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A crash avoidance database structure that is based on driver judgments is proposed. The structure 
comprises four driving conflict states (low risk, conflict, near crash, and crash) that correspond with 
advisory warning, crash-imminent warning, and crash mitigation countermeasures. The feasibility of 
this database structure is investigated by answering two questions: (a) Can the driving states be 
reliably quantified? and (b) Can the quantified states be used to create a useful crash avoidance 
database? The feasibility discussion centers on a specific dynamic scenario that involved braking 
maneuvers by a following vehicle to avoid a rear-end crash with a stopped lead vehicle. The 
quantification of driver judgment data from a controlled test track study is discussed as a foundation 
to identify rough quantitative locations for the conflict and near-crash state transitions, and crash 
data from a driving simulator experiment are used to estimate the crash state boundary. A database 
of on-road, naturalistic driving data is compared with the controlled experiments to evaluate the 
results. The method is found to be feasible, and recommendations for further development are 
presented. 
____________________________________________________________________________________________________________ 

NHTSA has sponsored a number of crash avoidance research projects since the early 1990s under the 
Intelligent Transportation Systems Program and is currently engaged in developing a variety of crash 
countermeasures in support of the Intelligent Vehicle Initiative (1). This paper describes a database 
structure to support this research based on alert and aware driver judgments of the driving state. The power 
of this structure rests in its ability to portray driver expectations and performance, against which proposed 
crash countermeasures can be evaluated, insights can be developed for new countermeasures, data gaps can 
be easily identified, and guidance for experimental design in any media can be found so that all results fit 
together. 

The feasibility of this database structure was investigated using existing databases on the driving 
problem of approaching a lead vehicle stopped in the lane ahead. While this scenario is only one of the 15 
or so that dominate the national crash problem, it is, nevertheless, a common and important one. Assessing 
the feasibility of this scenario would justify further investigations for all the scenarios, to be done at a later 
date. The feasibility of the approach was assessed through two questions: (a) Can the driving states be 
reliably quantified? and (b) Can the quantified driving states be used to create a useful crash avoidance 
database?
 
 
CRASH AVOIDANCE DATABASE STRUCTURE 
 
Figure 1 shows the database structure studied, which has four driving conflict states: low risk, conflict, near 
crash, and crash. These driving states allow us to focus analytic attention and develop suitable counter-
measures for each, and each is needed as shown by the countermeasures in Figure 1. NHTSA long ago 
recognized the need to match time-to-crash with required intensity-of-evasive action (2). For coun-
termeasures, the longest time-to-crash is in the "conflict" state, which matches the lowest intensity-of-
evasive action and suggests intervention by situational awareness or advisory systems as indicated in the  
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figure. As the time-to-crash decreases, the "near-crash" state is entered and the required intensity-of-
evasive action increases. Further decrease in time-to-crash leads to imminent crash warning, and perhaps to 
partial automatic control. For a very short time-to-crash, an imminent crash may become an unavoidable 
crash as dictated by the driver's self-selected reactions, thus entering the "crash" driving state. 

The arrows in Figure 1 represent the transitions between the various driving states. Each of these must 
be unambiguously and quantitatively defined for effective data analysis, which brings the immediate 
difficulty of establishing reliable quantitative boundaries. This is very important in order to perform the 
proper reduction of data collected during driving studies, to combine data files from different studies, and 
to establish consistency in assessing the safety impact of these systems among independent evaluations (3). 
At some point, it will be necessary to establish standardized quantifications for the driving state transitions, 
though this was determined to be beyond the scope of the present work. Instead, this study focused on 
using the existing databases to determine rough estimates for the quantified boundaries, thus showing a part 
of the feasibility. 

The method used to estimate the driving state boundaries included the following steps: 

1. Identify the precrash scenario of interest, in this case how drivers reacted to a lead vehicle 
stopped in the lane ahead. 

2. Identify one or more human factors experiments where drivers judged the kinematics to place 
the boundaries of the driving state transitions. 

3. Find a kinematic representation for these boundaries. 

Given the quantified driving state transitions, Figure 2 illustrates the process for developing a 
comprehensive crash avoidance database. This process requires five sequential steps: 

1. Collect the raw time history data. 
2. Generate smoothed data and parse them into epochs using the driving state boundaries. 
3. Identify significant epoch data. 
4. Create discrete variable data. 
5. Collect aggregated discrete data. 

 
Step 2, the generation of smoothed and parsed data from raw data, is an art form that typically requires 

an iterative process to create a data time history ready for analysis. The third step includes evaluating the 
epochs to identify those ready for inclusion in the database (some may result due to sensor errors). The 
translation of the epochs into discrete variable format creates a data set that offers powerful opportunities 
for data mining, just as is presently done on national crash databases such as the National Automotive 
Sampling System (NASS) and the Fatality Analysis Reporting System (FARS). Thus, the last data type, 
discrete data for a variety of similar epochs, can be searched and analyzed to reach conclusions about a 
population of significant epochs for either an individual driver or a group of individuals. Further, if this 
data type is constructed to match the NASS and FARS data sets, then the data in those sets are further 
enhanced with more detailed knowledge of precrash events in addition to knowledge about successful crash 
avoidance maneuvers. 

 
 

PRIOR WORK IN CONFLICT IDENTIFICATION FOUNDED ON DRIVER JUDGMENT 

In past studies, traffic and highway engineers did not make a clear distinction between a traffic conflict and 
a near-crash event in their application of traffic conflict techniques. A traffic conflict was defined as an 
event involving two or more road users in which one user performs some atypical or unusual action, such 
as a change in direction or speed, that places another user in jeopardy of a collision unless an evasive 
maneuver is taken. The quantification of conflicts or near-crashes was based on either the intensity of the 
evasive maneuver taken by the driver or some time-based measures (4). A popular time-based measure has 
been the time-to-collision (TTC) defined as "the time required for two vehicles to collide if they continue at 
their present speed and on the same path" (5). The TTC parameter assumes constant speed and does not 
account for vehicle deceleration/acceleration. The minimum TTC (TTCmin) reached during the approach of 
two vehicles on a collision course was also taken as an indicator for the severity of a near-crash event. A 



 

 

quantitative analysis of video-based traffic data concluded that TTCmin is an important variable in 
discriminating between low risk and safety-critical driving states, with a distinct detection threshold of 1.5 s 
(5). Most previous traffic conflict studies were limited to very few sites (high-conflict intersections), where 
driving conflict was judged by roadside observers. This is contrasted with the present work, where the 
levels of driving states were based on the drivers' opinions as expressed in their braking performance, albeit 
with the authors' interpretations. 

The driving state construction approach in this paper was initially guided by prior work in the area of 
lane change crash avoidance. The objective of that work was to determine how a lane change advisory 
system affected lane change opportunity selection (6). The first step in the work located the boundary 
between conflict and nonconflict driving. To do this, four research team members drove an instrumented 
vehicle and observed in the side view and center mirrors other vehicles attempting to pass in the adjacent 
lane at relative speeds between 8 km/h (5 mph) and 64 km/h (40 mph). These subjects indicated the "last 
moment at which they would change lanes" by momentarily pressing a switch. Thus, a test track human 
factors experiment was used to capture driver preferences and these were used as a basis for a successful 
lane change advisory warning. Based on the results of that work, the authors hypothesized that a similar 
boundary exists for other crash problems, such as rear-end crash, which could be established through test 
track and driving simulator experiments. 

 
 

STATE BOUNDARY ESTIMATION 
  

The four driving states defined in Figure 1 are separated by three boundaries that indicate transitions 
between the low-risk driving state and the conflict state, between the conflict state and the nearcrash state, 
and between the near-crash state and the crash state. The boundary between the near-crash state and the 
crash state should ideally be determined from crash data. Unfortunately, national crash databases such as 
the NASS General Estimates System and Crashworthiness Data System do not currently contain any 
kinematic information to enable us to quantify the crash state boundary. Instead, this paper analyzes rear-
end crash data from the Iowa Driving Simulator (IDS) to construct the crash state boundary and illustrate 
the feasibility of the approach. The other two boundaries, the conflict state and near-crash state boundaries, 
are best estimated based on test track studies. Such data can be obtained from various controlled driving 
experiments that show the judgments of drivers by when they first applied the brakes under suitable driving 
instructions. Thus, drivers indicated their sense of "conflict" through last-second comfortable brake presses, 
and they showed their sense of "near-crash" through last-second hard brake presses. 

Even though the focus of this paper is on driver initial brake presses and subsequent braking 
maneuvers as a response to a lead vehicle stopped in the lane ahead, it is true, nevertheless, that a sig-
nificant portion of drivers resort to steering maneuvers to resolve these conflicts, or enter into them. 
However, the steering response was not jointly analyzed with braking since this was deemed as an 
unnecessary complication in assessing the feasibility of this method.  

Crash State Boundary Estimation 

Figure 3 illustrates the distribution of data at the onset of braking for 10 subjects responding to a lead 
vehicle stopped in an IDS experiment (7). Points 1 to 5 refer to test subjects who crashed or steered off the 
road at the last second because they saw they were going to crash. Points 6 to 10 mark the subjects who 
successfully avoided a crash. The objective of this IDS study was to investigate how drivers react when 
purposefully distracted at the moment when a stationary vehicle is revealed in their travel lane ahead, with 
and without the assistance of rear-end collision warning systems. The IDS creates a highly realistic motion-
based ground-vehicle simulator with a fully instrumented Saturn cab that produces the motion cues 
experienced during typical driving. Figure 3 displays the results of 10 subjects, aged 18 to 24 and evenly 
split by gender, who were tested in the baseline condition (without the assistance of a rear-end crash 
warning system). After a 5-min practice drive, the subjects drove on a rural two-lane highway until they 
came upon a freeway entrance and merged onto a multilane freeway. Several kilometers later, the subjects 
came across a truck in the lane ahead. The IDS scenario then coupled the subject vehicle with the truck at a 
3.2-s headway. Once the vehicles were coupled, a digitized voice came over the vehicle's speakers and 
asked the driver to "press the button above the rearview mirror until the red light comes on." Three hundred 



 

 

milliseconds after the driver pressed the button above the rearview mirror, the truck swerved to the center 
lane and exposed a stopped passenger vehicle in the right lane. A shadowing vehicle was used to the left of 
the subject so that a safe, on-road lane change was not possible. As a result, half the subjects crashed in this 
experiment. 

Nearly all of the drivers in Figure 3 selected 0.75 g as their hardest braking level, but they all clearly 
initiated braking at differing conditions. The figure shows that those who initially braked above the crash 
boundary were able to avoid the crash. Those who initially braked below the boundary crashed, or braked 
first then steered to avoid a likely crash. The boundary of the crash state was thus estimated using these 
initial braking data, as illustrated in the figure. This boundary is roughly represented by the following 
equation: 
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where g = 9.8 m/s2. 

Based on a comparable test track study, about 55% of the test subjects did not self-select an average 
deceleration level greater than 0.65 g during emergency braking to avoid a stopped object ahead on a dry 
pavement when initially driving at 88 km/h (55 mph) (8). Thus, the above estimate for the crash boundary 
from IDS data is likely to be conservative, but may be close to a median response. 

A better estimate of the crash state boundary will be obtained as more precrash kinematic data become 
available. As mentioned earlier, available crash databases still lack the necessary kinematic details to 
reconstruct crashes that occur on U.S. roadways to the degree necessary. Current national crash databases 
only provide a qualitative description of the conflict or near-crash events that arose immediately prior to 
collision. Future crash data collection using crash recorders on-board motor vehicles in the U.S. vehicle 
fleet or from extensive naturalistic driving studies would enhance the description of precrash scenarios by 
adding quantitative kinematic information to existing qualitative data. 

Conflict and Near-Crash State Boundary Estimation 

Figure 4 plots the boundaries of the conflict and near-crash driving states, which were derived from drivers' 
last-second braking judgments to a stopped lead vehicle ahead on a test track. The GM-Ford Crash 
Avoidance Metrics Partnership (CAMP) conducted this study to develop a fundamental understanding of 
drivers' last-second braking behavior so that drivers' perceptions could be properly identified and modeled 
for forward collision warning system crash alert timing purposes (9). 
Test participants consisted of 108 subjects split evenly by gender and three different age groups. Data were 
gathered on a 1.6-km (1-mi) long, 2-lane wide (3.7 m or 12 ft each), straight, level, smooth asphalt road at a 
test track under daytime conditions on generally dry road and in dry weather. Subjects were asked to 
approach a parked vehicle at an instructed speed of 48, 72, or 97 km/h (30, 45, or 60 mph), and wait to 
brake at the last possible moment in order to avoid colliding with the parked vehicle under three different 
braking instructions: 
 

1. "Comfortable braking" instruction: brake with normal braking intensity or pressure. 
2. "Comfortable hard braking" instruction: brake with the hardest braking intensity or pressure that 

they felt to be comfortable. 
3. "Hard braking" instruction: brake with hard braking intensity or pressure. 

Drivers were discouraged from "second-guessing" and correcting their initial braking onset judgment 
by releasing brake pressure (or "double-pumping"), because the interest here is when drivers perceive the 
need to begin braking. 

The authors' analysis assumed that braking onset was the correct indicator of when subjects judge the 
start of the conflict and near-crash states respectively in the "comfortable" and "hard" braking instructions. 
CAMP defined the braking onset as the point in time when the vehicle actually began to slow as a result of 
braking, and not the brake switch trigger point, since some subjects had a tendency to momentarily ride the 



 

 

brakes during their last-second braking decision. Rough estimates of the conflict and near-crash state 
boundaries were drawn in Figure 4 by using the average values of braking onset range in each of the three 
test speeds listed. These two lines were not extended beyond the range rate value of 36 km/h (22 mph) 
since CAMP did not evaluate driver judgments at very low or very high travel speeds. 

Incorporating the conflict and near-crash state boundaries with the crash state boundary, Figure 4 
provides a rough quantitative breakdown of driving performance into the four levels defined in Figure 1. 
This result demonstrates the feasibility of assigning quantitative bounds to various driving states based on 
actual driver judgments. 
 
 
DATABASE DEVELOPMENT ANALYSIS 

Next, the reliability of this database structure and its use to develop a crash avoidance database are 
discussed using driver performance data from an on-road naturalistic driving study and an IDS-controlled 
experiment. 

Driver Performance in Low-Risk and Conflict Driving States 
 
Figure 5 shows the distribution of data at the onset of braking by a following vehicle in response to a lead 
vehicle stopped in the traffic lane, as observed in a naturalistic driving data collection study (10). NHTSA's 
Vehicle Research Test Center conducted this study to observe the behavior of following vehicles as they 
reacted to an instrumented vehicle that is either moving very slowly or is stopped. A radar set and a video 
camera were mounted on the rear of the lead vehicle, pointing straight behind to record the response of the 
following vehicle. The instrumented vehicle was driven on country and suburban roads, stopping for stop 
signs, red lights, and midblock left turns. These roads mostly consisted of two lanes, thus minimizing the 
potential for following vehicles to pass rather than to stop behind the lead vehicle. The instrumentation 
suite captured the behavior of vehicles at a frequency of 30 Hz, as they approached the lead vehicle from 
120 m (394 ft) up to the time when they came to a stop behind the lead vehicle. The onset of braking by the 
following vehicle was inferred when its deceleration exceeded 0.04 g (0.39 m/s2). In all cases shown in 
Figure 5, the lead vehicle was already stopped by the time the following vehicle saw it and began to brake. 

The raw data collected by the instrumented vehicle (first column in Figure 2) encompassed many 
events that included true and false targets. The raw data were postprocessed to reduce and filter sensor 
noise and target dropouts, resulting in a number of braking episodes (second column in Figure 2). The 
numeric data file as well as a video file were then used to characterize each braking episode. The review of 
video files revealed that some following vehicles initiated braking and later changed lanes to pass the 
stopped lead vehicle. In some instances, the following vehicle braked to make a turn or enter a parking 
space. When these epochs were eliminated as insignificant to our braking study, the search for significant 
epochs next went to the end condition (fully stopped behind the instrumented vehicle) and worked back 
through continuous deceleration to the initial condition (first brake press). This method resulted in 140 
braking episodes of interest (significant epochs as indicated by the third column in Figure 2), which are 
captured in Figure 5. 

In naturalistic and normal driving, most drivers initiate their braking action in response to a stopped 
lead car in the low-risk driving state. This is to be expected because, unlike the CAMP drivers, they are not 
operating under the last-second braking instruction. As seen in Figure 5, 56% of the cases initiated braking 
at closing speeds below 12 m/s or 43 km/h (27 mph). This high percentage at low speeds was expected 
since data collection was mostly done in the vicinity of intersections. Further, the trend of the naturalistic 
data for closing speeds less than 12 m/s agrees nicely with a simple extension of the CAMP transition for 
the low-risk/conflict boundary, thus also confirming that result. A total of 33 cases were recorded at closing 
speeds between 12 and 15 m/s, the same interval as the slowest of the CAMP initial test speeds, as 
indicated by the vertical dashed lines in the figure. Of these cases, 12% initiated braking in the conflict 
driving state, which is slightly conservative compared to CAMP, but generally confirmatory. Similarly, 
10% of the 29 cases observed at closing speeds greater than 15 m/s started braking in the conflict driving 
state. 

Figure 6 plots the data time history ("trajectory") of a selected number of cases that had brake initiation 
at closing range rates between 12 and 15 m/s. Any trajectory that does not cross the low-risk/conflict state 



 

 

boundary would be discarded as a low-risk epoch, but none of these are shown here. It is observed that 
most kinematic trajectories transitioned from the low-risk state to the conflict state, and asymptotically 
approached a simple extension of the near-crash boundary, without any apparent crossing of that boundary. 
Thus Figures 5 and 6 show naturalistic data that conform to our rough quantifications of the conflict and 
near-crash state boundaries based on CAMP braking. 

Driver Performance in Near-Crash and Crash Driving States 

Figure 7 shows the use of the crash boundary definition to extract pieces of the trajectories called crash 
state epochs. It shows the data time histories of the range and range rate in the crash state for Test Subjects 
1 to 8 (as numbered in Figure 3), excluding Subjects 9 and 10 since they did not cross the crash state 
boundary. Test Subjects 6 to 8 who did not crash began to brake or brake and steer in the nearcrash state, 
crossed into the crash state, and then moved back into the near-crash state. Figure 7 illustrates the need to 
capture the different types of response (epoch scenarios) that drivers might undertake to resolve traffic 
conflicts. In particular, this method has found three different crash epoch scenarios: (a) drivers who were 
braking at the onset of the epoch, (b) drivers who braked after entering the epoch and only braked to the 
crash, and (c) drivers who braked after they entered the epoch, but chose to steer off the road at the last sec-
ond before the crash. The conversion of these significant epochs into discrete data (fourth column in Figure 
2) should account for each different response type that was initiated. 

 
  
 

DATABASE APPLICATIONS 

A crash avoidance database needs to provide the knowledge base required for the development of effective 
crash countermeasure systems. Three types of countermeasure systems are being pursued, which include 
advisory (situational awareness), imminent crash warning, and crash anticipatory systems. The successful 
development of such systems rests on two primary tasks: 
 

1. Design of sensors, algorithms (decision making), driver-vehicle interface, and automatic controls; 
and 

2. Estimation of safety benefits. 
 

A warning algorithm must achieve a balance between nuisance alerts and late alerts to create 
acceptable system effectiveness and safety benefits. Though little research has been done to date on nui-
sance alarms, it is expected that drivers will perceive an alarm as a nuisance if it is issued too early with 
respect to a suitable epoch. Typically, drivers ignore the output of a system that produces a high rate of 
nuisance alerts. Thus, an imminent crash warning that appears in the low-risk kinematic state is likely to be 
denied by the driver's sense of danger at that time and seen as a nuisance; this is the "too early" warning 
error. Similarly, imminent crash warnings that are issued too late for the driver to avoid the crash will be 
ineffective; this is the "too late" warning error. 

Figure 8 illustrates an example of the use of a crash avoidance database to evaluate the acceptability of 
warning algorithms. The timing of the crash warning algorithms shown in Figure 8 was based on TTC 
values of 3 and 5 s. A simulator study tested these algorithms by presenting 24 subjects at varying speeds 
with a stopped lead vehicle and an in-dash graded light display with the amber (advisory) and red 
(imminent warning) colors lit at the TTC values of 5 and 3 s, respectively (11). The low effectiveness of the 
results showed that drivers did not base their braking on a pure TTC rule. The plots in Figure 8 lend further 
insight to this conclusion. When approaching a stationary vehicle before braking, drivers follow a vertical 
line on Figure 8 down toward the range rate axis. Figure 8 shows that drivers approaching a stopped lead 
vehicle at 15 m/s normally initiate comfortable (amber light) and hard (red light) braking below the lines of 
5- and 3-s TTC. Therefore, drivers could consider these alerts as "too early" for the situation. Conversely, 
drivers normally brake above the lines of 5- and 3-s TTC when approaching a stationary vehicle at 25 m/s. 
In this situation, TTC-based alerts could be perceived as "too late." 

 



 

 

CONCLUSIONS AND RECOMMENDATIONS 

This paper describes an approach to crash avoidance database development built upon driver judgments 
taken from controlled experiments (test tracks and simulators). The power of this approach rests in its 
ability to portray driver expectations and performance. This performance can then be used to evaluate 
proposed crash countermeasures, develop insights for new countermeasures, easily identify performance 
data gaps, and guide experimental design in any media so that results from disparate media and databases 
will fit together. This study proposed a database structure intended to fit driver judgment data into low-risk, 
conflict, near-crash, and crash driving states and investigated the feasibility of using these four driving 
states for database development. 

The feasibility issue was reduced to two questions: (a) Can the driving state transitions be reliably 
quantified, and (b) Can the driving state transitions be used to create a useful crash avoidance database? 
The feasibility discussions were addressed for a specific, common dynamic scenario that involved a vehicle 
braking to avoid a rear-end crash with another vehicle stopped in the lane ahead. 

For the first feasibility question, subjective "last moment braking" data from a test track study were 
utilized to identify rough quantitative locations for conflict and near-crash state transitions, and simulator 
data were used to roughly locate the crash state transition. The usefulness and reliability of these transitions 
were analyzed by comparing on-road, naturalistic driving data to the controlled experiments. Prior work 
with signal controls was also investigated to examine and confirm correspondence with the present results. 
The authors are confident that multiple data types indicate that the state boundaries are roughly in the 
locations that have been identified. 

For the second feasibility question, the process of using the driving state transitions to create a useful 
crash avoidance database was discussed. A process was presented to develop such a database starting with 
the raw time history data collected from different sources, parsing the data into significant driving state 
epochs using the state boundaries, and finally generating aggregated files with discrete data for analysis 
purposes. The utility of the resulting database is to provide the knowledge foundation to develop safety-
effective crash countermeasure systems that assist drivers via advisory (situational awareness), crash 
imminent warning, automatic vehicle control, and crash injury mitigation functions. The authors are 
confident that this data structure can fit together disparate data sources for a useful crash avoidance 
purpose. Further, the range/range-rate diagram provides a powerful graphical tool to show the combination 
of kinematic data with driver expectations in the case of rear-end conflicts. 

Research questions that arise from this work center on whether or not the quantified boundaries of the 
driving states strongly depend on the following: 
 

• Dynamic scenario encountered in the driving environment (e.g., lead vehicle stopped versus 
decelerating in potential rear-end crashes); 

• Driver response (e.g., brake versus steer) that subjects were asked to perform as an indicator to the 
conflict or near-crash state; 

• Context of the driving environment (e.g., slippery versus dry road, good versus reduced visibility, or 
light versus heavy traffic); or 

• Age and gender of drivers. 
 

It is recommended that the methods presented in this paper be extended to other dynamic scenarios that 
potentially lead to other high-priority crash types such as rear-end lead moving, lane change, and run-off-
road crashes. In fact, there is every reason to believe that this approach would work well for any crash 
scenario because drivers in every case will experience the same series of events: they will begin to sense 
conflict, they will have comfortable avoidance and severe avoidance maneuver limits, and there will be a 
limit where avoidance maneuvers are simply started too late to avoid a crash. A crash avoidance database 
could then be created using automated data processing, which needs to be developed to convert massive 
raw data into searchable data files as much as possible. We believe that the key to this is the automated 
identification and encoding of significant epochs from a time history of driving data in a multimedia form 
(numeric, video, and audio). 
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FIGURE 1  Driving states and corresponding crash countermeasures. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2  Process for the development of crash avoidance database. 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3  Estimation of crash state boundary based on driving simulator data. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4  Estimation of near-crash state and conflict state boundaries based on test track date. 
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FIGURE 5  Distribution of data at onset of braking observed in naturalistic driving. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 6  Selected time histories of braking events observed in naturalistic driving. 
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FIGURE 7  Driver actions in the crash state as observed in time histories from driving simulator data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 8  Evaluation of a warning algorithm based on time-to-collision. 
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