Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Synthesis of a Polymeric Hybrid Ion Exchanger with Recovered Iron(III) Towards the Removal of Arsenic

EPA Grant Number: SU831820
Title: Synthesis of a Polymeric Hybrid Ion Exchanger with Recovered Iron(III) Towards the Removal of Arsenic
Investigators: SenGupta, Arup K. , Blaney, Lee M. , Greenleaf, John
Institution: Lehigh University
EPA Project Officer: Nolt-Helms, Cynthia
Project Period: September 1, 2004 through May 30, 2005
Project Amount: $10,000
RFA: P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity, and the Planet (2004)
Research Category: Drinking Water

Description:

Every year, millions of tons of ferric hydroxide loaded water treatment residuals are disposed of under current EPA regulations into landfills and other waste sites. Meanwhile, half way around the world, millions of people are drinking arsenic contaminated water on a daily basis and developing symptoms ranging from skin damage and circulatory system problems to an increased risk of cancer. The most devastating effects of arsenic poisoning have been seen in Bangladesh, where over 85 million people are exposed to the poison through drinking water.

Through the processes of green chemistry and engineering, these two seemingly unrelated issues can be solved simultaneously. Through the Donnan Membrane Process, efficient recovery of 70% of the iron present in water treatment residuals is expected. This iron will then be used to impregnate a parent ion exchanger, creating a hybrid ion exchanger, which can effectively capture Arsenic in a plug flow reactor. The resulting concentrations will be measured using flame atomic absorption and ion chromatography.

The interrelation of the P3 concepts with the proposed project follows:

Countless millions around the globe are affected on a daily basis by the presence of arsenic in drinking water systems. This project proposes a solution that would help to remediate this devastating crisis.

By recovering ferric hydroxide from WTR, the amount of waste that needs transport to and disposal at landfill sites is significantly reduced, simultaneously creating economic prosperity for the water treatment industry and a reduction in the impact on the natural environment.

The P3 Award will be implemented as a senior capstone design project for the Environmental Engineering major as an educational tool at the university

Supplemental Keywords:

adsorption, heavy metals, waste reduction, remediation, cleanup, groundwater, metals, health effects, sustainable development, waste minimization , POLLUTANTS/TOXICS, Water, INTERNATIONAL COOPERATION, TREATMENT/CONTROL, Sustainable Industry/Business, Scientific Discipline, RFA, Arsenic, Drinking Water, Chemical Engineering, Technology, Chemistry, Water Pollutants, Environmental Chemistry, New/Innovative technologies, Environmental Monitoring, drinking water system, drinking water contaminants, clean technologies, arsenic removal, green chemistry, drinking water distribution system, detoxification, Other - risk management, polymeric ligand exchangers, drinking water treatment, ion exchange, green engineering, drinking water treatment facilities
Relevant Websites:

http://www.lehigh.edu/~lmb7/ exit EPA
Project Description

Progress and Final Reports:
Final Report

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.