accuracy2 

stand alone 
SA off 15 m CEP 
SA on 40 m CEP 

differential 
code (L1, C/A) 0.75 m CEP 
RT-23 0.02 m CEP 

• time to first fix 
cold start 70 s (typical) 

• reacquisition 
warm start 3 s L1, 10 s L2 (typical) 

• data rates 
measurements 4 Hz 
position 4 Hz 

• time accuracy 
SA off 50 ns RMS 
SA on 250 ns RMS 

• velocity accuracy 
stand alone 0.20 m/s RMS 
differential 0.03 m/s RMS 

• measurement precision 
C/A code 10 cm RMS 
L2 P code 40 cm RMS 
L1 carrier phase 

single channel 3 mm RMS 
differential channel 0.75 mm RMS 

L2 carrier phase 
single channel 5 mm RMS 
differential channel 4 mm RMS 

• dynamics 
acceleration 6 g 
velocity4 515 m/s 

OEMCard RT-2 
• physical (Eurocard) 

size 17.7 cm x 10.0 cm x 1.7 cm 
weight 175 g 

• temperature 
operating -40�C to +85�C 
storage -45�C to +95�C 

• humidity 95% non-condensing 
• interface 

dual RS232 300 to 115.2 Kbaud 
strobe I/0 TTL level 
external clock 5 or 10 MHz 

• connector type 
edge 64 pin 0.1 " DIN 41612 type B 
antenna SMB male 
external clock SMB male 

• input voltage +5 VDC 
• power consumption 8 watts 

• physical 
size 21.0 cm x 11.1 cm x 4.7 cm 
weight 980 g 

• temperature 
operating -40�C to +60�C 
storage -40�C to +85�C 

• humidity 95% non-condensing 
• interface 

dual RS232 300 to 115.2 Kbaud 
strobe I/0 TTL level 
external clock 5 or 10 MHz 

• connector type 
communications DE9P 
strobes I/O DE9S 
antenna TNC female 
power 2.1 mm threaded plug 
external clock SMB male 

• input voltage 10-36 VDC 
• power consumption 11 watts 
• accessories include 

RS232 “Y” type null modem cable 
automotive power cable 

• optional accessories 
110/220 Volt AC adapter 

ProPak II RT-2 

Typical Performance 
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NovAtel’s family of GPS products includes the Performance Series – a 

range of advanced technology, high performance L1 GPSCards. These 

12 channel “all in view” receivers feature NovAtel’s patented Narrow 

Correlator® technology which provide sub-meter differential accuracy 

in real-time. High data output rates, fast signal reacquisition, and 

superior multipath mitigation techniques are designed to support even 

the most demanding GPS applications. Performance Series products 

are available in Eurocard, PC-Card and standalone configurations to 

provide flexible integration options. 

P
erform

ance Series 

Performance 
Series 

NovAtel’s PC Performance 3900 Series 
features a 2/3 length personal computer card designed 
for installation in PC compatible computers. This 
series offers a choice of two full DGPS Card models 
– the 12 channel 3911R, providing core functionality 
common to all GPSCard™ models, and the full data 
model 3951R. 

NovAtel’s OEM Performance 3100 Series 
features a Eurocard form-factor designed for 
standalone and embedded applications. This series 
offers a selection of GPSCard models ranging from 
the 12 channel 3111R, providing core functionality, 
to the advanced full data model 3151R. All OEM 
Performance Series receivers are DGPS capable and 

AT NOVATEL, OUR STRENGTH IN 

DEVELOPING PERFORMANCE GPS 

PRODUCTS IS MATCHED BY OUR 

COMMITMENT TO QUALITY 

CUSTOMER SERVICE. 

WE WORK HARD TO RESEARCH AND 

DEVELOP GPS TECHNOLOGY WHICH 

WILL GIVE OUR CUSTOMERS THE 

COMPETITIVE ADVANTAGE IN 

BUSINESS. WHATEVER YOUR 

APPLICATION, YOU CAN COUNT ON 

NOVATEL’S WIDE RANGE OF 

PRODUCTS AND TECHNICAL 

SUPPORT TO BE YOUR SOURCE FOR 

ADVANCED GPS SOLUTIONS. 

are rated for use at –40ºC to +85ºC temperatures. 
Available software option is NovAtel’s 

Applications 

• DGPS Reference Station 
• RT-20™ Reference Station 
• Flight inspection 
• Photogrammetry 
• Survey/GIS 

Multipath Elimination Technology (MET®) which 
reduces pseudorange multipath error by a further 
25% to 50% over NovAtel’s existing multipath 
resistant Narrow Correlator. 

NovAtel’s PowerPak™ Performance 3100 
Series provides GPS integrators with an effective, 
self-contained system. Each PowerPak includes an 
OEM Performance Series GPSCard and a power 
supply. 

NovAtel ProPak® Performance 3100 Series 
provides a rugged water, shock and vibration 
resistant housing for outdoor applications which 
provides all the same functionality of PowerPak. 

Advantages 

Marine navigation 
High dynamics OEM 

• 12 channel “all in view” parallel tracking 
• L1-C/A code and carrier measurements 
• Narrow Correlator technology 
• Multipath Elimination Technology (MET) 
• Sub-meter real-time DGPS accuracy 
• High data output rates 
• Low data latency 
• High dynamics 
• Ease of use 
• OEM, PC-Card, or standalone configurations 
• Flexible integration 
• Upgradable 

a as 

• 
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Performance 
Series 

NovAtel Inc. 

1120 68th Avenue N.E. 

Calgary, Alberta, Canada 

T2E 8S5 

1-800-280-2242 
in U.S. & Canada or 

(403) 295-4900 

Fax: (403) 295-4901 

Internet: http://www.novatel.ca 
E-mail: gps@novatel.ca 

• physical 
size 24.5 cm x 13.0 cm x 6.2 cm 
weight 1.2 Kg 

• temperature 
operating -40�C to +65�C 
storage -40�C to +85�C 

• humidity 95% non-condensing 
• interface 

communications RS232 
baud rate 300 to 115.2 Kbaud 
strobe I/0 TTL level 

• connector type 
communications 2 x 10 pin LEMO 

strobes I/O 8 pin LEMO 

antenna TNC female 
power 4 pin LEMO 

• input voltage range 10-36 VDC 
• power consumption 8 watts 
• accessories include 

RS232 null modem and straight cable 
strobe I/O cable 
automotive power cable 

• optional accessories 
110/220 Volt AC adapter 

Features 

For detailed product technical 
specifications, please call NovAtel’s GPS 
Hotline (403) 295-4900. 
1. Specifications are subject to change without notice. 

Performance specifications are subject to GPS system 
characteristics & U.S. DOD operational degradation. 

2. Accuracy is dependent upon ionospheric and tropospheric 
conditions, satellite geometry, baseline length and 
multipath effects. 

3. Export licensing restricts operation to 60,000 feet maximum 
and 1,000 nautical miles/hour maximum. 

Windows® is a registered trademark of Microsoft Corporation. 
Printed in Canada 

• 1 meter real-time differential accuracy 
• L1-C/A code and carrier tracking 
• 12 channel “all in view” parallel tracking 
• fast reacquisition 
• patented Narrow Correlator technology 
• optional Multipath Elimination Technology 

(MET) 
• 10 Hz position output rate 
• 20 Hz raw data output rate 
• 1 PPS output 
• event marker 
• RTCM SC104 v 2.1/2.2 
• RTCA SC159 
• RINEX v 2.0 
• NMEA 0183 v 2.0 
• GPSolution™ - Windows® compatible GUI 

Specifications1 

• position accuracy2 

stand alone 
SA off 15 m CEP 
SA on 40 m CEP 

differential 0.75 m CEP 
• time to first fix 

cold start 70 s (typical) 
• reacquisition 

warm start 3 s (typical) 
• data rates 

raw measurements 20 Hz 
computed position 10 Hz 

• time accuracy 
SA off 50 ns RMS 
SA on 250 ns RMS 

• velocity accuracy 
stand alone 0.20 m/s RMS 
differential 0.03 m/s RMS 

• measurement precision 
C/A code phase 10 cm RMS 
Carrier phase 

single channel 3 mm RMS 
differential channel 0.75 mm RMS 

• dynamics (OEM Card Series only) 
acceleration 4 g 
velocity3 515 m/s 

PC Card 3900 Series 
• physical 

size 21.6 cm x 10.7 cm x 1.9 cm 
weight 220 g 

• temperature 
operating 0�C to +70�C 
storage -40�C to +85�C 

• interface 
PC ISA bus 8 bit/8 MHz 
dual RS232 ports 

connectors DB-9 male 
baud rates 300 to 115.2 Kbaud 

TTL Strobes I/O DB-9 female 
RF input SMA female 

• power consumption 6 watts 

OEM Card 3100 Series 
• physical (Eurocard) 

size 16.7 cm x 10.0 cm x 1.5 cm 
weight 175 g 

• temperature 
operating -40�C to +85�C 
storage -40�C to +85�C 

• humidity 95% non-condensing 

• interface 
types RS232/RS422/NMEA 
baud rates 300 to 115.2 Kbaud 
strobe I/0 TTL level 

• connector type 
edge 64 pin 0.1 “ DIN 41612 type B 
antenna SMB male 

• input voltage range 5 VDC, ± 12 VDC 
• power consumption 5 watts 

PowerPak 3100 Series 
• physical 

size 20.8 cm x 11.1 cm x 4.7 cm 
weight 1 Kg 

• temperature 
operating -40�C to +65�C 
storage -40�C to +85�C 

• humidity 95% non-condensing 
• interface 

communications RS232/RS422/NMEA 
baud rate 300 to 115.2 Kbaud 
strobe I/0 TTL level 

• connector type 
communications 2 x DB9P 
strobes I/O DB9S 
antenna TNC female 
power 2.1 mm threaded plug (center +) 

• input voltage range 10-36 VDC 
• power consumption 8 watts 
• accessories include 

RS232 “Y” type null modem cable 
automotive power cable 

• optional accessories 
110/220 Volt AC adapter 

ProPak 3100 Series 
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E.2 Public Road Test Routes 
Table E-7 and Table E-8 describe the public road routes used to compare the objective test 
procedures with performance during typical driving. This supports Section 7.4.4. in Chapter 7. 
The tables include the miles traveled for each segment. The road type is designated as follows: 

RI ¬ Rural Interstate 
RA ¬ Rural Arterial 
RL ¬ Rural Local 
UI ¬ Urban Interstate 
UA ¬ Urban Arterial 
UL ¬ Urban Local 

Table E-7 Nighttime Route for Public Road Validation of Test Methodology 

Road Type (and miles) 
NIGHT ROUTE RI RA RL UI UA UL 

Start at end of ramp from M-5 south onto I-96 west 

I 96 west to Milford Road North 8.75 

Milford Road N. to GM Road East 4.2 

GM Road East to South Hill South 

(missed South Hill at first ¬ made U-turn) 

.48 

South Hill South to Buno East 2.23 

Buno E. to Old Plank North .78 

Old Plank North to Oakland West 2.0 

Oakland West to River North .5 

River North to Atlantic East .3 

Atlantic East to Wixom Road South .7 

Wixom Road South to Grand River East 7.8 

Grand River East to Shiawassee East 7.5 

Shiawasee East to Farmington Road North .7 

Farmington Road North to Ten Mile East .35 

Ten Mile East to Power South .35 

Power South to Grand River West (dogleg at Shiawassee) .9 

Grand River West to Farmington Road South .52 

Farmington Road South to Nine Mile East .52 

Folsom East (past Orchard Lake) to Base Line (Folsom turns 
south to become Randall) 

1.79 

Base Line East to Middlebelt Road North .78 

Middlebelt Road North to Eleven Mile East 2.93 

Eleven Mile East o Franklin Road South 2.3 

Franklin Road South to Swanson East .2 

Swanson East to Telegraph North .1 

t
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Road Type (and miles) 
NIGHT ROUTE RI RA RL UI UA UL 

Telegraph North to 696 West .35 

I-696 West to Connector M-5 exit (12 mile road) 6.7 

End at end of ramp from M-5 to 12 mile road 

Total mileage for each road type: 8.75 12.0 6.99 6.7 14.2 5.13 

Total Miles Night Drive: 53.7 

Table E-8 Daytime Route for Public Road Validation of Test Methodology 

Road Type 
DAY ROUTE RI RA RL UI UA UL 

Start at end of ramp from M-5 south onto I-96 west 

I 96 West to Kensington Road North 11.9 

Kensington Road North to Pleasant Valley North (we took 
a wrong turn at Muir; U-turn back to Kensington Road) 

2.2 

Pleasant Valley North to M-59 West 5.5 

M-59 West to Argentine Road South 5.7 

Argentine Road South to Golf Club West 2.0 

Golf Club West to Hughes South .9 

Hughes South to Grand River East 2.3 

Grand River East to Hubert Road South 1.0 

Hubert Road South to Crooked Lake East (Herb Str.) .7 

Crooked Lake East (Herb Str.) to Grand River East 1.0 

Grand River East to I 96 East .6 

I 96 East to Hwy 23 South 2.3 

Hwy 23 South to Silver Lake Road East 2.4 

Silver Road South to Marshall Road South 1.25 

Marshall Road S. (becomes Spencer) to N. Territorial East 5.8 

N. Territorial East to Beck North 10.3 

Beck North to Eight Mile West 2.9 

Eight Mile West to Napier North 1.9 

Napier North to Nine Mile West .9 

Nine Mile West to Griswold North 3.75 

Griswold North to Ten Mile West .9 

Ten Mile West to Martindale North (short dogleg) .3 

Martindale North to Grand River East 3.6 

Grand River East to Telegraph Road South 18.4 

Telegraph Road South to Michigan Avenue East 7.8 

Michigan Avenue East to Woodward South 11.0 
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Road Type 
DAY ROUTE RI RA RL UI UA UL 

Woodward South to Jefferson South (Rt. Turn) .22 

Jefferson Ave. becomes Lodge (10) North; Lodge North to 
Clairmont Exit 

5.0 

Hamilton North to Calvert West .9 

Calvert West to Byron North .3 

Byron North (doglag to Lincoln) to Sturtevant East .7 

Sturtevant East to Hamilton North .08 

Hamilton N. to Seven Mile Road West 2.88 

Seven Mile Road West to Strathcona Northeast .6 

Strathcona Northeast to Woodward South 3.1 

Woodward South to W. Grand Blvd. East (MI turn) 5.25 

W. Grand Blvd East to John R. South .1 

John R. South to Warren Avenue West 1.0 

Warren Avenue West to Trumbull South .9 

Trumbull South to Alexandrine Southwest .4 

Alexandrine to Grand River West (Mulberry Selden) .17 

Grand River West to 14th  Street Southeast .35 

14th Street Southeast to M. L. King Blvd. SW (?) .52 

M. L. King Blvd. SW to I 96 West .44 

I 96 West to I 94 East 1.05 

I 94 East to Van Dyke North 4.64 

Van Dyke North to Miller West .31 

Miller West  to Mt. Elliot Avenue North 

(Mt. Elliott turns into Mound) 

.70 

Mound North to I 696 West 6.86 

I 696 o Woodward/Main 4.5 

Main North to Vinsetta Southeast 2.4 

Vinsetta Southeast to Catalpa 

(cross Crooks, 12 Mile, & 2 Mich. Turns on Woodward) 

1.5 

Catalpa East to Washington South .9 

Washington South to Eleven Mile West .5 

Eleven Mile West to Woodward South .5 

Woodward South to I 696 West 1.2 

I 696 West to Connector 5 exit (Twelve Mile & Haggerty) 14.2 

Twelve Mile East to Haggerty .4 

End at intersection of 12 Mile and Haggerty 

Total mileage each road type: 16.6 31.3 22.1 29.4 52.9 17.6 

Total miles daytime drive: 170 

West t
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E.3	 Analysis of Uncertainty in Determining FCW 
Compliance with a Closing Speed-dependent 
Minimum Warning Range Requirement 

E.3.1 Introduction 

The following analysis was used to help select instrumentation for vehicle testing that 
was done to support the validation of the objective test methodology. For the alert onset 
timing requirements assumed at the time of testing, the analysis verified that the selected 
instrumentation would provide the ability to distinguish whether or not a FCW system 
issued an alert too soon or too late. 

Chapter 7 (Section 7.2.2) specifies the following 3-sigma error on the ability to compare the 
FCW«s warning range with the requirement on the warning range: 

Measure error between minimum allowed range of alert onset, and actual 
range at alert onset, to 5% of the min alert range, or 2.0m, whichever is 
larger. 

The analysis in this section considers the possible error sources, assumes random process models 
for the sources, and estimates the resulting uncertainty in determining an FCW alert«s timeliness. 
This analysis assumed that the requirement on minimum warning range depended only on the 
closing speed ¬ the difference in speeds as a following vehicle approaches a slower-moving lead 
vehicle. Therefore, to select instrumentation for the test procedures recommended in this 
final report, the analysis in this section would need to be updated, using the new statements 
about required alert onset timing (Chapter 4, Section 4.2). This revised analysis would be 
similar to that reported here, but with a different expression used for the minimum required 
warning range. 

E.3.2 The Performance Metric and its Error Sources 

Let R denote the true range at onset of alert, and let Rwarn  denote the minimum required range for 

an alert, which depends on difference between the two vehicles« speeds: DV = V -V . Thenpov sv

metrics of the FCW unit«s compliance with the Task 3 minimum warning range requirements are 
based on the difference, e R  , between the actual range and the minimum required range : 

e R = R - Rwarn  . 

where Rwarn is the minimum required range for an alert, from Task 3, using constants a and RT: 

2DV
Rwarn = -DV ∂ RT -

2a 
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where Task 3 specifies the parameters as: 

( RT ,a ) = 
À
Ã
(1.5sec, - 0.5g), imminent crash alert 

Õ(2.5sec, - 0.3g), cautionary crash alert

Consider errors in the computation of the metric e R
variables: 

that result from errors in measuring four 

R true range; 

DV the range rate between the two vehicles, as defined above, 

#R# the relative acceleration of the POV away from the SV, 

TA the delay between the presentation of the alert to the driver and the moment at 
which the alert is logged into the data acquisition system. 

Assume that the errors in measuring these variables are each zero-mean, independent errors with 
variances denoted by, for instance, s2 ( DV )  for the variable DV . Then the three-sigma error in 

the computed value of the metric, denoted ·e R , is a function of these three errors, as follows: 
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·where 3s( e R ) is required by Section E.3.1 to be no greater than 5% of the warning range, or 
2.0m, whichever is greater. 

E.3.3 The Metric e R  as a Function of the Four Variables 

The metric is the difference between the range at the alert time, and the minimum range required 
at onset of the alert. Errors in the computed metric, ·e R , come from two sources. First, 
measurements of range and range rate include measurement errors. Second, in general, the alert 
will not occur at the same instant that measurements of the subject vehicle«s motion are 
collected. Thus, to compute the required minimum range at the instant of the alert, vehicle speed 
and range at the alert time must be estimated by propagating motion over a short time interval. 
The time of the alert, however, is not known exactly, and so the metric is in error. An expression 
for the metric that includes these two error sources is now developed. 

Figure E-1 shows a timeline of events near the instant of an alert. Times tA  and t  are the 
instants at which, respectively, the alert occurs and the vehicle motion measurements are 
collected. Vehicle motion measurements are range, R( t ) , range rate DV( t ) , and relative 

#acceleration between the vehicles, R#( t ) . The exact moment of the FCW alert is not known ¬ it is 
assumed to be at time t -TA  , but there is an uncertainty of d(TA ) . This uncertainty is quite 
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small ¬ perhaps 10 to 100 milliseconds ¬ and is due to delays and finite sampling times both 
inside and outside the FCW unit under test. 

The actual metric of the warning range performance is eR  evaluated at time tA , or eR( tA ) . 
Since time tA  is not known, the estimate of this metric, ·eR , is computed by assuming that the 
alert occurs at time t -TA  : 

·eR = eR( t -TA )  . 

Then 

·eR = R( t -TA ) - Rwarn( t -TA ) 

Assume that the actual relative acceleration between the two vehicles is constant during the 
interval under consideration. Then vehicle motion variables at the expected time of the alert are: 

##R( t -TA ) = R( t ) - DV( t ) ∂TA - R( t ) ∂ 
1 

TA 
2 

2 

##DV( t -TA ) = DV( t ) - R( t ) ∂TA  . 

The estimate of the metric is then: 

2 
## ## ##·eR = R( t ) - DV( t ) ∂TA - R( t ) ∂ 

TA + (DV( t ) - R( t ) ∂TA )∂ RT + 
1 (DV( t ) - R( t ) ∂TA )22 2a 

time 

Alert actually occurs here. 

Computation of metric assumes 
alert occurs here. 

Vehicle motion measurements 
acquired here. 

d(TA) 

tA t 

TA 

Figure E-1 Timeline of Events Near a Crash Alert 
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E.3.4 Partial Derivatives of the Metric 

The partial derivatives of the computed metric ·e R , taken with respect to the four variables, are 
shown in Table E-9. 

Table E-9	 Partial Derivatives of The Warning 
Range Performance Metric 
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Thus the error in evaluating the FCW«s warning range performance, relative to the minimum 
alert range, depends on the following variables: the warning algorithm parameters, the relative 
speed and relative acceleration between the two vehicles, and the delay between the alert and the 
acquisition of data. It is independent of the true range itself. Because this error depends on these 
quantities, it will be necessary to verify that the requirement on the accuracy of the metric is met 
throughout the space of these variables. 

E.3.5 Uncertainties in the Four Variables 

Consider uncertainties in knowledge of the four variables, as shown in the table below. These 
values reflect the use of DGPS units on each vehicle (NovAtel Millenium RT-2). The range and 
range rate specifications for this unit are, respectively, 0.06m and 0.09m/sec 3-sigma. An easily 
obtainable spec for longitudinal accelerations is 0.10m/sec2, or 0.01G. The time of the alert is 
given by the FCW units under test ¬ a likely delay is 0.10 sec with an uncertainty of between 10 
and 50 msec, based on discussions with the vendors. These numbers are shown in Table E-10 
below. 
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Table E-10	 Uncertainties in the Four Measured 
Variables 

Variable Uncertainty (3sigma) 

R 0.06m 
VD 0.09m/s 

R## 0.1m/s/s 

AT 0.050 sec 

E.3.6 Computing Uncertainty in the Error Metric 

The 3-sigma uncertainty in the computed metric ·e R is computed for nine crash scenario 
situations, using measurement uncertainties (Table E-10).  Nine situations are used to verify that 
the uncertainty in the metric satisfies the requirement given in Chapter 7 (and at the top of this 
section) across all possible combinations of range rate, relative acceleration, and delay between 
alert and data logging, as stated earlier. Eight of the nine situations are the 23 = 8 possible 
combinations of the minimum and maximum values likely to occur for each of the three 
variables. The ninth provides additional insight. 

Consider first the cautionary crash alert. Table E-11shows results of computing the minimum 
required warning range and the 3-sigma error for the performance metric for nine different crash 
scenarios, using the uncertainties from Table E-10. The shaded rows show those cases for 
which the 3 sigma error is larger than 5% of the minimum required range. Note that all of these 
shaded rows have less than 2.0m of error, so that with these uncertainties, the requirement on the 
performance metric can be satisfied. 

Table E-12 shows results of similar computations, except with the imminent crash alert 
parameter settings used. Again, the shaded rows indicate crash scenarios in which the 3-sigma 
error in the warning range metric exceeds 5% of the minimum required warning range. Because 
none of these values are greater than 2.0m, the requirement on the performance metric is 
satisfied. 
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Table E-11	 Error in the Warning Range Performance Metric for Nine Crash Scenario 
Conditions 

Independent 3 sigma errors assumed

R = 0.06*sqrt(2) m


DV = 0.09*sqrt(2) m/sec

#R#  = 0.10 m/sec2 

TA  = 0.050 sec 

Cautionary crash alert assumed 

State Warning Range (m) 3sigma of metric 
(m) 

Ratio 
3sig /Warn Range 

VD = -5 m/sec 
R##  = 0 m/sec2 

AT  = 0.10 sec 

16.8 0.61 3.64% 

VD = -27 m/sec 
R##  = 0 m/sec2 

AT  = 0.10 sec 

100 2.02 2.02% 

VD = -27 m/sec 
R##  = -3 m/sec 2 

AT  = 0.10 sec 

100 3.44 3.44% 

VD = -5 m/sec 
R##  = -3 m/sec 2 

AT  = 0.10 sec 

16.8 1.03 6.17% 

VD = -5 m/sec 
R##  = 0 m/sec2 

AT  = 0.25 sec 

16.8 0.63 3.79% 

VD = -27 m/sec 
R##  = 0 m/sec2 

AT  = 0.25 sec 

100 2.06 2.06% 

VD = -27 m/sec 
R##  = -3 m/sec 2 

AT  = 0.25 sec 

100 3.45 3.45% 

VD = -5 m/sec 
R##  = -3 m/sec 2 

AT  = 0.25 sec 

16.8 1.04 6.19% 

VD = -15 m/sec 
R##  = -3 m/sec 2 

AT  = 0.25 sec 

75.8 2.13 2.81% 

VD = -5 m/sec 
R##  = 0 m/sec2 

AT  = 0.0 sec 

16.8 0.60 3.56% 
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Table E-12 Error in the Warning Range Performance Metric for Nine Crash Scenario Conditions 
Independent 3 sigma errors assumed 

R = 0.06 *sqrt(2) m 
DV = 0.09 *sqrt(2) m/sec 

#R#  = 0.10 m/sec2 

TA  = 0.050 sec 

Imminent crash alert assumed 

State Warning Range (m) 3sigma of metric (m) Ratio 
3sig /Warn Range 

VD = -5 m/sec 
R##  = 0 m/sec2 

AT  = 0.10 sec 

10.1 0.43 4.24% 

VD = -27 m/sec 
R##  = 0 m/sec2 

AT  = 0.10 sec 

100 1.63 1.63% 

VD = -27 m/sec 
R##  = -3 m/sec 2 

AT  = 0.10 sec 

100 2.57 2.57% 

VD = -5 m/sec 
R##  = -3 m/sec 2 

AT  = 0.10 sec 

10.1 0.72 7.15% 

VD = -5 m/sec 
R##  = 0 m/sec2 

AT  = 0.25 sec 

10.1 0.45 4.43% 

VD = -27 m/sec 
R##  = 0 m/sec2 

AT  = 0.25 sec 

100 1.65 1.65% 

VD = -27 m/sec 
R##  = -3 m/sec 2 

AT  = 0.25 sec 

100 2.59 2.59% 

VD = -5 m/sec 
R##  = -3 m/sec 2 

AT  = 0.25 sec 

10.1 0.73 7.28% 

VD = -15 m/sec 
R##  = -3 m/sec 2 

AT  = 0.25 sec 

45.5 1.57 3.46% 
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E.4 Minimum Required Sampling Rate for Onboard 
Data Acquisition System 

This section describes the selection of the 20 Hz sampling rate for the data acquisitions systems 
onboard the SV and the POVs in the FCW evaluation tests. Table E-13 summarizes the data rate 
requirements for each measurement, along with the test scenario that drives each requirement 
and a brief summary of the rationale for the requirement. More details leading to the selection of 
each type of data rate follows the table. 

The highest minimum required rate for onboard data acquisition by the instruments used to 
evaluate the FCW is 20 Hz. This requirement is driven by crash scenario tests in which one or 
more vehicles performs a lateral maneuver ¬ the most severe of which is an 0.3g lane change. 
Since the onboard data acquisition system is to be as simple as possible, a 20 Hz rate will be 
used. 

E.4.1 Longitudinal Position of SV, POVs, and Clutter 

Two data rate requirements are computed here. A rate of 10 Hz is chosen. 

First, consider a data acquisition rate that is driven by the highest possible bandwidth of 
longitudinal maneuvers. Range changes only through the low-frequency dynamics of the 
vehicles« longitudinal braking and/or accelerations. Assume the highest significant frequency in 
the dynamics from brake pedals to relative displacements is caused by the braking hydraulic 
system, which is modeled here as a first order system with a 0.150 sec time constant. Then 
choose a data rate of 5 samples per time constant, for a data rate of 33 Hz. 

Second, assume that the test instructions include only step changes in brake pedal application, 
and assume that the range measurements of greatest interest are not within a second of a brake 
pedal application by either vehicle. Then accelerations will remain largely constant, and even 
with a relative acceleration of 0.5g, a 10 Hz rate would introduce an error in linear interpolation 
of measurements of Ù x 0.5*9.80m/s/s * (0.10s/2)2 = 0.012m. Thus 10 Hz is quite sufficient 
under these assumptions. 

E.4.2 Longitudinal Speed of SV and POVs 

10 Hz. See discussion for item above. 

E.4.3 Longitudinal Acceleration of SV and POVs 

See discussion for item above. 
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E.4.4 Lateral Position of Clutter, Stationary POVs and Road 

Survey locations once per setup of test site or ƒscene.≈ 

Table E-13 Minimum Required Data Acquisition Rates 

Measurement 
Minimum 
Data Rate 
Required 

Test That Drives 
Data Rate 

Data Rate Computed 
Based On: 

Longitudinal position of 
SV,POVs, and clutter 

10 Hz Crash scenario tests 
(perhaps with braking 
by POV). 

Assume constant relative 
acceleration (assume 
range not required during 
first 0.5sec of brake 
application). 
10Hz gives 0.012m error 
in interpolating data for a 
0.5g relative acceleration. 

Longitudinal speed of SV 
and POVs 

10 Hz Crash scenario tests 
(perhaps with braking 
by POV). 

Same as above 

Longitudinal acceleration 
of SV and POVs 

10 Hz Crash scenario tests 
with braking by POV. 

Same as above 

Lateral position of clutter, 
stationary POVs and road 

Once per 
setup of test 
site or ƒscene≈ 

Lateral position of SV 
and moving POVs 

4 Hz Crash scenario tests 
with lateral manuevers 

Available and affordable 
GPS units 

Yaw rate of SV and POV 20 Hz Crash scenario tests 
with lateral maneuvers 

Atmospheric visibility Once per test 
trial when 
testing poor 
visibility 
performance. 

Poor visibility test 

SV brake pedal actuation 
time 

10 Hz Crash scenario tests: 
Need to know SV 
driver did not brake 
before alerts sounded. 

Need for a finer 
resolution considered 
unlikely 

Roadway horizontal 
curvature (direction 
change) 

Once per test 
site 

Roadway elevation 
change (for 
superelevation and 
vertical curvature) 

Once per test 
site 
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E.4.5 Lateral Position of SV and Moving POVs 

The required data acquisition rate for locating the SV laterally, as well as locating any moving 
POV laterally, is driven by lateral maneuvers during crash scenario tests. Assume that the 
dynamics of the steering wheel-to-lateral displacement and steering wheel-to-heading angle 
system has a 2 Hz bandwidth. Then the required data rate is estimated as ten times that 
bandwidth, or 20 Hz. The 20 Hz value is the highest required rate of all the measurements, and 
as such, it will drive data acquisition system definition. 

The lateral position will be measured onboard each vehicle using onboard differential GPS units. 
The unit selected provides only a 4 Hz value, so a yaw rate sensor and accelerometers will be 
used to interpolate between the GPS data. The data rate for these must be 20 Hz to adequately 
capture the handling dynamics. 

E.4.6 Yaw Rate of SV and POV 

20 Hz. See discussion for item above. 

E.4.7 Visibility 

Atmospheric visibility measurements will be done once per trial of the poor visibility tests. This 
will capture the instantaneous visibility. 

E.4.8 SV Brake Pedal Actuation Time 

A 10 Hz rate will be sufficient to determine whether the SV driver brakes before the test is 
complete. 

E.4.9 Roadway Horizontal Curvature (Direction Change) 

Road geometry will be surveyed once per test site. 

E.4.10	 Roadway Elevation Change (For Super-Elevation And Vertical 
Curvature) 

Road geometry will be surveyed once per test site. 
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