Effectiveness and Safety of Vitamin D in Relation to Bone Health

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov

Contract No. 290-02-0021

Prepared by:

University of Ottawa Evidence-based Practice Center Ottawa, Canada

Investigators

Ann Cranney, M.D., M.Sc. Tanya Horsley, Ph.D. Siobhan O'Donnell, M.Sc. Hope Weiler, Ph.D. Lorri Puil, M.D., Ph.D. Daylily Ooi, M.D. Stephanie Atkinson, Ph.D. Leanne Ward, M.D. David Moher, Ph.D. David Hanley, M.D. Manchun Fang, M.Sc. Fatemeh Yazdi, M.Sc. Chantelle Garritty, BSc Margaret Sampson, M.L.I.S. Nick Barrowman, Ph.D. Alex Tsertsvadze, M.D., M.Sc. Vasil Mamaladze, M.D., Ph.D.

AHRQ Publication No. 07-E013 August 2007

This report is based on research conducted by the University of Ottawa Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-02-0021). The findings and conclusions in this document are those of the author(s), who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help clinicians, employers, policymakers, and others make informed decisions about the provision of health care services. This report is intended as a reference and not as a substitute for clinical judgment.

This report may be used, in whole or in part, as the basis for the development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

This document is in the public domain and may be used and reprinted without permission except those copyrighted materials noted for which further reproduction is prohibited without the specific permission of copyright holders.

Suggested Citation:

Cranney A, Horsley T, O'Donnell S, Weiler HA, Puil L, Ooi DS, Atkinson SA, Ward LM, Moher D, Hanley DA, Fang M, Yazdi F, Garritty C, Sampson M, Barrowman N, Tsertsvadze A, Mamaladze V. Effectiveness and Safety of Vitamin D in Relation to Bone Health. Evidence Report/Technology Assessment No. 158 (Prepared by the University of Ottawa Evidence-based Practice Center (UO-EPC) under Contract No. 290-02-0021. AHRQ Publication No. 07-E013. Rockville, MD: Agency for Healthcare Research and Quality. August 2007.

No investigators have any affiliations or financial involvement (e.g., employment, consultancies, honoraria, stock options, expert testimony, grants or patents received or pending, or royalties) that conflict with material presented in this report.

Preface

The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-Based Practice Centers (EPCs), sponsors the development of evidence reports and technology assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care in the United States. This report was requested and funded by the Office of Dietary Supplements, National Institutes of Health.

The evidence reports and technology assessments provide organizations with comprehensive, science-based information on common, costly medical conditions and new health care technologies. The EPCs systematically review the relevant scientific literature on topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to developing their reports and assessments.

To bring the broadest range of experts into the development of evidence reports and health technology assessments, AHRQ encourages the EPCs to form partnerships and enter into collaborations with other medical and research organizations. The EPCs work with these partner organizations to ensure that the evidence reports and technology assessments they produce will become building blocks for health care quality improvement projects throughout the Nation. The reports undergo peer review prior to their release.

AHRQ expects that the EPC evidence reports and technology assessments will inform individual health plans, providers, and purchasers as well as the health care system as a whole by providing important information to help improve health care quality.

We welcome comments on this evidence report. They may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, MD 20850, or by e-mail to **epc@ahrq.gov.**

Carolyn M. Clancy, M.D. Director Agency for Healthcare Research and Quality

Paul Coates, Ph.D. Director Office of Dietary Supplements National Institutes of Health Jean Slutsky, P.A., M.S.P.H. Director, Center for Outcomes and Evidence Agency for Healthcare Research and Quality

Beth A. Collins Sharp, Ph.D., R.N. Director, EPC Program Agency for Healthcare Research and Quality

Stephanie Chang, M.D., M.P.H. EPC Program Task Order Officer Agency for Healthcare Research and Quality

Acknowledgments

We would like to acknowledge the guidance and expertise contributed to this project by the Technical Expert Panel members: Drs. Beth Dawson-Hughes, John Eisman, Murray Favus, Connie Weaver, Bonnie Specker, Bruce Hollis, and Frank Greer. We also thank NIH/ODS (Drs. Mary Frances Picciano, Anne Thurn, Beth Yetley and Paul Coates) and AHRQ (Drs. David Atkins, Beth Collins-Sharp and Stephanie Chang) for their guidance and input throughout the review process. The helpful comments of the peer reviewers are also gratefully acknowledged. We also thank the administrative staff of the University of Ottawa Evidence-based Practice Center (Mary Ocampo) and Helen Souci for assistance in preparation of the report, Raymond Daniel for search assistance and document acquisition and Kelli Thomas for assistance in article retrieval and table preparation. Ann Cranney acknowledges salary support from the Canadian Institutes of Health Research.

Structured Abstract

Objectives: To review and synthesize the literature in the following areas: the association of specific circulating 25(OH)D concentrations with bone health outcomes in children, women of reproductive age, postmenopausal women and elderly men; the effect of dietary intakes (foods fortified with vitamin D and/or vitamin D supplementation) and sun exposure on serum 25(OH)D; the effect of vitamin D on bone mineral density (BMD) and fracture or fall risk; and the identification of potential harms of vitamin D above current reference intakes.

Data Sources: MEDLINE® (1966-June Week 3 2006); Embase (2002-2006 Week 25); CINAHL (1982-June Week 4, 2006); AMED (1985 to June 2006); Biological Abstracts (1990-February 2005); and the Cochrane Central Register of Controlled Trials (2nd Quarter 2006).

Review Methods: Two independent reviewers completed a multi-level process of screening the literature to identify eligible studies (title and abstract, followed by full text review, and categorization of study design per key question). To minimize bias, study design was limited to randomized controlled trials (RCTs) wherever possible. Study criteria for question one were broadened to include observational studies due to a paucity of available RCTs, and question four was restricted to systematic reviews to limit scope. Data were abstracted in duplicate and study quality assessed. Differences in opinion were resolved through consensus or adjudication. If clinically relevant and statistically feasible, meta-analyses of RCTs on vitamin D supplementation and bone health outcomes were conducted, with exploration of heterogeneity. When meta-analysis was not feasible, a qualitative systematic review of eligible studies was conducted.

Results: 167 studies met our eligibility criteria (112 RCTs, 19 prospective cohorts, 30 casecontrols and six before-after studies). The largest body of evidence on vitamin D status and bone health was in older adults with a lack of studies in premenopausal women and infants, children and adolescents. The quality of RCTs was highest in the vitamin D efficacy trials for prevention of falls and/or fractures in older adults. There was fair evidence of an association between low circulating 25(OH)D concentrations and established rickets. However, the specific 25(OH)D concentrations associated with rickets is uncertain, given the lack of studies in populations with dietary calcium intakes similar to North American diets and the different methods used to determine 25(OH)D concentrations. There was inconsistent evidence of an association of circulating 25(OH)D with bone mineral content in infants, and fair evidence that serum 25(OH)D is inversely associated with serum PTH. In adolescents, there was fair evidence for an association between 25(OH)D levels and changes in BMD. There were very few studies in pregnant and lactating women, and insufficient evidence for an association between serum 25(OH)D and changes in BMD during lactation, and fair evidence of an inverse correlation with PTH. In older adults, there was fair evidence that serum 25(OH)D is inversely associated with falls, fair evidence for a positive association with BMD, and inconsistent evidence for an association with fractures. The imprecision of 25(OH)D assays may have contributed to the variable thresholds of 25(OH)D below which the risk of fractures, falls or bone loss was increased.

There was good evidence that intakes from vitamin D-fortified foods (11 RCTs) consistently increased serum 25(OH)D in both young and older adults.

Eight randomized trials of ultraviolet (UV)-B radiation (artificial and solar exposure) were small and heterogeneous with respect to determination of the exact UV-B dose and 25(OH)D assay but there was a positive effect on serum 25(OH)D concentrations. It was not possible to determine how 25(OH)D levels varied by ethnicity, sunscreen use or latitude.

Seventy-four trials examined the effect of vitamin D_3 or D_2 on 25(OH)D concentrations. Most trials used vitamin D_3 , and the majority enrolled older adults. In three trials, there was a greater response of serum 25(OH)D concentrations to vitamin D_3 compared to vitamin D_2 , which may have been due to more rapid clearance of vitamin D_2 in addition to other mechanisms. Meta-analysis of 16 trials of vitamin D_3 was consistent with a dose-response effect on serum 25(OH)D when comparing daily doses of < 400 IU to doses \geq 400 IU. An exploratory analysis of the heterogeneity demonstrated a significant positive association comparable to an increase of 1 - 2 nmol/L in serum 25(OH)D for every 100 additional units of vitamin D although heterogeneity remained after adjusting for dose.

Vitamin D_3 in combination with calcium results in small increases in BMD compared to placebo in older adults although quantitative synthesis was limited due to variable treatment durations and BMD sites. The evidence for fracture reduction with vitamin D supplementation was inconsistent across 15 trials. The combined results of trials using vitamin D_3 (700 - 800 IU daily) with calcium (500 - 1,200 mg) was consistent with a benefit on fractures although in a subgroup analysis by setting, benefit was primarily in elderly institutionalized women (fair evidence from two trials). There was inconsistent evidence across 14 RCTs of a benefit on fall risk. However, a subgroup analysis showed a benefit of vitamin D in postmenopausal women, and in trials that used vitamin D_3 plus calcium. In addition, there was a reduction in fall risk with vitamin D when six trials that adequately ascertained falls were combined. Limitations of the fall and fracture trials included poor compliance with vitamin D supplementation, incomplete assessment of vitamin D status and large losses to follow-up.

We did not find any systematic reviews that addressed the question on the level of sunlight exposure that is sufficient to maintain serum 25(OH)D concentrations but minimizes risk of melanoma and non-melanoma skin cancer.

There is little evidence from existing trials that vitamin D above current reference intakes is harmful. In most trials, reports of hypercalcemia and hypercalciuria were not associated with clinically relevant events. The Women's Health Initiative study did report a small increase in kidney stones in postmenopausal women aged 50 to 79 years whose daily vitamin D₃ intake was 400 IU (the reference intake for 50 to 70 years, and below the reference intake for > 70 years) combined with 1000 mg calcium. The increase in renal stones corresponded to 5.7 events per 10,000 person-years of exposure. The women in this trial had higher calcium intakes than is seen in most post-menopausal women.

Conclusions: The results highlight the need for additional high quality studies in infants, children, premenopausal women, and diverse racial or ethnic groups.

There was fair evidence from studies of an association between circulating 25(OH)D concentrations with some bone health outcomes (established rickets, PTH, falls, BMD). However, the evidence for an association was inconsistent for other outcomes (e.g., BMC in infants and fractures in adults). It was difficult to define specific thresholds of circulating 25(OH)D for optimal bone health due to the imprecision of different 25(OH)D assays. Standard reference preparations are needed so that serum 25(OH)D can be accurately and reliably measured, and validated.

In most trials, the effects of vitamin D and calcium could not be separated. Vitamin D_3 (>700 IU/day) with calcium supplementation compared to placebo has a small beneficial effect on BMD, and reduces the risk of fractures and falls although benefit may be confined to specific subgroups.

Vitamin D intake above current dietary reference intakes was not reported to be associated with an increased risk of adverse events. However, most trials of higher doses of vitamin D were not adequately designed to assess long-term harms.

Contents

Executive Summary	1
Evidence Report	11
Chapter 1. Introduction	13
Overview	13
Objectives	13
Background	14
Role of Vitamin D in Bone Health	15
Consequences of Vitamin D Deficiency on Bone Health	16
Populations at Risk of Vitamin D Deficiency	
Definitions of Optimal Vitamin D Status for Bone Health	17
Measurement of Serum 25(OH)D Concentrations	
Vitamin D Supplementation	
Current Dietary Reference Intakes for Vitamin D	19
Summary	
Chapter 2. Methods	21
Key Questions Addressed in This Report	
Conceptual Framework	
Study Identification	
Search Strategy	
Eligibility Criteria	
Study Selection Process	
Data Abstraction	
Data Assessment	
Quality Assessment	
Quality Assessment	
Quantitative Data Synthesis	
Statistical Analyses	
Statistical 7 maryses	
Chapter 3. Results	
Results of the Literature Search	29
Question 1. Are There Specific Concentrations of Serum 25(OH)D That Are Associated	
With Bone Health Outcomes in Infants, Children, Women of Reproductive Age,	
Postmenopausal Women and Elderly Men?	
1A. Infants and Children	32
Question 1A (Part 1). Are There Specific Concentrations of Serum 25(OH)D That Are	
Associated With Established Vitamin D Deficiency Rickets in Infants and	
Young Children?	32
Question 1A (Part 2). Are Specific Circulating Concentrations of 25 Hydroxyvitamin D	
[25(OH)D] Associated With Bone Health Outcomes in Infants?	41

Question 1A (Part 3). Are Specific Circulating Concentrations of Serum 25	
Hydroxyvitamin D [25(OH)D] Associated With Bone Health Outcomes in	
Older Children and Adolescents?	
Question 1B. Are Specific Circulating Concentrations of 25 Hydroxvitamin D [25(OH)D]	60
Question 2. How Does Dietary Intake of Vitamin D, Sun Exposure, and/or Vitamin D	
Supplementation Affect Serum 25(OH)D Concentrations?	102
Question 2A. Does Dietary Intake from Foods Fortified with Vitamin D Affect	
Concentrations of Circulating 25(OH)D?	102
Question 2B. What is the Effect of UV Exposure on Circulating 25(OH)D	
Concentrations?	112
Question 2C. What Is the Effect of Vitamin D Supplementation on Circulating	
25(OH)D?	119
Question 3A. What is the Evidence Regarding the Effect of Supplemental Vitamin D	
on Bone Density in Women of Reproductive Age and Postmenopausal Women	
and Elderly Men?	155
Question 3B. What is the Evidence Regarding the Effect of Supplemental Vitamin D	
on Fractures in Women of Reproductive Age and/or Postmenopausal Women	
and Elderly Men?	164
Question 3C. What is the Evidence Regarding the Effect of Supplemental Vitamin D	
on Falls in Postmenopausal Women and Elderly Men?	173
Question 4. Is There a Level of Sunlight Exposure (Time of Year, Latitude, BMI, the	
Amount of Skin Exposed) That is Sufficient to Maintain Adequate Vitamin D	
Concentrations But Does Not Increase the Risk of Non-Melanoma or Melanoma	
Skin Cancer?	185
Question 5. Does Intake of Vitamin D, Above Current Reference Intakes, Lead to	
Toxicity?	186
Chapter 4. Discussion	
Overview	207
Question 1A. Are there Specific Concentrations of 25(OH)D Associated with Bone	
Health Outcomes?	207
A. Children	
B. Pregnant and Lactating Women	
C. Postmenopausal Women and Elderly Men	208
Question 2A. Does Dietary Intake from Foods Fortified with Vitamin D Affect	
Concentrations of Circulating 25(OH)D?	209
Question 2B. What is the Effect from UV Exposure on Circulating 25(OH)D	
Concentrations? Does This Vary With Different Age Groups, Ethnicity, Use of	
Sunscreen, Latitude and/or BMI?	209
Question 2C. What Is the Effect of Vitamin D Supplementation on Concentrations of	
Circulating 25(OH)D?	210
Question 3. What is the Evidence Regarding the Effect of Supplemental Vitamin D on	
Bone Density, Fractures and Falls in Postmenopausal Women and Elderly Men?	210
Question 4. Is There a Level of Sunlight Exposure That Is Sufficient to Maintain	
Adequate Vitamin D Concentrations, But Does Not Increase the Risk of	
Skin Cancer?	212

Question 5. Does Intake of Vitamin D, Above Current Reference Intakes, Lead to	n 5. Does Intake of Vitamin D, Above Current Reference Intakes, Lead to	
Toxicity?	212	
Strengths and Limitations of the Review	213	
Conclusions and Knowledge Gaps	213	
Research Needs and Future Directions	214	
References and Included Studies	217	
Key Terms	231	
List of Acronyms/Abbreviations	233	

Tables

Table 1.	Serum 25(OH)D Levels in Established Rickets in Infants and Young Children	35
Table 2.	Serum 25(OH)D and Bone Health Outcomes in Infants	44
Table 3.	Serum 25(OH)D Levels and Bone Health Outcomes in Older Children and	
	Adolescents	55
Table 4.	Serum 25(OH)D Levels and Bone Health Outcomes in Pregnant or	
	Lactating Women	64
Table 5.	Studies Reporting Serum 25(OH)D Levels and Bone Health Outcomes in	
	Postmenopausal Women and Older Men	77
Table 6.	Serum 25(OH)D Levels and Fractures in Postmenopausal Women and	
	Older Men	78
Table 7.	Serum 25(OH)D Levels and Falls and/or Performance Measures in	
	Postmenopausal Women and Older Men	87
Table 8.	Serum 25(OH)D Levels and BMD/BMC in Postmenopausal Women and	
	Older Men	93
Table 9.	Serum 25(OH)D Levels and Fortified Foods	108
Table 10.	Absolute and % Change in Serum 25(OH)D for the Intervention Group in	
	Supplementation Trials (grouped by vitamin D dosages < 400 IU vs. > 400 IU/d)	111
Table 11.	Effect of UV Exposure on Serum 25(OH)D Levels	116
Table 12.	RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels	135
Table 13.	Effect of Vitamin D2 or D3 on BMD by Site in Individual Trials	159
Table 14.	Combined Results of Effect of Vitamin D3 on BMD	163
Table 15.	OR (95% CI) for Total Fractures from Individual RCTs of Vitamin D	172
Table 16.	OR (95% CI) from Individual RCTs Included in the Meta-Analysis on	
	the Effects of Vitamin D on Fall Risk	179
Table 17.	OR (95% CI) from Combined RCTs Included in the Meta-Analysis on the	
	Effects of Vitamin D on Fall Risk.	179
Table 18.	Reported Safety Outcomes by Intervention Group (RCTs)	191

Figures

Figure 1.	Conceptual Framework for the Evaluation of the Efficacy and Safety of	
	Vitamin D in Relation to Bone Health	22
Figure 2.	Modified QUOROM Flow Chart	30

Figure 3.	Forest Plot on the Effect of Dietary Sources of Vitamin D (with/without calcium)	104
		.104
Figure 4.	Forest Plot on the Effect of Vitamin D3 Fortified Skim Milk (with calcium)	
	\mathbf{c}	.105
Figure 5a.	The Effect of Vitamin D3 Supplementation (+/- calcium) vs. Placebo or	
	Calcium on Absolute Change in 25(OH)D Concentrations	.130
Figure 5b.	5b. The Effects of Vitamin D3 Supplementation (with/without calcium) vs.	
	Placebo or Calcium on Absolute Change in 25(OH)D Levels by Dose.	.131
Figure 5c.	The Effects of Vitamin D3 Supplementation (with/without calcium) vs.	
-	Placebo or Calcium on Absolute Change in 25(OH)D Levels by Vitamin D Status	.132
Figure 5d.	25(OH)D Treatment Effect vs. Daily Oral Vitamin D3 Dose	.133
Figure 6.	Forest Plot: Effect of vitamin D3 + Calcium vs. Placebo on Femoral Neck	
C	BMD at 1 year	.164
Figure 7.	Forest Plot Comparing Risk of Total Fractures with Vitamin D2 or D3 +/-	
U	· ·	.170
Figure 8.	Forest plot Comparing the Risk of Total Fractures with Vitamin D3 Combined	
0		.170
Figure 9.	Forest Plot Comparing Risk of Hip Fractures with Vitamin D3 +/- Calcium vs.	
8	Placebo by Setting	.171
Figure 10.	Forest Plot Comparing the Risk of Falls Between Vitamin D2/D3 with Calcium	
	vs. Controls (placebo or calcium)	180
Figure 11	Forest Plot Comparing the Risk of Falls Between Oral or Injectable Vitamin	
1.80.0	D2/D3 with/without Calcium vs. Controls (placebo or calcium).	.180
Figure 12	Treatment Effect vs. Precision from Individual RCTs of the Effect of Oral	
1.8010.120		.181
Figure 13	Forest Plot of Comparing the Risk of Falls between Oral or Injectable Vitamin	
118010 15.	D2/D3 with/without Calcium vs. Controls (placebo or calcium) Grouped by Study	
	Population, i.e., Gender	.182
Figure 14	Forest Plot of Comparing the Risk of Falls between Oral or Injectable Vitamin	.102
1 15010 14.	D2/D3 with/without Calcium vs. Controls (placebo or calcium) Grouped by Reports	
	· · · · ·	.183
		.105

Appendixes

Appendix A. Sea	urch Strategies
-----------------	-----------------

- Appendix B. Screening, Data Abstraction, and Quality Assessment Forms
- Appendix C. Statistics Information Form
- Appendix D. Quality Assessment of RCTs
- Appendix E. Reference List Quality Assessment of RCTs
- Appendix F: Additional Data Provided by Study Authors
- Appendix G. List of Unobtained Articles
- Appendix H. Additional Acknowledgments
- Appendix I. List of Excluded Studies at Full-Text Screening (Level 2 screening)
- Appendix J. List of Excluded Studies on the Basis Study Design (Level 3 screening)

Appendixes and evidence tables cited in this report are provided electronically at http://www.ahrq.gov/downloads/pub/evidence/pdf/vitamind/vitad.pdf.

Executive Summary

Introduction

The University of Ottawa Evidence-based Practice Center (UO-EPC) reviewed and synthesized the published literature on five key questions.

- 1. Are specific circulating concentrations of 25 hydroxyvitamin D (25(OH)D) associated with bone health outcomes in:
 - A. Children: rickets, bone mineral density (BMD), bone mineral content (BMC), fractures, or parathyroid hormone (PTH)?
 - B. Women of reproductive age (including pregnant and lactating women): BMD, calcaneal ultrasound, fractures, PTH?
 - C. Elderly men and postmenopausal women: BMD, fractures, falls?
- 2. Do food fortification, sun exposure, and/or vitamin D supplementation affect circulating concentrations of 25(OH)D?
- 3. What is the evidence regarding the effect of supplemental doses of vitamin D on bone mineral density and fracture or fall risk and does this vary with age groups, ethnicity, body mass index or geography?
- 4. Is there a level of sunlight exposure that is sufficient to maintain adequate vitamin D levels but does not increase the risk of non-melanoma or melanoma skin cancer?
- 5. Does intake of vitamin D above current reference intakes lead to toxicities (e.g., hypercalcemia, hypercalciuria, and calcification of soft tissue or major organs)?

Osteoporosis-related fractures constitute an important socio-economic burden. In the United States, there are 1.5 to 2 million incident fractures annually, and the direct medical costs of osteoporosis are estimated at \$13.7-20.3 billion (in 2005 dollars). The burden of fractures is expected to increase over the next two decades, with an expanding aging population. Effective treatment strategies that can be implemented on a population level are needed to decrease the burden of osteoporosis.

Classical actions of vitamin D include the regulation of calcium homeostasis and the development and maintenance of the skeleton. Vitamin D's major biologic function is to maintain serum calcium and phosphorus concentrations within the normal range by enhancing intestinal absorption of calcium and release of calcium and phosphorus from bone. Low vitamin D status has been associated with the development of rickets and osteomalacia, and has been considered to lead to bone loss, fractures and falls.

Vitamin D also has non-calciotropic autocrine and paracrine functions, for example, in the regulation of cell differentiation and proliferation. The enzyme 1-alpha hydroxylase is present in many tissues in addition to the kidney, resulting in extra-renal production of 1,25-

dihydroxyvitamin D. There is also emerging evidence for immunomodulatory and anti-infective properties of vitamin D.

The increased suggestions of nutritional vitamin D insufficiency in the general population and the potential impact of vitamin D status on bone health and chronic health conditions have highlighted the need to reassess current vitamin D reference intakes.

The main source of vitamin D comes from the synthesis of previtamin D_3 from 7dehydrocholesterol (7-DHC) in the skin through exposure to solar ultraviolet B light, at wavelengths 290-320 nm. With prolonged solar exposure, previtamin D_3 forms inert metabolites or is changed back to 7-DHC so that toxicity from sun exposure is not a concern. Other sources of vitamin D include dietary intake from foods naturally containing vitamin D, foods fortified with vitamin D and vitamin D supplements (vitamin D_3 or cholecalciferol, and vitamin D_2 or ergocalciferol).

The U.S. Institute of Medicine (IOM) 1997 report on Dietary Reference Intakes for calcium and related nutrients defined circulating 25-hydroxyvitamin D as the functional indicator for vitamin D status and established dietary reference intakes for vitamin D. Circulating 25(OH)D reflects the combined contribution from cutaneous synthesis, dietary sources and vitamin D supplementation. The IOM was unable to establish estimated average requirements (EAR) on which to base recommended daily allowances (RDA) for vitamin D due to insufficient published scientific data. Adequate intakes (AI) were provided instead. An AI is expected to meet the amount needed to maintain a defined criterion of adequacy, e.g., prevention of rickets or osteomalacia, in all members of a specific healthy population.

Although the IOM identified serum 25(OH)D as the indicator for determining an adequate vitamin D intake, there is controversy on how best to define adequate vitamin D status. Assessment of vitamin D status and biochemical evidence of insufficiency have been limited by the lack of standardization of the different analytical methods used to measure 25(OH)D, including inter-assay and laboratory variability, and a lack of standard reference materials.

In addition, the tolerable upper intake level (UL) of 2,000 IU/day for individuals one year of age or older (1,000 IU in infants) was defined by the IOM based on limited evidence. The UL refers to the highest level of daily nutrient intake that is likely to pose no risk of adverse health effects to almost all individuals in the general population.

Over the last few years, a number of large randomized trials have evaluated the effect of vitamin D supplementation on fractures, falls and harms. A systematic review was conducted to synthesize the most recent evidence and address the above questions.

Methodology

The University of Ottawa EPC developed a review team and work plan to complete this report. A technical expert panel (TEP) of content experts in vitamin D (nutrition scientists, endocrinologists, pediatricians and biochemists) was convened to help refine the key questions and to provide expertise to the team during the review process. The literature search and the synthesis of evidence were completed by the review team. The draft report was peer reviewed by members of the TEP and by external reviewers.

Search Strategy

Using the Ovid interface, we searched the following databases: MEDLINE ® (1966 to June Week 3 2006); Embase (2002 to 2006 Week 25); CINAHL (1982 to June Week 4, 2006); AMED (1985 to June 2006); Biological Abstracts (1990 to February 2005); and The Cochrane Central Register of Controlled Trials (CENTRAL; 2nd Quarter 2006). No language restrictions were applied, and studies were restricted to human subjects.

Eligibility Criteria

Studies for inclusion were limited, wherever possible, to randomized, controlled trials (RCTs) in order to minimize bias. Inclusion criteria for question one were broadened to include prospective cohorts, case-control and before-after studies due to the lack of studies addressing the association between serum 25(OH)D concentrations and bone health outcomes, especially in infants and children. Question four was restricted to existing systematic reviews to limit scope.

Studies that assessed vitamin D_2 or D_3 with or without calcium supplementation were included. We did not include randomized trials that used calcium with vitamin D as a control arm unless a placebo or lower dose vitamin D arm was also available as a comparator due to difficulty interpreting cause and effect. Vitamin D preparations, calcitriol or alphacalcidol, were not included since they are not considered nutritional supplements and have a different safety profile than vitamin D_2 or vitamin D_3 . Studies evaluating the efficacy of vitamin D for the treatment of secondary causes of osteoporosis (e.g., glucocorticoid-induced osteoporosis, renal or liver disease) or for treatment of vitamin D-dependent rickets were not included, in an effort to minimize clinical heterogeneity and since non-dietary sources of treatment are often used as the primary treatment for some of these conditions.

Study Selection

The results of the search were assessed using a three-step process. First, bibliographic records, including title, keywords and abstract, were screened by one reviewer. Potentially relevant records were then screened independently by two reviewers using the full text report and strict eligibility criteria. Conflicts were discussed and resolved through consensus or adjudication by a third reviewer, if needed. Relevant studies were subsequently assessed for study design and categorized by question. The reasons for exclusion were noted using a modified QUOROM format.

Data Extraction

Two reviewers abstracted data on study and population characteristics, type of 25(OH)D assay, vitamin D intervention (type, dose, frequency), co-interventions, reported confounders or covariates and relevant bone health outcomes. One reviewer completed the primary extraction that was then verified for completeness and accuracy by a second reviewer. Differences were resolved through consensus or adjudication. Evidence tables were constructed for each of the included studies, and summary tables were prepared in order to maximize consistency in identifying pertinent data for synthesis.

Assessment of Study Quality

An experienced reviewer assessed the quality of reporting. For the RCTs, the study quality was evaluated using the validated Jadad scale. A Jadad score of \geq 3 (out of a possible 5) was used to indicate studies of higher quality. Allocation concealment was assessed as adequate, inadequate or unclear. For the observational studies, the methodological quality (poor, fair, good) was evaluated using the grading system adapted from Harris and colleagues.

For each section, an aggregate level of evidence (good, fair, inconsistent) was rated based on quantity, quality and consistency of results. Good evidence (e.g., for or against an association between serum 25(OH)D concentrations and a bone health outcome) was determined by consistent results across studies and at least one study of good quality. Fair evidence was evidence sufficient to determine an association but was limited by consistency of results, quantity, or quality (i.e., no studies graded as good). Inconsistent evidence was defined by an inability to make a conclusion for or against an association, in that studies had conflicting results.

Data Synthesis

Where possible, meta-analysis of RCTs that assessed interventions, populations and outcomes (e.g., fractures or falls) was conducted using a random effects model, with an assessment of statistical heterogeneity. For continuous outcomes (e.g., serum 25(OH)D concentrations, and BMD), the difference in means between treatment groups was used for the meta-analyses. The absolute change in 25(OH)D concentrations was used for quantitative pooling. A weighted average method was used to calculate the 25(OH)D values for the combined treatment group and placebo group. The difference in means was then calculated using the weighted averages for the two combined groups. For dichotomous outcomes such as falls or fractures, RCTs were grouped by type of vitamin D supplementation and whether calcium was used as a co-intervention since we expected there might be different treatment effects with vitamin D₂ versus D₃, and to try to separate out the differential effects of calcium and vitamin D intake. These groupings were then used to minimize clinical heterogeneity in pooled estimates. Summary odds ratios were calculated using the number of individuals who had an event (e.g., fracture). To avoid differences in the reporting of units for 25(OH)D concentrations (i.e., nmol/L, ng/mL, µg/dL, µg/L), all values were converted to nmol/L that was the unit used for data synthesis.

Results

The literature search identified 9,150 citations potentially relevant to the key questions and 59 studies were nominated by reviewers. We excluded 2,643 duplicates and review articles. After screening at the title and abstract level, 5,119 articles were excluded. A total of 1,447 full text articles were reviewed and of these, 682 met the inclusion criteria and were classified by study design. 515 studies were excluded on the basis of pre-set study design criteria per question whereas 167 unique studies met the criteria and were included in the evidence synthesis. There were 112 RCTs (six companion papers), 19 prospective cohorts, 30 case-control studies and six before-after studies. No systematic reviews were identified for question four.

Overall, most of the evidence on vitamin D status and bone health outcomes was in older adults (postmenopausal women and men over age 60 years), with relatively few high quality controlled studies in infants, children and adolescents. Few trials included pre-menopausal women.

While multiple studies examined the effect of vitamin D supplementation on 25(OH)D concentrations, few high quality studies examined the effect of sun exposure, the predominant source of vitamin D worldwide. Most studies were in Caucasian populations with few participants from other racial or ethnic groups.

We identified 72 studies that assessed the relationship between circulating 25(OH)D concentrations and different bone health outcomes (rickets, PTH, bone mineral content, bone mineral density, falls, fractures and performance-related measures) in different age groups.

Thirteen studies (one RCT, four before-after, eight case-control studies) of poor to fair quality assessed the association between serum 25(OH)D concentrations and established rickets, of which only one study was conducted in North America. There was fair evidence of an association between lower serum 25(OH)D concentrations and established rickets, although specific 25(OH)D concentrations were variable with mean concentrations ranging from below 30 and up to 50 nmol/L. An important confounder of the relation between vitamin D status and rickets was low dietary calcium since most studies were conducted in developing countries where calcium intake is low. Seven studies (three RCTs, four case-control studies) examined the association between serum 25(OH)D and bone health outcomes (BMC, PTH) in infants. In this age group, there was inconsistent evidence for an association between circulating 25(OH)D and bone mineral content. There was fair evidence that serum 25(OH)D concentrations were inversely associated with serum PTH at lower 25(OH)D concentrations but inconsistent evidence for a specific threshold.

Seven studies (two RCTs, three cohort studies, one before-after study, one case-control study) evaluated the relation between circulating 25(OH)D and bone health outcomes (PTH, BMC, BMD) in older children and adolescents. The two RCTs were of higher quality (Jadad score \geq 3), and the observational studies of fair quality. There was fair evidence for an inverse association between serum 25(OH)D and PTH in older children and adolescents, with a plateau of PTH reported at 25(OH)D concentrations ranging from above 30 to 83 nmol/L. There was fair evidence of an association between serum 25(OH)D and change in BMD/BMC indices in older children and adolescents. However, the results from two RCTs of vitamin D supplementation did not confirm a consistent benefit on BMD/BMC across all sites and age groups. In addition, measures used to estimate bone mineral content and bone mineral density in children and adolescents have not been directly shown to predict fracture risk in adults.

Four studies (no RCTs, three cohort studies and one before-after study) of quality ranging from poor to good, addressed the association between serum 25(OH)D and bone health outcomes (PTH, BMD) in pregnant and/or lactating women. There was insufficient evidence for an association between circulating 25(OH)D and changes in bone mineral density during pregnancy, and fair evidence that 25(OH)D was inversely correlated with serum PTH in pregnancy. One good quality cohort did not find an association between circulating 25(OH)D and changes in BMD that occur with lactation.

In trials on food fortification, most studies used dairy products as the source of fortified food. Eleven RCTs provided the vitamin D content of the dietary source (100-1,000 IU) and were included. All trials were conducted in adults, and 6/11 trials were of higher quality. Overall, there was good evidence of a positive effect on serum 25(OH)D, although the magnitude of change varied (range 15-40 nmol/L). Combined data from two lower quality trials of food fortification at doses of 400-480 IU of vitamin D/day resulted in a mean increase of 16 nmol/L.

Eight small RCTs examined the effect of ultraviolet (UV) light exposure (four trials used sun exposure and four studies employed artificial UV-B radiation) on 25(OH)D concentrations; one trial assessed the effect of sunscreen. Seven trials enrolled Caucasian adults, and one trial enrolled Asian infants. Only two trials were of higher quality. The exact UV dose was often difficult to determine and limited synthesis of the results. There was fair evidence from randomized trials that sun exposure or artificial UV-B radiation increased serum 25(OH)D in participants with low or normal baseline serum 25(OH)D. One study in elderly Caucasian women found that exposure to one-half minimal erythemal dose (1 MED = amount of UV exposure required to induce faint erythema of the skin) three times per week for 12 weeks resulted in increases in serum 25(OH)D comparable to 400 IU vitamin D₃ daily. It was not possible to determine the impact of effect modifiers such as age, ethnicity, body mass index or latitude from the included studies.

Seventy-four RCTs evaluated the effect of either vitamin D₃ or D₂ supplementation on serum 25(OH)D concentrations. Most trials were conducted in adults (57 RCTs), with few RCTs in infants (seven RCTs), children (four RCTs) and pregnant or lactating women (six RCTs). Of the 74 RCTs, 35 had quality scores \geq 3 on the Jadad scale. Vitamin D₃ (range 200 to 10,000 IU/day) was used in 55 RCTs, vitamin D₂ (with dose range 400 -1800 IU/day, or single injections up to 600,000 IU) was used in 15 trials, and the type of vitamin D was not reported in four trials. In three trials of vitamin D₂ compared to vitamin D₃ supplementation, vitamin D₂ appeared to have a smaller effect on serum 25(OH)D concentrations that may have been due to more rapid clearance or different metabolism. A meta-analysis of 16 trials of vitamin D₃ was consistent with a dose-response effect on serum 25(OH)D when vitamin D_3 doses of < 400 IU (two trials with significant increase in serum 25(OH)D of 11.36, 95% CI 8.6 -14) were compared to doses > 400 IU (14 trials). However, significant heterogeneity remained after adjusting for dose. Combining results of two trials with similar populations, low baseline serum 25(OH)D and vitamin D₃ doses (880-1,000 IU/day) resulted in a combined increase of 51 nmol/L versus control. A further exploration of the heterogeneity demonstrated a significant positive association between dose and serum 25(OH)D that was comparable to an increase of 1-2 nmol/L in 25(OH)D for every 100 additional units of vitamin D₃. At the doses used, the relationship did not appear saturable. None of the other clinical or methodological characteristics examined (e.g., population, baseline 25(OH)D concentrations, compliance or type of 25(OH)D assay) explained the remaining heterogeneity, after adjusting for dose.

Forty-one studies (ten RCTs, 14 cohorts, 17 case-control studies) reported on the association between circulating 25(OH)D and bone health outcomes, (fractures, change in bone mineral density, falls and performance-related measures) in postmenopausal women or men over the age of 60 years. Most RCTs were of higher quality and observational studies were of fair to good quality. There was fair evidence (one RCT, three cohorts, one case-control study) of an association between lower serum 25(OH)D and an increased risk of falls in the institutionalized elderly. The evidence for an inverse association between serum 25(OH)D and risk of fractures

was inconsistent across studies (three cohorts, 12 case-control studies). There was fair evidence (six RCTs, seven cohort studies and six case-control studies) for an association between serum 25(OH)D concentrations and femoral neck or total hip BMD from observational studies.

Discordance between the findings from observational studies and RCTs could be explained by the inability of observational studies to adjust for all relevant confounders such as general health status or body mass index.

Seventeen RCTs evaluated the efficacy of vitamin D_2 or vitamin D_3 supplementation with or without calcium on bone mineral density. Ten trials were of higher quality. Sixteen trials used vitamin D_3 (doses 300 to 2000 IU/day), and the BMD sites most commonly assessed were lumbar spine and femoral neck. One trial included pre-menopausal women, and the rest of the trials included postmenopausal women and older men. The variability in BMD sites measured, and in the reporting of results across trials, limited synthesis. Vitamin D_3 at doses \geq 500 IU combined with calcium (500 - 1200 mg/day) increased BMD of the lumbar spine (four RCTs), femoral neck (three RCTs) and total body (two RCTs) relative to placebo. The Women's Health Initiative (WHI) trial found a small but significant benefit of vitamin D_3 (400 IU) combined with 1,000 mg of calcium daily on total hip BMD in a subgroup of women who had BMD measured. Vitamin D_3 alone (two RCTs, dose 300 or 400 IU/day) did not have a significant effect on BMD, except for an increase in BMD at the femoral neck in the trial using a dose of 400 IU.

Fifteen RCTs evaluated the effect of vitamin D on fractures in postmenopausal women and older men. Ten trials had higher quality Jadad scores of ≥ 3 . Vitamin D₃ doses ranged from 300 to 800 IU daily and for vitamin D₂, a dose of 1,000 IU/day was used. Vertebral fractures were reported as an outcome in only three trials. Vitamin D₃ supplementation (400 - 800 IU/day) without calcium (five trials) did not reduce the risk of fractures. Vitamin D₃ at doses of 700 - 800 IU/day combined with calcium (500 -1200 mg/day) reduced the risk of non-vertebral fractures (seven RCTs) and hip fractures (seven RCTs). However, in a further subgroup analysis, there was fair evidence from two trials of a benefit on hip fractures in older people living in institutionalized settings (OR 0.69, 95% CI 0.53, 0.90) but the combined effect from five trials in community-dwelling elderly was not significant

Fourteen RCTs evaluated the effect of supplemental vitamin D with or without calcium on falls in postmenopausal women and older men (seven trials in community-dwelling elderly and seven trials in elderly living in institutional settings) with most trials having Jadad quality scores ≥ 3 . Although there was a small overall benefit on falls (OR 0.89, 95% CI 0.80-0.99) when combining 12 trials that provided adequate data, there was inconsistent evidence across all trials. The reduction in falls was significant when six trials that adequately defined and ascertained falls were combined (OR 0.79, 95% CI 0.65-0.96). There was also a benefit on reduction in falls when combining six trials of postmenopausal women (OR 0.80, 95% CI 0.66-0.98) or combining eight RCTs of vitamin D₂/D₃ plus calcium supplementation vs. placebo or calcium (OR 0.84, 95% CI 0.76-0.93). Although individual trials have shown benefit of vitamin D on the incidence of falls in frail elderly institutionalized participants, in a subgroup analysis of trials on participants living in residential settings, the OR was similar to combined results of trials on community-dwelling elderly participants.

Limitations of trials reporting fractures or falls included poor compliance with vitamin D supplements, inadequate assessment of vitamin D status, methods used to ascertain falls, and losses to followup of over 20 percent, an important methodological limitation that can bias the

treatment effect. Very few of the trials provided an adequate description of allocation concealment.

Higher doses of vitamin D or higher compliance rates and achievement of higher serum 25(OH)D levels, may be required to demonstrate consistent benefits on the incidence of fractures and falls. It is also possible that only specific subgroups like the frail elderly with low vitamin D status will experience a significant reduction in fractures and falls. We did not have access to individual patient data and were therefore not able to adjust for differences in patient populations between RCTs.

We did not identify any systematic reviews relevant to question four, regarding the level of sun exposure sufficient to maintain 25(OH)D concentrations but that minimizes the risk of melanoma or non-melanoma skin cancer. This highlights an area for future research. Suggested sun exposure times for vitamin D synthesis will vary with individual and environmental characteristics such as latitude and skin pigmentation (melanin).

We identified 22 RCTs that reported data on adverse events associated with vitamin D supplementation. Of these, 12 RCTs were of higher quality. Nineteen trials were conducted in adults, with only three trials in infants and children. Most of the trials were not designed to evaluate harms, were of small sample size and had short duration of exposure to vitamin D. In the adult trials, daily doses ranged from 400 to 4000 IU/day of vitamin D₃ and 5,000 to 10,000 IU of vitamin D₂. There was a small absolute increase in kidney stones in the WHI trial in postmenopausal women who were given 400 IU vitamin D₃ plus 1,000 mg of calcium per day, corresponding to 5.7 events per 10,000 women years of exposure. There is fair evidence that vitamin D doses above current dietary reference intakes were well tolerated. However, most trials were not adequately powered to detect adverse events.

Research Needs and Future Directions

Based on the results of the evidence synthesis, we identified the following vitamin D research needs:

- 1. Validation of laboratory assays of 25(OH)D measurement. Standard reference preparations are needed to reduce the imprecision between methods and laboratories so that serum 25(OH)D concentrations can be used to define thresholds associated with adequate vitamin D status in terms of meaningful physiological outcomes across the life cycle.
- 2. **Consensus on endpoints of vitamin D adequacy and insufficiency.** The vitamin D research community needs to reach consensus on which physiological outcomes are meaningful measures of vitamin D adequacy in infants, children, adolescents, women of reproductive age and older adults
- 3. **Dose-response relationship of vitamin D in infants, children, pregnant and lactating women.** There are few data on the effect of incremental doses of vitamin D from fortified foods and supplementation on vitamin D and calcium metabolism in infants, pregnant and lactating women, due to a lack of controlled clinical trials, and further research is needed.

- 4. **Bone health outcome data on infants, children and adolescents.** High quality randomized trials on bone health outcomes and the safety of vitamin D in infants, children and adolescents are needed to confidently determine adequate levels of intake and those levels that may pose a risk for toxicity. Additional research is needed to more accurately determine the levels of vitamin D intake required to confidently eliminate all cases of rickets in North America.
- 5. **Consistent and clear reporting of efficacy and harms data in vitamin D trials.** Consistent and clear reporting of bone health outcomes and harms across trials is needed to facilitate synthesis of the evidence in this area.
- 6. **High quality studies in health disparity populations.** High quality studies in African Americans, Hispanic Americans, Native Americans and Alaska Natives are needed to evaluate the association between specific 25(OH)D concentrations and bone health outcomes over the life span.
- 7. **Better understanding of the modifiers of vitamin D effect.** Additional research on the effect modifiers of serum 25(OH)D status such as latitude, dietary intake, age and body mass index is needed.
- 8. **Identification of indicators of vitamin D toxicity.** Sensitive and specific indices of the risk of toxicity need to be developed.
- 9. **Review of vitamin D response and benefit-risks from UV exposure.** A focused systematic review of sun exposure literature is needed to evaluate the potential benefits and harms of UV-B exposure that provides adequate vitamin D photosynthesis.

Evidence Report

Chapter 1. Introduction

Overview

Vitamin D plays an essential role in calcium homeostasis and the development and maintenance of the skeleton. The main source of vitamin D is the cutaneous synthesis of previtamin D_3 from 7-dehydrocholesterol through exposure to ultraviolet B (UV-B) light, in the wavelength 290-320 nm. When sun exposure is limited (e.g., during winter months), dietary sources, such as oily fish, fortified foods or dietary supplements, and vitamin D stores help maintain serum 25(OH)D concentrations.

Circulating 25 hydroxyvitamin D [25(OH)D] is a commonly used indicator of vitamin D status. Different approaches to increase vitamin D stores and serum 25(OH)D levels (solar UV-B exposure, dietary sources and vitamin D supplements) have variable efficacy and depend on individual characteristics such as body mass index (BMI), age or race as well as environmental factors such as latitude (for UV-B exposure). Although vitamin D is an important determinant of bone health, there is no currently accepted definition of the optimal concentration of serum 25(OH)D for use as an indicator for bone health throughout life. There is conflicting evidence on both the functional consequences of low serum 25(OH)D concentrations on bone health outcomes and the efficacy of vitamin D supplementation to prevent fractures and falls. A systematic review was conducted to address these issues and to identify areas that require further research.

Objectives

The purpose of this report was to systematically review the literature on the effectiveness and safety of vitamin D relevant to bone health and to address the following objectives put forth by the Agency for Healthcare Research and Quality (AHRQ) and the National Institutes of Health Office of Dietary Supplements (NIH-ODS).

1. To determine if specific concentrations of serum 25(OH)D are associated with bone health outcomes in infants, children, women of reproductive age, postmenopausal women and elderly men.

2. To determine if dietary intake from fortified foods and/or vitamin D supplements, and sun exposure, affect the concentrations of circulating 25(OH)D.

3. To assess the effect of supplemental doses of vitamin D (D_2 considered separately from D_3) on bone mineral density, fractures and fall risk in women of reproductive age, postmenopausal women and elderly men, and to determine if the benefits of supplementation vary with the baseline serum concentration of 25(OH)D.

4. To determine if there is a level of sunlight exposure (time of year, latitude, body mass index (BMI), amount of skin exposed) that is sufficient to maintain adequate serum 25(OH)D levels, but that does not increase the risk of melanoma or non-melanoma skin cancer.

5. To determine if the intake of vitamin D above current reference intakes leads to toxicity e.g., hypercalcemia, calcification of soft tissue and major organs and hypercalciuria.

The findings of the report are intended to assist the AHRQ and the NIH-ODS in identifying areas for future research and in the development of practical information for healthcare providers and consumers.

Background

Osteoporosis is a chronic condition characterized by increased skeletal fragility that predisposes an individual to risk of fracture. Fractures range from asymptomatic vertebral collapse to hip fractures that are accompanied by serious morbidity and potential mortality. In the United States, osteoporosis^a at the hip affects 10 million women and men over the age of 50, with an additional 30 million individuals having osteopenia, a lesser degree of bone loss.¹ There are 1.5 to 2 million incident fractures annually in the U.S., and the direct medical costs of osteoporosis are estimated at \$13.7-20.3 billion (in 2005 dollars).² The burden of fractures is expected to increase over the next two decades due to the increased proportion of the population over the age of 65 years.^{1,3}

Vitamin D plays an essential role in calcium homeostasis and the development and maintenance of the skeleton, is recommended for the prevention of rickets, optimization of peak bone mass, and prevention of bone loss, and may reduce the risk of osteoporosis-related fractures.⁴ In addition, vitamin D has potential extraskeletal effects on the neuromuscular and immune systems.⁵⁻⁸ The increased suggestions about the potential for vitamin D insufficiency in the general population and its potential impact on bone health, and other health outcomes, have highlighted the need to update our current scientific knowledge in the area.

The two main sources of vitamin D are dietary intake and skin synthesis in response to exposure to ultraviolet B light (290-320 nm). Food sources of vitamin D include fatty fish, egg yolks, fish liver oils and foods fortified with vitamin D such as milk, margarine, some cereals and yogurts as well as some fruit juices, soy and rice beverages. Since few foods provide a natural source of vitamin D and food fortification is variable, sunlight is thought to constitute the main source of vitamin D worldwide.⁹ The amount of vitamin D synthesized in the skin varies by factors such as latitude, season, time of day, degree of skin exposure, use of sunscreen, and skin pigmentation or race. Previous estimates suggest that a single minimal erythemal skin dose of simulated sunlight will raise circulating levels of 25(OH)D comparable to ingestion of 10,000 to 25,000 IU of vitamin D₃.¹⁰

^a Using the definition of osteoporosis that reports an individual's bone mineral density relative to a standard reference population of young adults (at peak bone mass) and defines osteoporosis as a BMD \geq 2.5 standard deviations below the mean of the reference population, and osteopenia as 1 to < 2.5 SD below the mean of the reference population.

Role of Vitamin D in Bone Health

The principal physiologic role of vitamin D is to maintain calcium homeostasis although it also has potential non-calcemic actions.¹¹ Its principal sites of hormonal action are the intestine, where it increases calcium absorption, and bone. Vitamin D ensures the mineralization of the organic matrix of bone, and also mediates the release of calcium and phosphate from bone to achieve mineral homeostasis.

In the classical endocrine pathway, vitamin D enters the circulation attached to a D-binding protein, is first hydroxylated in the liver to 25(OH)D and then in the kidney to form the active metabolite, 1,25 dihydroxyvitamin D (1,25-(OH)₂D) or calcitriol. The production of calcitriol is stimulated by parathyroid hormone (PTH), and decreased by calcium.¹² Calcitriol also downregulates its own production. 1,25-(OH)₂D exerts its effects through the vitamin D receptor leading to gene expression and by more immediate effects mediated by second messengers.¹² Calcitriol and the vitamin D receptor are essential for active calcium absorption from the gut, longitudinal bone growth and the activity of osteoblasts (cells that form bone) and osteoclasts (cells that resorb bone). In osteoblasts, vitamin D receptor activation induces expression of the ligand RANKL (receptor activator of nuclear factor kappa beta ligand) on their surface membrane. Interaction of RANKL with its receptor, RANK, on preosteoclasts induces differentiation and activation of osteoclasts.¹³

The enzyme that catalyzes the synthesis of $1,25-(OH)_2D$ in the kidney, 25-hydroxyvitamin D_3 -1- α -hydroxylase, is also expressed in other tissues and cells such as colon, prostate, mammary gland, macrophages, antigen-presenting cells, osteoblasts and keratinocytes, resulting in extrarenal production of calcitriol.⁵ Vitamin D receptor (VDR) expression is also widespread, and many genes encoding proteins involved in the regulation of cell proliferation, differentiation and apoptosis (programmed cell death) contain vitamin D responsive elements. In addition to its calcemic actions, calcitriol has potential immunomodulatory and antiproliferative effects through autocrine and paracrine pathways. These actions have implications for its potential use as a preventive or therapeutic agent in cancer and other chronic conditions, as well as a role in innate immunity.⁵⁻⁷

Vitamin D promotes active transport of calcium predominantly from the small intestine. At higher calcium loads, more calcium is absorbed by passive absorption, and there is less dependency on vitamin D.

In the vitamin D deficiency state, calcium absorption from the gastrointestinal tract is decreased.¹⁴ A low serum calcium stimulates the production of PTH which regulates calcium homeostasis by increasing the conversion of vitamin D to its active form. This in turn mobilizes calcium from bone, increases intestinal calcium absorption, and decreases calcium excretion.

The decline in estrogen that occurs after menopause is associated with a negative calcium balance, as a result of decreased calcium absorption and increased urinary calcium loss. Menopause is also associated with increased bone turnover, bone loss and reductions in circulating total $1,25-(OH)_2$ D concentrations. The effect of menopause on PTH is less clear, with some studies suggesting that estrogen may modulate PTH secretion directly.

The active metabolite of vitamin D is important for the transport of calcium across the placenta in order to provide the fetus with mineral, especially during the last trimester. During pregnancy, fractional calcium absorption increases from 35 (non-pregnant state) to 60 percent

during the third trimester. Serum 1,25-(OH)₂D concentrations increase to facilitate the increased calcium absorption although the underlying mechanism is not fully understood, and increased serum PTH concentrations have not been demonstrated.¹⁵

During lactation, neither 1,25-(OH)₂D serum concentrations nor calcium absorption are increased. The usual daily loss of calcium ranges from 280-400 mg and in order to meet these demands, skeletal calcium is released by temporary bone demineralization. Bone demineralization is reversible following weaning.^{16,17} The extent to which the adaptive processes in calcium homeostasis that occur during pregnancy and lactation depend on maternal vitamin D status, and how this impacts on the mother's bone health, has not been well studied.

Consequences of Vitamin D Deficiency on Bone Health

Vitamin D deficiency is associated with increased bone remodeling which contributes to structural damage, including increased cortical porosity. During skeletal development and growth, severe vitamin D deficiency results in rickets, a mineralization defect of the growth plate.¹⁸ The manifestations of rickets include growth failure, muscle weakness, fractures and skeletal deformities. Severe degrees of vitamin D deficiency in the adult result in impaired mineralization of new bone (osteoid) and osteomalacia.

Less severe degrees of vitamin D deficiency lead to secondary hyperparathyroidism. PTH secretion is stimulated to maintain serum calcium levels and results in increased bone turnover and bone loss, and may lead to osteoporosis.

There is a growing recognition that milder or subclinical degrees of vitamin D deficiency, termed insufficiency, may also be associated with suboptimal health outcomes. Various definitions for both vitamin D deficiency and insufficiency have been proposed that may depend on the particular 25(OH)D assay used as well as the functional outcome measured. There is no clear consensus on the optimal definitions of either vitamin D deficiency or insufficiency. Recent relatively high prevalence estimates of vitamin D insufficiency in the general population^{19,20}may be attributed to the use of higher 25(OH)D thresholds to define low vitamin D status, compared to previously used thresholds.

Populations at Risk of Vitamin D Deficiency

Overt vitamin D deficiency in the general population is low.^{21,22} Although vitamin D deficient or nutritional rickets was thought to have been eliminated, contemporary cases have been reported in the literature. It has not been possible to confirm whether the reported cases represent an actual increase in prevalence of rickets over time or reflect an increased awareness of the disease.^{23,24} Vitamin D-deficiency rickets has been noted more often in dark skinned infants who are breast-fed by mothers who are not vitamin D replete. Infants who are exclusively breast-fed and those whose primary milk source is human milk are at risk.²⁵⁻²⁷ However, a preliminary study suggests that infants who are breast-fed by vitamin D replete mothers taking high doses of supplemental vitamin D₃ achieve similar circulating vitamin 25(OH)D levels as those infants receiving oral vitamin D₃.²⁸

Older adults manifest vitamin D insufficiency or deficiency for a variety of reasons, including less efficient skin synthesis of vitamin D₃ and a lack of sunlight exposure.^{10,29-32} The prevalence of vitamin D deficiency in cohorts of hip fracture patients has been reported at 50% (serum $25(OH)D \le 30 \text{ nmol/L}$)²⁹ and 69% (serum $25(OH)D \le 50 \text{ nmol/L}$).^{29,33,34} A high prevalence of vitamin D deficiency has also been noted in medical inpatients and shut-in individuals.^{35,36} Vitamin D deficiency is also more common in adults who cover their skin for cultural reasons and dark skinned individuals.^{10,29,33,34,36-39}

At latitudes above 42 degrees N, ultraviolet energy is inadequate in winter months for the photoconversion of 7-dehydrocholesterol to previtamin D_3 . As a result, even in the general population, the prevalence of vitamin D insufficiency and deficiency increases during the winter months.¹⁹ Large seasonal fluctuations of circulating 25(OH)D concentrations can occur, and summer sun exposure may not sustain adequate vitamin D levels over the winter months in northern latitudes for most individuals.⁴⁰

Definitions of Optimal Vitamin D Status for Bone Health

Serum 25(OH)D, the most abundant circulating precursor of active vitamin D, is the most widely accepted indicator of vitamin D status and reflects combined contributions from cutaneous synthesis, and dietary intake including fortified foods and supplemental sources of vitamin D. Serum 25(OH)D has a half-life of approximately two to three weeks, and varies over a wide range. In contrast, the active form of vitamin D, 1,25-(OH)₂D, has a short circulating half-life and is tightly regulated over a narrow range by parathyroid hormone, calcium and phosphate. Serum 1,25-(OH)₂D is not a good measure of vitamin D status since a decrease may not occur until vitamin D deficiency is severe.

There is considerable debate on how best to define adequate vitamin D status for bone health. Various cutpoints of serum 25(OH)D concentrations have been proposed ranging from 40 to 120 nmol/L. This confusion has arisen from two main sources: differences in the functional endpoint (e.g., fractures, serum PTH) and differences in the analytical methods to measure serum 25(OH)D.⁴¹

Endpoints to help define adequate vitamin D status for bone health range from biochemical markers (PTH) and other surrogate markers (e.g., BMD) to clinical endpoints such as fractures. For example, serum 25(OH)D concentrations below 20 to 25 nmol/L have been associated with an increased risk of clinical, radiological and histological changes of osteomalacia and rickets. Concentrations above which bone loss is minimized and fracture risk decreased are other endpoints that have been used. Bischoff found the association between serum 25(OH)D concentrations and BMD had a steep positive slope in the reference range, reaching a plateau at a concentration of 90 to 100 nmol/L in an older Caucasian population.⁴²

As serum 25(OH)D levels increase, serum PTH falls and then levels off. The threshold concentration of 25(OH)D above which there is no further suppression of PTH has also been used to distinguish adequate vitamin D status from vitamin D insufficiency.^{41,43,44}

Another outcome that might exhibit threshold behavior is intestinal calcium absorption. Heaney reported that postmenopausal women (mean age 64 years and BMI 28.8 kg/m²) with serum 25(OH)D concentrations at the low end of the reference range may not be maximizing

their calcium absorption.³⁹ However, another study did not find evidence for a threshold of 25(OH)D in association with calcium absorption.⁴⁵

Measurement of Serum 25(OH)D Concentrations

There are a variety of assays that measure 25(OH)D. Technical challenges in determining an individual's true circulating 25(OH)D level include the protein's hydrophobic and hydrophilic properties and the strength of its binding to vitamin D binding protein. The available assays vary in complexity of sample preparation, the technical expertise required to run the assays, degree of automation and ability for high throughput, and accuracy of detection of total 25(OH)D and individual isoforms as well as other vitamin D metabolites. Assays include competitive protein binding assays (CPBA), radioimmunoassays (RIA), enzyme-linked immunoassays (ELISA), chemiluminescence assays, high performance liquid chromatography (HPLC) with UV detection, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and gas chromatography coupled with mass spectrometry (GC-MS).

The first competitive protein-binding assays (CPBA) required an extraction step, chromatographic clean up for co-extracted contaminants, and radioligand detection. The most recent generation of CPBA includes a chemiluminescent assay that utilizes a specific antibody as a competitive binder and does not require sample extraction. With the availability of commercial assays (e.g., immunoassays), large numbers of samples can be processed rapidly. Chromatographic techniques (HPLC, LC-MS/MS, GC-MS) have the advantage of measuring 25(OH)D₂ and 25(OH)D₃ separately. The highest attainable analytical accuracy may be through the principle of isotope dilution with stable isotope-labeled internal standard compounds and mass spectrometry.^{48,49}

It is apparent that results differ between methods, and that different methods may not recognize 25(OH)D₂ and 25(OH)D₃ equally. Data from the international Vitamin D External Quality Assessment Scheme (DEQAS) provide an indication of the relative performance of participating laboratories.^{50,51} DEQAS and other comparative studies have shown that results can differ between laboratories even using the same method.^{50,52-58} Some studies have reported discordant results in terms of the variability observed, and some have not included an accurate reference method (e.g., LC-MS/MS or HPLC). Even within a particular technique such as RIA, different sources of antibodies may vary in specificity and the ability to detect each isoform, and extraction or purification procedures may also differ.⁵⁴ Some RIA assays underestimate 25(OH)D₂. There are no commercially available standard reference preparations or calibrating materials to help reduce the variability of results between methods and/or laboratories, or to alert the laboratory of any deviation from the true value. Until we can reliably measure serum 25(OH)D concentrations, this important issue must be considered when defining a cut-off point for adequate vitamin D status. It is also possible that assay-specific decision limits may be required in order to define appropriate thresholds, providing further challenges in implementation of recommendations.⁵⁹

Vitamin D Supplementation

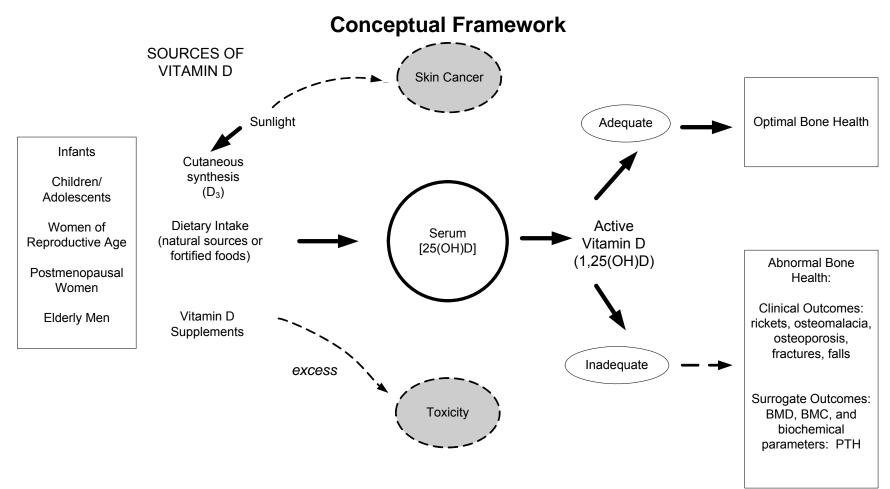
Vitamin D₃ (cholecalciferol) is a naturally occurring form of vitamin D. Vitamin D₂ (ergocalciferol) is found in some plants, dietary supplements, and multivitamins. Both forms of vitamin D are biologically inert and must undergo hydroxylation in the liver and kidneys (or in extra-renal sites) to produce the active metabolite. The average increment in serum 25(OH)D concentrations has been estimated at 1-2 nmol/L for every 40 IU (1 microgram) of vitamin D₃ given as an oral dose, depending on baseline 25(OH)D concentrations. Heaney demonstrated that in young men (mean age 38.7 years and BMI 26.2 (2.4) kg/m²), 40 IU of vitamin D₃ (1 microgram) resulted in an increment of 0.7 nmol/L or less when given to individuals with higher baseline levels of 70 nmol/L.⁶⁰ Some studies have reported that vitamin D₂ supplements is less effective than vitamin D₃ (cholecalciferol) in terms of the effect on serum 25(OH)D concentrations, suggesting that vitamin D₂ and D₃ may be utilized differently by humans.⁶¹ The two isoforms may be metabolized differently, and vitamin D₂ has diminished binding to vitamin D binding proteins in plasma.⁶²

Current Dietary Reference Intakes for Vitamin D

The 1997 Institute of Medicine (IOM) Committee was unable to establish estimated average requirements (EAR) on which to base recommended daily allowances (RDA) for vitamin D. The various sources that contribute to circulating 25(OH)D concentrations make this a challenge, and insufficient studies were available to define an RDA. Adequate intakes (AI) were provided instead. Adequate intakes are the amount needed to maintain a defined nutritional state or criterion of adequacy e.g., prevention of rickets or osteomalacia, in all members of a specific healthy population.⁴ Current dietary reference values are based on vitamin D intakes associated with total circulating 25(OH)D levels. The Institute of Medicine's adequate reference intakes for vitamin D are: 200 IU (5 µg/day) for children from infancy to 19 years; 200 IU (5 µg/day) for individuals aged 19 to 50 years; 400 IU/day (10µg/day) for adults 51 to 70 years of age; and 600 IU/day for adults over the age of $70.^{4,63}$ The AIs for children up to 19 years and adults aged 19 to 50 years represent decreases from prior reference intakes of 400 IU.^{4,63} The AI for infants is based primarily on data from the United States, Norway and China that showed a vitamin D intake \geq 200 IU will prevent physical signs of vitamin D deficiency and maintain serum 25(OH)D above 27.5 nmol/L.⁶³ Vitamin D intakes required for optimal bone health are less well-defined for children and adult populations, especially for those living at northern latitudes.

The more recently published 2005 Dietary Guidelines for Americans (for individuals two years of age or older) recommend higher daily dietary vitamin D intakes (1,000 IU) for individuals who are exposed to insufficient UV-B light, older adults, and people with dark skin.⁶⁴ Concerns about toxicity include the potential for high vitamin D intakes to cause hypercalcemia, hypercalciuria, renal stones and soft tissue calcification. The current tolerable upper limit of vitamin D intake for infants is 1,000 IU and for children and adults, including pregnant and lactating women, is 2,000 IU.⁴

Summary


Research has helped clarify the role of vitamin D in bone health but a number of evidence gaps exist. The optimal level of circulating 25(OH)D required for bone health may vary depending on the functional outcome. There are considerable technical problems related to the measurement of 25(OH)D concentrations, including variability in assays and a lack of standardization, that contribute to heterogeneous results and limit pooling of data. The uncertainty surrounding biochemical evidence of vitamin D insufficiency or deficiency and its relation to clinical endpoints requires clarification. In addition, the evidence for efficacy of vitamin D supplementation for the prevention of fractures and falls is conflicting and requires a systematic review, given recent large randomized trials. The safety of UV exposure, food fortification and supplementation in different age groups also requires a systematic assessment.

Chapter 2. Methods

Key Questions Addressed in This Report

The University of Ottawa EPC's evidence report on Vitamin D is based on a systematic review of the scientific literature. A technical expert panel was recruited to help refine key questions and provide expertise to the review team during the review process. The finalized questions were:

- 1. Are specific circulating concentrations of 25(OH)D associated with the following health outcomes in:
 - A. Children: rickets, bone mineral density (BMD) or bone mineral content (BMC), fractures, parathyroid hormone (PTH)?
 - B. Women of reproductive age (includes pregnant and lactating women): BMD, calcaneal ultrasound, fractures, calcium absorption, PTH?
 - C. Elderly men and postmenopausal women: BMD, fractures, falls?
- 2. Does dietary intake (fortified foods and/or vitamin D supplementation) or sun exposure affect circulating concentrations of 25(OH)D?
 - A. Does this vary with different age groups, ethnicity, use of sunscreen, geography and/or body mass index (BMI)?
 - B. What are the effects of fortified foods on circulating 25(OH)D concentrations?
 - C. What is the effect of sun exposure and vitamin D supplementation on levels of serum 25(OH)D?
- 3. What is the evidence regarding the effect of supplemental doses of vitamin D on bone mineral density, fractures and fall risk in:
 - A. Women of reproductive age and postmenopausal women?
 - B. Elderly men?
 - C. Is there variation with baseline levels of 25(OH)D?
- 4. Is there a level of sunlight exposure (time of year, latitude, BMI, amount of skin exposed) that is sufficient to maintain adequate vitamin D levels, but does not increase the risk of melanoma or non-melanoma skin cancer?
- 5. Does intake of vitamin D above current reference intakes lead to toxicities (e.g., hypercalcemia, hypercalciuria, calcification of soft tissue or major organs, kidney stones)?

Figure 1. Conceptual Framework for Evaluation of the Effectiveness and Safety of Vitamin D in Relation to Bone Health.

Serum 25(OH)D levels reflect cutaneous synthesis and dietary intake of vitamin D including fortified foods and supplements. For the purposes of this review, only outcomes related to bone health are considered although it is recognized that vitamin D has pleiotropic effects in the body. Outcomes assessed include fractures (related to osteoporosis or impaired mineralization), falls, and surrogate outcomes such as bone mineral density (e.g., areal or volumetric BMD), bone mineral content (BMC) and biochemical parameters such as parathyroid hormone (PTH). For women of reproductive age, calcaneal ultrasound and calcium absorption were also identified as outcomes. Note that serum 25(OH)D measurements vary depending on the particular assay used as well as the laboratory and/or operator, suggesting the need for standardization or method/laboratory-specific decision limits for vitamin D deficiency or insufficiency.

Study Identification

Search Strategy

An initial search for systematic reviews related to vitamin D was conducted, and the review team and Technical Expert Panel (TEP) identified reviews relevant to each of the five research questions. These aided in the development of the search strategy for primary studies. Conceptual analysis was undertaken by one information specialist, and translation of the concepts and the Boolean logic of their combinations were confirmed by a second information specialist. No language restrictions were applied. Using the Ovid interface, the following databases were searched: MEDLINE ® (1966 to June Week 3 2006); Embase (2002 to 2006 Week 25); CINAHL (1982 to June Week 4, 2006); AMED (1985 to June 2006); Biological Abstracts (1990 to February 2005); and The Cochrane Central Register of Controlled Trials (CENTRAL; 2nd Quarter 2006). The MEDLINE ® search strategy is in Appendix A^{*}. Adjustments were made to the search when run in other databases to account for differences in indexing. All records were downloaded and imported into the Reference Manager software, and duplicate records were removed. This review underwent a formal update process following completion of a first draft report and prior to final submission with initial searches run in 2005. The dates of the initial search were as follows: MEDLINE ® (1966 to July Week 4 2005); Embase (2002 to 2005 Week 32); CINAHL (1982 to March Week 4, 2005); AMED (1985 to April 2005); Biological Abstracts (1990 to February 2005); and The Cochrane Central Register of Controlled Trials (CENTRAL; 1st Quarter 2005).

Eligibility Criteria

Published English-language studies, examining the safety and/or efficacy of vitamin D in humans, were eligible for inclusion, as follows:

- The association between serum 25(OH)D concentrations and bone health outcomes was examined in the following populations: 1) children (0 to 18 years); 2) women of reproductive age (19 to 49 years) and; 3) elderly men (≥65 years) and postmenopausal women (50+ years). Bone health outcomes included: BMD, BMC, fractures, falls, performance measures related to falls (e.g., muscle strength or balance) (age group 3 only), calcium absorption (age group 2), calcaneal ultrasound (age group 2), PTH (age groups 1 and 2), rickets (age group 1). Study designs: RCTs, prospective cohorts, beforeafter and case-control studies.
- The effect of vitamin D from dietary sources (including fortified foods and/or vitamin D₂ or D₃ supplementation) and sun exposure, on serum 25(OH)D concentrations was examined in the age groups listed above. Vitamin D₂ and D₃ were evaluated separately. Study designs: RCTs of dietary intake/supplementation/sun exposure interventions.

^{*} Appendixes cited in this report are available at http://www.ahrq.gov/clinic/tp/vitadtp.htm.

- The effect of supplemental vitamin D₂ or D₃ alone or in combination with calcium on bone mineral density, fractures, and/or falls was examined in: 1) women of reproductive age (19 to 49 years); 2) postmenopausal women (≥ 50 years) and; 3) elderly men (≥ 65 years). Study designs: RCTs.
- 4. The relation between sun exposure, serum 25(OH)D concentrations and the risk of nonmelanoma and/or melanoma skin cancer was evaluated. Study designs: existing systematic reviews.
- 5. The potential toxicity of supplemental vitamin D in doses above the adequate reference intakes (e.g., hypercalcemia, nephrolithiasis, soft tissue calcification) was examined in different age groups. Study designs: RCTs.

Systematic and narrative reviews were excluded for all questions except for question 4. However, recent reviews were hand searched for additional potential primary studies that may be pertinent to all questions. Randomized trials of other osteoporosis therapies that included calcium and vitamin D as a control arm were not included unless they also included a placebo or lower dose vitamin D arm that would allow a comparison. Studies evaluating the efficacy of vitamin D for the treatment of secondary causes of osteoporosis (e.g., glucocorticoid-induced osteoporosis, renal and liver disease) or for treatment of vitamin Ddependent rickets were also not considered, in an effort to minimize clinical heterogeneity and since non-dietary sources of treatment are often used as the primary tereatment for some of these conditions. We restricted our inclusion criteria to studies of vitamin D₂ (ergocalciferol) or D₃ (cholecalciferol). Studies that evaluated the efficacy of the vitamin D preparations calcitriol or alphacalcidol were not included since they are not considered nutritional supplements and have a different safety profile than native vitamin D.

Study Selection Process

The results of the literature search were uploaded to the software program Trialstat SRS version 4.0 along with screening questions developed by the review team and any supplemental instructions (Appendix B^{*}). Prior to the formal screening process, a calibration exercise was undertaken to pilot and refine the screening process. The results of the literature search were assessed using a three-step process. First, bibliographic records (i.e., title, authors, key words, abstract) were screened, using broad screening criteria, by one reviewer (Appendix B). All potentially relevant records, and those records that did not contain enough information to determine eligibility (e.g., no available abstract) were retained. The reasons for exclusion were noted using a modified QUOROM format (Figure 2).

Full text relevance screening was performed independently by two reviewers and discrepancies resolved by consensus or third party (Appendix B). Records were not masked given the equivocal evidence regarding the benefits of this practice.⁶⁵ Reasons for exclusion were noted. Relevant studies were then evaluated to determine study design and categorized accordingly for inclusion by question. The level of evidence reviewed was limited to RCTs where feasible since systematic bias is minimized in RCTs compared with all other study designs

^{*} Appendixes cited in this report are available at http://www.ahrq.gov/clinic/tp/vitadtp.htm.

(e.g., cross-sectional, retrospective cohort). However, because of the paucity of RCT evidence addressing the association between circulating 25(OH)D concentrations and bone health outcomes, particularly in infants and young children, inclusion criteria were broadened to include single prospective cohorts, case-control, and before-after study designs for question one. Question four was restricted to existing systematic reviews to limit scope.

Data Abstraction

Following a calibration exercise, two reviewers independently abstracted relevant information from each included study using a data abstraction form developed a priori for this review (Appendix B^{*}). One reviewer completed primary extraction, which was then verified by a second reviewer. Conflicts were discussed and resolved by consensus. Abstracted data included study characteristics, population characteristics, the type of 25(OH)D assay, source of vitamin (i.e., vitamin D₂ or D₃ supplements, including dosing regimen and route of administration; sun or UV exposure; dietary intake), use of supplemental calcium, and relevant outcomes such as fractures, BMD, falls and toxicity.

Data Assessment

Quality Assessment

As part of RCT quality assessment, the Jadad scale was used (Appendix B) and scored by an experienced reviewer (Appendixes D and E). This validated scale assesses the methods used to generate random assignments and double blinding, and also scores whether there is a description of dropouts and withdrawals by intervention group.⁶⁶ The scoring ranges from 1 to 5, with higher scores indicating higher quality. An a priori threshold scheme was used for sensitivity analysis: a Jadad total score of ≥ 3 was used to indicate studies of higher quality. In addition, allocation concealment was assessed as adequate (=1), inadequate (=2) or unclear (=3) (Appendix B).⁶⁷

To assess the quality of the observational studies (prospective cohorts and case-controls), we used a grading system adapted from Harris et al.⁶⁸ Quality assessment of observational studies included variables such as representativeness of the study population, whether bias and confounding were controlled for in the study design and reported, and description of losses to followup.

An aggregate level of evidence (good, fair, inconsistent) was rated based on quantity, quality and consistency of results. As an example, for assessment of an association of circulating 25(OH)D concentrations with a bone health outcome, good evidence was defined as evidence for or against an association that was consistent across studies with at least one study graded as a higher quality study. Fair was defined by evidence sufficient to determine an association, but limited by consistency, quantity, or quality of studies (i.e., no studies graded as good).

^{*} Appendixes cited in this report are available at http://www.ahrq.gov/clinic/tp/vitadtp.htm.

Inconsistent evidence was defined by an inability to make a conclusion for or against an association in that studies had conflicting results.⁶⁹

Qualitative Data Synthesis

Outcomes were summarized using a qualitative data synthesis for each study. A description of each study that included information pertaining to sample size and demographics, setting, funding source, 25(OH)D concentrations and assay used, intervention (form of vitamin D) and comparator characteristics, study quality, details of matching or methods of adjustment, and confounders (where applicable) were recorded and summarized in the text, and/or summary tables throughout the report. These methods were used to help generate hypotheses and to identify any heterogeneity of study populations or in the reporting of data within the published reports.

For the purpose of this review, we defined vitamin D deficiency as a serum 25(OH)D measurement below 30 nmol/L, recognizing that variable definitions have been used in the literature including values of 50 nmol/L to > 80 nmol/L (32 ng/dL), and that there is potentially large error or variability in measurement depending on the particular assay used. Similarly, vitamin D insufficiency may be defined using different values. A cutpoint of 30 nmol/L for vitamin D deficiency was used in this report to assist in classifying trials to report the results, and also when conducting subgroup analyses of trials that included vitamin D-deficient populations. In reporting individual study results, the investigator-defined definitions of vitamin D deficiency or insufficiency were noted and reported. We did not attempt to calibrate different 25(OH)D assays. As outlined in the introduction, variability may exist even when laboratories are using the same technique.

Quantitative Synthesis

For outcomes where meta-analysis was deemed appropriate, we extracted quantitative data (e.g., number of subjects in each group, mean, standard deviation) from trials, using a standardized data extraction form that included intervention characteristics (coded for vitamin D source, type of vitamin D and unit of dosing) vitamin D intake and baseline and outcome variables for all followup intervals including unit of measurement and assay used for serum 25(OH)D measurement.

Where data were only available in graph form, we attempted to extract data for the report. If relevant data (e.g., standard deviation) were not reported adequately, we contacted authors to obtain the missing data. A list of additional data received by authors is in Appendix F^* .

We calculated standard deviation from standard errors or 95 percent confidence intervals, and the absolute and percent change for continuous outcomes (e.g., serum 25(OH)D) from baseline and end of study data using standard formulae.

To avoid differences in the reporting of units for serum 25(OH)D concentrations (i.e., nmol/L, ng/mL, μ g/dL, μ g/L and ng/dL) all values were converted to nmol/L, the unit that was

^{*} Appendixes cited in this report are available at http://www.ahrq.gov/clinic/tp/vitadtp.htm.

used for data synthesis. The conversion formula is 1 ng/mL = 2.5 nmol/L. To limit the variable reporting in vitamin D dosing (e.g., nmol, IU, ug and mg), IU was chosen as the standard unit used for meta-analysis and all other units were converted using a standard formula. The conversion formula for micrograms is 1 ug = 40 IU.

Serum 25(OH)D outcomes included absolute change values (nmol/L). Fracture outcomes were classified as vertebral, non-vertebral, hip or total fractures. BMD outcomes included absolute values (e.g., areal BMD, g/cm^2), mean percent change from baseline or the difference in the mean percent change from baseline for the treatment versus comparator groups.

Followup intervals were recorded for each trial. It is common for variation to exist between trials with regard to length of followup intervals. For the purpose of meta-analyses, the most distal followup and the change between the last followup and the baseline were applied.

Statistical Analyses

For the effect measures for continuous outcomes (e.g., serum 25(OH)D concentrations) the difference in means between different treatment groups was used for the meta-analyses. The 'difference in means' is a standard statistic that measures the absolute difference between the mean values in the two groups in a clinical trial. Absolute change in 25(OH)D concentrations was used for quantitative pooling of 25(OH)D. For the pooling of BMD results, the percent change in BMD from baseline in the treatment versus control or placebo was used as the unit of analysis since this is clinically relevant.

For continuous outcomes, the difference in means and standard deviations were calculated for each individual study. To avoid multiple comparison issues in studies with more than one treatment arm, a weighted average (e.g., 25(OH)D) of similar groups was calculated within the study. A weighted average method was used to calculate the 25(OH)D values for the combined treatment group and combined placebo group. The difference in means was then calculated using the weighted averages for the two combined groups. This estimate, with its standard deviation was then used for the meta-analyses. The number in each group was based on intention-to-treat data; however, when these data were not available, we used what was provided in the published report.

For dichotomous outcomes (e.g., fractures, falls), studies were grouped by method of administration and type of vitamin D as we anticipated different treatment effects with (1) oral versus injectable vitamin D, (2) type of vitamin D (D_2 versus D_3) and (3) if calcium was given as a co-intervention. We used these groupings to generate pooled estimates to minimize clinical heterogeneity. The intent-to-treat group or number enrolled at the time of study was used for analyses and when unavailable, we used the number provided in the report. Combined odds ratios were generated using the number of individuals who had an event (e.g., fall or fracture) and not the absolute number of events. This was determined to be a more conservative approach to quantify the effects. For the meta-analysis of fracture and fall outcomes, we pooled studies with different treatment durations and doses.

In all cases, meta-analyses were conducted using a weighted mean method. The fixed effect model was used initially to obtain combined estimates of weighted mean differences and their standard errors. When heterogeneity (p<0.10) was present between studies, the Dersimonian and Laird random-effects method was used to obtain combined estimates across the studies.⁷⁰ The degree of statistical heterogeneity was evaluated for all analyses using the I² statistic.⁷¹⁻⁷³ An I²

of less than 25 percent is consistent with low heterogeneity, 25 to 50 percent moderate heterogeneity, and over 50 percent high heterogeneity.⁷³ When significant heterogeneity was identified, then heterogeneity was explored through subgroup, sensitivity analyses and meta-regression analyses if appropriate. Sources of heterogeneity include methodologic as well as clinical heterogeneity. The interpretation of heterogeneity estimates requires caution especially when small numbers of trials were included.

Publication bias was explored through funnel plots by plotting the relative measures of effect (odds ratio) versus a measure of precision of the estimate such as a standard error or precision (1/standard error).⁷² Funnel plots are scatter plots in which the treatment effects estimated from individual studies, are plotted on the horizontal axis against a measure of study precision on the vertical axis. Asymmetry suggests the possibility of publication bias, although other potential causes of asymmetry exist. The degree of funnel plot asymmetry was measured by the intercept from regression of standard normal deviates against precision, with evidence of asymmetry based on p < 0.1.⁷⁴⁻⁷⁶

Throughout the report, vitamin D or 25(OH)D without a subscript represents either D_2 or D_3 or both isoforms. Wherever possible i.e., when reported in the particular study, the isoform is specified. All interventions are oral, unless it is specifically stated that injected vitamin D was used.

Chapter 3. Results

Results of the Literature Search

The results of the literature search for the original review and for the update are presented in Figure 2. For the updated review that incorporated the original search data, literature searching identified a total of 9150 potentially relevant bibliographic records. The reviewers nominated an additional 59 potentially relevant studies that were subjected to the same screening process as the other records; the majority of these (55) was nominated after the original search and were likely not detected by the original search due to their publication date. After 2,643 duplicate and review articles (systematic and narrative) were removed, 6,566 unique records remained eligible for broad relevance assessment. These reports were evaluated against the eligibility criteria and after the initial screening for relevance, 5,119 records were excluded. The remaining 1,447 reports were then retrieved and subjected to a more detailed relevance assessment using the full text; 765 of the 1,447 reports failed to meet the inclusion criteria as determined by consensus. (Appendix I^{*}) Given the magnitude of the potentially relevant evidence, an additional eligibility criterion of level of evidence was then applied to the 682 remaining studies. The evidence base was limited to RCTs where possible. In total, 515 bibliographic records were excluded from the evidence synthesis as they were deemed to provide an inadequate level of evidence for their respective question.(Appendix J) Question one (the association of 25(OH) D and bone health outcomes) required that study designs other than RCTs be included (e.g., prospective cohort, case-control, and before-after studies). The reasons for exclusion for all other records are listed in the QUOROM flow chart in Figure 2. In total, 167 studies were deemed relevant and provided sufficient level of evidence for the systematic review. Our search strategy did not reveal pertinent reviews for question four. Since our search strategy may not have identified studies in the dermatology or photobiology literature that evaluated the effect of solar UV-B exposure in terms of a minimal erythemal dose and the risk of skin cancer, this was discussed with the Technical Expert Panel. It was decided that a separate search was not feasible for this report.

In total 167 studies (112 RCTs (106 unique trials, 6 companion reports), 19 prospective cohorts (18 unique studies, 1 companion report), 30 case-controls and 6 before-after studies) were included for evidence synthesis.

Study characteristics, interventions and results are presented in tables throughout the report. Where applicable, the order of discussion is the following order of study design: RCTs; clinical controlled trials; prospective cohorts; case-control studies; and before-after studies.

^{*} Appendixes cited in this report are available at http://www.ahrq.gov/clinic/tp/vitadtp.htm.

Figure 2. Modified QUOROM Flow Chart

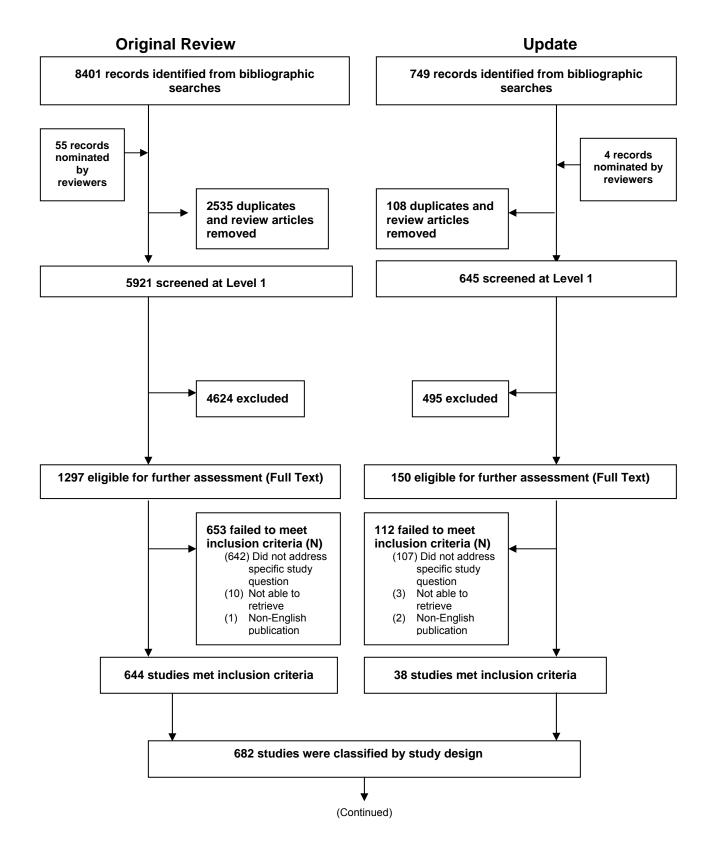
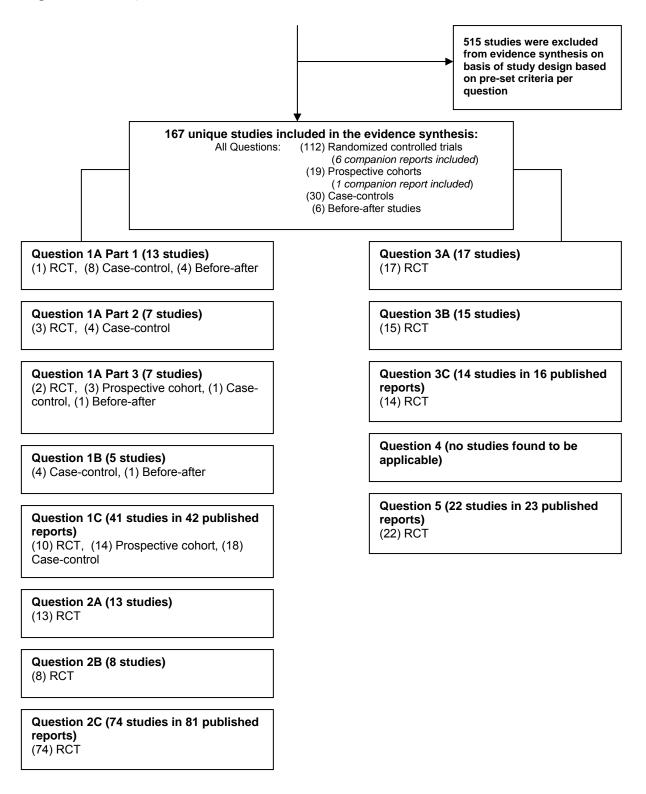



Figure 2. Modified QUOROM Flow Chart – Continued

Note: 74 of the included studies were reported in more than one question. Therefore, the total number of citations across all questions (n=234) exceeds the number of unique included studies (167).

Question 1. Are There Specific Concentrations of Serum 25(OH)D That Are Associated With Bone Health Outcomes in Infants, Children, Women of Reproductive Age, Postmenopausal Women and Elderly Men?

1A. Infants and Children

Question 1A (Part 1). Are There Specific Concentrations of Serum 25(OH)D That Are Associated With Established Vitamin D Deficiency Rickets in Infants and Young Children?

Overview of Relevant Studies

For the purposes of this review, infancy is defined as term birth to 12 months, and young children from one to five years of age. Studies that enrolled older children were included if the majority of children were in the above age groups. For studies on established rickets in infants and young children, 13 studies met our inclusion criteria and assessed the association between serum 25(OH)D and rickets.⁷⁷⁻⁸⁹ Of the 13 studies, there was one RCT,⁷⁷ four before-after studies⁷⁸⁻⁸¹ and eight case-control studies.⁸²⁻⁸⁹ For the RCT, bone health outcomes included improvement in the signs and symptoms of rickets, and serum PTH levels.⁷⁷ The twelve observational studies included rickets as the bone health outcome,^{78-84,84-89} and seven of the 12 studies included assessment of serum PTH,^{78,79,82,84,87,88} as summarized in Table 1. In all studies, children were diagnosed with rickets using clinical and radiological criteria. No studies included BMD, BMC, or fractures as outcomes.

Study characteristics including country and type of vitamin D assay are summarized in the Table 1. All studies except for one case-control study with nine participants⁸² were conducted outside of North America. The North American study was conducted at a northern latitude (Canada, U.S. Midwest). Each study examined serum 25(OH)D concentrations at diagnosis and some included followup measurements during treatment.^{78-81,86,87} Six studies used an RIA assay for serum 25(OH)D assays,^{77,83-86,89} six studies used a CPBA method,^{78-82,87} and one study used an HPLC technique.⁸⁸ We report, in this section, baseline measurements at diagnosis or pre-treatment.

Population characteristics. Children with rickets ranged in age from as young as two months up to 14 years, with most children between 24 and 36 months. In the studies that reported ethnicity, virtually all children were non-white except for two subjects in the one North American study.⁸² The sample sizes ranged from nine⁸² to 123 participants,⁸⁴ with an average of 41. In 12 of the 13 studies, gender was mixed.

Outcome characteristics. For all studies, the diagnosis of rickets was ascertained by radiographic and clinical evidence.^{77-87,89} Serum PTH was measured in seven studies using either RIA or chemiluminescent immunoassays.^{78,79,82,84,87-89} No study evaluated BMC, BMD or fractures.

Study quality. The study quality of the RCT,⁷⁷ four before-after and eight case-control studies ranged from poor to fair with the RCT scoring 1/5 on the Jadad scale (in relation to randomization for treatment).

Qualitative synthesis of individual study results. Six studies reported a mean^{77,78,80,85} or median^{79,88} serum 25(OH)D concentration < 27.5 nmol/L associated with rickets. These studies included measurements by RIA,^{77,85} CPBA⁷⁸⁻⁸⁰ or HPLC.⁸⁸ Five studies reported that children with rickets had a mean 25(OH)D concentration above 27.5 nmol/L (range of means 36 – 50 nmol/L),^{82,84,86,87,89} and the other two studies reported at least some children with serum levels above this value.^{81,83} While 25(OH)D assays differed across the studies, these results suggest that the serum 25(OH)D concentration associated with rickets may be much higher than previously thought. In one study, deficient dietary calcium was the etiology for rickets⁸³ whereas in another study, a mean dietary calcium intake of < 300 mg/d did not alter the Odds Ratio (OR) for rickets.⁸⁴ Given the uncertainty of the dietary calcium measurement, it remains unclear whether the specific concentration of serum 25(OH)D consistent with rickets is confounded by dietary calcium.

In the studies that reported serum PTH, values in children with rickets were elevated above the normal range.^{78,79,82,84,87,89} One study confirmed a negative relation of PTH with 25(OH)D concentrations (r = -0.70),⁸² when cases and controls were analyzed together.

The majority of studies included in this review were from developing countries where dietary calcium intake is low. Low dietary calcium can confound 25(OH)D status and is a major limitation of the studies since some cases of rickets may be attributable to a calcium deficiency. Another limitation is the paucity of studies in children with rickets in North America. The specific concentrations of serum 25(OH)D associated with rickets in North America is uncertain, given the lack of studies in populations with dietary calcium intake similar to North American diets, as well as the different methods used to determine 25(OH)D concentrations. A better understanding of the inter-relationship between 25(OH)D concentrations, calcium and rickets would improve the specific values of 25(OH)D to be used as a biomarker in the diagnosis and treatment of rickets. Only studies of established rickets were included, and other RCTs have evaluated specific 25(OH)D concentrations in relation to the development of rickets. In a rickets prevention study in China, Specker et al. found that 25(OH)D concentrations above 30 nmol/L appeared to prevent rickets in infants with or without vitamin D deficiency at birth.⁹⁰

Summary. Circulating 25(OH)D levels associated with established rickets in infants and young children

Quantity: Six studies (one RCT, three before-after and two case-control studies) reported mean or median 25(OH)D concentrations < 30 nmol/L in children with rickets whereas the other studies reported mean or median values above 30 nmol/L and up to 50 nmol/L. In seven of eight case-control studies, serum 25(OH)D values were lower in the children with rickets compared with controls.

Quality: The study quality of the RCT, four before-after and eight case-control studies ranged from poor to fair (with the RCT scoring 1/5 on the Jadad scale).

Consistency: There is fair evidence for an association between low serum 25(OH)D and established rickets, regardless of assay type (RIA, CPBA, HPLC). There is inconsistent evidence to determine if there is a threshold concentration of serum 25(OH)D above which rickets does not occur.

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Intervention Duration	25(OH)D isoform Measured Assay	Bone Health Outcomes	Results at baseline or diagnosis Serum 25(OH)D (nmol/L) Serum PTH (pmol/L) Serum Ca (mmol/L)
RCTs Cesur (2003) ⁷⁷ 6} Turkey NR	56 Infants with nutritional rickets 36% female 10.7 (6.1) mo (range 3- 36) NR	IG1: vit D 150,000 IU IG2: vit D 300,000 IU IG3: vit D 600,000 IU (single dose) 2 mo	25(OH)D ₃ RIA	Rickets PTH	$\begin{array}{c} 25(OH)D_3 \text{ mean (SD) :} \\ \text{Stage* 1: } 15.8 (6.4) \\ \text{Stage II: } 15.4 (4.8) \\ \text{Stage III: } 14.7 (3.9) \\ \\ \text{PTH mean (SD):} \\ \text{Stage I: } 30 (84) \\ \text{Stage II: } 34.1 (20) \\ \text{Stage III: } 44.3 (25.8) \\ \\ \text{Ca mean (SD)} \\ \text{all patients} \\ 1.9 (0.33) \\ \end{array}$
Before-After St Bhimma (1993) ⁸⁰ South Africa NR	udies 23 Children with rickets: 9 vit D def rickets [25(OH)D < 25 nmol/L] 14 Ca def rickets 10 Phosphopenic rickets 4 Healing/healed rickets Vit D def rickets: 56% female NR (range 1-12 y) vit D def rickets (N = 9): 6.1 (4.2) y NR	5,000-10,000 IU/d vit D ₃ (plus 500-1,000 mg Ca) 12 mo	25(OH)D^ CPBA	Rickets	25(OH)D mean (SD): vit D deficient rickets: 9.3 (8.8) Ca deficient rickets: 45.5 (10) PTH: ND Ca mean (SD) Vit D def rickets: 2.09 (0.27) Ca def rickets: 2.16 (0.28)

Table 1. Serum 25(OH)D Levels in Established Rickets in Infants and Young Children

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Intervention Duration	25(OH)D isoform measured Assay	Bone Health Outcomes	Results at baseline or diagnosis Serum 25(OH)D (nmol/L) Serum PTH (pmol/L) Serum Ca (mmol/L)
Elzouki (1989) ⁸¹ Libya Public/Private	 22 Children < 2 y admitted for treatment of rickets 37.5% female 15 mo (range 3-24 mo) reported only for 16 Libyan children African black 	1-3 h/d of sunshine followed by single IM injection of 600,000 IU vit D ₂ followup median 17 d	25(OH)D [^] CPBA	Rickets	25(OH)D: At diagnosis, 50% of patients had 25(OH)D > 20 nmol/L. Range 4-65 (graph) PTH: ND Ca: ND
Garabedian (1983) ⁷⁸ France/ Belgium NR	20 Infants and children with rickets 60 Controls 65% female Mean age NR Infants and young children (N = 15): range 4-26 mo; Older children (N = 5): range 4-12 y 80% Immigrants from North Africa, Black Africa, Turkey, Portugal, Pakistan	IG1: 2,000 IU/d vit D ₂ IG2: 400 IU/kg vit D ₃ (single dose) 6 mo	25(OH)D [^] CPBA	Rickets PTH (RIA)	25(OH)D mean (SD): all patients: 11.5 (8) PTH: 2-4 X ULN (N=8); values NR Ca mean (SD) All patients: 1.8 (0.27)
Markestad (1984) ⁷⁹ Norway Public	17 Children with rickets NR NR 11 (64.7%) Immigrants from Pakistan, Cape Verde Islands, Turkey, Morocco, Sri Lanka, and West Africa; 6 (35.3%) Norwegians	1,700-4,000 IU vitamin D ₂ / d (reduced to 500-1000 IU in 3 children at 2- 4 wks) 10 wks	25(OH)D^ CPBA	Rickets	25(OH)D median (range): N =9 diagnosed in summer: 21 (4.1- 30.6) N = 8 diagnosed in winter: 12.1 (3.8- 19.4) At baseline, evidence of stimulated PTH in 11/12 (serum PTH or urinary cAMP, values NR) Ca: ND

Table 1 (continued). Serum 25(OH)D Levels in Established Rickets in Infants and Young Children

Author (year) Country	Population, N Gender Mean age	Matching Variables	Duration	25(OH)D Isoform Measured	Bone Health Outcomes	Results at baseline or diagnosis Serum 25(OH)D (nmol/L) Serum PTH (pmol/L)
Funding	Ethnicity			Assay		Serum Ca (mmol/L)
Case-control st Arnaud (1976) ⁸² Canada/ Midwest U.S. Public	 9 Children with mild (n=3), moderate (n=5) and severe (n=1) rickets 9 Controls Rickets: 22% female Controls: NR Moderate rickets (N = 5) Mean age 1.69 (1.03) y Controls: 2.71 (1.7) y All rickets: age range 2 mo – 3.5 y 7 Canadian (5 First Nations, 1 West Indian black, 1 Portuguese) and 2 	Age	Vit D 5,000 IU/d 4 wks	25(OH)D^ CPBA	Rickets PTH	25(OH)D mean (SD) (range): Mild rickets: 45 (7.5) (range 40-52.5) Moderate: 30 (5) Severe: 20 (NR) Controls: 90 (30) Negative association between 25(OH)D and PTH (r=-0.70). Ca mean (SD): ND for mild, moderate, severe subgroups Stage II rickets: 2.4 (0.15) Age matched controls: 2.53 (0.1)
Balasubraman (2003) ⁸⁶ India NR	American (mid NW U.S.)40 Children (N = 24) and adolescents (N = 19) with rickets/osteolmalacia 53 controls (34 children and 19 adolescents)Rickets: 54.1% female Controls: 47.0% femaleChildren: Rickets: median age 33 mo (range 11 – 120) ; Control: median 27 mo (range 6 mo – 84 mo)Adolescents: Rickets: median 198 mo (range 168- 240) Controls: median 156 (range 120- 228)Hindu/Muslim	NR	Cases: 6,000 IU/d vit D or single dose of 600,000 IU 3 mo	25(OH)D [^]	Rickets	25(OH)D mean (SD): Children rickets: 50 (38.9) controls: 61.3 (35.9), NS Adolescents: rickets: 12.6 (7.1) all but one < LLN controls: 46.0 (45.4), p<0.001 PTH: NR Ca mean (SD) Children Rickets: 2.2 (0.3) Controls: 2.4 (0.3) NS Adolescents Rickets: 2.1 (0.2) Controls: 2.3 (0.2), p=0.008

Table 1 (continued). Serum 25(OH)D Levels in Established Rickets in Infants and Young Children

Author (year) Country Funding	Population, N Gender Mean age Ethnicity	Matching variables	Duration	25(OH)D isoform measured Assay	Bone Health Outcomes	Results at baseline or diagnosis Serum 25(OH)D (nmol/L) Serum PTH (pmol/L) Serum Ca (mmol/L)
Dawodu (2005) ⁸⁸ United Arab Emirates Public	38 Children with rickets 50 Historical controls Rickets: 50% female, Controls: 40% female Rickets: 13.5 mo Controls 13.0 mo Arab	Community	NA NA	25(OH)D^ HPLC	iPTH (rickets group only)	25(OH)D median (IQR): Rickets: 8.0 (3.8, 15.3) Controls: 43.8 (25, 64.3), p = 0.001 PTH showed a trend toward negative correlation with 25(OH)D (data NR) Ca median (IQR) Rickets: 2.22 (1.88, 2.35) Controls: 2.4 (2.25, 2.5), p= 0.001
Graff (2004) ⁸⁷ Nigeria NR	15 Children with rickets 15 Controls (unrelated) 60% female Rickets: 46 (22) mo Controls: 47 (22) mo Rickets: 7 Muslim and 8 Christian Controls: 4 Muslim and 11 Christian	Age, sex	Cases: 1,000 mg/d Ca (no vit D supplement) Treatment duration: 6 mo; Followup: 12 mo	25(OH)D [^] CPBA (Nichols)	Rickets PTH (chemiluminescent immunometric assay)	25(OH)D mean (SD): significantly lower in children with rickets Rickets: 37.5 (13.5) Controls: 72.5 (11.5), p<0.001 PTH mean (SD) significantly higher in rickets group; rickets: 32 (33) controls: 4.0 (3.1), p=0.003 Ca mean (SD) Rickets: 2.13 (0.2) Controls: 2.4 (0.1), p<0.001
Molla (2000) ⁸⁵ Kuwait NR	103 Children with rickets 102 Controls NR Rickets: 14.5 (5.2) mo (range 9 mo - 8y) Controls: 15.2 (6.3) mo 96.1% from mothers with Hijab use	Age, sex Socio- ethnic characteristi cs	NA NA	25(OH)D^ RIA	Rickets	25(OH)D mean (SD): significantly lower in children with rickets: Rickets: 26.5 (15.5) Controls: 83.5 (74.75), p<0.0001 PTH: ND Ca, mean (SD) Rickets: 2.24 (0.28) Controls: 2.45 (0.15) p <0.0001

Author (year) Country Funding	Population, N Gender Mean age Ethnicity	Matching variables	Duration	25(OH)D isoform measured Assay	Bone Health Outcomes	Results at baseline or diagnosis Serum 25(OH)D (nmol/L) Serum PTH (pmol/L) Serum Ca (mmol/L)
Oginni (1996) ⁸⁹ Nigeria Public	26 Children with active rickets, 90 healthy controls Rickets: 50% female, Controls: 61% female Mean age NR Children with rickets age range: 1-5 y Nigerian	Age, community	NA NA	25(OH)D^	Rickets PTH (radio- immunometric assay)	25(OH)D mean (SD) (range): significantly lower in rickets group Rickets: 36 (28), range 7-147 Controls: 69 (22), range 32-140, p<0.0002 PTH mean (SD): higher in rickets group; Rickets: 5.9 (6.9), range 0-33.6 Controls: 1.0 (1.2), range 0-4.1, p<0.001 Ca (albumin corrected) mean (SD) Rickets: 2.06 (0.23) Controls: 2.35 (0.14), p<0.001
Thacher (2000) ⁸⁴ Nigeria Public	123 Active rickets 123 Controls 49.6% female Mean age NR Rickets: median (25 th and 75 th percentile) age: 46 (34,63) mo Controls: 42 (25-70) mo Christian/Islam: Rickets: 82/41 Controls: 57/66	Age, sex if < 5 y, weight	NA NA	25(OH)D^	Rickets PTH (RIA)	25(OH)D median (25th and 75th percentile): Rickets: 32 (22, 40); < 30 nmol/L: 37% Controls: 50 (42, 62), p<0.0001 PTH median (25th and 75th percentile): Rickets: 20 (13, 31) Controls: 12 (11,16), p =0.0066 Ca mean (SD) Rickets: 1.93 (0.22) Controls: 2.24 (0.15), p<0.0001

Table 1 (continued). Serum 25(OH)D Levels in Established Rickets in Infants and Young Children

Author (year) Country Funding	Population, N Gender mean Age (SD) Ethnicity	Matching variables	Intervention Duration	25(OH)D isoform measured Assay	Bone Health Outcomes	Results at baseline or diagnosis Serum 25(OH)D (nmol/L) Serum PTH (pmol/L) Serum Ca (mmol/L)			
Thacher (1997) ⁸³	37 Children with active rickets(median duration of 14 mo)37 Healthy controls with	Age, sex	NA NA	25(OH)D^	Rickets	25(OH)D Rickets: levels > LLN in 16/28 (57%); 2/28 (7%) had values < 12.5 nmol/L			
Nigeria	normal weight			RIA		Controls: ND			
NR	47% female					PTH: ND			
	Rickets: 3.16 (1.53) y Controls 3.14 (1.51) y					Ca mean (SD) Rickets: 2.09 (0.30)			
	All Nigerian					Controls: 2.08 (0.31), NS 55% of rickets and 51% of controls were hypocalcemic (< 2.1)			
	s to both or one unspecified isofo					· · · · · · · · · · · · · · · · · · ·			
	* stage I rickets: early phase (serum calcium is low but serum phosphorus is normal); stage II: serum calcium normal due to compensatory hyperparathyroidism; stage III: both serum calcium and phosphorus are low;								
	Ca, calcium; CPBA, competitive protein binding assay; HPLC, high performance liquid chromatography; IQR, interquartile range; IU, international units; LLN,								
	lower limit of normal reference range; mo, month(s); NA, not applicable: ND, not done; NR, not reported; PTH, parathyroid hormone; RIA, radioimmunoassay;								
ULN, upper limit	of normal reference range; vit, v	itamin; y, year		•					

Table 1 (continued). Serum 25(OH)D Levels in Established Rickets in Infants and Young Children

Question 1A (Part 2). Are Specific Circulating Concentrations of 25 Hydroxyvitamin D [25(OH)D] Associated With Bone Health Outcomes in Infants?

Overview of Relevant Study Characteristics and Results

Infancy is defined by the Institute of Medicine as including two subcategories: birth to 6 months and 6 to 12 months.⁴ Seven studies included infants 12 months or younger and assessed the association between serum 25(OH)D and bone health outcomes.⁹¹⁻⁹⁷ Of the studies, there were three RCTs, two in breast-fed infants^{92,93} and one in formula-fed infants,⁹¹ and four case-control studies.⁹⁴⁻⁹⁷

For the three RCTs, bone health outcomes included BMC^{92,93} and serum PTH levels⁹¹⁻⁹³ (Table 2). No RCTs reported results of BMD or evaluated fracture incidence. Four observational studies reported BMC,⁹⁵⁻⁹⁷ BMD,^{96,97} fractures⁹⁴ or PTH (Table 2).⁹⁴⁻⁹⁶

Study characteristics. Of the three RCTs, two were conducted in the U.S.^{92,93} Both of these trials randomized human milk-fed infants to receive vitamin D_2 supplementation (400 IU/d) or placebo. One U.S. RCT was six months in duration,⁹² and the other was 26 weeks long at which time the placebo group were started on supplementation, and both groups were followed until 52 weeks.⁹³ The RCT by Zeghoud et al. was three months in duration, and randomized infants to receive either 500 or 1000 IU/d D_2 .⁹¹ The 25(OH)D assays varied, with two studies using a CPBA method^{91,93} and one using HPLC.⁹²

None of the four case-control studies were conducted in North America (Table 2). Outcomes were assessed at birth in three studies^{94,95,97} and at two to five months of age in the other.⁹⁶ One study measured circulating 25(OH)D by CPBA,⁹⁴ two studies used HPLC,^{95,96} and the fourth study⁹⁷did not report the method.

Population characteristics. For the three RCTs, the age at enrolment was within a few days of birth.⁹¹⁻⁹³ The sample sizes ranged from 18 to 80 infants, without a predominance of male or female gender. In all three studies,⁹¹⁻⁹³ participants had to be healthy and free of conditions known to affect calcium metabolism. Mean vitamin D and calcium intake were not reported in any of the studies, although maternal behavior related to breast feeding was reported in all studies. Baseline 25(OH)D concentrations are summarized in Table 2.

For the case-control studies, three studies evaluated infants at birth or within the first few days of birth, ^{94,95,97} and one study evaluated infants at two to five months of age.⁹⁶ The sample sizes ranged from 21 to 82 infants with sub-categorization as to ethnicity,⁹⁴ term born,⁹⁷ season of birth,⁹⁵ or feeding type.⁹⁶ In all case-control studies, participants had to be healthy and free of conditions known to affect calcium and bone metabolism. Data on dietary vitamin D or calcium intake plus exposure to sunshine were only relevant for the study that evaluated two to five month old infants,⁹⁶ and these data were not reported.

Covariate/confounders. No relevant covariates or effect modifiers were controlled for in the RCTs. In one RCT, baseline 25(OH)D concentrations were used to divide the study cohort into three subcategories⁹¹ (Table 2). Seasonal effects were examined in one study.⁹² For case-control studies, matching on gestational age at birth and gender was not reported. Only one

study adjusted for weight when evaluating the relation between 25(OH)D and whole body BMC.⁹⁵

Outcome characteristics. For the RCTs, BMC of the distal radius was measured by single photon absorptiometry, ^{92,93} and PTH was measured using RIA.⁹¹⁻⁹³

For the case-control studies, BMC (whole body or spine) and BMD were measured using dual-energy x-ray absorptiometry (DXA).⁹⁵⁻⁹⁷ PTH was measured using RIA techniques.⁹⁴⁻⁹⁶ Although all studies used RIA techniques to measure PTH, these may have varied in antibody specificity and measurement of PTH fragments.⁹⁸

One case-control study reported fracture incidence⁹⁴ although the methodology was not reported.

Study quality. For the RCTs, one trial each scored 1/5, $9^{1} 3/5^{93}$ and $4/5^{92}$ on the Jadad scale. The four case-control studies were of fair quality.

Qualitative synthesis of individual study results. Of the two RCTs measuring BMC of the distal radius, one study showed transient elevation in BMC at 12 weeks of age in the supplemented group (with serum 25(OH)D concentrations of 95 nmol/L) compared to the placebo group (with 25(OH)D concentrations of 50 nmol/L).⁹³ However, by 26 weeks there was no significant difference in BMC between the placebo and vitamin D₂ supplemented infants who continued to have higher serum 25(OH)D levels. In a second trial by Greer,⁹² no difference in BMC was observed at 3 months in vitamin D₂ supplemented or unsupplemented human milk-fed infants despite 25(OH)D concentrations of 97 nmol/L in the intervention group compared to 39 nmol/L in the control group. At six months, the control group had higher absolute BMC and was also noted to have higher levels of the (unsupplemented) D₃ isoform. However, the change in BMC from 1.5 to 6 months was not significantly different in the two groups.

Two case-control studies measured BMC and BMD of the lumbar spine (L1-4).^{96,97} One study observed a negative correlation between 25(OH)D (levels ranging from 10 to 292 nmol/L) and spine BMC and BMD at birth but no relation was observed in regression analyses that included postnatal age and serum calcium.⁹⁷ The other study⁹⁶ did not find a difference in spine BMC at two to five months of age when a group of human milk-fed infants with an average 25(OH)D serum level of 40 nmol/L were compared with a group of formula-fed infants with an average 25(OH)D of 73 nmol/L. 8/18 infants in the human milk-fed group and 1/17 in the formula-fed group had a serum 25(OH)D level < 28 nmol/L; there was no correlation of BMC with serum 25(OH)D concentration. The one study that measured whole body BMC reported a positive relation between 25(OH)D and BMC.⁹⁵ The values for 25(OH)D in this study were on average 27 nmol/L for winter born and 75 nmol/L for summer born who had eight percent higher whole body BMC at birth.

Overall, for BMC measurements reflecting mainly cortical bone, including whole body and radial assessments, two of three studies showed a positive association between 25(OH)D concentrations with BMC, one measuring whole body BMC and one showing a transient increase in distal radial BMC at 12 but not 26 weeks.^{93,95} Of the two studies examining predominantly trabecular bone (lumbar spine),^{96,97} one showed a negative correlation between 25(OH)D and BMC and BMD at birth that was not evident after using multiple regression;⁹⁷ the other did not demonstrate any association.

Of the two RCTs reporting PTH levels, one study did not observe differences in PTH between vitamin D_2 supplemented and non supplemented infants at 1.5 to six months of age.⁹² Both groups were characterized by mean serum 25(OH)D levels above 30 nmol/L (measured by

HPLC). At all timepoints, 25(OH)D values were higher in the supplemented group (range of means from 75.6 to 97.2 nmol/L compared to means of 39.4 to 58.8 nmol/L in the unsupplemented group). In the other RCT, PTH declined in all groups from birth to three months of age while 25(OH)D concentrations increased to at least 46 nmol/L (measured by CPBA).⁹¹ In that study, all neonates who had abnormally high PTH had serum 25(OH)D < 30nmol/L. In a case-control study, serum PTH was not different among winter and summer born infants with mean serum 25(OH)D of 27 and 75 nmol/L respectively (measured by HPLC).⁹⁵ Similarly, human milk-fed infants with a mean 25(OH)D concentration of 40 nmol/L did not have different serum PTH values than formula-fed infants with a mean 25(OH)D concentration of 73 nmol/L (measured by HPLC).⁹⁶ Lastly, Asian infants had significantly higher PTH concentrations and lower 25(OH)D concentrations of 5 to 20 nmol/L (mean 6, SD 4) when compared to Caucasian infants characterized by serum 25(OH)D concentrations of 9 to 39 nmol/L (mean 15, SD 5) (measured by CPBA).⁹⁴ Overall, these five studies suggest that PTH is inversely associated with serum 25(OH)D concentrations at lower 25(OH)D concentrations but there was inconsistent evidence for a threshold that may exist somewhere above 27 nmol/L (measured by CPBA). Variable evidence for a threshold may be in part due to the different assays used, both to measure serum PTH and serum 25(OH)D.

Of the studies examining a relation between 25(OH)D and bone health outcomes, most had small sample sizes and the baseline 25(OH)D was variable ranging from deficient values around the limitation of detection to values above 27 nmol/L. In studies with repeated measurements, the baseline 25(OH)D was not considered as an effect modifier in evaluating the relation between 25(OH)D and bone health outcomes. The three included RCTs used vitamin D₂ supplementations and therefore conclusions cannot be drawn regarding supplementation with the D₃ isoform. Lastly, a definitive conclusion as to whether a specific concentration of 25(OH)D is associated with an elevated PTH (secondary hyperparathyroidism) is not possible given the evidence put forth to date. Additional studies are required to define a threshold concentration of 25(OH)D below which serum PTH levels rise. This will require not only standardization of 25(OH)D assays but also PTH assays.⁹⁸

Summary. Serum 25(OH)D levels and bone health outcomes in infants

Quantity: Of the two RCTs examining BMC, one demonstrated no benefit of higher serum 25(OH)D on radial bone mass while the other showed a transient increase of BMC compared to the unsupplemented group at 12 weeks but not 26 weeks. Of the three case-control studies, whole body BMC was positively related to and lumbar spine negatively related to serum 25(OH)D concentrations. Based on two RCTs and three case-control studies, a rise in PTH was either not observed with 25(OH)D concentrations above 27-30 nmol/L or occurred at a lesser rate than at lower values, suggesting a threshold value may exist somewhere above 27 nmol/L.

Quality: The three RCTs were of fair to high quality (two of the three RCTs had a Jadad score of $\geq 3/5$) and the four case-control studies were of fair quality.

Consistency: There is inconsistent evidence for an association between a specific concentration of serum 25(OH)D and the bone health outcome BMC in infants. Overall, there is fair evidence that PTH is inversely associated with serum 25(OH)D concentrations at lower 25(OH)D concentrations, but there was inconsistent evidence for a threshold that may exist somewhere above 27 nmol/L (measured by CPBA).

Population, N Gender Mean Age (SD) Ethnicity	Intervention Duration	Serum 25(OH)D Assay Time points	Bone Health Outcomes	Results	Jadad Score
			_	•	
 18 Healthy term infants exclusively breast-fed IG1 9; CG 9 At 9 mo, 6/13 and at 12 mo, 3/13 enrolled infants were still breastfeeding 66% female 0 d (recruited at birth) 17 Caucasian 1 Asian-Indian 	IG1: vit D ₂ 400 IU/d CG: placebo 12 wks (double blind); (unblinded to investigator at 3 mo); supplements continued until weaned At 6 mo, unblinded to mother, and placebo group began to received daily vit D ₂ 400 IU/d	25(OH)D [^] CPBA Measured at baseline, 12 and 26 wks	PTH (RIA) distal L radius BMC (SPA) Measured at 3, 6, 12, 26, 40 and 52 wks	Serum 25(OH)D mean nmol/L Baseline: no significant difference between groups 12 wks: IG1:95* (graph) CG: 50 26 wks: IG1: 81.8 CG: 32.3 PTH: no significant difference between groups (data NR) BMC mean (SEM) mg/cm 12 wks: IG1 79 (3); CG 64 (3), p < 0.003 26 wks: IG1 70 (6); CG 75 (5), NS 52 wks: IG1 108 (20); CG 120 (19) (CG receiving vit D for 6 mo)	3
	Gender Mean Age (SD) Ethnicity	Gender Mean Age (SD) EthnicityIntervention Duration18 Healthy term infants exclusively breast-fed IG1 9; CG 9IG1: vit D2 400 IU/d CG: placeboAt 9 mo, 6/13 and at 12 mo, 3/13 enrolled infants were still breastfeedingI2 wks (double blind); (unblinded to investigator at 3 mo); supplements continued until weaned66% female 0 d (recruited at birth)At 6 mo, unblinded to mother, and placebo group began to received daily	Gender Mean Age (SD) EthnicityIntervention DurationSerum 25(OH)D Assay Time points18 Healthy term infants exclusively breast-fed IG1 9; CG 9IG1: vit D2 400 IU/d CG: placebo25(OH)D^At 9 mo, 6/13 and at 12 mo, 3/13 enrolled infants were still breastfeedingIG1: vit D2 400 IU/d CG: placebo25(OH)D^At 9 mo, 6/13 and at 12 mo, 3/13 enrolled infants were still breastfeeding12 wks (double blind); (unblinded to investigator at 3 mo); supplements continued until weanedMeasured at baseline, 12 and 26 wks66% femaleO d (recruited at birth)At 6 mo, unblinded to mother, and placebo group began to received daily vit D2 400 IU/dAt 6 mo, unblinded to mother, and placebo group began to received daily vit D2 400 IU/d	Gender Mean Age (SD) EthnicityIntervention DurationSerum 25(OH)D Assay Time pointsBone Health Outcomes18 Healthy term infants exclusively breast-fed IG1 9; CG 9IG1: vit D2 400 IU/d CG: placebo25(OH)D^APTH (RIA)At 9 mo, 6/13 and at 12 mo, 3/13 enrolled infants were still breastfeedingIG1: vit D2 400 IU/d CG: placebo25(OH)D^APTH (RIA)At 9 mo, 6/13 and at 12 mo, 3/13 enrolled infants were still breastfeeding12 wks (double blind); (unblinded to investigator at 3 mo); supplements continued until weanedMeasured at baseline, 12 and 26 wksPTH (RIA)66% femaleO d (recruited at birth)At 6 mo, unblinded to mother, and placebo group began to received daily vit D2 400 IU/dAt 6 mo, unblinded to mother, and placebo group began to received daily vit D2 400 IU/dHealth Outcomes	Gender Mean Age (SD) EthnicityIntervention DurationSerum 25(OH)D Assay Time pointsBone Health OutcomesResults18 Healthy term infants exclusively breast-fed IG1 9; CG 9IG1: vit D2 400 IU/d CG jacebo25(OH)D^A CPBAPTH (RIA)Serum 25(OH)D mean nmol/L Baseline: no significant difference between groups12 wks (double blind); (unblinded to investigator at 3 mo); supplements continued until weaned25(OH)D^A CPBAPTH (RIA) distal L radius BMC (SPA)Serum 25(OH)D mean nmol/L Baseline: no significant difference between groups66% female 0 d (recruited at birth) 1 Asian-IndianIG 1: vit D2 vit D2 400 IU/d25(OH)D^A CPBAPTH (RIA) distal L radius BMC (SPA)Serum 25(OH)D mean nmol/L Baseline: no significant difference between groups66% female 0 d (recruited at birth) 1 Asian-IndianAt 6 mo, unblinded to mother, and placebo group began to received daily vit D2 400 IU/dAt 6 mo, unblinded to index, and placebo group began to received daily vit D2 400 IU/dBMC mean (SEM) mg/cm 12 wks: IG1 70 (6); CG 75 (5), NS 52 wks: IG1 108 (20); CG 120 (19) (CG receiving vit D for 6 mo)

Table 2. Serum 25(OH)D and Bone Health Outcomes in Infants

Author (year) Country Funding	Population, N Gender Mean Age (SD) Ethnicity	Intervention Duration	Serum 25(OH)D Assay Time points	Bone Health Outcomes	Results	Jadad Score
Greer	46 Healthy term born	IG1: 400 IU/d	25(OH)D [^] and each	PTH (RIA)	Total serum 25(OH)D mean (SD)	4
(1989)	infants born to	D ₂	isoform measured		At birth:	
92	mothers willing to	CG: placebo		distal L	IG1: 59.7 (11.8)	
	breast-feed for 6 mo,		HPLC	radius BMC	CG: 58.8 (19.1)	
USA	12 additional controls	6 mo, starting		(SPA)		
	(formula fed infants)	at birth	Measured at birth, 1.5,		6 mo:	
Public			3 and 6 mo	Measured	IG1: 92.4 (29.7)	
	46% female			at 1.5, 3 and 6 mo	CG: 58.8 (24.9), p < 0.01	
	NR (range 37 to 40 wk gestation)				PTH: no significant difference between groups	
					BMC mean (SD) mg/cm:	
	All infants: Caucasian				No significant difference between groups at 1.5 and	
	mothers;				3 mo. At 6 mo, CG was significantly greater than	
	fathers: 1 black, 1				IG1: IG1 89.5 (12.5) vs. CG 101.0 (17.9), p<0.05	
	American Indian,				However, change in mean BMC from 1.5 to 6 mo	
	others Caucasian				was not different between groups.	

Table 2 (continued). Serum 25(OH)D and Bone Health Outcomes in Infants

Author	Population, N		Serum			
(year)	Gender	Intervention	25(OH)D	Bone Health	Deputée	Jadad
Country	Mean Age (SD)	Duration	Assay	Outcomes	Results	Score
Funding	Ethnicity		Time points			
Zeghoud (1997) ⁹¹ France NR	80 Healthy neonates, and their mothers; after initial measurements, infants were divided into 3 groups based on serum 25(OH)D (\leq or > 30 nmol/L) and PTH \leq or > 60 ng/L) NR NR (range: 3 to 6 d) From birth to 3 mo, 28 (35%) excluded, some (< 10) due to digestive problems	IG1: 500 IU IU/d D ₂ IG2: 1000 IU/d D ₂ Starting at 3-6 d after birth All infants fed formula with mean (SD) 426 (46) IU vitamin D ₃ /L	25(OH)D ^A CPBA Measured at 3-6 d, 1 mo, 3 mo.	iPTH (RIA) Measured at 3-6 d, 1 mo, 3 mo	Serum 25(OH)D mean (SD) Baseline total sample: 29.5 (13.8); (range 10- 80) 51/80 (63.7%) \leq 30 nmol/L Serum iPTH was negatively correlated wtih 25(OH)D (r = 0.45, p < 0.001) In neonates with 25(OH)D < 16 nmol/L, iPTH was significantly higher: mean (SD) 70 (30) pmol/L than those born with 25(OH)D > 30 nmol/L Infants with high iPTH (> 60 ng/L) were born to mothers with 25(OH)D < 30 nmol/L. <u>Mean baseline 25(OH)D by group^{**}</u> : Group 1 (N = 14): 25(OH)D \leq 30 nmol/L and iPTH > 60 ng/L: 17.9 (7.8)	1
	European				Group 2 (N = 36): 25(OH)D \leq 30 nmol/L and iPTH < 60 ng/L: 22.7 (6.5) Group 3 (N = 29) 25(OH)D > 30 nmol/L and iPTH < 60 ng/mL: 43.7 (10.6)	
					(Continued on next page)	

Table 2 (continued). Serum 25(OH)D and Bone Health Outcomes in Infants

Author (year) Country Funding	Population, N Gender Mean Age (SD) Ethnicity	Intervention Duration	Serum 25(OH)D Assay Time points	Bone Health Outcomes	Results	Jadad Score
Zeghoud (1997) ⁹¹					Results Continued: At 1 mo, all 3 groups (pooled vit D doses): mean serum 25(OH)D was significantly	
(Con't)					increased and there was no significant difference between groups. Group 1: 53.1 (12) Group 2: 59.8 (17.7) Group 3: 59.2 (11.4) At 1 mo, iPTH decreased and there was no significant difference between groups (pooled doses). At 3 mo, mean 25(OH)D for total sample (pooled doses) was 69 nmol/L; highest value 92.5 nmol/L.	
					$\frac{\text{IG1} (500 \text{ IU } \text{D}_2)}{\text{For group 1, at 1mo (45.5 nmol/L) and 3 mo (56.1 nmol/L), serum 25(OH)D values were significantly lower than the other 2 groups receiving same dose, and lower than all groups receiving 1,000 IU/d.}$	
					Serum iPTH remained elevated in 14.3% of infants in group 1 after 1 mo, and mean PTH was significantly higher than those of other grps at 1 and 3 mo.	
					$\frac{IG2 (1,000 \text{ IU } \text{D}_2)}{Serum iPTH was similar among the 3 groups receiving 1000 IU/d at 1 mo. PTH declined in all grps and did not change between 1 and 3 mo. Change in serum 25(OH)D (3 mo) was not significantly different between the 3 groups.$	

Table 2 (continued). Serum 25(OH)D and Bone Health Outcomes in Infants

Author (year) Country Funding Source	Population, N Gender Mean age (SD) Ethnicity	Serum 25(OH)D Assay Time points	Bone Health Outcomes Assay	Results
Case-control stud				- F
Okonofua (1986) ⁹⁴	21 Healthy term born infants	25(OH)D^	PTH (RIA-midportion)	Serum 25(OH)D mean (SD) (nmol/L): Lower in Asian vs. white term born infants (p<0.01)
	NR	Cord and	fractures during birth	White: 15 (5) (range 9-39)
UK		maternal		Asian: 6 (4) (range < 5 - 20)
	NR	sampling		
NR	10 Caucasian (47.6%), 11 Asian (52.4%)	CPBA Measured at baseline		Mean (SD) serum PTH (pmo/L): Higher in Asian vs. white infants (p < 0.05) White: 55 (6) Asian: 44 (7)
				Maternal 25(OH)D in white mothers was 30 (11) nmol/L and in Asian mothers was 15 (10) nmol/L serum PTH was higher in Asian mothers. 25(OH)D levels in mothers were significantly higher than neonatal levels; the two were correlated (r=0.60).
				fractures during birth: 0
Bougle (1998) ⁹⁷	82 Healthy term born infants (also 44 preterm)	25(OH)D^	LS BMD and BMC (DXA)	Full term infants: Serum 25(OH)D mean (SD) nmol/L (range)
France		Assay NR		75 (52.5) (10-292.5)
	NR	At or following		Full term infente:
NR	Term 40 wks (range 37-42)	At or following hospital discharge		Full term infants: 25(OH)D negatively related to BMD (r =-1.7, p=0.02) and to BMC in full term (r =-0.04, p=0.02),
	Asian	doondryc		in a simple regression analysis but not related to BMC or BMD in a multiple regression analysis.

Table 2 (continued). Serum 25(OH)D and Bone Health Outcomes in Infants

Author (year) Country Funding Source	Population, N Gender Mean age (SD) Ethnicity	Serum 25(OH)D Assay Time points	Bone Health Outcomes Assay	Results
Namgung (1998) ⁹⁵	71 Healthy term infants, 37 born in summer,	25(OH)D^	iPTH (Allegro RIA)	Serum 25(OH)D mean (SD) (nmol/L): Winter born infants had lower 25(OH)D than
Korea	34 born in winter Winter 38% female	Measured in cord samples	Whole body BMC (DXA) measured before 3 d of age	summer born (p<0.001). Winter born: 26.8 (19.0) Summer born: 75.0 (24.0)
Public	Summer 59% female Mean (SD) gestational age: Winter: 38.3 (0.7) wks Summer: 38.3 (0.8) wks, range 37 - 41 wka Korean	HPLC Winter 26.8 (19.0) Summer 75.0 (24.0)		% of infants with levels < 27.5 nmo/L Winter born: 97% Summer born: 47% No differences were observed for PTH. Serum PTH geometric mean (range): Winter born: 5.8 (2.8 - 11.9) Summer born: 5.1 (1.8 - 14.6), NS Winter born had 8% lower whole body BMC than summer born (p = 0.0002). BMC LSM (SD) (g/cm): Winter born: 86.7 (7.7) Summer born: 93.9 (7.8) Whole body BMC correlated positively with serum 25 (OH)D (r=0.243, p=0.047). Maternal 25(OH)D was lower in winter than summer: 24 (13) vs. 43 (18), p < 0.001.

Table 2 (continued). Serum 25(OH)D and Bone Health Outcomes in Infants

Author (year) Country Funding Source	Population, N Gender Mean age (SD) Ethnicity	Serum 25(OH)D Assay Time points	Bone Health Outcomes Assay	Results
Park (1998) ⁹⁶ Korea NR	35 Healthy term born infants born in winter, 18 exclusively breast-fed, 17 formula-fed with 400 IU vitamin D enrolled at ages 2 - 5 mo Breast-fed: 28% female; Formula-fed: 47% female Breast-fed: 3.3 (1.2) mo; Formula-fed: 3.6 (1.1) mo Korean	25(OH)D [^] HPLC Measured at recruitment (ages 2 - 5 mo)	iPTH (Allegro RIA) LS BMC and BMD (DXA) if reported, the isoform is specified.	Serum 25(OH)D mean (SD) nmol/L: Mean was lower in breast-fed vs. formula-fed infants, p = 0.001 Breast-fed: 39.9 (28.2) Formula-fed: 72.5 (22.2) % with 25(OH)D < 28 nmol/L Breast-fed: 8/18 (44%) Formula-fed: 1/17 (6%), p=0.01 Serum PTH mean (SD) (ng/L) Breast-fed: 14.8 (6.93) Formula-fed: 11 (5.47), NS LS BMD no difference between breast-fed (N = 14.18) and formula-fed infants (N = 14/17) (data NR) LS BMC mean (g/cm) (SD) No difference between groups Breast-fed: 0.62 (0.2) Formula-fed: 0.65 (0.2) 25(OH)D did not correlate with BMC (r=0.173, p=0.39, N=28).

Table 2 (continued). Serum 25(OH)D and Bone Health Outcomes in Infants

*SEM provided in graph but not estimable *1/80 infants did not clearly fit into any category and had findings suggestive of transient congenital hypoparathyroidism

AC, allocation concealment: BMC, bone mineral content; BMD, bone mineral density; DXA, dual X-ray absorptiometry; iPTH, intact PTH; IU, international units;

LS, lumbar spine; LSM, least squares mean; mo, months; NR, not reported; NS, not significant; PTH, parathyroid hormone; RIA, radioimmunoassay; SD,

standard deviation; SPA, single photon absorptiometry; y, year(s)

Question 1A (Part 3). Are Specific Circulating Concentrations of Serum 25 Hydroxyvitamin D [25(OH)D] Associated With Bone Health Outcomes in Older Children and Adolescents?

Definition of study populations. The Institute of Medicine defines early childhood as ages 4 though 8 years, and puberty/adolescence as ages 9 through 13 years, and 14 through 18 years.⁴ Grouping by age for the purpose of this report were based on the study populations. In this section, children six years of age or older who had not yet entered puberty were included, and adolescence (marked by the onset of puberty) was defined by the presence of at least Tanner Stage 2 for sexual development.⁹⁹ The age groups in the included studies for this section were: 6-10 years,¹⁰⁰ age 9 years,¹⁰¹ 8 – 10 years,¹⁰² 9 -15 years,¹⁰³ 15-16 years,¹⁰⁴ 10 – 17 years,¹⁰⁵ and 10 – 18 years.¹⁰⁶

Study characteristics. Three studies that included older children (one RCT, 102 one prospective cohort 101 and one before-after study 100) assessed the association between serum 25(OH)D concentrations and bone health outcomes.

Four studies in adolescents assessed the association between 25(OH)D levels and bone health outcomes.¹⁰³⁻¹⁰⁶ There were two cohort studies,^{103,104} one case-control study¹⁰⁶ and one RCT.¹⁰⁵ The first cohort evaluated the association between serum 25(OH)D levels and lumbar spine and femoral neck BMD/bone mineral apparent density (BMAD) at baseline and 3 years.¹⁰³ The second cohort study evaluated the seasonal variation in serum 25(OH)D concentrations and its relation to intact (i) PTH levels over an 18 month period.¹⁰⁴ El Hajj Fuleihan¹⁰⁵ evaluated the effect of low (1,400 IU/week) and high (14,000 IU/week) dose vitamin D₃ on areal BMD and BMC of the lumbar spine, hip, forearm, and total body and body composition. Marwaha¹⁰⁶ evaluated 25(OH)D concentrations in 5,137 children and adolescents (aged 10-18 years) from Northern India and the association with serum PTH, ionized calcium and BMD of the forearm and calcaneus, with stratification by upper and lower socioeconomic status.

Bone health outcomes – ascertainment. For the studies on older children, PTH was measured by an immunoradiometric assay that detects the mid-region of the molecule, ¹⁰² and distal radial BMC was measured by single-photon absorptiometry (SPA).¹⁰² Javaid¹⁰¹ measured whole body and lumbar spine BMC and areal BMD by DXA, and calculated an apparent volumetric BMD at nine years of age in relation to maternal third trimester 25(OH)D status. Rajakumar¹⁰⁰ evaluated the association between serum 25(OH)D concentrations, serum PTH and markers of bone turnover.

For adolescents, lumbar spine BMD, femoral BMD, and lumbar spine bone mineral apparent density (BMAD) was measured by DXA¹⁰³ and iPTH by immunoradiometric assay.¹⁰⁴ Fuleihan measured areal BMD and BMC at the lumbar spine, hip and forearm, and total body and lean body mass by DXA.¹⁰⁵ Marwaha¹⁰⁶ evaluated forearm and calcaneal BMD using peripheral DXA and PTH with an immunoradiometric assay.

There were no studies that assessed the association between serum 25(OH)D concentrations and fractures in older children or adolescents.

For assessment of 25(OH)D levels, different methods were used depending on the study. These included radioimmunoassay or radioimmunometric methods in three studies,^{101,103,106} and CPBA in three studies.

Population characteristics. For older children, ages ranged from eight to ten years in two studies with mixed gender.^{101,102} Included subjects were aged 6 – 10 years in the Rajakamar study who exhibited a combination of pre- and early pubertal status (33/42 pre-pubertal Tanner stage I).¹⁰⁰ Eligibility criteria for two studies required that participants be healthy, without co-morbidities.^{100,102} The prospective cohort study by Javaid did not state whether children with co-morbidities were excluded. The mean dietary intake of calcium/vitamin D was reported in two studies.^{100,101}

For adolescents, subjects ranged in age from nine to 16 years.¹⁰³⁻¹⁰⁶ All patients were at least Tanner Stage 2 for pubertal development with the exception of the Marwaha study which did not report pubertal status. However, the patients in the latter study were 10-18 years of age and it is anticipated that the majority were at least Tanner Stage 2 puberty. The studies involved either female,^{103,105} male,¹⁰⁴ or mixed genders.¹⁰⁶ Participants were reported as healthy, without known co-morbidities, in two of four studies.^{103,104} The mean dietary intake of calcium/vitamin D was reported in three studies.^{100,103,104} Additional characteristics are summarized in Table 3.

Confounders/effect modifiers. In the studies on older children, Javaid adjusted for the age of the child at the time of the BMC measurement due to the strong association between age and whole body BMC.¹⁰¹ Since bone size can affect the BMD results, volumetric BMD at the lumbar spine was calculated. For adolescents in the 25(OH)D-BMC/BMD cohort study,¹⁰³ adjustments were made for the time to followup, and regression analyses were performed to determine covariates for BMD and BMC. El-Hajj Fuleihan¹⁰⁵ made adjustments for lean mass and bone area, and did exploratory subgroup analyses on pre and post menarcheal girls in their analysis of vitamin D status in relation to BMD and BMC. Marwaha¹⁰⁶ adjusted BMD for both height and weight.

Study quality. On the Jadad scale, one RCT scored $3/5^{102}$ and one scored $4/5^{105}$ indicating both were of high quality. The overall study quality for the observational studies was fair. Limitations included failure to adjust for relevant confounders or other sources of bias, and higher numbers of participants lost to followup.

Qualitative synthesis of individual study results. In a study of pre-pubertal Finnish girls, 400 IU vitamin D_2 , increased serum 25(OH)D levels (measured by RIA) compared with placebo but did not impact mid-region PTH or distal radial BMC (SPA) after 13 months.¹⁰² Radial BMC was not adjusted for bone size in this study.

In the before-after study by Rajakumar,¹⁰⁰ baseline vitamin D status (measured by CPBA with deficiency defined as a serum 25(OH)D < 25 nmol/L (10 ng/ml) and insufficiency defined as $\leq 50 \text{ nmol/L}$) was negatively correlated with PTH (but not associated with baseline serum calcium, phosphorus, albumin, or 1,25-(OH)₂D). Serum PTH remained stable at levels of 25(OH)D around 75 nmol/L. There were no significant differences between the vitamin D insufficient and sufficient groups with regard to gender, weight, height, BMI and skin pigmentation. The mean (SD) daily dietary vitamin D intake was 277 (146) IU (mean intakes of 233 in the insufficiency group and 318 IU in the sufficient group were not significantly different). Dietary calcium intake was significantly higher in the sufficient group.

Javaid¹⁰¹ reported that low serum 25(OH)D concentrations (measured by RIA) in mothers during late pregnancy were weakly but significantly associated with reduced whole body (r =

0.21, p<0.01) and lumbar spine (r = 0.017, p = 0.03) age-adjusted BMC (DXA-Lunar DPX-L). Bone mass in children of mothers who were vitamin D deficient (25(OH)D < 28 nmol/L) during pregnancy was significantly lower compared to children born to vitamin D sufficient mothers. Reduced umbilical venous calcium also predicted reduced childhood bone mass (p = 0.0286). Whether this observation is mediated, totally or in part, through an effect on bone size and/or muscle mass is not clear. Maternal vitamin D status was positively associated with whole body and spine BMC in the offspring, and neither childhood height nor lean mass was associated with maternal 25(OH)D levels. Adjustment for childhood height did not significantly weaken the relation between maternal vitamin D status and whole body BMC. In contrast, volumetric BMD of the lumbar spine (which corrects for bone size) was not associated with maternal vitamin D status. Milk intake and physical activity at age nine were not significant determinants of bone mass although these findings do not rule out the possibility that factors such as UV exposure, diet and other lifestyle characteristics may have affected bone mass. When socioeconomic status was adjusted for, it did not change the association substantially. The type of postnatal feeding in the first three months also did not affect bone mass.

For girls age 9 – 15 years, the three year cohort study (N = 171) by Lehtonen-Veromaa evaluated the relation between baseline 25(OH)D levels (measured by RIA) and the change in lumbar spine (r = 0.35, p < 0.001) and femoral neck BMD (r = 0.32, p < 0.001). Baseline 25(OH)D also correlated with the change in LS BMAD (size-corrected form of BMD) (r = 0.35, p < 0.001) and FN BMAD (r = 0.24, p < 0.002). The difference in the percent increase from baseline in lumbar spine BMD (adjusted for the followup period) between those with low 25(OH)D levels (<20 nmol/L) and those with higher 25(OH)D levels was four percent. The difference in lumbar spine BMD was 12.7, 13.1 and 16.7 percent for the lowest, middle and highest 25(OH)D tertiles, respectively.¹⁰³

In another cohort (N = 175) of French teenage boys, there was a significant negative correlation between serum iPTH and 25(OH)D levels (measured by CPBA), with a plateau in PTH demonstrated at 25(OH)D levels of 83 nmol/L and above.¹⁰⁴ At this level of 25(OH)D, the iPTH reached a plateau at 2.48 pmol/L.

El-Hajj Fuleihan¹⁰⁵ found a significant association between baseline serum 25(OH)D levels (measured by CPBA) and baseline BMD at the lumbar spine (r=0.16, p=0.033), femoral neck (r = 0.17, p = 0.028), and radius (r = 0.24, p = 0.002) (DXA-Hologic 4500). There was also a significant association between baseline serum 25(OH)D levels and baseline radius BMC (r = 0.16, p = 0.033). The mean baseline serum 25(OH)D was 35 nmol/L (14 ng/ml). In post hoc analyses, there were negative correlations between baseline serum 25(OH)D levels and percent change in lumbar spine BMD (r = -0.16, p = 0.044) or subtotal body BMD (r = -0.20, p = 0.009) over one year. Significant negative associations were found between baseline serum 25(OH)D levels and percent change in spine, femoral neck and radius BMC.

After vitamin D supplementation for one year, total hip BMC increased in the high dose (14,000 IU/wk) group (pre- and post-menarcheal girls combined) but there were no significant changes in BMC or BMD at other skeletal sites. In an exploratory subgroup analysis in premenarcheal girls alone (N = 34), total body lean tissue mass increased in both supplementation groups. Lumbar spine areal BMD was significantly increased in the low dose (1,400 IU/wk) group, and trochanter BMC was increased in both the high and low dose groups. The magnitude of the treatment effect was not significant after adjusting for both bone area and lean tissue mass. The authors acknowledge a limitation of DXA in evaluating areal BMD and BMC is the lack of consensus on how best to adjust for bone size. In postmenarcheal girls, there were no differences in changes in lean mass, BMD or BMC amongst the three groups. In boys (data not shown), the authors reported there was no consistent positive effect of vitamin D supplementation on lean mass, BMD or BMC.

Marwaha¹⁰⁶ showed that children with a lower socioeconomic status had significantly lower 25(OH)D concentrations (measured by RIA) and mean BMD (unadjusted for bone size) for the forearm and calcaneus (DXA-PIXI-1.34) was higher in the upper socioeconomic group. There was a significant negative correlation between serum immunoreactive PTH and 25(OH)D concentrations (r = -0.202, p < 0.001). PTH concentrations only increased at 25(OH)D concentrations below 12.5 nmol/L. There was no significant correlation between the mean serum concentration of 25(OH)D and BMD in both groups.

Summary. Serum 25(OH)D and bone health outcomes in older children and adolescents

Quantity: There were seven studies in older children and adolescents (two RCTs, three cohorts, one case-control and one before-after study) that evaluated the relation between circulating 25(OH)D and bone health outcomes. In older children, there was one RCT, one prospective cohort and one before-after study. One RCT did not find an association between 25(OH)D and distal radial BMC. Both the RCT and before-after study found no evidence of an association between 25(OH)D levels and PTH in older children.

Three studies in older children or adolescents evaluated serum 25(OH)D and PTH levels, and found an inverse non-linear relation with a plateau of PTH at 25(OH)D levels above 75-83 nmol/L in two studies (both measured by CPBA) and above 30 nmol/L in another (measured by RIA). Two of three studies found a positive association between baseline 25(OH)D status and BMC/BMD. The effect of bone size and muscle mass on these outcomes in relation to baseline 25(OH)D status was not reported. One RCT demonstrated a significant relation between baseline 25(OH)D and baseline BMD of the lumbar spine, femoral neck and radius. However, only high dose supplementation with 14,000 IU/wk of vitamin D₃ increased BMC of the total hip.

Quality: The two RCTs each scored $\geq 3/5$ on the Jadad scale and therefore were of higher quality. Most observational studies were of fair quality.

Consistency: Overall, there was fair evidence of an inverse association between 25(OH)D and PTH in adolescents. There was also fair evidence of an association between serum 25(OH)D levels and baseline BMD and change in BMD/BMC indices from the studies in older children and adolescents. However, the results from two randomized trials of vitamin D supplementation have not confirmed a consistent benefit on BMD/BMC across sites and age groups.

One cohort showed that maternal vitamin D status was weakly associated with whole body and spine BMC in nine year olds. Adjustment for childhood height did not significantly weaken the relation between maternal vitamin D status and whole body BMC, in contrast to the lumbar spine data, where apparent volumetric BMD (adjusts for bone size) was not associated with maternal vitamin D status.

Author (year) Country Funding	Population, N Attrition Gender Mean age Ethnicity	Intervention Duration	25(OH)D Assay	Bone Health Outcomes	Results	Jadad AC
RCTs						
Ala- Houhala (1988) ¹⁰² Finland Public	60 Children, 8 - 10 y old IG1: 30; CG: 30 Excluded: IG1 6; CG 3 % female: IG1 62%; CG 48% NR; range 8-10 y Caucasion	IG1:Vit D ₂ 400 IU 5-7x /wk CG: placebo 13 mo	25(OH)D [^] Measured at baseline (1 st winter) mid-study (autumn), and end of study (2 nd winter) CPBA	PTH (midregion 44- 68, RIA) distal radius BMC (SPA)	Serum 25(OH)D mean (SD) nmol/L Baseline (winter): IG1: 49.3(19.0) vs. CG: 46 (15.5) Mid-study (autumn): IG1: 78 (24.3) vs. CG 59 (17.8) End-of-study (winter): IG1: 71.3 (23.4) vs. CG 43.3 (19.5), $p < 0.01$ Baseline serum PTH mean (SD) pmol/L: IG1: 40 (20); CG 39 (19) (NS) No difference between groups in PTH at 13 mo No difference between groups in distal radius BMC at 13 mo	1 Unclear
Fuleihan (2006) ¹⁰⁵ Lebanon Private	179 children and adolescent girls (34 pre- menarcheal and 134 post- menarcheal) IG1: 62 IG2: 59 CG: 58 Lost to follow up or discontinued: 11 100% female 10-17 y Middle Eastern	IG1: 1,400 IU D/wk IG2:14,000 IU D/wk CG: Placebo 1 y	25(OH)D [^] Measured at baseline, 6 mo, 1y CPBA (Incstar, DiaSorin)	BMD and BMC LS, forearm, total body DXA (Hologic 4500A)	25(OH)D mean (SD) nmol/L baseline: IG1: 35 (22.5) IG2: 35 (20.0) CG: 35(17.5) 1y: IG1: 42.5 (15) IG2: 95 (77.5) CG: 40 (20.0) Covariates: percent change in bone area, percent change in lean mass Significant association between baseline serum 25(OH)D and: LS BMD (r=0.16, p=0.033), Femoral neck (r=0.17, p=0.028), and Radius BMD levels (r=0.24, p=0.002) Radius BMC levels (r=0.16, p=0.033). Largest increases in bone mass in IG2 (high dose) subjects with lowest 25(OH)D levels at baseline	4 Unclear

Table 3. Serum 25(OH)D Levels and Bone Health Outcomes in Older Children and Adolescents

Author (year) Country Funding	Population, N Attrition Gender Mean age Ethnicity	Intervention Duration	25(OH)D Assay	Bone Health Outcomes	Results
Prospective	Cohort Studies				
Guillemant (1999) ¹⁰⁴ France NR	 175 Healthy adolescent boys from a jockey training center 100% male Range 13 y 5 mo to 16 y 1 mo 	NA	25(OH)D [^] Measured after summer (Sept– Oct) and after winter (March-April) CPBA	iPTH (immunoradiometric assay, Nichols)	25(OH)D mean (SD) Post-summer 58.5 (10) Post-winter 20.6 (6.0), P=0.0001 iPTH negatively correlated with 25(OH)D, non-linear, (p <0.001, r=-0.504) At > serum 25(OH)D > 83 nmol/L, iPTH plateau occurred at 2.48 pmol/L
	Caucasion				seasonal variation in mean (SD) iPTH: summer 2.76 (0.97) vs. winter 4.20 (1.21) pmol/L
Javaid (2006) ¹⁰¹ U.K. Public	198 Children with known maternal 25(OH)D status in third trimester (original cohort: children born to 596 white women in a study of maternal nutrition and fetal growth 1991- 1992) 9 y old	NA	25(OH)D [^] Measured in mothers in third trimester RIA (IDS)	Total body and lumbar spine BMC and areal BMD calculated volumetric BMD (DXA Lunar DPX-L)	Maternal serum 25(OH)D in late pregnancey: 18% had serum 25(OH)D levels < 27.5 nmol/L and 31% had levels 27.5-50 nmol/L Mothers with lower 25(OH)D during pregnancy had children with reduced total body (r=0.21, p=0.0088) and lumbar spine BMC (r=0.17, p=0.03). Adjustment for height did not weaken the relationship between total body BMC and 25(OH)D; Volumetric LS BMD was not associated with maternal 25(OH)D. adjusted for age of child
	Caucasion				

Table 3 (continued). Serum 25(OH)D Levels and Bone Health Outcomes in Older Children and Adolescents

Author (year) Country Funding	Population, N Attrition Gender Mean age Ethnicity	Intervention Duration	25(OH)D Assay	Bone Health Outcomes	Results
Lehtone- Veromaa	191 Healthy adolescent girls	NA	25(OH)D [^] baseline, 1 and 3 y	LS BMD and BMAD FN BMD and BMAD	25(OH)D mean (SD) nmol/L baseline: 34.0 (13.2) (winter)
(2002) ¹⁰³	addlescent gins		baseline, r and 5 y	DXA	1 y: 33.2 (11.1)
Finland	15 (7.9%) dropped out during the 3 y		RIA (DiaSorin)	(QDR 4500C Hologic)	3 ý: 40.6 (15.8)
1 mana	(final N=171)				Baseline 25(OH) D correlated with \triangle LS BMD (r=0.35,
Public	4000/ 5				p < 0.001) and \triangle FN BMD (r=0.32, p < 0.001)
	100% female				Baseline 25(OH)D correlated with ∆ LS BMAD (0.35,
	12.9 (1.7) y, range 9-				p < 0.001) and Δ FN BMAD (0.24, p < 0.002)
	15 y				Adjusted for: baseline reproductive y, bone mineral
	Caucasian				values, increases in height and weight, mean intake of calcium and mean amount of physical activity Significant correlation between baseline 25(OH)D and Δ 3-y adjusted LS or FN BMD and BMAD.
					Difference in mean 3-y Δ LS BMD between group with baseline 25(OH)D<20 nmol/L and group with baseline 25(OH)D \geq 37.5 was 4%.

Table 3 (continued).	Serum 25(OH)D Levels and Bone Health Outcomes in Older Children and Adolescer	its

Author (year) Country Funding	Population, N Attrition Gender Mean age Ethnicity	Intervention Duration	25(OH)D (isoform measured) Assay	Bone Health Outcomes	Results
Case-Contro	l Studies				
Marwaha (2005) ¹⁰⁶	5137 Healthy school children 3089 from Lower	NA	25(OH)D^ RIA	BMD (distal forearm and calcaneum) using	Serum 25(OH)D mean (SD): 29.5 (18) LSES: 26 (1); USES: 34 (1) 25(OH)D < 22.5 nmol/L: 35.7%; LSES 42.3% vs.
India	Social Economic Status (LSES),		Measured in subset N = 740	DXA (Lunar PIXI-1.34))	USES 27%, p < 0.01
NR	2048 from Upper Social Economic Status (USES)			measured in subset N = 555 iPTH	Prevalence of clinical vitamin D deficiency (defined by genu varum or genu valgum): LSES 11.6% vs. USES 9.7%, p=0.07
	% female: LSES: 65.1% USES: 52.7%			(immunoradiometri c assay, DiaSorin) N = 740	Forearm mean BMD significantly higher (p<0.01) in USES group compared to LSES BMD adjusted for height and weight
	Mean age NR Range 10 – 18 y				Serum Ca no significant difference between groups but dietary calcium intake lower in LSES group
	Indian				No significant correlation between BMD and serum 25(OH)D in either group
					Significant negative correlation between PTH and 25 (OH)D, r=0.020, p<0.01

Table 3 (continued). Serum 25(OH)D Levels and Bone Health Outcomes in Older Children and Adolescents

Author (year) Country Funding	Population, N Attrition Gender Mean age Ethnicity	Intervention Duration	25(OH)D (Isoform Measured) Assay	Bone Health Outcomes	Results
Before-After					
Rajakumar (2005) ¹⁰⁰ U.S. Public	42 Healthy 6 - 10 y olds Tanner stage I/II (81% I) Skin type III/IV (81% IV) Vit D dietary intake: mean (SD) 277 (146) IU/d 16/41 (39%) dietary intake < 200 IU/d 2 withdrew for personal reasons 34% female 8.9 (1.2) y (range 6 -10 y) African American	Vit D 400 IU/ d (isoform not specified) 1 mo	25(OH)D ^A Measured at baseline and 1 mo CPBA (Nichols Advantage chemiluminescence)	iPTH (Immulite iPTH chemiluminescent assay)	Serum 25(OH)D mean (SD) nmol/L baseline: 60.0 (26.3) 49% < 50 71% < 75 Group 1 = 25(OH)D < 50 nmol/L at baseline: 38.5 (8.0) Group 2 = 25(OH)D > 50 nmol/L at baseline: 80.3 (20.5) 1 mo (total group): 68.8 (18.8) Group 1: 57.5 (16) Group 2: 79.5 (14.5) Increase in serum 25(OH)D was observed only in group 1 7/39 (18%) of group 1 continued to have a level < 50 nmol/L after 1 mo of supplementation Negative correlation between 25(OH)D and PTH at baseline (r = -0.325, p = 0.038) Inflection point for PTH started at 25(OH)D ~ 75 nmol/L iPTH mean (SD) pmol/L Baseline: 4.62 (1.9) 1 mo: 4.24 (2.1) Negative correlation of 25(OH)D with body weight (r = -
PHO -					0.378, p = 0.015) at baseline No significant differences at baseline or 1 mo in markers of bone turnover, 1,25-(OH) ₂ D or PTH betwee groups with 25(OH)D < 50 nmol/L or > 50 nmol/L at baseline of group; CPBA, competitive protein binding assay; d, day

Table 3 (continued)	. Serum 25(OF)D Levels and Bone Health Outcomes i	in Older Children and Adolescents
---------------------	---------------	--------------------------------------	-----------------------------------

lumbar spine; RIA, radioimmunoassay; SD, standard deviation; SPA, single photon absorptiometry USES, upper socioeconomic status; y, year

Question 1B. Are Specific Circulating Concentrations of 25-Hydroxvitamin D [25(OH)D] Associated with Bone Health Outcomes in Pregnant and Lactating Women?

Vitamin D is essential for calcium homeostasis in the body including transport of calcium across the placenta in order to provide the fetus with mineral, especially during the last trimester of pregnancy. The rate of fetal accretion of calcium increases from approximately 50 mg/day at 20 weeks gestation to 330 mg/day at 35 weeks.¹⁰⁷ To provide for such fetal calcium needs, physiological changes occur naturally during pregnancy so that intestinal absorption of calcium is doubled; this occurs via an up-regulation of the active hormone of vitamin D, 1,25-(OH)₂D. The mechanism mediating the increase in vitamin D activity is not fully understood; it may involve pregnancy-associated hormones, placental synthesis of vitamin D, or a change in the balance between production of 1,25-(OH)₂D and 24,25-(OH)₂D. During lactation, the typical daily loss of calcium has been estimated to range from 280 to 400 mg. To meet these demands, skeletal calcium is released by temporary bone demineralization. This section presents the results of studies that investigated the association between vitamin D status in pregnant or lactating women and their bone health outcomes.

Overview of Relevant Study Characteristics and Results

Five observational studies evaluated the association between vitamin D status and bone health outcomes in mothers, or their offspring. One prospective study¹⁰¹ involved the analysis of the bone status by DXA at nine years of age in 198/596 previously studied offspring and the results of this study are summarized in the section on children (Section 1A part 3). The remaining four studies provided data on changes in vitamin D status during pregnancy, and the effect of maternal vitamin D status during pregnancy on outcomes of birth gestation or size. All studies included serum 25(OH)D measurements and other markers of calcium homeostasis. Study characteristics and 25(OH)D assays are outlined in Table 4.

The time of assessment of vitamin D status, the assay method for 25(OH)D and bone health outcomes varied across studies which precluded quantitative synthesis of results.

Vitamin D Status in Pregnant and Lactating Women

Study characteristics. Three prospective cohort studies reported on vitamin D status during pregnancy,¹⁰⁸⁻¹¹⁰ one included assessment six weeks postpartum¹⁰⁹ and one also measured 25(OH)D concentrations postpartum and during lactation.¹⁰⁸ A prospective cohort study¹¹⁰ measured vitamin D status in early pregnancy (11 weeks) and at the beginning of the third trimester and then assessed the relationship between vitamin D status with infant size at birth.

In the before-after study, serum 25(OH)D and PTH were measured.¹¹¹ The study duration was from first "booking" into the maternity clinic (presumably in the first trimester) to delivery

with measurement of vitamin D status at 36 weeks of gestation for those mothers identified as vitamin D deficient at baseline.

Bone health outcomes. Only one of the prospective cohort studies in lactating women included change in bone mineral density as an outcome.¹⁰⁸ None of the included studies evaluated bone mineral content (BMC), fractures or ultrasound parameters as an outcome. Three studies evaluated serum PTH concentrations as an outcome.^{108,109,111} One study evaluated maternal vitamin D status during pregnancy and the association with infant body size at birth.¹¹⁰

Population characteristics. Sample sizes ranged from 40 to 160 women who were recruited during pregnancy. Mean vitamin D intake and calcium intake were not reported for any of the studies which is important given that calcium intake modulates serum PTH. All studies involved pregnant women but ethnicity and geographical location varied widely. One study enrolled non-European ethnic minority women,¹¹¹ another study enrolled only Asian women,¹⁰⁹ and two studies enrolled mainly Caucasian women.^{108,110}

Confounders/covariates. Intake of vitamin D supplements¹¹¹ was identified as covariate in one study. Sowers¹⁰⁸ used multiple linear regression and linear mixed models (paired comparisons between early and late pregnancy) to examine the predictability of calciotrophic hormones on the rate of change in BMD of the spine and femoral neck, after adjusting for concentrations of other hormones and the time since parturition. Morley adjusted for maternal BMI, smoking during pregnancy, and maternal PTH levels in the evaluation of the association of serum 25(OH)D levels at less than 16 weeks and 28 weeks gestation with offspring birth size.¹¹⁰ One study did not adjust for any confounders in the analysis.¹¹¹

Outcome characteristics. One cohort study measured BMD with dual energy x-ray absorptiometry (DXA) at the femoral neck and lumbar spine over 4 to 6 time points ranging from just after delivery to 18 months postpartum during lactation.¹⁰⁸ Midmolecule or Intact PTH was measured using radioimmunoassay,¹⁰⁸ immunoradiometric assay,¹⁰⁹ or chemiluminescent methodology.^{110,111}

Qualitative Synthesis of Individual Study Results

Maternal vitamin D status. In the study of non-European minority women from South Wales,¹¹¹ 50 percent of the women were vitamin D deficient at the first antenatal visit, using a criterion of serum 25(OH)D < 20 nmol/L. Vitamin D supplementation (800-1600 IU) D during pregnancy normalized vitamin D status in 60 percent of the deficient group. In the study in Saudi Arabia of 40 Asian women,¹⁰⁹ serum 25(OH)D declined significantly from baseline (about 11 weeks gestation) to the third trimester (mean of 31.4 wk of gestation) and remained low through to 6 weeks post-delivery. However, at all timepoints, mean serum 25(OH)D concentrations were within the normal range of a reference group of non-pregnant women (N = 280) who were healthy and non-lactating, suggesting that although serum levels decline during the end of the third trimester, they do not differ extensively from those of the non-pregnant state. None of the pregnant women were classified as having subclinical vitamin D deficiency (25(OH)D < 20 nmol/L). In the study¹¹⁰ in primarily Caucasian women in Australia, serum 25(OH)D was similar at recruitment (11 weeks of gestation) and at the beginning of the third trimester of pregnancy (28-32 weeks of gestation) but there were significant differences between

mean values in winter versus summer months. The percent who were vitamin D deficient (9-10 percent as defined by 25(OH)D < 28 nmol/L) was significantly greater in winter than summer.

One cohort study assessed vitamin D status postpartum and in relation to breast-feeding.¹⁰⁸ There was a non-significant trend to a decline in vitamin D status in the initial 2-4 months and the pattern was not influenced by the season of birth. Vitamin D status was not influenced by the duration of breast-feeding. The percent of women who were vitamin D deficient was not provided but based on the mean values, some of the women would have had 25(OH)D values less than 20 nmol/L. Data on vitamin D intake or sun exposure were not provided.

Vitamin D status and bone health outcomes. In the cohort study by Sowers, bone mineral density of lumbar spine and femoral neck was measured in 115 mothers with different breast-feeding practices during the postpartum period and vitamin D status was not associated with changes in BMD of the femur or spine.¹⁰⁸ Women were recruited during the third trimester, lumbar spine BMD was measured at two weeks, 6, 12 and 18 months postpartum and femoral neck at two weeks, two, four, six, 12 and 18 months. Serum PTH and the other calciotrophic hormones were not associated with changes in femoral or lumbar spine BMD, suggesting that 25(OH)D, PTH and 1,25-(OH)₂D do not explain the calcium mobilization and bone turnover that occurs during lactation.¹⁰⁸

In the before-after study in pregnancy,¹¹¹ serum 25(OH)D did not appear to correlate with serum PTH concentrations, with 65/80 women with low 25(OH)D having PTH in the normal range.

In a prospective cohort study on 40 Asian women (280 non-pregnant controls),¹⁰⁹ serum 25(OH)D levels negatively correlated with intact PTH (r = -0.62, 0 < 0.001). In this study, serum osteocalcin, a bone formation marker was below the reference range observed in non-pregnant women, and declined in the second trimester compared to the first, but then rose to within or above the reference range at term and 6 weeks postpartum. This suggests changes in bone turnover do occur during early pregnancy, irrespective of normal vitamin D status.

In the prospective cohort study by Morley there was no association between baseline maternal 25(OH)D concentrations and measures of infant size at birth.¹¹¹ There was an inverse association between maternal log₂ 25(OH)D and log₂ PTH. Using the maternal 25(OH)D concentrations at 28-32 weeks, the mean gestational length was significantly shorter (0.7 weeks, 95% CI -1.3,-0.1 weeks) in the vitamin D-deficient mothers compared to mothers with 25(OH)D concentrations over 28 nmol/L. This association was not altered by inclusion of log₂ PTH, serum calcium and albumin concentrations. Infants born to mothers who were vitamin D deficient at 28-32 weeks gestation, had lower mean knee-heel length (-2.7 mm) compared to infants born to mothers who were not vitamin D deficient, after adjusting for gestation length.¹¹⁰ Further non-parametric smooth regression analysis and adjustment of confounders suggested the possibility of a linear association when 25(OH)D levels were below 30-40 nmol/L, but there was no association at higher 25(OH)D levels. Low maternal 25(OH)D levels were associated with a negative impact on long bone growth and the authors postulated that maternal PTH may affect fetal growth via an affect on 1,25-(OH)₂D production.¹¹⁰

Study quality. There were no RCTs identified that evaluated the association between serum 25(OH)D concentrations and bone health outcomes in pregnant and lactating women. The before-after study¹¹¹ was poorly designed, lacked detail regarding the duration and compliance with the vitamin D supplements, and the analyses were incomplete. A limitation of the included studies was failure to adjust for all relevant covariates. Only one six-week cohort study was considered to be of good quality, since it included an age-matched non-pregnant cohort with control values for all biochemical measurements (N = 280) and provided six serial measures with no attrition during followup.¹⁰⁹ The cohort study conducted during lactation,¹⁰⁸ was of good quality as it included six serial biochemical measures, four measures of spinal BMD and six of femoral neck BMD throughout lactation, and adjusted for a number of covariates. The one study in which the primary outcome was size of offspring at birth was judged to be of fair quality due to loss of followup of over 20 percent.¹¹⁰

Summary. Serum 25(OH)D levels and bone health outcomes in pregnancy and lactation

Quantity: Four studies (no RCTs, three cohorts, one before-after study) assessed vitamin D status at various time points in pregnancy with vitamin D deficiency being observed in 0 to 50 percent of subjects. Only one cohort study (N=115) included maternal BMD as an outcome and there was no relation between vitamin D status and postpartum changes in BMD.

Quality: Quality scores ranged from poor to good. Skin color, vitamin D supplementation, calcium intake and sun exposure were not controlled for or assessed in all studies.

Consistency: Two studies observed no change in vitamin D status during pregnancy, whereas another observed a decline in serum 25(OH)D from the 1^{st} to 3^{rd} trimester. There was insufficient evidence on the association between 25(OH)D and change in bone density during pregnancy. One good prospective cohort did not find an association between serum 25(OH)D and the changes in BMD that occur during lactation. There was fair evidence that serum 25(OH)D correlated negatively with PTH levels in pregnancy. Limitations in the study design and sources of bias highlight the need for additional research on vitamin D status in pregnancy and lactation, and the association with bone health outcomes.

Author (year) Country, Funding	Population, N Attrition Mean age Ethnicity	Duration	Serum 25(OH)D mean (SD) (nmol/L) Assay	Bone Health Outcomes	Results
Prospective Coh	orts	•			
Ardawi (1997) ¹⁰⁹ Saudia Arabia Public	40 Pregnant women 280 Non-pregnant women NR NR Pregnant women 26.8 (5.8) y; non-pregnant women 27.8 (5.3) y Arab	6 wks	25(OH)D [^] Pregnant women: 1 st trimester: 54 (10) 2 nd trimester: NR 3 rd trimester: 33 (8) term: 35 (11) 6 wks postpartum: 33 (8) CPBA	iPTH (IRMA)	Serum 25(OH)D declined significantly from 1 st to 3 rd trimester and remained low through 6 wks postpartum. No values were < 20 nmol/L. PTH (pregnant women): Serum 25(OH)D levels correlated negatively with serum iPTH (r=-0.62, p <0.001); 1 st trimester: 1.31 (0.25) 2 nd trimester: 2.26 (0.39) term: 1.86 (0.87); 6 wks postpartum: significant increase compared to pregnancy values (~ 3.5, graph only, exact value NR) Serum 25(OH)D in pregnancy correlated positively with 1,25-(OH) ₂ D (r=0.52, p < 0.001), serum PTH-related peptide (r = 0.51, p < 0.001), serum Ca (r=0.23, p < 0.001), serum Mg (r=0.62, p < 0.01)

Table 4. Serum 25(OH)D Levels and Bone Health Outcomes in Pregnant or Lactating Women

Author (year) Country, Funding	Population, N Attrition Mean age Ethnicity	Duration	Serum 25(OH)D mean (SD) (nmol/L) Assay	Bone Health Outcomes	Results
Morley (2006) ¹¹⁰	475 Pregnant women recruited at < 16 wks	NA	25(OH)D [^] geometric mean at recruitment:	PTH (chemiluminescent enzyme-labelled	After adjustment for seasonal variation, increase in 25(OH)D concentrations
(2000)	gestation from		In summer: 62.6	immunometric assay)	between early and late pregnancy:
Australia	antenatal clinic		In winter: 49.2, p < 0.001	, , , , , , , , , , , , , , , , , , ,	gemometric mean ratio 1.06, 95% CI 1.02,
	Unclear if recruitment		a/	Infant linear growth	1.10, p = 0.004
Public	was consecutive		% < 28 nmol/L: In summer: 0.8%	(head, mid-arm, calf circumference)	No association between maternal 25(OH)D
	21% attrition		In winter: 9.4%, p < 0.001	Knee-heel length	and PTH levels at recruitment (11 wks gestation)
	29.3 (6.4) y		At 28 – 32 wks gestation: In summer: 48.3		Positive association between maternal PTH
	98.6% Caucasian		In winter: 68.9, p < 0.001		and measures of infant size (to knee-heel
	(excluded those		% < 28 nmol/L		length, birth weight) independent of
	thought to be at high risk for deficiency		In summer: 3.7%		25(OH)D status.
	including dark		In winter: 10.0% , p = 0.02		Mothers with serum 25(OH)D < 28 nmol/L,
	skinned individuals)				at 28-32 wk gestation, had babies with:
	105 White, 7 Asian		RIA		shorter (-0.7 wk) gestation length, and
	American, 3 African American				knee heel length (-2.7mm) after adjustment for gestation length, and lower birth weight (- 157 g) than those with 25(OH)D <u>></u> 28 nmol/L

Table 4 (continued). Serum 25(OH)D Levels and Bone Health Outcomes in Pregnant or Lactating Women

Author (year) Country Funding	Population, N Attrition Mean age Ethnicity	Duration	Serum 25(OH)D mean (SD) (nmol/L) Assay	Bone Health Outcomes	Results
Sowers	115 Women in third	18 mo	25(OH)D^	BMD: FN and LS (DXA-	25(OH)D concentration was not predictive
(1998) ¹⁰⁸	trimester, with a		postpartum stages:	Lunar)	of changes in FN or LS BMD or bone
	parity of 0 – 1,		2 wks 40.3 (11.3)		turnover markers.
U.S.	recruited on basis of		2 mo 30.1 (7.5)	PTH (midmolecule, RIA)	
	intent to breast-feed		4 mo 37.4(10.5)		Pattern of decline in 25 (OH)D
Public	or formula-feed		6 mo 33.6 (10.4)		concentration over 18 mo period was
	exclusively.		12 mo 29.5 (8.4)		independent of lactation status
			18 mo 27.0 (7.3)		
	2 wks: N = 115;				PTH, 25(OH)D and 1,25-(OH) ₂ D had no
	18 mos: N = 71		RIA		association with prolactin or PTH-related peptide and did not differ by lactation
	Mean age: 29.3 (20-				practice.
	40) y				
	91% Caucasian; 6%				
	Asian American; 3%				
	African American				

Table 4 (continued). Serum 25(OH)D Levels and Bone Health Outcomes in Pregnant or Lactating Women

Author (year) Country, Funding	Population, N Attrition Mean age Ethnicity	Duration	25(OH)D nmol/L Assay	Bone Health Outcomes	Results
Before-After Stu	dies				
Datta (2002) ¹¹¹	160 Consecutive	Early	25(OH)D^	PTH levels provided for vit	At baseline, 65 of 80 (81%) women with
Wales	ethnic minority pregnant women in the U.K. recruited at	pregnancy to delivery	80/160 (50%) had 25(OH)D < 20 nmol/L	D def women only	serum 25(OH)D < 20 nmol/L had normal PTH (< 5.6 pmol/L)
Funding NR	first antenatal visit; those identified as vit D def (serum 25(OH)D < 20 nmol/L) were treated with vit D 800 IU/d		Reported for vit D def women only: Recruitment: 14.5 (2.3) End of study (with treatment): 28.1(15.9)		35/58 (60%) re-tested at delivery had 25(OH)D within normal range At delivery, mean serum 25(OH)D increased from 15 to 27.5 nmol/L, but mean PTH level remained the same
	Attrition: 58/80 (73%) vit D def women had post treatment (post		Vit D status at delivery in those treated with supplements reported for 58/80		serum PTH mean (SD) pmol/L: at recruitment: 3.69 (2.78) pmol/L end of study (post treatment): 4.06 (3.17) NS
	delivery) assessment		RIA		Compliance with vit D not measured
	Mean age NR African (N = 36), Afro- Caribbean (N = 4), Indian (N = 100), Middle Eastern (N = 9), Far Eastern (N = 11)				

def, deficient or deficiency; IRMA, immunoradiometric assay; IU, international units; Mg, magnesium; NR, not reported; PTH, parathyroid hormone; RIA, radioimmunoassay; SD, standard deviation; vit, vitamin; wk. weeks; y, year;

Question 1C. Are Specific Circulating Concentrations of 25 Hydroxyvitamin D [25(OH)D] Associated With Bone Health Outcomes in Postmenopausal Women and Elderly Men?

Overview of Relevant Studies

This section summarizes the evidence from the studies that investigated the association between serum 25(OH)D concentrations and bone health outcomes in postmenopausal women and/or elderly men. The discussion focuses on observational studies and only the few (vitamin D supplementation) RCTs that specifically investigated the association of serum 25(OH)D with one or more bone health outcomes are discussed. The majority of RCT data are presented in Question 3. Tables 5-8 summarize the studies included in this section, including the vitamin D assays used.

For the prospective cohorts, assessment of study quality was based on a number of factors including how representative the cohort was, the method of ascertainment of the outcome, whether key confounders were adjusted for in the analysis, the adequacy of followup, size of the study and whether the main objective was to evaluate the association between serum 25(OH)D and bone health outcomes. For the case-control studies, study quality was evaluated based on whether methods were used to minimize sample bias: for example, similar sampling of cases and controls, matching on relevant variables and the use of population based controls or more than one control group.

Study characteristics. A total of 41 studies (42 records) evaluated the association between serum 25(OH)D concentrations and bone health outcomes in postmenopausal women and elderly men. Of these 41 studies, 10 were RCTs,¹¹²⁻¹²¹ 14 were single prospective cohorts,¹²²⁻¹³⁵ and 17 were case-control studies (18 records).^{29,136-152} One publication was companion paper,^{146,147} and we refer to the primary record with the most relevant data in the results.¹⁴⁶ Study characteristics such as population, sample size, duration of followup, country, and 25(OH)D assays are summarized in Tables 6-8.

Variability in the measurement and reporting of serum 25(OH)D and bone health outcomes, along with differences in populations precluded formal meta-analysis. The results are reported by bone health outcome: fractures, bone mineral density (BMD), falls and performance measures.

Association with Fractures

Study characteristics. Fifteen studies reported on the relation between serum 25(OH)D and fractures. Of the 15 studies, three were single prospective cohort studies^{130,131,133} and 12 case-control studies (Table 6).^{29,137,139,141,142,144-146,148-151}

Population characteristics. Two cohorts included females only^{131,133} and one cohort¹³⁰ included both genders. Six case-control studies included females,^{29,137,139,142,145,148} one included males only,¹⁵⁰ four included both genders,^{141,144,146,151} and one study did not specify the gender.¹⁴⁹

Fracture outcomes and ascertainment. Gerdem included low-trauma fractures (hip, wrist, humerus, vertebral) identified in followup interviews with participants and from a hospital x-ray database.¹³¹ Cummings included x-ray-confirmed hip and vertebral fractures¹³³ and Woo included osteoporotic fractures (hip, wrist and vertebral) that were validated with hospital records or death certificates.¹³⁰ All case-control studies involved hip fracture cases.

Cohorts. The study quality of the cohorts ranged from poor¹³⁰ to good.¹³³ Losses to followup ranged from 6 to 34 percent. Two studies reported adjusting for weight and one also adjusted for BMD, age and use of estrogen and self-rated health.¹³³ Duration of followup ranged from 30 months to a maximum of 5.9 years.

Woo et al. (1990), followed 427 independently living elderly Chinese subjects (mean age 69 years for men and 70 years for women) for 2.5 years to determine which biochemical variables predicted fractures. A relative risk of fractures for subjects with lower serum 25(OH)D levels (<79 nmol/L in males and < 65.5 nmol/L in females) was reported but the confidence intervals were wide and the result was not significant (RR 3.42, 95% CI, 0.79-14.9). The study had a number of limitations, including a high loss to followup (34 percent), a low event rate (only nine subjects had fractures) and a lack of adjustment for confounders such as BMD and age (although adjustment was made for alcohol intake, smoking and BMI).¹³⁰

Gerdhem et al. (2005) evaluated the association between 25(OH)D and fractures in a three year prospective cohort of 1044 ambulatory women in Sweden. The mean 25(OH)D level was 95 ± 30 nmol/L. Only 4.4 percent of subjects had a serum 25(OH)D level below 50 nmol/L. Of the cohort, 119/986 (12 percent) sustained a low-trauma fracture (159 fractures). Nine out of the 43 women (21 percent) who had 25(OH)D levels below 50 nmol/L had at least one fracture versus 110 of 943 (12 percent) women with levels above 50 nmol/L, representing a two fold increased risk of fracture (HR 2.04, 95% CI 1.04-4.04). Women with serum 25(OH)D levels below 75 nmol/L had a hazard ratio of 1.01, (95% CI 0.71-1.61). When women who took vitamin D supplements were excluded from the analysis, those with a 25(OH)D level < 50 nmol/L had a hazard ratio of 1.99 (95% CI 0.97-4.0). It was unclear if relevant confounders were adjusted for.¹³¹

Cummings et al. (1998) in a prospective cohort of 9,704 Caucasian community-dwelling women age 65 years and older evaluated risk factors for hip and vertebral fractures.¹³³ Women were followed for a maximum of 5.9 years, and a random sample was selected from the subset of the original cohort who experienced fractures (N = 133 hip and 138 vertebral fracture cases). Controls were randomly selected from the same cohort (case-cohort) and logistic regression and proportional hazards analysis were used to evaluate predictors. Variables adjusted for included age, weight, BMD, season, and use of vitamin D supplements. Twenty-two percent of subjects had 25(OH)D levels below 47.5 nmol/L. The authors did not report a significant association (adjusted for age and weight) between serum 25(OH)D concentrations and risk of hip (RR 1.2, 95% CI 0.7-1.9) or vertebral fractures (RR 1.1, 95% CI 0.6-1.8) in those with serum 25(OH)D concentrations <47.5 nmol/L. They did report an association between lower serum 1,25-(OH)₂D₃ levels and risk of hip fractures but not vertebral fractures.

Case-controls. All 12 case-control studies reported cases of hip fractures (radiographically confirmed).^{29,137,139,141,142,144-146,148-151}

Nine case-control studies matched cases and controls on age.^{29,137,139,141,142,145,147,148,150} Four studies matched cases and controls on gender and postmenopausal status.^{29,137,139,140} Two case-

control studies did not provide details on matching.^{149,151} None of the studies matched cases and controls on BMD. A limitation of case-control studies in the evaluation of the association with fractures is that measurement of serum 25(OH)D concentrations are made after the hip fracture has occurred and can be affected by hospitalization, trauma or treatment. Two studies included both hospitalized and community controls.^{141,150}

Ten of twelve case-control studies found significantly lower 25(OH)D levels in hip fracture patients compared to controls.^{29,139,141,142,144-146,148,150,151} Three case-control studies adjusted for relevant covariates in their analysis, but this did not alter the difference in serum 25(OH)D between cases and controls.^{29,142,146} Cooper, however, reported that there was no residual difference in serum 25(OH)D between cases and controls after adjusting for age and albumin (Table 6).¹⁴⁵

Diamond et al. performed a multiple regression analysis to determine the predictors of hip fractures in men (e.g., age, weight, comorbidity, 25(OH)D levels, free testosterone) and found that a serum 25(OH)D concentration < 50 nmol/L was the strongest predictor of hip fracture (regression coefficient 0.34 +/- 0.19, p = 0.013).¹⁵⁰

Two case-control studies did not find a significant difference in serum 25(OH)D concentrations between hip fracture cases and controls.^{137,149} In one of these studies, there was no mention if the controls and cases were matched by age.¹⁴⁹

Summary. Serum 25(OH)D levels and fractures in postmenopausal women and older men

Quantity: Fifteen studies (three prospective cohorts and twelve case-controls) reported on the association between serum 25(OH)D and fractures.

Quality: The quality of the prospective cohorts and case-controls ranged from poor to good.

Consistency: One of three cohorts reported an inverse association between serum 25(OH)D and fractures, and nine of twelve case-control studies found lower 25(OH)D concentrations in cases versus controls. Differences in results may be attributed to whether or not all relevant confounders were controlled for and differences in baseline serum 25(OH)D status.

Based on the above studies, the level of evidence for an association between serum 25(OH)D and fractures is inconsistent.

Association with Falls

Study characteristics. The relation between serum 25(OH)D and falls was reported in one RCT, ¹¹⁴ three prospective cohorts, ^{122,123,134} and one case-control study.¹³⁸

Population characteristics. The RCT included elderly women in long-term geriatric care facilities.¹¹⁴ Two prospective cohorts included institutionalized elderly men and women,^{122,123} and one included older community-dwelling women.¹³⁴ The case-control study included both elderly men and women living in nursing homes or hostels (intermediate-care facilities).¹³⁸

Fall outcomes – definition and ascertainment. Falls were defined as "an event resulting in a person inadvertently coming to rest on the ground" in the RCT¹¹⁴ and in one cohort.¹²³ Another cohort defined falls as "landing on the ground or falling and hitting an object like a table"¹³⁴ and the third cohort did not provide a definition for falls or the method of ascertainment.¹²² Falls were ascertained by the staff completing regular fall diaries in two studies.^{123,134} In the case-control study, falls were retrospectively evaluated by nursing staff using a rating scale.¹³⁸

RCTs. One RCT by Bischoff, with a Jadad quality score of 3/5, evaluated the effect of vitamin D₃ on falls in elderly residents in long-term care.¹¹⁴ Fifty percent of the participants were vitamin D deficient (< 30nmol/L). Bischoff reported a significant inverse association between serum 25(OH)D and falls.

Prospective cohorts. All three cohorts were representative and adjusted for one or more relevant covariates (age, cognitive status, illness severity) in the analysis.^{122,123,134} Losses to followup were small in all cohorts and overall study quality of the cohorts was good. The proportion of participants who were vitamin D deficient (investigator-defined) varied from 2.6 percent (<25 nmol/L) in one,¹³⁴ to 22-45 percent (< 25 nmol/L) in another,¹²³ and 64-74 percent in the third cohort (<39 nmol/L).¹²²

Sambrook et al. (2004) explored the relation between serum 25(OH)D, PTH and falls in 646 elderly ambulatory elderly institutionalized males and females (mean age 85-86.6 yrs). Serum 25(OH)D and PTH were significant predictors of time to first fall. However, after adjusting for age, incontinence and illness severity, serum 25(OH)D did not remain a predictor [adjusted HR, 0.99 (95% CI 0.98-1.00), p=0.06]. Participants were divided into four groups based on serum 25(OH)D and PTH concentrations: group 1, 25(OH)D < 39 nmol/L and PTH > 66 pg/ml; group 2, 25(OH)D < 39 nmol/L and PTH < 66 pg/ml; group 3, 25(OH)D > 39 nmol/L and PTH > 66 pg/ml; group 4, 25(OH)D > 39 nmol/L and PTH < 66 pg/ml. Survival analysis found that subjects in group 1 were 1.65 times more likely to fall than those in group 4, after adjusting for age, incontinence and illness severity [HR 1.65 (95% CI 1.10-2.46), p=0.02].¹²²

Flicker (2003), in a cohort of 1,619 older individuals in residential care (mean age 83.7 years), examined the association between serum 25(OH)D and fall risk (adjusted for weight, cognitive status, psychotropic drug use, prior wrist fracture and wandering behavior, but not functional status). The log serum 25(OH)D remained an independent predictor of time to first fall [HR 0.74 (95% CI 0.59-0.94), p=0.01] and was consistent with a 20 percent lower risk of falls with a doubling of serum 25(OH)D.¹²³

Faulkner et al. (2006),¹³⁴ in a secondary analysis of a sample of women (median age 70 years) with falls (N = 389) who were randomly selected from a cohort of 9,526 communitydwelling older women, evaluated the relation between serum concentrations of vitamin D metabolites and fall rates. Although there was a trend of higher 25(OH)D₃ concentrations with weaker grip strength, in multivariate models after adjustments for age, height, BMI, season, activity, self-rated health and other variables, serum 25(OH)D₃ concentrations were not associated with increased falls.

Stein et al. in a case-control study of 83 vitamin D deficient subjects (33 fallers and 50 nonfallers) who were residents of nursing homes or hostels, examined whether falls were associated with serum 25(OH)D and PTH concentrations. Cases and controls were matched on age, setting and level of independence. Falls were scored after serum 25(OH)D measurements. The study quality was fair. Stein found that serum 25(OH)D was significantly lower in fallers versus non-fallers (p = 0.02). Multiple logistic regression analysis revealed that predictors of falls included: walking unaided, hostel residence and serum PTH. Neither serum 25(OH)D or 1,25-(OH)₂D were independent predictors for falls, after adjustment for PTH concentrations.¹³⁸

Summary. Serum 25(OH)D levels and falls in postmenopausal women and older men

Quantity: Five studies (one RCT, three cohorts and one case-control) evaluated the association between serum 25(OH)D concentrations and falls. The one RCT, two of the three cohorts and one case-control study found an inverse association between serum 25(OH)D and a risk of falls. In one cohort with a low percentage of vitamin D deficient participants, the association did not persist after adjustment for age and illness severity. Another cohort did not observe an association between serum 25(OH)D and falls, and one case-control study did not find an association after adjusting for serum PTH.

Quality: The RCT and three prospective cohorts were of good quality and the case-control study was of fair quality.

Consistency: There is fair evidence of an association between lower serum 25(OH)D concentrations and an increased risk of falls in institutionalized elderly. PTH may be an important confounder. One study suggested a specific serum 25(OH)D concentration of 39 nmol/L, below which fall risk is increased.

Association with Performance Measures

Study characteristics. The relation between 25(OH)D and performance measures was examined in seven studies including three randomized trials,^{112,113,115} and four prospective cohort studies.^{124,125,131,134} Multiple performance measures were evaluated as outlined in Table 7.

RCTs. Three RCTs reported on the relation between 25(OH)D concentrations and performance measures including the Physical Activity Scale for the Elderly (PASE),¹¹³ postural sway and quadriceps strength,¹¹⁵ and muscle strength and activities of daily living.¹¹² The study quality ranged from 3/5 to 5/5 on the Jadad scale and sample sizes ranged from 65 to 139. Corless did not find an association between the change in serum 25(OH)D concentrations and change in muscle strength or independence indices. However, two RCTs did find an association between baseline serum 25(OH)D and performance measures: PASE, single leg stance and aggregate functional performance.^{113,115}

Prospective cohorts. The study quality of the cohort studies ranged from fair (three of the four) to good. Losses to followup were over 30 percent in two cohorts.^{124,125}

Gender was 100 percent female in three cohorts and the remaining cohort included both males and females.¹²⁴ Three cohorts adjusted for age, body mass index, chronic disease,^{124,125,134} serum creatinine,¹²⁴ and two adjusted for the effect of seasonal variation, activity or baseline strength assessments.^{101,125}

Four cohorts^{124,125,131,134} examined the relation between serum 25(OH)D and various performance measures. Visser et al. (2003) assessed whether low serum 25(OH)D and high serum PTH concentrations were associated with a loss of muscle strength in a cohort of 1,509 older individuals. Followup data were available on 1,008 participants and 9.6 percent were vitamin D deficient and 3.8 percent had secondary hyperparathyroidism (> 7 pmol/L). Participants with low serum 25(OH)D levels (< 25 nmol/L) compared to those with levels (> 50 nmol/L were more likely to experience loss of grip strength and appendicular skeletal muscle mass (ASMM), even after adjusting for sex, age, BMI, physical activity level, chronic disease, creatinine, season and smoking, [adjusted OR 2.57 (95% CI 1.40-4.70); p<0.05 and OR 2.14 (95% CI 0.73-6.33); p = 0.09, respectively]. Participants in the highest tertile of PTH (> 4.0 pmol/L) were 1.71 times more likely to experience loss of grip strength and ASMM. The high loss to followup in this study (33 percent of the 501 participants) may have affected the association, as those lost to followup were more likely to have poorer health status.¹²⁴

Gerdhem et al. (2005), in a prospective cohort of 1,044 ambulatory women, found that serum 25(OH)D concentrations correlated with gait speed (r = 0.17, p<0.001), Romberg's balance test (r = 0.14, p<0.001), and activity level (r=0.15, p<0.001). In a multiple regression analysis, however, only 5 percent of the variability in serum 25(OH)D was explained by fall and anthropometric variables. The authors suggested a threshold level between serum 25(OH)D concentration and physical activity exists at 87.5 nmol/L.¹³¹

Verreault et al. (2002) in a three year cohort of 1,002 community-dwelling elderly (mean age 75 yrs) found the annual rate of decline in strength, walking speed and time to perform repeated chair stands was similar across baseline serum 25(OH)D tertiles: (deficient < 25 nmol/L, low normal: 25-52 nmol/L and high normal > 53 nmol/L), after adjusting for age, race, education, BMI, seasonal variation and presence of chronic conditions. Adjusted rates of decline in performance, except grip strength, were not associated with baseline PTH. This cohort included women who were moderately to severely disabled so participants may have been below a functional level where vitamin D deficiency might have had an additional impact. There was high loss to followup in this study (37 percent).¹²⁵

Faulkner (2006), in the cohort of 389 women described above, reported that serum $25(OH)D_3$ concentrations were not associated with changes in neuromuscular function, including grip strength, balance and chair stand time in an age, BMD and height-adjusted multivariate models.¹³⁴

Summary. Serum 25(OH)D levels and performance measures in postmenopausal women and older men

Quantity: Seven studies (three RCTs and four cohorts) assessed the relation between 25(OH)D and performance related measures.

Quality: The overall quality of the evidence from RCTs and cohorts was fair to good.

Consistency: Two RCTs and two cohorts reported an association between 25(OH)D and performance measures. Two cohorts and one RCT did not find association between 25(OH)D and performance measures.

Overall, there is inconsistent evidence for an association of serum 25(OH)D concentrations with performance measures. In studies that did report an association, specific concentrations below which declines in performance measures were increased ranged from 50 to 87 nmol/L.

Association with Bone Mineral Density

Study characteristics. Nineteen studies evaluated the association between serum 25(OH)D and bone mineral density. Of these, six were RCTs, ¹¹⁶⁻¹²¹ seven single prospective cohorts, ^{126-129,131,132,135} and six case-control studies. ^{136,139-141,143,152}

Population characteristics. All RCTs included postmenopausal women.¹¹⁶⁻¹²¹ Four cohorts included females only^{128,129,131,135} and three included both genders.^{126,127,132} Three case-control studies included females only,^{139,140,143} two included both genders,^{136,153} and one included 100 percent males.¹⁵²

Bone density measurement. The BMD sites assessed in each study are in Table 8. Types of bone densitometry included dual photon absorptiometry (DPA) or dual energy-x-ray absorptiometry) (DXA) (Hologic or Lunar manufacturer).

RCTs. The study quality of the six RCTs¹¹⁶⁻¹²¹ ranged from 2/5 to 5/5 on the Jadad score with five trials having a score of $\geq 3/5$.^{116,117,119-121} Only one RCT reported an association between baseline 25(OH)D levels and change in BMD.¹¹⁹

Prospective Cohorts. Four of the seven cohorts adjusted for either BMI or weight, which is an important confounder of the association with BMD^{126,128,129,132} and three cohorts adjusted for age.^{128,129,132} Only two cohorts adjusted for physical activity, calcium use, smoking status or levels of other hormones.^{128,132} The study quality of the prospective cohorts ranged from fair to good.

Three cohorts evaluated the relation between serum 25(OH)D levels and BMD,^{127,131,132} and five examined the relation between 25(OH)D levels and changes in BMD.^{126-129,135}

Of the seven cohorts, four reported an association between serum 25(OH)D and femoral neck BMD,^{126,128,129,132} and one found a positive association between change in 25(OH)D and lumbar spine, but not femoral neck, BMD.¹³⁵

Stone et al. in a cohort of 231 older Caucasian women (mean age 65.5 years), found that women in the highest quartile of serum $25(OH)D (\geq 80 \text{ nmol/L})$ had a mean annual loss in total hip BMD of -0.1 percent (95% CI -0.5, 0.3) compared to -0.7 percent (95% CI -1.1, -0.4) in the lower quartile (< 52.5 nmol/L). The association remained significant after adjusting for age, weight, season, use of calcium, multivitamins, serum estradiol and other hormones. Serum PTH and 1,25-(OH)₂D were not significantly associated with hip bone loss. There was no association between serum 25(OH)D levels and calcaneal BMD after adjusting for age and weight.¹²⁸

In a cohort of older men and women (mean age 74 years, 228/327 with complete data) from the Framingham study with knee osteoarthritis, Bischoff-Ferrari reported a positive association between 25(OH)D and BMD of the femoral neck that was independent of age, gender, BMI, disease severity and physical activity.¹³² Fifteen percent of the cohort were classified as vitamin D deficient (<40 nmol/L), and 51 percent had levels between 40-80 nmol/L. Individuals in the 40-80 nmol/L group had a 7.3 percent higher BMD than those in the deficient group and individuals in the > 80 nmol/L group had an 8.5 percent higher BMD than the deficient group. In a subgroup analysis, the relationship was similar in both genders but most pronounced in men.¹³²

Two small cohorts found a positive association between serum 25(OH)D and BMD of the femoral neck..^{126,129} Del Puente et al. (2002) investigated the relation between serological

markers and change in BMD in 139 healthy premenopausal and postmenopausal women (mean age 58 years).¹²⁹ They reported that serum 25(OH)D was an independent predictor of change in femoral neck BMD and lumbar spine. However, in stepwise analysis discrimination models, only the association with femoral neck remained significant ($r^2 = 0.26$).¹²⁹

Melin et al. (2001) examined the relation between serum 25(OH)D, PTH and femoral neck BMD in 64 community-dwelling older individuals (mean age 83.7 years) and found that femoral neck Z-score was associated with serum 25(OH)D after both summer (r = 0.38, p = 0.003) and winter (r = 0.37, p = 0.003). In a multiple regression analysis with Z-score as the dependent variable and 25(OH)D and BMI as independent variables, only 25(OH)D remained a significant predictor of BMD after winter (adjusted $r^2 = 0.14$, p=0.005).¹²⁶

A small cohort study of eighteen healthy older women (mean age 77 years) reported an association between serum 25(OH)D and lumbar spine bone mineral density.¹³⁵ Rosen noted that differences in serum 25(OH)D between the first and second winter were associated with bone loss at the lumbar spine (r = 0.59, p = 0.04) but not at femoral neck, supporting the hypothesis that seasonal changes in serum 25(OH)D influence the rate of annual bone loss in postmenopausal women.¹³⁵

Dennison et al. did not find an association between baseline serum 25(OH)D and BMD or bone loss at either proximal femur or lumbar spine in 316 healthy, active older individuals (mean age 66 years), after adjusting for adiposity. Limitations of this study included a change in densitometer model between the baseline and followup assessment and lack of adjustment for season of data collection or vitamin D intake.¹²⁷

Case-control studies. Five out of six studies matched cases and controls on age^{136,139-141,143} and three studies matched on gender and postmenopausal status.^{139,140,143} None of the studies adjusted for weight or BMI in analyses.

Of the six case-control studies that evaluated the relation between 25(OH)D and BMD, one reported a weak association between 25(OH)D and BMC of the femoral neck (r = 0.054 p = 0.05).¹³⁶ Two case-control studies reported significantly lower 25(OH)D levels in women with osteoporosis.^{140,143} Boonen reported that both serum $25(OH)D_3$ and PTH were highly predictive of femoral neck BMD (r² = 32 percent, p<0.001).¹³⁹ Thiebaud reported that femoral neck BMD was weakly correlated with 25(OH)D concentrations and the only significant association was with trochanteric BMD.¹⁴¹ Villareal reported that lumbar spine BMD correlated with serum 25(OH)D (r = 0.41, p < 0.01) in participants with low 25(OH)D levels (< 38 nmol/L). However, multivariate analysis revealed that iPTH was the main determinant of the decrease in spine BMD.¹⁴³ Al-Oanzi conducted a study in men and did not find a significant difference in serum 25(OH)D between those with osteoporosis (T score ≤ 2.5) versus those without.¹⁵²

Summary. Serum 25(OH)D levels and bone mineral density

Quantity: Nineteen studies assessed the association between 25(OH)D and bone mineral density. Five RCTs, and three cohort studies did not find an association between serum 25(OH)D levels and BMD or bone loss. Four cohorts found a significant association between 25(OH)D and bone loss, which was most evident at the hip sites and evidence for an association between 25(OH)D and lumbar spine BMD was weak. Six case-control studies suggested an association between 25(OH)D and BMD and the association was most consistent at the femoral neck BMD. In some studies, it was unclear whether the effect of serum 25(OH)D on bone loss was mediated by serum PTH.

Quality: The overall quality of studies varied from fair to good.

Consistency: There was discordance between the results from RCTs and the majority of observational studies that may be due to the inability of observational studies to control for all relevant confounders. Based on results of the observational studies, there is fair evidence to support an association between serum 25(OH)D and BMD or changes in BMD at the femoral neck. Specific circulating concentrations of 25(OH)D below which bone loss at the hip was increased, ranged from 30-80 nmol/L.

Table 5. Studies Reporting Serum 25(OH)D Levels and Bone Health Outcomes in Postmenopausal Women and Older Men

Outcome (N studies)	Study Design	Associations		
Fractures (N=15)	RCTs=0 Cohorts=3 Case-controls=12	Association: 1 cohort ¹³¹ 9 case-controls ^{29,139,141,142,144,146,148,150,151}		
		No Association: 2 cohorts ^{130,133} 3 case-controls ^{137,145,149}		
Falls (N=5)	RCTs=1 Cohorts=3 Case-controls=1	Association: 1 RCT ¹¹⁴ 1 cohort ¹²³ 1 case-control ¹³⁸		
		No Association: 2 cohorts ^{122,134}		
BMD/BMC (N=19)	RCTs=6 Cohorts=7 Case-controls=6	Association: 1 RCT ¹¹⁹ 4 cohorts: FN BMD ^{126,128,129,132} ; 1 cohort LS BMD ¹³⁵ 6 case-controls: FN BMC ¹³⁶ ; FN, Tr and TH BMD ^{139,141} LS BMD ^{140,143,152}		
		No Association: 5 RCTs ^{116-118,120,121}		
		3 cohorts: FN BMD ¹³⁵ ; proximal femur, LS BMD ¹²⁷ ; FN, LS BMD ¹³¹		
Performance measures (N=7)	RCTs=3 Cohorts=4	Association: 2 cohorts ^{124,131} 2 RCTs ^{113,115}		
		No Association: 2 cohorts ^{125,134} 1 RCT ¹¹²		
BMC, bone mineral content; BMD, bone mineral density; FN, femoral neck; LS, lumbar spine; RCTs, randomized controlled trials; TH, total hip; Tr, trochanter				

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Duration	25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Prospective	Cohorts				
Cummings (2006) ¹³³ US Public	Subset of a cohort of 9704 ambulatory community-dwelling women \geq 65 years of age (nested case-control study) Groups analyzed: Of the 332 women in the cohort who had hip fractures, 133 were randomly selected; Of the 389 women who had new vertebral fractures in the cohort, 138 were randomly selected; 359 ctrls were randomly selected; of these, 343 served as ctrls for hip fracture cases and 264 served as ctrls for vertebral fractures (based on availability of XRs) 100% female 72.6 y (subset)	5.9 y	25(OH)D [^] 22% in the subset had serum 25(OH)D <u><</u> 47.5 nmol/L RIA	Hip fractures vertebral fractures BMD calcaneus (SPA) PTH (measured by IRMA)	Adjusted for age, weight and calcaneal BMD (SPA) There were no statistically significant unadjusted or adjusted (age, weight, season, use of vit D supplements) association between serum 25(OH)D or PTH and the risk of hip or vertebral fracture. For women in the lowest quintile of serum 25(OH)D levels, there was no increased risk for hip or vertebral fracture. Women in the lowest quintile of serum 1,25-(OH) ₂ D had a significant increase in hip fracture risk (RR 2.1, 95% CI 1.2-3.5) but not vertebral fracture risk.
1	White				

 Table 6. Serum 25(OH)D Levels and Fractures in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Duration	25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Gerdhem (2005) ¹³¹	1,044 Ambulatory independently living women	3 у	25(OH)D^ 95 (30) < 50 nmol/L: 4.4%	Fractures (low energy)	119/986 (12%) had a total of 159 low energy fractures (29 hip, 28 wrist, 12 proximal humerus, 43 vertebral and 47
Sweden	58/1044 (6%) did not complete		< 75 nmol/L: 26%		other)
Public	100% female		СРВА		9/43 (21%) with 25(OH)D < 50 nmol/L had one or more fractures vs. 110/943 (12%)
	75 y (range 75-75.9 y)				with 25(OH)D > 50 nmol/L: HR 2.04 (95% Cl, 1.04 - 4.04).
	NR				Fracture association was independent of
					season although a seasonal difference was noted in mean level of 25(OH)D (Sept 101 nmol/L vs. Feb 89.8 nmol/L).
Woo (1990) ¹³⁰	427 Elderly \geq 60 y living	30 mo	25(OH)D^	Fractures	Adjusted for age, gender, drinking, smoking and BMI.
(1990)	independently in sheltered housing.		fracture subset		
Hong Kong	144/427 (34%)		(N=9) 63.3 (6.9) vs.		Subjects with lower serum 25(OH)D
NR	60% females		no fracture subset 74 (1.15), NS		(males < 79 nmol/L and females < 66 nmol/L) had a nonsignificant increase in adjusted RR for fracture.
	Women: 70 y Men: 69 y		СРВА		
	Asian (Chinese)				

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Case-Control	Studies				
Bakhtiyarova (2006) ¹⁵¹	64 Hip fracture cases (spontaneous or low trauma)	NR	25(OH)D ^A Cases: 22.4 (11.4)	Hip fractures	Median serum 25(OH)D levels significantly lower in hip fracture cases vs. ctrls (graph only).
Russia NR	97 ctrls admitted to opthamology dept		Ctrls: 28.1 (10.1) 25(OH)D <25 nmol/L:		Hip fracture patients more likely to have serum 25(OH)D < 25 nmol/L than ctrls
	Cases: 69% female Ctrls: 55% female		Cases: 65%; Ctrls: 47% 25(OH)D<40 nmol/L: Cases 89%; Ctrls 89%;		(65% vs. 47%, p=0.006).
	Cases: 68.8 (9.5) y Ctrls: 70.2 (8.3) y		25(OH)D <50 nmol/L: Cases 100%, Control 98%		
	White (Caucasion)		СРВА		
Boonen (1997) ¹⁴²	117 Elderly women with hip fractures and 117 community-dwelling ctrls	Age, PM status, gender,	25(OH)D^ Cases 25.25 (22)	Hip fractures BMD (FN and Tr)	Serum 25(OH)D significantly lower in cases vs. ctrls (p=0.001).
Belgium Public	100% female	ethnicity	Ctrls: 53.75 (33.25) CPBA	(DXA)	Hip BMD (FN and Tr) significantly lower in cases vs. ctrls (p < 0.001).
	Cases: 79.2 y Ctrls: 77.7 y				
	White (Caucasion)				

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Boonen, (1999) ¹³⁹ Belgium Public	100 Postmenopausal women 50 osteoporotic hip fracture patients and 50 independently living ctrls 100% female Cases: 74.2 (7.8) y Ctrls: 75.8 (5.6) y NR	Age, gender, PM status, sampled at the same time of year	25(OH)D ₃ Cases: 29.3 (26.5) Ctrls: 68.75 (39), p < 0.001 CPBA	Fractures BMD (FN and Tr) (DXA) PTH (IRMA)	Adjusted for age Mean 25(OH)D ₃ was significantly lower cases vs. ctrls. 25(OH)D < 30 nmol/L: 64% of cases vs. 8% ctrls within the same 4 mo sampling period (no relation b/w 25(OH)D and mo of sample collection). FN and Tr BMD were significantly lower in cases than ctrls. No significant relation b/w the 25(OH)D ₃ - PTH axis and BMD when analyzed separately. In multiple regression analyses of pooled data, models using 25(OH)D ₃ and PTH were predictive of FN BMD
Cooper (1989) ¹⁴⁵ UK NR	41 Hip fractures 40 Healthy ctrls (20 inpatient and 20 outpatient) 100% female Cases 77.4 (8.6) y Ctrls 73.3 (10.5) (inpatients), and 66.9 (11.8) y (outpatients) NR	Age (cases and one of the two control groups similar), gender	25(OH)D [^] Fracture patients: 23.5 (14.5), Inpatient ctrls: 35.75 (23.5) Outpatient ctrls: 48.5 (25) 25(OH)D <20 nmol/L): Cases: 49% vs. Ctrls: 10 – 15% RIA	Hip fractures PTH (immunoreactive, C- terminal)	(R ² =32%, p<0.001). Age and albumin Mean 25(OH)D was significantly lower in cases vs. ctrls (p<0.01). When age and albumin were used as covariates in the analysis, there was no residual difference in serum 25(OH)D levels. More hip fracture cases (49%) had 25(OH)D levels <25 nmol/L vs. 15% of inpatient and 10% of outpatient ctrls.

Table 6 (continued). Serum 25(OH)D Levels and Fractures in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Diamond (1998) ¹⁵⁰ Australia NR	41 Men with hip fracture 82 healthy ctrls (41 in- patient and 41 out- patient) 100% male Cases: 79.6 y Ctrls: 78.7 y and 77 y NR	Age, gender	25(OH)D [^] Cases 45.6, range 36.9-52.3 Inpatients ctrls 61.1 (range 50.0-72.2) Outpatients ctrls 65.9 (range 59.0-72.8), p = 0.007 for cases vs. combined ctrls RIA	Hip fractures	Age, body weight, comorbidity score, smoking history, alcohol intake, serum calcium, albumin, 25(OH)D and free testosterone. Men with hip fractures had significantly lower 25(OH)D levels vs. ctrls (p=0.007). 25(OH) D < 50 nmol/L: 63% of fracture patients vs. 25% of combined ctrls, OR 3.9 (95% CI 1.74 - 8.78). Multiple regression analysis showed that serum 25(OH)D level < 50 nmol/L was strongest predictor of hip fracture (r = 0.34 (0.19), p=0.013). Age was the best determinant of a serum 25(OH)D level < 50 nmol/L, p=0.028
Erem (2002) ¹³⁷ Turkey Public	21 Women with hip fractures and 20 healthy PM women, all independent community- dwellers 100% female Cases: 76.7 (6.5) y Ctrls: 75.4 (6.3) y Far Eastern	Age, gender, PM status	25(OH)D ^A Cases 26.9 (25.0) Ctrls: 24.9 (20.5) CPBA	Hip fractures	NR Non significant difference in 25(OH)D levels in hip fracture patients vs. ctrls 25 (OH)D levels in all groups < 37.5 nmol/L

Table 6 (continued)	Serum 25(OH	D Levels and Fractures in P	Postmenopausal Women and Older Men

Author (year) Country	Population, N Gender Mean age (SD)	Matching Variables	25(OH)D Mean (SD) nmol/L	Bone Health Outcomes	Covariates Summary of Results
Funding	Ethnicity		Assay		
		Age, gender, PM status		Fractures BMD and BMC: LS, TB and FN (DXA) PTH (IRMA) Hip fractures	NR 25(OH)D significantly lower in osteoporotic women vs. ctrls (p<0.05); PTH significantly higher in osteoporotic women vs. ctrls (p<0.001)
			СРВА		

Country Funding	Mean age (SD) Ethnicity	Matching Variables	Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
	98 community-dwelling women	Gender, PM status, setting,	25(OH)D [^] median:	Hip fractures	Adjusted for age and estrogen replacement therapy.
	30 with hip fracture and	surgical	Group 1: 32.4,	BMD: LS, FN, Tr,	Warran with his fracture and OD had
Public	osteoporosis (OP) (group 1); 68 women admitted for elective joint replacement with (17) or without (51) osteoporosis (group 2) 100% female Group 1: 77.9 y Group 2: OP 69.9 y; non- OP 64.4 y NR	procedure OP in group 1 and subset of group 2	Group 2: OP 49.9; non-OP 55.0 RIA	total body (DXA)	 Women with hip fracture and OP had significantly lower 25(OH)D vs. women with OP admitted for surgery (p=0.01) and vs. women without OP admitted for surgery (p=0.02). % of women with 25(OH)D < 30 nmol/L: Significantly more in group 1 (50%) vs. OP or non-OP group 2 (graph only ~ 5% for OP and 10% for non-OP) (p < 0.002). Mean BMD (LS, FN, Tr) was significantly less in women with acute hip fracture/OP vs. elective surgery non-OP ctrls.
and Lips (1987) ¹⁴⁶ The Netherlands Public	125 consecutive patients with femoral neck fracture and 74 healthy community ctrls Cases: 67% female Ctrls: 73% female Cases: 75.9 (11) y Ctrls: 75.6 (4.2) y	Age	25(OH)D ^A Cases: 18.5 (10.6) Ctrls: 32.9 (13.6) serum 25(OH)D < 20 nmol/L: Cases: 62% Ctrls: 16% CPBA	Hip fractures	Adjusted for age and sex Serum 25(OH)D levels lower in cases vs. ctrls (p<0.001).

Table 6 (continued). Serum 25(OH)D Levels and Fractures in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Lund (1975) ¹⁴⁹ Denmark NR	67 consecutive cases of proximal femur fractures ctrls: milddle aged (30-59 y) N = 27 and elderly healthy individuals (60-95 y) N = 67 at same time of year NR NR	Age	25(OH)D [^] range 7.5-195 nmol/L N=12 (18%) <25 nmol/L CPBA	Proximal femur fractures	There was no statistically significant difference in serum 25(OH)D levels vs. either ctrl.
Punnonen (1986) ¹⁴⁸ Finland NR	40 cases of hip fracture and 25 ctrls (from gynecological clinic) 100% female Cases: 77.1 (8.6) y Ctrls: 73.8 (8.4) y NR	Age, gender, setting	25(OH)D ^A Cases: 18.2 (13.2) Ctrls: 53.3 (24.1) CPBA	Hip fractures (FN)	NR 25(OH)D levels were significantly lower in cases vs. ctrls, (p<0.01).

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Thiebaud, (1997) ¹⁴¹ Switzerland	179 Hip fracture patients; 180 hospital ctrls; 55 community ctrls	Age, setting (for cases and one control group)	25(OH)D [^] Women: Fracture cases: 25.5 (20.5)	Fractures BMD: FN, TH and Tr (DXA)	Adjusted for age, sex, and creatinine Women and men with hip fractures had significantly lower 25(OH)D levels vs. ctrls.
Public	Cases: 76% female Hospital Ctrls: 75% female Community ctrls: 85% female		Hospital ctrls: 31.5 (26.5) Community ctrls: 53 (23)		Fracture patients had lower hip (TH, FN) BMD vs. either ctrl group (p < 0.001). In multivariate logistic regression of the risk for hip fracture, serum albumin and PTH were
	Cases: women 81.0 y; men 77.7 y Hospital ctrls: women 80.9 , men 76.9 y Community ctrls: women		Men Fracture cases: 17.25(18.5) Hospital ctrls: 27.75 (21.5)		significant. In women, BMD was weakly correlated with $25(OH)D$ and the only significant association was at the Tr (r=0.13, p < 0.05).
Note: ^ total 25/0	71.7 y, men 71.3 y	H)D (isoform not spe	Community ctrls: 31.5(22.8) RIA		

Table 6 (continued)	Serum 25(OH)	D Levels and Fractures in Postme	enopausal Women and Older Men

BMC, bone mineral content; BMD, bone mineral density; ctrls, controls; DXA, dual energy X-ray absorptiometry; FN, femoral neck; PM, post menopausal; RIA, radioimmunoassay; SD, standard deviation; SPA, single-photon absorptiometry; TH, total hip; Tr, trochanter; wks, weeks; y years

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Intervention Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results	Jadad AC
RCTs	-					
Bischoff- Ferrari (2003) ¹¹⁴ Switzerland Public and private	122 Elderly women in long-stay geriatric care drop outs IG1: 31% CG: 25% 100% female 85.3 y range 63-99 NR	IG: 800 IU D ₃ +1200 mg Calcium carbonate daily CG: 1200 mg Ca daily 12 wks (6 wk pre- treatment)	25(OH)D^ Median (IQR): baseline IG1: 30.75 (23-55) CG: 29 (23-55) values < 30 nmo/L: 50%. End of study IG1: 65.5 (49.75- 82.75) CG: 28.5 (24.5- 41.5) RIA	Falls iPTH (RIA)	Age, height, weight, BMI, number of falls in pre-treatment period, being a faller in the pre-treatment period, prior vit D use, comorbidity index. muscle strength, use of walking aid, baseline 1,25-(OH) ₂ D, 25(OH)D, iPTH, albumin and observation time during treatment Vit D + Ca accounted for 49% reduction in falls (-0.68; 95% CI 14- 71%, p=0.01) after adjustment for age, number of falls in pretreatment period, being a faller in pre-treatment period, baseline 1,25-(OH) ₂ D, and 25(OH)D. Predictors other than treatment were being a faller, number of falls in pre- treatment period and age.	3 Unclear
Corless (1985) ¹¹² U.K. Public	82 Elderly hospital patients with serum 25(OH)D < 40 nmol/L Drop outs IG1: 9/41 (22.1%), CG: 8/41 (19.5%) IG1: 78.1% female CG: 78.8 % female IG1: 82.3 (6.0) y CG: 82.6 (6.9) y NR	IG1: 9,000 IU/d D ₂ CG: placebo 9 mo	25(OH)D^ Mean (SEM): Baseline IG1: 16.6 (2.1) CG: 17.6 (2.05) % < 20 nmol/L: IG1: 66% CG: 70% End of study: graph only (IG1: ~ 110 nmol/L) CPBA	ADLs: muscle strength and independence index	NR No significant correlation between change in 25(OH)D and change in 'muscle strength' (r=0.12, p>0.3) or 'independence' indices (r=0.26, p>0.1).	5 Unclear

Table 7. Serum 25(OH)D Levels and Falls and/or Performance Measures in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Intervention Duration	Serum 25(OH)D Mean (SD) (nmol/L) Assay	Bone Health Outcomes	Covariates Summary of Results	Jadad AC
Dhesi, (2004) ¹¹⁵ U.K. Public	139 Ambulatory older adults with a history of falls and 25(OH)D <30 nmol/L Drop outs IG1: 8/70 (11.4%), CG: 8/69 (11.6%) IG1: 75.7% female CG: 79.7% female IG1: 77.0 (6.3) y CG: 76.6 (6.1) y Caucasion	IG1: 600,000, D ₂ (injection) CG: placebo 6 mo	25(OH)D^ Baseline IG1: 26.8 (25.5- 28) CG: 25 (23.8– 26.3) End of study IG1: 43.8 (41.3- 46.3) CG: 31.5 (28.5- 34.5) RIA	Falls, postural sway, reaction time, aggregate functional performance time and quadriceps strength	NR Significant correlation between ∆ 25(OH)D and ∆ aggregate functional performance time in both groups (r=0.19, p=0.03).	5 Unclear
Kenny (2003) ¹¹³ U.S. Public	65 Healthy, community- dwelling men with normal 25(OH)D IG1: 4/33 (12.1%), CG 1/32 (3.1%) 100% male IG1: 77 y CG: 75 y NR	IG1: 1,000 IU D ₃ + 500 mg Ca CG: 500 mg Ca daily 6 mo	25(OH)D^ Baseline IG1: 65 (17.5) CG: 60 (17.5) End-of-study (graph only) IG1: ~ 83 CG: ~ 50 CPBA	Ability to rise from a chair, static balance, 8- foot walk, TUG, timed supine to stand test and PASE questionnaire.	NR Association between baseline 25(OH)D and single-leg stance time (r=0.245, p<0.05) and PASE Score (r=0.360, p<0.01).	4 Adequate

Table 7 (continued). Serum 25(OH)D Levels and Falls and/or Performance Measures in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Prospective Co	ohorts				
Faulkner (2006) ¹³⁴	9,704 Older community-dwelling women (from the	4 y	25(OH)D₃ Median (IQR)	Falls; GS, quadriceps strength, chair-stand time, walking speed,	Adjusted for age, height, BMI, clinical site, season of serum collection, education, ethnicity, physical activity,
U.S.	Study of Osteoporotic Fractures), and		Total cohort: 62.5 (47.5- 77.5) Women using vit D	reaction time and balance-walk time	smoking, alcohol use, housebound status, dietary calcium intake,
Public	389/400 (97.2%) drawn at random from entire cohort for serum measures 100% female Median (IQR): 70 (67-75) y 66% Northern European (excluded African Americans)		supplements (N=4,273): 67.5 (52.5 - 85) Women not using vit D supplements (N=5,253): 55 (42.5-70) % < 25 nmol/L Women using vit D supplements: 0.6% Women not using vit D supplements: 4.2% RIA	measured in subset of 389	orthostatic hypotension, stroke, Parkinson's disease, arthritis, diabetes, osteoporosis, hyperthyroidism, cognitive impairment, visual acuity, self-rated health, use of estrogen, thyroid hormones, calcium supplements, corticosteroids, diuretics, and CNS- active medications. There was a trend toward higher 25(OH)D ₃ concentrations associated with weaker grip strength (p=0.017) vs. women in the first quartile.
					25(OH)D ₃ was not associated with neuromuscular function, Δ neuromuscular function (grip strength, chair stand time, walking speed and balance walk time) or fall rates.

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Flicker (2003) ¹²³ Australia Public	1,619 Institutionalized elderly, both low (N=667) and high level care (N=952) All 1,619 included in	145 d (low level care) and 168 d (high level care subjects)	25(OH)D [^] Low level care: WA (32°S): 39.3 (20.1) NSW (34°S): 43.7 (22.5) Victoria (38°S) 38.4 (19.6) p<0.05	Falls	Adjusted for weight, cognitive status, psychotropic drug use, prior wrist fracture and presence of wandering behavior After excluding bed bound residents
	analysis 100% female Low level care: 83.7 (8.7) y High level care: 83.7 (9.1) y NR		High level care: WA (32°S): 33 (17.3) NSW (34°S): 32.4 (22.4) Victoria (38°S): 30.7 (19.4) % < 25 nmol/L: Low level care: 22% High level care: 45% RIA		and adjusting for above covariates, log serum 25(OH)D level was independently associated with time to first fall: adjusted HR 0.74 (95% CI, 0.59-0.94, p=0.01). 20% reduction in risk of falling with doubling of 25(OH) D level.
Gerdhem (2005) ¹³¹ Sweden Public	1,044 Ambulatory independently living women 58/1,044 (6%) did not complete 100% female 75 (75-75.9) y NR	3 у	25(OH)D [^] 95 (30) < 50 nmol/L: 4.4% < 75 nmol/L: 26% CPBA	Gait speed, Romberg balance test, lower extremity strength	NR 25(OH)D correlated with: gait speed (r=0.17, p<0.001), Romberg balance test (r=0.14, p<0.001), self-estimated activity level (r=0.15,p<0.001), thigh muscle strength (r=0.08, p=0.02). 5% of the variability in 25(OH)D explained by fall-related and anthropometric variables (multiple regression).

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Sambrook (2004) ¹²² Australia NR	646 Ambulatory residents of institutional care facilities (hostels and nursing homes) > 65 y 9/646 (1%) did not complete Fallers: 84% female Non-fallers: 79% female Fallers: 86.6 y (6.5) y Non-fallers: 85.1 (6.4)	1 y	25(OH)D [^] Fallers: 28.8 (14.2) Non-fallers: 33.2 (16.5) % <39 nmol/L: 73.6% Men: 64.5%, Women: 75.8% RIA	Falls	Adjusted for age, incontinence, illness severity; Interactions between PTH, 25(OH)D and other variables were tested. After adjusting for age, incontinence and illness severity, serum 25(OH)D was no longer a significant predictor of falls. 25(OH)D was related to balance. There was a 1.65X increased risk of falls in group with 25(OH)D < 39 nmol/L and PTH > 66 pg/mL compared to those with 25(OH)D > 39 nmol/L and PTH < 66 pg/mL.
Visser (2003) ¹²⁴ The Netherlands Public	y NR 1,509 Older individuals from longitudinal study of aging 501/1509 (33%) did not complete NR Stable GS: 74.2 (6.1) y Loss of GS: 76.9 y (6.5) Stable ASMM: 73.7 (5.9) y Loss of ASMM: 74.9 (6.4) y NR	3 у	25(OH)D^ NR < 25 nmol/L: 9.6% <12.5 nmol/L: 1.3% CPBA	GS and ASMM Sarcopenia defined as a loss of GS > 40%, and ASSM > 3%	Adjusted for sex, age, BMI, physical activity level, chronic disease, creatinine, season of data collection and smoking. Separate analysis adjusted for weight change. Interactions explored between PTH and 25(OH)D Individuals with 25(OH)D <25 nmol/L vs. levels >50 nmol/L were more likely to experience loss of GS (adjusted OR 2.57, 95% CI 1.40-4.70, p<0.05); loss of ASMM, NS.

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Verreault (2002) ¹²⁵ U.S. Public	1,002 Elderly women, <u>></u> 65 y with moderate to severe disability living in community 374/1002 (37%) 100% female NR NR	3 у	25(OH)D^ Mean: 52.9 % <25 nmol/L: 12.4% RIA	Lower extremity strength, GS, walking speed, repeated chair stands. Disability in activities involving mobility and upper extremity function.	Adjusted for: baseline performance, age, BMI, comorbidity and other confounders associated with a decline in performance. (Cox proportional hazard model) age, race, education, smoking and baseline BMI, season and presence of comorbidity. No association between low 25(OH) D levels and loss of muscle strength or declines in mobility or disability. Results were similar when 25(OH)D and PTH were both included in the model.
Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Case-Control St	tudies				
Stein (1999) ¹³⁸ Australia Public	83 ambulatory nursing home and hostel residents grouped as fallers 33) vs. never fell (50) 66% female Median age (IQR): 84 (79-89) y NR	Age, setting, level of independence	25(OH)D [^] Median: Cases: 22 Ctrls: 29 CPBA	Falls	Adjusted for PTH; interactions sought between weight and gender Serum 25(OH)D lower in patients who had a fall vs. those who did not (95% CI for difference in medians: 1 - 13 nmol/L, p=0.019). Bivariate OR (95% CI) for falling vs. never falling for Ln 25(OH)D was 0.33 (0.13-0.83). Neither Ln 25(OH)D or 1,25-(OH) ₂ D were independent predictors after adjusting for PTH.
binding assay; C		s, controls; GS, g	rip strength; IQR, inter		3MI, body mass index; CPBA, competitive protein significant; OR, odds ratio; PTH, parathyroid

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Intervention Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results	Jadad AC
RCTs						
Aloia (2005) ¹¹⁷ U.S. Public	208 Post menopausal women IG1: 3/104 (2.9%), CG: 3/104 (2.9%) did not complete	IG: 800 IU D ₃ for 2 y, then 2,000 IU for 1 y + 1200 - 1500 mg Ca CG: 1200 -	25(OH)D [^] Baseline: IG1: 48.3 (20.9) CG: 43 (16.6)	BMD: LS, total hip, total body, mid radius (DXA) PTH (IA,	NR No association between serum 25(OH)D and ∆ BMD. Analyses examining those with low baseline 25(OH)D or high PTH showed no	5 Adequate
Fublic	100% female IG1: 59.9 (6.2) y CG: 61.2 (6.3) y 100% African American	1500 mg Ca 3 y	3 mo 800 IU D ₃ IG1: 70.8 (95% CI 66.4-76.1) 3 mo 2000 IU D ₃ IG1: 86.9 (95% CI 80.1-94.1) CG: no significant change RIA	Allegra	influence of 25(OH)D on ∆ BMD.	
Cooper (2003) ¹²⁰ Australia Public and private	187 Post menopausal women not on HRT IG1: 20/93 (21.5%), CG: 14/94 (14.9%) did not complete 100% female IG1: 56.5 (4.2) y CG: 56.1 (4.7) y Caucasian	IG1: 10,000 IU Vit D ₂ /wk + 1000 mg Ca/d CG: 1000 mg Ca/d 2 y	25(OH)D^ IG1: 82.6 (27.0) CG: 81.6 (24.4) RIA	BMD: LS, FN, Ward's triangle, Tr, proximal forearm (DXA)	NR No significant correlation between baseline 25(OH)D concentration and Δ BMD at any site or between Δ 25(OH)D and Δ BMD at any site.	4 Unclear

Table 8. Serum 25(OH)D Levels and BMD/BMC in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Intervention Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results	Jadad AC
Dawson-	247 Healthy,	IG1: 700 IU	Baseline: NR	BMD LS, FN	NR	3
Hughes (1995) ¹¹⁸ US	ambulatory postmenopausal women	D_3 + 500 mg Calcium citrate malate CG: 100 IU	End of study IG1: 100.1 (24.5) CG: 66.3 (25.5)	and total body (DXA)	25(OH)D concentrations during either season did not correlate with Δ BMD at any site.	Unclear
Public and private	IG1: 5/128 (4%), CG: 8/124 (6%) did not complete	D₃ + 500 mg Ca daily	Difference in means: 33.8 (95% 27.6, 40.1)			
	100% female	2 у	СРВА			
	IG1: 63.0 y CG: 64.0 y					
	Caucasion					
Ooms (1995) ¹¹⁹	348 Elderly women	IG1: 400 IU D ₃	25(OH)D^ Median (25 th and 75 th	BMD: FN, Tr and distal radius	Season	4
The Netherlands	IG1: 51/177 (28.8%) CG: 53/171 (31.0%) 100% female	CG: placebo daily 2 y	percentiles): IG1: 27 (19-36) CG: 26.0 (19- 37)	(DXA)	Effect of vitamin D supplementation was independent of baseline 25(OH)D as well as 25(OH)D corrected for season.	Unclear
Public	IG1: 80.1 (5.6) y CG: 80.6 (5.5) y		1 y followup: IG: 62 (52-70) CG: 23 (17-31)			
	NR		СРВА			

Table 8. (continued) Serum 25(OH)D Levels and BMD/BMC in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Attrition Gender Mean age Ethnicity	Intervention Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results	Jadad AC
Schaafsma (2002) ¹²¹ The Netherlands NR	85 Healthy, postmenopausal women 50 - 70 y 12/85 (14%) did not complete 100% female	IG1: eggshell powder + 200 IU D_3 IG2: Ca carbonate + 200 IU D_3 CG: placebo 12 mo	25(OH)D ^A IG1: 97.1 (24.1) IG2: 83.1 (22.4) CG: 91 (36.5) % change: IG1: 25.1 (29.8) IG2: 43.8 (27.3) CG: 11.1 (22.7)	BMD: LS, hip (DXA)	NR No significant correlation between 25(OH)D and BMD.	4 Unclear
	IG1: 60.5 y IG2: 59.5 y CG: 63.5 y Caucasian		СРВА			
Storm (1998) ¹¹⁶ The Netherlands Public	60 Postmenopausal women without osteoporosis 7/60 (12%) 100% female	IG1: 4 glasses of fortified milk (325 IU of vitamin D/quart) IG2: Ca carbonate CG: placebo	25(OH)D [^] Mean (SE): IG1: 63.5 (8) IG2: 68.8 (7.3) CG: 59.8 (6.8); levels dropped almost 20% during 2 winters and returned to baseline during summer	BMD: Tr, FN, LS (DXA)	Independent variables: Ca intake, 25(OH)D, bone markers, PTH, insulin growth factor I, age, BMI, thiazide use, smoking, and baseline BMD Serum 25(OH)D was not a significant determinant of FN BMD at baseline,	4 Unclear
	IG1: 71 y IG2: 72 y CG: 71 y Caucasian	daily 2 y	End of study mean (SE): pooled: 67.8 (3.5) CPBA		during winter (p=0.23) or over the entire study period.	

Table 8. (continued) Serum 25(OH)D Levels and BMD/BMC in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Gender Attrition Mean age (SD) Ethnicity	Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Prospective Co	horts				
Bischoff-Ferrari (2005) ¹³² U.S. Public	327 Individuals with knee OA 64% female 228 complete data 74.4 (11.1) y Females: 76.6 (9.9) y Men: 70.6 (12.1) NR	1 - 2 y	25(OH)D [^] 69.5 (30.5) nmol/L % with values< 37.5 nmol/L: 15% % with values 40-80 nmol/L: 51% % with values > 80 nmol/L: 34% RIA	BMD FN (DXA Lunar DPX-L)	Adjusted for age, sex, BMI, knee pain, physical activity, cohort and disease severity. Significant positive association between 25(OH)D and BMD independent of age, sex, BMI, knee pain, physical activity, and disease severity. Significant trend between being in a higher serum 25(OH)D group and having higher BMD (p<0.04)
del Puente (2002) ¹²⁹ Italy Public	 139 Active, non-institutionalized females (109 menopausal and 30 pre-menopausal) 124 at followup 15/139 (11%) did complete 100% female 58 (9) y Caucasian 	2 у	25(OH)D [^] Age 45-49 y: 57.7 (14.7) Age 50-59 y -59.2 (19.2) Age 60-69 y: 54.2 (16.7) Age 70-79 y: 54.5 (19) <37.5 nmol/L: 17.3%; (range 9.1 to 27.5% across age groups). CPBA	BMD LS and FN (DXA)	Adjusted for age, menopausal status, current smoking status and BMI. 25(OH)D independent predictor of BMD change at FN and LS (FN Δ BMD (beta 0.26 (0.13), p=0.04 and LS Δ BMD (beta 0.07 (0.03), p=0.04). In stepwise analysis discrimination models only FN significant (partial R ² =0.26, p=0.04).
Dennison (1999) ¹²⁷ U.K. Public	316 Healthy adults age 60-75 y All 316 included in analysis 45% female Women: 65.6 (2.8) y Men: 66.1 (3.2) y NR	4 y	NR CPBA	BMD: LS and proximal femur (DXA)	Adjusted for adiposity No association between baseline 25(OH)D and BMD at LS and proximal hip (beta=0.002 spine, 0.001 hip) and no association between 25(OH)D and bone loss after adjustment for adiposity.

 Table 8 (continued).
 Serum 25(OH)D Levels and BMD/BMC in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Gerdhem (2005) ¹³¹ Sweden Public	1,044 Ambulatory independently living women 58/1044 (6%) did not complete 100% female 75 (75-75.9) y NR	З у	25(OH)D [^] 95 (30) % with values < 50 nmol/L: 4.4% % with values < 75 nmol/L: 26% CPBA	BMD: FN and LS (DXA)	NR No association between baseline 25(OH)D and BMD. See other tables for other outcomes
Melin (2001) ¹²⁶ Sweden Public	64 Healthy, independent elderly individuals All 64 included in analysis 81% female 83.7 y Caucasian	1 y	25(OH)D [^] Outdoor exposure ≥ 3 h/wk (N=49); males: 67.5 (15) females: 60 (27.5) nmol/L. Indoor exposure < 3 h/wk females (N=14): 40 (12.5) % with values < 77.5 nmol/L: 78% RIA	BMD: FN (DXA)	Adjusted for BMI FN BMD associated with serum 25(OH)D after summer (r=0.38, p=0.003) and winter (r=0.37, p=0.003). After adjusting for BMI, 25(OH)D remained a significant determinant after winter (adjusted R ² =0.14, p=0.005).
Rosen (1994) ¹³⁵ U.S. Public	18 Healthy independently living elderly women 3/18 (17%) 100% female 77 (2) y NR	2 y	25(OH)D ^A Baseline: 72.5 (6.7) 6 mo: 63 (3) 12 mo: 88 (7.8) 18 mo: 70.9 (8.5) CPBA	BMD LS and FN (DXA)	NR Δ 25(OH)D between summer and winter was associated with LS BMD in 2nd y (r=0.59, p=0.04) but not FN BMD.

Author (year) Country Funding	Population, N Attrition Gender Mean age (SD) Ethnicity	Duration	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Stone (1998) ¹²⁸	261 Healthy elderly females > 65 y	42 - 71 mo	25(OH)D^ 65.5 (24.5)	BMD TH (DXA)	Adjusted for age, weight, clinic site, current use of Ca supplements, multivitamins
U.S.	random sample -subcohort of individuals not on HRT from		RIA	calcaneal (SPA)	containing vitamin D, physical activity, smoking status and season. Controlled for
Public	Study of Osteoporotic Fractures				levels of other hormones.
	30/261 (11%) without calcaneal BMD; 43/261 (16%) without hip BMD				Significant association between lower 25(OH)D levels and TH BMD loss. Lower 25(OH)D levels associated with increased loss at TH after adjusting for estradiol,
	100% female				testosterone, and SHBG, season, and use of supplements.
	71.3 (4.8) y				
	Caucasian				25(OH)D not associated with calcaneal BMD after adjusting for age and weight.

Table 8 (continued). Serum 25(OH)D Levels and BMD/BMC in Postmenopausal Women and Older Men

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Case-control st	tudies	•		•	
Al-Oanzi (2006) ¹⁵² U.K. Public	56 Men with idiopathic osteoporosis 114 male ctrls 100% male Cases: 59.6 (13.6) y Ctrls: 62.4 (10.4) y Caucasion	NR	25(OH)D ₃ Cases: 44.7 (21) Ctrls: 43.3 (17) RIA	BMD diagnosis of osteoporosis based on T-score FN and LS	NR No significant difference between plasma 25(OH)D in cases and ctrls, but mean free plasma 25(OH)D was about 33% lower in men with OP vs. ctrls (p<0.0001).
Boonen (1999) ¹³⁹ Belgium Public	100 Postmenopausal women 50 hip fracture patients, 50 ctrls 100% female Cases: 74.2 (7.8) y Ctrls: 75.8 (5.6) y NR	Age, PM status, sampled at same time of year	25(OH)D [^] Cases 29.25 (26.5) Ctrls: 68.75 (39) % with values < 30 nmol/L cases: 64% ctrls: 8% CPBA	BMD FN and Tr (DXA) Fractures	Adjusted for age Mean 25(OH)D ₃ was lower in cases vs. ctrls (p<0.001). Vitamin D deficiency (< 30 nmol/L): 64% of cases vs. 8% ctrls within the same 4 mo sampling period (no relation b/w 25(OH)D and mo of sample collection). FN and Tr BMD were significantly lower in cases than ctrls. No significant relation found b/w the 25(OH)D ₃ -PTH axis and BMD in cases and ctrls. In multiple regression of pooled data, models using 25(OH)D ₃ and PTH were highly predictive of FN BMD (R^2 =32%, p < 0.001).
Landin- Wilhelmsen (1999) ¹⁴⁰ Sweden Public	128 PM osteoporotic pts, 227 age matched ctrls from outpatient clinic 100% female Cases 59 (6) y Ctrls 59 (5) y NR	Age, gender, PM status	25(OH)D ₃ : Cases: 88 (30) Ctrls: 96 (32) RIA	BMD and BMC: LS, TB and FN (DXA) Fractures	NR 25(OH)D significantly lower in OP pts vs. ctrls (p<0.05). OP pts had lower body weight and BMI vs. ctrls (p<0.001).

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Villareal (1991) ¹⁴³ U.S. (Mid West) NR	98 Ambulatory, independently living PM women 49 women with low (<38 nmol/L) 25(OH)D and 49 Ctrls. 100% female Cases: 64 y Ctrls: 63 y Caucasion	Age, gender, PM status, ethnicity, season, independence status, geographical location	Cases: 23 (7) Ctrls: 58.9 (19) CPBA	BMD (LS, T12-L3) QCT iPTH (RIA)	NR Women with low 25(OH)D levels had a reduced LS BMD. In the low 25(OH)D group, LS BMD correlated with 25(OH)D (r=0.41, p < 0.01). In multivariate analysis, iPTH was the major determinant of a decrease in LS BMD.
Thiebaud (1997) ¹⁴¹ Switzerland Public	179 Hip fracture patients (136 women and 43 men) 180 hospital ctrls (136 women and 44 men) 55 community ctrls (47 women and 8 men) % female hip fracture cases: 76% hospital ctrls: 76% community ctrls: 85% Cases: 81.0 y (women) and 77.7 y (men); Hospital ctrls: 80.9 y (women) and 76.9 y (men); Community ctrls: 71.7 y (women) and 71.3 y (men) NR	Age, setting (for cases and one control group)	25(OH)D [^] Fracture cases: women 25.5 (20.5) men 17.25(18.5) Hospital ctrls: women 31.5 (26.5) men 27.75 (21.5) Community ctrls: women 53(23) men 31.5 (22.8) RIA	BMD FN, TH and Tr (DXA) Fractures	Adjusted for age, sex, and creatinine 25(OH)D levels generally low especially in hospital ctrls and hip fracture cases. Women and men with hip fractures significantly lower 25(OH)D levels vs. ctrls. Fracture patients had lower hip BMD vs.ctrls ($p < 0.001$). Significant biochemical markers in the multivariate logistic regression model of the risk for hip fracture were serum albumin and PTH. In women FN, Tr BMD weakly correlated with 25(OH)D and the only significant association was at the Tr (r=0.13, p < 0.05).

Author (year) Country Funding	Population, N Gender Mean age (SD) Ethnicity	Matching Variables	Serum 25(OH)D Mean (SD) nmol/L Assay	Bone Health Outcomes	Covariates Summary of Results
Yan (2003) ¹³⁶	352 Older individuals	Age,	Chinese men 27.1	BMC: FN	Adjusted for bone area, weight, height, age and
	(60-83 y)	ethnicity	(11.5), women 30.9	(DXA)	sex
China 42° N			(13.5); and		
and U.K. 52 °N	% female		British men: 36.6		Significantly higher 25(OH)D levels in British
	Chinese: 50.5%		(12.1), women 34.7		subjects. Weak association (r=0.054, p=0.05)
Public	British: 50%		(13.7)		b/w 25(OH)D and FN BMC in British subjects
			0/ 111 1		after adjusting for size but not in Chinese
	Chinese:		% with values <25		subjects.
	male 67.9 (3.6) y		nmol/L:		
	female 65.2 (3.7) y		Chinese: men		
	Dritich		53%, women 39%;		
	British:		British: men 20.9%;		
	male 69.1 (6.1) y		women 28.4%.		
	female 68.2 (6.5) y				
			RIA		
	64% Chinese (Asian),				
	36% British				
	(Caucasion)		·····		
	or either isoform of 25(OH				
					tiometry; FN, femoral neck; IA, immunoassay; NR,
				mone; QCI, quantitativ	e computed tomorgraphy; RIA,
radioimmunoass	ay; S, south; TH, total hip;	Ir, trochanter; \	/it, vitamin; y, year;		

Question 2. How Does Dietary Intake of Vitamin D, Sun Exposure, and/or Vitamin D Supplementation Affect Serum 25(OH)D Concentrations?

For each vitamin D source (dietary intake from fortified foods, vitamin D supplementation or sun exposure), our objectives were to determine the effect on circulating levels of 25(OH)D and to determine whether the effect is altered by specified individual or environmental characteristics.

Question 2A. Does Dietary Intake from Foods Fortified with Vitamin D Affect Concentrations of Circulating 25(OH)D?

Overview of Relevant RCTs

When evaluating the effect of food fortification on circulating 25(OH)D concentrations, it is important to acknowledge the potential confounding effect generated by the food source, the assay used to measure 25(OH)D and potential differences in the bioavailability and/or metabolism of vitamin D₂ versus vitamin D₃. Most studies in this review used dairy products as the source of fortified food. There is potential for study contamination through altered intake of other nutrients such as calcium, phosphate and acid load that can affect bone and mineral homeostasis.

Study characteristics. A total of 13 RCTs, 12 parallel design,^{116,155-165} and one factorial design,¹⁶⁶ studied the effect of dietary sources of vitamin D on circulating 25(OH)D concentrations. Two of the 13 trials did not provide the vitamin D content of the dietary source and were excluded.^{116,162} Therefore, the following summary includes a total of 11 trials (Table 9).^{155-161,163-166}

Within the included trials, there were a total of 697 subjects in the vitamin D dietary intervention groups and 584 in the control groups for a total of 1,281 subjects.^{155-161,163-166}

Population characteristics. All trials were in adults. Two trials studied young adults,^{158,160} one included young women,¹⁶⁴ three involved postmenopausal women,^{155,157,159} one included elderly men,¹⁶³ and the remaining four studied elderly individuals of both genders.^{156,161,165,166} Four out of the six trials that included both males and females provided the gender breakdown^{156,158,165,166} and the percentage of females ranged from 51¹⁶⁵ to 83¹⁵⁸ percent. The ethnicity of the study population was reported in four trials, ^{155,157,159,163} and BMI was also reported in four trials.^{155,163,164,166} The vitamin D dietary intake was evaluated at baseline in three trials^{161,164,166} and sunlight exposure was assessed in three studies.^{156,158,166} The studies did not provide an assessment of skin type of participants. Sunlight exposure was assessed in only three of the 11 trials although several others excluded subjects who had recent or planned exposure to higher-than-usual levels of sunshine. Methods of ascertainment included a sunlight exposure score during the summer in a subsample,¹⁵⁸ the percentage of participants who were outside daily

during sunny period and the percentage who avoided sunlight¹⁶⁶ and an outdoor score to reflect the average exposure to sunlight per day per season.¹⁵⁶ Results showed that sunlight

exposure did not predict post therapy serum 25(OH)D in the total sub-sample,¹⁵⁸ that there was no significant difference in sunlight exposure between groups at baseline¹⁶⁶ or during the study.¹⁵⁶ Participants were community-dwelling in all of the included trials.^{155-161,163-166}

Interventions and comparators. The vitamin D dietary interventions included fortified milk,^{155-159,163} nutrient dense fruit and dairy based products,¹⁶⁶ high vitamin D diet,¹⁶⁵ fortified orange juice,¹⁶⁰ fortified cheese,¹⁶¹ and fortified bread.¹⁶⁴ The RCT with a factorial design had two other intervention groups that included an exercise program and a combined program of exercise and nutrient dense products.¹⁶⁶

The type of vitamin D administered within the described vitamin D dietary interventions was vitamin D₃ in eight trials, $^{155,157-161,163,164}$ and was not specified in three. 156,165,166 The vitamin D content was 200 - 1,000 IU. Seven trials also specified the calcium content within the dietary intervention. $^{155-160,163}$

The comparators within the included trials were as follows: usual diet or no intervention, 155,157,163,165,166 unfortified liquid milk, 156,158 fortified milk with a lower dose of calcium but same dose of vitamin D compared to intervention group, 159 unfortified orange juice, 160 unfortified cheese or no cheese, 161 and regular wheat bread or regular wheat bread and a vitamin D₃ supplement. 164

The duration of the intervention ranged from three weeks¹⁶⁴ to 24 months.^{155,157,163}

Compliance was reported in four trials and was reported to be greater than 85 percent.^{155,156,161,163}

Study quality. Six out of the 11 trials had a methodological quality score of $\geq 3/5$ on the Jadad scale (Table 9).^{156,157,159-161,163} Ten trials reported the percent lost to followup,^{155-159,161,163-166} and of these, only one reported losses greater than 20 percent.¹⁶⁶ In all trials, the description of allocation concealment was unclear.^{155-161,163-166}

Intention-to-treat analysis. One trial carried out an intention-to-treat analysis,¹⁶⁵ eight trials did not,^{155-160,163,164,166} and the type of analysis was unclear in one trial.¹⁶¹

Outcomes

Vitamin D status by serum 25(OH)D. Seven trials measured total 25(OH)D (i.e., D_2 and D_3), ^{155,157,158,161,163,164,166} whereas four trials specifically measured 25(OH)D₃ levels. ^{156,159,160,165} Refer to Table 9 for baseline, end of study and absolute change in serum 25(OH)D levels in addition to other measurement details.

Harms. None of the studies reported adverse side effects related to the consumption of the dietary intervention under investigation.^{155-161,163-166}

Study Selection for Meta-Analysis

Meta-analysis was conducted to quantify the effects of dietary sources with vitamin D with/without calcium versus placebo or calcium on serum 25(OH)D levels. Seven of the 11 included trials that reported (or provided sufficient data to calculate) the absolute change in total 25(OH)D or 25(OH)D₃ concentrations were included in the meta-analysis.^{155,156,158,160,164-166} The

other four RCTs were excluded due to insufficient data required to calculate the change in 25(OH)D levels,^{157,163} between group differences in baseline 25(OH)D levels,¹⁶¹ or the intervention and control groups receiving equal amounts of vitamin D.¹⁵⁹

Quantitative Data Synthesis

Combining all seven trials that investigated the effect of food fortification or dietary sources of vitamin D (with/without calcium) versus control was not possible due to heterogeneity of the treatment effect ($I^2 = 79.2$ percent). However, the individual weighted mean differences (WMD) demonstrated a clear trend toward a significantly higher absolute change in serum 25(OH)D in the treatment group versus control (Figure 3).^{155,156,158,160,164-166} Potential sources of heterogeneity are the different 25(OH)D assays used (two studies each used HPLC, RIA or CPBA, and one study did not report the assay), the dietary vehicles used, study populations, the type or dose of vitamin D (unclear in one trial¹⁶⁵), and the outcome employed (i.e., total 25(OH)D versus $25(OH)D_3$).

Figure 3. Forest Plot on the Effect of Dietary Sources of Vitamin D (with/without calcium) vs. Control on Absolut	e
Change in Total Serum 25(OH)D or 25(OH)D ₃ .	

	ortified foods vs. te change in tota	. control al 25(OH)D or 25(OH)D3					
Study or sub-category	N	Treatment Mean (SD)	N	Control Mean (SD)	WMD (random) 95% Cl	Weight %	WMD (random) 95% Cl
de Jong, 1999	37	35.00(18.00)	34	5.00(9.00)	+	17.18	30.00 [23.46, 36.54]
McKenna, 1995	52	-19.48(11.47)	50	-36.47(9.26)	-	19.63	16.99 [12.95, 21.03]
Keane 1998	18	22.28(10.90)	24	6.75(10.92)	+	17.04	15.53 [8.86, 22.20]
Tangpricha, 2002	14	57.00(26.19)	12	22.50(17.32)	_ _	8.03	34.50 [17.64, 51.36]
Chee, 2003	91	17.30(13.30)	82	2.80(13.10)	-	19.71	14.50 [10.56, 18.44]
Panunzio, 2003	98	41.10(71.60)	134	0.70(28.50)	_ _	9.26	40.40 [25.43, 55.37]
Natri 2006	11	16.30(21.89)	11	-0.30(13.27)	_ _	9.15	16.60 [1.47, 31.73]

Favours control	Favours treatment

Combined data from two trials (N = 275) that were similar in the dietary vehicle used (fortified skim milk), population studied (postmenopausal women and young adults), dose of vitamin D (400 and 480 IU daily), type of vitamin D (D₃), 25(OH)D assay (RIA), and outcome (total 25(OH)D) demonstrated a significantly higher absolute change in serum 25(OH)D (WMD 15.71, 95% CI 12.89, 18.53, heterogeneity $I^2 = 0$ percent) in the treatment group ^{155,158} (Figure 4). Similarly, a significantly higher percent change in serum 25(OH)D was demonstrated in the treatment group (WMD 19.13, 95% CI 15.32, 22.95). However, heterogeneity of the treatment effect was high ($I^2 = 54.1$ percent).^{155,158} The study by McKenna et al. demonstrated a decrease in 25(OH)D levels in both groups as a result of seasonal decline. However, food fortification reduced the degree of seasonal decline in the treatment group.¹⁵⁸

Figure 4. Forest Plot on the Effect of Vitamin D₃ Fortified Skim Milk (with calcium) vs. Control on Absolute Change in Total Serum 25(OH)D.

	tified foods vs change in tota						
Study or sub-category	N	Treatment Mean (SD)	N	Control Mean (SD)	(random) 5% Cl	Weight %	WMD (random) 95% Cl
McKenna, 1995	52	-19.48(11.47)	50	-36.47(9.26)	-	48.74	16.99 [12.95, 21.03]
Chee, 2003	91	17.30(13.30)	82	2.80(13.10)	-	51.26	14.50 [10.56, 18.44]
Total (95% CI)	143		132		•	100.00	15.71 [12.89, 18.53]
Test for heterogeneity: Chi ² = Test for overall effect: Z = 10							

In an attempt to explain the heterogeneity found in the overall analysis, the following subgroups were analyzed: (1) younger versus older individuals; (2) all trials that administered 400 IU/day (the most common dose); (3) the use of total 25(OH)D versus 25(OH)D₃ and (4) the type of vitamin D assay (RIA, HPLC versus CPBA). The subgroup analysis that included studies of younger individuals demonstrated a significant absolute increase in 25(OH)D levels (4 trials, N = 323, WMD 17.02, 95% CI 12.49, 21.56, heterogeneity I² = 44.4 percent).^{155,158,160,164} However, combining trials within all of the other subgroup analyses was not possible as the heterogeneity of the treatment effect was high. A meta-regression to further explore heterogeneity was not carried out due to the limited number of trials with sufficient data.

Publication Bias. We were not able to evaluate the possibility of publication bias given the limited number of trials with sufficient data required to conduct such an investigation.

Qualitative Data Synthesis

Results from the four trials^{157,159,161,163} that were excluded from the quantitative analysis are described below.

Daly et al. (2006) explored the effect of fortified milk (800 IU vitamin D_3 plus 1000 mg of calcium) versus no additional milk in older Caucasian, ambulatory men (mean age 62 years) over a two year period. Serum 25(OH)D was increased in the milk supplementation group relative to controls (27 percent, p<0.001). Baseline characteristics did not differ between groups.¹⁶³

Johnson et al. (2005) investigated the effects of vitamin D fortified cheese (600 IU D₃ daily) on serum 25(OH)D versus unfortified cheese or no cheese for two months in older men and women.¹⁶¹ Serum 25(OH)D measured at the beginning of the study demonstrated a significant difference between the fortified cheese versus control groups. Overall compliance with consumption of 85 grams of cheese per day was high (96.2 percent) with no difference between groups. Results demonstrated that, despite a significantly higher total vitamin D dietary intake in the fortified cheese versus the two control groups (unfortified cheese and no cheese groups), the end of study serum 25(OH)D decreased by a mean of 6 (SD 2) nmol/L (p<0.001) in the fortified cheese group. While not a clinically significant decrease, the authors speculated that this decrease reflected the higher baseline serum 25(OH)D in the fortified cheese group.

Lau et al. (2001) investigated the benefits of milk supplementation (240 IU D_3 plus 800 mg Ca) in postmenopausal Chinese women over a two year period.¹⁵⁷ At 12 months, serum 25(OH)D was higher in the milk supplementation group compared to baseline (p<0.05). Baseline and followup serum 25(OH)D for the control group, a comparison of serum 25(OH)D between the intervention and control group, and participants' sunlight exposure and vitamin D intake were not reported.¹⁵⁷

Palacios et al. (2005) assessed the effect of consuming milk enriched with calcium and vitamin D (1,200 mg Ca plus 228 IU D₃) versus milk with lower calcium content but the same amount of vitamin D (900 mg Ca plus 228 IU D₃) daily for six months in healthy postmenopausal women. Serum 25(OH)D₃ increased from baseline in those women who consumed the milk enriched with calcium (which also contained phosphorus and lactose) even thought the amount of vitamin D was similar (p <0.001). The calcium enriched milk group had significantly higher serum 25(OH)D₃ at the end of study than the non-enriched group (p = 0.007). These results led the authors to speculate that calcium may affect the absorption of vitamin D. However, compliance was not measured. The participants' sunlight exposure and vitamin D intake were also not reported.¹⁵⁹

Dose response of serum 25(OH)D to dietary interventions. The positive direction of the treatment effect of dietary interventions with foods fortified with vitamin D is consistent. Based on our synthesis of the data from the individual trials, the treatment effect may be dependent on baseline serum 25(OH)D levels (Table 10). Those trials with low baseline 25(OH)D levels (i.e., < 50 nmol/L)^{156,160,164-166} consistently demonstrated a greater percent increase in 25(OH)D levels at the end of study compared to trials with higher baseline 25(OH)D levels (i.e., > 50 nmol/L).^{155,157-159,161} Observations from such indirect comparisons need to be interpreted cautiously due to differences in baseline characteristics of the study populations, the bioavailability of the vitamin D in the various food sources and the different measures of serum 25(OH)D used.

Summary

Despite the possibility of study contamination by altered intake of other nutrients contained within the different food sources that affect bone and mineral homeostasis, food sources enriched with vitamin D in the form of milk, orange juice or other dairy and fruit based products (i.e., yogurt, custard and fruit juice) significantly improved vitamin D status in vitamin D deficient, insufficient or sufficient populations including young adults, postmenopausal women and elderly men. This was demonstrated by a significant rise in serum 25(OH)D in individuals that received vitamin D enriched dietary interventions compared to controls on an individual trial basis,^{155-160,163-166} and by combining trials that permitted a quantitative analysis.^{155,158}

Increases in serum 25(OH)D from vitamin D enriched dietary interventions may depend on baseline 25(OH)D levels as well as vitamin D dose. However, this observation is based on indirect comparisons of the individual trials and should be interpreted with caution. It was not possible to determine if results vary with age, BMI and ethnicity given the limited data available and the between trial differences in terms of population characteristics, dietary interventions and measurement of serum 25(OH)D levels.

Summary. Serum 25(OH)D levels and dietary intake of vitamin D

Quantity: There were eleven RCTs (N = 1,281) of which seven (N = 668) permitted a quantitative analysis. However, due to significant heterogeneity of the treatment effect, only two trials (N = 275) could be combined.

Quality: Mean quality score (Jadad) for the 11 RCTs was 2.8/5 with scores ranging from 1 to 4 (six trials had a score \geq 3). In all trials, the description of allocation concealment was unclear. Only one trial reported losses to followup > 20 percent.

Consistency: The majority (10/11) of individual trial results were consistent with a significant effect of dietary intake from foods fortified with vitamin D on 25(OH)D concentrations. The individual treatment effects of the seven trials ranged from 15 (95% CI 11-18) to 40 (95% CI 25-55) nmol/L (fortification consisting of 100 - 1,000 IU of vitamin D) and the combined treatment effect from the two trials (dose 400-480 IU vitamin D₃) was 16 (95% CI 13-19) nmol/L.

There is good evidence that dietary intake of vitamin D increases serum concentrations of 25(OH)D.

Author (year) Country (latitude)	Population, N Mean age (SD) Ethnicity	Dietary Source Vit D daily dose; Ca Duration	Absolute change in mean serum 25(OH)D (SD) (nmol/L)	Assay Fasting sample (Y/N) Season of sample	Jadad Score ⁺
Chee (2003) ¹⁵⁵	173 Postmenopausal	IG1: Skim milk powder (400 IU D_3 + 1200 mg Ca)	25(OH)D^	RIA	2
Malaysia (3° 7' N)	women (IG1 91, CG 82)	CG: usual diet	IG 17.3 (13.3) CG 2.8 (13.1)**	Y	
	59 (3) y	24 mo	002.0(10.1)		
				NR	
460	Asian (Chinese)				
Daly (2006) ¹⁶³	149 Ambulatory men >	IG1: fortified milk (800 IU D ₃ + 1000 mg Ca)	25(OH)D^	RIA	3
Australia (37° 47' S)	50 y (IG1 76, CG 73)	CG: usual diet	IG1: 5.7 CG: –15.1	Y	
Australia $(37 + 7 - 3)$	61.9 (7.7) y	24 mo	0015.1		
	01.0(1.1)}			NR	
	Caucasian				
de Jong (1999) ¹⁶⁶	71 Elderly individuals	2 nutrient dense vs. regular products	25(OH)D^	СРВА	2
	(IG1 37, CG 34)	400 IU vit D	IG1: 35 (18)		
The Netherlands	70.0	4	CG: 5 (9)	Y	
(51°58' N)	78.8 y	4 mo		NR	
	Dutch (Caucasian)				
Johnson (2005) ¹⁶¹	110 Adults <u>></u> 60 y	IG1: fortified cheese (600 IU D ₃)	25(OH)D^	RIA	4
	(IG1 33, IG2 34, CG 33)	IG2: unfortified cheese	IG1: -6.0 (11.49)		
U.S. (45° 25' N)		CG: no cheese	IG2: 3.5 (7.29)	Y	
	NR	0.000	CG: 0.75 (10.05)*	\\/inter	
	NR	2 mo		Winter	
Keane (1998) ¹⁵⁶	42 Elderly individuals	IG1: fortified milk (200 IU vit D + 800 mg Ca)	25(OH)D ₃	СРВА	4
	(IG1 18, CG 24)	CG: unfortified milk (4 IU vit $D + 600 \text{ mg Ca})$	IG1: 22.25 (10.90)		
Ireland (53° 22' N)			CG: 6.75 (10.92)*	NR	
	78.1 y (range 66-91)	12 mo			
				Late winter	
	NR				

Table 9 (con	tinued). Serum	25(OH)D Level	s and Fortified Foods

Author (year) Country (latitude) Population, N Mean age (SD) Ethnicity		Dietary Source Vit D daily dose; Ca Duration	Absolute change in mean serum 25(OH)D (SD) (nmol/L)	Assay Fasting sample (Y/N) Season of sample	Jadad Score
Lau (2001) ¹⁵⁷	185 Postmenopausal women (IG1 95, CG	IG1: Milk powder (240 IU D_3 + 800 mg Ca) CG: no intervention	25(OH)D^ IG1: 23.2 (13.2)**	СРВА	3
China (22°17' N)	90)	24 mo	CG: not estimable	NR	
	56.9 y IG1: 57.1 (1.78) y CG: 56.8 (1.5) y			NR	
	Asian (Chinese)				
McKenna (1995) ¹⁵⁸	102 Younger adults (IG1 52, CG 50)	IG1: fortified skim milk (480 IU D_3 + 1525 mg Ca/L, 2L/wk)	25(OH)D^ IG1: - 15 (21.1),	RIA	2
Ireland (53° 22' N)	median (range) 22.6 y (17 – 54)	CG: unfortified skim milk (12 IU D ₃ + 1270 mg Ca/L, 2L/wk)	CG: - 31 (24.2)**	NR Late winter (baseline) &	
	(17 = 34) NR	5 mo		summer (end of study)	
Natri (2006) ¹⁶⁴	41 Women 25-45 y (IG1 11, IG2 10, IG3	IG1: fortified wheat bread (400 IU D_3) IG2: fortified rye bread (400 IU D_3)	25(OH)D^ IG1: 16.3 (21.89)	RIA	1
Finland (60° 10' N)	9, CG 11)	IG3: regular wheat bread + vit D_3 supplement (400 IU D_3)	IG2: 14.9 (19.61) IG3: 19.5 (30.3)	Y	
	29.1 y	CG: regular wheat bread	CG: -0.3 (13.27)*	Feb – March	
Dalasias (0005) ¹⁵⁹	NR 60 Destruction	3 wks		RIA	4
Palacios (2005) ¹⁵⁹	69 Postmenopausal women (IG1 34, CG	IG1: fortified Ca-enriched skim milk (228 IU D_3 + 1,200 mg Ca) (also contained phosphorus, lactose)	25(OH)D ₃ IG1: 13.9 (30.0)		4
Spain (37° 8' N)	35)	IG2: fortified skim milk (228 IU D_3 + 900 mg Ca)	CG: 0.7 (34.3)**	Y	
	62.7y	6 mo		NR	
	Caucasian				
Panunzio (2003) ¹⁶⁵	232 Elderly individuals (IG1 98,	IG1: diet with vit D (400 IU D) CG: diet without vit D	25(OH)D ₃ IG1; 41.1 (71.6)	NR	2
Southern Italy (41° 27' N)	CG 134)	10 wks	CG: 0.7 (28.5)**	Y	
	NR; range 65-74 y			NR	
	NR				

Author (year) Country (latitude)	Population, N Mean age (SD) Ethnicity	Dietary Source Vit D daily dose; Ca Duration	Absolute change in mean serum 25(OH)D (SD) (nmol/L)	Assay Fasting sample (Y/N) Season of sample	Jadad Score
Tangpricha (2002) ¹⁶⁰	26 Healthy adults aged 19-60 y (IG1	IG1: fortified orange juice (1,000 IU D_3 + 350 mg Ca)	25(OH)D ₃ IG1: 57.0 (26.19)	СРВА	4
U.S. (42°22' N)	14, CG 12)	CG: unfortified orange juice (350 mg Ca)	CG: 22.3 (17.32)*	NR	
	29.0 (9.0) y	3 mo		Spring	
	NR				
⁺ Jadad score out of 5; alloc	ation concealment for all oup; CPBA, competitive p	calculated from baseline and end of study data; ^ refe studies in the table was rated as "unclear"; NR, not rep rotein binding assay; IG, intervention group; IU, interna	orted		

Table 9 (continued). Serum 25(OH)D Levels and Fortified Foods

Author (year)	Daily Vitamin D Dose	IG Baseline 25(OH)D (nmol/L)	IG End of Study 25(OH)D (nmol/L)	Absolute (%) Change in 25(OH)D (nmol/L)	Jadad Score⁺
< 400 IU/d		· -			
Keane (1998) ¹⁵⁶	200 IU vit D^	24*	46.25*	22.3 (92.9)*	4
Lau (2001) ¹⁵⁷	240 IU D ₃	66	89.2	23.2 (35.1)	3
McKenna (1995) ¹⁵⁸	137 IU D ₃	77	62	-15 (-19.5)	2
Palacios (2005) ¹⁵⁹	228 IU D3	109.9*	123.9*	14 (12.7)*	4
<u>></u> 400 IU/d	I	I	I		
Chee (2003) ¹⁵⁵	400 IU D ₃	69.1	86.4	17.2 (25.0)	2
Daly (2006) ¹⁶³	800 IU D ₃	77.2	NR	NR	3
de Jong (1999) ¹⁶⁶	400 IU D^	37	72	35 (94.6)	2
Johnson (2005) ¹⁶¹	600 IU D3	57.5	52.5	-5 (-8.7)	4
Natri (2006) ¹⁶⁴	400 IU D ₃	29	45.3	16.3 (56.2)	1
Panunzio (2003) ¹⁶⁵	400 IU D^	40.2*	81.3*	41.1 (102.2)*	2
Tangpricha (2002) ¹⁶⁰	1,000 IU D ₃	37*	94*	57 (154)*	4
			l score out of 5; alloca up; IU, international ur	tion concealment was ra hits; NR, not reported	ated as

Table 10. Absolute and % Change in Serum 25(OH)D for the Intervention Group in
Supplementation Trials (grouped by vitamin D dosages < 400 IU vs. \geq 400 IU/d)

Question 2B. What is the Effect of UV Exposure on Circulating 25(OH)D Concentrations?

Overview of Relevant RCTs

Study characteristics. Eight randomized trials evaluated the effect of ultraviolet exposure on serum 25(OH) D concentrations.¹⁶⁷⁻¹⁷⁴

Within these eight parallel design trials, there were a total of 337 subjects with 197 subjects in the intervention group and 140 subjects in the comparator groups. Four trials evaluated the effect of natural sun exposure,^{168,169,171,172} and four trials evaluated the effect of artificial UV exposure^{167,170,173,174} on circulating 25(OH)D concentrations.

Population characteristics. There were seven trials in adult populations and one in infants.¹⁷² Three trials involved younger or middle-aged adults^{169,170,174} and four trials included older adults.^{167,168,171,173} The percentage of females ranged from 17¹⁷⁰ to 100 percent,¹⁶⁷ and one trial had only male participants.¹⁷⁴ In the trial in infants, 55 percent were female.¹⁷²

Body Mass Index was not reported in any of the trials. Skin type was reported in two trials: Matsuoka¹⁷⁰ in which all individuals were skin type III (i.e., sometimes burn, always tans) and Falkenbach included skin types II (i.e., always burns, sometimes tans) and III.¹⁷⁴ Another trial reported that skin pigmentation varied from fair to medium.¹⁶⁸

Vitamin D intake. One trial reported daily dietary vitamin D of 3.1 nmol or 48 IU¹⁶⁸ and another estimated dietary intake of 100 IU of vitamin D plus 1,000 mg of calcium per day.¹⁶⁷ Dietary intake was not reported in the remaining six trials.¹⁷⁰⁻¹⁷⁵

Vitamin D deficiency. In four of the eight trials, the proportion of subjects with vitamin D deficiency at baseline (< 30 nmol/L) was reported.^{167-169,172} In two trials of elderly nursing home residents, 93 percent of subjects were vitamin D deficient (<30 nmol/L) in one trial,¹⁶⁷ and 50 percent in the other trial.¹⁶⁸ In contrast, in a trial on community-dwelling adults in Australia, only 10 percent were vitamin D deficient.¹⁶⁹ In the infant trial,¹⁷² 20 percent of infants were deficient and 11 percent were diagnosed with rickets. Baseline concentrations and type of vitamin D assay are presented in Table 11.

Interventions. In the four trials that used solar exposure,^{168,169,171,172} the dose was one minimal erythemal dose (MED) in one trial,¹⁶⁸ and a geometric mean of 138 J/m² in another trial.¹⁶⁹ In two trials, the exact dose was not reported but described as 2 hours of sunshine per day with face and hands exposed¹⁷² or 15 versus 30 minutes with head, neck and arms exposed.¹⁷¹ All trials were conducted in southern latitudes, except for the infant trial.¹⁷² In the four trials that used artificial UV,^{167,170,173,174} the description of the dose was as follows: (1) one suberythematous dose of 27 mJ/cm² to the whole body,¹⁷⁰ (2) 1/2 MED at doses from 30 to 140 mJ/cm²;¹⁶⁷ (3) high energy versus low energy UV-B to provide suberythematous doses,¹⁷⁴ and (4) a dose of 160 mJ/cm² per week.¹⁷³

The frequency of UV exposure was a single exposure in one trial,¹⁷⁰ one¹⁷³ to three times per week,¹⁶⁷ ten times over a 12 day period,¹⁷⁴ and daily in four trials.^{168,169,171,172} The duration of the intervention varied from a single exposure,¹⁷⁰ to 12 days in one trial,¹⁷⁴ 28 days in two

trials,^{171,172} and 12 weeks in three trials.^{167,168,173} Marks et al. used sunscreen as the intervention.¹⁶⁹

Ascertainment of UV exposure. Three of the four trials that used natural sun exposure reported the method of ascertainment of UV-B exposure. Ho et al. used a sunshine diary to record minutes outdoors per day and used the average weekly UV score for September to October.¹⁷² Lovell used UV sensitive polysulphone badges and readings on a UV meter coupled to a sensor.¹⁶⁸ Marks also used polysulphone film badges in addition to a sun exposure and clothing diary.¹⁶⁹

Comparators. In four trials, the comparator was a placebo.^{169,171-173} Two trials included a comparator arm of vitamin D₃ 400 IU¹⁶⁷ or two dosages of vitamin D₃; 289 IU or 867 IU.¹⁶⁸ The two remaining trials used lower energy UV-B,¹⁷⁴ or UV-B with 50,000 IU vitamin D₂ versus vitamin D₂ alone as comparators.¹⁷⁰

Compliance. Compliance was reported in only two trials.^{167,174} In the Chel trial¹⁶⁷ three patients in the UV-B group did not complete the treatment and in the other trial¹⁷⁴ one subject did not comply with treatment.

Study quality. Study quality scores on the Jadad scale ranged from 1 to 4 out of a possible 5, with all except two trials having a score of less than 3.^{169,171} A description of trial withdrawals was adequately reported in six of the trials.^{167-169,172-174} In all eight trials, the description of allocation concealment was unclear. One challenge with trials of UV exposure is the difficulty of blinding study participants to the intervention.

Type of analysis. Three trials performed an intention-to-treat analysis.^{170,171,174} In five trials an intention-to-treat analysis was either not performed or the type of analysis was unclear.¹⁶⁷⁻170,173

Qualitative data synthesis. Quantitative synthesis of the trials of UV exposure and serum 25(OH)D was not possible due to the heterogeneous study populations, the interventions (e.g., length and area of exposure, and dose) and lack of complete data.

Outcomes. Followup serum 25(OH)D or 25(OH)D₃ concentrations were evaluated in six trials^{167,168,171-174} (Table 11). The change in serum 25(OH)D concentrations from baseline was significant in all of the six trials.

Reid (1986) compared the effect of sun exposure in 15 Caucasian older men and women living in residential homes in New Zealand. The subjects were randomized into three groups of five each; controls who did not change their daily routine and the two intervention groups (outside daily for either 15 or 30 minutes for four weeks). Body surfaces exposed included head, neck, legs and forearms. Mean baseline serum 25(OH)D concentrations were different across groups: 35 nmol/L (15 minute group); 60 nmol/L (30 minute group), and; 60 nmol/L (control group). Serum 25(OH)D increased in both the 15 and 30 minute groups, however the increase (18.5 nmol/L) was only significant in the 30 minute group.¹⁷¹

Lovell (1988) studied the effect of sun exposure in Caucasian elderly nursing home residents in Australia compared to vitamin D_3 (either 289 IU or 867 IU/day) over a three month period. The median increase (11.0 nmol/L) in serum 25(OH)D concentrations was significant after the second month of treatment in the UV-B group and the lower dose vitamin D group and after the first month, with 867 IU vitamin D_3 .¹⁶⁸

In Asian breast-fed infants aged one to eight months who were not receiving supplemental vitamin D, Ho (1985) assessed the effect of two hours of sunshine per day for two months (face and hands uncovered) versus the usual amount of sunshine. Infants in the intervention group received 115 minutes of sunshine per day compared to controls who received an average of 63 minutes. There was a significant increase in serum 25(OH)D in the treatment group, but not in the infants receiving usual sunshine exposure. Serum 25(OH)D concentrations correlated with UV exposure scores, even after adjusting for age. The estimated UV score needed to maintain serum 25(OH)D at 27.5 nmol/L was 24 minutes per day with only the face uncovered.¹⁷²

Marks et al. (1995) conducted a seven-month RCT in Australia of daily sunscreen use (SPF of 17) compared to placebo in 113 subjects over age 40 years. Participants were recruited from a random sample of a trial designed to evaluate the effect of regular sunscreen use in subjects with solar keratoses. Sunscreen was applied daily to the head, neck, forearms and dorsum of each hand. The mean baseline serum $25(OH)D_3$ was 54.2 nmol/L. When the results were stratified by age, serum $25(OH)D_3$ increased less in subjects over 70 years in the sunscreen group (7.4 nmol/L) versus those younger than 70 years (15.9 nmol/L) but the differences were not significant. Overall serum $25(OH)D_3$ concentrations increased by the same amount in the sunscreen and non-sunscreen groups with a difference of 0.99 nmol/L (95% CI -7.0, 5.0). Nine out of 11 subjects with serum $25(OH)D_3$ below the reference range had values within the reference range by the end of the study. The absence of a difference between groups may have been due to incomplete compliance with sunscreen use.¹⁶⁹

In a 12 week trial, Toss (1982) studied the effect of artificial UV exposure on 42 elderly nursing home residents compared to vitamin D_2 450 IU plus calcium 600 mg daily, calcium alone, or placebo. Front and back were exposed to UVR for 1 minute each, then 2 minutes and followed by ten treatments of 3 minutes each. The mean UV total dose was 160 mJ/cm². There were significant increases in serum 25(OH)D in both the UV group (end of study 25(OH)D was 59 nmol/L) and in the vitamin D_2 group (42 nmol/L), compared to no change in serum 25(OH)D in the control and calcium groups.¹⁷³

Chel (1998) investigated the effect of artificial UV-B irradiation in 45 elderly females in The Netherlands. The majority of subjects were vitamin D deficient (<30 nmol/L). Subjects were randomized to receive UV-B (one-half MED) three times per week, 400 IU vitamin D₃ or placebo for 12 weeks. Six areas of 4 cm² were irradiated with UV-B doses increasing from 30 to 140 mJ/cm², and individual doses were adjusted according to skin sensitivity as determined by the MED. After 12 weeks, the median serum 25(OH)D concentrations increased to 60 nmol/L in both the UV-B (increase of 42 nmol/L) and vitamin D₃ (increase of 37 nmol/L) groups (p<0.001).¹⁶⁷

Falkenbach (1992) evaluated the effect of artificial high energy (less emission in range of 300 nm) versus low energy, shorter wavelength UV-B in healthy young men (N=24) in Germany, during the winter. Both treatment groups were treated ten times over a 12-day period in a solarium. The initial exposure was three minutes and increased by 10 percent with each session to achieve suberythemal doses, using both ventral and dorsal irradiation. Baseline serum $25(OH)D_3$ concentrations were higher (115-124 nmol/L) than in other trials which may reflect younger age of subjects. Fasting serum $25(OH)D_3$ concentrations measured three days after the last exposure increased significantly in both groups and remained elevated for four weeks, in the

low energy, shorter wavelength UV-B group (Table 11). Serum PTH concentrations were significantly decreased in this group.¹⁷⁴

Matsuoka (1992) evaluated if administration of vitamin D_2 interfered with the release of vitamin D_3 from the skin after exposure to UV-B light. A total of eighteen subjects were randomized to receive oral 50,000 IU vitamin D_2 alone, 50,000 IU vitamin D_2 followed by UV-B exposure 12 hours later or UV-B alone. UV-B was given as a single dose to the whole body at a suberythematous dose of 27 mJ/cm². Total serum 25 (OH)D concentrations (measured by CPBA) did not increase significantly in any group. Vitamin D_3 concentrations (measured by HPLC) increased significantly after UV-B treatment (increase of 27.5 nmol/L). A similar increase in vitamin D_3 was observed when UV-B exposure was preceded by vitamin D_2 , suggesting that elevated serum vitamin D_2 does not interfere with release of vitamin D_3 from the skin.¹⁷⁰

Summary. Effect of UV Exposure on 25(OH)D Concentrations

Quantity: Eight RCTs evaluated the effect of UV exposure on serum 25(OH)D concentrations. Four trials used solar exposure and four used artificial UV-B sources.

Quality: The overall quality of the trials was low, with only two of eight trials having a score of $\geq 3/5$ on the Jadad scale.

Consistency: There was heterogeneity in the age and gender of subjects, dose, and duration of UV exposure that made synthesis of the results difficult. In addition, it was difficult to ascertain the exact dose.

Both artificial and solar exposure increased serum 25(OH)D concentrations in vitamin D deficient and replete subjects. Three trials in elderly nursing home populations (solar or artificial UV-B exposure) demonstrated significant increases in serum 25(OH)D concentrations.^{167,168,171} One trial using artificial UV-B exposure in elderly females reported an increase of 42 nmol/L in serum 25(OH)D (measured by RIA) with $\frac{1}{2}$ MED exposure to the lower back, three times per week.¹⁶⁷ These results support the belief that older individuals have adequate capacity to synthesize vitamin D₃ in response to UV-B exposure, despite the decreased availability of 7dehydrocholesterol in the skin. One trial evaluated the effect of sunscreen on serum 25(OH)D concentrations and found that the UV-B response was not suppressed by sunscreen use.¹⁶⁹

There is fair evidence that solar and artificial UV-B exposure increase 25(OH)D levels. The included trials did not address the issue of whether serum 25(OH)D response is attenuated in heavily pigmented groups. It was also not possible, to evaluate the impact of effect modifiers such as age, ethnicity, seasonality and latitude.

Author (year)Population, NCountry (Latitude)Mean Age (SD)Season% Vit D DeficientFundingEthnicity		UV Exposure Comparator	Serum 25(OH)D Assay Baseline (nmol/L)	Serum 25(OH)D at end of trial or Absolute change (nmol/L)	Jadad Score ⁺
Chel (1998) ¹⁶⁷ The Netherlands (52°12' N) NR Public	45 elderly females in nursing home 85 y 93% had values < 30 nmol/L 60% had values < 20 nmol/L NR	Artificial 1/2 MED on lower back 3 x/wk 12 wks Vitamin D ₃ 400 IU/d Control	25(OH)D [^] RIA Median (25,75 th percentile) 18 (12, 25) 23 (14, 28) 12 (8, 18)	Median 60** ↑42 60** ↑37 NS	2
Falkenbach (1993) ¹⁷⁴ Germany (50°11' N) Winter	24 healthy young men Age range 21-37 y NR	Artificial UV-B: higher energy of total UV-B but less energy at wavelengths < 300 nm compared to other group 10x in 12d	25(OH)D ₃ RIA 115.5 (88.0)	3 d after exposure: 221.3 (64.0)* 4 wks after exposure: 236.8 (56.0)**	2
Public	NR	Lower energy dorsal/ventral irradiation 10x in 12d	123.8 (63.8)	3 d after exposure: 196.0 (86.0)* 4 wks after exposure: 152.5 (81.3)	
Ho (1985) ¹⁷² China (39° 55' N) Sept-October	54 infants (breast- fed) Mean age 4.0 (1.7) mo	Sunlight 2 h x 4 wks, face and hands exposed 12 wks	25(OH)D^ CPBA 70 (37.5)	100 (57.5) ↑30 (37.5) **	3
Public	20% had values < 27.5 nmol/L Asian	Control- usual amount of sunshine	52.5 (37.5)	45 (35), NS	

Table 11. Effect of UV Exposure on Serum 25(OH)D Levels

Author (year) Country (Latitude) Season Funding	Population, N Mean Age (SD) % Vit D Deficient Ethnicity	UV Exposure Comparator	Serum 25(OH)D Assay Baseline (nmol/L)	Serum 25(OH)D at end of trial or Absolute change (nmol/L)	Jadad Score⁺
Lovell (1988) ¹⁶⁸ Australia (27° 28' S) Fall/winter	38 elderly nursing home residents Age 55-95 y 50% had values <	Daily sun exposure to arms and legs (20, 30 and 40 min in April, May and June respectively) 3 mo	25(OH)D^ CPBA median (range) 32.6 (18.8, 112.8)	↑60.6 (26.3-102.5) *	2
NR	25 nmol/L Caucasian	vitamin D ₃ 289 IU/d vitamin D ₃ 867 IU/d Control	18.3 (10.8, 71.3) 41.1(15.5, 57.8) 18.9 (7.8, 77.3)	47.3 (12-87.8) ↑24.9 * NS	-
Marks (1995) ¹⁶⁹ Australia (37° 03' S) Spring/summer Public	113 community- dwelling adults Age > 40 y 10% had values < 30 nmol/L	Sunlight + sunscreen (SPF17) applied daily to hands, arms, head and neck, 7 mo	25(OH)D [^] CPBA 56.6 (95%Cl 52- 61.2)	↑11.8	4
	NR	Sunlight + placebo mean daily UV 137.9 vs. 138.7 J/m ²	51.6 (95% CI 47- 56.2)	↑12.8	
Matsouka (1992) ¹⁷⁰ USA (39° 53' N) Winter NR	18 medical students NR NR Caucasion	UV-B suberythemal dose 27mJ/cm ² x1, total body 3 d	Total and $25(OH)D_3$ HPLC CPBA mean (SEM) $25(OH)D_3 - 12.5$ (2.5)	mean (SEM) 25(OH)D₃ 35 (12.5) ↑ 27.5 Total 25 (OH)D: no change	1
		vit D ₂ 50,000 IU + UV-B same dose as above 50,000 IU D ₂	7.5 (2.5)	$\begin{array}{c} 25(OH)D_3 \; 35 \; (12.5) \\ \ \ \uparrow 27.5 \\ 25(OH)D \; no \; change \\ 25(OH)D_3 \; no \; change \\ 25(OH)D_0 \; no \; change \\ 25(OH)D \; no \; change \\ \end{array}$	-

Table 11. (continued) Effect of UV Exposure on Serum 25(OH)D Levels

Author (year) Country (Latitude) Season Funding	Population, N Mean Age (SD) % Vit D Deficient Ethnicity	UV Exposure Comparator	Serum 25(OH)D Assay Baseline (nmol/L)	Serum 25(OH)D at end of trial or Absolute change (nmol/L)	Jadad Score [⁺]
Reid (1986) ¹⁷¹	15 elderly nursing	Sunlight 15 min/day	25(OH)D^	↑7 (2.8)	1
NI. 7 I I	home residents	Head, neck,	0004		
New Zealand	00	forearms, lower legs	CPBA		
(37°S)	80 y	exposed			
Spring	NR	4 wks	mean (SEM)		
Public	INF	Sunlight 30 min/day	35 (5)	 ↑18.5 (3) *	-
Fublic	Caucasian	Control	60 (12.5)		-
	Caucasian	Control	60 (15)	↑5 (2.8)	
Toss (1982) ¹⁷³	42 elderly nursing	Artificial UVR (270-	25(OH)D^	~59	2
	home residents	400 nm) once a week			
Sweden		for 12 wks, mean	СРВА		
(57° 43' N)	85 y	dose160 mJ/cm ²			
		(ventral/dorsal)	~27 (from graph)		
NR	NR				
		Vit D ₂ 150 IU +Ca	~20	~42	
	NR	600 mg 3X/wk for 12			
		wks			
		Ca 600 mg	~24	NS	
Note: *significant cha					

Table 11. (continued) Effect of UV Exposure on Serum 25(OH)D Levels

⁺ Jadad score out of a total of 5; allocation concealment for all studies listed in the table was rated as "unclear"

CPBA, competitive protein binding assay; d, day; MED, minimal erythemal dose; min, minutes; mJ, millijoules; mo, month(s); N, north; NR, not reported; NS, not significant; RIA, radioimmunoassay; S, south; SEM, standard error of the mean; UV-B, ultraviolet-B; UVR, ultraviolet radiation; wkly, weekly; wks, weeks; y, year

Question 2C. What Is the Effect of Vitamin D Supplementation on Circulating 25(OH)D?

Overview of Relevant RCTs

Study characteristics. A total of 74 RCTs in 81 published reports evaluated the effect of vitamin D supplementation on circulating 25(OH)D concentrations.^{60,61,90-93,102,105,112-115,117-121,167,168,176-185,185-236} Within the trials, five had the following companion publications: Greer⁹³ had one companion¹⁹³; Grados¹⁹¹ had two companion papers^{190,237}; Dawson-Hughes¹⁸⁴ had one companion¹⁸⁵; Schaafsma¹²¹ has one companion²²¹; and Sorva²²⁴ had two companion papers.^{225,226} For each trial in this section we refer to the primary publication (Table 12).

Sixty-nine studies were parallel design randomized trials.^{60,61,90-93,102,105,112-115,117-121,167,168,176-184,186-190,192,194-197,199-207,209-215,217-220,222,224,227,229-236} Four were crossover trials,^{198,216,223,228} and one a factorial trial.²⁰⁸

Baseline BMI was reported in nineteen trials and ranged from 24.8¹⁹⁹ to 32.8 kg/m².¹⁹⁶

Study quality. Five trials^{112,115,203,210,238} received a rating of 5/5 on the Jadad scale, 13 trials received a rating of $4/5^{92,113,119-121,178,184,190,192,206,219,223,228}$ and 17 trials were rated 3/5.^{102,114,117,177,180,183,193,197-200,215,216,218,222,229,231} Thirty-nine trials received a Jadad score of $\leq 2/5$.^{60,61,90,91,93,118,167,168,176,179,181,182,186-189,194-196,201,202,204,205,207,209,211-214,217,220,224,227,230,232-236} These ratings indicate that more than half of the studies were of lower quality (Table 12).}

Interventions. Vitamin D_3 alone was the intervention in 29 trials.^{60,61,105,113,119,167,168,186-189,194,195,198,200,203,206,208-210,216,223,230-236}

 $Twenty-six\ trials\ used\ vitamin\ D_3\ combined\ with\ calcium\ as\ the\ intervention.^{113,114,117,118,121,177,178,180,181,183,184,187,190,192,197,199,200,202,207,213,215,218,219,222,224,228}$

Fifteen trials used vitamin D_2 alone as the intervention.^{90-93,102,112,115,120,176,179,196,211,212,214,227} and the type of vitamin D was not stated in four trials.^{168,204,217,220}

Three trials had separate vitamin D₂ and vitamin D₃ arms.^{61,229,230}

Qualitative data synthesis. Baseline serum 25(OH) D concentrations were reported in 61 trials.^{60,102,105,112-115,117,119-121,167,168,177-181,184,187-190,192,194-210,212,214-220,222-224,227-230,232-236}

Twenty-one trials examined the efficacy of vitamin D supplements in vitamin D deficient populations (mean serum $25(OH)D \le 30$ nmol/L), ^{112,114,119,167,179,180,189,190,197,199,207,209,210,214,218,220,222,224,227,235,236} and three other trials had a

subgroup of patients who were vitamin D deficient (\leq 30 nmol/L).^{90,91,202}

Vitamin D assay. The majority of trials (N = 42) used a competitive binding protein assay to measure serum 25 (OH)D concentrations. $^{60,91,93,102,105,112,113,118,119,121,168,176,178-184,190,194-196,198-200,202,204-207,209-211,214,215,220,224,227,232,235,236}$

Twenty-nine trials used an immunoassay method.^{61,90,114,115,117,120,167,177,186-} 189,192,197,201,203,208,212,213,216-218,222,223,228,230,231,233,234</sup> and three trials used HPLC.^{92,219,229} No trials

reported using liquid chromatography-tandem mass spectrometry to measure serum 25(OH)D concentrations.

The qualitative results are presented by age group and additional details are presented in Table 12. For the vitamin D_3 (+/- calcium) versus placebo or calcium trials that provided adequate data, the results of quantitative synthesis are presented after the qualitative section. We did not conduct quantitative analyses of vitamin D_2 versus placebo due to the smaller number of trials, heterogeneity of trials and lack of adequate data.

Infants

Seven trials included term infants.^{90-93,182,217,236} Only two trials had a quality score of ≥ 3 .^{92,93} Sample sizes ranged from 30 to 312 and six out of the eight trials were published prior to 1995.

Intervention. Vitamin D₂ was used in four trials⁹⁰⁻⁹³ vitamin D₃ in another²³⁶ and the isoform was not stated in three trials.^{182,217,220} In most trials, infants received daily doses ≤ 400 IU of vitamin D₂.^{90,92,93,182} Zeghoud (1994) administered either 200,000 IU or 100,000 IU vitamin D₃.²³⁶ and Zeghoud (1997) administered 500 IU versus 1,000 IU daily.⁹¹

Vitamin D status. Baseline serum 25(OH)D concentrations were not reported in all trials. In one trial in France, all subjects were vitamin D deficient²³⁶ and in another trial by Zeghoud 63 percent had levels <30 nmol/L.⁹¹ In another trial the mean cord serum 25(OH)D concentrations were < 27.5 nmol/L in 95 percent of infants⁹⁰ (Table 12). Serum 25()H)D assays included CPBA in four trials, immunoassay in two and HPLC in one trial.

Zeghoud et al. (1994) randomized 30 healthy formula-fed neonates to receive either 200,000 IU of vitamin D once at birth or 100,000 IU at birth, 3 and 6 months. Mean (SD) serum 25(OH)D concentrations increased to 150 (55) nmol/L with 200,000 IU and to 92 (42) with 100,000 IU, 15 days post dose. In the 100,000 IU treatment arm, the mean (SD) 25(OH)D concentrations 3 months after each dose were 43.7 (24.7), 52.2 (29.2), and 67.5 (30) nmol/L.²³⁶

In another trial, Zeghoud (1997) randomized 80 healthy full term neonates to receive either 500 or 1000 IU of vitamin D_2/day from birth to three months of age. At birth, 63.7 percent of neonates had serum 25(OH)D concentrations \leq 30 nmol/L (mean 17.9, SD 7.8), the majority born to mothers who had not received vitamin D supplement. Twenty-seven percent of the mothers had received an oral dose of 100,000 IU vitamin D₂ in the sixth to seventh month of pregnancy. Neonates were grouped by 25(OH)D concentration; group 1 (N = 14) had a total vitamin D (both D_2 and D_3 measured) concentration < 30 nmol/L and elevated serum PTH (> 6.4 pmol/L); group 2 (N = 36) had low 25(OH)D concentrations (mean 22.7 (6.5) nmol/L) without PTH elevation and group 3 (N = 29) had serum 25(OH)D concentrations > 30 nmol/L. One month after beginning the 1,000 IU dose of vitamin D, mean 25(OH)D concentrations ranged from 65 to 70 nmol/L and PTH concentrations were similar amongst the three groups. In the 500 IU arm, mean 25(OH)D concentrations increased and ranged from 58 to 63 nmol/L. However, the levels attained by the vitamin D deficient group were significantly lower than the other groups and serum PTH concentrations remained elevated in 14.3 percent of infants in this group. These results suggest that neonates with vitamin D deficiency may respond differently and require higher doses of supplemental vitamin D.⁹¹ This trial had a 35 percent loss to followup.Specker et al. in a trial of 312 term infants from two northern and southern cities in China evaluated three dosages of vitamin D (100, 200 or 400 IU vitamin D_2/day for six months)

for the prevention of rickets. Mean cord serum vitamin D concentrations at baseline were lower in northern infants than those in the south (12.5 versus 45 nmol/L, samples drawn in the fall). At 6 months, serum 25(OH)D concentrations increased in a dose response manner in the

northern children (30, 38 and 63 nmol/L respectively). However, some infants in the 100 and 200 IU dose arms, remained vitamin D deficient, suggesting that these doses may be inadequate for infants residing in northern latitudes.⁹⁰

Greer et al. randomized 18 term exclusively breast-fed infants to either 400 IU of vitamin D_2 or placebo. After 12 weeks, the mean serum 25(OH)D concentration was 95 nmol/L in vitamin D supplemented compared to 50 nmol/L in controls (p<0.01).⁹³ Similar concentrations of 25(OH)D were seen at the end of 6 months (93 (30) versus 58.8 (25) nmol/L) in another trial by Greer conducted in Caucasian, breast-fed infants with the same dose of vitamin D_2 .⁹²

In Turkey, Pehlivan randomized 40 breast-fed infants to 400 or 800 IU of vitamin D (isoform not stated). Ninety-five percent of the mothers had 25(OH) D levels below 40 nmol/L, due to lack of sun exposure (mean 25(OH)D level 17.5), and 80 percent had levels <25 nmol/L. The mean serum 25(OH)D was 83.7 (SD 53.7) and 24 percent of the infants had baseline serum 25(OH)D levels below 40 nmol/L. Followup mean (SD) serum 25(OH)D at 16 weeks was 76.9 (35.4) and 91.8 (61.5) nmol/L for the 400 IU and 800 IU groups respectively, and 79.5 percent of infants had 25(OH)D levels within the normal range.²¹⁷

Chan (1982) randomized 91 term infants into one of three groups, 1) breast-fed alone, 2) breast-fed with 400 IU vitamin D and 3) fed with Similac containing 400 IU/L of vitamin D. Lactating mothers were supplemented with 400 IU vitamin D. After 6 months, mean serum 25(OH)D (SD) levels in the three groups were 47.5 (23.4), 57.5 (40.5), and 45.0(31.6) nmol/L, respectively. There were no significant differences in 25(OH)D between nursing mothers who were supplemented and those who were not.¹⁸²

Summary. Vitamin D supplementation on 25 (OH)D levels in Infants

Quantity: Seven trials included infants and few trials used vitamin D₃.

Quality: Most trials were of lower methodological quality.

Consistency: One trial suggested that 200 IU of vitamin D_2 may not be enough to prevent vitamin D deficiency, in some infants residing at northern latitudes. A dose-response was noted in this same trial (100, 200, 400 IU/day). Consistent responses to vitamin D supplementation were noted across the seven trials, and some trials suggested that infants who are vitamin D deficient, may respond differently and require higher doses of vitamin D.

Pregnant Women and Lactating Mothers

There were six trials of vitamin D supplementation in pregnant or lactating women.^{176,179,186,201,211,220} All trials scored either 1/5 or 2/5 on the Jadad scale. Sample sizes ranged from 40 to 126 women.

Intervention. Three trials administered 1,000 IU vitamin D_2 daily^{176,179,211} and the remaining trials used vitamin D_3 . Dosages ranged from 400 to 1,000 IU.

Vitamin D status. Assays for circulating 25(OH)D were CPBA in four trials and RIA in two. Brooke included women who were vitamin D deficient, with a mean serum 25(OH)D

concentration of 20 nmol/L¹⁷⁹ and the mean serum 25(OH)D at baseline was < 30 nmol/L in another trial.²²⁰

Brooke compared 1,000 IU vitamin D_2 versus placebo given at 28 weeks to 126 Asian women who were vitamin D deficient and reported large increases in both serum and cord blood with 25(OH)D levels of 168 (increase of 148) versus 16.2 nmol/L in the controls (Table 12). This dose also improved neonatal serum calcium (five infants in the control group had symptomatic hypocalcemia versus none in the vitamin D group). The serum 25(OH)D values in this trial were not, however, replicated in other trials and may be related to the fact that an older CPBA assay was used.

Rothberg et al. randomized nursing mothers to 500 IU or 1,000 IU vitamin D daily (isoform not stated) versus placebo for six weeks post delivery. By day four, serum 25(OH)D (mean, SD) levels in the mothers were 34 (13.5), 36.8 (12.3) and 25(13.8) nmol/L respectively. These mean concentrations were lower than in the other trials and could be due to the fact that the mothers did not receive vitamin D fortified milk or D supplemented diets. By six weeks, the mean 25 (OH)D concentrations were significantly lower in the unsupplemented mothers (26.5 nmol/L) than in supplemented mothers (35 nmol/L). Maternal serum 25(OH)D concentrations correlated directly with infant serum 25(OH)D values.²²⁰

In a trial of 77 women conducted in winter, Mallet compared 1,000 IU vitamin D_2 to a single dose of 200,000 IU vitamin D_2 given in the last trimester versus placebo.²¹¹ Mallet reported mean maternal plasma concentrations of 25.3 nmol/L with 1,000 IU, 26.3 nmol/L with 200,000 IU dose compared to 9.4 nmol/L in the controls, levels that were lower than those achieved in the Brooke trial. Cord blood levels increased, but were lower than serum concentrations.

Delvin administered 1,000 IU vitamin D_3 to mothers during the last six months of pregnancy compared to no supplement and reported that mean serum 25(OH)D increased significantly to 55 nmol/L versus 27.5 in controls (cord serum 25(OH)D: 45 and 17.5 respectively). Serum 25(OH)D concentrations in infants at 4 days of age were 32.5 (2.5) in the supplemented and 12.5 (2.5) nmol/L in controls.

In a small trial of 18 lactating women, Hollis administered 2,000 IU (1600 IU vitamin D_2 and 400 IU vitamin D_3 prenatal) versus 4,000 IU vitamin D (1,600 IU D_2 and 400 IU D_3 prenatal) for 3 months. The serum 25(OH)D concentrations increased by 36.1 nmol/L in the 1,600 IU group (to 90.3 nmol/L) and 44.5 nmol/L with 3,600 IU group (111.3 nmol/L).²⁰¹ In this trial, serum 25(OH)D levels ranged from 69.5 to 77 nmol/L with 1,600 and 3,600 IU vitamin D_2 , respectively.

The mean value of 25(OH)D achieved in the treated groups was less than 45 nmol/L in all studies except one in which serum 25(OH)D in mothers at delivery was 168 ± 12.5 nmol/L.¹⁷⁹

In a 20 week trial of 100 breast-fed infants in Finland, Ala-Houhala (1985) compared three supplementation protocols in healthy term infant- mother pairs: 1,000 IU or 400 IU of vitamin D_2 given to the infants, or 1,000 IU daily provided to the lactating mothers. The mean serum 25(OH)D concentration in the infants receiving 1000 IU increased to 57.5 (28) nmol/L compared to 45 (21) nmol/L with 400 IU vitamin D_2 . Infants who did not receive supplementation but whose mothers received 1000 IU vitamin D_2 during lactation had a mean serum 25(OH)D serum concentration of only 14 (9.4) nmol/L.¹⁷⁶ Therefore, supplementing lactating mothers with 1,000 IU during winter months did not increase serum 25(OH)D concentrations in the infant.

There were no randomized trials evaluating the efficacy of 400 IU of vitamin D_3 in lactating women.

Summary. Vitamin D supplementation on 25 (OH)D levels in Pregnant or Lactating Women

Quantity: There were six small trials of vitamin D supplementation in pregnant or lactating women. No randomized trials studied the effect of 400 IU vitamin D_3 . Three trials used 1,000 IU of vitamin D_2 and one trial used 1,000 IU of vitamin D_3 .

Quality: All trials were of low methodological quality.

Consistency: 1,000-3,600 IU/day of vitamin D_2 and 1,000 IU/d of vitamin D_3 resulted in significant increases in serum 25(OH)D concentrations in lactating mothers and in cord blood. One trial found that supplementation of lactating mothers with 1,000 IU of vitamin D_2 during winter months did not increase serum 25(OH)D concentrations in the infants.

Children and Adolescent Populations

Four trials examined the effect of vitamin D supplementation in children or adolescent populations. Two trials were conducted in pre-pubertal children,^{102,223} one included both pre-pubertal and post-pubertal children,¹⁰⁵ and one was 100 percent adolescent males.¹⁹⁴ Sample sizes ranged from 20²²³ to 179.¹⁰⁵

Study quality (Jadad score) was $\geq 3/5$ in three trials.^{102,105,223}

Intervention. The intervention was vitamin D_2 in one trial,¹⁰² and vitamin D_3 in the other three trials.^{105,194,223} Doses ranged from 200 to 2,000 IU per day.

Serum 25(OH)D assays used were CPBA in three trials and RIA in one.

Ala-Houhala administered 400 IU of vitamin D_2 , 5-7 times per week for a year in Finnish children aged 8-10 years and reported a mean increase in serum 25(OH)D of 22 nmol/L with supplementation compared to a decrease of 2.7 in the placebo group. There was no change in PTH levels. In a crossover trial during winter, Schou et al. administered 600 IU vitamin D_3 to 20 healthy children (mean age 9.8 years) and reported in the group given placebo first that the 25(OH)D concentration was 33.7 (SD 10.4) nmol/L, increasing to 50.2 (SD 14.2) nmol/L during vitamin D supplementation. There was no significant effect on PTH concentrations.

In a trial in females aged 10-17 years, 200 IU or 2,000 IU of vitamin D_3 were given. The mean increases in serum 25(OH)D concentrations ranged from 8 nmol/L (end of study 43 nmol/L) with 200 IU daily, to 60 nmol/L with 2,000 IU vitamin D_3 daily compared to a decrease of 5 nmol/L in controls.¹⁰⁵

Guillemant administered 100,000 IU vitamin D_3 every two months to adolescent male jockeys and reported that with low dietary calcium intakes, vitamin D_3 prevented the wintertime decrease in serum 25(OH)D and rise in serum PTH. The mean increase in serum 25(OH)D was 35 nmol/L.

Summary. Vitamin D supplementation on 25(OH)D levels in Children and Adolescents

Quantity: There were four trials that examined the effect of vitamin D on 25(OH)D in children or adolescents with doses ranging from 200 to 2,000 IU of vitamin D_3 / day and 400 IU of vitamin D_2 .

Quality: The study quality was ≥ 3 in three trials.

Consistency: There were consistent increases in 25(OH)D concentrations ranging from 8 nmol/L (200 IU), 16.5 (with 600 IU D₃) to 60 nmol/L (2,000 IU of vitamin D₃).

Premenopausal Women and Younger Men

Nine trials were identified that included solely younger adults.^{60,61,177,187,198,227,229,230,234} Of these, the study quality was ≥ 3 in four trials.^{177,198,229,234} Most trials were small with sample sizes ranging from 18¹⁸⁷ to 116.¹⁹⁸ Four additional trials included populations of younger and older adults. Of these, two trials included premenopausal and postmenopausal women; the mean age of women in one of the trials was 47.2 (range 24 - 70 years),²¹⁶ and the other trial included six premenopausal women who had a mean age of 30 years in a total of 105 participants.²³² Two trials included a population of younger and older men.^{195,196}

Interventions. Three trials compared the effect of vitamin D_2 to vitamin D_3 .^{61,229,230} Eight of the nine trials exclusively in younger adults had at least one treatment arm of vitamin D_3 (doses ranged from 600 IU/d to 10,000 IU/d); two studies used vitamin D in combination with calcium.^{177,187} The doses in vitamin D_2 trials ranged from 4,000 IU daily^{229,230} to 100,000 IU (single dose).²²⁷

Serum 25(OH)D was measured by CPBA in three trials,^{60,198,227} and RIA or HPLC in the others.

Of the three trials that evaluated the effect of vitamin D_2 versus D_3 in younger adult populations (N = 121), the cohorts included healthy volunteers (mean age 38.9 years),²³⁰ healthy pre-menopausal women (mean age 33 years)²²⁹ and healthy male volunteers (mean age 33 years).⁶¹

In an eight week trial, Tjellsen examined the effect of 4,000 IU vitamin D_2 versus 4000 IU vitamin D_3 in 19 healthy premenopausal women during September to November.²²⁹ Both arms had similar baseline serum 25(OH)D concentrations (measured by HPLC). Tablet analysis revealed that vitamin D_3 contained 4,400 IU and vitamin D_2 3,800 IU. Treatment with vitamin D_2 did not increase total 25(OH)D concentrations (median 88.8 nmol/L, range 49.3-120.8) due to a decrease in vitamin D_3 metabolites whereas vitamin D_3 significantly increased total serum 25(OH)D from a baseline median of 77.5 (range 46.3 - 100.5) to a median of 113.5 (range 77.5-138.5) nmol/L. The authors concluded that vitamin D_2 and vitamin D_3 have a differential effect on serum 25(OH)D concentrations.

Trang et al. assessed the efficacy of equimolar amounts of vitamin D_2 (4,000 IU daily) or vitamin D_3 (4,000 IU daily) on serum 25(OH)D concentrations in 72 volunteers for two weeks during wintertime.²³⁰ Mean serum 25(OH)D (SD) levels increased from 43.7 (17.7) nmol/L to 57.4 (13.0) nmol/L, an increase of 13.7 nmol/L, in the vitamin D_2 treated subjects and from 41.3 (17.7) nmol/L to 64.6 (17.2) nmol/L, an increase of 23.3 nmol/L, in the vitamin D_3 group. The

difference in the increase from baseline in group means was 9.6 nmol/L (95% CI 1.4, 17.8). They also examined responses based on baseline serum 25(OH)D levels and reported larger increases in individuals with lower serum 25(OH)D concentrations. There was no difference from baseline or between groups in mean serum 1,25-(OH)₂D.

Armas et al. examined the relative efficacy of vitamin D_2 versus vitamin D_3 with a single oral 50,000 IU dose over a 28 day period in 30 healthy males (mean age 33 (11.5) years). Baseline serum 25(OH)D concentrations were similar. The mean BMI (SD) of subjects was 27.14 (2.77) kg/m². Vitamin D_2 and D_3 produced similar increases in serum 25(OH)D over the first three days suggesting comparable conversion to the 25-hydroxy metabolite. However, by 14 days, serum 25(OH)D concentration peaked in the vitamin D_3 treated subjects but fell to baseline in the vitamin D_2 treated subjects. The area under the curve of the rise in serum 25(OH)D (SD) at 28 days was 150.5 (58.5) in the vitamin D_2 arm and 511.8 (80.9) nmol/L in the vitamin D_3 arm (p<0.002). Armas concluded that the vitamin D_2 potency was less than one third that of vitamin D_3 .⁶¹

In the five trials that administered vitamin D_3 (+/-) calcium to populations of exclusively younger adults, 60,177,187,198,234 the reported increases in serum 25(OH)D were 39 nmol/L with 600 IU, 177 6 nmol/L with 800 IU, 187 92 nmol/L with 5,000 IU and 159 nmol/L with 10,000 IU vitamin D_3 daily. 60 Vieth 234 randomized 73 healthy adult men and women to either 1,000 or 4,000 IU vitamin D_3 and the mean increase in serum 25(OH) concentration was 25.4 and 58.4 nmol/L (end of study 25(OH)D concentrations of 68.7 (16.9) and 96.4 (14.6) nmol/L respectively).

Stephens administered 100,000 IU vitamin D₂ orally or by injection, to 33 vitamin D deficient (serum 25(OH)D < 12.5 nmol/L) Asian men and women. The mean increase in serum 25(OH)D by one month was 36 nmol/L with a significantly greater mean serum 25(OH)D with oral vitamin D (52 nmol/L) compared to intramuscular vitamin D (32.5 nmol/L). The difference between the two treatment arms was not significant at 3 or 6 months. The variability was also greater with intramuscular vitamin D compared to oral administration.²²⁷

Summary. Vitamin D supplementation on 25 (OH)D levels in Premenopausal Women and Younger Men

Quantity: Ten small trials included premenopausal women and younger males. Three trials these compared vitamin D_2 to vitamin D_3 in healthy young adults. Of these, one trial analyzed content of the tablets. Two of the three trials used RIA, and one HPLC to measure 25(OH)D. Doses of vitamin D_3 ranged from 600 to 10,000 IU/day and vitamin D_2 (4,000 IU/day or 50,000 to 100,000 for one dose)

Quality: The methodological quality of 8/10 trials was poor.

Consistency: Three trials found that vitamin D_2 and D_3 in healthy adults may have different effects on serum 25(OH)D concentrations. Vitamin D_2 appeared to have a smaller effect on serum 25(OH)D, which may have been due to more rapid clearance and/or different metabolism than vitamin D_3 . One trial compared 100,000 IU vitamin D_2 orally versus injection and found a greater variability in response with the intramuscular preparation. A dose-response effect was noted in those trials that used multiple doses of vitamin D_3 .

Postmenopausal Women or Older Men

Thirty trials included solely postmenopausal women, older men or a combination of both.^{113,115,117-121,178,183,184,189,190,192,199,202-206,208,210,212-215,218,219,228,231,233} Four additional trials included a combination of younger and older adults. Two trials also included younger men^{195,196} and two trials also included premenopausal women.^{216,232}

The study quality was ≥ 3 in 22 trials and sample sizes ranged from 15 to 2578.

Intervention. Of the 30 trials, four assessed the effect of vitamin D_2 (+/-calcium) versus placebo or calcium^{115,120,212,214} and one trial used injectable vitamin D_2 .¹¹⁵ Seven trials assessed vitamin D_3 versus placebo or calcium.^{119,203,206,208,210,231,239} Fourteen trials assessed vitamin D_3 + calcium versus placebo^{184,190,192,199,213,215} or calcium.^{113,117,178,183,202,218,219,228} Vitamin D_3 dosages ranged from 300 IU¹⁹⁹ to 2,000 IU per day.²¹⁹ In one trial,²⁰⁴ the vitamin D isoform was not reported. In four trials, the comparator was either another dosage of vitamin $D_3^{118,233}$ or the same dosage of vitamin D_3 combined with calcium.¹⁹² Kenny compared 400 IU vitamin D with calcium carbonate versus vitamin D and calcium citrate.²⁰⁵

Vitamin D status. Seven trials were conducted in populations with mean serum 25(OH)D concentrations \leq 30 nmol/L, range 17.5 to 27.8 nmol/L.^{119,189,190,199,210,214,218}

Serum 25(OH)D assays used were CPBA in 16 trials, RIA in 13 trials and HPLC in one trial.

In the vitamin D deficient trials, doses of vitamin D_3 ranged from 200 IU¹⁸⁹ to 880 IU/day,²¹⁸ and vitamin D_2 was given as a 15,000 IU weekly dose in one trial.²¹⁴ Serum 25(OH)D concentrations with daily doses of either 200 IU or 300 IU of vitamin D_3 resulted in a mean increase of 11.4 nmol/L relative to placebo,^{189,199} while 400 IU increased serum 25(OH)D by 38 nmol/L relative to placebo.¹¹⁹

Deroisy reported that with 200 IU of vitamin D_3 , the end of study mean serum 25(OH)D (SD) was 42.5 (16), and PTH concentrations decreased to 2.45 pmol/L.¹⁸⁹

Grados used 800 IU of vitamin D_3 combined with calcium 1,000 mg versus placebo and reported a median increase in serum 25(OH)D of 45 nmol/L relative to placebo, consistent with a dose-response.¹⁹⁰ Serum PTH concentrations normalized (3.1, range 2.3-4.1) in the vitamin D_3 arm and remained elevated in the placebo group.

Pfeifer administered 880 IU vitamin D_3 with 1,200 mg calcium versus calcium to 148 older women (mean serum 25(OH)D <30 nmol/L). The mean increase was 22.16 relative to placebo and serum PTH decreased from 6.11 to 4.55 with vitamin D_3 versus 5.26 in the placebo group.

In the trial with vitamin D_2 , the mean increase in serum 25(OH)D was 33.6 nmol/L relative to placebo.²¹⁴

Aloia et al. randomized 208 African-American women to either 800 IU vitamin D_3 + calcium versus calcium.¹¹⁷ In the vitamin D_3 arm, after two years the dose of vitamin D was increased to 2,000 IU daily. The baseline mean serum 25(OH)D concentrations was 48.3 nmol/L and after 3 months increased by 22.75 with 800 IU, and 39 nmol/L with 2,000 IU/ day, relative to placebo.

In nine trials that used either daily vitamin D_3 or D_2 as the intervention, mean serum 25(OH)D concentrations of over 75 nmol/L were achieved, ^{113,117,118,202,204,212,213,233,239} with doses ranging from 400 IU vitamin D (isoform not stated)²⁴⁰ to 2,000 IU D_3 per day. ^{117,219}

Meier et al. reported that 500 IU of vitamin D_3 combined with 500 mg calcium prevented the rise in serum PTH and the increase in bone turnover seen with winter declines in vitamin D status (mean baseline 25(OH)D of 75 nmol/L).²¹³

Vieth compared 600 IU versus 4,000 IU vitamin D_3 in individuals at risk for vitamin D deficiency. Baseline serum 25(OH)D levels of 49 and 46 nmol/L increased to 79 and 112 nmol/L, respectively.²³³

Goussous et al. assessed the effect of 800 IU vitamin D_3 plus 1,000 mg calcium versus 800 IU vitamin D_3 daily on 25(OH)D in healthy older men and women.¹⁹² Mean baseline serum 25(OH)D concentrations in the two arms were 47.9 and 49.1 nmol/L, respectively. Increases in serum 25(OH)D (SD) concentrations were not statistically significant in the vitamin D_3 and calcium group (16.25 (14.8) nmol/L) compared to the vitamin D_3 alone group (16.6 (17.4) nmol/L). The authors concluded that in older healthy men and women, the level of calcium intake (500-1500 mg) does not affect the serum 25(OH)D response to 800 IU vitamin D_3 .

Dawson-Hughes et al. assessed the effect of 100 IU versus 700 IU of vitamin D_3 (plus 500 mg calcium) in healthy postmenopausal women.¹¹⁸ Seasonal variation was included as part of the study dosing. After 9 months, the 700 IU vitamin D_3 arm attained a mean serum 25(OH)D of 100.1 (24.5) nmol/L versus 66.3 (25.5) nmol/L with 100 IU vitamin D_3 (absolute difference 33.8 nmol/L). BMI was reported but the authors did not report if BMI affected the individual responses to vitamin D_3 .

Elderly Populations

Fourteen trials were conducted in elderly individuals residing in either long-term care or nursing homes. 112,114,167,168,180,181,188,197,200,207,209,222,224,235 One trial²⁰² included an arm with elderly institutionalized women. The study quality was $\geq 3/5$ in seven of the 14 trials. Sample sizes ranged from 30 to 3270.¹⁸¹ The majority of the studies reported a mean age in the ninth decade.

Intervention. Of the 14 trials, two trials assessed vitamin D_2 versus placebo, ^{112,197} seven trials evaluated vitamin D_3 versus placebo, ^{167,168,200,209,210,224,235} and four trials assessed vitamin D_3 plus calcium versus placebo or calcium. ^{114,180,181,207} Two trials compared vitamin D_3 plus calcium to a different dose of vitamin D_3 . ^{188,222}

Vitamin D status. Assays used to determine serum 25(OH)D levels were CPBA in eight trials and RIA in six trials. Eleven of fourteen trials included populations that were vitamin D deficient at baseline^{112,114,167,180,197,202,207,209,222,224,235} with mean serum 25(OH)D concentrations ranging from 6.5^{222} to 30 nmol/L.¹¹⁴ In one trial, a subgroup of institutionalized subjects were reported to have serum 25(OH)D levels \leq 30 nmol/L.²⁰²

With vitamin D₂, Harwood¹⁹⁷ reported increases ranging from 12 to 40 nmol/L after a single 300,000 IU intramuscular injection and another trial reported an increase of 98 nmol/L to an end of study serum 25(OH)D of 115 nmol/L with 9,000 IU oral vitamin D₂ daily.¹¹²

Sorva²²⁴ using 1,000 IU/day of vitamin D_3 in geriatric long-term care patients reported an increase of 46 nmol/L relative to control, and intact PTH levels decreased from 3.4 to 2.9 pmol/L versus an increase in placebo from 4.0 to 4.4 pmol/L.

Honkanen et al. used a dose of 1,800 IU vitamin D_3 daily and the serum 25(OH)D concentrations increased by 39.9 nmol/L or 52.6 nmol/L (95% CI 49, 57) when compared to placebo. Serum PTH data were not provided.²⁰²

Weisman administered a single dose of vitamin D_3 (100,000 IU) to 57 elderly nursing home residents and after five months, the mean increase in serum 25(OH)D was 65 nmol/L, relative to placebo. One limitation of this trial was the significant baseline differences in serum 25(OH)D between intervention and controls.

Sebert et al. assessed a combination tablet of 400 IU vitamin D₃ combined with 500 mg calcium given twice daily versus separate administration of 800 IU vitamin D₃ (8 drops) and 500 mg calcium to evaluate if the combination had a different effect on serum 25(OH)D in elderly deficient institutionalized subjects.²²² Baseline plasma 25(OH)D levels increased from 6.5 to 36.5 nmol/L at 6 months (p<0.001) with the combination tablet and from 6.3 to 33.75 nmol/L in the comparator arm (calcium and separate vitamin D drops) (p<0.001), and PTH levels decreased by a similar amount.²²²

The increases in mean serum 25(OH)D with 800 IU of vitamin D₃ ranged from 21^{197} to 65 nmol/L.¹¹⁴ Krieg et al. used 880 IU of vitamin D₃ with 1,000 mg calcium versus placebo and they reported a mean increase in 25(OH)D of 51.5 (end of study 25(OH)D of 66.2 nmol/L) compared to placebo and a decline in serum PTH values to 32.1 (2.4) after one year versus an increase in PTH in controls to 55.1 (4.4) pmol/L. Combining results from the two trials in vitamin D deficient populations that used similar doses of vitamin D₃ (880 or 1000 IU), and assays, resulted in an increase of 51 nmol/L (95% CI 46-57) versus placebo.^{207,224}

End of study mean 25(OH)D levels (>75 nmol) were achieved in two trials that used vitamin D_3 doses of 800 IU in vitamin D deficient populations.^{180,209}

In four trials that had mean baseline serum 25(OH)D concentrations $>30 \text{ nmol/L}^{168,181,188,200}$ and used doses from 800 IU to 2,000 IU vitamin D₃, serum 25(OH)D levels > 75 nmol/L were attained.

Himmelstein used 2,000 IU vitamin D_3 daily in a population of elderly nursing home residents with mean serum 25(OH)D of 40-50 nmol/L and reported an increase of 42.4 (95% CI 32-53) nmol/L relative to the control group. PTH levels were not affected after supplementation.²⁰⁰

In two small trials in men, Harris compared the response to vitamin D supplementation in younger versus older men.^{195,196} In one trial of 1,800 IU vitamin D₂, there was a significant difference in serum 25(OH)D concentrations with a 90 percent greater increase in younger men (30.4 versus 7.5 nmol/L). In the trial that used 800 IU vitamin D₃, there was no difference in mean absolute increase in younger versus older men. The difference in results may be explained by differences in the dose used in each trial or may be due to differential metabolism of vitamin D₂ in different age groups (e.g., metabolism to 24(OH)D).

Summary. Effect of Supplementation on Postmenopausal Women and Older Men

Quantity: 44 trials were conducted exclusively in postmenopausal women and older men, with 14 of these in elderly populations living in long-term care or nursing homes. One trial was

in early postmenopausal women. Doses of vitamin D_3 ranged from 100 to 4000 IU/day and 9,000 IU vitamin D_2 . One trial was conducted in African American women.

Quality: Methodological quality was ≥ 3 in 24 trials.

Consistency: One trial found that wintertime declines in serum 25(OH)D were prevented with 500 IU of vitamin D₃ daily. A dose response with increasing doses of vitamin D₃ was noted although there was a variability in response to similar doses across trials that may have been due to differences in serum 25(OH)D assays or baseline 25(OH)D status. It was difficult to comment on how the results differed by assay, since there were often other differences between trials such as the dose used. Similarly, although some trials suggested a greater response to vitamin D in populations that were vitamin D deficient at baseline compared to those who were not, this was difficult to assess due to heterogeneity of assays.

Meta-analysis of Trials of Oral Vitamin D_3 (+/- Calcium) on Serum 25(OH)D Concentrations

Study selection. As summarized above, 44 RCTs investigated the effect of oral vitamin D_3 supplementation (+/- calcium) versus no treatment, placebo or calcium on serum 25(OH)D concentrations. 210,213,215,216,218,219,223,224,228,230-232,235

Seventeen trials administered oral vitamin D_3 supplements with or without calcium versus no treatment, placebo or calcium on an intermittent or daily basis and presented sufficient data to combine results of the absolute change in serum 25(OH)D concentrations.^{60,105,113,177,181,184,189,194,195,199,200,202,207,216,218,219,224} Due to a significant and unexplained difference in baseline serum 25(OH)D levels between the treatment and control groups, we excluded the study by Riis et al.²¹⁹ A total of 16 trials were therefore included in the meta-analysis. Two trials^{60,105} included more than one treatment arm with different doses of vitamin D₃ and one placebo group, so we used results from only one treatment group (i.e., 1,000 IU/day⁶⁰ and 2,000 IU/day¹⁰⁵) in all analyses. The study by Heaney et al.⁶⁰ warrants discussion as multiple measurements of serum 25(OH)D were taken over time. A compartment model was used to derive a monotonic form for concentration as a function of time. This model was fitted to each individual's data to extrapolate an estimate of the equilibrium (asymptotic) 25(OH)D concentration. The estimates from the Heaney study differ from the other included studies that did not require extrapolation.

The effect of vitamin D₃ supplementation (+/- calcium) versus placebo or calcium on 25(OH)D concentrations. Combining the 16 trials with a random effects model demonstrated large heterogeneity of treatment effect, ($I^2 = 97.7$ percent). However, the point estimates for each trial consistently favored vitamin D₃.^{60,105,113,177,181,184,189,194,195,199,200,202,207,216,218,224} (Figure 5a).

Figure 5a. The Effect of Vitamin D₃ Supplementation (+/- calcium) vs. Placebo or Calcium on Absolute Change in 25(OH)D Concentrations.

udy sub-category	N	/itamin D3 +/- Ca Mean (SD)	N	Placebo or Ca Mean (SD)	WMD (ra⊓dom) 95% Cl	VVeight %	VVMD (random) 95% Cl
Himmelstein, 1990	15	39.70(15.70)	15	-2.70(13.40)	-	6.17	42.40 [31.95, 52.85]
Honkanen, 1990	55	39.50(12.10)	60	-13.14(9.20)	-	6.55	52.64 [48.68, 56.60]
Sorva, 1991	5	44.60(28.90)	10	-1.40(2.30)	_	4.64	46.00 [20.63, 71.37]
Chapuy, 1992	73	65.00(16.50)	69	-4.50(13.50)	-	6.51	69.50 [64.55, 74.45]
Heikkinen, 1996	18	9.20(5.80)	18	-3.30(6.40)	-	6.55	12.50 [8.51, 16.49]
Dawson-Hughes, 1997	145	35.20(32.60)	167	-2.10(22.70)	-	6.45	37.30 [30.97, 43.63]
Krieg, 1999	34	36.50(14.00)	38	-15.00(11.10)	-	6.47	51.50 [45.62, 57.38]
Pfeifer, 2000	74	40.46(27.01)	74	18.30(20.94)	-	6.36	22.16 [14.37, 29.95]
Guillemant, 2001	29	1.50(7.50)	28	-40.80(11.00)	-	6.51	42.30 [37.40, 47.20]
Patel R, 2001	35	8.40(13.10)	35	-9.20(12.80)	-	6.46	17.60 [11.53, 23.67]
Deroisy, 2002	50	14.70(10.00)	50	4.45(10.00)	-	6.55	10.25 [6.33, 14.17]
Harris S, 2002	27	22.30(14.00)	23	-4.60(6.30)	-	6.47	26.90 [21.03, 32.77]
Heaney RP, 2002l	16	12.00(16.00)	16	-11.40(17.60)		6.07	23.40 [11.75, 35.05]
Kenny, 2003	29	22.25(10.10)	31	-2.50(11.40)		6.49	24.75 [19.31, 30.19]
Fuleihan, 2005h	55	60.00(63.10)	55	5.00(12.10)	· · · · ·	5.56	55.00 [38.02, 71.98]
Barnes, 2006	12	38.60(15.10)	15	-7.20(11.30)	-	6.18	45.80 [35.52, 56.08]

 Review:
 Effectiveness and Safety of Vitamin D_Fortified Foods & Supplementation Comparison:
 02 D3 (oral supplement) +/- Ca vs. Placebo or Ca

 Outcome:
 01 Absolute changes 25 (OH) D
 D4

We conducted subgroup and sensitivity analyses and a meta-regression on dose to explore potential sources of heterogeneity.

Subgroup analyses were conducted in an attempt to explain heterogeneity and included: (1) dosage of vitamin D₃ (i.e., grouped by \leq 400 versus. > 400 IU/day), (2) study population (i.e., older institutionalized, older community-dwelling versus younger community-dwelling individuals), (3) frequency of administration (i.e., intermittent versus daily vitamin D₃), (4) assays used (i.e., CPBA versus RIA and HPLC), and (5) study quality (high quality studies defined by a Jadad score \geq 3). Other potential explanations for the heterogeneity are the potency of the vitamin D supplement and whether 25(OH)D₃ or total 25(OH)D was measured. Only one trial⁶⁰ assessed 25(OH)D₃ and the potency of the vitamin D supplement was measured in only two trials.

Subgroup Analyses

(1) **Dose.** To examine the effect of dose, the daily dose was derived for the two studies that used an intermittent dose of vitamin D_3 .^{105,194} The trials were classified by dose (i.e., (< 400 IU/day),^{189,199} versus (\geq 400 IU/day)).^{60,105,113,177,181,184,194,195,200,202,207,216,218,224}

Combined results of two trials using < 400 IU/day demonstrated a significant increase in serum 25(OH)D levels [N = 136, WMD 11.36 (95% CI 8.56, 14.15), heterogeneity $I^2 = 0$ percent].^{189,199} Combined results of trials that used doses \geq 400 IU was not possible due to large heterogeneity of the treatment effect (WMD varied from 17.6 to 52.6) ($I^2 = 96.0$ percent). The weighted mean differences ranged from 17.6 to 69.5 (Figure 5b).

Figure 5b. The Effects of Vitamin D₃ Supplementation (with/without calcium) vs. Placebo or Calcium on Absolute Change in 25(OH)D Levels by Dose.

udy sub-category	Vi N	itamin D3 (+/- Ca) Mean (SD)	N	Placebo or Ca Mean (SD)	WMD (random) 95% Cl	Weight %	WMD (random) 95% Cl
01 Low dose: = 400 IU/D</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Heikkinen, 1996	18	9.20(5.80)	18	-3.30(6.40)	-	6.55	12.50 [8.51, 16.49]
Deroisy, 2002	50	14.70(10.00)	50	4.45(10.00)	-	6.55	10.25 [6.33, 14.17]
Subtotal (95% Cl)	68	11.10(10.00)	68	1. 10 (10:00)	▲	13.10	11.36 [8.56, 14.15]
est for heterogeneity: Chi ² = 0		= 0.43) I ² = 0%			•		,
Test for overall effect: Z = 7.9							
02 Medium to high dose: > 400	II VA						
Himmelstein, 1990	15	39.70(15.70)	15	-2.70(13.40)	-	6.17	42.40 [31.95, 52.85]
Honkanen, 1990	55	39.50(12.10)	60	-13.14(9.20)	-	6.55	52.64 [48.68, 56.60]
Sorva, 1991	5	44.60(28.90)	10	-1.40(2.30)	_	4.64	46.00 [20.63, 71.37]
Chapuy, 1992	73	65.00(16.50)	69	-4.50(13.50)		6.51	69.50 [64.55, 74.45]
Dawson-Hughes, 1997	145	35.20(32.60)	167	-2.10(22.70)	-	6.45	37.30 [30.97, 43.63]
Krieg, 1999	34	36.50(14.00)	38	-15.00(11.10)	-	6.47	51.50 [45.62, 57.38]
Pfeifer, 2000	74	40.46(27.01)	74	18.30(20.94)	-	6.36	22.16 [14.37, 29.95]
Guillemant, 2001	29	1.50(7.50)	28	-40.80(11.00)	-	6.51	42.30 [37.40, 47.20]
Patel R, 2001	35	8.40(13.10)	35	-9.20(12.80)	-	6.46	17.60 [11.53, 23.67]
Harris S, 2002	27	22.30(14.00)	23	-4.60(6.30)	-	6.47	26.90 [21.03, 32.77]
Heaney RP, 2002l	16	12.00(16.00)	16	-11.40(17.60)		6.07	23.40 [11.75, 35.05]
Kenny, 2003	29	22.25(10.10)	31	-2.50(11.40)	-	6.49	24.75 [19.31, 30.19]
Fuleihan, 2005h	55	60.00(63.10)	55	5.00(12.10)		- 5.56	55.00 [38.02, 71.98]
Barnes, 2006	12	38.60(15.10)	15	-7.20(11.30)		6.18	45.80 [35.52, 56.08]
Subtotal (95% CI)	604		636		•	86.90	39.55 [30.60, 48.50]
Test for heterogeneity: Chi² = 3 Test for overall effect: Z = 8.66							
Total (95% Cl)	672		704		•	100.00	35.91 [25.91, 45.91]
Test for heterogeneity: Chi ² = 6	52.21, df = 1	5 (P < 0.00001), I ² = 97.7%			-		
Test for overall effect: Z = 7.04	1 (P < 0.00001	n' l'					

and and Codets of Vitamia D. Cadified Conde & Com-

(2) Study Population. To explore the effect of age and health status of the study participants, the trials were classified as follows: (1) community-dwelling younger adults,^{60,105,177,194,195,216} (2) community-dwelling older adults,^{113,184,189,195,199,202,218} and (3) elderly institutionalized individuals.^{181,200,202,207,224} Two studies reported results for two different populations.^{195,202} Combining the trials by the defined subgroups was not possible due to heterogeneity of the treatment effect and did not explain the overall heterogeneity (communitydwelling younger adults: heterogeneity $I^2 = 85.8$ percent; community-dwelling older adults: heterogeneity $I^2 = 97.0$ percent; elderly institutionalized individuals; $I^2 = 89$ percent).

Baseline vitamin D status of the study populations were categorized as either vitamin D deficient at baseline (i.e. serum 25(OH)D levels < 30 nmol/L)^{189,199,202,207,218,224} or serum 25(OH)D > 30 nmol/L. Results demonstrated that combining of trials was not possible due to heterogeneity of the treatment effect (vitamin D deficient: heterogeneity $I^2 = 98.1$ percent versus not vitamin D deficient: heterogeneity $I^2 = 96.3$ percent) (Figure 5c).

Figure 5c. The Effects of Vitamin D_3 Supplementation (with/without calcium) vs. Placebo or Calcium on Absolute Change in 25(OH)D Levels by Vitamin D Status.

tudy	V	/itamin D3 +/- Ca		Placebo or Ca	WMD (random)	Weight	VVMD (random)
or sub-category	N	Mean (SD)	N	Mean (SD)	95% CI	×	95% CI
01 Vitamin D deficient							
Deroisy, 2002	50	14.70(10.00)	50	4.45(10.00)		→ 17.72	10.25 [6.33, 14.17]
Heikkinen, 1996	18	9.20(5.80)	18	-3.30(6.40)		→ 17.71	12.50 [8.51, 16.49]
Honkanen, 1990	30	40.40(13.30)	33	-13.50(9.90)		17.50	53.90 [48.06, 59.74]
Krieg, 1999	34	36.50(14.00)	38	-15.00(11.10)		17.49	51.50 [45.62, 57.38]
Pfeifer, 2000	74	40.46(27.01)	74	18.30(20.94)		▶ 17.19	22.16 [14.37, 29.95]
Sorva, 1991	5	44.60(28.90)	10	-1.40(2.30)		12.39	46.00 [20.63, 71.37]
32 Not vitamin D deficient							
Barnes, 2006	12	38.60(15.10)	15	-7.20(11.30)		▶ 8.97	45.80 [35.52, 56.08]
Chapuy, 1992	73	65.00(16.50)	69	-4.50(13.50)		9.46	69.50 [64.55, 74.45]
Dawson-Hughes, 1997	145	35.20(32.60)	167	-2.10(22.70)		▶ 9.36	37.30 [30.97, 43.63]
Fuleihan, 2005h	55	95.00(78.00)	55	40.00(20.00)		▶ 7.33	55.00 [33.72, 76.28]
Guillemant, 2001	29	55.20(11.50)	28	20.20(6.50)		9.47	35.00 [30.17, 39.83]
Harris S, 2002	27	22.30(14.00)	23	-4.60(6.30)		9.40	26.90 [21.03, 32.77]
Heaney RP, 2002l	16	12.00(16.00)	16	-11.40(17.60)		8.80	23.40 [11.75, 35.05]
Himmelstein, 1990	15	39.70(15.70)	15	-2.70(13.40)		8.95	42.40 [31.95, 52.85]
Honkanen, 1990	25	37.90(10.17)	27	-12.70(8.40)		9.45	50.60 [45.51, 55.69]
Kenny, 2003	29	22.25(10.10)	31	-2.50(11.40)		▶ 9.43	24.75 [19.31, 30.19]
Patel R, 2001	35	8.40(13.10)	35	-9.20(12.80)		9.38	17.60 [11.53, 23.67]

 Review:
 Effectiveness and Safety of Vitamin D_Fortified Foods & Supplementation (Version 04)

 Comparison:
 02 D3 (oral supplement) +/- Ca vs. Placebo or Ca

 Juccome:
 06 Absolute chanae 25 (OH) b by vitamin D status

Favours control Favours vitamin D3

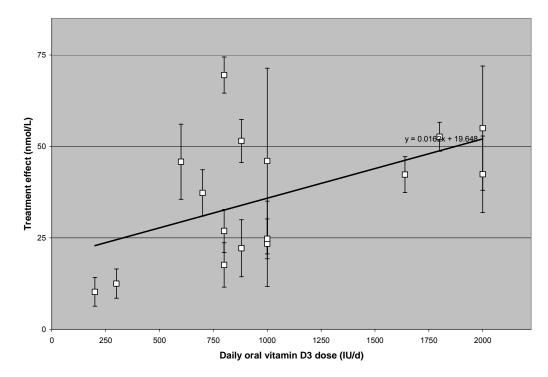
When we combined data from two trials^{207,224} that had similar population characteristics (age, institutionalized participants, vitamin D deficiency) and dose (880 -1000 IU), the increase in serum 25(OH)D compared to control was 51.2 nmol/L (95% CI 45.5, 57), $I^2 = 0$.

(3) Vitamin D assay. To explore the impact of different assays, the included trials were divided into three groups as defined a priori: RIA,^{177,189,216,218} CPBA ^{60,105,113,181,184,194,195,199,200,202,207,224} or HPLC. None of the included studies used HPLC.

^{60,105,113,181,184,194,195,199,200,202,207,224} or HPLC. None of the included studies used HPLC. Combining was not possible due to heterogeneity of the treatment effect (RIA: heterogeneity $I^2 = 93$ percent versus CPBA: heterogeneity $I^2 = 97.5$ percent).

Other subgroup analyses conducted but not presented here included (1) baseline 25(OH)D levels by classifying those with 25(OH)D levels as deficient and (2) compliance. These analyses did not reduce the heterogeneity and therefore did not permit pooling of the results.


Sensitivity analyses. The sensitivity analyses included: (1) study quality and, (2) loss to followup. Allocation concealment was not explored, since only one study reported adequate allocation concealment.


The included studies were divided into high (quality score ≥ 3 on the Jadad scale)^{105,113,177,184,199,200,216,218} versus low quality subgroups.^{60,181,189,194,195,202,207,224} However, combining was not possible due to heterogeneity of the treatment effects (high quality: heterogeneity I² = 93.7 percent versus low quality: heterogeneity I² = 98.2 percent).

The effect of loss to followup was explored by grouping the trials into those that reported a loss of over 20 percent^{181,207} versus less than 20 percent.^{105,113,177,184,189,194,195,199,202,218,224} Combining trials was not possible due to heterogeneity of the treatment effects (loss to followup over 20 percent: heterogeneity I² = 95.3 percent versus less than 20 percent: heterogeneity I² = 97.2 percent).

Meta-regression on dose. A meta-regression of the 16 trials (a weighted linear mixed effects model estimated by REML), N = 1376, was conducted to estimate the extent to which

dose of vitamin D_3 explained the heterogeneity of the treatment effects. Results demonstrated a significant association between the daily dose of oral vitamin D_3 on serum 25(OH)D concentrations and the regression coefficient [beta=0.016 (95% CI 0.007,0.032), p = 0.042] suggesting that if the dose of vitamin D_3 increases by 1 IU, the serum 25(OH)D concentrations can be expected to increase by 0.016 nmol/L. The estimated between-study variance (tau-squared) was reduced from 393.6 to 222.9. See Figure 5d for a graphical representation of the treatment effect versus daily dose.

The effect of oral vitamin D_3 with/without calcium supplementation on serum concentrations of serum PTH. The effect of vitamin D supplementation on serum PTH was assessed in 14 of the 16 trials.^{60,113,177,181,184,189,194,195,199,200,207,216,218,224}

Vitamin D supplementation significantly decreased PTH concentrations in nine trials (four of which were in vitamin D deficient populations)^{60,113,181,184,189,207,216,218,224} or was sufficient to maintain serum iPTH levels, in spite of seasonal effects, in one trial.¹⁹⁴ Nine trials used a vitamin D₃ dose of \geq 700 IU.^{60,113,181,184,194,207,216,218,224} Explanations for the failure to observe a decrease in serum PTH include that the vitamin D dose may have been too low for a population with low baseline 25(OH)D concentrations,¹⁹⁹ or that serum 25(OH)D may have been above the threshold where further changes in PTH would occur. In addition, PTH is modulated by other factors such as calcium intake.¹⁹

Summary. Quantitative Analysis

Seventeen trials of vitamin D_3 provided sufficient data to conduct a quantitative analysis. The treatment effect of oral vitamin D_3 supplementation increases with increasing doses. Combining trials by different clinical and methodological characteristics did not change the direction of this effect nor did it reduce the heterogeneity found. Meta-regression results demonstrated a significant association between dose and serum 25(OH)D levels (p = 0.04). The meta-regression (exploratory only) results suggested that 100 IU of vitamin D_3 will increase the serum 25(OH)D concentrations by 1-2 nmol/L. This suggests that doses of 400-800 IU daily may be inadequate to prevent vitamin D deficiency in at-risk individuals. Vitamin D_3 doses of 700 IU daily or more significantly and consistently decreased serum concentrations of PTH in vitamin D deficient populations.

Given the limitations in the measurement of 25(OH)D concentrations and the lack of standardization and calibration, it is difficult to suggest precise recommendations for adequate intakes, especially since optimal levels of serum 25(OH)D have not been defined.

Author (Year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Infants (N=7)		-	·		
Chan (1982) ¹⁸² U.S.	91 Term infants Caucasian	IG1: Breast-fed + vit D 400 IU/d IG2: Similac (contains vit D 400 IU /L) CG: Breast-fed with no vit D	IG1 35 (2.5) IG2 50 (5) CG 50 (7.5)	IG1 57.5 (7.5) IG2 45.0 (5) CG 47.5 (5)	1
Public/Private	NR	supplementation		СРВА	
Greer (1982) ⁹³ Greer, 1981 ¹⁹³	18 Healthy, breast fed infants	IG1: 400 IU/d D ₂ CG: placebo	NR (no differences at start of study)	IG1 95 CG 50 (p<0.01) at 12 wks	2
U.S.	17 Caucasian, 1 Asian	12 wks with 52 wk followup data		СРВА	
Public	NR				
Greer (1989) ⁹²	46 Human milk-fed term infants	IG1:400 IU/d D ₂ CG: Placebo	IG1 59.7 (11.78) CG 58.8 (19.13)	IG1 92.4 (29.7) CG 58.8 (24.9)	3
U.S.	Caucasian	6 mo		HPLC	
Public	NR				
Pehlivan (2003) ²¹⁷	40 Breast fed infants born to mothers with	IG1: vit D 400 IU/d IG2: vit D 800 IU/d	83.7 (53.7)	IG1 76.9 (35.4) IG2 91.8 (61.5)	1
Turkey	25(OH)D levels < 25 nmol/L	[given to newborns at the start of the 2 nd week]		IA	
NR	NR	16 wks			
	NR				

Table 12. RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

=

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Specker (1992) ⁹⁰	312 Term infants	IG1:100 IU/d IG2: 200 IU/d	(Cord serum by location and season of birth)	Mean(range) North:	2
U.S.	Asian	IG3: 400 IU/d vit D ₂	North: Spring 15.0, Fall 12.5	IG1 30 (undetectable (<7.5)- 135)	
Public	NR	6 mo	South: Spring 30.0, Fall 45.0	IG2 37.5 (undetectable-175) IG3 62.5 (undetectable-168) South: IG1 50 (10-155) IG2 55 (10-175) IG3 62.5 (undetectable-185)	
				RIA	
Zeghoud (1994) ²³⁶ (Only RCT included) France	30 Healthy neonates Formula fed NR	IG1: 200,000 IU vit D_3 at birth (single dose) IG2: 100,000 IU D_3 at birth, 3 and 6 mo	All subjects had values < <25 nmol/L.	IG1 150 (55) 2 wks after dose IG2 NR for 2 wks after dose; 67.5 (30) 3 mo post 3rd dose	1
NR	NR	9 mo		СРВА	
Zeghoud (1997) ⁹¹	80 Healthy neonates and their mothers	IG1: 500 IU/d vit D ₂ IG2: 1000 IU/d vit D ₂	Grouped by 25(OH)D level:	Δ 25(OH)D (3 mo): Grp 1: IG1 58, IG2 70;	1
France		_	Grp 1: (< 30nmol/L, high	Grp 2: IG1 63, IG2 68;	
NR	79 were European	birth to 3 mo	PTH) 17.9 (7.8); Grp 2: (< 30) PTH, 22.7	Grp 3: IG1 61, IG2 65 (SD not estimable- Figure 4)	
	NR		(6.5) Grp 3: (> 30) 43.7 (10.6)	СРВА	

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Pregnant Women a	and Lactating Mothers (N	I=6)		· · ·	•
Ala-Houhala (1985) ¹⁷⁶	100 Healthy term mother-infant dyads	IG1: 1,000 IU/d vit D ₂ after delivery (mothers) IG2: 400 IU/d vit D ₂ (infants)	infants IG1 23.8 IG2 17.5	[Winter groups] IG1 14.0 (9.25) IG2 45.0 (21.0)	1
Finland	NR	IG3: 1,000 IU/d vt D_2 (infants)	IG3 22.5	IG3 57.0 (28.0)	
Public	NR	5 mo		СРВА	
Brooke (1980) ¹⁷⁹	126 Pregnant women	IG1: 1,000 IU/d vit D ₂ IG2: placebo	[At allocation, for both groups 28 wks]	Maternal serum/Cord IG1 168.0 (95.2)/138(11)	2
U.K.	Asian	last trimester	20.1 (21.4)	CG 16.2 (22.1)/10(2)	
Public	NR			CPBA	
Delvin (1986) ¹⁸⁶ France	40 Pregnant women	IG1: 1,000 IU/d vit D ₃ CG: no supplement 6 mo of pregnancy to delivery	At delivery IG1 65 (17.5) CG 32.5 (20)	Mean (SEM) Maternal serum/cord IG1 55(10)/ 45.0 (5) CG 27.5(11) 17.5 (2.5)	1
Public/Private	NR			(p<0.0005) RIA	
Hollis (2004) ²⁰¹	18 lactating mothers and 18 nursing	IG1: 1,600 IU vit D ₂ and 400 IU D ₃ (total 2000 IU)	Mean (SEM) Mothers:	Mean (SEM) Mothers:	2
U.S.	infants	IG2: 3,600 IU D ₂ and 400 IU D ₃ (total 4,000 IU)	IG1 69.0 (8.3) IG2 82.3 (6.0)	IG1 90.3 (5.8) IG2 111.3 (9.8)	
Public	African American: IG1 33.3%; IG2 22.2%; White: IG1 66.7%; IG2 77.8%	3 mo	Infants: IG1 19.8 (2.8) IG2 33.5 (8.3)	Infants: IG1 69.5 (9.8) IG2 77.0 (12.5)	
	NR			RIA	

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Mallet (1986) ²¹¹ France	77 Pregnant women NR	IG1: 1,000 IU/d vit D ₂ in last 3 mo of pregnancy IG2: 200,000 IU vit D ₂ (single	NR	Maternal/cord plasma IG1 25.3 (7.7)/15.7 (5.1) IG2 26.0 (6.4)/18.2 (5.2)	2
NR	NR	dose IG3: no supplement		CG 9.4 (4.9)/5.3 (2.5)	
Duthhan		3 mo		СРВА	-
Rothberg (1982) ²²⁰	77 Term mother- infant pairs	IG1: 500 IU/d vit D IG2: 1,000 IU/d vit D CG: placebo	Day 4 mothers: 29.8 (15.0) infants: 22.3 (17.8)	Mothers: IG1 34.0 (13.5) IG2 36.8 (12.3)	2
South Africa	Caucasian	6 wks (mothers)		CG 25.0 (13.8)	
Public	NR			Infants: IG1 25.5 (13.8) IG2 23.5 (5.3) CG 2.8 (3.5)	
				СРВА	

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Children and Adole	scent Populations (N=4)		-	
Ala-Houhala (1988) ¹⁰²	60 Healthy 8 - 10 year old children	IG1: 400 IU vit D ₂ (5-7x per wk) CG: placebo 1 y	IG1 49.3 (19.0) CG 46.0 (15.5)	IG1 71.3 (23.8) CG 43.3 (19.5)	3
Finland	NR	NR		СРВА	
Public	NR				
Guillement (2001) ¹⁹⁴	59 Adolescent boys at a jockey training school	IG1: 100,000 IU vit D ₃ q 2 mo CG: Placebo	IG1 53.7 (12.2) CG 61.0 (15.5)	IG1 55.2 (11.5) CG 20.2 (6.5)	2
France	Caucasian	6 mo		СРВА	
NR	NR				
Fuleihan (2006) ¹⁰⁵	179 10 - 17 y old girls	IG1: 1,400 IU/wk vit D ₃ IG2: 14,000 IU/wk vit D ₃	IG1 35 (23) IG2 35 (20)	IG1 42.5 (15) IG2 95 (78)	4
Lebanon	NR	CG: placebo	CG 35 (18)	CG 40 (20)	
Private	NR	12 mo		СРВА	
Schou (2003) ²²³	20 Healthy children mean age 9.8 y	IG1: 600 IU/d vit D_3 first x 4 wks, then placebo after washout	Values while receiving placebo:	IG1(receiving vit D second): 50.2 (4.5)	3
Denmark	Caucasian	IG2: placebo first x 4 wks, then 600 IU/d vit D ₃ (crossover)	IG1 (receiving placebo first): 33.7 (10.4)	IG2 (receiving vit D first): 43.4 (8.7)	
NR	NR	2 x 4 wk treatment periods	IG2 (receiving placebo second): 32.3 (12.3)		
		with 2 wk washout in between treatments		RIA	

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
	omen and Younger Men				
Armas (2004) ⁶¹ U.S. Public	30 Healthy adult men age 20 - 61 y NR 27.14 (2.7)	IG1: 50,000 IU vit D ₂ (1 tablet) IG2: 50,000 IU vit D ₃ (10 tablets) CG: no supplement 28 d (5,000 IU D ₃ tablets assayed and contained 5513 IU)	NR (not estimable from graph)	AUC ₂₈ (area under the curve of the increment in 25(OH)D above baseline, adjusted for mean rise in untreated controls) IG1(D ₂): 150.5 (58.5) nmol- d/I IG2 (D ₃): 511.8 (80.9) nmol- d/I (p<0.002) RIA	1
Barnes (2006) ¹⁷⁷	30 Healthy 18 - 27 y	IG1: 600 IU/d vit D ₃ + 1,500	IG1 47.9 (16.0)	IG1 86.5 (24.5)	3
	old university	mg/d Ca	CG 55.5 (18.6)	CG 48.3 (16.8)	
Northern Ireland	students	CĞ: 1,500 mg/d Ca			
NR	NR	8 wks		IA (ELISA)	
	IG 24.8 (4.41) CG 22.9 (1.83)				
Deroisy (1998) ¹⁸⁷	18 Young adult men	three different formulations of	Mean (SEM)	Mean (SEM)	2
Belgium	NR	800 IU/d D ₃ + 1,000 mg/d Ca: Orocal (IG1); Ideos (IG2); Cacit (IG3)	IG1 67.8 (7.4) IG2 69.4 (8.0) IG3 55.2 (5.4)	IG1 73.7 (6.6) IG2 67.6 (7.6) IG3 56.2 (3.6)	
Private	NR	CG: placebo	CG 69.0 (7.6)	CG 62.1 (5.9)	
		8 days		(Day 8) RIA	
Heaney (1997) ¹⁹⁸	116 Adult men	IG1:1,000 IU/d D ₃ IG2: 5,000 IU/d D ₃	Median (IQR) 69 (53-84)	% Δ from baseline IG1 7.89 (4.3)	3
U.S.	2 Hispanic, 3 African American, 5 Asian,	IG3: 10,000 IU/d D ₃		IG2 3.10 (5.8) IG3 44.02 (6.8)	
Public	106 Caucasian	8 wks		СРВА	
	Median (IQR) 25.3 (23.8-27.3)				

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Heaney (2003) ⁶⁰	67 Community-	IG1: 1,000	IG1 72.05 (16.0)	Absolute Δ from baseline	1
	dwelling men	IG2: 5,000	IG2 69.3 (16.6)	IG1 12.0 (16.0)	
U.S.		IG3: 10,000 IU /d D ₃	IG3 65.6 (24.4)	IG2 91.9 (37.6)	
Drivete	NR	CG: no supplement	CG 70.1 (23.2)	IG3 159.4 (62.4)	
Private	26.2 (2.4)	20 wks		CG 11.4 (17.6)	
	20.2 (2.4)	20 WKS		CPBA (Nichols)	
Stephens (1981) ²²⁷	33 Adults with	IG1: 100,000 IU D ₂ (oral)	IG1 16.5 (8.5)	1 mo: IG1 52.5 (12)	2
	25(OH)D < 12.5	IG2: 100,000 IU D_2 (IM injection)	IG2 14.0 (7.3)	IG2 32.5 (13)	2
U.K.	nmol/L	both single dose	102 110 (110)	3 mo: IG1 29.5 (7.0)	
		g		IG2 25.8 (8.8)	
Public	Asian	5 mo		5 mo: IG1 24.5 (5.3)	
				IG2 23.5 (11.6)	
	NR				
777.03				СРВА	
Tjellesen (1986) ²²⁹	19 Healthy pre	IG1: 4,000 IU/d D ₂	Median (range)	Median (range)	1
- .	menopausal women	IG2: 4,000 IU/d D ₃	IG1 75.3 (55.3-95.8)	IG1 88.8 (49.3-120.8)	
Denmark			IG2 77.5 (46.3-100.5)	IG2 113.5 (77.5-138.5)	
Dublic	NR	8 wks		IG2 – significantly different	
Public	NR			from baseline (p<0.01)	
				HPLC	
Trang (1998) ²³⁰	72 Healthy adult	IG1: 4,000 IU/d D ₂	IG1 43.7 (17.7)	IG1 57.4 (13.0)	2
11ang (1000)	volunteers	IG2: 4,000 IU D ₃ /d	IG2 41.3 (17.7)	IG2 64.6 (17.2)	-
Canada		CG: no treatment	CG 39.8 (18.7)	CG 42.8 (20.7)	
	NR				
Public		14 d		RIA	
	NR				

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Vieth (2001) ²³⁴ Canada Public	73 Healthy men and women White: IG1 66.6%, IG2 71.4%; Black: IG1 6.1%, IG2 10.7%; Asian: IG1 27.3%, IG2 17.9 NR	IG1: 1,000 IU/d IG2: 4,000 IU/d D ₃ 2-5 mo	IG1 43.3 (16.8) IG2 37.9 (13.4)	IG1 68.7 (16.9) IG2 96.4 (14.6) RIA	2
Mixed Populations		Postmenopausal Women or Youn	er and Older Men: Commu	nity Dwelling (N-4)	
Harris (1999) ¹⁹⁶ U.S. Public	20 Young and old men, community dwelling mean age (SD): young: 26.0 (1.8) y old: 68.2 (2.5) y NR IG (young) 26.1 (1.9); (old) 32.8 (5.3) CG (young) 27.7 (3.6); (old) 28.7 (5.6)	IG1: 1,800 IU/day vit D ₂ CG: no treatment 3 wks	young: IG1 32.4 (10.7); CG 42.4 (13.0) old: IG1 39.9 (9.3); CG: 39.9 (6.1)	A from baseline young: IG1 30.4 (9.5); CG - 9.2 (15.0) old: 7.5 (13.0); old: -3.7 (6.3) CPBA	2
Harris (2002) ¹⁹⁵ U.S. Public	26 Young and 26 older community- dwelling men; mean age (SD): young 28.7 (4.6) y old: 72.8 (4.5) NR IG1 young 25.0 (4.9); old 25.1 (4.2), CG young 29.0 (4.3); old 30.0 (3.2)	IG1: 800 IU/d vit D ₃ CG: no intervention 8 wks	young: IG1 59.9 (16.4); CG 48.9 (17.2) old: IG1 61.5 (15.7); CG 53.8 (18.2)	young: IG1 82.4 (11.8); CG NR old: IG1 83.6 (19.0); CG NR Δ from baseline young: IG1 22.5 (14.7); CG - 4.6 (6.1) old: IG1 22.1 (13.4); CG - 4.5 (6.5) CPBA	1

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Patel (2001) ²¹⁶ U.K. NR	70 Pre and postmenopausal, community-dwelling women NR IG 25.1 (4.6)	IG1: 800 IU/d D₃ CG: Placebo 1 y	IG1 68.1 (20.3) CG 75.7 (19.0)	IG1 76.5 (21.0) CG 66.5 (21.0) (estimated from figure – last followup prior to crossover) RIA	2
van der Klis (1996) ²³² The Netherlands Public	CG 25.0 (4.9) 105 Pre and postmenopausal Dutch women (pre- Neth and post Neth); and postmenopausal women in Curacao (post Cur) 85 Caucasian, 20 black NR	Postmenopausal black and white Curacao women (post Cur): 800 IU/d vit D ₃ single dose or 2 doses 400 IU/d vit D ₃ (pooled) 9 wks Postmenopausal white Dutch women (post Neth): 800 IU/d D ₃ vs. 400 IU/d vit D ₃ vs. placebo 5wks Premenopausal white Dutch women (pre-Neth): 800 IU/d vit D ₃ 4 wks	Post Cur 85.1 (26.9) Post Neth 58.5 (23.8) Pre- Neth 46.2 (13.3)	Post Cur 5 wks 102.6 (28.6) Post Neth 5 wks 87.9 (28.1) Pre Neth ~ 85 (estimated from figure) CPBA	2

Table 12 (continued). RCTs of	Vitamin D Supplementation a	nd Serum 25(OH)D Levels
-------------------------------	-----------------------------	-------------------------

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Postmenopausal V		Community Dwelling (N=30)			
Aloia (2005) ¹¹⁷ U.S. Public	208 Healthy postmenopausal women African American IG1 29 (4) CG 30 (4)	IG1: 800 IU D ₃ /d for 2 y, then 2000 IU/d D ₃ for 1 y, + Ca 1200- 1500 mg/d CG: placebo + Ca 1200 - 1500 mg/d) 3 y	IG1 48.25 (20.9) CG 43.0 (16.6)	IG1 after 3 mo of 800 IU 70.8 IG1 after 3 mo of 2000 IU: 86.9 CG did not change significantly RIA	5
Brazier (2002) ¹⁷⁸ France Private	48 Early postmenopausal women NR Median (quartile 1;3) 25.2 (22.9; 27.0)	IG1: 10 mg/d alendronate + 800 IU/d D_3 + 1000 mg/d Ca IG2: 10 mg/d alendronate + placebo + 500 mg/d Ca 3 mo	median (quartile 1, 3) total group 22.5 (17.5, 25.0)	Δ from baseline median (quartile 1, 2) at 3 mo IG 65.0 (52.5, 72.5) CG 35 (22.5, 47.5) CPBA	4
Cooper (2003) ¹²⁰ Australia Public/Private	187 Early postmenopausal women Caucasian NR	IG1: 10,000 IU/wk D ₂ CG: placebo + Ca 1000 mg/d 2 yrs	IG1 81.6 (24.4) CG 82.6 (27.0)	Δ from baseline IG1: +5.3 (18.1) (y 1) IG1: -6.4 (15.6) (y 2) CG average annual rate: - 6.7 (0.7) RIA	3
Dawson-Hughes (1997) ¹⁸⁴ Bischoff-Ferrari (2006) ¹⁸⁵ U.S. Public	445 Older men and women, living at home Caucasian (430), Black (11) and Asian (4) NR	IG1:700 IU/d D ₃ + 500 mg/d Ca citrate malate CG: placebo 3 y	Men IG1 82.5 (40.8) CG 84.0 (31.8) Women IG1 71.8 (33.3) CG 61.3 (25.8)	Absolute 3 y Δ Men IG1 +29.5 (29.0) CG -6.7 (25.5) Women IG1 +40.3 (35.8) CG +1.8 (20.3) CPBA	3

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Dhesi (2004) ¹¹⁵ U.K. Public	139 Ambulatory older adults with a history of falls, living independently Caucasian NR	IG1: 600,000 IU D ₂ (single injection) CG: placebo 6 mo	Mean (95% Cl) IG1 26.75 (25.50-28.00) CG 25.00 (23.75-26.73)	Mean (95% CI) IG1 43.75 (41.25-46.25) CG 31.50 (28.50-34.50) RIA	3
Dawson-Hughes (1991) ¹⁸³ U.S. Public/Private	276 Healthy postmenopausal women Caucasian NR	IG1: 400 IU/d vit D ₃ + 377 mg/d Ca CG: 377 mg/dCa 1 y	NR	[By season] Aug-Nov IG1 97 (23.8) CG 81.3 (25.0) Feb-May IG1 92.1 (23.8) CG 60.6 (28.5) CPBA	3
Dawson-Hughes (1995) ¹¹⁸ U.S. Public/Private	261 Healthy postmenopausal women Caucasian IG1 26.6 (4.4) CG 26.3 (3.8)	IG1 700 IU/d D ₃ + 500 mg/d Ca CG: 100 IU/d D ₃ + 500 mg/d Ca 2 y	NR	9 mo IG1 100.1 (24.5) CG 66.3 (25.5) Mean difference (95% CI) 33.8 (27.6, 40.1) CPBA	2
Deroisy (2002) ¹⁸⁹ Belgium NR	100 Elderly, community-dwelling women with serum 25(OH)D < 30 nmol/L NR	IG1: 200 IU/d D ₃ + 500 mg/d Ca CG: 500 mg/d Ca 3 mo	IG1 27.8 (10.0) CG 28.3 (10.0)	IG1 42.5 (16.0) CG 32.75 (16) RIA	2

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Grados (2003) ¹⁹⁰ Companions: Brazier (2005) ¹⁹¹	192 Elderly community-dwelling women with serum	IG1: 800 IU D ₃ + 1000 mg/d Ca CG: Placebo	(Median) 17.5 (both groups)	Median increase IG1 55, CG 10	3
Grados(2003) ²³⁷ France	25(OH)D < 30 nmol/L NR	12 mo	Mean (SD) IG1 18.3 (NR) CG 17.5 (NR)	Median (IQR 1,3) IG1 71.9 (58.1-89.4) CG 26.9 (20-35)	
NR	IG 27.0 (4.4) CG 26.4 (4.3)			СРВА	
Goussous (2005) ¹⁹²	55 Elderly men and women	IG1: 800 IU/d D ₃ + 1000 mg/d Ca IG2: 800 IU/d D ₃	IG1 47.9 (15.9) IG2 49.1 (16.7)	IG1 64.1 (15.9) IG2 65.7 (14.7)	4
U.S. Public	Caucasians IG 82.6%; CG 86.2%	3 mo		RIA	
	NR				
Heikkinen (1998) ¹⁹⁹	72 Postmenopausal women	IG1: HRT IG2: 300 IU/d D ₃ + 500mg/d Ca	IG1: 29.9 (15.5), SE 2.9 IG2 28.1 (11.5), SE 2.8	IG1 28.2 (8.4), SE 2.1 IG2 37.5 (9.5) (33.5%	3
Finland Public/Private	NR	IG3: HRT + 300 IU/d D ₃ + 500 mg/d Ca CG: 500 mg/d Ca	IG3 24.1 (9.3), SE 2.2 CG 28.0 (10.6), SE 2.5	increase from baseline) IG3 33.3 (8.9), SE 2.1 (38.2% increase from	
Fublic/Fitvale	Mean (SEM) IG1 24.8 (0.52) IG2 25.7 (1.03)	1 yr		(38.2% increase from baseline) CG 24.7 (8.9), SE 2.1	
	IG3 24.8 (0.52) CG 24.7 (0.61)			СРВА	
Honkanen (1990) ²⁰²	66 Independent PM women and 70 institutionalized PM	IG1: 1800 IU/d vit D_3 + 1550 mg/d Ca (either home or hospital)	Independent group: IG1 42.8 (17.9) CG 36.0 (13.3)	Independent group: IG1 80.7 (14.0) CG 23.3 (13.3)	2
Finland Private	women NR	CG: no treatment	Institutionalized group: IG1 24.5 (12.6) CG 24.0 (14.7)	Institutionalized group: IG1 64.4 (21.0) CG 10.4 (7.3)	
	NR		、 <i>'</i>	СРВА	

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Hunter (2000) ²⁰³ U.K. Public/Private	158 Postmenopausal monozygotic twins pairs NR IG 24.1 (3.7) CG 24.1 (3.2)	IG1: 800 IU/d vit D ₃ CG: placebo 2 y	IG1 70.8 (30.0) CG 70.3 (28.3)	6 mo: SEM intrapair diff IG1 35.5 (6.0) (increase of 57% vs. CG increase of 15%) 24 mo: IG1 ~105 (estimated from figure) (increase of 47% vs. CG increase of 12%)	5
Jensen (2002) ²⁰⁴ U.S. Private	99 Late postmenopausal women NR IG 25.4 (3.4) IG2 25.1 (3.5) CG 25.9 (4.5)	IG1: 400 IU/d vit D + 1450 mg/d Ca IG2: multi-nutrient with 400 IU/d vit D + 1450 mg/d Ca CG: dietary education 3 y	IG1 41.4 (24.2) IG2 40.2 (18.5) CG 41.9 (17.5)	RIA IG1 76.6 (22.1) IG2 87.7 (30.5) CG 58.4 (32.5) CPBA	2
Kenny (2004) ²⁰⁵ US Public/Private	40 Older postmenopausal women with osteopenia/osteoporo sis (N=40) Caucasian, Hispanic 27.4 (0.5)	IG1: 400 IU/d vit D ₃ + 1000 mg/d calcium citrate IG2: 400 IU/d vit D ₃ + 1000 mg/d calcium carbonate 3 mo	IG1 62.5 (18.8) IG2 59.5 (17.3)	IG1 68.8 (15.3) IG2 73.0 (17.3) CPBA	2
Kenny (2003) ¹¹³ U.S. Public	65 Healthy, community-dwelling elderly men NR IG 27.4 (3.2) CG 28.3 (2.4)	IG1: 1000 IU/d vit D ₃ + 500 mg Ca IG2: placebo + 500 mg Ca 6 mo	IG1 65.0 (16.75) CG 59.0 (18.75)	IG1 87.25 (13.75) CG 56.50 (17.00) CPBA	4

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH) End of Study Mean (SD) nmol/L Assay	Jadad Score
Khaw (1994) ²⁰⁶ U.K.	191 Elderly independently living individuals NR	IG1: 100,000 IU vit D ₃ single dose CG: placebo	IG1 35.4 (15.5) CG 33.6 (14.0)	25(OH)D Δ IG1 19.4 (11.6) CG -2.7 (10.8)	3
Public	NR	5 wks		СРВА	
Latham (2003) ²⁰⁸ New Zealand / Australia Public	243 Frail elderly, the majority community- dwelling NR IG 24 (5.6)	IG1: 300,000 IU vit D ₃ single dose CG: placebo 6 mo	Median (95% CI) IG1 37.5 (35, 45) CG 47.5 (40, 52.5)	Median ∆ (from baseline to 3 mo) IG1 22.5 CG 0.0 6 mo results NR RIA	5
(1000)210	CG 25 (5.6)				
Lips (1996) ²¹⁰ The Netherlands Public	2578 Elderly individuals, living independently in apartments or homes for the elderly NR	IG1: 400 IU/d vit D ₃ CG: placebo 3-3.5 y	Median, (25th-95th percentiles) IG1 27 (19-36) CG 26 (19-37)	Median (25th-95th percentiles) IG1 54 (43-61) CG 23 (17-28) subset of patients at 3 y (N=96)	5
Mastaglia (2006) ²¹² Argentina Public	NR 45 Postmenopausal women NR Median (25-75 th percentile)	IG1: 5,000 IU/d vit D ₂ + 500 mg Ca IG2: 10,000 IU/d vit D ₂ + 500 mg Ca CG: 500 mg/d Ca 3 mo	Median (25-75 th percentile) IG1 42 (23.7-45.0) IG2 32.5 (27.5-37.5) CG 45.0 (31.2-61.2)	CPBA Median (25-75 th percentile) IG1 77.5 (66.2-156.2) IG2 97.7 (79.3-123.1) CG 55.0 (72.5-8) RIA	1
	IG1: 27.4 (25.0–31.7) IG2: 25.9 (22.4–30.4) CG: 25.8 (23.2–28.6)				

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Meier (2004) ²¹³	55 Healthy adult men	IG1: 500 IU/d vit D ₃ + 500 mg/d	IG1 75.25 (28.5)	Feb/Mar 2 y	2
Australia	and postmenopausal women	Ca CG: no supplements	CG 77.00 (23.25)	IG1 87.75 (20.25) CG 51.25 (21.5)	
Australia	women	CG. no supplements		Aug/Sept 2 y	
NR	NR	2 y		IG1 80.25 (20.5)	
				CG 84.5 (28.75)	
	NR			DIA	
Nordin (1985) ²¹⁴	137 Elderly women	IG1: 15,000 IU/wk vit D ₂	Mean (SE)	RIA Mean (SE)	1
	Tor Eldeny women	CG: placebo	IG1 20.3 (1.8)	IG1 59.1 (5.0)	
U.K.	NR		CG 24.4 (2.1)	CG 29.6 (2.7)	
		1 y			
NR	NR			СРВА	
Ooms (1995) ¹¹⁹	348 Postmenopausal	IG1: 400 IU/d vit D ₃	Median (25th-95th	Median (25th-95th	3
. ,	women	CG: placebo	percentiles)	percentiles)	
The Netherlands			IG1 27.0 (19-36)	IG1 62.0 (52-70)	
Public	NR	2 у	CG 26.0 (19-37)	CG 23.0 (17-31)	
	IG 28.1 (4.1), CG 28.6 (4.0)			СРВА	
Orwoll (1988) ²¹⁵	92 Adult men	IG1: 1000 IU/d vit D ₃ +1000 mg/d	IG1 60 (18)	IG1 85 (20)	3
		Ca	CG 57 (20)	CG 60 (18)	
U.S.	NR	CG: placebo 1 y		СРВА	
Public	NR	' y			
Pfeifer (2000) ²¹⁸	148 Elderly,	IG1: 880 IU/d vit D ₃ + 1200 mg/d	IG1 25.65 (13.63)	Δ (8 wks)	3
_	community-dwelling	Са	CG 24.63 (12.14)	IG11 +40.46 (27.01)	
Germany	women	CG: 1200 mg/d Ca		CG +18.30 (20.94)	
Private	NR	8 wks		RIA	
	NR				

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Riis (1984) ²¹⁹ Denmark	15 Post-menopausal women NR	IG1: 2000 IU/d vit D ₃ + 500 mg/d Ca CG: 500mg/d Ca	IG1 32.5 (13.2), SE (5) CG 60.0 (28.3), SE (10)	IG1 120.0 (13.2), SE (5) CG 55.0 (21.2), SE (7.5)	4
NR	NR	1 y		HPLC	
Schaafsma (2002) ¹²¹ Companion: Schaafsma ²²¹	73 Post-menopausal Dutch women Caucasian	IG1: 400 IU/d vit D_3 + 1000 mg/d Ca (eggshell powder-enriched supplement) IG2: 400 IU/d vit D_3 + 1000 mg/d Ca (CaCO3-enriched	IG1 97.1 (24.1) IG2 83.1 (22.4) CG 91.0 (36.5)	% Δ at 12 mo IG1 25.1 (29.8) IG2 43.8 (27.3) CG 11.1 (22.7)	2
The Netherlands	IG1 26.5 (3.2) IG2 28.1 (4.8) CG 28.7 (4.4)	supplement) CG: placebo 12 mo		СРВА	
Tfelt-Hansen, (2004) ²²⁸	17 Healthy women (≥4 y post- menopausal)	IG1: 1600 IU/d vit D ₃ + 2500 mg/d Ca IG2: 2500 mg/d Ca	66 (22)	IG1 65 (18) IG2 NR CG NR	2
Sweden Private	NR 25.7(3.6)	CG: placebo 7 wks		RIA	
Trivedi (2003) ²³¹	2686 Elderly individuals	IG1 100,000 IU vit D ₃ q 4 mo CG: placebo	NR	IG1 74.3 (20.7) CG 53.4 (21.1)	3
U.K. Public	NR IG 24.3 (3.4) CG 24.4 (3.0)	5 y (25(OH)D measured after 4 y)		RIA	

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Vieth (2004) ²³³ Studies A and B Canada	Individuals at risk for deficiency, endocrine outpatients Study A: N=93, Study D: N=112 (40	IG1: 4000 IU/d vit D ₃ IG2: 600 IU/d vit D ₃ 6 mo	Study A IG1 49 (9) IG2 46 (9)	Study A IG1: 112 (41) IG2: 79 (30)	1
Public	Study B: N=112 (46 continuers from Study A, 66 new patients)		Study B IG1 39 (9) IG2 39 (9)	Study B (NR separately - graph only)	
	NR			RIA	
Postmononousal W	NR	stitutionalized (N=14)			
Postmenopausal W Bischoff-Ferrari	omen and Older Men: Ir 122 Elderly women in	Istitutionalized (N=14) IG1: 800 IU vit D_3 + 1200 mg Ca	Median (IQR)	Median (IQR)	3
(2003) ¹¹⁴	long-stay geriatric care	CG: placebo + 1200 mg/d Ca	IG1 30.7 (23, 55) CG 29 (23, 55)	IG1 65.5 (49.8, 82.8) CG 28.5 (24.5, 41.5)	
Switzerland	NR	12 wks		% Δ IG1 +71%	
Public	IG1 24.7 (5.3)			CG -4%, p<0.0001	
Chapuy (1992) ¹⁸¹	CG 24.7 (5.6) 3270 Elderly,	IG1: 800 IU/d vit D ₃ + 1200 mg/d	IG1 40.0 (27.5)	RIA IG1 105 (22.5)	2
France	ambulatory women in nursing homes	Ca CG: Placebo	CG 32.5 (22.5)	CG 27.5 (17.5)	2
Trance	nursing nomes			СРВА	
Public/Private	NR	18 mo			
	NR				
Chapuy (2002) ¹⁸⁰	639 Elderly ambulatory,	IG1: 800 IU/d vit D_3 + 1200 mg/d Ca (combined)	IG1 21.3 (13.3) IG2 22.5 (16.5)	2 y IG1 ~75 (estimated from	3
France	institutionalized women	IG2: 800 IU/d vit D_3 + 1200 mg/d Ca (separate)	CG 22.8 (17.3)	graph) IG2 ~80	
Private	NR	CG: placebo		CG ~15	
		2 у		СРВА	
	NR				

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Duration Mean (SD) nmol/l Mean (SD)		Vitamin D Supplement 25(OH)D Baseline Mean (SD) pmol		Duration Mean (SD) nmol/L		Mean (SD) nmol/l Wean (SD) nmol/L	
Chel (1998) ¹⁶⁷ The Netherlands Public	45 Elderly female nursing home patients NR NR	IG1: 400 IU/d vit D ₃ CG: no treatment 12 wks	Median, 25th-95th percentiles IG1 23 (14-28) CG 12 (8-18)	Median at 12 wks,IG1: 60; CG: NS at 16 wks (4 wks post treatment) IG1 ~50 (p<0.001) CG ~16, NS (derived from figure) RIA	2				
Corless (1985) ¹¹² U.K. Public	82 Elderly hospital patients with low or low normal plasma 25(OH)D levels NR NR	IG1: 9,000 IU/d vit D ₂ CG: placebo 9 mo	IG1 16.60 (11.90), SE (2.10) CG 17.63 (11.80), SE (2.05)	40 wks IG1 115 CG 10 (estimated from graph) CPBA	5				
Deroisy (1998) ¹⁸⁸ Belgium Private	119 Elderly women, 80% institutionalized NR NR	IG1: 800 IU/d vit D ₃ + 1000 mg/d Ca (combined) IG2: 800 IU/d vit D ₃ + 1200 mg/d Ca (separate) 1 y	IG1 50.55 (30.75) IG2 49.15 (28.38)	1 y IG1 122.9 (43.6) (p=0.001 for Δ from 6 to 12 mo) IG2 113.1 (38.3) (p = 0.003 for Δ from 6 to 12 mo) RIA	2				
Harwood (2004) ¹⁹⁷ U.K. Public	150 Elderly women from a 'fast track' orthogeriatric rehabilitation ward previously community-dwelling NR 24.2 (2.9)	IG1 300,000 IU D_2 single injection IG2 300,000 IU D_2 single injection + 1000 mg/d Ca IG3: 800 IU/d D_3 oral + 1000 mg/d Ca CG: placebo 1 y	Mean (range) IG1 28 (10-67) IG2 30 (12-85) IG3 29 (6-75) CG 30 (12-64)	IG1 40 IG2 44 IG3 50 CG 27 (p<0.0005) RIA	3				

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Himmelstein, (1990) ²⁰⁰ U.S. Public	30 Elderly nursing home males and females All Caucasian except 1 Asian NR	IG1: 2000 IU/d vit D ₃ CG: placebo 6 wks	IG1 40.4 (18.2), SEM (4.7) CG 49.9 (19.4), SEM (5.0)	IG1 80.1 (25.9), SEM (6.9() CG 47.2 (22.1), SEM (5.7) CPBA	2
Krieg (1999) ²⁰⁷ Switzerland NR	248 Elderly institutionalized women NR IG 25.7 (4.8) CG 23.8 (5.4)	IG1: 880 IU/d D₃ + 500 mg/d Ca CG: no intervention 2 y	IG1 29.75 (17.5), SEM (3) CG 29.25 (18.5), SEM (3)	IG1 66.25 (23.3), SEM (4) CG 14.25 (15.4), SEM (2.5) CPBA	2
Lips (1988) ²⁰⁹ The Netherlands Public	72 Elderly nursing home residents, and 70 and home for aged residents NR NR	IG1: 400 IU/d vit D ₃ IG2: 800 IU/d vit D ₃ CG: placebo 1 y	Nursing home: 23.6 (8.9) Home for aged: 23.8 (13.3)	Nursing home IG1 ~70 IG2 ~90 CG ~20 Home for aged IG1 ~75 IG2 ~80 CG ~25 (estimated from figure) CPBA	1
Lovell (1988) ¹⁶⁸ Australia NR	32 Elderly (age 55-95 y) nursing home residents Caucasian NR	IG1: 230 IU/d vit D ₃ IG2: 866 IU/d vit D ₃ CG: placebo 3 mo	Median (range) IG1 18.3 (10.8-71.3) IG2 41.1 (15.5-57.8) CG 18.9 (7.3-77.3)	Median (range) IG1: 47.3 (12.0-87.8) IG2 78.0 (45.0-91.0) CG 15.1 (6.8-68.8) CPBA	2

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Author (year) Country Funding	Population, N Ethnicity BMI (kg/m ²)	Vitamin D Supplement Duration	25(OH)D Baseline Mean (SD) nmol/L	25(OH)D End of Study Mean (SD) nmol/L Assay	Jadad Score
Sebert (1995) ²²²	91 Institutionalized	IG1: 800 IU/d vit D ₃ + 1000 mg/d	Mean (2 SEM)	6 mo: IG1 36.4 (2.9)	3
Finland	elderly vitamin D deficient	Ca (combination tablet)	IG1 6.5 (0.63)	IG2 33.9 (3.6) Δ from baseline	
Finiano	dencient	IG2: 800 IU/d vit D ₃ (liquid form) + 1000 mg/d Ca (separate tablet)	IG2 7 (1.15)	IG1 +30.0	
Private	NR	· 1000 mg/u Ca (separate tablet)		IG2 +26.8	
Thrute		6 mo		102 20.0	
	NR			RIA	
Sorva (1991) ²²⁴	55 Elderly men and	IG1: 1000 IU/d vit D ₃ +1000 mg/d	IG1 12.6 (4.8)	IG1 57.2 (32.6)	1
Companions:	women (85%) from	Са	IG2 12.1 (3.8)	IG2 57.2 (18.5)	
Sorva	hospital nursing home	IG2: 1000 IU/d vit D ₂ or D ₃	IG3 10.8 (3.7)	IG3 8.9 (2.2)	
Sorva ²²⁶	ward	IG3: 1000 mg/d Ca	CG 11.3 (3.8)	CG 9.9 (3.2)	
-		CG: placebo		000	
Finland	NR	40 wks		СРВА	
Public	NR	40 WKS			
Weisman (1986) ²³⁵	44 (completers),	IG1: 100 000 IU vit D ₃ single	IG1 28.8 (6.3)	IG1 50.8 (20.5)	1
(1000)	Elderly nursing home	dose	CG 54.5 (13.0)	CG 39.0 (16.0)	
Israel	residents (N enrolled	CG: placebo		· · · · ·	
	could not be	-		СРВА	
Public	identified, pooled with	5 mo			
	another intervention				
	grp)				
	NR				
	NR				
Note ⁺ Jadad score o	out of a total of 5; allocatio	n concealment for all studies in the t	able was rated as "unclear" e	xcept for the following three stud	dies:
Deroisy 1998 '°' "inac	dequate", Ala-Houhala 19	88 ¹⁰² 'adequate" and Lips 1996 ²¹⁰ "a	idequate".		
		PBA, competitive protein binding ass			
		ormance liquid chromatography; IG, r of the mean; vit, vitamin; y, year(s)		in(s); אוא, not reported; q, every;	RIA,
rauloiminunoassay, a		i oi ule mean, vit, vitamin, y, year(s)	, WKS, WEEKS		

Table 12 (continued). RCTs on Vitamin D Supplementation and Serum 25(OH)D Levels

Question 3A. What is the Evidence Regarding the Effect of Supplemental Vitamin D on Bone Density in Women of Reproductive Age and Postmenopausal Women and Elderly Men?

Overview of Relevant RCTs

Study characteristics. A total of 17 randomized trials evaluated the effect of supplemental vitamin D (with or without calcium) versus control (calcium, placebo or no treatment) on bone mineral density. Of these 17 trials, 16 were parallel design RCTs of either supplemental vitamin D_2 or $D_3^{117-120,180,181,183,184,197,203,204,213,237,241-243}$ and one was a crossover trial of vitamin D_3^{216} . Treatment duration varied from one¹⁸³ to seven years,²⁴³ and most trials were less than three years in duration. Three articles^{190,191,237} were companion papers and we refer to the primary publication²³⁷ when discussing the results provided in either paper.

Study population. The majority of trials included postmenopausal women. Only one trial included premenopausal women, ²¹⁶ and one trial included women who were recently postmenopausal.²⁴² Only two trials included older men > 60 years.^{184,213} Thirteen trials included community-dwelling individuals.^{117,118,120,183,184,203,204,213,216,237,241-243} Two trials had populations of ambulatory elderly subjects living in either nursing homes or seniors' apartments, ^{180,181} and one trial included women living in homes or apartments for the elderly.¹¹⁹ Harwood included women living in the community who had sustained a hip fracture and were admitted to hospital.¹⁹⁷ One trial enrolled postmenopausal African-American women.¹¹⁷

Interventions. The majority of the trials used oral vitamin D₃, and two trials administered vitamin D₂ (Table 13).^{120,197} Harwood also included an oral vitamin D₃ arm.¹⁹⁷ The daily dose of vitamin D₃ ranged from 300 IU²⁴² to 2,000 IU.¹¹⁷ Aloia et al. administered 800 IU vitamin D₃ for two years followed by 2,000 IU daily for one year. Five trials used a dose of 800 IU vitamin D₃,^{180,181,197,203,216} four trials used a daily dose less than 800 IU but greater than or equal to 400 IU.^{118,119,183,184,204,213,241,243} One trial used 300 IU vitamin D₃.²⁴² Doses of vitamin D₂ ranged from 10,000 IU orally per week¹²⁰ to an annual injection of 300,000 IU.¹⁹⁷

Fourteen trials had treatment arms that combined vitamin D with calcium, ^{117,118,180,181,183,183,184,197,204,213,237,241-243} and three trials administered vitamin D alone. ^{119,203,216}

Daily calcium dosages ranged from 377 mg in one trial,¹⁸³ 500 mg in three trials^{118,184,213} 1,000 mg in four trials,^{120,237,241,243} to 1,200 mg or more in three trials.^{180,181,204}

Dietary vitamin D intake: nine trials estimated the mean baseline daily dietary vitamin D intake^{117,118,180,183,184,203,237,241,243} which ranged from 40 IU¹⁸⁰ to 202 IU.¹⁸⁴ (Table 13)

Comparators. Comparators included calcium in five trials, 117,120,183,204 low dose vitamin D₃ (100 IU) plus calcium in one trial, 118 and placebo in 11 trials. $^{119,180,181,184,197,203,213,216,237,241-243}$

Compliance. Compliance with vitamin D was reported in eleven trials and the compliance rates (compliance defined as > 80% of supplementation taken) were over 80 percent in seven of the eleven trials.^{117-119,180,184,203,237} One study reported an adherence score as 'excellent' but did

not provide a percentage score,²⁰⁴ and another reported a compliance rate (compliance defined as > 70% of supplementation taken) in 83-84%.¹⁸¹ Another study gave supplements in the presence of a nurse to ensure compliance but did not specifically report a rate.¹⁸⁰ The WHI trial reported a rate of adherence (> 80% of assigned medication taken) of 60 – 63 percent in the first three years of followup and 59% at end of study.²⁴³

Study quality. The overall quality score on the Jadad scale ranged from 1 (lowest) to 5 (highest). Four trials received a score of ≤ 2 .^{118,181,204,213} Thirteen trials received a score of ≥ 3 consistent with high quality.^{117,119,120,180,183,184,197,203,216,237,241-243} Two trials adequately reported the allocation concealment.^{117,203} Fourteen trials reported losses to followup with seven reporting losses over 20 percent.^{119,180,181,184,197,204,237}

Type of analysis. Six trials reported an intention-to-treat analysis.^{117,180,181,184,242,243}

25 (OH) D levels. Thirteen trials reported baseline serum 25(OH) D levels. ^{117,119,120,180,181,184,197,203,204,213,216,237,242} Fifteen trials reported followup or change in 25(OH)D levels. ^{118-120,180,181,183,184,197,203,204,213,216,237,242} Of the fifteen trials reporting 25(OH)D, six used an RIA assay, ^{117,120,197,203,213,216} one used a chemiluminescent immunoassay²⁴³ and eight studies used a CPBA (at least two^{184,204} of which were the Nichols Advantage Assay).

Vitamin D-deficient populations. Mean baseline 25(OH)D concentrations were ≤ 30 nmol/L in three trials.^{180,197,237} Ooms reported median 25(OH)D of 27.0 and 25 nmol/L in treatment and placebo groups, respectively,¹¹⁹ and the mean 25(OH)D concentrations were just over 30 nmol/L in another trial.²¹³

BMD by region of interest. Fourteen trials assessed effect of vitamin D on lumbar spine BMD, ^{117,118,120,183,184,197,203,204,213,216,237,241-243} twelve assessed femoral neck BMD, ^{118-120,180,181,184,197,213,237,241-243} five trials evaluated total hip BMD, ^{117,197,203,204,243} eight assessed total body BMD, ^{117,118,183,184,203,204,237,243} and five assessed a forearm site. ^{117,119,120,180,241}

Ascertainment of BMD. BMD was assessed by DXA using Hologic machines in nine trials, ^{117,180,181,197,203,204,213,216,243} Lunar technology in four trials, ^{118,183,184,242} Norland in three trials, ^{119,120,241} and either Lunar, Hologic or Norland in one trial.²³⁷ One trial used one of three densitometers, Lunar, Hologic or Norland and standardized the results.²³⁷

Individual trial results for lumbar spine, femoral neck and total body BMD are summarized in Table 13. Three trials evaluated BMD in a subpopulation of the total trial population.^{180,181,243}

Data Synthesis

Six trials did not provide data in a format that would permit pooling.^{197,203,213,216,237,243} One was a crossover trial,²¹⁶ and one trial evaluated the effect of vitamin D_3 on postmenopausal twins, in which one member of each twin pair was randomized to vitamin D_3 and the other to placebo and intra-pair differences analyzed.²⁰³ In four trials, adequate data were not provided within the published paper.^{197,213,237,243}

In the twin pair (mean age 58.7 years) trial by Hunter et al., there was no significant difference in BMD at the lumbar spine with or without supplementation over a two year period and during that time, there was a mean one percent loss at the total hip.²⁰³

Patel (2001), in a two year crossover trial, evaluated whether vitamin D_3 prevented seasonal changes in BMD in healthy women (mean age 47.2 years).²¹⁶ Vitamin D_3 had no overall effect on lumbar spine, femoral neck or total body BMD. Treatment effect coefficients of lumbar spine BMD were not significantly different from zero in either the low (baseline serum 25(OH)D < 60 nmol/L) or high vitamin D (baseline serum 25(OH)D > 80 nmol/L) groups. The authors concluded that the women in this study were too replete to demonstrate seasonal changes in BMD and that vitamin D supplements did not have significant effect on BMD.

In a two year trial, Meier (2004) evaluated the effect of six months of 500 IU of daily vitamin D_3 plus 500 mg of calcium in healthy adults (male mean age 60.6 years and female mean age 54.1 years) during the winter to determine if supplements prevented seasonal bone loss. In the vitamin D_3 and calcium treated subjects, the lumbar spine and femoral neck BMD increased in the second year compared to the first year, versus controls who continued to lose BMD.²¹³

In the Women's Health Initiative trial (N = 36,282), a subgroup of 2,431 women from three of 40 centers had BMD measured (lumbar spine, total hip and total body). Women were randomized to either vitamin D₃ 400 IU plus 1,000 mg of calcium daily or placebo. Non-significant differences in lumbar spine and total body BMD were reported, with results in favour of the vitamin D₃ and calcium treated group. The BMD at the total hip was 1.06 percent higher compared to the control group after an average of seven years of treatment (p<0.001).²⁴³

Harwood et al. compared BMD changes of the lumbar spine and hip with injectable vitamin D_2 300,000 units (± calcium), vitamin D_3 800 IU/day (± calcium) or no treatment in women who had sustained a hip fracture. Differences in BMD for vitamin D treated versus control group ranged from 1.1 to 3.3 percent at femoral neck, 2.5 to 4.6 percent at the trochanter, and 2.1 to 4.6 percent at the total hip, with greater effects seen with oral vitamin D_3 plus calcium.¹⁹⁷

Grados (2003) compared vitamin D_3 800 IU with calcium 1,000 mg per day in 192 elderly women in France. All women had 25(OH)D concentrations below 30 nmol/L with mean concentrations of 18.25 nmol/L which increased to 56 nmol/L after treatment. After one year, there was a median increase of 2.98% at the lumbar spine in the treatment group versus -0.21 in placebo and a 1.19% increase at the femoral neck versus -0.83% in placebo group. There was a significant increase in BMD at the total body and the trochanter compared to placebo.^{190,237}

In a two year trial, Cooper evaluated the effect of oral 10,000 IU vitamin D_2 weekly plus calcium 1,000 mg versus calcium alone, and did not find a significant difference in annual change of the lumbar spine, femoral neck or forearm BMD between the two groups.¹²⁰

For meta-analyses, given that calcium alone increases bone density, BMD results from similar sites and treatment durations were combined in the following groups: (1) vitamin D_3 alone, (2) vitamin D_3 plus calcium versus placebo, and (3) vitamin D_3 plus calcium versus calcium. Due to variable reporting, and differences in treatment arms, quantitative pooling was limited.

The combined results by BMD site are presented in Table 14. Eleven trials provided data that allowed quantitative analysis.^{117-120,180,181,183,184,204,241,242}

Oral vitamin D₃ plus calcium versus placebo. Comparing vitamin D₃ plus calcium to placebo, there were significant increases in BMD at the lumbar spine after one year with a combined estimate from two trials (N = 507) of 1.40 percent (95% CI 0.84, 1.97).^{184,237,241} Significant increases at the femoral neck^{180,184,237,241} were observed with a combined estimate of

1.37 percent (95% CI 0.24, 2.50) from three trials after one year. The heterogeneity of treatment effect varied from low to moderate depending on the site (Table 14).

Oral vitamin D₃ versus placebo. The combined estimates of trials that evaluated BMD of the lumbar spine²⁴² or forearm¹¹⁹ were not significant with vitamin D₃ alone, although in both trials the dose of vitamin D₃ was 300 or 400 IU daily. In the trial by Ooms, there was a significant increase in femoral neck BMD with 400 IU vitamin D₃ versus placebo over two years.¹¹⁹

Oral vitamin D₃ plus calcium versus calcium. The combined results of trials, including the trial on African American women, that compared vitamin D₃ plus calcium vs. calcium did not demonstrate a significant effect on BMD of the lumbar spine, total hip, forearm or total body.^{117,204}

Effect of baseline 25(OH)D concentrations and BMD response to vitamin D. Four trials assessed the effect of baseline serum 25(OH)D and BMD response to either vitamin D₃ or D₂.¹¹⁷⁻¹²⁰ One trial had a population that was vitamin D deficient (median serum 25(OH)D 25-27 nmol/L by CPBA) and reported that the effect of vitamin D₃ on femoral neck BMD was independent of baseline 25(OH)D concentrations.¹¹⁹ The other studies, one of which included African American women, did not report an association between baseline serum 25(OH)D concentrations and changes in BMD.

Summary. Effect of Vitamin D supplementation on bone mineral density in women of reproductive age, postmenopausal women and older men

Quantity: Seventeen RCTs evaluated the effect of supplemental vitamin D_2 or D_3 on BMD, predominantly in populations of late menopausal women. Only one small trial included premenopausal women. Most trials had small sample sizes, were two to three years in duration and used vitamin D doses of ≤ 800 IU daily. Most trials used vitamin D_3 and also included calcium ≥ 500 mg as a co-intervention.

Quality: The Jadad quality score of the trials ranged from 1 to 5, with 13 of the 17 trials scoring $\geq 3/5$. Most trials did not adequately report whether allocation sequence was concealed.

Consistency: Combined results of trials of vitamin D_3 plus calcium versus placebo were consistent with a small effect on lumbar spine, femoral neck and total body BMD. The WHI trial found a significant benefit of vitamin D_3 400 IU plus 1,000 mg of calcium on total hip BMD. However, in combined trials of vitamin D_3 plus calcium versus calcium, a significant increase in BMD was not observed, suggesting vitamin D_3 may be of less benefit in calcium replete postmenopausal women. Vitamin D_3 alone versus placebo did not show significant increases in BMD, except in one trial that noted an increase in femoral neck BMD. Only a few trials reported the impact of baseline serum 25(OH)D concentrations on BMD and in all of these trials, baseline 25(OH)D was not associated with increases in BMD. Overall, there is good evidence that vitamin D_3 plus calcium results in small increases in BMD of the spine, total body, femoral neck and total hip. Based on included trials, it was less certain if vitamin D_3 alone has a significant effect on BMD.

Author (year) Duration		Vitamin D Type Dose (IU/day)	Lumbar spine BMD % change (SD)		Femoral neck BMD % change (SD)		Total Body BMD % change (SD)	
Author (year) Densitometer	Sample Size (n/total N)	Mean Dietary vitamin D intake (Tx/control)	Τ _x	Control (e.g., placebo, calcium or lower dose of vit D)	Тx	Control	т _х	Control
Aloia (2005) ¹¹⁷ Hologic QDR4500	3 years 208	800 D ₃ for 2y, then 2000 D ₃ for 1y + calcium (184 IU/d)	0.25 (1.82)	0.30 (1.82)	NR	NR	-0.35 (1.60)	-0.30 (1.50)
Baeksgaard (1998) ²⁴¹ Norland DXA	2 years 240	560 D ₃ + 1000 mg calcium (158/140 IU/d)	1.6	-0.2	1	0.4	NR	NR
Chapuy (1992) ¹⁸¹ Hologic QDR 1000	1.5 years 56 (56/3270)	800 D ₃ + 1200 mg calcium (NR)	NR	NR	2.90 (6.40)	1.80 (9.40)	NR	NR
Chapuy (2002) ¹⁸⁰ Hologic QDR 1000	2 years 114 (114/583)	800 D ₃ + 1200 mg calcium (40/42 IU/day)	NR	NR	-1.20 (7.40)	-4.50 (7.10)	NR	NR
Cooper (2003) ¹²⁰ Norland DXA	2 years 276 (187/187)	10,000 D₂/wk + 1000 mg calcium (NR)	0.21 (4.89)	1.66 (5.27)	0.87 (4.95)	3.32 (5.10)	NR	NR
Dawson- Hughes (1991) ¹⁸³ Lunar DPX	1 year 261 (220-246/276)	400 D ₃ + calcium 377 mg (during treatment 106/87- August - November)	0.85 (2.41)	0.15 (2.62)	NR	NR	0.03 (1.35)	-0.08 (1.25)

Table 13. Effect of Vitamin D₂ or D₃ on BMD by Site in Individual Trials

=

	Duration	Vitamin D Type Dose (IU/day)		BMD % change D)	BMD %	ral neck % change SD)		Body change D)
Sam	Sample Size (n/total N)	Mean Dietary vitamin D intake (Tx/control)	т _х	Control (e.g., placebo, calcium or lower dose of vit D)	т _х	Control	Тх	Control
Dawson- Hughes (1995) ¹¹⁸ Lunar DPX	2 years 215 (215-246/261)	700 D ₃ + 500 mg calcium (120/107 IU/day)	-0.31 (2.87)	-0.11 (3.15)	-1.06 (3.76)	-2.54 (4.07)	-0.20 (1.66)	-0.35 (1.56)
Dawson- Hughes (1997) ¹⁸⁴ Companion: Lunar DPX	3 years 389	700 D ₃ + 500 mg calcium (Women 174/184 IU/day Men 202/197 IU/day)	2.12 (4.06)	1.22 (4.25)	0.50 (4.80)	-0.70 (5.03)	0.06 (1.83)	-1.09 (1.71)
Grados (2003)a ²³⁷ Companions: Grados, (2003)b ¹⁹⁰ & Brazier (2005) ¹⁹¹ Hologic, Lunar and Norland	1 year 192 (67-72/192)	800 D ₃ +1000 mg calcium (84.9/83.9 IU/day)	2.98 *	-0.21 *	1.19 *	-0.83*	0.99 *	0.11 *

Table 13. (continued) Effect of Vitamin D_2 or D_3 on BMD by Site in Individual Trials

	Duration	Vitamin D Type Dose (IU/day)	· · · · · · · · · · · · · · · · · · ·	BMD % change	Femo BMD 9	oral neck % change (SD)	Total Body BMD % change (SD)	
Author (year) Densitometer	Sample Size (n/total N)	Mean Dietary vitamin D intake (Tx/control)	Τ _x	Control (e.g., placebo, calcium or lower dose of vit D)	Т _х	Control	Тх	Control
Harwood, (2004) ¹⁹⁷ Hologic QDR 2000	1 year 150 (40/150)	$800 D_3 + 1000 mg$ calcium, $300,000 D_2$ single injection, $300,000 D_2$ single injection+ 1000 mg calcium (NR)	-1.6 (table 4- subgroup)	8.2	-1.9	-0.9	NR	NR
Hunter, (2000) ²⁰³ Hologic QDR 2000	2 years 128 comparison of 64 pairs of twins	800 D ₃ (135/134 IU/day)	0.00 (5.62)	0.00 (5.56)				
Jackson (2006) ²⁴³ Hologic QDR 2000 and 4500	7 years (2431 of total sample)	400 D ₃ + 1000 mg calcium (total vitamin D intake diet and supplements) 365/368 IU	Graph	Graph	Grap h	Graph	Graph	Graph
Jensen (2002) ²⁰⁴ Hologic QDR 2000	3 years (68/83)	400 D ₃ + 1450 mg calcium (NR)	1.20 (4.32)	0.73 (4.08)	NR	NR	-1.10 (1.78)	-1.78 (1.56)
Komulaianen (1998) ²⁴² Lunar DXA	5 years (206/425)	300 D ₃ + 500 mg calcium (NR)	-4.6 (5.08)	-4.5 (4.90)	-4.3 (5.03)	-4.3 (4.9)	NR	NR

Table 13. (continued) Effect of Vitamin D_2 or D_3 on BMD by Site in Individual Trials

	Duration	Vitamin D Type Dose (IU/day)	Lumbar spine (S	BMD %	ral neck % change SD)	change BMD % change	change	
Author (year) Densitometer	Sample Size (n/total N)	Mean Dietary vitamin D intake (Tx/control)	Τ _x	Control (e.g., placebo, calcium or lower dose of vit D)	T _x	Control	Тх	Control
Meier (2004) ²¹³	2 years	500 D ₃	0.8	NR	0.1	NR	NR	NR
Hologic QDR	55	+ calcium 500 mg						
4500	(43/55)	(NR)						
		400 D ₃	NR	NR	1.47 (6.13)	-0.21 (6.12)	NR	NR
Ooms (1995) ¹¹⁹	2 years	(NR)			Ľ	. ,		
Norland	348				femor al neck			
Patel (2001) ²¹⁶	2 years	800 D ₃						
Hologic QDR4500	70	(NR)		NA c	rossover	trial		

Table 13. (continued) Effect of Vitamin D₂ or D₃ on BMD by Site in Individual Trials

other studies included women only.

BMD, bone mineral density;IU, international units; L, left; NR, not reported; SD, standard deviation; Tx, treatment;

BMD site	Comparison Duration, Sample size (N)	WMD (95% CI), Heterogeneity I ²		
Lumbar spine	Vitamin D ₃ + Ca vs. placebo 1 y - 2 trials (507) 2 y - 1 trial (197) 3 y - 1 trial (377)	1.40 (0.84, 1.97), I ² = 0 1.80 (0.70, 2.9) 0.90 (0.06, 1.74)		
	Vitamin D ₃ + Ca vs. calcium 1 y - 2 trials (263) 3 y - 2 trials (251)	0.36 (-0.71, 1.43), I ² = 40 -0.03 (-0.52, 0.45, I ² = 0		
Femoral neck	Vitamin D ₃ vs. placebo 2 y - 1 trial (270)	1.68 (0.13, 3.23)		
	Vitamin D ₃ + Ca vs. placebo 1 y - 3 trials (625) 2 y - 3 trials (368) 3 y - 1 trial (386)	1.37 (0.24, 2.50, $I^2 = 57$ 1.31 (-0.34, 2.97), $I^2 = 33$ 1.20 (0.22, 2.18)		
	Vitamin D ₃ + Ca vs. calcium 2 y -1 trial (243)	1.48 (0.50, 2.46)		
Total Hip	Vitamin D ₃ + Ca vs. calcium 3 y - 1 trial (251)	0.23 (-0.71,1.17)		
Forearm	Vitamin D₃ vs. placebo 2 y - 1 trial (241)	0.06 (-3.74, 3.86)		
	Vitamin D₃ + Ca vs. placebo 2 y - 1 trial (197)	0.58 (-0.44, 1.62)		
	Vitamin D₃ + Ca vs. calcium 3 y - 1 trial (208)	-0.25 (-0.68, 0.18)		
Total Body	Vitamin D ₃ + Ca vs. placebo 1 y - 1 trials (314) 3 y - 1 trial (377)	0.60 (0.34, 0.87) 1.15 (0.80,1.50)		
	Vitamin D₃ + Ca vs. calcium 2 y - 2 trials (289)	0.11 (-0.26, 0.48)		

Table 14. Combined Results of Effect of Vitamin D3 on BMD

Figure 6. Forest Plot: Effect of vitamin D₃ + Calcium vs. Placebo on Femoral Neck BMD at 1 year

Comparison: 19 BMD	ess and Safety c Il neck, Vitamin D	of Vitamin D (2006) 3 + calcium						
Study or sub-category	N	Treatment Mean (SD)	N	Control Mean (SD)		VVMD (random) 95% Cl	Weight %	WMD (random) 95% Cl
Baeksgaard L, 1998	134	2.50(4.60)	64	1.50(3.20)		-	38.22	1.00 [-0.11, 2.11]
Chapuy MC, 2002	79	0.00(5.60)	35	-3.60(6.00)		−	16.79	3.60 [1.26, 5.94]
Dawson-Hughes 1997	145	0.64(3.96)	168	-0.22(3.65)		+	44.99	0.86 [0.01, 1.71]
Total (95% Cl)	358		267			•	100.00	1.37 [0.24, 2.50]
Test for heterogeneity: Chi ² Test for overall effect: Z = 2		= 0.09), l² = 57.6%				-		
					-10	-5 0 5	10	
	Favours control Favours treatment							

Question 3B. What is the Evidence Regarding the Effect of Supplemental Vitamin D on Fractures in Women of Reproductive Age and/or Postmenopausal Women and Elderly Men?

Overview of Relevant RCTs

Study characteristics. Fifteen randomized trials evaluated the effect of either vitamin D_2 or D_3 (combined with or without calcium) on incident fractures. Thirteen trials were parallel design RCTs,^{180,181,184,197,210,218,231,242-247} and two were factorial trials.^{248,249} Duration ranged from one to seven years. Table 15 provides trial characteristics.

Thirteen trials randomized individual participants and the overall number of participants in the intervention arms was 32,092, with 32,491 participants in the control or placebo groups. Two trials randomized participants using a cluster design (cluster randomization refers to randomization by group, e.g., a residential unit). The combined sample size of the two cluster randomized trials was 6,719 in the intervention groups and 4,071 in the control groups.^{247,249} Porthouse et al. changed treatment allocation from unequal to equal during the trial so there are two entries for this study with different denominators: an equally randomized group (1:1 ratio) (study A) and an unequally randomized group (2:1 ratio in favor of the control) (study B).²⁴⁴

Population characteristics. Two trials were classified as secondary prevention trials as all participants had a history of fractures.^{197,248} Four other trials reported a baseline fracture prevalence that ranged from 10.7 to 26 percent.^{242-244,249}

Seven trials included only postmenopausal females,^{180,181,197,218,242-244} and eight trials included both older males and postmenopausal females.^{184,210,231,245-249} Of these eight trials, the percentage of females ranged from 25²³¹ to 95 percent.²⁴⁶ There were no trials in women of reproductive age.

Nine trials included community-dwelling participants.^{184,218,231,242-245,248,249} One trial included community-dwelling participants living independently in apartments.²¹⁰ Four trials included cohorts of participants living in residential homes.^{180,181,246,247} One trial was conducted with hospitalized participants who had been community-dwelling prior to admission.¹⁹⁷

Interventions. Eleven RCTs allocated participants to oral vitamin D₃ with dosages ranging from 300 to 800 IU/day. Harwood allocated participants to either oral vitamin D₃ arm or injectable vitamin D₂ arms.¹⁹⁷ Six trials used an oral dose of 800 IU vitamin D₃ per day^{180,181,197,218,244,248} one trial administered 700 IU D₃,¹⁸⁴ and four trials a dosage of \leq 400 IU vitamin D₃ daily.^{210,242,243,249}

Two trials used daily oral vitamin D_2 with dosages equivalent to 1,000 or 1,100 IU, respectively.^{246,247}

Two trials used an injectable preparation of either vitamin D_2 or D_3 . Harwood used a single dose of 300,000 IM vitamin D_2^{197} and another trial used an annual dose of 300,000 IU vitamin D_3^{245} .

Calcium supplementation as a co-intervention ranged from 500 mg in two trials^{184,242} to 1,000 mg in five trials^{197,243,244,248,249} to 1200 mg/day in three trials.^{180,181,218}

Porthouse et al. had high baseline levels of dietary calcium intake in both the intervention (1,075 mg) and control groups (1,084 mg), and provided all participants with information on dietary calcium and vitamin D.²⁴⁴ Jackson also had a high mean baseline intake of calcium in both intervention and control groups (1,150 mg).²⁴³

Comparators. Seven trials compared oral or injectable vitamin D to placebo or control.^{197,210,231,243,245,247,248} Seven trials compared a combination of vitamin D plus calcium to placebo.^{180,184,197,243,244,248,249} Four trials compared vitamin D plus calcium versus calcium alone.^{218,242,246,248}

Compliance. Compliance with vitamin D was reported in eleven trials and was greater than 80 percent in five trials.^{180,181,210,218,242} Compliance was less than 80 percent in six trials.^{184,231,243,243,244,248} In the three largest trials, the compliance ranged from 55 to 63 percent.^{243,244,248}

Study quality. One trial had a quality score of 2/5 on the Jadad scale.¹⁸¹ Ten trials had a score of $\geq 3/5$, ^{180,184,197,210,231,242,244-246,248} and of these, two trials had the maximum score of five.^{210,248}

Eight trials had losses to followup greater than 20 percent.^{180,181,184,197,210,231,246,248}

Two trials provided an adequate description of allocation concealment,^{210,248} and allocation concealment was unclear in the remaining trials.

Type of analysis. Twelve trials reported an intention-to-treat analysis,^{180,181,184,210,231,242-244,246-249} and in three trials, an efficacy analysis was conducted or the type of analysis was unclear.^{197,218,245}

Fracture outcomes. Three RCTs provided data on vertebral fractures, ^{231,243,248} twelve trials on non-vertebral fractures, ^{180,181,184,197,210,218,231,242-244,247,248} and fourteen trials provided data on either total or hip fractures. ^{180,181,184,197,210,218,231,242-244,246-249}

Ascertainment of fractures. Ascertainment of fractures varied with some trials using self-report (\pm x-ray confirmation) or administrative data^{197,210,231,244,246,249} and other trials verifying fractures by x-rays.^{180,181,184,218,242,243,248} One trial used several sources including self-report, physician verification, and administrative databases.²⁴⁸ Vertebral fractures were ascertained only by questionnaire in one trial²³¹ and confirmed by x-rays in two trials.^{243,248}

25(OH)D concentrations. Eleven trials reported baseline 25(OH)D concentrations.^{180,181,184,197,210,218,242,243,247-249} In six trials, 25(OH) concentrations were measured in a sub-sample of the total trial population.^{181,242,243,247-249}

Vitamin D deficiency. Mean baseline serum 25 (OH)D concentrations below 30 nmol/L were reported in five trials.^{180,197,210,218,242}

Eleven trials reported followup or change in mean 25(OH) D concentrations.^{180,181,184,197,210,218,231,242,247-249} Serum 25(OH)D concentrations were not reported in three trials.²⁴⁴⁻²⁴⁶ (See Table 16.)

Quantitative Data Synthesis

We conducted a meta-analysis of the 13 randomized trials that provided adequate data on fracture outcomes. Two entries (Study A and B) from Porthouse et al. are presented since the allocation changed from unequal to equal during the trial.²⁴⁴

Included in the meta-analysis is the Women's Health Initiative (WHI, 2006) trial on calcium plus vitamin D₃ (400 IU). The WHI trial was the largest primary prevention trial and involved 36,282 postmenopausal women (mean age of 62.4 years). Women enrolled in the WHI HRT and dietary modification trials were invited to participate in the calcium and vitamin D trial. A unique feature of this trial was that over 50 percent of women were current users of hormonal replacement therapy (HRT) and the rate of use of other osteoporosis medications was one percent. In this trial, the overall risk reduction in hip fractures with vitamin D plus calcium was not significant compared to placebo (12 percent, 95% CI -8 to 28). In subgroup analyses of women over age 60 years, and in women who were compliant, there was a significant reduction in hip fractures compared to placebo [\geq 60 years (21 percent, 95% CI 2-36); compliant women (29 percent, 95% CI 3-48)].²⁴³

Total fractures. Combined results from 13 trials (N=58,712) that used either <u>oral vitamin</u> D_3 or D_2 +/- calcium versus calcium or placebo resulted in a non-significant reduction in total fractures [(OR 0.90, (95% CI 0.81, 1.02), p=0.09)] with a I² of 48 consistent with moderate heterogeneity of treatment effect (Figure 7).

Combined results from three trials (N=7,939) of <u>vitamin D₃ alone versus placebo</u> were not consistent with a significant reduction in total fractures [(OR 0.98, 95% CI, 0.79-1.23), p=0.08, I^2 =61 consistent with high heterogeneity].^{210,231,248}

Combined results of three trials of <u>vitamin D₃ plus calcium versus calcium</u> $(N=2,997)^{218,242,248}$ resulted in a non-significant reduction in total fractures [(OR 0.92, 95% CI 0.74-1.25), I²=10.2 percent].

Combined results of seven trials of <u>vitamin D₃ plus calcium versus placebo</u> $(n=46,072)^{180,181,184,197,243,244,248}$ were consistent with a non-significant reduction in total fractures [OR 0.87, 95% CI 0.76-1.00, p=0.05, I²=43 percent] (Figure 8).

Non-vertebral fractures. Combined results from three trials $(n=7,939)^{210,231,248}$ of <u>vitamin</u> <u>D₃ alone versus placebo</u> were not consistent with a significant reduction in non-vertebral fractures [(OR, 0.99, 95% CI, 0.83-1.17), p = 0.89, I² = 27.6 percent].

Combined results from seven trials (N = 46,074), 180,181,184,197,243,244,248 of <u>vitamin D₃ plus</u> <u>calcium versus placebo</u> were consistent with an OR of 0.87 (95% CI 0.75-1.00, p = 0.05), and a I² of 44 percent.

Hip fractures. Combined results of three trials $(N=7,939)^{210,231,248}$ of <u>vitamin D₃ versus</u> <u>placebo</u> were not consistent with a significant reduction in hip fractures [OR 1.11, 95% CI 0.86-1.44, I² = 0].

The combined results of three trials of <u>vitamin D₃ plus calcium versus calcium</u> $(N=2,997)^{218,242,248}$ were not consistent with a significant reduction in hip fractures [OR 0.91, 95% CI 0.61- 1.36, I² = 0].

Combined results from seven trials $(n=46,072)^{180,181,184,197,243,244,248}$ of <u>vitamin D₃ plus</u> <u>calcium versus placebo</u> were consistent with a non-significant effect, although the point estimate favoured vitamin D [OR 0.83, 95% CI 0.68-1.00, p=0.05, I²=16.2 percent] (Figure 8).

Vertebral fractures. The combined OR from three trials (n=44,260) with oral vitamin D₂ or D₃ (+/- calcium) versus placebo or calcium for vertebral fractures was 0.88 (95% CI 0.73- 1.07), $I^2=0$.^{231,243,248}

Results of Trials not Included in the Quantitative Synthesis

Larsen²⁴⁹ was a factorial cluster-randomized trial that did not appear to control for the effect of clustering in their per protocol analysis, so the results were not combined with the other trials.

Larsen administered 400 IU vitamin D₃ with 1,000 mg calcium daily versus placebo and reported a significant reduction in total fractures [RR 0.84 (95% CI 0.72, 0.98), p<0.025]. When results were presented by gender, females had a decreased fracture risk [RR 0.81 (95% CI 0.68-0.95), p<0.01].²⁴⁹

Andersen et al. administered an annual injection of 300,000 IU of vitamin D₃ versus placebo and did not report a significant reduction in hip fractures [HR 1.48 (95% CI 1.01-2.17)] or for any fracture [HR 1.10 (95% CI 0.94-1.29), p = 0.23)]. The results were similar in both males and females. Complete data were not provided.²⁴⁵

Subgroup and Sensitivity Analyses

To explore the heterogeneity of treatment effect we conducted subgroup analyses by: residential status (community-dwelling versus institutional), dosage, and 25(OH)D concentrations for the outcome of total fractures. Combining the three trials of vitamin D_2/D_3 plus calcium versus placebo or calcium in institutionalized populations^{180,181,246} resulted in a significant reduction in total fractures [OR 0.73 (95% CI 0.61-0.88), $I^2 = 0$] versus a non-

significant reduction when combining nine trials of community-dwelling participants [OR 0.95, (95% CI 0.86, 1.05) $I^2 = 23.4$].^{184,197,210,218,231,242-244,248}

When exploring heterogeneity of the seven trials of vitamin D_3 and calcium versus placebo by residence, the combined OR for two trials^{180,181} in elderly populations in institutions was significant [OR 0.69 (95% CI 0.53, 0.90), $I^2 = 0$] (Figure 9).

Subgroup analysis by dosage, (i.e., combining trials \geq 800 IU of vitamin D versus those trials using < 800 IU/day) did not explain the heterogeneity of treatment effect.

In sensitivity analyses, we explored the heterogeneity of treatment effect by combining: (1) trials with high versus low study quality, (2) trials with over 80 percent compliance versus those with less than 80 percent compliance, and (3) trials that adequately reported allocation concealment compared to trials in which allocation concealment was not reported or was unclear. None of these analyses had a significant impact on the heterogeneity of treatment effect.

Effect of 25(OH)D concentrations on fracture risk. Eleven trials evaluated baseline serum 25(OH)D concentrations and five trials had low baseline serum 25(OH)D concentrations (<30 nmol/L).^{180,197,210,218,242} One trial that reported a significant reduction in fracture risk,¹⁸¹ had a mean baseline 25(OH)D concentration of 40 nmol/L.

Followup serum 25(OH)D concentrations (\geq 74 nmol/L) were reported in three trials that reported a significant reduction in total fractures.^{181,184,231}

Combining the results from four trials of vitamin $D_3^{180,181,184,231}$ that had end of study 25(OH)D concentrations of \geq 74 nmol/L was consistent with a significant reduction in total fractures [OR 0.73 (95 % CI 0.63-0.85), I² = 0] compared to a non-significant reduction when combining results of trials with end of study 25(OH)D concentrations of < 74 nmol/L.

Publication bias. An evaluation of publication bias, using the method by Begg et al.²⁵⁰ suggested the possibility of bias, with a lack of smaller trials that failed to find an effect of vitamin D on fracture reduction.

Summary. Effect of vitamin D supplementation on fractures in women of reproductive age, postmenopausal women and older men

Quantity: Fifteen trials examined the effect of either vitamin D_2 or D_3 alone or in combination with calcium on total, non-vertebral and hip fractures in postmenopausal women or older men. Few trials evaluated vertebral fractures. Most trials used vitamin D_3 . There were no trials identified in premenopausal women.

Quality: Ten individually randomized trials had quality scores of ≥ 3 and eight trials reported high losses to followup.

Consistency: Combining the results from 13 randomized trials of vitamin D_2/D_3 +/- calcium resulted in a non-significant reduction in total fractures that persisted when only trials of higher quality were combined. When combining seven trials of vitamin D_3 (400-800 IU) plus calcium, there was a reduction in the risk of total and hip fractures. However, in a subgroup analysis, this benefit was only evident when combining trials of institutionalized elderly subjects. One possible explanation is that the mean serum 25(OH)D level achieved in trials of institutionalized participants was higher than in the trials on community dwellers, and provided a greater level of vitamin D repletion. The combined estimate from trials with higher end-of-study serum 25(OH)D concentrations (\geq 74 nmol/L) was consistent with a significant reduction in fractures. This needs to be interpreted with caution given the variability in the 25(OH)D assays and incomplete assessment of vitamin D status in the fracture trials.

The evidence for vitamin D_3 plus calcium supplementation in community-dwelling individuals is less strong although one trial found a significant fracture reduction in community-dwelling older men and women, and in a subgroup analysis from the WHI trial, there was a reduction in hip fractures in women over age 60 years. Vitamin D_3 combined with calcium is effective in reducing fractures in institutionalized populations.

Study or sub-category	Treatment n/N	Control n/N	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
Chapuy MC, 1992	160/1387	215/1403	-	12.14	0.72 [0.58, 0.90]
Chapuy MC, 2002	96/393	55/190	_ _	6.25	0.79 [0.54, 1.17]
Dawson-Hughes 1997	11/187	26/202		2.21	0.42 [0.20, 0.88]
Flicker, 2005	25/313	35/312	_ _	3.77	0.69 [0.40, 1.18]
Grant AM, 2005	387/2649	377/2643	+	15.69	1.03 [0.88, 1.20]
Harwood RH, 2004	3/39	5/37	_	0.57	0.53 [0.12, 2.41]
Jackson, 2006	2102/18176	2158/18106	_	20.36	0.97 [0.91, 1.03]
Komulainen MH, 1998	12/116	18/116		1.98	0.63 [0.29, 1.37]
Law, 2006	64/1762	51/1955		6.61	1.41 [0.97, 2.04]
Lips P, 1996	135/1291	122/1287	_ _	10.40	1.12 [0.86, 1.44]
Pfeifer M, 2000	3/74	6/74		0.63	0.48 [0.12, 1.99]
Porthouse J, Study A	34/714	69/1391		5.57	0.96 [0.63, 1.46]
Porthouse J, Study B	24/607	22/602	_	3.25	1.09 [0.60, 1.96]
Trivedi DP, 2003	119/1345	149/1341		10.57	0.78 [0.60, 1.00]
'otal (95% Cl)	29053	29659	•	100.00	0.90 [0.81, 1.02]
otal events: 3175 (Treatm	ent), 3308 (Control)				
est for heterogeneity: Chi	= 25.13, df = 13 (P = 0.02), l ² =	48.3%			
est for overall effect: Z =	1 70 (P = 0.09)				

Figure 7. Forest Plot Comparing Risk of Total Fractures with Vitamin D₂ or D₃ +/- Calcium vs. Placebo or Calcium

Figure 8. Forest plot Comparing the Risk of Total Fractures with Vitamin D₃ Combined with Calcium vs. Placebo

Study or sub-category	Treatment n/N	Control n/N	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
Chapuy MC, 1992	160/1387	215/1403	-	19.30	0.72 [0.58, 0.90]
Chapuy MC, 2002	96/393	55/190		9.53	0.79 [0.54, 1.17]
Dawson-Hughes 1997	11/187	26/202		3.27	0.42 [0.20, 0.88]
Grant AM, 2005	179/1306	192/1332	-+-	19.30	0.94 [0.76, 1.17]
Harwood RH, 2004	3/39	5/37		0.83	0.53 [0.12, 2.41]
Jackson, 2006	2102/18176	2158/18106	+	34.47	0.97 [0.91, 1.03]
Porthouse J, Study A	34/714	69/1391	-+-	8.45	0.96 [0.63, 1.46]
Porthouse J, Study B	24/607	22/602		4.84	1.09 [0.60, 1.96]
Fotal (95% CI)	22809	23263	•	100.00	0.87 [0.76, 1.00]
Fotal events: 2609 (Treatment), 2742 (Control)				
Test for heterogeneity: Chi ² =	12.38, df = 7 (P = 0.09), l ² = 4	13.4%			
Fest for overall effect: Z = 1.9	9 (P = 0.05)				

Figure 9. Forest Plot Comparing Risk of Hip Fractures with Vitamin D₃ +/- Calcium vs. Placebo by Setting

or sub-category	Treatment n/N	Control n/N	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
01 community-dwelling					
Dawson-Hughes 1997	0/187	1/202	• • • • • • • • • • • • • • • • • • •	0.37	0.36 [0.01, 8.85]
Grant AM, 2005	46/1306	41/1332		16.37	1.15 [0.75, 1.76]
Harwood RH, 2004	0/39	1/37	← ■	0.36	0.31 [0.01, 7.80]
Jackson, 2006	175/18176	199/18106		42.19	0.87 [0.71, 1.07]
Porthouse J, Study A	3/714	15/1391	_	2.38	0.39 [0.11, 1.34]
Porthouse J, Study B	5/607	2/602		→ 1.38	2.49 [0.48, 12.89]
ubtotal (95% CI)	21029	21670		63.04	0.92 [0.73, 1.15]
otal events: 229 (Treatment),	259 (Control)		-		
Test for heterogeneity: Chi ² = 5	.31, df = 5 (P = 0.38), l ² = 5.8 ⁴	%			
est for overall effect: Z = 0.76	i (P = 0.45)				
02 elderly in institutions					
Chapuy MC, 1992	80/1387	110/1403		27.65	0.72 [0.53, 0.97]
Chapuy MC, 2002	27/393	21/190		9.31	0.59 [0.33, 1.08]
Chapuy MC, 2002					and the second second second
Chapuy MC, 2002 Subtotal (95% Cl)	1780	1593	-	36.96	0.69 [0.53, 0.90]
Subtotal (95% CI)		1593	-	36.96	0.69 [0.53, 0.90]
ubtotal (95% Cl) otal events: 107 (Treatment),	131 (Control)		-	36.96	0.69 [0.53, 0.90]
	131 (Control) .32, df = 1 (P = 0.57), I ² = 0%		-	36.96	0.69 [0.53, 0.90]
Subtotal (95% Cl) otal events: 107 (Treatment), est for heterogeneity: Chi² = C	131 (Control) .32, df = 1 (P = 0.57), I ² = 0%		-	36.96	0.69 [0.53, 0.90] 0.83 [0.68, 1.00]
ubtotal (95% CI) otal events: 107 (Treatment), est for heterogeneity: Chi ² = C est for overall effect: Z = 2.70 otal (95% CI)	131 (Control) .32, df = 1 (P = 0.57), I ² = 0% I (P = 0.007) 22809		•		
Subtotal (95% CI) otal events: 107 (Treatment), est for heterogeneity: Chi ² = 0 est for overall effect: Z = 2.70	131 (Control) .32, df = 1 (P = 0.57), l ² = 0% (P = 0.007) 22809 390 (Control)	23263	•		

171

Author (year)	Duration (year)	Sample Size, N	Vitamin D (IU/day) F/Up	25(OH)D Assay	Mean Baseline 25(OH)D nmol/L IG	End of trial 25(OH)D nmol/L IG	OR (95% CI)	Jadad Score [⁺]
Chapuy (2002) ¹⁸⁰	2	583	800D ₃ + 1200 mg Ca	CPBA	22	75 (graph)	0.79 (0.54, 1.17)	3
Chapuy (1992) ¹⁸¹	1.5	3270	800D ₃ + 1200 mg Ca	CPBA	40	105	0.72 (0.58, 0.90)	2
Lips (1996) ²¹⁰	4	2578	400 D ₃	CPBA	27	62	1.12 (0.86, 1.44)	5
Dawson- Hughes (1997) ¹⁸⁴	3	389	700 D ₃ + 500 mg Ca	CPBA	82.7 M, 67.5 F	112	0.42 (0.20, 0.88)	4
Law (2006) ²⁴⁷	1	3717	1,100 D ₂	IA	59	77	1.4 (0.9,2.0)	2
Pfeifer (2000) ²¹⁸	1	148	800D ₃ + 1200 mg Ca	RIA	25.6	66.1	0.48 (0.12, 1.99)	3
Komulainen (1998) ²⁴²	5	232	300 D ₃ + 500 mg Ca	CPBA	28.6	37.5	0.71 (0.31, 1.61)	3
Grant (2005) ²⁴⁸	5	5292	800 D ₃ ± 1000 mg	HPLC*	39	62.2	1.02 (0.84, 1.22)	5
Flicker (2005) ²⁴⁶	2	625	1,100 D₂ 1,000 mg Ca	RIA	NR	NR	0.69 (0.4, 1.18)	4
Jackson (2006) ²⁴³	7	36,282	400 D ₃ + 1000 mg Ca	RIA*	46	NR	0.97(0.91, 1.03)	4
Porthouse (2005) ²⁴⁴	2	3314	800 D ₃ + 1000 mg Ca	-	-	-	0.96 (0.65, 1.46) Unequal 1.09 (0.60, 1.96) Equal	3
Trivedi (2003) ²³¹	5	2686	100,000 D ₃ q 4 mo	RIA**	NR	74.3	0.78 (0.60, 1.00)	3
Harwood (2004) ¹⁹⁷	1	150	800 D ₃ + 1000 mg Ca	RIA	(28-30)	(40-50)	0.58 (0.13, 2.64)	3

Table 15. OR (95% CI) for Total Fractures from Individual RCTs of Vitamin D

Note: *subsample of total group; **assay obtained from author; ⁺allocation concealment was unclear for all trials except Grant 2005²⁴⁸ (adequate), Dawson-Hughes 1997²⁵¹ (adequate) and Lips 1996²¹⁰ (adequate).

Question 3C. What is the Evidence Regarding the Effect of Supplemental Vitamin D on Falls in Postmenopausal Women and Elderly Men?

Overview of Relevant RCTs

Study characteristics. A total of 14 trials in 16 published reports evaluated the effect of vitamin D on falls and of these, 12 were RCTs with a parallel design, ^{114,115,180,184,185,197,218,231,244,246,247,252} and four used a factorial design.^{208,248,249,253}

Three trials used cluster randomization^{247,249,253} and the remaining trials randomized by individual patient.^{114,115,180,184,185,197,208,218,231,244,246,248,252} Porthouse et al. randomized patients in an equally randomized group in a 1:1 ratio (referred to as "study A") as well as, an unequally randomized group in a 2:1 ratio in favor of the control group (referred to as "study B").²⁴⁴

Bischoff-Ferrari et al. $(2006)^{185}$ was identified as the companion paper to the primary publication Dawson-Hughes et al. $(1997)^{184}$ and Larsen et al. $(2005)^{253}$ was identified as companion paper to Larsen et al. (2004).²⁴⁹ We refer to the primary publications of each trial when discussing the results. Table 16 summarizes characteristics of the included trials.

Within the 12 RCTs, a total of 5,445 participants received the intervention and 5,212 received the control or placebo.^{114,115,180,184,197,208,218,231,244,246,248,252} In the two cluster randomized trials, 6,719 participants received the intervention and 6,603 received control.^{247,249}

Population characteristics. A total of six trials included postmenopausal women only (i.e., greater than or equal to 95 percent of the participants were female)^{114,180,197,218,244,246} whereas the remaining eight trials included a combination of postmenopausal women and elderly men.^{115,184,208,231,247-249,252}

Seven trials included community-dwelling residents^{115,184,218,231,244,248,249} and seven included participants who lived in residences with varied levels of assisted care.^{114,180,197,208,246,247,252}

Interventions. Eleven trials used oral vitamin D_3 , ^{114,180,184,197,208,218,231,244,248,249,252} two trials used oral vitamin D_2 , ^{246,247} and two used a single intramuscular injection of vitamin D_2 . ^{115,197}

Six trials had an intervention arm of oral vitamin D plus calcium, 180,184,197,244,246,248 and Harwood et al. had an injectable D₂ treatment arm with and without calcium. 197

Comparators. Seven trials compared vitamin D with placebo or control, ^{115,197,208,231,247,248,252} and one trial compared vitamin D with calcium.²⁴⁸ Of the trials that used a combination of vitamin D plus calcium, the comparator was placebo in five trials^{180,184,197,244,248} and calcium in four trials.^{114,218,246,248}

Compliance. Ten of the 14 trials reported the compliance rate with taking vitamin D.^{114,115,180,184,208,218,231,244,246,248} The method of assessment varied from direct observation by a study nurse, ^{114,115,180,208} self-report questionnaires, ^{231,244,248} to pill counts.^{184,218,246} In six of the ten trials, compliance rates were over 80 percent, ^{114,115,180,184,208,218} and less than 80 percent in the four other trials.^{231,244,246,248} In the three largest trials, the compliance rates were 55, ²⁴⁴ 63, ²⁴⁸ and 76²³¹ percent, respectively.

Study quality. Eleven of 12 RCTs had a quality score of three or more on the Jadad scale. ^{114,115,180,184,197,208,218,231,244,246,248} The two factorial-designed trials received 1/5 and 2/5 on the Jadad scales, respectively. ^{247,249} Seven trials reported losses to followup of over 20 percent ^{114,180,184,197,231,246,248} Two trials provided an adequate description of allocation concealment, ^{208,248} and in all other trials, the description of allocation concealment was unclear. ^{114,115,180,184,197,218,231,244,246,252}

Type of analysis. Ten trials reported an intention-to-treat analysis,^{114,115,180,184,231,244,246-249} whereas four trials used an available case analysis in which the data were analyzed for every participant in whom the outcome of falls was obtained.^{197,208,218,252}

Fall outcomes. Thirteen RCTs reported the number of individuals with falls, ^{114,115,180,184,197,208,218,231,246-249,252} and the data was provided by the authors for one trial.²⁴⁴

Definition of falls. Seven trials included a definition for falls, all of which were a variation on "unintentionally coming to rest at a lower level or on the ground."^{114,115,184,218,246,249,252}

Ascertainment of falls. Different methods were used to ascertain the number of individuals with falls, and these included the use of postcards with followup visits,¹⁸⁴ questionnaires,^{218,231,244,248} fall diaries with/without followup visits,^{115,208,246,252} followup visits only,^{180,197} hospital contacts,²⁴⁹ and record keeping by geriatric care staff.^{114,247}

25(OH)D levels. Ten out of the 14 trials reported baseline 25(OH) D levels, ^{114,115,180,184,197,208,218,247-249} seven trials reported the end of study 25(OH)D values^{114,115,197,231,247-249} and two reported the change in 25(OH)D from baseline.^{208,218} Three trials evaluated baseline and followup 25(OH) D levels in a sub-sample only.²⁴⁷⁻²⁴⁹ For vitamin D assay, baseline and end of study 25(OH)D levels (intervention group only) in the included trials refer to Table 16.

Quantitative Data Synthesis

Meta-analyses were conducted using data from the 12 RCTs to explore the effect of oral/injectable vitamin D with/without calcium on the risk of falls.^{114,115,180,184,197,208,218,231,244,246,248,252} Data from the two cluster randomized trials^{247,249}were not included in the quantitative analyses with trials that randomized individual patients. Refer to Tables 16 and 17 for a summary of the results.

Oral vitamin D alone. Combined data from four trials (N = 5,958) of <u>oral vitamin D₃ versus</u> <u>placebo</u> did not demonstrate a statistically significant reduction in the risk of falls [OR 1.03 (95% CI 0.91-1.17), heterogeneity $I^2 = 0$ percent).^{208,231,248,252}

Only one trial looked at the effect of <u>oral vitamin D₃ versus calcium</u> (N = 2,654), and the results did not demonstrate a statistically significant reduction in falls [OR 1.19 (95% CI 0.96 – 1.47)].²⁴⁸

Combined data from four trials (N = 7269) of <u>oral vitamin D₃ versus placebo or calcium</u> did not demonstrate a significant reduction in the risk of falls [OR 1.05 (95% CI 0.93-1.19), heterogeneity $I^2 = 0$ percent).^{208,231,248,252} **Oral vitamin D with calcium.** Combined data from five trials (N = 7,056) of <u>oral vitamin</u> <u>D₃ with calcium versus placebo</u> showed a statistically significant reduction in the risk of falls [OR 0.85 (95% CI 0.76-0.96), heterogeneity $I^2 = 0$ percent].^{180,184,197,244,248}

Combined data from four trials (N = 3,512) of <u>oral vitamin D₂/D₃ with calcium versus</u> <u>calcium</u> demonstrated a significant reduction in the fall risk [OR 0.81 (95% CI 0.68-0.97), heterogeneity $I^2 = 0$ percent].^{114,218,246,248}

Combined data from eight trials (N = 9,262) of <u>oral vitamin D₂/D₃ with calcium versus</u> <u>placebo or calcium</u> demonstrated a significant reduction in the risk of falls [OR 0.84 (95% CI 0.76-0.93), heterogeneity $I^2 = 0$ percent].^{114,180,184,197,218,244,246,248} Refer to Figure 10 for forest plot.

Oral vitamin D with or without calcium. Combined data from 11 trials (N = 13,888) of <u>oral vitamin D₂/D₃ with and without calcium versus placebo or calcium</u> did not demonstrate a significant reduction in the risk of falls [OR 0.92 (95% CI 0.85-1.00), heterogeneity $I^2 = 0$ percent).^{114,180,184,197,208,218,231,244,246,248,252}

Injectable vitamin D. Combined data from two trials (N = 214) of <u>injectable vitamin D</u>₂ <u>versus placebo</u> did not show a statistically significant reduced fall risk [OR 0.31 (95% CI 0.04– 2.12)]. However, heterogeneity of the treatment effect was high ($I^2 = 78.4$ percent).^{115,197} Possible explanations include differences in the study populations (elderly women post-hip fracture versus ambulatory elderly men and women with unreported fall histories) and dose of the vitamin D₂ injection (300,000 IU versus 600,000 IU of vitamin D₂).

A small trial (N = 73) of <u>injectable D₂ with calcium versus placebo</u> did not demonstrate a significant reduction in the risk of falls in the treatment group [OR 0.37 (95% CI 0.12-1.12)].¹⁹⁷

Combined data from two trials (N = 250) of <u>injectable vitamin D₂ with or without calcium</u> <u>versus placebo</u> did not show a statistically significant reduction in falls [OR 0.42 (95% CI 0.13-1.33)]. However, heterogeneity of the treatment effect was high ($I^2 = 67.6$ percent).^{115,197} See above for possible explanations.

There were no trials that compared the effects of injectable vitamin D with or without calcium to calcium alone.

Oral or injectable vitamin D with or without calcium. Combined data from nine trials (N = 11,895) of <u>vitamin D₂/D₃ (oral or injectable)</u> with or without calcium versus placebo did not demonstrate a significant reduction in the risk of falls [OR 0.91 (95% CI 0.81-1.01), heterogeneity $I^2 = 24.4$ percent].^{115,180,184,197,208,231,244,248,252}

Combined data from four trials (N = 4,855) of <u>vitamin D₂/D₃ (oral or injectable) with and</u> <u>without calcium versus calcium</u> also did not demonstrate a significant reduction in the risk of falls [OR 0.88 (95% CI 0.70-1.10), heterogeneity I² = 28.8 percent).^{114,218,246,248}

Combined data from all 12 trials (N = 14,101) of <u>vitamin D₂/D₃ (oral or injectable) with and</u> <u>without calcium versus placebo or calcium</u> demonstrated a borderline significant reduction in fall risk [OR 0.89 (95% CI 0.80-0.99), heterogeneity $I^2 = 23.2$ percent) (refer to Figure 11).^{114,115,180,184,197,208,218,231,244,246,248,252}

Publication bias. A funnel plot (OR versus precision [1/standard error]) of the 12 RCTs that investigated the effect of oral or injectable vitamin D with/without calcium versus placebo or

calcium on fall incidence indicates possible asymmetry that was confirmed statistically (intercept 0.27 (90% CI 0.19 to 0.35), p = 0.0001), suggesting the possibility of bias although other potential causes of asymmetry exist (Figure 12).

We conducted separate subgroup and sensitivity analyses to ascertain whether the 'overall' treatment effect observed in our earlier analyses was influenced by various clinical or methodological characteristics respectively.

Subgroup and Sensitivity Analyses

Subgroup analyses were conducted as follows: (1) dose of vitamin D (less than or \geq 800 IU/day; (2) setting (community-dwelling versus institutional participants); (3) study duration (\leq versus > one year, and; (4) gender (postmenopausal women versus a mixed population). The sensitivity analyses included: (1) ascertainment of falls (adequate definition and method of ascertainment versus inadequate or not reported); (2) compliance (less than versus greater than 80 percent); (3) allocation concealment (adequate versus unclear) and; (4) loss to followup (less than versus greater than 20 percent).

Combining six trials (N = 4,942) that included postmenopausal women only demonstrated a significant reduction in falls [OR 0.80 (95% CI 0.66-0.98)]. However, the heterogeneity of treatment effect was moderate ($I^2 = 44.8$ percent) (Figure 13).^{114,180,197,218,244,246} However, combining trials by dose, setting and study duration did not demonstrate a significant reduction in falls.

For the sensitivity analyses, combining results from ten RCTs (N = 8,566) in which the allocation concealment was unclear demonstrated a significant reduction in falls [OR 0.85 (95% CI 0.76-0.96), heterogeneity I² = 23.2 percent] ((Figure 14).^{114,115,180,184,197,218,231,244,246,252} Lastly, combining the six RCTs (N = 1,833) in which falls and ascertainment were adequately defined demonstrated a significant reduction in falls [OR 0.79 (95% CI 0.65-0.96), heterogeneity I² = 0 percent].^{114,115,184,218,246,252}

Results of Trials not Included in the Quantitative Synthesis

Both Larsen et al.²⁴⁹ and Law et al.²⁴⁷ were not included in the meta-analysis as they were cluster randomized trials. Larsen et al. compared 400 IU vitamin D_3 plus 1,000 mg calcium carbonate daily to placebo and a multivariate analysis, including age, marital status and intervention program, demonstrated a 12 percent reduction in fall risk in those females who followed the calcium plus vitamin D program (RR 88, 95% CI 0.79-0.98). However, the effect of clustering was not controlled for in their analysis.²⁴⁹ Law et al. compared 100,000 IU of vitamin D_2 every three months (equivalent to 1,100 IU daily) and did not find a significant reduction in fall risk in elderly people in care homes after adjusting for age, sex, length of time in trial and the cluster randomization of the trial (RR 1.09, 95% CI 0.95-1.25).²⁴⁷

Do Benefits of Vitamin D Supplementation on Falls Vary with Baseline Serum 25(OH)D Levels?

We were not able to quantitatively analyze if the effect of vitamin D supplementation on fall risk varies with baseline 25(OH)D levels as only four out of the 14 trials reported adequate data^{115,180,197,218} Three of the trials evaluated the effect of oral vitamin D₃ (800 IU/day) and calcium,^{180,197,218} and two evaluated the effect of vitamin D₂ in a single injection (300,000 IU or 600,000 IU) with/without calcium on falls.^{115,197} The 25(OH)D assays used were either RIA^{115,197,218} or CPBA.¹⁸⁰ Differences in the type of vitamin D administered (D₂ versus D₃), route of administration (oral versus injectable), vitamin D dosage and 25(OH)D assays used in these four trials limit a direct comparison. Refer to Table 16 for baseline 25(OH)D levels, the assays used and OR (95% CI) of the trials.

Summary. The effect of vitamin D supplementation on falls in postmenopausal women and older men.

Quantity: Combined results from 12 RCTs (N = 14,101) demonstrated a small reduction in falls with vitamin D_2/D_3 (oral or injectable) +/- calcium (OR 0.89, 95% CI 0.80-0.99) with the individual treatment effects ranging from OR 0.28 (95% CI 0.12-0.67) to 1.16 (95% CI 0.70-1.92). In the two cluster randomized trials, one demonstrated a significant fall reduction in postmenopausal women taking vitamin D_3 plus calcium (RR 0.88, 95% CI 0.79-0.98) whereas the other trial did not show a reduction in falls in elderly individuals taking vitamin D_2 (RR 1.09, 95% CI 0.95-1.25).

Quality: Mean quality score (Jadad) for the 12 RCTs was 3.5/5 (range 2-5/5) with 11 of 12 trials obtaining a quality score of ≥ 3 . In addition, two cluster randomization trials of factorial design were of low quality. Only two trials provided an adequate description of allocation concealment and seven had losses to followup > 20 percent. For the two cluster randomized trials, only one controlled for the effect of clustering.

Consistency: The results from trials examining the effect of supplemental vitamin D on falls is consistent with 12 of the 14 trials demonstrating a non-significant reduction in falls. However, when combining RCTs there is inconsistent evidence regarding the effect of supplemental vitamin D on falls. The combination of 12 trials of either oral or injectable vitamin D_2/D_3 (+/-) calcium did demonstrate a small reduction in fall risk. Combination of eight RCTs of oral vitamin D_2/D_3 supplementation with calcium showed a reduction in fall risk, whereas four RCTs of oral vitamin D_3 alone did not. Subgroup analyses showed a significant reduction in falls upon combining trials of postmenopausal women only. Sensitivity analyses showed a significant reduction in fall ascertainment and (2) those in which the allocation concealment was unclear. However, combining trials by degree of compliance and loss to followup did not.

Overall: There is inconsistent evidence that supplemental vitamin D reduces falls in postmenopausal women and older men.

Author (year)	Duration (year)	Sample size	Vit D Dose (IU/d), Type	Serum 25(OH)D Assay	Baseline 25 (OH)D (nmol/L) mean (SD)	End of Study 25(OH)D (nmol/L)	OR (95% CI)	Jadad Score
			Type	Assay	IG	Mean (SD) in IG		
Oral Vitamin D			I					
Bischoff (2003) ¹¹⁴	0.25	122	800 D ₃ + 1,200 mg Ca	RIA	Median 30.75⁺	Median 65.5 ⁺	0.68 (0.30, 1.53)	3
Chapuy (2002) ¹⁸⁰	2	583	800 D ₃ + 1,200 mg Ca	СРВА	21.87 ⁺	75 ^{+,‡}	1.08 (0.75, 1.54)	3
Dawson- Hughes (1997) ¹⁸⁴ Companion: Bischoff-Ferrari 2006 ¹⁸⁵	3	445	700 IU/d D ₃ + 500 mg Ca	СРВА	men: 82.75 (35.25); women: 67.5 (32.25) ⁺ (all groups)	-	0.79 (0.54, 1.14)	4
Flicker (2005) ²⁴⁶	2	625	1,000 D ₂ + 600 mg Ca	RIA	-	-	0.82 (0.59, 1.12)	4
Graafman (1996) ²⁵²	0.6	354	400 D ₃	-	-	-	0.91 (0.59, 1.40)	2
Grant (2005) ²⁴⁸	5	5,292	800 D ₃	HPLC	25(OH)D₃: *38.0 (16.25) (all groups)	Mean change 25(OH)D ₃ : *24.75 (21.75) ⁺ (all groups)	0.99 (0.85, 1.16)	5
Latham (2003) ²⁰⁸	0.5	243	300,000 D ₃ (single dose)	RIA	Median: 37.5 ⁺	Median change: 22.5⁺	1.16 (0.70, 1.92)	5
Trivedi (2003) ²³¹	5	2,686	833 D ₃ (100,000 / 4 mos)	-	-	74.3 (20.7)	0.96 (0.79, 1.17)	3
Pfeifer (2000) ²¹⁸	1	148	800 D ₃ + 1200 mg Ca	RIA	25.65 (13.63)	66	0.51 (0.22, 1.15)	3

 Table 16. OR (95% CI) from Individual RCTs Included in the Meta-Analysis on the Effects of

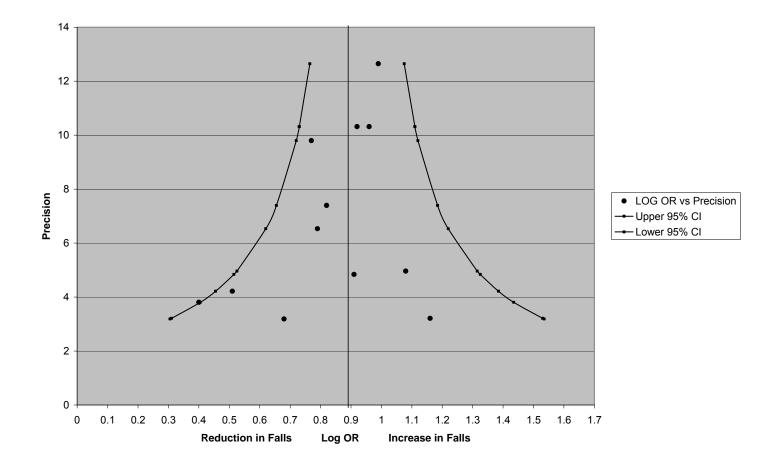
 Vitamin D on Fall Risk

 Table 16 (continued). OR (95% CI) from Individual RCTs Included in the Meta-Analysis on the

 Effects of Vitamin D on Fall Risk

Table 17. OR (95% CI) from Combined RCTs Included in the Meta-Analysis on the Effects of Vitamin D on Fall Risk.


Combined RCTs	OR, 95% CI
Oral vitamin D vs. placebo or calcium (4 trials, N = 7269)	1.05 (0.93-1.19)
Oral vitamin D + calcium vs. placebo or calcium (8 trials, N = 9,262)	0.84 (0.76-0.93)
Oral vitamin D (+/- calcium) vs. placebo or calcium (11 trials, N = 13,888)	0.92 (0.85-1.00)
Injectable vitamin D (+/- calcium) vs. placebo (2 trials, N = 250)	0.42 (0.13, 1.33), I ² = 67.6%
Overall Effect: Oral or injectable vitamin D (+/-calcium) vs. placebo or calcium, (12 trials, N = 14,101)	0.89 (0.80-0.99)


Figure 10. Forest Plot Comparing the Risk of Falls Between Vitamin D₂/D₃ with Calcium vs. Controls (placebo or calcium)

	+ Ca (oral) Versus Placebo or C				
Study	Treatment	Control	OR (random)	Weight	OR (random)
or sub-category	n/N	n/N	95% CI	%	95% Cl
Dawson-Hughes 1997	107/219	124/226		7.70	0.79 [0.54, 1.14]
Pfeifer M, 2000	11/74	19/74		1.57	0.51 [0.22, 1.15]
Chapuy MC, 2002	251/393	118/190	_ 	8.33	1.08 [0.75, 1.54]
Bischoff, 2003	14/62	18/60		1.62	0.68 [0.30, 1.53]
Harwood RH, 2004	7/39	13/37		0.95	0.40 [0.14, 1.17]
Flicker 2005	170/313	185/312		10.64	0.82 [0.59, 1.12]
Grant AM, 2005	161/1306	381/2643		27.41	0.83 [0.69, 1.02]
Porthouse J, Study A	138/607	166/602		15.73	0.77 [0.60, 1.00]
Porthouse J, Study B	191/714	395/1391	-	26.05	0.92 [0.75, 1.13]
Total (95% CI)	3727	5535	•	100.00	0.84 [0.76, 0.93]
Total events: 1050 (Treatm	ent), 1419 (Control)				
Test for heterogeneity: Chi ^a	= 6.75, df = 8 (P = 0.56), l ² = 09	6			
Test for overall effect: Z =	3.24 (P = 0.001)				

Figure 11. Forest Plot Comparing the Risk of Falls Between Oral or Injectable Vitamin D₂/D₃ with/without Calcium vs. Controls (placebo or calcium).

Study	Treatment	Control	OR (random)	Weight	OR (random)
or sub-category	n/N	n/N	95% CI	%	95% CI
Graafmans WC, 1996	62/177	66/177		4.99	0.91 [0.59, 1.40]
Dawson-Hughes 199	7 107/219	124/226		6.46	0.79 [0.54, 1.14]
Pfeifer M, 2000	11/74	19/74		1.52	0.51 [0.22, 1.15]
Chapuy MC, 2002	251/393	118/190	_ 	6.89	1.08 [0.75, 1.54]
Bischoff, 2003	14/62	18/60		1.58	0.68 [0.30, 1.53]
Latham NK, 2003	64/121	60/122	_	3.84	1.16 [0.70, 1.92]
Trivedi DP, 2003	254/1345	261/1341	+	16.41	0.96 [0.79, 1.17]
Dhesi JK, 2004	11/70	14/69		1.38	0.73 [0.31, 1.75]
Harwood RH, 2004	15/113	13/37 -		1.39	0.28 [0.12, 0.67]
Flicker 2005	170/313	185/312		8.37	0.82 [0.59, 1.12]
Grant AM, 2005	380/2649	381/2643	+	20.56	0.99 [0.85, 1.16]
Porthouse J, Study A	138/607	166/602		11.17	0.77 [0.60, 1.00]
Porthouse J, Study B	191/714	395/1391	-	15.45	0.92 [0.75, 1.13]
Fotal (95% Cl)	6857	7244	•	100.00	0.89 [0.80, 0.99]
Jotal events: 1668 (Tr	eatment), 1820 (Control)				
est for heterogeneity	: Chi ² = 15.62, df = 12 (P = 0.21), l ² =	23.2%			
lest for overall effect	Z = 2.14 (P = 0.03)				

Figure 13. Forest Plot of Comparing the Risk of Falls between Oral or Injectable Vitamin D₂/D₃ with/without Calcium vs. Controls (placebo or calcium) Grouped by Study Population i.e. Gender

Comparison: 02 Sensitivity : Outcome: 07 Gender	and Subgroup Analyses: Fa	alls			
Study or sub-category	Treatment n/N	Control n/N	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
01 Postmenopausal women only	/				
Pfeifer M, 2000	11/74	19/74		1.52	0.51 [0.22, 1.15]
Chapuy MC, 2002	251/393	118/190	+	6.89	1.08 [0.75, 1.54]
Bischoff, 2003	14/62	18/60		1.58	0.68 [0.30, 1.53]
Harwood RH, 2004	15/113	13/37	_ _	1.39	0.28 [0.12, 0.67]
Flicker 2005	170/313	185/312		8.37	0.82 [0.59, 1.12]
Porthouse J, Study A	138/607	166/602	-	11.17	0.77 [0.60, 1.00]
Porthouse J, Study B	191/714	395/1391	+	15.45	0.92 [0.75, 1.13]
Subtotal (95% CI)	2276	2666	•	46.36	0.80 [0.66, 0.98]
Total events: 790 (Treatment), 9	14 (Control)				
Total events: 790 (Treatment), 9 Test for heterogeneity: Chi ² = 1(Test for overall effect: Z = 2.15	0.87, df = 6 (P = 0.09), l² = 4	14.8%			
Test for heterogeneity: Chi ² = 10	0.87, df = 6 (P = 0.09), l² = 4	14.8%			
Test for heterogeneity: Chi² = 10 Test for overall effect: Z = 2.15	0.87, df = 6 (P = 0.09), l² = 4	66/177		4.99	0.91 [0.59, 1.40]
Fest for heterogeneity: Chi ² = 1(Fest for overall effect: Z = 2.15 02 Mixed popuation Graafmans WC, 1996	0.87, df = 6 (P = 0.09), l ² = 4 (P = 0.03)		±	4.99 6.46	0.91 [0.59, 1.40] 0.79 [0.54, 1.14]
Fest for heterogeneity: Chi² = 10 Fest for overall effect: Z = 2.15 02 Mixed popuation	0.87, df = 6 (P = 0.09), l² = 4 (P = 0.03) 62/177	66/177	+		
est for heterogeneity: Chi ² = 1(est for overall effect: Z = 2.15 2 Mixed popuation Graafmans WC, 1996 Dawson-Hughes 1997 Latham NK, 2003	0.87, df = 6 (P = 0.09), I ² = 4 (P = 0.03) 62/177 107/219	66/177 124/226	+	6.46	0.79 [0.54, 1.14]
est for heterogeneity: Chi ² = 10 est for overall effect: Z = 2.15 12 Mixed popuation Graafmans WC, 1996 Dawson-Hughes 1997 Latham NK, 2003 Trivedi DP, 2003	0.87, df = 6 (P = 0.09), P = 4 (P = 0.03) 62/177 107/219 64/121	66/177 124/226 60/122	+ + + + + + + + + + + + + + + + + + + +	6.46 3.84	0.79 [0.54, 1.14] 1.16 [0.70, 1.92]
est for heterogeneity: Chi ² = 10 est for overall effect: Z = 2.15 12 Mixed popuation Graafmans VVC, 1996 Dawson-Hughes 1997 Latham NK, 2003 Thivedi DP, 2003 Dhesi JK, 2004	0.87, df = 6 (P = 0.09), P = 4 (P = 0.03) 62/177 107/219 64/121 254/1345	66/177 124/226 60/122 261/1341	+	6.46 3.84 16.41	0.79 [0.54, 1.14] 1.16 [0.70, 1.92] 0.96 [0.79, 1.17]
est for heterogeneity: Chi ² = 10 est for overall effect: Z = 2.15 12 Mixed popuation Graafmans WC, 1996 Dawson-Hughes 1997 Latham NK, 2003 Trivedi DP, 2003 Onesi JK, 2004 Grant AM, 2005	0.87, df = 6 (P = 0.09), P = 4 (P = 0.03) 62/177 107/219 64/121 254/1345 11/70	66/177 124/226 60/122 261/1341 14/69	+++++++++++++++++++++++++++++++++++++++	6.46 3.84 16.41 1.38	0.79 [0.54, 1.14] 1.16 [0.70, 1.92] 0.96 [0.79, 1.17] 0.73 [0.31, 1.75]
Fest for heterogeneity: Chi ² = 1(Fest for overall effect: Z = 2.15 02 Mixed population Graafmans WC, 1996 Dawson-Hughes 1997	0.87, df = 6 (P = 0.09), P = 4 (P = 0.03) 62/177 107/219 64/121 254/1345 11/70 380/2649 4581 006 (Control) 29, df = 5 (P = 0.81), P = 09	66/177 124/226 60/122 261/1341 14/69 381/2643 4578		6.46 3.84 16.41 1.38 20.56	0.79 [0.54, 1.14] 1.16 [0.70, 1.92] 0.96 [0.79, 1.17] 0.73 [0.31, 1.75] 0.99 [0.85, 1.16]
est for heterogeneity: Chi ² = 10 est for overall effect: Z = 2.15 2 Mixed popuation Graafmans VVC, 1996 Dawson-Hughes 1997 Latham NK, 2003 Trivedi DP, 2003 Dhesi JK, 2004 Grant AM, 2005 Subtotal (95% CI) otal events: 878 (Treatment), S est for heterogeneity: Chi ² = 2.	0.87, df = 6 (P = 0.09), P = 4 (P = 0.03) 62/177 107/219 64/121 254/1345 11/70 380/2649 4581 006 (Control) 29, df = 5 (P = 0.81), P = 09 (P = 0.48) 6857	66/177 124/226 60/122 261/1341 14/69 381/2643 4578		6.46 3.84 16.41 1.38 20.56	0.79 [0.54, 1.14] 1.16 [0.70, 1.92] 0.96 [0.79, 1.17] 0.73 [0.31, 1.75] 0.99 [0.85, 1.16]

Favours treatment Favours control

Figure 14. Forest Plot of Comparing the Risk of Falls between Oral or Injectable Vitamin D₂/D₃ with/without Calcium vs. Controls (placebo or calcium) Grouped by Reports of Allocation Concealment

Review:	Effectiveness and Safety of Vitamin D
Comparison:	02 Sensitivity and Subgroup Analyses: Falls
Outcome:	08 Allocation concealment

Study or sub-category	Treatment n/N	Control n/N	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
01 Adequate					
Latham NK, 2003	64/121	60/122	_ _	3.84	1.16 [0.70, 1.92]
Grant AM, 2005	380/2649	381/2643	+	20.56	0.99 [0.85, 1.16]
Subtotal (95% Cl)	2770	2765	+	24.40	1.01 [0.87, 1.17]
Total events: 444 (Treatment),	441 (Control)		[
Test for heterogeneity: Chi ² = I	0.33, df = 1 (P = 0.57), l ² = 09	%			
Test for overall effect: Z = 0.1	0 (P = 0.92)				
02 Inadequte, not clear or not :	used				
Graafmans WC, 1996	62/177	66/177	-	4.99	0.91 [0.59, 1.40]
Dawson-Hughes 1997	107/219	124/226		6.46	0.79 [0.54, 1.14]
Pfeifer M, 2000	11/74	19/74		1.52	0.51 [0.22, 1.15]
Chapuy MC, 2002	251/393	118/190	-	6.89	1.08 [0.75, 1.54]
Bischoff, 2003	14/62	18/60		1.58	0.68 [0.30, 1.53]
Trivedi DP, 2003	254/1345	261/1341	+	16.41	0.96 [0.79, 1.17]
Dhesi JK, 2004	11/70	14/69		1.38	0.73 [0.31, 1.75]
Harwood RH, 2004	15/113	13/37	_ _	1.39	0.28 [0.12, 0.67]
Flicker 2005	170/313	185/312		8.37	0.82 [0.59, 1.12]
Porthouse J, Study A	138/607	166/602	-	11.17	0.77 [0.60, 1.00]
Porthouse J, Study B	191/714	395/1391	+	15.45	0.92 [0.75, 1.13]
Subtotal (95% CI)	4087	4479	•	75.60	0.85 [0.76, 0.96]
Total events: 1224 (Treatment), 1379 (Control)				
Test for heterogeneity: Chi ² =	12.67, df = 10 (P = 0.24), l ² =	21.1%			
Test for overall effect: Z = 2.5	5 (P = 0.01)				
Total (95% Cl)	6857	7244		100.00	0.89 [0.80, 0.99]
Total events: 1668 (Treatment), 1820 (Control)				
Test for heterogeneity: Chi ² =	15.62, df = 12 (P = 0.21), l² =	23.2%			
Test for overall effect: Z = 2.1	4 (P = 0.03)				

Favours treatment Favours control

Question 4. Is There a Level of Sunlight Exposure (Time of Year, Latitude, BMI, the Amount of Skin Exposed) That is Sufficient to Maintain Adequate Vitamin D Concentrations, But Does Not Increase the Risk of Non-Melanoma or Melanoma Skin Cancer?

We did not identify any existing systematic reviews with our search of the vitamin D literature that addressed this question. Our search strategy may not have identified studies in the dermatology or photobiology literature that evaluated the effect of solar UV-B exposure in terms of a minimal erythemal dose and the risk of skin cancer.

A minimal erythemal dose (MED) is the amount of sun exposure required to produce a faint redness of the skin.^{254,255} Holick has stated that whole body exposure of healthy young and middle-aged adults to a single MED of simulated sunlight (equivalent to mid-day sun during summer at 41 degrees north) raised serum 25(OH)D to levels comparable to the oral ingestion of 10,000 to 25,000 IU of vitamin D_3 .²⁵⁵ Therefore, exposing the arms, face and hands (15 percent of the body surface) to 1 MED is estimated to produce the equivalent of 1,500 – 3,750 IU of vitamin D. Exposure of arms, face and hands to 1/6 to 1/3 MED should be adequate to produce doses in the range of current vitamin D adequate reference intakes. The amount of sun exposure that is needed to generate 1/3 MED will vary depending on external factors such as latitude, season, time of day, ozone amount, cloud amount, aerosol and reflectivity of the surface.²⁵⁶ It will also depend on individual factors such as skin type and age, with exposure times three to four times longer in individuals with highly pigmented skin.^{257,258}

Beadle has also estimated epidermal vitamin D production in response to sun exposure.²⁵⁹ Of note, there is a limit to the amount of previtamin D_3 that forms in skin with prolonged solar exposure as previtamin D_3 can be photoisomerised further into inert isomers or back to 7-dehydrocholesterol (7-DHC).²⁵⁶

In an ecological study in Australia and New Zealand, data from the Global Solar UV Index, was used to convert daily Ultraviolet Index (UVI) data into sun exposure times. Unprotected sun exposure times (by location, month and time) that will produce 1/6 to 1/3 MED were developed for adults with moderately fair skin with exposure of 15 percent of body surface.^{260,261} The authors stated that it is impractical to prescribe a uniform message to the general population given the number of variables that need to be taken into consideration (e.g., latitude, skin pigmentation).²⁶¹

The relation of a biological effect arising from UV radiation can be described by its wavelength dependence or action spectrum. The action spectrum of vitamin D synthesis in the skin is similar although not equivalent to the erythemal action spectrum.^{262,263} There are several action spectra that can be used for vitamin D (e.g., the 7-DHC absorption spectrum, the D-dosimeter action spectrum and the action spectrum for conversion of 7-DHC to previtamin D₃).^{262,264,265} In a recently published model, a vitamin D₃ effective UV dose (corresponding to an oral dose of approximately 1000 IU) was calculated, using the action spectrum for previtamin D₃ synthesis, for different skin pigmentation types (Fitzpatrick I – VI skin types with skin of type VI

being dark skinned and the least sensitive to UV radiation).²⁶² The model reference condition was Boston (mid-day, March 21, 42.2 degrees N, and total ozone approximating that defined in the U.S.standard atmosphere). The study took into account factors such as variable atmospheric and surface conditions, time of day, percent body exposure and dietary vitamin D intake. A changing erythema risk:vitamin D₃ benefit ratio of sun exposure was identified as a function of solar elevation angle (i.e., latitude and season) with the least margin between adequate exposure for vitamin D₃ synthesis and risk of sunburn at the low solar elevation angles that are common at high lattitudes.²⁶²

Another recent study²⁶³ has investigated the seasonal dependence of vitamin D UV levels relative to erythemal levels in the U.S., using calibrated high accuracy instruments. During eight months of the year (March-October) for all sites (18°N to 44° N), there was no measured latitude gradient of vitamin D UV even at the highest latitude, in contrast to a previous study.²⁶⁶ At lower latitudes (< 25° N), wintertime vitamin UV D levels were equal to summertime levels.²⁶³

Erythema may also represent a different endpoint than DNA damage i.e., an erythemal dose may be unrelated to the extent of DNA damage or individual susceptibility to DNA damage may vary. A direct quantitative relation between erythema and DNA damage has not been firmly established.²⁶⁷

Epidemiologic and experimental preclinical evidence exists that the three commonest types of skin cancer (cutaneous malignant melanoma, squamous cell carcinoma, and basal cell carcinoma) are caused by sun exposure.²⁶⁸ The relation of skin cancer to UV exposure differs depending on the type of cancer. For example, cumulative or chronic sun exposure appears to increase the risk of squamous cell carcinoma whereas risk of cutaneous malignant melanoma (CMM) and basal cell carcinoma appear to be related more to intermittent UV exposure, particularly early in life.²⁶⁹ The relation of CMM to sun exposure is complex, and only recently has it been possible to experimentally identify an action spectrum for melanoma.²⁷⁰ The effect of UV exposure and vitamin D photosynthesis on CMM may also be complex as melanoma cells can express vitamin D receptors and vitamin D metabolites may have a growth regulatory role.^{271,272}

Question 5. Does Intake of Vitamin D, Above Current Reference Intakes, Lead to Toxicity?

Overview of Relevant Studies

Potential consequences of vitamin D toxicity include hypercalcemia, renal stones and soft tissue and vascular calcification. Clinical symptoms associated with hypercalcemia include nausea, vomiting, increased thirst and depression. Serum concentrations of 25(OH)D above 220 nmol/L have been associated with hypercalcemia.²⁷³ Hypercalciuria can be associated with vitamin D toxicity and may contribute to the development of nephrolithiasis, although other factors such as low urinary citrate and hyperoxaluria also predispose to renal stones.²³⁴

Randomized trials that reported safety outcomes by intervention group were included in this section of the report.

Study characteristics. A total of 22 randomized controlled trials (RCTs) (in 23 published reports) reported if vitamin D supplementation resulted in toxicity.^{77,105,112-}

^{114,117,118,178,180,181,184,191,197,202,207,209,212,233,234,236,243,248} Twenty-one were parallel design RCTs, ^{77,105,112-114,117,118,178,180,181,184,191,197,202,207,209,212,233,234,236,243} and one RCT used a factorial design.²⁴⁸ Two publications reported the results of more than one study in each record.^{233,236} The Vieth publication (2004) included two trials and we refer to each as Study A and Study B respectively.²³³ Zeghoud et al. included two studies, only one of which was an RCT.²³⁶ Study characteristics are summarized in Table 18.

Population characteristics. Within the 22 included RCTs, there were a total of 47,802 subjects. Only two trials^{243,248} had large sample sizes, with the majority of remaining studies having sample sizes of less than 100 participants. There were a total of 25,562 participants within the intervention group and 22,240 participants within a comparator, control, or placebo group. Seven of the 22 trials included both males and females,^{77,112,184,209,233,234,248} thirteen included only females,^{105,114,117,118,178,180,181,191,197,202,207,212,243} one included only males,¹¹³ and one trial with infants did not specify the gender.²³⁶

Two trials included infants, healthy term neonates enrolled at birth in one study⁷⁷ and infants 3 to 36 months of age (mean age 10.6 months, SD 6.1)who were diagnosed with vitamin D deficient rickets in the other.²³⁶ One trial included healthy (pre- and post-menarchal) female children aged 10 to 17 years.¹⁰⁵ Two studies included predominantly middle-aged populations (mean age 41.6 and 38.8 years (range 18-56 years) in one study and mean age 53 and 55 years (range not reported) in the other study).^{233,234} Seventeen studies included older adults.¹¹²⁻ ^{114,117,118,178,180,181,184,191,197,202,207,209,212,243,248} The precise definition of an older population varied in the studies (e.g., postmenopausal women; individuals 65 years or older including mean ages ranging from 7th to the 9th decade). The adult populations were described as participants from long-term geriatric care facilities, nursing homes or homes for the aged in five studies.^{112,114,181,207,209} or community-dwelling participants in ten studies.^{113,117,178,180,184,197,202,233,234,248}

Ascertainment of toxicity. Ascertainment of toxicity was reported in most trials. The most commonly reported laboratory measure of calcium homeostasis was serum calcium (either total or ionized).^{112-114,117,178,181,181,184,191,197,202,202,207,209,209,212,236,248,274} In most trials, hypercalcemia was defined as a total serum calcium level above 2.7-2.8 mmol/L. Thresholds used to define hypercalciuria varied across studies. For example, hypercalciuria was defined as a mean urinary calcium-creatinine ratio <1.0 when calcium and creatinine are measured in mmol (or ≤ 0.37 when measured in mg) in a randomly collected sample or as a 24-hour urinary calcium excretion value with variable thresholds of 6.25-10 mmol/day.^{180,191,234} Criteria used to ascertain the outcome of renal stones were not clearly reported in all trials.

Interventions. Nineteen trials used oral vitamin D_3 , 77,105,113,114,117,118,178,180,181,184,191,202,207,209,233,234,236,243,248 and three trials used vitamin D_2 .

Seven trials had intervention arms of one or more doses of oral vitamin D.^{77,105,112,209,233,234,236} Fifteen had one or more arms of vitamin D with calcium.^{113,114,117,118,178,180,181,184,191,197,202,207,212,243,248}

Comparators. Twelve trials compared vitamin D with placebo^{105,112,117,180,181,184,191,243,248} or control.^{197,202,207} Five studies had a comparator arm of calcium.^{113,114,178,212,248} Six trials used another dose of vitamin D as the comparator.^{77,118,209,233,234,236}

Study quality. Twelve studies received a rating of \geq 3 on the Jadad scale.^{105,112-114,117,178,180,184,191,197,243,248} Eleven studies were described as double-blind,^{105,112-114,117,178,180,181,124,191,234,248} and of those, nine adequately conducted the blinding.^{105,112-114,117,178,180,191,248} In the majority of trials (N = 19), allocation concealment was unclear^{77,105,112,114,118,178,180,181,184,191,197,202,207,209,212,233,234,236,243} whereas three studies provided an adequate description.^{113,117,248}

Study withdrawals were adequately reported in 12 of the 22 studies.^{112,113,117,118,181,184,191,197,207,236,243,248} Of these trials, eight reported losses to followup of over 20 percent.^{112,180,181,184,191,207,209,233}

Qualitative Synthesis

Infants. Two trials reported toxicity outcomes in infant populations.^{77,236} In one study, 56 infants with vitamin D deficient rickets (mean age 10.7 months) were randomized to receive a single oral dose of 150,000, 300,000 or 600,000 IU of vitamin D⁷⁷ The other study included 30 healthy neonates with low baseline serum 25(OH)D (< 25 nmol/L) who were randomized at birth to receive either a single oral dose of 200,000 IU vitamin D₃ or 100,000 IU at birth, three and six months of age.²³⁶ The latter study also reported on an earlier cohort of 30 non-randomized infants who were treated with 600,000 IU.

In the two trials, no serum calcium values were reported within the hypercalcemia range for the 100,000 and 150,000 IU doses. The Cesur trial reported eight cases of hypercalcemia (two in the 300,000 and six in the 600,000 treatment arms). Zeghoud et al. did not report any episodes of hypercalcemia during the RCT. However, an oral dose of 600,000 IU vitamin D₃ resulted in a significant increase in serum calcium concentrations 2 weeks later (p>0.005), with no change in serum calcium in infants receiving a lower vitamin D dose (200,000 IU). Mean serum calcium concentrations in the 100,000 and 200,000 IU dose were significantly lower than serum calcium after an oral dose of 600,000 IU of vitamin D₃. No withdrawals were reported in the trials of infant populations.^{77,236}

Children. One trial examined the safety of vitamin D_3 in healthy female children who received either weekly 1,400 IU (200 IU per day) or 14,000 IU (2,000 IU/day) of vitamin D_3 , or placebo.¹⁰⁵ The authors reported that two subjects in the placebo group had serum calcium levels above the upper limit of normal at one year versus no subjects in the intervention groups. Three subjects (1.5 percent) in the 2,000 IU/day group had serum 25(OH)D levels over 250 nmol/L (256.4, 400.8, and 485.5 nmol/L), but none had concomitant hypercalcemia. There were 11 withdrawals out of 168 participants (16 percent). However, withdrawal rates did not differ by treatment arm. One girl in the low dose vitamin D arm dropped out due to glomuerulonephritis which was thought to be secondary to a post-streptococcal infection.

Adults. Two small trials by Vieth examined the safety of vitamin D_3 in women of reproductive age or middle aged men.^{233,234} The populations included either healthy men and women²³⁴ or endocrine outpatients.²³³ Neither trial had a placebo or control group.²³³ In one trial, subjects were randomized to either 600 IU or 4,000 IU of vitamin D_3 daily.²³³ The second trial by Vieth et al. compared 1,000 IU to 4,000 IU of vitamin D_3 daily.²³⁴ The authors did not report if subjects with a history of renal stones were excluded.

Seventeen efficacy trials examined the safety of vitamin D in older adults.^{112-114,117,118,178,180,181,184,191,197,202,207,209,212,243,248} Fourteen trials used vitamin D₃ as the intervention, ^{113,114,117,118,178,180,181,184,191,202,207,209,243,248} and three trials used vitamin D₂.^{112,197,212} Vitamin D doses ranged from 400 to 10,000 IU daily.²¹² Six trials included a treatment arm of either vitamin D₂ or D₃ alone, ^{112,113,197,202,209,248} and thirteen had a treatment arm with vitamin D combined with calcium.^{114,117,118,178,180,181,184,191,197,207,212,243,248}

Six trials used an immunoassay method to measure 25(OH)D,^{114,117,197,209,212,243} ten used CPBA,^{112,113,118,178,180,181,184,191,202,207} and one trial used HPLC.²⁴⁸

Exclusion criteria that were reported in the published trials are summarized in Table 17. Five trials excluded subjects with a history of hypercalcemia, ^{114,180,191,209,243} seven trials excluded subjects with renal insufficiency, ^{112,114,118,180,184,191,209} seven excluded subjects with primary hyperparathyroidism or other disorders of bone metabolism, ^{113,114,117,118,178,184,191} and three trials excluded subjects who had a history of kidney stones. ^{184,209,243} Most trials excluded subjects who had a field to a flect bone metabolism.

Hypercalcemia. Thirteen trials reported hypercalcemia as an outcome.¹¹²⁻ ^{114,178,180,181,191,197,207,209,233,234,248} In three trials, cases of hypercalcemia were reported in the vitamin D arm that were thought to be due to unmasking of underlying primary hyperparathyroidism.^{180,181,207} Six trials reported that there were no cases of hypercalcemia in either arm of the study.^{113,114,178,197,233,234}

Twelve trials that compared vitamin D alone or vitamin D plus calcium to placebo or calcium reported on the outcome of hypercalcemia.^{112-114,117,178,180,181,191,197,207,209,248} Supplemental calcium carbonate or citrate doses ranged from 500 mg^{118,184,212} to 1,200 - 1,500 mg per day.¹¹⁷ Combining the results from the twelve trials that had either calcium or placebo as a comparator resulted in a Peto odds ratio of 1.58 (95% CI 0.9, 2.77), p = 0.11 and I² = 0.5 percent. There were a total of 50/10,535 cases of hypercalcemia with 31/5410 (0.6 percent) in the vitamin D (+/- calcium) and 19/5125 (0.4 percent) in the placebo or calcium arm. Excluding cases that were due to underlying primary hyperparathyroidism, resulted in a Peto Odds Ratio of 1.4 (0.76, 2.5). Most cases of hypercalcemia were reported to be asymptomatic.

Hypercalciuria. Ten trials provided data on hypercalciuria within the adult populations.^{113,117,118,178,180,184,191,209,212,234} Vitamin D doses ranged from 700 IU vitamin D₃/day¹¹⁸ to 10,000 IU vitamin D₂/day.²¹² Seven trials had calcium carbonate 500-1,000 mg as a cointervention^{113,117,178,180,184,191,212} In six trials^{113,117,118,180,184,212} (N = 1190) that had calcium or placebo as a comparator , there were total of eighteen cases of hypercalciuria reported, 13 in the vitamin D arms and 5 in placebo/control (Peto OR of 1.78 (95% CI 0.68, 4.7), p = 0.24 and I² = 0). In one trial, all four cases of hypercalciuria were reversed by lowering the calcium supplementation from 500 mg to 250 mg/day.¹¹⁸ In another trial in elderly women receiving 800 mg of vitamin D₃ plus 1,000 mg of calcium, 20 percent had higher 24-hour urine calcium to creatinine ratios in the intervention group.¹⁹¹

Vieth compared 4,000 IU vitamin D₃ to 1,000 IU daily, and reported more urinary calcium/creatinine ratios (> 1.0) in the 4,000 IU of vitamin D₃ arm versus the 1,000 IU/day arm, although the relative number of cases of hypercalciuria during the 5 month followup was not significantly different between groups.²³⁴ Brazier compared 800 IU vitamin D₃ plus 1,000 mg of calcium to placebo, and reported that significantly more participants in the vitamin D plus

calcium group had a higher 24 hour urine Ca/Cr ratio (threshold > 6.25 mmol/24 hours) (20 percent) compared to placebo.¹⁹¹

Nephrolithiasis. Seven of the 19 adult trials provided data on renal stones. ^{117,180,181,197,202,243,248} Doses of vitamin D ranged from 400 IU vitamin D_3^{243} to 800 IU daily. ¹⁸¹ Duration of exposure ranged from one¹⁹⁷ to seven years. ²⁴³ Five trials reported that there were no cases of kidney stones documented during the trial. ^{117,180,181,197,202}

The Women's Health Initiative (WHI) trial on postmenopausal women aged 50 to 79 years reported that there was an increase in renal stones in subjects treated with 400 IU vitamin D_3 (the daily reference intake for women aged 50 to 70 years, and less than the reference intake for women > 70 years) plus calcium 1,000 mg compared to placebo.²⁴³ The WHI trial was the largest trial (N = 36,282) and at the seven year followup, 449/16,936 (2.7 percent) subjects in the vitamin D_3 plus calcium group reported kidney stones versus 381/16,815 (2.3 percent) in the placebo group (HR 1.17, 95% CI 1.02-1.34), which appeared unrelated to high baseline calcium intake. Grant et al. reported two cases of kidney stones in the 800 IU vitamin D_3 /day (combined with 1,000 mg calcium) treatment arm, and two cases within the placebo arm after five years followup.

Three trials provided data on the effect of vitamin D on renal function^{180,191,248} and there was no significant effect on renal function compared to placebo.

Total withdrawals and other adverse events. In the adult trials, only one trial did not report data on total withdrawals.¹⁷⁸ Total withdrawals ranged from 0^{234} to 60 percent of the study population.²⁰⁷ Total adverse events were summarized in 12 of 19 adult trials,^{112-114,117,178,191,202,207,212,234,243,248} and ranged from $0^{113,114,178,234}$ to 222 events (N = 208 subjects).¹¹⁷ Fifteen of the 222 events were considered to be serious adverse events, although none were judged as being related to vitamin D.¹¹⁷ Adverse events rates did not appear to differ significantly when comparing vitamin D combined with calcium versus placebo. Gastrointestinal (GI) disturbances, including nausea, diarrhea and abdominal pain were reported in eight trials in adults.^{114,180,181,191,202,207,243,248} No significant differences in GI disturbances between the vitamin D and calcium groups were reported.

Deaths were reported as an outcome in 11 trials. Overall, mortality not increased in the vitamin D treatment arms compared with the controls.^{112,117,180,181,184,191,197,207,209,243,248}

Summary. Intake of vitamin D above current reference intakes and harms.

Quantity: A total of 22 trials reported data on toxicity-related outcomes, 21 of which used doses above current reference intakes.

Quality: Of 22 trials, only 12 received a rating of ≥ 3 on the Jadad scale. An adequate description of allocation concealment was reported in three trials.

Consistency: Toxicity results from trials with intakes of vitamin D above current reference intakes varied and this may have been related to different doses, baseline characteristics of populations or exposure times. Most trials excluded subjects with renal insufficiency or hypercalcemia, were of small sample size and had short durations of exposure to vitamin D. Event rates were low across trials in both the treatment and placebo arms. The WHI trial on women aged 50 to 79 years, examined the effect of vitamin D₃ 400 IU (the daily reference intake for women aged 50 to 70 years and below the 600 IU reference intake for women > 70 years) in combination with 1,000 mg calcium carbonate versus placebo and found an increase in the risk of renal stones (Hazard Ratio 1.17 95% CI 1.02-1.34), corresponding to 5.7 events per 10,000 person years of exposure.

Overall, there is fair evidence that vitamin D supplementation above current reference intakes, with or without calcium supplementation, was well tolerated. A significant increase in kidney stones was observed in one large trial in postmenopausal women taking 400 IU vitamin D_3 with calcium. The quality of reporting of toxicity outcomes was inadequate in a number of the trials, and most trials were not adequately powered to detect adverse events.

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Infants					
Cesur (2003) ⁷⁷ 2 mo	100% Vit D deficient rickets Infants, mean age 10.7 mo	IG1: 20 IG2: 20 IG3: 16	IG1: 150,000 IU vit D IG2: 300,000 IU vit D IG3: 600,000 IU vit D	NR	hypercalcemia: IG1: 0/20 (0%) IG2: 2/20 (10%)
			(single dose)		IG3: 6/16 (37.5%)
(d 3, 10 and 30)	Patients with chronic liver/renal disease, malabsorption, or prolonged anticonvulsant use were excluded NR (Turkey)		compliance 100%	RIA	hypercalciuria: IG2: d10 mean urinary Ca/Cr ratio increased; IG3: d 30 mean urinary Ca/Cr ratio increased (ratio > 0.37,
					measured in mg/dL)
Zeghoud (1994) ²³⁶	100% Serum 25(OH)D < 25 nmol/L Healthy term neonates enrolled	IG1: 15 IG2: 15 IG3: 30 (earlier	IG1: 100,000 IU vit D_3 (0, 3 and 6 mo) IG2: 200,000 IU vit D_3 (single dose)	mean (SD) IG1: NR for 2 wks after dose; 67.5 (30) 3 mo post 3rd	hypercalcemia: IG1 ² : 0 IG2 ³ : 0 (no 25(OH)D levels were > 120
9 mo	at birth	cohort; not randomized)	IG3: 600,000 IU vit D ₃	dose IG2: 150 (55) 2 wks after	nmol/L in either group)
(IG1: 2wks and 6 mo; IG2: 2 wks after 1st	NR	,	(single dose) (earlier cohort)	dose NR for 3 mo after dose	hypercalciuria: NR IG3 (earlier cohort) ¹ :
dose and 3 mo after ea dose)	NR (Algeria)		compliance 100%	IG3 (earlier cohort): 307 (160) 2 wks after dose CPBA	hypercalcemia: 0; (50% had 25(OH)D levels > 120 nmol/L at 6 mo)

 Table 18. Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Children					
Fuleihan (2006) ¹⁰⁵ 1 year	NR; mean serum 25(OH)D 35 nmol/L Female children and adolescents; majority postmenarcheal	IG1: 58 IG2: 55 CG: 55	IG1: 1400 IU vit D ₃ /wk IG2: 14,000 IU vit D ₃ / wk CG: Placebo	mean (SD) IG1: 43 (15) IG2: 95 (78); 3/55 had 25(OH)D levels > 250 nmol/L but none had hypercalcemia CG: 40 (20)	hypercalcemia: IG1: 0/58 (0%) IG2: 0/55 (0%) CG: 2/55 (13.6%) Hypercalciuria: NR
(6 and 12 mo)	Excluded subjects with disorders or medications known to affect bone metabolism NR (Lebanon)		compliance (volume returned): quantitation NR; described as "excellent"	СРВА	WDAE: 1 poststreptococcal glomerulonephritis (IG1)
Women Predom	inantly of Reproductive Age +/-Mid	dle-aged Men		0. 5.	
Vieth (2001) ²³⁴	4-6% 25(OH)D <25 nmol/L: 12-16% 25(OH)D <40 nmol/L:	IG1: 33 IG2: 28	IG1: 1000 IU vit D ₃ /d IG2: 4000 IU vit D ₃ /d	mean (SD): 3 mo:	hypercalcemia: IG1: 0
2-5 mo (0.5, 1, 2, 3, 4, and 5 mo)	Generally healthy subjects (hospital workers) mean age IG1: 41.6 (range 18-53) IG2: 39.9 (range 23-56)	at 5 mo: included IG1 15/33 and IG2 15/28		IG1: 68.7 (16.9) IG2: 96.4 (14.6) from 3 mo on: IG1: range 40-100	IG2: 0 Hypercalciuria: mean urinary Ca/Cr ratio >1.0: from graph, 4 values > 1.0 over 5 mo in
	Caucasian 66.6-71%; Black 6.1-10.7%; Asian 17.9-27.3% (Canada)		compliance NR	IG2: range 69-125 RIA	IG1 and 6 values (2 reported in same subject) in IG2

Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Vieth (2004) ²³³ 2 studies: A 3 mo B: continuers from A plus new patients 3 mo (2-6 mo)	Study A: serum 25(OH)D <61 nmol/L in spring or summer Study B:< 51 nmol/L Thyroid clinic outpatients NR Ethnicity NR (Canada)	A : 64; 37 completers B: 66 new patients and 46 continuers; 51 and 31 completers respectively	IG1: 4200 IU vit D ₃ /wk IG2: 28,000 IU vit D ₃ /wk compliance NR	mean (SD): Study A: IG1: 79 (30) IG2: 112 (40) Study B: NR RIA	hypercalcemia: no mean increase in ionized calcium in either arm hypercalciuria: NR
Predominantly P	ostmenopausal Women and/or Ele	derly Men			l
Aloia (2005) ¹¹⁷ 3 years (3,6,12,18,24,27 ,30 and 36 mo)	NR; mean baseline 25(OH)D: 47 nmol/L (range 12.5 to 99.7) Ambulatory postmenopausal African American women 50-70 y of age Excluded if: hormone therapy; prior treatment with bone active agents or illness known to affect bone metabolism 100% African American (U.S.)	IG1: 104 CG: 104 completers: 74 in each group	IG1: 800 IU vit D ₃ /d for 2 y, then 2000 IU vit D ₃ /d for 1 y + 1,200-1,500 mg Ca/d CG: Placebo + 1200- 1,500 mg Ca/d vit D compliance: 87% (SD 8%) (pill count)	mean (95% CI) IG1: 70.8 (66.4-76.1) 3 mo after 800 IU/d; 86.9 (80.1-94.1) 3 mo after 2,000 IU/d CG: 46.9 (43.9-50.9) RIA	serum Ca: IG1: 2.38 mmol/L CG: 2.35 mmol/L hypercalcemia: IG1: 6/104 (5.8%); described as "mild" and within reference range upon repeated sampling CG: 3/104 (2.9%) hypercalciuria (24 h urinary Ca excretion > 5 mg/kg/d): IG1: 3/104 (2.9%) (isolated episodes) CG: 1/104 (1%) (isolated episode) kidney stones: IG1: 0 CG: 0 mortality: IG1 1/104 (1.0%); CG: 2104 (1.9%)

Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Bischoff (2003) ¹¹⁴ 12 wks	50% Baseline serum 25(OH)D < 30 nmol/L 90% < 77.5 nmol/L	IG1: 62 CG: 60	IG1: 800 IU vit D₃ + 1,200 mg Ca/d CG: 1,200 mg Ca/d	median (IQR) IG1: 65.5 (49.8-82.8) CG: 28.5 (24.5-41.5)	hypercalcemia: IG1: 0 CG: 0
(3 mo)	Residents of long-stay geriatric facility both genders; mean age (SD): IG1: 84.9 (7.7); CG: 85.4 (6.9) Excluded if:	89 completers		RIA	hypercalciuria: urinary Ca excretion ND GI: IG1: 2 (constipation)
	hyperparathyroidism, hypocalcemia, hypercalcemia, or renal insufficiency; prior HRT or bisphosphonates in last 2 y NR (Switzerland)		compliance NR		CG: 0
Brazier (2002) ¹⁷⁸	100% Baseline serum 25(OH)D < 30 nmol/L	IG1: 23 CG: 25	IG1: 800 IU vit D ₃ + 1,000 mg Ca + alendronate 10 mg	median (IQR) IG1: 65 (52.5-72.5) (p<0.001)	hypercalcemia: IG1: 0 CG: 0
3 mo (0.5, 1 and 3	Osteopenic or osteoporotic postmenopausal community dwelling women; mean age (SD): 70 (6) y	withdrawals by 3 mo: IG1: 3 and CG: 4 46 had at least one evaluation	CG: 1,000 mg Ca + alendronate 10 mg	CG: 35 (22.5-47.5) (p<0.01) CPBA	hypercalciuria: IG1: 0; urine Ca/Cr ratio increased significantly from baseline CG: 0
(0.0, 1 and 3 mo)	Excluded if: concomitant disease; drugs that alter bone metabolism NR (France)	post baseline			urine Ca/Cr ratio (mmol/mmol) by d 30 increased significantly from baseline in IG1 IG1: 0.676 (0.372, 0.963) CG: 0.434 (0.233, 0.623)
					24h urinary Ca (mmol/24h) IG1: 5.11 (3.30, 6.99) CG: 3.25 (2.00, 4.64)

 Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Brazier (2005) ¹⁹¹ 1 year (3, 6, 9 and 12 mo)	100% with baseline serum 25(OH)D < 30 nmol/L Ambulatory community dwelling women > 65 years of age who have vitamin D insufficiency; mean age 70 (6) y Excluded if: hypercalcemia, primary hyperparathyroidism, renal or hepatic insufficiency; medications affecting bone metabolism in last 6 mo NR (France)	IG1: 95 CG: 96 total withdrawals: IG1: 22.2% CG: 30.2%	IG1: 800 IU vit D ₃ + 1,000 mg Ca/d CG: Placebo compliance 92.0- 92.5% (pill count)	median (IQR -Q1, Q3): IG1: 71.8 (58.1, 89.4) CG : 26.8 (20, 35) CPBA	Hypercalcemia: IG1: 7 (7.4%) (2 withdrawn from study) vs. CG: 11 (11.5%) (0 withdrawn) Hypercalciuria (24 h Ca/Cr ratio >6.25 mmol/L): IG1: ~20% CG: NR 24 h urinary Ca/Cr ratio significantly higher in IG1 IG1: 3.97 vs. CG: 2.35, p < 0.001 CrCl: no significant difference Proportion of subjects with serum uric acid above normal threshold significantly increased in IG1 (53% vs. 37.2%, p = 0.046) but no difference in uric acid clearance Individuals with \geq 1 AE: IG1: 72.6% vs. CG: 72.9%, NS WDAE: IG1: 15.8% vs. CG: 17.7%, NS SAE: IG1 14 (14.7%) vs. CG: 11 (11.5%), NS Osteomuscular: IG1 32 (33.7%) vs. CG 24 GI: IG1: 22 (23.2%) vs. CG: 21 (21.9%), NS Mortality: IG1: 3 (3.2%) CG; 1 (1.0%)

Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Chapuy (1992) ¹⁸¹	NR	IG1: 1,634	IG1: 800 IU vit D ₃ +	mean (SD):	Hypercalcemia: IG1: 1 (0.06%) (due to
(1992)	healthy ambulatory female residents of senior facilities	CG: 1,636	1,200 mg Ca/d CG: Placebo	IG1: 105 (22) CG: 27.5 (17.5)	primary hyperparathyroidism); CG: 0
1.5 years	mean age (SD): 84(6) y	Subset for lab tests: 142			Hypercalciuria: NR
	excluded if taking drugs that alter	IG1: 73; CG:			GI (nausea, diarrhea, epigastric pain):
(every 6 mo)	bone metabolism, vitamin D (within 6 months)	69		СРВА	IG1:40; CG 28 (all WDAE), NS
		Of total			Renal stones: IG1: 0; CG: 0
	NR (France)	sample, 54%			
		completers			Mortality:
					IG1: 258/1634 (15.8%) CG: 274/1636 (16.5%)

Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Chapuy (2002) ¹⁸⁰ 2 years	76.8% Serum 25(OH)D < 30 nmol/L Ambulatory female residents of apartments for the elderly with low vitamin D and Ca intakes	IG1: 199 IG2: 194 CG: 190	IG1: 800 IU vit D_3 + 1,200 mg Ca /d fixed combination IG2: 800 IU vit D_3 + 1,200mg Ca	mean: IG1 75 IG2: 80 CG 15	Hypercalcemia (12 mo): IG1 + IG2: 3 (1 related to myeloma, 2 hyperparathyroidism) Hypercalciuria (12 mo) defined as urinary
(every 3 mo)	Excluded subjects with malabsorption, hypercalcemia, chronic renal failure; or taking	583/608 assessed at least once	(separate) /d CG: Placebo	СРВА	Ca > 350 mg/24 h: IG1+IG2: 5 (3%) CG: 2 (1.3), NS
	drugs that alter bone metabolism, or vitamin D (> 100 IU/d) in last year NR (France)	69.2% completed 2 y	Compliance (sachets, tablet count): > 95%		Serum Cr: no change in either group 24h Ca/Cr ratio: significant increase in IG1 at 12 and 24 mo: 24 mo IG1+IG2: 167.86 (123.10) CG: 113.15 (97.28), p<0.003
					Renal stones: IG1 + IG2: 0 CG: 0
					Mortality: IG1+ IG2: 18% CG: 23.9%, NS GI:
					IG1 + IG2: 24 (3 WDAE) CG: 16, NS

Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Corless (1985) ¹¹² up to 40 wks (every 6 wks)		IG1: 41 CG: 41 Completed: IG1: 32 CG: 33	IG1: 9,000 IU vit D₂/d CG: Placebo Compliance NR	IG1: mean ranged from ~90 to ~160 (30 wks) over course of study; CG: ~30 (estimated from graph)	Hypercalcemia: IG1: 1/41 (2.4%) (hyperparathyroidism) CG: 0 Mortality: IG1: 1 (2.4%) CG: 4 (9.8%)
	geriatric hospital wards plus 18 day patients mean age (sem): IG1: 82.3(6.0); CG: 82.6 (6.9)			СРВА	
	Excluded if renal insufficiency; clinical osteomalacia; hypokalemia; plasma 25(OH)D >40 nmol/L. NR (U.K.)				
Dawson- Hughes (1995) ¹¹⁸	NR Healthy ambulatory postmenopausal women with	IG1: 124 IG2: 123 Withdrawals:	IG1: 100 IU vit D ₃ + 500 mg Ca IG2: 700 IU vit D ₃ + 500 mg Ca	IG1: 100.1 (24.5) IG2: 66.3 (25.5)	Hypercalcemia: IG1: 0 IG2: 0
2 years (9, 12, 24 mo)	mean dietary intake of vit D 100 IU and Ca intake < 1000 mg; mean age (SD) IG1: 64.0 (5.3) IG2 63.0 (5.1) y	5% (IG1: 8; IG2: 5)	Compliance 98% (pill count)	СРВА	Hypercalciuria: IG1: 2/124 (1.6%) (reversed by lowering calcium from 500 to 250 mg/d) IG2: 2/123 (1.6%) (reversed by lowering calcium from 500 to 250 mg/d)
	Excluded if: malignancy, renal, hepatic, other disorders of bone metabolism; corticosteroids, estrogen, anticonvulsants; current use of vitamin D or calcium				
	100% White (U.S.)				

 Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Dawson- Hughes (1997) ¹⁸⁴ 3 years (every 6 mo)	NR Healthy ambulatory community dwelling women and men 65 years of age or older, mean age 70-72 y Subjects with cancer or hyperparathyroidism; kidney stones, renal or liver disease; anti-resorptive medications (prior 6 mo), fluoride (prior 2 y); Ca intake of >1500 mg/d excluded. Caucasian 6%, African American 2%, Asian 1% (U.S.)	IG1: 187 CG: 202 initial enrolled 445, 389 baseline characteristics Withdrawals: 127 Completers: 318 (IG1 170; CG 148)	IG1: 700 IU vit D ₃ + 500 mg Ca (citrate malate) CG: placebo Compliance: 92- 93% (pill count)	Absolute increase in mean 25(OH)D IG1: men +29.5 (29) (calc. mean 112) women +40.3 (35.8) (calc. mean 112) CPBA	Hypercalcemia: IG1: 0; CG: 0 Serum ionized Ca mean change (SD): IG1: men +0.1 (0.2); women 0.1 (0.1). CG: men 0.0 (0.1) women 0.0 (0.2) Hypercalciuria (WDAE): IG1: 1/187 CG: 0/202 24-h urinary Ca/Cr ratio mean change (SD): men: IG1: +35 (51) vs. CG: -4 (44); women: IG1: +67 (64) vs. CG: +9 (62), p < 0.005 for comparison between treatment groups Withdrawals: total number 20 11 due to difficulty swallowing pills; WDAE: IG1: 3 constipation, 1 epigastric distress, 1 sweating, 1 hypercalciuria; CG: 3 (2 epigastric distress; 1 flank pain) Mortality: 4 (NR by group)

Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Grant ^b (2005) ²⁴⁸ 5 years (1 y, other timepoints not specified)	NR Excluded those with daily intake >200 IU vitamin D, >500mg Ca, use of vitamin D metabolites within previous 5 years. 99% Caucasian	IG1: 1343 IG2: 1306 IG3: 1311 CG: 1332	IG1: 800 IU vit D ₃ /d IG2: 800 vit D ₃ + 1,000 mg Ca/d IG3: 1,000 mg Ca/d CG: placebo Compliance > 80% in 78-80% at 1 y; 54.5% taking medication at 2 y	Baseline, mean (SD), 38 (16.25) in n=60; Increase after 1 y (nmol/L): IG1 24.5 (21.8) IG2 24 (17.25) IG3 3.5 (14.25) CG 7.8 (18) 25(OH)D IG2 (Vit D ₃ +Ca) 62 nmol/L HPLC	Hypercalcemia: Total cases 21, no significant difference b/w groups IG1; 6 (0.4%) IG2: 7 (0.5%) Renal stones: IG1: 2 (0.1) IG2: 0 IG3: 0 CG: 2 (0.2) Total adverse events: IG1: 153 (11.4); IG2: 210 (16.1%) IG3: 218 (16.6) CG: 166 (12.5) GI symptoms: IG1: 62 (4.6) IG2: 115 (8.8) IG3: 118 (9.0) CG: 76 (5.7) Renal insufficiency (creatinine >250 μ mol/L): IG2: 2 (0.2) IG3: 4 (0.3) CG: 1 (0.1) Mortality: IG1: 217 (15.7%) IG2: 221 (16.1%) IG3: 243 (18.5%) CG: 217 (16.4%)

Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

^b Includes unpublished data received from primary author

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Harwood (2004) ¹⁹⁷ 1 year	% with 25(OH)D ≤30 nmol/L: IG1: 31(82%) IG2:26 (72%) IG3: 26 (67%) CG: 22 (60%) Excluded subjects using	IG1: 38 IG2: 36 IG3: 39 CG: 37 Completers 84.4%	IG1: 300,000 IU vit D_2 (IM) IG2: 300,000 IU (IM) vit D_2 + 1g/d Ca (tablet/d) IG3: 800 IU vit D_2 + 1 g/d Ca (tablet/d)	baseline 25(OH)D 28 - 30 nmol/L IG1: 40 IG2: 44 IG3: 50 CG: 27	Serum Ca (mmol/L): IG1: 2.46 IG2: 2.45 IG3: 2.42 CG: 2.40 (p=0.02) Hypercalcemia:
(3, 6 and 12 mo)	medication affecting bone metabolism. NR (U.K.)		CG: no treatment	RIA	Total group: 0 Renal stones: Total group: 0 Mortality: IG1 7/32 (22%) IG2: 11/25 (44%) (calc; reported in table as 31%) IG3: 6/31 (19%) CG: 536 (14%)
Jackson (2006) ²⁴³ 7 years (annual clinic visits)	NR Subjects with hypercalcemia, renal calculi excluded as well as subjects using corticosteroids. Caucasian ~83% African American ~9% Hispanic ~4%, American Indian or Native American ~0.4%, Asian or Pacific Islander ~2%, and unknown~1.2%)	IG1: 18,176 CG: 18,106 Withdrawn or lost to followup 2.7%	IG1: 400 IU vit D ₃ + 1000 mg Ca /d CG: placebo	levels reported for a nested case control study of fractures only hip fracture group: 46.0 (22.6) controls: 48.4 (23.5) chemiluminescent IA	for entire cohort renal stones: IG1:449 CG: 381 GI: IG1: 10.3% moderate-severe constipation, 20.4% bloating, CG: 8.9% moderate-severe constipation, 19.5% bloating, Mortality: IG1: 744 (4.1%) CG: 807 (4.5%), NS

 Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Honkanen (1990) ²⁰² 11 weeks	Baseline mean 25(OH)D (SE): Home: IG1 42.8 (3.5); CG 36.2 (2.7) Hospital: IG1 24.0 (1.9); CG 23.9 (2.4)	IG1: Home 30, Hospital 33 CG: Home 30, Hospital 33	IG1: 1,800 IU vit D₃+ 1,558 mg Ca/d CG: No treatment	mean (95% CI) Home: IG1 80.7 (75-86) CG: 10.4 (8-13) Hospital: IG1 64.4 (57-72)	Hypercalcemia: maximum Ca values were 2.75, 2.75 and 2.82 in CG largest individual increase in serum Ca was 0.18 mmol/L for one subject in IG1 and 0.25 mmol/L in one subject in CG.
(pre/post intervention)	Old community dwelling (Home) or institutionalized women (Hospital) , 62-72 year Excluded subjects with active malignant disease, renal dysfunction NR (Finland)	Completed IG1: Home 25; Hospital 30		CG: 23.3 (18-28) CPBA	Serum Ca, mean (SE): Home: IG1: 2.40 (2.3-2.5) CG: 2. 41(2.3-2.6) Hospital IG1: 2.58 (2.4-2.8) CG: 2.73 (2.5-2.9) Hypercalciuria: urinary Ca ND Increased serum Cr observed in all groups (greater in CG); 2 CG post trial Cr > 115 micromol/L Renal stones: IG1: 0 CG: 0 GI: 9/25 Home IG1 group had "mild" GI symptoms. WDAE: IG1: Home 2 ('unrelated symptoms' not specified)

Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Kenny (2003) ¹¹³ 11 weeks (baseline, 3 and 6 mo)	NR men ≥ age 65 years excluded those with systemic disease or unresolved endocrine disorder known to affect muscle metabolism; use of androgens, estrogens, or dehydroepiandosterone (previous 12 months), use of cholecalciferol (previous 4 wks).	IG1: 33 CG: 32 92% completers	IG1: I,000 IU/d vit D ₃ + 500 mg Ca/d CG: Placebo + 500 mg Ca/d	baseline mean (SD) IG1: 65 (17.5) CG: 60 (17.5) 6 mo followup: significant increase in IG1 but not CG (graph) 87.3 (13.8) CPBA	Hypercalcemia: 0 hypercalciuria: 0 No AE identified Urinary Ca (mg)/Cr (g) increased similarly in both groups. IG1: baseline 96 (65) and 6 mo 134 (89) CG: baseline 95 (80) and 6 mo 129 (101) WDAE: 0
Krieg (1999) ²⁰⁷ 2 years	NR (U.S.) NR Elderly institutionalized women NR NR (Switzerland)	IG1: 124 CG: 124 completers: IG: 50 (40.3%) CG: 53 (42.7%)	IG1: 440 IU D ₃ + 1,000 mg Ca carbonate/d (Ca in 2 doses) CG: No treatment compliance NR	mean (SEM): baseline IG1: 29.8 (3) CG: 29.3 (3) 1 y IG1: 74.5 (2.3) CG: 20.8 (2.8) 2 y IG1: 66.3 (4) CG: 14.3 (2.5) CPBA	Mean serum Ca (SEM): IG1: 2.31 (0.02) CG: 2.23 (0.01) Hypercalcemia: IG1: 1 (withdrew) CG: 0 GI: IG1: 6 subjects (5%) with upper GI side effects withdrew CG: 0 withdrew due to upper GI symptoms Mortality: IG1: 21/124 (16.9%) CG: 26/126 (20.6%)

 Table 18. (continued) Reported Safety Outcomes by Intervention Group (RCTs)

Author (year) Duration (Timepoints for Toxicity Assessment)	% Vitamin D Deficient Population Exclusion Criteria Ethnicity (country)	Sample Size	Intervention Compliance	Followup Serum 25(OH)D (nmol/L) Assay	Safety Outcomes
Lips (1988) ²⁰⁹ 1 year (2, 3 and every 3 mo thereafter)	79 % (serum 25(OH)D <30 nmol/L) 35% < 20 nmol/L Men and women living in two different levels of institutional care; mean age (SD): 81 (9) y (nursing home); 84 (6) y (senior home)	IG1: 70 IG2: 72 Completers: nursing home: 50/72 (69%) seniors home: 59/70 (84%)	IG1: 400 IU vit D ₃ /d IG2: 800 IU vit D ₃ /d Compliance NR	increased to > 40 nmol/L in all subjects (means (SD) presented in graph only)	Hypercalcemia: IG1: 0 IG2: 1 (associated with thiazide use) Ca/Cr ratio: fasting urinary Ca excretion increased ~ 15% unrelated to treatment in all groups, NS serum Cr: increase of ~ 4% in all groups (significant increase from baseline)
	Excluded subjects with hypercalcemia, active urolithiasis, or chronic renal failure NR (The Netherlands)			СРВА	Mortality: IG1: 223/1291 (17.2%) CG: 251/1287 (19.5%)
Mastaglia (2006) ²¹² 3 mo (0, 1, 2 and 3 mo)	NR median 36.25 (range 27.5- 48.12) Post menopausal osteopenic/osteoporotic women aged 50 - 70 y presenting for bone mass evaluation Excluded subjects treated with vitamin D or drugs known to affect bone or vitamin D metabolism NR (Argentina)	IG1 13 IG2 13 CG 12	IG1: D_2 5,000 IU/d + Ca 500 mg IG2: D_2 10,000 IU/d + Ca 500 mg CG: Ca 500 mg Compliance (pill and drop counts): 89 (11)-92 (10)%	25(OH)D median (25-75th percentile): IG1 77.5 (66.2- 156.2) IG2 97.7 (79.3- 123.1) CG: 55.0 (72.5- 68.0) RIA (Diasorin)	Hypercalcemia: IG1: 0; IG2: 0 (increase in mean serum Ca at 2 mo but WNL) CG: 0 Hypercalciuria: IG1: 1 (urinary Ca excretion increased from 99.0 (69.5-147.5) to 152 (102-204) mg/24 h, p<0.05, at 3 mo); IG2: 1 (urinary calcium excretion increased from 121 (88.7-140) mg/24h to 149 (120.7- 225.7) mg/24h, p<0.05, at 3 mo); CG: 1 (urinary Ca excretion not increased) no urinary Ca/Cr ratio >0.37mg/dL

the three doses

Ca, calcium; CG, control group; CPBA, competitive protein binding assay; Cr, creatinine; d, day; D, vitamin D, isoform not specified in publication; dL, deciliter; GI, gastrointestinal; HRT, hormonal replacement therapy; IG, intervention group; IQR, interquartile range; IU, international units: mo, month(s); mg, milligram; mo, month(S); ND, not done: NR, not reported; RIA, radioimmunoassay; WNL, within normal limits;

Chapter 4. Discussion

Overview

A variety of study designs and age groups were included in this systematic review on the efficacy and safety of vitamin D. Since vitamin D has relevance for bone health throughout the life span, the review included assessment of infants and children, adolescents, postmenopausal women and older men. Bone health outcomes included fractures, falls, bone mineral density, bone mineral content, and serum PTH.

One of the main challenges in the vitamin D literature relates to the definition of adequate vitamin D status.⁴¹ Circulating concentrations of 25(OH)D reflect contributions from both cutaneous synthesis and dietary sources, making it difficult to define dietary reference intakes. A key barrier to defining thresholds of adequate vitamin D status for meaningful physiological outcomes is the imprecision of various analytical procedures to measure circulating 25(OH)D, which has been used to assess vitamin D status.

We screened a total of 9,150 records and 59 studies were reviewer nominated. A total of 1447 full text articles were reviewed and 682 met the inclusion criteria. A total of 167 studies, 112 RCTs (106 unique, six companion publications), 19 prospective cohorts (18 unique, one companion publication), 30 case-control studies and six before-after studies, were included in the evidence synthesis, with the largest body of evidence from studies in older adults.

Question 1A. Are there Specific Concentrations of 25(OH)D Associated with Bone Health Outcomes?

A. Children

Infants. Thirteen studies (one RCT, eight case-controls and four before-after studies of poor to fair quality) assessed the association between serum 25(OH)D concentrations and established rickets in infants and children. There is fair evidence to support an association between low serum 25(OH)D concentrations and established rickets. However, only one study (reporting on nine cases of rickets) was conducted in North America. Most studies were conducted in developing countries where calcium intake in the diet is low. Low dietary calcium can confound vitamin D status and was a major limitation of these studies. Specific 25(OH)D concentrations reported to be associated with rickets were variable with mean or median 25(OH)D concentrations (e.g., assay, doses/type of vitamin D supplementation) are required to determine a threshold of serum 25(OH)D below which the risk of rickets increases. There are no studies that tell us about serum 25(OH)D concentrations before and after treatment in rachitic cohorts of older children to adulthood (i.e., before closure of the epiphyses), not even surveys of frequency.

Seven small studies (three RCTs, and four case-control studies) examined the association between 25(OH)D concentrations and other bone health outcomes in infants. The study quality of the case-control studies was fair and two of the three RCTs had a Jadad score of $\geq 3/5$.

Outcomes included serum PTH and bone mineral content (BMC). There is insufficient evidence of an association between serum 25(OH)D concentrations and BMC across studies. There is fair evidence that 25(OH)D concentrations are inversely associated with serum PTH but inconsistent evidence for a specific threshold of 25(OH)D.

Older Children and Adolescents. Seven studies (two RCTs, three prospective cohorts, one case-control and one before-after study) examined specific circulating concentrations of 25(OH)D and the association with bone health outcomes (PTH, BMD and BMC) in older children and adolescents. No studies reported fractures as an outcome. The study quality was high for the two RCTs and was fair for the observational studies.

There is fair evidence for an inverse relationship between serum 25(OH)D concentrations and serum PTH in older children and adolescents, with a plateau of PTH at serum 25(OH)D levels ranging from above 30 to 83 nmol/L. There is fair evidence that circulating 25(OH)D levels are associated with change in BMD/BMC from studies in older children and adolescents. Results from two RCTs did not confirm a consistent benefit of vitamin D supplementation across all BMD sites.

A study published after our search by Viljakainen in 228 adolescent girls used two doses of vitamin D₃ (200 and 400 IU daily) and reported that positive effects on BMC were seen at a serum 25(OH)D concentration of > 50 nmol/L.²⁷⁵

The measures used to assess bone mineral (BMC/BMD) in older children and adolescents have not been directly shown to predict bone health outcomes in adulthood.

B. Pregnant and Lactating Women

Four observational studies (three prospective cohorts and one before-after study), addressed the association between serum 25(OH)D concentrations and bone health outcomes (PTH, BMD) in pregnant or lactating women. The quality of studies ranged from poor to good. There is good evidence from one cohort that there was no association between serum 25(OH)D and the bone mineral density changes that occur during lactation. Limitations include the small number of studies, and that all relevant confounders were not assessed in the included studies.

C. Postmenopausal Women and Elderly Men

There were 41 studies (10 RCTs, 14 prospective cohorts, and 17 case-control studies) that assessed serum 25(OH)D and bone health outcomes in postmenopausal women and elderly men.

Fifteen observational studies (ranging from poor to fair quality) reported on the association between serum 25(OH)D concentrations and fractures. There is inconsistent evidence to support an association between serum 25(OH)D concentrations and an increased risk of fracture. Five studies of good quality evaluated the association between serum 25(OH)D and falls. There is fair evidence mainly from observational studies that low serum 25(OH)D concentrations are associated with an increased risk of falls in elderly populations in residential settings. Seven studies of fair to good quality assessed the relation between serum 25(OH)D and different fallrelated performance measures. There is inconsistent evidence for an association between serum 25(OH)D concentrations and performance measures. Nineteen studies assessed the association between serum 25(OH)D concentrations and BMD, and there is fair evidence from observational studies for an association between serum 25(OH)D concentrations and changes in hip BMD sites. Some studies identified specific serum concentrations of 25(OH)D below which falls, fractures or bone loss increased; these values ranged from around 40 to 80 nmol/L.

Question 2A. Does Dietary Intake from Foods Fortified with Vitamin D Affect Concentrations of Circulating 25(OH)D?

Eleven of the thirteen identified trials on food fortification and circulating 25(OH)D provided the vitamin D content (200 - 1,000 IU) of the dietary source. Most trials used dairy products as the source of fortified foods. Six of 11 trials had Jadad quality scores ≥ 3 . Meta-analysis of the trials was limited due to the heterogeneity of treatment effect. Food fortification with vitamin D resulted in significant increases in serum 25(OH)D concentrations with the treatment effect ranging from 15 to 40 nmol/L. The combined effect of fortified food from two trials with vitamin D₃ doses equivalent to 400-480 IU was 16 nmol/L (95% CI 12.9, 18.5). It was not possible from these trials to determine if the effect of food fortified with vitamin D on serum 25(OH)D concentrations varied by age, BMI or ethnicity.

Question 2B. What is the Effect from UV Exposure on Circulating 25(OH)D Concentrations? Does This Vary With Different Age Groups, Ethnicity, Use of Sunscreen, Latitude and/or BMI?

Eight small, randomized trials of ultraviolet-B radiation (sun exposure or artificial light) were identified and reviewed qualitatively. Heterogeneity with respect to age, area of skin exposure, dose and reporting of outcomes limited the synthesis of results. Most trials had low quality scores and were short in duration. All but one trial was conducted in adults. UV-B exposure (natural or artificial) increased serum 25(OH)D in vitamin D deficient and sufficient subjects, with mean increases ranging from 15 to 42 nmol/L. The trials used variable methods to assess the vitamin D synthetic capacity of both natural and artificial sources of UV exposure. In contrast to the large number of vitamin D supplementation RCTs that assessed 25(OH)D levels, there was a lack of high quality RCTs on the effect of UV exposure on 25(OH)D concentrations. An objective measurement of skin pigmentation was not used in the trials. It was not possible from these trials to determine if serum 25(OH)D results varied by age, ethnicity, skin pigmentation type, BMI or latitude. Further research needs to clarify the exact doses needed to maintain 25(OH)D concentrations over time, in the absence of supplementation.

Question 2C. What Is the Effect of Vitamin D Supplementation on Concentrations of Circulating 25(OH)D?

Seventy-four trials evaluated the effect of either vitamin D_3 or D_2 supplementation on serum 25(OH)D concentrations. Eight trials were in infants, five in pregnant or lactating women, four in older children or adolescents, 10 in younger adults and 47 in postmenopausal women or older men. Thirty-four of the trials had quality scores of ≥ 3 . The majority of the trials used vitamin D_3 (with or without calcium) and 15 trials used vitamin D_2 preparations. Twenty-four trials were conducted in vitamin D deficient populations.

Vitamin D_2 was used in four of seven infant trials and the study quality of the infant trials was low. The evidence suggests that 400 IU of vitamin D_2 is required for breast-fed infants and perhaps even higher doses for infants who are at risk of vitamin D deficiency (northern latitudes, born at end of winter). Three trials that used vitamin D_2 (100 to 1000 IU) had mean increases in serum 25(OH)D ranging from 3-50 nmol/L. There was a paucity of trials that used vitamin D_3 in infants.

There were six low quality small trials in pregnant or lactating women with either vitamin D_2 or D_3 as the intervention. Vitamin D supplementation of 1000-1600 IU/day was effective in normalizing vitamin D levels to the reference range in most pregnant and lactating women.

In adults, a range of vitamin D doses was used (200 - 10,000 IU/day). Three trials in healthy adults that compared vitamin D_2 to vitamin D_3 found smaller increases over time in serum 25(OH)D concentrations with vitamin D_2 , and this may be secondary to more rapid clearance or different metabolism of the D_2 isoform.⁶¹ Most trials did not explore the role of effect modifiers such as body mass index. Meta-analysis of 16 trials (vitamin D_3 with or without calcium) was consistent with a dose-response relationship although the heterogeneity was very high. Subgroup and sensitivity analyses did not sufficiently explain the study heterogeneity except when combining two trials using doses less than 400 IU daily (weighted mean difference of 11.36). An exploratory analysis of heterogeneity using dose demonstrated a significant association between dose and serum 25(OH)D levels, the results comparable to an increase of 1 – 2 nmol/L in serum 25(OH)D concentrations for every 100 IU of vitamin D_3 .

Question 3. What is the Evidence Regarding the Effect of Supplemental Vitamin D on Bone Density, Fractures and Falls in Postmenopausal Women and Elderly Men?

Seventeen RCTs evaluated the effect of vitamin D_2 or D_3 supplementation with or without calcium supplementation on bone mineral density, and thirteen trials scored ≥ 3 on the Jadad score, consistent with higher quality. A combination of vitamin D_3 plus calcium maintained or resulted in small increases in BMD at the lumbar spine, femoral neck and total hip relative to placebo. Previous systematic reviews have noted similar results of the effect of vitamin D on BMD.²⁷⁶ Limitations of BMD measurement include that it is a surrogate measure for fractures, and that it does not distinguish between bone mass and the degree of mineralization, which is of relevance in vitamin D deficiency.

Fifteen RCTs evaluated the effect of vitamin D_2 or D_3 (with or without calcium supplementation) on fractures in postmenopausal women and elderly men. The majority of the trials used vitamin D_3 preparations (300 - 800 IU daily). Ten trials were of higher quality although high losses to followup and inadequate reporting of allocation concealment were limitations of a number of trials. Vertebral fractures were not included as an outcome in most trials. Vitamin D_3 (700 - 800 IU daily) combined with calcium supplements (500 - 1200 mg) significantly reduced non-vertebral and hip fractures although the benefit was predominantly in elderly subjects living in institutionalized settings (hip fractures, OR 0.69, 95% CI 0.53-0.90). The benefit of vitamin D and calcium on fractures in community-dwelling individuals was inconsistent across trials. Our results differ from some meta-analyses,^{216,276} which may be related to differences in eligibility criteria. Other reviews have included trials of active vitamin D analogues.^{276,277} In addition, our systematic review included two large trials^{244,248} published since 2004, and these trials did not show benefit of vitamin D₃ on fractures. Our results are similar to a 2005 Cochrane review²⁷⁷ and another recently updated meta-analysis.²⁷⁸

Fourteen RCTs evaluated the effect of vitamin D on the risk of falls in older adults. Eleven trials had higher quality scores. The combined results of 12 trials using oral vitamin D did not demonstrate a significant reduction in fall risk. An analysis of six trials that adequately ascertained falls is consistent with a significant effect of vitamin D on falls (OR 0.79, 95% CI 0.65-0.96). Subgroup analyses showed a significant reduction in falls upon combining trials of postmenopausal women only. Our results are similar to another meta-analysis.²⁷⁹

In a previous meta-analysis, Bischoff-Ferrari concluded that vitamin D should reduce an older person's risk of falling by 22 percent. However, two out of five included trials used active vitamin D analogues, and women taking these had the largest reduction in falls.²⁸⁰ An RCT by Flicker (2005) that is included in our review was one of the first trials of vitamin D_2 supplementation (1,000 IU) that found a significant reduction in falls in older individuals living in residential care.²⁴⁶ Since our search, a five month randomized placebo-controlled trial of vitamin D_2 (200, 400, 600 and 800 IU per day) on falls in an elderly nursing home population was published. In this dose-finding trial, 800 IU of vitamin D_2 per day was associated with a reduced risk of falls compared to placebo.²⁸¹

Limitations of the fracture and falls trials included suboptimal compliance with vitamin D, inadequate assessment of vitamin D status of the study populations and large losses to followup.

In some cases, the RCT evidence is discordant with findings from the observational studies. For example, prospective cohort studies reported that lower serum 25(OH)D concentrations were associated with an increased risk of falls in institutionalized populations. In contrast, combined trials of elderly in residential settings did not demonstrate a significant benefit of vitamin D supplementation although individual trials have demonstrated a benefit. The discrepancy between the observational studies and the combined RCTs could be explained by the failure of observational studies to adjust for all relevant confounders, such as level of mobility or general health status. The method of ascertainment was a limitation of some of the RCTs.

Question 4. Is There a Level of Sunlight Exposure That Is Sufficient to Maintain Adequate Vitamin D Concentrations, But Does Not Increase the Risk of Skin Cancer?

We did not retrieve any systematic reviews in our literature search that addressed this question. Our search strategy may not have identified studies in the dermatology or cancer literature that evaluated the effect of UV exposure in terms of minimal erythemal dose (MED) on risk of skin cancer. An ecological study in Australia by Samanek et al. used daily ultraviolet index data to derive sun exposure times (1/6 - 1/3 MED) for fair-skinned people based on current reference vitamin D intakes. Solar exposure times for 15 percent of the body surface at noon in summer were short and varied from 2-10 minutes depending on the latitude. The authors stated that it is impractical to provide a uniform message to the general population given the number of individual and environmental variables that need to be taken into consideration (e.g., latitude, time of day, skin pigmentation).²⁶¹ A recently published study used a vitamin D action spectrum and U.S. reference conditions to calculate UV exposure times comparable to 1,000 IU vitamin D.²⁶²

Question 5. Does Intake of Vitamin D, Above Current Reference Intakes, Lead to Toxicity?

Twenty-two randomized trials provided data on toxicity outcomes although no trials reported data on soft tissue calcification. Twenty-one of the trials used doses of vitamin D above current reference intakes. Most of the trials were conducted in older adult populations and used vitamin D₃ preparations. Twelve trials had scores ≥ 3 on the Jadad scale. One trial in infants with 600,000 IU vitamin D₃ (one dose) reported an increased risk of hypercalcemia. Most trials were small, of short duration and inadequately powered to assess adverse events.

Overall, vitamin D above current reference intakes was generally well tolerated. There was a non-significant increase in the risk of hypercalcemia and hypercalciuria with vitamin D relative to placebo, and these events did not appear clinically significant. We were unable to determine if there were differences between vitamin D_2 and D_3 . The only significantly increased adverse event identified was an increase in renal stones in the large seven year WHI trial in women 50 to 79 years of age who were taking 400 IU of vitamin D_3 (the current reference intake for participants aged 50 to 70 years, and lower than the reference intake of 600 IU for participants > 70 years) plus 1000 mg calcium although the calcium intake of this cohort was higher than seen in the general population: Hazard Ratio 1.17 (95% CI 1.02, 1.34), corresponding to 5.7 events per 10,000 person years of exposure. Most studies excluded patients with a known history of hypercalcemia or renal stones so results may not be generalizable to the overall population. Limitations of the evidence include the incomplete reporting of outcomes, variable exposure lengths, small sample sizes and the lack of long-term data on harms associated with higher intakes.

Strengths and Limitations of the Review

Due the large body of evidence and after consulting with the TEP, AHRQ and ODS, we limited our review to RCTs wherever possible since most grading systems place RCTs at the top of the evidence hierarchy. We included observational studies if there was a lack of RCTs to address the question, as in the case of question one. For question four, to limit scope, we had restricted study type to existing systematic reviews but were unable to identify reviews relevant to this question. This evidence report includes English language publications only. However, previous research indicates that limiting reviews to English language publications is unlikely to bias the overall results.²⁸²

For the meta-analyses, we did not have individual patient data and so were unable to adjust for baseline differences between trials such as baseline vitamin D status or level of dietary intake. The decision to combine studies was based on clinically relevant groupings (e.g., vitamin D type (D₃ versus D₂), whether or not vitamin D was combined with calcium, route of administration).

Our review has a number of strengths, including a structured and thorough search of electronic databases and reviewer nomination of relevant literature. All screening for our review was done in duplicate for consensus and data extraction was completed by one reviewer and then checked by a second reviewer.

Other limitations relate to the methodological quality of the original studies (e.g., loss to followup, inadequate reporting of allocation concealment), the lack of details on the exact amount of vitamin D in supplements in most trials and the failure to explore the effect of relevant covariates.

Conclusions and Knowledge Gaps

The evidence base in older adults was much larger than the available evidence in infants, children and adolescents. In addition, there was a lack of studies in perimenopausal women and early postmenopausal women. The specific concentration of 25(OH)D associated with vitamin D-deficient rickets in infants and young children is uncertain, given the paucity of studies in North American populations, and the imprecision and inaccuracy of the assays used to assess serum 25(OH)D.

There was inconsistent evidence for an association between serum 25(OH)D levels and bone mineral content in infants, and fair evidence for an association between 25(OH)D and changes in BMC/BMD (total body, lumbar spine) in adolescents. It should be noted that the measures used to estimate bone mineral (BMC/BMD) in infants, children and adolescents have not been directly shown to predict bone health outcomes in adulthood.

Vitamin D status in pregnancy varies with ethnicity and women at risk include non-whites living at all latitudes. Changes in serum 25(OH)D concentrations during lactation were not associated with changes in BMD. There is a lack of research on the association between vitamin D status in pregnancy and bone health outcomes in both the mother and offspring. There is also a lack of studies in premenopausal women.

In observational studies of postmenopausal women and elderly men, low serum 25(OH)D concentrations were associated with bone loss at hip sites, and increased fall and fracture risk. The overall level of evidence varied from fair (falls and bone mineral density) to inconsistent (fractures and performance measures). Vitamin D fortified foods consistently increased serum 25(OH)D levels in younger and older adults. Ultraviolet-B exposure increased serum 25(OH)D concentrations in both vitamin D deficient and sufficient subjects across age groups but due to heterogeneity of populations and dose, it was difficult to determine the exact amount of UV-B radiation required to attain specific serum 25(OH)D concentrations and how this will vary with skin type and latitude.

Numerous trials have evaluated the effect of vitamin D supplementation on serum 25(OH)D concentrations, although these trials were mostly in adult populations. Vitamin D₂ and D₃ may have differential effects on serum 25(OH)D concentrations with vitamin D₂ having enhanced clearance and/or different metabolism.

The combination of vitamin D_3 plus calcium increases bone mineral density in older adults. Consistent with an effect of vitamin D_3 plus calcium on BMD in postmenopausal women and older men, vitamin D_3 at doses of 800 IU/day with calcium reduce the risk of fractures in the institutionalized elderly. The results from trials in community-dwelling older participants are inconsistent, although there may be a positive effect of vitamin D_3 with calcium on reduction of hip fractures in older community-dwelling women who are compliant with vitamin D. A potential explanation for the lack of a consistent benefit of vitamin D on fractures and falls in all trials is that attained serum 25(OH)D levels were not high enough and that compliance with vitamin D supplementation was inadequate. The incomplete ascertainment of vitamin D status in a number of trials limited our ability to explore the effect of baseline and attained 25(OH)D levels on fall and fracture risk.

We did not retrieve any reviews relevant to question four, regarding the level of sun exposure sufficient to maintain 25(OH)D concentrations but that minimizes the risk of non-melanoma or melanoma skin cancer. This highlights an area for future research. Recommended sun exposure times will vary by differences in individual and environmental characteristics, e.g., skin pigmentation (melanin) and latitude.

Data on harms were not consistently reported in the trials, and most trials were not adequately powered to assess harms. The effect of vitamin D supplementation above current reference levels was not reported to be associated with clinically significant adverse events. An increased risk of kidney stones with vitamin D₃ (400 IU, the daily reference intake for trial participants aged 50 to 70 years, and below the reference intake for participants > 70 years) plus calcium was reported in the WHI trial.

Research Needs and Future Directions

Based on the results of the evidence synthesis, we identified the following vitamin D research needs:

1. Validation of laboratory assays of 25(OH)D measurement. Standard reference preparations are needed to reduce the imprecision between methods and laboratories so that serum 25(OH)D concentrations can be used to define thresholds associated with adequate vitamin D status in terms of meaningful physiological outcomes across the life cycle.

- 2. **Consensus on endpoints of vitamin D adequacy and insufficiency.** The vitamin D research community needs to reach consensus on which physiological outcomes are meaningful measures of vitamin D adequacy in infants, children, adolescents, women of reproductive age and older adults
- 3. **Dose-response relationship of vitamin D in infants, children, pregnant and lactating women.** There are few data on the effect of incremental doses of vitamin D from fortified foods and supplementation on vitamin D and calcium metabolism in infants, pregnant and lactating women, due to a lack of controlled clinical trials, and further research is needed.
- 4. **Bone health outcome data on infants, children and adolescents.** High quality randomized trials on bone health outcomes and the safety of vitamin D in infants, children and adolescents are needed to confidently determine adequate levels of intake and those levels that may pose a risk for toxicity. Additional research is needed to more accurately determine the levels of vitamin D intake required to confidently eliminate all cases of rickets in North America.
- 5. **Consistent and clear reporting of efficacy and harms data in vitamin D trials.** Consistent and clear reporting of bone health outcomes and harms across trials is needed to facilitate synthesis of the evidence in this area.
- 6. **High quality studies in health disparity populations.** High quality studies in African Americans, Hispanic Americans, Native Americans and Alaska Natives are needed to evaluate the association between specific 25(OH)D concentrations and bone health outcomes over the life span.
- 7. **Better understanding of the modifiers of vitamin D effect.** Additional research on the effect modifiers of 25(OH)D status such as latitude, dietary intake, age and body mass index is needed.
- 8. **Identification of indicators of vitamin D toxicity.** Sensitive and specific indices of the risk of toxicity need to be developed.
- 9. **Review of vitamin D response and benefit- risks from UV exposure.** A focused systematic review of sun exposure literature is needed to evaluate potential benefits and harms of UV-B exposure that provides adequate vitamin D photosynthesis.

References and Included Studies

- 1. Department of Health and Human Service. Bone health and osteoporosis: a report of the surgeon general. Rockville MD: Office of the Surgeon General; 2004.
- Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005-2025. J Bone Miner Res 2006 Dec 4;465-75.
- Melton III LJ, Atkinson EJ, O'Connor MK, et al. Determinants of bone loss from the femoral neck in women of different ages. J Bone Miner Res 2000;15(1):24-31.
- Food and Nutrition Board IoM. Vitamin D. Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride. National Academic Press 1999;250-87.
- Townsend K, Evans KN, Campbell MJ, et al. Biological actions of extra-renal 25-hydroxyvitamin D-1alpha-hydroxylase and implications for chemoprevention and treatment. J Steroid Biochem Mol Biol 2005 Oct;97(1-2):103-9.
- Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006 Mar 24;311(5768):1770-3.
- Lappe JM, Travers-Gustafson D, Davies KM, et al. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 2007 Jun;85(6):1586-91.
- Cantona, M. T. Vitamin D and its role in immunology: multiple sclerosis and inflammatory bowel disease. Progress in Biophysics and Molecular Biology 200792:60-4. 2007. 6.
- Holick MF. Vitamin D requirements for humans of all ages: new increased requirements for women and men 50 years and older. Osteoporos Int 1998;8:S24-S29
- Holick M. Vitamin D: photobiology, metabolism, mechansim of action, and clinical applications. 5th ed. Washington DC: Humana Press; 2003.
- Wolpowitz D, Gilchrest BA. The vitamin D questions: How much do you need and how should you get it? J Am Acad Dermatol 2006;54(2):301-17.
- Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006 Sep;92(1):4-8.

- Goltzman D. Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov 2002;1:784-96.
- Holick MF. Primer of metabolic bone diseases and disorders of mineral metabolism, vitamin D: photobiology, metabolism of action and clinical applications. 6th. 2005.
- 15. Specker B. Vitamin D requirements during pregnancy. Am J Clin Nutr 2004;80(suppl):1740S-7S.
- More C, Bettembuk P, Bhattoa HP, et al. The effects of pregnancy and lactation on bone mineral density. Osteoporos Int 2001;12(9):732-7.
- Karlsson MK, Ahlborg HG, Karlsson C. Female reproductive history and the skeleton-a review. BJOG 2005 Jul;112(7):851-6.
- Holick MF. Vitamin D: importance in the prevention of cancers, type I diabetes, heart disease and osteoporosis. Am J Clin Nutr 2004;79(3):362-3.
- Rucker D, Allan JA, Fick GH, et al. Vitamin D insufficiency in a population of healthy western Canadians. CMAJ 2002 Jun 11;166(12):1517-24.
- 20. Tangpricha V, Pearce EN, Chen TC, et al. Vitamin D insufficiency among free-living healthy young adults. Am J Med 2002 Jun 1;112(8):659-62.
- Looker AC, Dawson-Hughes B, Calvo MS, et al. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone 2002 May;30(5):771-7.
- 22. Nesby-O'Dell S, Scanlon KS, Cogswell ME, et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988-1994. Am J Clin Nutr 2002 Jul;76(1):187-92.
- 23. Wharton B, Bishop N. Rickets. Lancet 2003;362:1389-400.
- Weisberg P, Scanlon KS, Li R, et al. Nutritional rickets among children in the United States: review of cases reported between 1986 and 2003. Am J Clin Nutr 2004 Dec;80(6 Suppl):1697S-705S.
- Spence JT, Serwint JR. Secondary prevention of vitamin D-deficiency rickets. Pediatrics 2004 Jan;113(1 Pt 1):e70-e72

- Ward LM. Vitamin D deficiency in the 21st century: a persistent problem among Canadian infants and mothers. Can Med Assoc J 2005 Mar 15;172(6):769-70.
- Binet A, Kooh SW. Persistence of Vitamin Ddeficiency rickets in Toronto in the 1990s. Can J Public Health 1996 Jul;87(4):227-30.
- Wagner CL, Hulsey TC, Fanning D, et al. High-dose vitamin D3 supplementation in a cohort of breastfeeding mothers and their infants: a 6-month follow-up pilot study. Breastfeeding Medicine 2006;1(2):49.
- LeBoff MS, Kohlmeier L, Hurwitz S, et al. Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA 1999 Apr 28;281(16):1505-11.
- Heaney RP, Dowell MS, Hale CA, et al. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am College of Nutrition 2003;22(2):142-6.
- Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001 Aug;22(4):477-501.
- Vieth R, Ladak Y, Walfish PG. Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require vitamin D. J Clin Endocrinol Metabol 2004;185-91.
- Scharla SH, Wolf S, Dull R, et al. Prevalence of low bone mass and endocrine disorders in hip fracture patients in Southern Germany. Exp Clin Endocrinol Diabetes 1999;107(8):547-54.
- Weatherall M. A meta-analysis of 25 hydroxyvitamin D in older people with fracture of the proximal femur. N Z Med J 2000 Apr 28;113(1108):137-40.
- Thomas MK, Lloyd-Jones DM, Thadhani RI. Hypovitaminosis D in medical inpatients. N Engl J Med 1998;338:777-83.
- Gloth FM, III, Gundberg CM, Hollis BW, et al. Vitamin D deficiency in homebound elderly persons. JAMA 1995 Dec 6;274(21):1683-6.
- Glerup H, Mikkelsen K, Poulsen L, et al. Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited. J Intern Med 2000 Feb;247(2):260-8.

- Thomas MK, Lloyd-Jones DM, Thadhani RI, et al. Hypovitaminosis D in medical inpatients.[see comment]. N Engl J Med 1998 Mar;338(12):777-83.
- Heaney RP, Dowell MS, Hale CA, et al. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 2003 Apr;22(2):142-6.
- Barger-Lux MJ, Heaney RP. Effects of above average summer sun exposure on serum 25-hydroxyvitamin D and calcium absorption. J Clin Endocrinol Metab 2002 Nov;87(11):4952-6.
- Dawson-Hughes B, Heaney RP, Holick MF, et al. Estimates of optimal vitamin D status. Osteoporos Int 2005;16(7):713-6.
- 42. Bischoff-Ferrari HA, Dietrich T, Orav EJ, et al. Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 2004 May 1;116(9):634-9.
- 43. von Muhlen DG, Greendale GA, Garland CF, et al. Vitamin D, parathyroid hormone levels and bone mineral density in community-dwelling older women: the Rancho Bernardo Study. Osteoporos Int 2005 Dec;16(12):1721-6.
- 44. Lips P, Duong T, Oleksik A, et al. A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab 2001 Mar;86(3):1212-21.
- 45. Devine A, Wilson SG, Dick IM, et al. Effects of vitamin D metabolites on intestinal calcium absorption and bone turnover in elderly women. Am J Clin Nutr 2002 Feb;75(2):283-8.
- Hollis BW, Horst RL. The assessment of circulating 25(OH)D and 1,25(OH)(2)D: Where we are and where we are going. J Steroid Biochem Mol Biol 2006 Dec 29;
- 47. Saenger AK, Laha TJ, Bremner DE, et al. Quantification of serum 25-hydroxyvitamin D(2) and D(3) using HPLC-tandem mass spectrometry and examination of reference intervals for diagnosis of vitamin D deficiency. Am J Clin Pathol 2006 Jun;125(6):914-20.
- Maunsell Z, Wright DJ, Rainbow SJ. Routine isotopedilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D. Clin Chem 2005;51(9):1683-90.

- 49. Vogeser M, Kyriatsoulis A, Huber E, et al. Candidate reference method for the quantification of circulating 25-hydroxyvitamin D3 by liquid chromatographytandem mass spectrometry. Clin Chem 2004 Aug;50(8):1415-7.
- Carter GD, Carter R, Jones J, et al. How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin Chem 2004;50(11):2195-7.
- Carter GD, Carter CR, Gunter E, et al. Measurement of Vitamin D metabolites: an international perspective on methodology and clinical interpretation. J Steroid Biochem Mol Biol 2004 May;89-90(1-5):467-71.
- 52. Binkley N, Krueger D, Cowgill CS, et al. Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization.[see comment]. J Clin Endocrinol Metab 2004 Jul;89(7):3152-7.
- Lips P, Chapuy MC, Dawson-Hughes B, et al. An international comparison of serum 25-hydroxyvitamin D measurements.[see comment]. Osteoporos Int 1999;9(5):394-7.
- Hollis BW. Comparison of commercially available (125)I-based RIA methods for the determination of circulating 25-hydroxyvitamin D. Clin Chem 2000 Oct;46(10):1657-61.
- Carter GD, Jones JC, Berry JL. The anomalous behaviour of exogenous 25-hydroxyvitamin D in competitive binding assays. J Steroid Biochem Mol Biol 2007 Mar;103(3-5):480-2.
- Hollis BW. Editorial: The determination of circulating 25-hydroxyvitamin D: no easy task. J Clin Endocrinol Metab 2004 Jul;89(7):3149-51.
- Lensmeyer GL, Wiebe DA, Binkley N, et al. HPLC method for 25-hydroxyvitamin D measurement: comparison with contemporary assays. Clin Chem 2006 Jun;52(6):1120-6.
- 58. Glendenning P, Noble JM, Taranto M, et al. Issues of methodology, standardization and metabolite recognition for 25-hydroxyvitamin D when comparing the DiaSorin radioimmunoassay and the Nichols Advantage automated chemiluminescence proteinbinding assay in hip fracture cases. Ann Clin Biochem 2003 Sep;40(Pt 5):546-51.
- 59. Glendenning P, Taranto M, Noble JM, et al. Current assays overestimate 25-hydroxyvitamin D3 and underestimate 25-hydroxyvitamin D2 compared with HPLC: need for assay-specific decision limits and metabolite-specific assays. Ann Clin Biochem 2006 Jan;43(Pt 1):23-30.

- Heaney RP, Davies KM, Chen TC, et al. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 2003 Jan;77(1):204-10.
- 61. Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 2004 Nov;89(11):5387-91.
- Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr 2006 Oct;84(4):694-7.
- Gartner LM, Greer FR. Prevention of rickets and vitamin D deficiency: new guidelines for vitamin D intake. Pediatrics 2003 Apr;111(4 Pt 1):908-10.
- 64. U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary Guidelines for Americans, 2005 6th Edition, Washington, DC: U S Government Printing Office 2005 Jan 1;
- Berlin JA. Does blinding of readers affect the results of meta-analyses? University of Pennsylvania Metaanalysis Blinding Study Group. Lancet 1997 Jul 19;350(9072):185-6.
- 66. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996 Feb;17(1):1-12.
- 67. Schulz KF, Chalmers I, Hayes RJ, et al. Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 1995 Feb 1;273(5):408-12.
- Harris RP, Helfand M, Woolf SH, et al. Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med 2001 Apr;20(3 Suppl):21-35.
- Lohr KN. Rating the strength of scientific evidence: relevance for quality improvement programs. Int J Qual Health Care 2004 Feb;16(1):9-18.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986 Sep;7(3):177-88.
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003 Sep 6;327(7414):557-60.
- 72. Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res 1993;2(2):121-45.
- Deeks JJ, Higgins JP, Altman DG. Analysing and presenting results. In: Cochrane Handbook for Systematic Reviews of Interventions, 4.2.6 2006. 8 p. 97-165.

- Egger M, Davey SG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997 Sep 13;315(7109):629-34.
- Lau J, Ioannidis JP, Terrin N, et al. The case of the misleading funnel plot. BMJ 2006 Sep 16;333(7568):597-600.
- Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 2001 Oct;54(10):1046-55.
- Cesur Y, Caksen H, Gundem A, et al. Comparison of low and high dose of vitamin D treatment in nutritional vitamin D deficiency rickets. J Pediatr Endocrinol 2003 Oct;16(8):1105-9.
- Garabedian M, Vainsel M, Mallet E, et al. Circulating vitamin D metabolite concentrations in children with nutritional rickets. J Pediatr 1983 Sep;103(3):381-6.
- 79. Markestad T, Halvorsen S, Halvorsen KS, et al. Plasma concentrations of vitamin D metabolites before and during treatment of vitamin D deficiency rickets in children. Acta Paediatr Scand 1984 Mar;73(2):225-31.
- Bhimma R, Pettifor JM, Coovadia HM, et al. Rickets in black children beyond infancy in Natal. South African Med J 1995 Jul;85(7):668-72.
- Elzouki AY, Markestad T, Elgarrah M, et al. Serum concentrations of vitamin D metabolites in rachitic Libyan children. J Pediatr Gastroenterol Nutr 1989 Nov;9(4):507-12.
- Arnaud SB, Stickler GB, Haworth JC. Serum 25hydroxyvitamin D in infantile rickets. Pediatrics 1976 Feb;57(2):221-5.
- Thacher T. Rickets without vitamin D deficiency in Nigerian children. Am Child Health 1997;3(1 Pt 1):56-64.
- Thacher TD, Fischer PR, Pettifor JM, et al. Casecontrol study of factors associated with nutritional rickets in Nigerian children. J Pediatr 2000 Sep;137(3):367-73.
- Majid MA, Badawi MH, al Yaish S, et al. Risk factors for nutritional rickets among children in Kuwait. Pediatr Int 2000 Jun;42(3):280-4.
- Balasubramanian K, Rajeswari J, Gulab, et al. Varying role of vitamin D deficiency in the etiology of rickets in young children vs. adolescents in northern India. J Trop Pediatr 2003 Aug;49(4):201-6.

- Graff M, Thacher TD, Fischer PR, et al. Calcium absorption in Nigerian children with rickets. Am J Clin Nutr 2004 Nov;80(5):1415-21.
- Dawodu A, Agarwal M, Sankarankutty M, et al. Higher prevalence of vitamin D deficiency in mothers of rachitic than nonrachitic children. J Pediatr 2005 Jul;147(1):109-11.
- Oginni LM, Worsfold M, Oyelami OA, et al. Etiology of rickets in Nigerian children. J Pediatr 1996 May;128(5 Pt 1):692-4.
- Specker BL, Ho ML, Oestreich A, et al. Prospective study of vitamin D supplementation and rickets in China. J Pediatr 1992 May;120(5):733-9.
- Zeghoud F, Vervel C, Guillozo H, et al. Subclinical vitamin D deficiency in neonates: definition and response to vitamin D supplements. Am J Clin Nutr 1997 Mar;65(3):771-8.
- 92. Greer FR, Marshall S. Bone mineral content, serum vitamin D metabolite concentrations, and ultraviolet B light exposure in infants fed human milk with and without vitamin D2 supplements. J Pediatr 1989 Feb;114(2):204-12.
- 93. Greer FR, Searcy JE, Levin RS, et al. Bone mineral content and serum 25-hydroxyvitamin D concentrations in breast-fed infants with and without supplemental vitamin D: one-year follow-up. J Pediatr 1982 Jun;100(6):919-22.
- Okonofua F, Menon RK, Houlder S, et al. Parathyroid hormone and neonatal calcium homeostasis: evidence for secondary hyperparathyroidism in the Asian neonate. Metabolism 1986 Sep;35(9):803-6.
- Namgung R, Tsang RC, Lee C, et al. Low total body bone mineral content and high bone resorption in Korean winter-born versus summer-born newborn infants. J Pediatr 1998 Mar;132(3 Pt 1):421-5.
- 96. Park MJ, Namgung R, Kim DH, et al. Bone mineral content is not reduced despite low vitamin D status in breast milk-fed infants versus cow's milk based formula-fed infants. J Pediatr 1998 Apr;132(4):641-5.
- 97. Bougle D, Sabatier JP, Bureau F, et al. Relationship between bone mineralization and aluminium in the healthy infant. Eur J Clin Nutr 1998 Jun;52(6):431-5.
- Souberbielle JC, Friedlander G, Cormier C. Practical considerations in PTH testing. [Review] [84 refs]. Clin Chim Acta 2006 Apr;366(1-2):81-9.
- 99. Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight

velocity, and stages of puberty. Arch Dis Child 1976 Mar;51(3):170-9.

- 100. Rajakumar K, Fernstrom JD, Janosky JE, et al. Vitamin D insufficiency in preadolescent African-American children. Clin Pediatr (Phila) 2005 Oct;44(8):683-92.
- 101. Javaid MK, Crozier SR, Harvey NC, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 2006 Jan 7;367(9504):36-43.
- 102. Ala-Houhala M, Koskinen T, Koskinen M, et al. Double blind study on the need for vitamin D supplementation in prepubertal children. Acta Paediatr Scand 1988 Jan;77(1):89-93.
- 103. Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO, et al. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr 2002 Dec;76(6):1446-53.
- 104. Guillemant J, Taupin P, Le HT, et al. Vitamin D status during puberty in French healthy male adolescents. Osteoporos Int 1999;10(3):222-5.
- 105. Fuleihan GEH, Nabulsi M, Tamim H, et al. Effect of vitamin D replacement on musculoskeletal parameters in school children: A randomized controlled trial. J Clin Endocrinol Metab 2006;91(2):405-12.
- 106. Marwaha RK, Tandon N, Reddy DR, et al. Vitamin D and bone mineral density status of healthy schoolchildren in northern India. Am J Clin Nutr 2005 Aug;82(2):477-82.
- 107. Prentice A. Calcium in pregnancy and lactation. Annu Rev Nutr 2000;20:249-72.
- 108. Sowers M, Zhang D, Hollis BW, et al. Role of calciotrophic hormones in calcium mobilization of lactation. Am J Clin Nutr 1998 Feb;67(2):284-91.
- 109. Ardawi MS, Nasrat HA, BA'Aqueel HS. Calciumregulating hormones and parathyroid hormone-related peptide in normal human pregnancy and postpartum: a longitudinal study. Eur J Endocrin 1997 Oct;137(4):402-9.
- 110. Morley R, Carlin JB, Pasco JA, et al. Maternal 25hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J Clin Endocrinol Metab 2006 Mar;91(3):906-12.
- 111. Datta S, Alfaham M, Davies DP, et al. Vitamin D deficiency in pregnant women from a non-European ethnic minority population--an interventional study. BJOG 2002 Aug;109(8):905-8.

- 112. Corless D, Dawson E, Fraser F, et al. Do vitamin D supplements improve the physical capabilities of elderly hospital patients? Age Ageing 1985 Mar;14(2):76-84.
- 113. Kenny AM, Biskup B, Robbins B, et al. Effects of vitamin D supplementation on strength, physical function, and health perception in older, communitydwelling men. J Am Geriatr Soc 2003 Dec;51(12):1762-7.
- 114. Bischoff HA, Stahelin HB, Dick W, et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res 2003 Feb;18(2):343-51.
- 115. Dhesi JK, Jackson SHD, Bearne LM, et al. Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing 2004;33(6):589-95.
- 116. Storm D, Eslin R, Porter ES, et al. Calcium supplementation prevents seasonal bone loss and changes in biochemical markers of bone turnover in elderly New England women: a randomized placebocontrolled trial. J Clin Endocrinol Metab 1998 Nov;83(11):3817-25.
- 117. Aloia JF, Talwar SA, Pollack S, et al. A randomized controlled trial of vitamin D3 supplementation in African American women. Arch Intern Med 2005 Jul 25;165(14):1618-23.
- 118. Dawson-Hughes B, Harris SS, Krall EA, et al. Rates of bone loss in postmenopausal women randomly assigned to one of two dosages of vitamin D. Am J Clin Nutr 1995 May;61(5):1140-5.
- 119. Ooms ME, Roos JC, Bezemer PD, et al. Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. J Clin Endocrinol Metab 1995 Apr;80(4):1052-8.
- 120. Cooper L, Clifton-Bligh PB, Nery ML, et al. Vitamin D supplementation and bone mineral density in early postmenopausal women. Am J Clin Nutr 2003 May;77(5):1324-9.
- 121. Schaafsma A, van Doormaal JJ, Muskiet FA, et al. Positive effects of a chicken eggshell powder-enriched vitamin-mineral supplement on femoral neck bone mineral density in healthy late post-menopausal Dutch women. Br J Nutr 2002 Mar;87(3):267-75.
- 122. Sambrook PN, Chen JS, March LM, et al. Serum parathyroid hormone predicts time to fall independent of vitamin D status in a frail elderly population. J Clin Endocrinol Metab 2004 Apr;89(4):1572-6.

- 123. Flicker L, Mead K, MacInnis RJ, et al. Serum vitamin D and falls in older women in residential care in Australia. J Am Geriatr Soc 2003 Nov;51(11):1533-8.
- 124. Visser M, Deeg DJ, Lips P, et al. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 2003 Dec;88(12):5766-72.
- 125. Verreault R, Semba RD, Volpato S, et al. Low serum vitamin D does not predict new disability or loss of muscle strength in older women.[see comment]. J Am Geriatr Soc 2002 May;50(5):912-7.
- 126. Melin A, Wilske J, Ringertz H, et al. Seasonal variations in serum levels of 25-hydroxyvitamin D and parathyroid hormone but no detectable change in femoral neck bone density in an older population with regular outdoor exposure. J Am Geriatr Soc 2001 Sep;49(9):1190-6.
- 127. Dennison E, Eastell R, Fall CH, et al. Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int 1999;10(5):384-91.
- 128. Stone K, Bauer DC, Black DM, et al. Hormonal predictors of bone loss in elderly women: a prospective study. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 1998 Jul;13(7):1167-74.
- 129. del Puente A, Esposito A, Savastano S, et al. Dietary calcium intake and serum vitamin D are major determinants of bone mass variations in women. A longitudinal study. Aging Clin Exp Res 2002;14(5):382-8.
- 130. Woo J, Lau E, Swaminathan R, et al. Biochemical predictors for osteoporotic fractures in elderly Chinese--a longitudinal study. Gerontology 1990;36(1):55-8.
- 131. Gerdhem P, Ringsberg KA, Obrant KJ, et al. Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA Study of Elderly Women. Osteoporos Int 2005 Mar 3;
- 132. Bischoff-Ferrari HA, Zhang Y, Kiel DP, et al. Positive association between serum 25hydroxyvitamin D level and bone density in osteoarthritis. Arthritis Rheum 2005 Dec 15;53(6):821-6.
- 133. Cummings SR, Browner WS, Bauer D, et al. Endogenous Hormones and the Risk of Hip and Vertebral Fractures Among Older Women. N Engl J Med 2006;339(11):733-8.

- 134. Faulkner KA, Cauley JA, Zmuda JM, et al. Higher 1,25-dihydroxyvitamin D3 concentrations associated with lower fall rates in older community-dwelling women. Osteoporos Int 2006;17(9):1318-28.
- 135. Rosen CJ, Morrison A, Zhou H, et al. Elderly women in northern New England exhibit seasonal changes in bone mineral density and calciotropic hormones. Bone Miner 1994 May;25(2):83-92.
- 136. Yan L, Zhou B, Wang X, et al. Older people in China and the United Kingdom differ in the relationships among parathyroid hormone, vitamin D, and bone mineral status. Bone 2003 Oct;33(4):620-7.
- 137. Erem C, Tanakol R, Alagol F, et al. Relationship of bone turnover parameters, endogenous hormones and vit D deficiency to hip fracture in elderly postmenopausal women. Int J Clin Pract 2002 Jun;56(5):333-7.
- 138. Stein MS, Wark JD, Scherer SC, et al. Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel. J Am Geriatr Soc 1999 Oct;47(10):1195-201.
- 139. Boonen S, Mohan S, Dequeker J, et al. Downregulation of the serum stimulatory components of the insulin-like growth factor (IGF) system (IGF-I, IGF-II, IGF binding protein [BP]-3, and IGFBP-5) in agerelated (type II) femoral neck osteoporosis. J Bone Miner Res 1999 Dec;14(12):2150-8.
- 140. Landin-Wilhelmsen K, Wilhelmsen L, Bengtsson BA. Postmenopausal osteoporosis is more related to hormonal aberrations than to lifestyle factors. Clin Endocrinol (Oxf) 1999 Oct;51(4):387-94.
- 141. Thiebaud D, Burckhardt P, Costanza M, et al. Importance of albumin, 25(OH)-vitamin D and IGFBP-3 as risk factors in elderly women and men with hip fracture. Osteoporos Int 1997;7(5):457-62.
- 142. Boonen S, Broos P, Verbeke G, et al. Calciotropic hormones and markers of bone remodeling in agerelated (type II) femoral neck osteoporosis: alterations consistent with secondary hyperparathyroidisminduced bone resorption. J Gerontol A Biol Sci Med Sci 1997 Sep;52(5):M286-M293
- 143. Villareal DT, Civitelli R, Chines A, et al. Subclinical vitamin D deficiency in postmenopausal women with low vertebral bone mass. J Clin Endocrinol Metab 1991 Mar;72(3):628-34.
- 144. Lau EM, Woo J, Swaminathan R, et al. Plasma 25hydroxyvitamin D concentration in patients with hip fracture in Hong Kong. Gerontology 1989;35(4):198-204.

- 145. Cooper C, Mclaren M, Wood PJ, et al. Indices of calcium metabolism in women with hip fractures. Bone Miner 1989 Jan;5(2):193-200.
- 146. Lips P, van Ginkel FC, Jongen MJ, et al. Determinants of vitamin D status in patients with hip fracture and in elderly control subjects. Am J Clin Nutr 1987 Dec;46(6):1005-10.
- 147. Lips P, Hackeng WH, Jongen MJ, et al. Seasonal variation in serum concentrations of parathyroid hormone in elderly people. J Clin Endocrinol Metab 1983 Jul;57(1):204-6.
- 148. Punnonen R, Salmi J, Tuimala R, et al. Vitamin D deficiency in women with femoral neck fracture. Maturitas 1986 Dec;8(4):291-5.
- 149. Lund B, Sorensen OH, Christensen AB. 25-Hydroxycholecaliferol and fractures of the proximal. Lancet 1975 Aug 16;2(7929):300-2.
- 150. Diamond T, Smerdely P, Kormas N, et al. Hip fracture in elderly men: the importance of subclinical vitamin D deficiency and hypogonadism. Med J Aust 1998 Aug 3;169(3):138-41.
- 151. Bakhtiyarova S, Lesnyak O, Kyznesova N, et al. Vitamin D status among patients with hip fracture and elderly control subjects in Yekaterinburg, Russia. Osteoporos Int 2006;17(3):441-6.
- 152. Al-oanzi ZH, Tuck SP, Raj N, et al. Assessment of vitamin D status in male osteoporosis. Clin Chem 2006 Feb;52(2):248-54.
- 153. Dixon LB, McKenzie J, Shannon BM, et al. The effect of changes in dietary fat on the food group and nutrient intake of 4- to 10-year-old children. Pediatrics 1997 Nov;100(5):863-72.
- 154. Lilliu H, Pamphile R, Chapuy MC, et al. Calciumvitamin D3 supplementation is cost-effective in hip fractures prevention. Maturitas 2003 Apr 25;44(4):299-305.
- 155. Chee WS, Suriah AR, Chan SP, et al. The effect of milk supplementation on bone mineral density in postmenopausal Chinese women in Malaysia. Osteoporos Int 2003 Oct;14(10):828-34.
- 156. Keane EM, Healy M, O'Moore R, et al. Vitamin Dfortified liquid milk: benefits for the elderly community-based population. Calcif Tissue Int 1998 Apr;62(4):300-2.
- 157. Lau EM, Woo J, Lam V, et al. Milk supplementation of the diet of postmenopausal Chinese women on a low calcium intake retards bone loss. J Bone Miner Res 2001 Sep;16(9):1704-9.

- 158. McKenna MJ, Freaney R, Byrne P, et al. Safety and efficacy of increasing wintertime vitamin D and calcium intake by milk fortification. Qjm 1995 Dec;88(12):895-8.
- 159. Palacios S, Castelo-Branco C, Cifuentes I, et al. Changes in bone turnover markers after calciumenriched milk supplementation in healthy postmenopausal women: a randomized, double-blind, prospective clinical trial. Menopause 2005 Jan;12(1):63-8.
- 160. Tangpricha V, Koutkia P, Rieke SM, et al. Fortification of orange juice with vitamin D: a novel approach for enhancing vitamin D nutritional health. Am J Clin Nutr 2003 Jun;77(6):1478-83.
- 161. Johnson JL, Mistry VV, Vukovich MD, et al. Bioavailability of vitamin D from fortified process cheese and effects on vitamin D status in the elderly. J Dairy Sci 2005 Jul;88(7):2295-301.
- 162. Chan GM, Hoffman K, McMurry M. Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 1995 Apr;126(4):551-6.
- 163. Daly RM, Brown M, Bass S, et al. Calcium- and vitamin D3-fortified milk reduces bone loss at clinically relevant skeletal sites in older men: a 2-year randomized controlled trial. J Bone Miner Res 2006 Mar;21(3):397-405.
- 164. Natri AM, Salo P, Vikstedt T, et al. Bread fortified with cholecalciferol increases the serum 25hydroxyvitamin D concentration in women as effectively as a cholecalciferol supplement. J Nutr 2006 Jan;136(1):123-7.
- 165. Panunzio MF, Pisano A, Telesforob P, et al. Diet can increase 25-hydroxyvitamin-D3 plasma levels in the elderly: A dietary intervention trial. Nutr Res 2003;23(9):1177-81.
- 166. de Jong N, Chin APM, De Groot LC, et al. Functional biochemical and nutrient indices in frail elderly people are partly affected by dietary supplements but not by exercise. J Nutr 1999 Nov;129(11):2028-36.
- 167. Chel VG, Ooms ME, Popp-Snijders C, et al. Ultraviolet irradiation corrects vitamin D deficiency and suppresses secondary hyperparathyroidism in the elderly. J Bone Miner Res 1998 Aug;13(8):1238-42.
- 168. Lovell GA, Byth JL, Craswell PW, et al. The influence of sunlight or dietary vitamin D on plasma 25-hydroxyvitamin D in institutionalized elderly patients in a sub-tropical climate. J Hum Nutr Diet 1988;1(3):163-70.

- 169. Marks R, Foley PA, Jolley D, et al. The Effect of Regular Sunscreen Use on Vitamin D Levels in an Australian Population. Arch Dermatol 1995;131(4):415-21.
- 170. Matsuoka LY, Wortsman J, Haddad JG, et al. Elevation of blood vitamin D2 levels does not impede the release of vitamin D3 from the skin. Metabolism 1992 Nov;41(11):1257-60.
- 171. Reid IR, Gallagher DJ, Bosworth J. Prophylaxis against vitamin D deficiency in the elderly by regular sunlight exposure. Age Ageing 1986 Jan;15(1):35-40.
- 172. Ho ML, Yen HC, Tsang RC, et al. Randomized study of sunshine exposure and serum 25-OHD in breast-fed infants in Beijing, China. J Pediatr 1985 Dec;107(6):928-31.
- 173. Toss G, Andersson R, Diffey BL, et al. Oral vitamin D and ultraviolet radiation for the prevention of vitamin D deficiency in the elderly. Acta Paediatr Scand 1982;212(3):157-61.
- 174. Falkenbach A, Unkelbach U, Boehm BO, et al. Bone metabolism before and after irradiation with ultraviolet light. Eur J Appl Physiol 1993;66(1):55-9.
- 175. McElwain MC, Dettelbach MA, Modzelewski RA, et al. Antiproliferative effects in vitro and in vivo of 1,25-dihydroxyvitamin D-3 and a vitamin D-3 analog in a squamous cell carcinoma model system. Mol Cell Differ 1995;3(1):31-50.
- 176. Ala-Houhala M. 25-Hydroxyvitamin D levels during breast-feeding with or without maternal or infantile supplementation of vitamin D. J Pediatr Gastroenterol Nutr 1985 Apr;4(2):220-6.
- 177. Barnes MS, Robson PJ, Bonham MP, et al. Effect of vitamin D supplementation on vitamin D status and bone turnover markers in young adults. Eur J Clin Nutr 2006;60(6):727-33.
- 178. Brazier M, Kamel S, Lorget F, et al. Biological effects of supplementation with vitamin D and calcium in postmenopausal women with low bone mass receiving alendronate. Clinical Drug Investigation 2002;22(12):849-57.
- 179. Brooke OG, Brown IR, Bone CD, et al. Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. BMJ 1980 Mar 15;280(6216):751-4.
- 180. Chapuy MC, Pamphile R, Paris E, et al. Combined calcium and vitamin D3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the

Decalyos II study. Osteoporos Int 2002 Mar;13(3):257-64.

- 181. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 1992 Dec 3;327(23):1637-42.
- 182. Chan GM, Roberts CC, Folland D, et al. Growth and bone mineralization of normal breast-fed infants and the effects of lactation on maternal bone mineral status. Am J Clin Nutr 1982 Sep;36(3):438-43.
- 183. Dawson-Hughes B, Dallal GE, Krall EA, et al. Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Ann Intern Med 1991 Oct 1;115(7):505-12.
- 184. Dawson-Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997 Sep 4;337(10):670-6.
- 185. Bischoff-Ferrari HA, Orav EJ, wson-Hughes B. Effect of cholecalciferol plus calcium on falling in ambulatory older men and women: a 3-year randomized controlled trial. Arch Intern Med 2006 Feb 27;166(4):424-30.
- 186. Delvin EE, Salle BL, Glorieux FH, et al. Vitamin D supplementation during pregnancy: effect on neonatal calcium homeostasis. J Pediatr 1986 Aug;109(2):328-34.
- 187. Deroisy R, Collette J, Albert A, et al. Comparison of the short-term effects of three oral calcium-vitamin D formulations and placebo on calcium metabolism. Current Therapeutic Research 1998 Jun;59(6):370-8.
- 188. Deroisy R, Collette J, Chevallier T, et al. Effects of two 1-year calcium and vitamin D3 treatments on bone remodeling markers and femoral bone density in elderly women. Current Therapeutic Research 1998;59(12):850-62.
- 189. Deroisy R, Collette J, Albert A, et al. Administration of a supplement containing both calcium and vitamin D is more effective than calcium alone to reduce secondary hyperparathyroidism in postmenopausal women with low 25(OH)vitamin D circulating levels. Aging Clin Exp Res 2002 Feb;14(1):13-7.
- 190. Grados F, Brazier M, Kamel S, et al. Effects on bone mineral density of calcium and vitamin D supplementation in elderly women with vitamin D deficiency. Joint Bone Spine 2003 Jun;70(3):203-8.
- 191. Brazier M, Grados F, Kamel S, et al. Clinical and laboratory safety of one year's use of a combination calcium + vitamin D tablet in ambulatory elderly women with vitamin D insufficiency: results of a

multicenter, randomized, double-blind, placebocontrolled study. Clin Ther 2005 Dec;27(12):1885-93.

- 192. Goussous R, Song L, Dallal GE, et al. Lack of effect of calcium intake on the 25-hydroxyvitamin d response to oral vitamin D3. J Clin Endocrinol Metab 2005 Feb;90(2):707-11.
- 193. Greer FR, Searcy JE, Levin RS, et al. Bone mineral content and serum 25-hydroxyvitamin D concentration in breast-fed infants with and without supplemental vitamin D. J Pediatr 1981 May;98(5):696-701.
- 194. Guillemant J, Le HT, Maria A, et al. Wintertime vitamin D deficiency in male adolescents: effect on parathyroid function and response to vitamin D3 supplements. Osteoporos Int 2001;12(10):875-9.
- 195. Harris SS, Dawson-Hughes B. Plasma vitamin D and 25OHD responses of young and old men to supplementation with vitamin D3. J Am Coll Nutr 2002 Aug;21(4):357-62.
- 196. Harris SS, Dawson-Hughes B, Perrone GA. Plasma 25-hydroxyvitamin D responses of younger and older men to three weeks of supplementation with 1800 IU/day of vitamin D. J Am Coll Nutr 1999 Oct:18(5):470-4.
- 197. Harwood RH, Sahota O, Gaynor K, et al. A randomised, controlled comparison of different calcium and vitamin D supplementation regimens in elderly women after hip fracture: The Nottingham Neck of Femur (NONOF) Study. Age Ageing 2004 Jan;33(1):45-51.
- 198. Heaney RP, Barger-Lux MJ, Dowell MS, et al. Calcium absorptive effects of vitamin D and its major metabolites. J Clin Endocrinol Metab 1997;82(12):4111-6.
- 199. Heikkinen A, Parviainen MT, Tuppurainen MT, et al. Effects of postmenopausal hormone replacement therapy with and without vitamin D3 on circulating levels of 25-hydroxyvitamin D and 1,25dihydroxyvitamin D. Calcif Tissue Int 1998 Jan;62(1):26-30.
- 200. Himmelstein S, Clemens TL, Rubin A, et al. Vitamin D supplementation in elderly nursing home residents increases 25(OH)D but not 1,25(OH)2D. Am J Clin Nutr 1990 Oct;52(4):701-6.
- 201. Hollis BW, Wagner CL. Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am J Clin Nutr 2004 Dec;80(6 Suppl):1752S-8S.

- 202. Honkanen R, Alhava E, Parviainen M, et al. The necessity and safety of calcium and vitamin D in the elderly. J Am Geriatr Soc 1990 Aug;38(8):862-6.
- 203. Hunter D, Major P, Arden N, et al. A randomized controlled trial of vitamin D supplementation on preventing postmenopausal bone loss and modifying bone metabolism using identical twin pairs. J Bone Miner Res 2000 Nov;15(11):2276-83.
- 204. Jensen C, Holloway L, Block G, et al. Long-term effects of nutrient intervention on markers of bone remodeling and calciotropic hormones in latepostmenopausal women. Am J Clin Nutr 2002 Jun;75(6):1114-20.
- 205. Kenny AM, Prestwood KM, Biskup B, et al. Comparison of the effects of calcium loading with calcium citrate or calcium carbonate on bone turnover in postmenopausal women. Osteoporos Int 2004 Apr;15(4):290-4.
- 206. Khaw KT, Scragg R, Murphy S. Single-dose cholecalciferol suppresses the winter increase in parathyroid hormone concentrations in healthy older men and women: a randomized trial. Am J Clin Nutr 1994 May;59(5):1040-4.
- 207. Krieg MA, Jacquet AF, Bremgartner M, et al. Effect of supplementation with vitamin D3 and calcium on quantitative ultrasound of bone in elderly institutionalized women: a longitudinal study. Osteoporos Int 1999;9(6):483-8.
- 208. Latham NK, Anderson CS, Lee A, et al. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). J Am Geriatr Soc 2003 Mar;51(3):291-9.
- 209. Lips P, Wiersinga A, van Ginkel FC, et al. The effect of vitamin D supplementation on vitamin D status and parathyroid function in elderly subjects. J Clin Endocrinol Metab 1988 Oct;67(4):644-50.
- 210. Lips P, Graafmans WC, Ooms ME, et al. Vitamin D supplementation and fracture incidence in elderly persons: a randomized, placebo-controlled clinical trial. Ann Intern Med 1996 Feb 15;124(4):400-6.
- 211. Mallet E, Gugi B, Brunelle P, et al. Vitamin D supplementation in pregnancy: a controlled trial of two methods. Obstet Gynecol 1986 Sep;68(3):300-4.
- 212. Mastaglia SR, Mautalen CA, Parisi MS, et al. Vitamin D2 dose required to rapidly increase 25OHD levels in osteoporotic women. Eur J Clin Nutr 2006 May;60(5):681-7.

- 213. Meier C, Woitge HW, Witte K, et al. Supplementation with oral vitamin D3 and calcium during winter prevents seasonal bone loss: a randomized controlled open-label prospective trial. J Bone Miner Res 2004 Aug;19(8):1221-30.
- 214. Nordin BE, Baker MR, Horsman A, et al. A prospective trial of the effect of vitamin D supplementation on metacarpal bone loss in elderly women. Am J Clin Nutr 1985 Sep;42(3):470-4.
- 215. Orwoll ES, Weigel RM, Oviatt SK, et al. Calcium and cholecalciferol: effects of small supplements in normal men. Am J Clin Nutr 1988 Jul;48(1):127-30.
- 216. Patel R, Collins D, Bullock S, et al. The effect of season and vitamin D supplementation on bone mineral density in healthy women: a double-masked crossover study. Osteoporos Int 2001;12(4):319-25.
- 217. Pehlivan I, Hatun S, Aydogan M, et al. Maternal vitamin D deficiency and vitamin D supplementation in healthy infants. Turk J Pediatr 2003 Oct;45(4):315-20.
- 218. Pfeifer M, Begerow B, Minne HW, et al. Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women.[erratum appears in J Bone Miner Res 2001 Oct;16(10):1935]. J Bone Miner Res 2000 Jun;15(6):1113-8.
- 219. Riis B, Christiansen C, Rodbro P. The effect of different vitamin D treatments on serum vitamin D levels in early postmenopausal women. Acta Vitaminol Enzymol 1984;6(2):77-82.
- 220. Rothberg AD, Pettifor JM, Cohen DF, et al. Maternal-infant vitamin D relationships during breastfeeding. J Pediatr 1982 Oct;101(4):500-3.
- 221. Schaafsma A, Muskiet FA, Storm H, et al. Vitamin D(3) and vitamin K(1) supplementation of Dutch postmenopausal women with normal and low bone mineral densities: effects on serum 25-hydroxyvitamin D and carboxylated osteocalcin. Eur J Clin Nutr 2000 Aug;54(8):626-31.
- 222. Sebert JL, Garabedian M, Chauvenet M, et al. Evaluation of a new solid formulation of calcium and vitamin D in institutionalized elderly subjects : a randomized comparative trial versus separate administration of both constituents. Rev Rhum Engl Ed 1995 Apr;62(4):288-94.
- 223. Schou AJ, Heuck C, Wolthers OD. Vitamin D supplementation to healthy children does not affect serum osteocalcin or markers of type I collagen turnover. Acta Paediatr 2003;92(7):797-801.

- 224. Sorva A, Risteli J, Risteli L, et al. Effects of vitamin D and calcium on markers of bone metabolism in geriatric patients with low serum 25-hydroxyvitamin D levels. Calcif Tissue Int 1991;49 Suppl:S88-S89
- 225. Sorva A, Valimaki M, Tilvis R. Effects of vitamin D and calcium supplementation in geriatric patients with low vitamin D status. Arch Gerontol Geriatr 1991;12(Suppl. 2):481-4.
- 226. Sorva A, Valimaki M, Risteli J, et al. Serum ionized calcium, intact PTH and novel markers of bone turnover in bedridden elderly patients. Eur J Clin Invest 1994 Dec;24(12):806-12.
- 227. Stephens WP, Klimiuk PS, Berry JL, et al. Annual high-dose vitamin D prophylaxis in Asian immigrants. Lancet 1981 Nov 28;2(8257):1199-202.
- 228. Tfelt-Hansen J, Torring O. Calcium and vitamin D3 supplements in calcium and vitamin D3 sufficient early postmenopausal healthy women. Eur J Clin Nutr 2004 Oct;58(10):1420-4.
- 229. Tjellesen L, Hummer L, Christiansen C, et al. Serum concentration of vitamin D metabolites during treatment with vitamin D2 and D3 in normal premenopausal women. Bone Miner 1986 Oct;1(5):407-13.
- 230. Trang HM, Cole DE, Rubin LA, et al. Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr 1998 Oct;68(4):854-8.
- 231. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ 2003 Mar 1;326(7387):469
- 232. van der Klis FR, Jonxis JH, van Doormaal JJ, et al. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curacao. Br J Nutr 1996 Apr;75(4):637-46.
- 233. Vieth R, Kimball S, Hu A, et al. Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutr J 2004 Jul;3:8
- 234. Vieth R, Chan PC, MacFarlane GD. Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level. Am J Clin Nutr 2001 Feb;73(2):288-94.

- 235. Weisman Y, Schen RJ, Eisenberg Z, et al. Single oral high-dose vitamin D3 prophylaxis in the elderly. J Am Geriatr Soc 1986 Jul;34(7):515-8.
- 236. Zeghoud F, Ben Mekhbi H, Djeghri N, et al. Vitamin D prophylaxis during infancy: comparison of the longterm effects of three intermittent doses (15, 5, or 2.5 mg) on 25-hydroxyvitamin D concentrations. Am J Clin Nutr 1994 Sep;60(3):393-6.
- 237. Grados F, Brazier M, Kamel S, et al. Prediction of bone mass density variation by bone remodeling markers in postmenopausal women with vitamin D insufficiency treated with calcium and vitamin D supplementation. J Clin Endocrinol Metab 2003 Nov;88(11):5175-9.
- 238. Sato Y, Kaji M, Honda Y, et al. Abnormal calcium homeostasis in disabled stroke patients with low 25hydroxyvitamin D. Bone 2004 Apr;34(4):710-5.
- 239. Markestad T, Aksnes L, Ulstein M, et al. 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin D of D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Am J Clin Nutr 1984 Nov;40(5):1057-63.
- 240. Dhesi JK, Bearne LM, Moniz C, et al. Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status. J Bone Miner Res 2002 May;17(5):891-7.
- 241. Baeksgaard L, Andersen KP, Hyldstrup L. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women. Osteoporos Int 1998;8(3):255-60.
- 242. Komulainen MH, Kroger H, Tuppurainen MT, et al. HRT and Vit D in prevention of non-vertebral fractures in postmenopausal women: a 5 year randomized trial. Maturitas 1998 Nov 30;31(1):45-54.
- 243. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures.[see comment]. N Engl J Med 2006 Feb 16;354(7):669-83.
- 244. Porthouse J, Cockayne S, King C, et al. Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ 2005 Apr 30;330(7498):1003
- 245. Anderson FH, Smith HE, Raphael HM, et al. Effect of annual intramuscular vitamin D₃ supplementation on fracture risk in 9440 community-living older people: the Wessex fracture prevention trial. [Abstract] ASBMR 26th Annual Meeting 2004;Presentation #1220 10/5/2004:

- 246. Flicker L, MacInnis RJ, Stein MS, et al. Should older people in residential care receive vitamin D to prevent falls? Results of a randomized trial. J Am Geriatr Soc 2005 Nov;53(11):1881-8.
- 247. Law M, Withers H, Morris J, et al. Vitamin D supplementation and the prevention of fractures and falls: results of a randomised trial in elderly people in residential accommodation. Age Ageing 2006 Sep;35(5):482-6.
- 248. Grant AM, Avenell A, Campbell MK, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet 2005 May;365(9471):1621-8.
- 249. Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. J Bone Miner Res 2004 Mar;19(3):370-8.
- 250. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994 Dec;50(4):1088-101.
- 251. Graafmans WC, Lips P, Ooms ME, et al. The effect of vitamin D supplementation on the bone mineral density of the femoral neck is associated with vitamin D receptor genotype. J Bone Miner Res 1997 Aug;12(8):1241-5.
- 252. Graafmans WC, Ooms ME, Hofstee HM, et al. Falls in the elderly: a prospective study of risk factors and risk profiles. Am J Epidemiol 1996 Jun 1;143(11):1129-36.
- 253. Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents severe falls in elderly community-dwelling women: a pragmatic population-based 3-year intervention study. Aging Clin Exp Res 2005 Apr;17(2):125-32.
- 254. Grant WB, Holick MF. Benefits and requirements of vitamin D for optimal health: A review. Altern Med Rev 2005;10(2):94-111.
- 255. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease... Vitamin D and Health in the 21st Century: proceedings of a conference held in Bethesda, MD, October 9-10, 2003. Am J Clin Nutr 2004 Dec;80(6S):Supplement-88S
- 256. Webb RA. Who, what, where and when influences on cutaneous vitamin D synthesis. Progress in Biophysics and Molecular Biology 2006; 92:17-25.

- 257. Diamond TH, Eisman JA, Mason RS, et al. Vitamin D and adult bone health in Australia and New Zealand: A position statement. Med J Aust 2005 Mar 21;182(6):281-5.
- 258. Lo CW, Paris PW, Holick MF. Indian and Pakistani immigrants have the same capacity as Caucasians to produce vitamin D in response to ultraviolet irradiation. Am J Clin Nutr 1986 Nov;44(5):683-5.
- Beadle PC. The epidermal biosynthesis of cholecalciferol (vitamin D3). Photochem Photobiol 1977 Jun;25(6):519-27.
- 260. Giangiacoma J, Gleason WA, Jr. 25-hydroxyvitamin D levels and rickets. Pediatrics 1977 Nov;60(5):761
- 261. Samanek AJ, Croager EJ, Giesfor Skin Cancer PP, et al. Estimates of beneficial and harmful sun exposure times during the year for major Australian population centres. Med J Aust 2006 Apr 3;184(7):338-41.
- 262. Webb AR, Engelsen O. Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochem Photobiol 2006 Nov;82(6):1697-703.
- 263. Kimlin MG, Olds WJ, Moore MR. Location and vitamin D synthesis: is the hypothesis validated by geophysical data? J Photochem Photobiol B 2007 Mar 1;86(3):234-9.
- 264. Galkin ON, Terenetskaya IP. 'Vitamin D' biodosimeter: basic characteristics and potential applications. J Photochem Photobiol B 1999 Nov;53(1-3):12-9.
- 265. MacLaughlin JA, Anderson RR, Holick MF. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 1982 May 28;216(4549):1001-3.
- 266. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 1988 Aug;67(2):373-8.
- 267. Heenen M, Giacomoni PU, Golstein P. Individual variations in the correlation between erythemal threshold, UV-induced DNA damage and sun-burn cell formation. J Photochem Photobiol B 2001 Oct;63(1-3):84-7.
- Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B 2001 Oct;63(1-3):8-18.
- 269. Gallagher RP, Lee TK. Adverse effects of ultraviolet radiation: a brief review. Prog Biophys Mol Biol 2006 Sep;92(1):119-31.

- 270. De Fabo EC. Initial studies on an in vivo action spectrum for melanoma induction. Prog Biophys Mol Biol 2006 Sep;92(1):97-104.
- 271. Seifert M, Rech M, Meineke V, et al. Differential biological effects of 1,25-dihydroxyVitamin D3 on melanoma cell lines in vitro. J Steroid Biochem Mol Biol 2004 May;89-90(1-5):375-9.
- 272. Reichrath J, Rech M, Moeini M, et al. In vitro comparison of the vitamin D endocrine system in 1,25(OH)2D3-responsive and -resistant melanoma cells. Cancer Biol Ther 2007 Jan;6(1):48-55.
- 273. Vieth R. Vitamin D supplementation, 25hydroxyvitamin D concentrations, and safety.[see comment]. [Review] [135 refs]. Am J Clin Nutr 1999 May;69(5):842-56.
- 274. Serhan E, Holland MR. Calcium and vitamin D supplementation failed to improve bone mineral density in Indo-Asians suffering from hypovitaminosis D and secondary hyperparathyroidism. Rheumatol Int 2005;25(4):
- 275. Viljakainen HT, Natri AM, Karkkainen M, et al. A positive dose-response effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: a double-blinded randomized placebo-controlled 1-year intervention. J Bone Miner Res 2006 Jun;21(6):836-44.
- 276. Papadimitropoulos E, Wells G, Shea B, et al. Metaanalyses of therapies for postmenopausal osteoporosis. VIII: Meta-analysis of the efficacy of vitamin D treatment in preventing osteoporosis in postmenopausal women. [Review] [48 refs]. Endocr Rev 2002 Aug;23(4):560-9.
- 277. Avenell A, Gillespie WJ, Gillespie LD, et al. Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev 2005;(3):CD000227
- 278. Boonen S, Laan RF, Barton IP, et al. Effect of osteoporosis treatments on risk of non-vertebral fractures: review and meta-analysis of intention-totreat studies. Osteoporos Int 2005 Oct;16(10):1291-8.
- 279. Gillespie LD, Gillespie WJ, Robertson MC, et al. Interventions for preventing falls in elderly people. The Cochrane Library 2006;(1):CD000340
- 280. Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, et al. Effect of Vitamin D on falls: a metaanalysis.[see comment]. [Review] [36 refs]. JAMA 2004 Apr 28;291(16):1999-2006.

- 281. Broe KE, Chen TC, Weinberg J, et al. A higher dose of vitamin d reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. J Am Geriatr Soc 2007 Feb;55(2):234-9.
- 282. Moher D, Pham B, Klassen TP, et al. What contributions do languages other than English make on the results of meta-analyses? J Clin Epidemiol 2000 Sep;53(9):964-72.

Key Terms

Dietary Reference Intakes⁴

Adequate Intake (AI) - an adequate intake is based on observed estimates of average nutrient intake by a group of healthy people. It is expected to meet or exceed the amount needed to maintain a defined nutritional state or criterion of adequacy in essentially all members of a specific healthy population.

For infants 0 - six months, the AI is based on the estimated daily mean intake supplied by human milk for healthy full-term infants who are exclusively breast-fed. For other age groups, the AI is the vitamin D intake value that appears to be needed to maintain, in a defined group of individuals, serum 25(OH)D at a concentration below which e.g., vitamin D deficiency rickets or osteomalacia occurs. The AI assumes no vitamin D is available from sun-mediated cutaneous synthesis.

Estimated Average Requirement (EAR) - the nutrient intake value that is estimated to meet the requirement defined by a specified indicator of adequacy in 50 percent of the individuals in a life stage and gender group. This is used to set a Recommended Daily Allowance (RDA). An EAR could not be established by the IOM in its 1997 Daily Reference Intakes for vitamin D due to insufficient data.

Recommended Dietary allowance (RDA) - the average daily dietary intake level that is sufficient to meet the nutrient requirements of nearly all (97 - 98 percent) individuals in a life stage and gender group. An EAR is the basis for setting the RDA. In the absence of sufficient data for an EAR, an AI is established.

Tolerable Upper Intake Limit - the highest level of daily intake that is likely to pose no risks of adverse health effects to almost all individuals in the general popultion.

Current Adequate Reference Intakes (IOMI, 1997)	
Age group	Adequate Intakes
infants 0 - 13 y	200 IU (5 ug/day)
children 14 - 18 y	200 IU (5 ug/day)
adults 19 - 50 y	200 IU (5 ug/day)
pregnant or lactating women (14 - 50 y)	200 IU (5 ug/day)
adults 51 - 70 y	400 IU (5 ug/day)
adults > 70 y	600 IU (10 ug/day)

Current Adequate Reference Intakes (IOM, 1997)⁴

Vitamin D Terms

Provitamin D ₃	7 dehydrocholesterol (7-DHC)
Previtamin D ₃	Synthesized in the skin from 7-dehydrocholesterol
Cholecalciferol	Vitamin D_3 . Synthesized in the skin in response to sunlight of wavelengths 290 - 320 nm (UV-B); synthesis is initiated by the photoconversion of provitamin D_3 to previtamin D_3 .
Calcidiol	25 hydroxycholecalciferol or calcifediol $(25(OH)D_3)$ - hydroxylated in the liver as the first step in the conversion of vitamin D ₃ to the active form
Calcitriol	1,25 dihydoxyvitamin D3 (1,25-(OH) ₂ D ₃), the form of vitamin D ₃ that is biologically active; produced by the hydroxylation of 25 (OH)D in the kidney or at extrarenal sites.
Ergocalciferol	Vitamin D ₂ , present in some naturally occuring dietary sources and in some supplements.

Conversion Factors

1 ng/mL of 25(OH)D = 2.5 nmol/L

1 ug of vitamin D = 40 IU

List of Acronyms/Abbreviations

Clinical	
1,25-(OH) ₂ D ₃	1, 25-dihydroxyvitamin D_3 or 1, 25-dihydroxycholecalciferol, calcitriol
1,25-(OH) ₂ D	1-alpha hydroxy cholecalciferol (alfacalcidiol)
25(OH)D	25-hydroxyvitamin D (total or isoform unspecified)
25(OH)D2	25-hydroxyvitamin D_2 or 25-hydroxyergocalciferol
25(OH)D ₃	25-hydroxyvitamin D_3 or calcifediol.
AC	allocation concealment
Al	Adequate intake
AL	aluminum
AP or ALP	alkaline phosphatase
ASMM	appendicular skeletal muscle mass
AUC	area under the curve
B/w	between
BMC	bone mineral content
BMD	bone mineral density
BMD	body mass index
Ca	calcium
CACO3	calcium carbonate
CPBA	
Cr	competitive protein binding assay creatinine
CrCl	creatinine clearance
DBP	vitamin D binding protein
def	deficient
DHC	7-dehydrocholesterol (provitamin D_3)
DHT	dihydrotachysterol
DPX-L	dual photon
DR	distal radius
DRI	dietary reference intakes
DXA, DEXA	dual energy x-ray absorptiometry
EAR	estimated average requirement
F	female
FFQ	Food frequency questionnaire
FN	femoral neck
FS	femoral shaft
FT	full term
GC-MS	gas chromatography coupled with mass spectometry
GS	grip strength
HPLC	high performance liquid chromatography
HRT	hormone replacement therapy
IA	immunoassay
iPTH	intact parathyroid hormone
LC-MS/MS	ligquid chromatography coupled with tandem mass spectometry
LS	lumbar spine
M	male
MED	minimal erythemal dose
Mg	magnesium
MSK	musculoskeletal
OP	osteoporosis
P	phosphate
PICP	procollagen type 1N terminal propeptide
PM	postmenopausal
pt(s)	patient(s)
1	1

CLINICAL - cor	ntinued
PT	pre-term
RANKL	receptor activator of nuclear factor kappa beta ligand
RCT	randomized controlled trial
RDA	recommended dietary allowance
RIA	radioimmunoassay
S-AL	serum aluminum
S-Ca	serum calcium
SHBG	sex hormone binding globulin
S-phosphorus	serum phosphorus
тв	total body
TH	total hip
Tr	trochanter
TUG	timed up and go
uCa	urine calcium
uCa/Cr	urine calcium/creatinine ratio
US	ultrasound
UV	ultraviolet light
UV-B	ultraviolet light B
Vit D	vitamin D (D_2 or D_3 unspecified)
Vit D ₂	vitamin D ₂ or ergocalciferol
Vit D ₃	vitamin D ₃ or cholecalciferol
UNITS	
μg	micrograms
µg /L	micrograms per liter
µg /mL	micrograms per milliliter
µg/dL	micrograms per deciliter
µmol/L	micromoles per liter
cm	centimeters
g/cm	grams per centimeter
g/cm ²	grams per centimeter squared
IU	international units
IU/d	international units per day
11.1/1	international units per liter

µg /mL	micrograms per milliliter	
µg/dL	micrograms per deciliter	
µmol/L	micromoles per liter	
cm	centimeters	
g/cm	grams per centimeter	
g/cm ²	grams per centimeter squared	
IU	international units	
IU/d	international units per day	
IU/L	international units per liter	
kg	kilograms	
kg/m ²	kilograms per square meter	
m	meters	
mg	milligrams	
mg/d	milligrams per day	
mJ/cm ²	millijoules per square centimeter	
mL	milliliter	
mmol/L	millimoles per liter	
Ν	sample size	
ng/dL	nanogram per deciliter	
ng/L	nanogram per liter	
ng/mL	nanograms per milliliter	
nmol/L	nanomoles per litre	
pg/mL	picograms per milliliter	
IU/L	international units per liter	
μm	micromolar	

STATISTICS

ANCOVA	analysis of covariance
ANOVA	analysis of variance
CI	confidence interval
CV	coefficient of variation
HR	hazard ratio
IQR	Inter-quartile range
ITT	intention to treat
NS	not significant
OR	odds ratio
RR	relative risk
S	significant
SD	standard deviation
SE/SEM	standard error of the mean

COMMON TABLE ABBREVIATIONS

0/	
%	percentage
<	less than
<u><</u>	less than or equal to
>	greater than
< < > > CG	greater than or equal to
CG	control group
ctrls	controls
Deg	degrees
FHx	family history
h	hour
Hx	history
IG	intervention group
mo	month(s)
Ν	north
NA	not applicable
NR	not reported
S	south
Тх	treatment
wks	weeks
у	year
-	-

STATISTICS

ANCOVA	analysis of covariance
ANOVA	analysis of variance
CI	confidence interval
CV	coefficient of variation
HR	hazard ratio
IQR	Inter-quartile range
ITT	intention to treat
NS	not significant
OR	odds ratio
RR	relative risk
S	significant
SD	standard deviation
SE/SEM	standard error of the mean

COMMON TABLE ABBREVIATIONS

%	percentage
<	less than
<u><</u>	less than or equal to
>	greater than
< > > CG	greater than or equal to
CG	control group
ctrls	controls
Deg	degrees
FHx	family history
h	hour
Hx	history
IG	intervention group
mo	month(s)
Ν	north
NA	not applicable
NR	not reported
S	south
Тх	treatment
wks	weeks
у	year

Appendixes

Appendix A. Search Strategies

Medline strategy: [variations of these strategies exist for a) Embase, b) CENTRAL CINAHL AMED, c) Biological abstracts]

- 1. (25-hydroxy vit D or 25-hydroxy vit d or Plasma vit D).tw. 2. 64719-49-9.rn. 3. 250HD3.tw. 4. "25(OH)D3".tw. 5. 25-OHD3.tw. 6. "25-(OH)D3".tw. 7. 250HD.tw. 8. "25(OH)D".tw. 9. 25-OHD.tw. 10. "25-(OH)D".tw. 11. 25-hydroxycholecalciferol.tw. 12. calcidiol.tw. 13. Calcifediol/ 14. or/1-13 15. Rickets/ 16. rachitis.tw. 17. rickets.tw. 18. Bone Density/ 19. exp Osteoporosis/ 20. ((bone\$ or plate\$) adj3 mineral\$).tw. 21. (bone adj2 (loss or turnover or densi\$)).tw. 22. (Skelet\$ adj2 (mineral\$ or development\$)).tw. 23. mineralization defect\$.tw. 24. Mineral^{\$} content^{\$}.tw. 25. BMC.tw. 26. Osteoporo\$.tw. 27. Osteomalac\$.tw. 28. Osteopath\$.tw. 29. Bone Development/ 30. Osteogenesis/ 31. exp Fractures/ 32. fracture\$.tw. 33. Accidental Falls/ 34. falls.tw. 35. exp "Bone and Bones"/ 36. Calcium/ 37. Intestinal Absorption/ 38. (calcium adj3 absorb\$).tw. 39. 36 and absorb\$.tw. 40.36 and 37 41. or/38-40 42. Parathyroid hormone/ 43. parathyroid hormone\$.tw.
- 44. Serum PTH.tw. 45. ("PTH (1-84)" or "pth(1-84)").tw. 46. or/15-35.41-45 47. Nutritive Value/ 48. Diet/ 49. exp Maternal Nutrition/ 50. exp Infant nutrition/ 51. (Diet\$ or nutrition\$).tw. 52. Dietary Supplements/ 53. Food, Fortified/ 54. (fortifi\$ or supplement\$).tw. 55. exp Vit d/ 56. (vit adj (d or d2 or d3)).mp. 57. (or/52-54) and (or/55-56) 58. (or/47-54) and (or/55-56) 59. ((oral or iu) adj2 vit adj (d or d3)).tw. 60. Ergocalciferols/ 61. Ergocalciferol\$.tw. 62. Cholecalciferol/ 63. Cholecalciferol\$.tw. 64. calciferol.tw. 65. Vit D Deficiency/dh, dt 66. exp Vit D/ad 67. or/58-66 68. Sunlight/ 69. Heliotherapy/ 70. Skin Pigmentation/ 71. (sun or sunlight\$).tw. 72. cutaneous exposure.tw. 73. (ultraviolet or uvb or uv b).tw. 74. (latitude\$ or geograph\$ or pigment\$).tw. 75. Seasons/ 76. season\$.tw. 77. Homebound Persons/ 78. (shut in\$ or home bound or house bound).tw. 79. or/58-66,68-78 80. or/31-34 81. Vit D/to [Toxicity] 82. No-Observed-Adverse-Effect Level/ 83. upper limit\$.tw. 84. UL.tw. 85. (excess\$ or toxic\$).tw. 86. vit d intox\$.tw.
- 87. (noael or noel).tw.

88. (no observed adj2 effect\$).tw. 89. Calcification, Physiologic/de [Drug Effects] 90. Hypercalcemia/ 91. Kidney Calculi/ 92. Nephrocalcinosis/ 93. Urinary Calculi/ 94. Bladder Calculi/ 95. Ureteral Calculi/ 96. Calcinosis/ 97. Hypercalcemi\$.tw. 98. (Burnett\$ adj2 syndrome\$).tw. 99. Hypercalciuri\$.tw. 100. or/81-99 101. 14 and 46 102. 14 and 79 103. RANDOMIZED CONTROLLED TRIAL.pt. 104. CONTROLLED CLINICAL TRIAL.pt. 105. RANDOMIZED CONTROLLED TRIALS.sh. 106. RANDOM ALLOCATION.sh. 107. DOUBLE BLIND METHOD.sh. 108. SINGLE-BLIND METHOD.sh.

109. or/103-108 110. (ANIMALS not HUMAN).sh. 111. 109 not 110 112. CLINICAL TRIAL.pt. 113. exp CLINICAL TRIALS/ 114. (clin\$ adj25 trial\$).ti,ab. 115. ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj25 (blind\$ or mask\$)).ti,ab. 116. PLACEBOS.sh. 117. placebo\$.ti,ab. 118. random\$.ti,ab. 119. versus.tw. 120. RESEARCH DESIGN.sh. 121. or/112-120 122. 121 not 110 123. 122 not 111 124. 111 or 123 125. (or/57,59-66) and 80 and 124 126. 67 and 100 127. 101 or 102 or 125 or 126 128. limit 127 to animals 129. limit 128 to humans 130. 127 not (128 not 129)

Appendix B. Screening, Data Abstraction, and Quality Assessment Forms

Article I. Screening Forms

Level 1: Title and Abstract Screening

- 1. Is this an English-language publication?
 - Yes
 - No
 - Can't tell
- Is this a potentially relevant record (exclude reviews) examining the safety and/or efficacy of Vit D (Vit D sources, dietary intake, sun exposure, supplements) in <u>humans</u> (*exclude populations with secondary causes of osteoporosis*)? (<u>examples:</u> bone health, fracture incidence, bone mineral density, rickets, fortified foods, supplementation, sun exposure, fall incidence (muscle strength/balance/body sway)

OR addressing the association between circulating 25(OH)D and the above bone health outcomes.

OR potential toxicity such as hypercalemia, or soft tissue calcification

OR a record addressing issue of sunlight exposure and adequate vit D levels related to the risk of non-melanoma or melanoma skin cancer?

- Yes
- No
- Can't tell
- 3. Please check all that apply (non-consequential):
 - Topic-relevant review article (important to screen reference list for possibly relevant citations)
 - NOT a topic-relevant review article
 - Letter to the editor, conference proceeding, editorial, abstract, magazine article etc.
 - Important for introduction/discussion sections
 - None of the above
 - Can't tell

Level 2: Full Text Relevance Screening

- 1) Is this an English-language publication?
 - a) Yes
 - b) No
 - c) Can't tell

- 2) Is this publication a Review article?
 - a) Yes
 - b) No
 - c) Can't tell
- 3) . Does this report assess any of the following? (check all that apply)
 - (1) A primary study investigating the EFFECT of dietary sources of vit D (including fortified foods), sun exposure, and/or vit D supplementation (D2 or D3) on CIRCULATING 25 (OH) vit D concentrations
 - (2) A primary study investigating the ASSOCIATION between circulating 25 (OH) vit D oncentrations on bone health outcomes (see Q#4 for outcomes of interest) in: 1. children 2. women of reproductive age 3. postmenopausal women and/or 4. elderly men
 - (3) A primary study investigating the EFFECT of supplemental vit D (D2 or D3) or vit D/calcium on BMD/BMC, fractures, and/or falls (muscle strength) of 1) women of reproductive age, 2) postmenopausal women, 3) elderly men
 - (4) A primary study reporting toxicity due to the EFFECT of supplementation of vit D (D2 or D3) such as hypercalcemia, soft tissue calcification, hypercalciuria, nephrocalcinosis, etc.
 - (5) A primary study examining the RELATIONSHIP between sun exposure, circulating 25 (OH) vit D concentrations on the risk of non-melanoma or melanoma skin cancer
 - None of the above
 - Can't tell
- 4) Does this study report ANY of the following health outcomes used to evaluate the association of 25 (OH) D? (This applies ONLY to Q3 answer #2)
 - BMD (bone mineral density)
 BMC (bone mineral content)
 Ultrasound
 Falls (<u>muscle</u> <u>strength/balance/sway)</u>

Calcium absorption
 Fracture incidence
 PTH
 Rickets

- a) Yes
- b) No
- c) Can't tell
- d) Not applicable
- e) Other

Level 3: Study Design

- 1. Does this report belong to the following Levels of Evidence (see below)?
 - a. Yes
 - b. No
- 2. Level of Evidence of this report (*check all that apply*)
 - a. RCT parallel design
 - b. RCT crossover design
 - c. RCT factorial design
 - d. Controlled clinical trial (non-RCT)
 - e. Multiple prospective cohorts
 - f. At least one prospective cohort & one retrospective cohort
 - g. Case-control
 - h. Cross-sectional
 - i. Before-after (pre-post)
 - j. Single prospective cohort
 - k. Case series (non-comparative)
 - 1. Case study
 - m. Sequential
 - n. Cross-national ecological analysis
 - o. Other: describe (text response)
 - p. Can't tell

Level 4: Reference List Screening

- 1. Does this record contain references that may be relevant to this review?
 - a. Yes
 - b. No
- 2. Please indicate the reference # of citations to be retrieved: [text response].

Article II. Data Extraction Verification Form

- 1. Initials of reviewer:
- 2. Reference identification # (Ref ID):
- 3. . Does this study have a companion paper? (e.g. subsequent/previous publications associated with the same data/patient set)
 - a. Yes (please list the companion Ref IDs)
 - b. No
- 4. Please indicate which of the following is the most appropriate description:
 - a. This was a primary extraction (please indicate if this was a companion in the text box)
 - b. This paper has been checked for consensus (please indicate if this was a companion using the text box)

Article III. Quality Assessment Form — Randomized controlled Trials (Jadad Scale)

The Jadad instrument, as described in Jadad et al. 1996 (Controlled Clinical Trials 17:1) is as follows:

1. Was the study described as randomized (this includes the use of words such as randomly, random, and randomization)? yes = 1 point; no = 0 points

For question 1, give one additional point if the method to generate the sequence of randomization was described and it was appropriate (table of random numbers, computer generated, etc.).

For question 1, deduct 1 point if the method to generate the sequence of randomization as described and it was inappropriate (patients were allocated alternately, or according to date of birth, hospital number, etc.)

2. Was the study described as double blind? yes = 1 point; no = 0 points

For question 2, give 1 additional point if the method of doubling blinding was described and it was appropriate (identical placebo, active placebo, dummy, etc.).

For question 2, deduct 1 point if the method of double blinding was described and it was inappropriate (e.g., comparison of tablet vs injection with no double dummy).

3. Was there a description of withdrawals and dropouts? yes = 1 point; no = 0 points

Total possible score = 5 points

Allocation Concealment:

1 = yes; 0 = no

A: Adequate

- Sequentially numbered, opaque, sealed envelopes (SNOSE)
- Pharmacy controlled
- Numbered or ordered containers
- Central randomization for example by telephone to a trials office or other method whose description contained elements convincing of concealment - for example a secure computer assisted method.

I: Inadequate

- Alternation
- Reference to case record numbers or to dates of birth

U: Unclear

- No mention of an allocation concealment approach at all
- An approach that . Does not fall into either adequate or inadequate allocation concealment

Appendix C. Statistics Information Form

Abbreviations

CV	coefficient of variation
SD	standard deviation
ANOVA	analysis of variance
ANCOVA	analysis of covariance
HR	hazard ratio
ITT	intention to treat
SE/SEM	standard error of the mean
HR	hazard ratio
RCT	randomized controlled trial
IQR	interquartile range
CI	confidence interval
S	significant
NS	not significant
OR	odds ratio
RR	relative risk

Conversions

 $_ng/mL x 2.5 = ____ nmol/L 25(OH) D concentration$

 $_ug X 40 = __IU D_2/D_3$ supplementation

Appendix D. Quality Assessment of RCTs

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Ala-Houhala M. 1985 ¹	1	0	0	0	0	1	U
Ala-Houhala M. 1988 ²	1	0	1	1	0	3	U
Aloia JF. 2005 ³	1	1	1	1	1	5	А
Anderson FH. 2004 ⁴	1	0	1	1	0	3	U
Armas LA. 2004 ⁵	1	0	0	0	0	1	U
Baeksgaard L. 1998 ⁶	1	0	1	1	0	3	U
Barnes MS. 2006 ⁷	1	0	1	0	1	3	U
Bischoff HA. 2003 ⁸	1	0	1	1	0	3	U
Brazier M. 2002 ⁹	1	1	1	1	0	4	U
Brazier M. 2005 ¹⁰	1	1	1	1	0	4	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear				

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Brooke OG. 1980 ¹¹	1	0	1	0	0	2	U
Cesur Y. 2003 ¹²	1	0	0	0	0	1	U
Chan GM. 1995 ¹³	1	0	0	0	0	1	U
Chan GM. 1982 ¹⁴	1	0	0	0	0	1	U
Chapuy MC. 1992 ¹⁵	1	0	0	0	1	2	U
Chapuy MC. 2002 ¹⁶	1	0	1	1	0	3	U
Chee WS. 2003 ¹⁷	1	0	0	0	1	2	U
Chel VG. 1998 ¹⁸	1	0	0	0	1	2	U
Cooper L. 2003 ¹⁹	1	0	1	1	1	4	U
Corless D. 1985 ²⁰	1	1	1	1	1	5	U
Daly RM. 2006 ²¹	1	1	0	0	1	3	U
Dawson-Hughes B. 1991 ²²	1	0	1	0	1	3	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear		1		1

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Dawson-Hughes B. 1997 ²³ [Bischoff-Ferrari HA. 2006 ²⁴ – companion paper]	1	0	1	1	1	4	U
Dawson-Hughes B. 1995 ²⁵	1	0	1	0	1	2	U
de Jong N. 1999 ²⁶	1	0	0	0	1	2	U
Delvin E. 1986 ²⁷	1	0	0	0	0	1	U
Deroisy R. 2002 ²⁸	1	0	0	0	1	2	I
Deroisy R. 1998 ²⁹	1	1	0	0	1	3	U
Deroisy R. 1998 ³⁰	1	0	0	0	1	2	U
Dhesi JK. 2004 ³¹	1	1	1	1	1	5	U
Falkenbach A. 1993 ³²	1	0	0	0	1	2	U
Flicker L. (2005) ³³	1	1	1	0	1	4	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear				

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Fuleihan G. (2006) ³⁴	1	1	1	1	0	4	U
Goussous R. 2005 ³⁵	1	0	1	1	1	4	U
Graafmans WC. 1996 ³⁶	1	0	0	0	1	2	U
Grados F. 2003 ³⁷ [Grados F. 2003 ³⁸ - companion paper]	1	0	1	1	1	4	U
Grant A.M. 2005 ³⁹	1	1	1	1	1	5	А
Greer FR. 1989 ⁴⁰	1	0	1	1	1	4	U
Greer FR. 1982 ⁴¹ [Greer FR. 1981 ⁴² – companion paper]	1	0	1	1	0	3	U
Guillemant J. 2001 ⁴³	1	0	0	0	1	2	U
Harris SS. 2002 ⁴⁴	1	0	0	0	0	1	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear		1		1

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Harris SS. 1999 ⁴⁵	1	0	0	0	1	2	U
Harwood RH. 2004 ⁴⁶	1	1	0	0	1	3	U
Heaney RP. 200347	1	0	0	0	0	1	U
Heaney RP. 1997 ⁴⁸	1	1	0	0	1	3	U
Heikkinen A. 1998 ⁴⁹	1	1	0	0	1	3	U
Himmelstein S. 1990 ⁵⁰	1	0	1	1	0	3	U
Ho ML. 1985 ⁵¹	1	1	0	0	1	3	U
Hollis BW. 2004 ⁵²	1	0	0	0	1	2	U
Honkanen R. 1990 ⁵³	1	0	0	0	1	2	U
Hunter D. 2000 ⁵⁴	1	1	1	1	1	5	А
Jackson RD. 2006 ⁵⁵	1	0	1	1	1	4	U
Jensen C. 2002 ⁵⁶	1	0	0	0	1	2	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear		•		•

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Johnson JL. 2005 ⁵⁷ Study A	1	0	1	1	1	4	U
Keane EM. 1998 ⁵⁸	1	0	1	1	1	4	U
Kenny AM. 2003 ⁵⁹	1	0	1	1	1	4	А
Kenny AM. 2004 ⁶⁰	1	0	0	0	1	2	U
Khaw KT. 1994 ⁶¹	1	0	1	1	1	4	U
Komulainen MH. 1998 ⁶²	1	1	0	0	1	3	U
Krieg MA. 1999 ⁶³	1	0	0	0	1	2	U
Larsen ER. 2005 ⁶⁴ [Larsen ER. 2006 ⁶⁵ – companion paper]	1	0	0	0	0	1	U
Latham NK. 2003 ⁶⁶	1	1	1	1	1	5	А
Lau EM. 2001 ⁶⁷	1	1	0	0	1	3	U
Law M 2006 ⁶⁸	1	1	0	0	0	2	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear				

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Lips P. 1996 ⁶⁹	1	1	1	1	1	5	А
Lips P. 1988 ⁷⁰	1	0	0	0	0	1	U
Lovell GA. 1988 ⁷¹	1	0	0	0	1	2	U
Mastaglia SR. 2006 ⁷²	1	0	0	0	0	1	U
Mallet E. 1986 ⁷³	1	1	0	0	0	2	U
Marks R. 1995 ⁷⁴	1	0	1	1	1	4	U
Matsuoka LY. 1992 ⁷⁵	1	0	0	0	0	1	U
McKenna MJ. 1995 ⁷⁶	1	0	1	0	0	2	U
Meier C. 2004 ⁷⁷	1	0	0	0	1	2	U
Natri AM. 2006 ⁷⁸	1	0	0	0	0	1	U
Nordin BE. 1985 ⁷⁹	1	0	0	0	0	1	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear		1		

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Ooms ME. 1995 ⁸⁰	1	0	1	1	1	4	U
Orwoll ES. 1988 ⁸¹	1	0	1	1	0	3	U
Palacios S. 2005 ⁸²	1	0	1	1	1	4	U
Panunzio MF. 2003 ⁸³	1	0	0	0	1	2	U
Patel R. 2001 ⁸⁴	1	0	1	1	0	3	U
Pehlivan I. 2003 ⁸⁵	1	0	0	0	0	1	U
Pfeifer M. 2000 ⁸⁶	1	0	1	0	1	3	U
Porthouse J. 2005 ⁸⁷	1	1	0	0	1	3	U
Reid IR. 1986 ⁸⁸	1	0	0	0	0	1	U
Riis B. 1984 ⁸⁹	1	1	1	1	0	4	U
Rothberg AD. 1982 ⁹⁰	1	0	1	0	0	2	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear				

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Schaafsma A. 2002 ⁹¹ [Schaafsma A. 2000 ⁹² – companion paper]	1	1	1	1	0	4	U
Schou AJ. 2003 ⁹³	1	0	1	1	1	4	U
Sebert JL. 1995 ⁹⁴	1	1	0	0	1	3	U
Sorva A. 1991 ⁹⁵ [Sorva A. 1991 ⁹⁶ & Sorva A. 1994 ⁹⁷ – companion papers]	1	0	0	0	0	1	U
Specker BL. 1992 ⁹⁸	1	0	0	0	0	1	U
Stephens WP. 1981 ⁹⁹	1	0	0	0	1	2	U
Storm D. 1998 ¹⁰⁰	1	0	1	1	1	4	U
Tangpricha V. 2003 ¹⁰¹	1	1	1	1	0	4	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear		1		

Study Identification	Study described as randomized	Methods used to describe the sequence of randomization	Study described as double blind	Method of double blinding described	Description of withdrawals	Total Jadad Score	Allocation Concealment
Tfelt-Hansen J. 2004 ¹⁰²	1	0	1	1	1	4	U
Tjellesen L. 1986 ¹⁰³	1	0	1	1	0	3	U
Toss G. 1982 ¹⁰⁴	1	0	0	0	1	2	U
Trang HM. 1998 ¹⁰⁵	1	0	1	0	0	2	U
Trived DP. 2003 ¹⁰⁶	1	0	1	1	0	3	U
van der Klis FR. 1996 ¹⁰⁷	1	0	0	0	0	1	U
Vieth R. 2001 ¹⁰⁸	1	1	1	1	0	4	U
Vieth R. 2004 ¹⁰⁹	1	0	0	0	0	1	U
Weisman Y. 1986 ¹¹⁰	1	0	0	0	0	1	U
Zeghoud F. 1994 ¹¹¹	1	0	0	0	1	2	U
Zeghoud F. 1997 ¹¹²	1	0	0	0	0	1	U
Allocation Concealme	ent: A = Adequat	e; I = Inadequate; U	= Unclear				

Appendix E. Reference List – Quality Assessment of RCTs

- Ala-Houhala M: 25-Hydroxyvitamin D levels during breast-feeding with or without maternal or infantile supplementation of vitamin D. Journal of Pediatric Gastroenterology & Nutrition 1985; 4: 220-6.
- 2. Ala-Houhala M, Koskinen T, Koskinen M, Visakorpi JK: Double blind study on the need for vitamin D supplementation in prepubertal children. Acta Paediatrica Scandinavica 1988; 77: 89-93.
- Aloia JF, Talwar SA, Pollack S, Yeh J: A randomized controlled trial of vitamin D3 supplementation in African American women. Archives of Internal Medicine 2005; 165: 1618-23.
- Anderson, F. H., Smith, H. E., Raphael, H. M., Crozier, S. R., and Cooper, C. Effect of annual intramuscular vitamin D₃ supplementation on fracture risk in 9440 community-living older people: the Wessex fracture prevention trial. ASBMR 26th Annual Meeting Presentation #1220 10/5/2004. 2004.
- Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. Journal of Clinical Endocrinology & Metabolism 2004; 89: 5387-91. Ref ID: 103
- Baeksgaard L, Andersen KP, Hyldstrup L: Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women. Osteoporos Int 1998; 8: 255-60.
- Barnes MS, Robson PJ, Bonham MP, Strain JJ, Wallace JMW: Effect of vitamin D supplementation on vitamin D status and

bone turnover markers in young adults. European Journal of Clinical Nutrition 2006; 60: 727-33.

- Bischoff HA, Stahelin HB, Dick W, Akos R, Knecht M, Salis C, Nebiker M, Theiler R, Pfeifer M, Begerow B, Lew RA, Conzelmann M: Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. Journal of Bone & Mineral Research 2003; 18: 343-51.
- Brazier M, Kamel S, Lorget F, Maamer M, Tavera C, Heurtebize N, Grados F, Mathieu M, Garabedian M, Sebert JL, Fardellone P: Biological effects of supplementation with vitamin D and calcium in postmenopausal women with low bone mass receiving alendronate. Clinical Drug Investigation 2002; 22: 849-57.
- Brazier M, Grados F, Kamel S, Mathieu M, Morel A, Maamer M, Sebert JL, Fardellone P: Clinical and laboratory safety of one year's use of a combination calcium + vitamin D tablet in ambulatory elderly women with vitamin D insufficiency: results of a multicenter, randomized, double-blind, placebo-controlled study. Clinical Therapeutics 2005; 27: 1885-93.
- Brooke OG, Brown IR, Bone CD, Carter ND, Cleeve HJ, Maxwell JD, Robinson VP, Winder SM: Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. BMJ 1980; 280: 751-4.
- 12. Cesur Y, Caksen H, Gundem A, Kirimi E, Odabas D: Comparison of low and high dose of vitamin D treatment in nutritional vitamin D deficiency rickets. Journal of

Pediatric Endocrinology 2003; 16: 1105-9.

- Chan GM, Hoffman K, McMurry M: Effects of dairy products on bone and body composition in pubertal girls. Journal of Pediatrics 1995; 126: 551-6.
- Chan GM, Roberts CC, Folland D, Jackson R: Growth and bone mineralization of normal breast-fed infants and the effects of lactation on maternal bone mineral status. American Journal of Clinical Nutrition 1982; 36: 438-43.
- Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, Delmas PD, Meunier PJ: Vitamin D3 and calcium to prevent hip fractures in the elderly women. New England Journal of Medicine 1992; 327: 1637-42.
- Chapuy MC, Pamphile R, Paris E, Kempf C, Schlichting M, Arnaud S, Garnero P, Meunier PJ: Combined calcium and vitamin D3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Osteoporos.Int. 2002; 13: 257-64.
- Chee WS, Suriah AR, Chan SP, Zaitun Y, Chan YM: The effect of milk supplementation on bone mineral density in postmenopausal Chinese women in Malaysia. Osteoporos.Int. 2003; 14: 828-34.
- Chel VG, Ooms ME, Popp-Snijders C, Pavel S, Schothorst AA, Meulemans CC, Lips P: Ultraviolet irradiation corrects vitamin D deficiency and suppresses secondary hyperparathyroidism in the elderly. Journal of Bone & Mineral Research 1998; 13: 1238-42.
- Cooper L, Clifton-Bligh PB, Nery ML, Figtree G, Twigg S, Hibbert E, Robinson BG: Vitamin D supplementation and bone mineral density in early postmenopausal women. American Journal of Clinical

Nutrition 2003; 77: 1324-9.

- Corless D, Dawson E, Fraser F, Ellis M, Evans SJ, Perry JD, Reisner C, Silver CP, Beer M, Boucher BJ: Do vitamin D supplements improve the physical capabilities of elderly hospital patients? Age & Ageing 1985; 14: 76-84.
- Daly RM, Brown M, Bass S, Kukuljan S, Nowson C: Calcium- and vitamin D3fortified milk reduces bone loss at clinically relevant skeletal sites in older men: a 2-year randomized controlled trial. Journal of Bone & Mineral Research 2006; 21: 397-405.
- 22. Dawson-Hughes B, Dallal GE, Krall EA, Harris S, Sokoll LJ, Falconer G: Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Annals of Internal Medicine 1991; 115: 505-12.
- Dawson-Hughes B, Harris SS, Krall EA, Dallal GE: Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. New England Journal of Medicine 1997; 337: 670-6.
- Bischoff-Ferrari HA, Orav EJ, wson-Hughes B: Effect of cholecalciferol plus calcium on falling in ambulatory older men and women: a 3-year randomized controlled trial. Archives of Internal Medicine 2006; 166: 424-30.
- 25. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE, Falconer G, Green CL: Rates of bone loss in postmenopausal women randomly assigned to one of two dosages of vitamin D. American Journal of Clinical Nutrition 1995; 61: 1140-5.
- 26. de Jong N, Chin APM, De Groot LC, de Graaf C, Kok FJ, van Staveren WA: Functional biochemical and nutrient indices in frail elderly people are partly affected by dietary supplements but not by exercise.

Journal of Nutrition 1999; 129: 2028-36.

- Delvin EE, Salle BL, Glorieux FH, Adeleine P, David LS: Vitamin D supplementation during pregnancy: effect on neonatal calcium homeostasis. Journal of Pediatrics 1986; 109: 328-34.
- 28. Deroisy R, Collette J, Albert A, Jupsin I, Reginster JY: Administration of a supplement containing both calcium and vitamin D is more effective than calcium alone to reduce secondary hyperparathyroidism in postmenopausal women with low 25(OH)vitamin D circulating levels. Aging-Clinical & Experimental Research 2002; 14: 13-7.
- 29. Deroisy R, Collette J, Chevallier T, Breuil V, Reginister JYRa: Effects of two 1-year calcium and vitamin D3 treatments on bone remodeling markers and femoral bone density in elderly women. Current Therapeutic Research 1998; 59: 850-62.
- 30. Deroisy R, Collette J, Albert A, Leber C, Micheletti MC, Zartarian M, Reginster JY: Comparison of the short-term effects of three oral calcium-vitamin D formulations and placebo on calcium metabolism. Current Therapeutic Research 1998; 59: 370-8.
- Dhesi JK, Jackson SHD, Bearne LM, Moniz C, Hurley MV, Swift CG, Allain TJ: Vitamin D supplementation improves neuromuscular function in older people who fall. Age & Ageing 2004; 33: 589-95.
- 32. Falkenbach A, Unkelbach U, Boehm BO, Regeniter A, Stein J, Seiffert U, Wendt T: Bone metabolism before and after irradiation with ultraviolet light. European Journal of Applied Physiology & Occupational Physiology 1993; 66: 55-9.
- 33. Flicker L, MacInnis RJ, Stein MS, Scherer SC, Mead KE, Nowson CA, Thomas J, Lowndes C, Hopper JL, Wark JD: Should older people in residential care receive

vitamin D to prevent falls? Results of a randomized trial. Journal of the American Geriatrics Society 2005; 53: 1881-8.

- 34. Fuleihan GEH, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Khalife H, Choucair M, Arabi A, Vieth R: Effect of vitamin D replacement on musculoskeletal parameters in school children: A randomized controlled trial. Journal of Clinical Endocrinology & Metabolism 2006; 91: 405-12.
- 35. Goussous R, Song L, Dallal GE, Dawson-Hughes B: Lack of effect of calcium intake on the 25-hydroxyvitamin d response to oral vitamin D3. Journal of Clinical Endocrinology & Metabolism 2005; 90: 707-11.
- 36. Graafmans WC, Ooms ME, Hofstee HM, Bezemer PD, Bouter LM, Lips P: Falls in the elderly: a prospective study of risk factors and risk profiles. American Journal of Epidemiology 1996; 143: 1129-36.
- 37. Grados F, Brazier M, Kamel S, Mathieu M, Hurtebize N, Maamer M, Garabedian M, Sebert JL, Fardellone P: Prediction of bone mass density variation by bone remodeling markers in postmenopausal women with vitamin D insufficiency treated with calcium and vitamin D supplementation. Journal of Clinical Endocrinology & Metabolism 2003; 88: 5175-9.
- 38. Grados F, Brazier M, Kamel S, Duver S, Heurtebize N, Maamer M, Mathieu M, Garabedian M, Sebert JL, Fardellone P: Effects on bone mineral density of calcium and vitamin D supplementation in elderly women with vitamin D deficiency. Joint, Bone, Spine: Revue du Rhumatisme 2003; 70: 203-8.
- 39. Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, Anderson FH, Cooper C, Francis RM, Donaldson C, Gillespie WJ, Robinson CM, Torgerson DJ, Wallace WA, RECORD Trial

Group.: Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebocontrolled trial. Lancet 2005; 365: 1621-8.

- 40. Greer FR, Marshall S: Bone mineral content, serum vitamin D metabolite concentrations, and ultraviolet B light exposure in infants fed human milk with and without vitamin D2 supplements. Journal of Pediatrics 1989; 114: 204-12.
- 41. Greer FR, Searcy JE, Levin RS, Steichen JJ, Steichen-Asche PS, Tsang RC: Bone mineral content and serum 25hydroxyvitamin D concentrations in breastfed infants with and without supplemental vitamin D: one-year follow-up. Journal of Pediatrics 1982; 100: 919-22.
- 42. Greer FR, Searcy JE, Levin RS, Steichen JJ, Asch PS, Tsang RC: Bone mineral content and serum 25-hydroxyvitamin D concentration in breast-fed infants with and without supplemental vitamin D. Journal of Pediatrics 1981; 98: 696-701.
- 43. Guillemant J, Le HT, Maria A, Allemandou A, Peres G, Guillemant S: Wintertime vitamin D deficiency in male adolescents: effect on parathyroid function and response to vitamin D3 supplements. Osteoporos.Int. 2001; 12: 875-9.
- 44. Harris SS, Dawson-Hughes B: Plasma vitamin D and 25OHD responses of young and old men to supplementation with vitamin D3. Journal of the American College of Nutrition 2002; 21: 357-62.
- 45. Harris SS, Dawson-Hughes B, Perrone GA: Plasma 25-hydroxyvitamin D responses of younger and older men to three weeks of supplementation with 1800 IU/day of vitamin D. Journal of the American College of Nutrition 1999; 18: 470-4.

- 46. Harwood RH, Sahota O, Gaynor K, Masud T, Hosking DJ: A randomised, controlled comparison of different calcium and vitamin D supplementation regimens in elderly women after hip fracture: The Nottingham Neck of Femur (NONOF) Study. Age & Ageing 2004; 33: 45-51.
- Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ: Human serum 25hydroxycholecalciferol response to extended oral dosing with cholecalciferol. American Journal of Clinical Nutrition 2003; 77: 204-10.
- Heaney RP, Barger-Lux MJ, Dowell MS, Chen TC, Holick MF: Calcium absorptive effects of vitamin D and its major metabolites. Journal of Clinical Endocrinology & Metabolism 1997; 82: 4111-6.
- 49. Heikkinen A, Parviainen MT, Tuppurainen MT, Niskanen L, Komulainen MH, Saarikoski S: Effects of postmenopausal hormone replacement therapy with and without vitamin D3 on circulating levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. Calcified Tissue International 1998; 62: 26-30.
- Himmelstein S, Clemens TL, Rubin A, Lindsay R: Vitamin D supplementation in elderly nursing home residents increases 25(OH)D but not 1,25(OH)2D. American Journal of Clinical Nutrition 1990; 52: 701-6.
- Ho ML, Yen HC, Tsang RC, Specker BL, Chen XC, Nichols BL: Randomized study of sunshine exposure and serum 25-OHD in breast-fed infants in Beijing, China. Journal of Pediatrics 1985; 107: 928-31.
- 52. Hollis BW, Wagner CL: Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. American Journal of Clinical Nutrition 2004; 80:

1752S-8S.

- 53. Honkanen R, Alhava E, Parviainen M, Talasniemi S, Monkkonen R: The necessity and safety of calcium and vitamin D in the elderly. Journal of the American Geriatrics Society 1990; 38: 862-6.
- 54. Hunter D, Major P, Arden N, Swaminathan R, Andrew T, MacGregor AJ, Keen R, Snieder H, Spector TD: A randomized controlled trial of vitamin D supplementation on preventing postmenopausal bone loss and modifying bone metabolism using identical twin pairs. Journal of Bone & Mineral Research 2000; 15: 2276-83.
- 55. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, Bassford T, Beresford SA. Black HR. Blanchette P. Bonds DE, Brunner RL, Brzyski RG, Caan B, Cauley JA, Chlebowski RT, Cummings SR, Granek I, Hays J, Heiss G, Hendrix SL, Howard BV, Hsia J, Hubbell FA, Johnson KC, Judd H, Kotchen JM, Kuller LH, Langer RD, Lasser NL, Limacher MC, Ludlam S, Manson JE, Margolis KL, Mcgowan J, Ockene JK, O'Sullivan MJ, Phillips L, Prentice RL, Sarto GE, Stefanick ML, Van HL, Wactawski-Wende J, Whitlock E, Anderson GL, Assaf AR, Barad D, Women's Health Initiative Investigators .: Calcium plus vitamin D supplementation and the risk of fractures.[see comment]. New England Journal of Medicine 2006; 354: 669-83.
- 56. Jensen C, Holloway L, Block G, Spiller G, Gildengorin G, Gunderson E, Butterfield G, Marcus R: Long-term effects of nutrient intervention on markers of bone remodeling and calciotropic hormones in latepostmenopausal women. American Journal of Clinical Nutrition 2002; 75: 1114-20.
- 57. Johnson JL, Mistry VV, Vukovich MD, Hogie-Lorenzen T, Hollis BW, Specker BL: Bioavailability of vitamin D from fortified process cheese and effects on vitamin D status in the elderly. J Dairy Sci. 2005; 88:

2295-301.

- Keane EM, Healy M, O'Moore R, Coakley D, Walsh JB: Vitamin D-fortified liquid milk: benefits for the elderly communitybased population. Calcified Tissue International 1998; 62: 300-2.
- 59. Kenny AM, Biskup B, Robbins B, Marcella G, Burleson JA: Effects of vitamin D supplementation on strength, physical function, and health perception in older, community-dwelling men. Journal of the American Geriatrics Society 2003; 51: 1762-7.
- 60. Kenny AM, Prestwood KM, Biskup B, Robbins B, Zayas E, Kleppinger A, Burleson JA, Raisz LG: Comparison of the effects of calcium loading with calcium citrate or calcium carbonate on bone turnover in postmenopausal women. Osteoporos.Int. 2004; 15: 290-4.
- 61. Khaw KT, Scragg R, Murphy S: Single-dose cholecalciferol suppresses the winter increase in parathyroid hormone concentrations in healthy older men and women: a randomized trial. American Journal of Clinical Nutrition 1994; 59: 1040-4.
- Komulainen MH, Kroger H, Tuppurainen MT, Heikkinen AM, Alhava E, Honkanen R, Saarikoski S: HRT and Vit D in prevention of non-vertebral fractures in postmenopausal women: a 5 year randomized trial. Maturitas 1998; 31: 45-54.
- Krieg MA, Jacquet AF, Bremgartner M, Cuttelod S, Thiebaud D, Burckhardt P: Effect of supplementation with vitamin D3 and calcium on quantitative ultrasound of bone in elderly institutionalized women: a longitudinal study. Osteoporos Int. 1999; 9: 483-8.
- 64. Larsen ER, Mosekilde L, Foldspang A: Vitamin D and calcium supplementation

prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. Journal of Bone & Mineral Research 2004; 19: 370-8.

- 65. Larsen ER, Mosekilde L, Foldspang A: Vitamin D and calcium supplementation prevents severe falls in elderly communitydwelling women: a pragmatic populationbased 3-year intervention study. Aging-Clinical & Experimental Research 2005; 17: 125-32.
- 66. Latham NK, Anderson CS, Lee A, Bennett DA, Moseley A, Cameron ID, Fitness Collaborative Group.: A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). Journal of the American Geriatrics Society 2003; 51: 291-9.
- 67. Lau EM, Woo J, Lam V, Hong A: Milk supplementation of the diet of postmenopausal Chinese women on a low calcium intake retards bone loss. Journal of Bone & Mineral Research 2001; 16: 1704-9.
- Law M, Withers H, Morris J, Anderson F: Vitamin D supplementation and the prevention of fractures and falls: results of a randomised trial in elderly people in residential accommodation. Age & Ageing 2006; 35: 482-6.
- 69. Lips P, Graafmans WC, Ooms ME, Bezemer PD, Bouter LM: Vitamin D supplementation and fracture incidence in elderly persons: a randomized, placebocontrolled clinical trial. Annals of Internal Medicine 1996; 124: 400-6.
- 70. Lips P, Wiersinga A, van Ginkel FC, Jongen MJ, Netelenbos JC, Hackeng WH, Delmas PD, van der Vijgh WJ: The effect of vitamin D supplementation on vitamin D status and parathyroid function in elderly subjects. Journal of Clinical Endocrinology &

Metabolism 1988; 67: 644-50.

- Lovell GA, Byth JL, Craswell PW, Phillips PA, Thomas MJ: The influence of sunlight or dietary vitamin D on plasma 25hydroxyvitamin D in institutionalized elderly patients in a sub-tropical climate. Journal of Human Nutrition & Dietetics 1988; 1: 163-70.
- 72. Mastaglia SR, Mautalen CA, Parisi MS, Oliveri B: Vitamin D2 dose required to rapidly increase 25OHD levels in osteoporotic women. European Journal of Clinical Nutrition 2006; 60: 681-7.
- 73. Mallet E, Gugi B, Brunelle P, Henocq A, Basuyau JP, Lemeur H: Vitamin D supplementation in pregnancy: a controlled trial of two methods. Obstetrics & Gynecology 1986; 68: 300-4.
- 74. Marks R, Foley PA, Jolley D, Knight KR, Harrison J, Thompson SC: The Effect of Regular Sunscreen Use on Vitamin D Levels in an Australian Population. Archives of Dermatology 1995; 131: 415-21.
- 75. Matsuoka LY, Wortsman J, Haddad JG, Hollis BW: Elevation of blood vitamin D2 levels does not impede the release of vitamin D3 from the skin. Metabolism: Clinical & Experimental 1992; 41: 1257-60.
- 76. McKenna MJ, Freaney R, Byrne P, McBrinn Y, Murray B, Kelly M, Donne B, O'Brien M: Safety and efficacy of increasing wintertime vitamin D and calcium intake by milk fortification. QJM 1995; 88: 895-8.
- Meier C, Woitge HW, Witte K, Lemmer B, Seibel MJ: Supplementation with oral vitamin D3 and calcium during winter prevents seasonal bone loss: a randomized controlled open-label prospective trial. Journal of Bone & Mineral Research 2004; 19: 1221-30.

- 78. Natri AM, Salo P, Vikstedt T, Palssa A, Huttunen M, Karkkainen MU, Salovaara H, Piironen V, Jakobsen J, Lamberg-Allardt CJ: Bread fortified with cholecalciferol increases the serum 25-hydroxyvitamin D concentration in women as effectively as a cholecalciferol supplement. Journal of Nutrition 2006; 136: 123-7.
- Nordin BE, Baker MR, Horsman A, Peacock M: A prospective trial of the effect of vitamin D supplementation on metacarpal bone loss in elderly women. American Journal of Clinical Nutrition 1985; 42: 470-4.
- Ooms ME, Roos JC, Bezemer PD, van der Vijgh WJ, Bouter LM, Lips P: Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. Journal of Clinical Endocrinology & Metabolism 1995; 80: 1052-8.
- Orwoll ES, Weigel RM, Oviatt SK, McClung MR, Deftos LJ: Calcium and cholecalciferol: effects of small supplements in normal men. American Journal of Clinical Nutrition 1988; 48: 127-30.
- 82. Palacios S, Castelo-Branco C, Cifuentes I, von Helde S, Baro L, Tapia-Ruano C, Menendez C, Rueda C: Changes in bone turnover markers after calcium-enriched milk supplementation in healthy postmenopausal women: a randomized, double-blind, prospective clinical trial. Menopause 2005; 12: 63-8.
- 83. Panunzio MF, Pisano A, Telesforob P, Tomaiuolo P: Diet can increase 25hydroxyvitamin-D3 plasma levels in the elderly: A dietary intervention trial. Nutr Res. 2003; 23: 1177-81.
- 84. Patel R, Collins D, Bullock S, Swaminathan R, Blake GM, Fogelman I: The effect of season and vitamin D supplementation on bone mineral density in healthy women: a double-masked crossover study. Osteoporos

Int. 2001; 12: 319-25.

- Pehlivan I, Hatun S, Aydogan M, Babaoglu K, Gokalp AS: Maternal vitamin D deficiency and vitamin D supplementation in healthy infants. Turkish Journal of Pediatrics 2003; 45: 315-20.
- 86. Pfeifer M, Begerow B, Minne HW, Abrams C, Nachtigall D, Hansen C: Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women.[erratum appears in J Bone Miner Res 2001 Oct;16(10):1935]. Journal of Bone & Mineral Research 2000; 15: 1113-8.
- 87. Porthouse J, Cockayne S, King C, Saxon L, Steele E, Aspray T, Baverstock M, Birks Y, Dumville J, Francis R, Iglesias C, Puffer S, Sutcliffe A, Watt I, Torgerson DJ: Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ 2005; 330: 1003.
- Reid IR, Gallagher DJ, Bosworth J: Prophylaxis against vitamin D deficiency in the elderly by regular sunlight exposure. Age & Ageing 1986; 15: 35-40.
- Riis B, Christiansen C, Rodbro P: The effect of different vitamin D treatments on serum vitamin D levels in early postmenopausal women. Acta Vitaminologica et Enzymologica 1984; 6: 77-82.
- Rothberg AD, Pettifor JM, Cohen DF, Sonnendecker EW, Ross FP: Maternalinfant vitamin D relationships during breastfeeding. Journal of Pediatrics 1982; 101: 500-3.
- 91. Schaafsma A, van Doormaal JJ, Muskiet FA, Hofstede GJ, Pakan I, van d, V: Positive effects of a chicken eggshell powderenriched vitamin-mineral supplement on femoral neck bone mineral density in healthy late post-menopausal Dutch women.

British Journal of Nutrition 2002; 87: 267-75.

- 92. Schaafsma A, Muskiet FA, Storm H, Hofstede GJ, Pakan I, van d, V: Vitamin D(3) and vitamin K(1) supplementation of Dutch postmenopausal women with normal and low bone mineral densities: effects on serum 25-hydroxyvitamin D and carboxylated osteocalcin. European Journal of Clinical Nutrition 2000; 54: 626-31.
- 93. Schou AJ, Heuck C, Wolthers OD: Vitamin D supplementation to healthy children does not affect serum osteocalcin or markers of type I collagen turnover. Acta Paediatrica 2003; 92: 797-801.
- 94. Sebert JL, Garabedian M, Chauvenet M, Maamer M, Agbomson F, Brazier M: Evaluation of a new solid formulation of calcium and vitamin D in institutionalized elderly subjects : a randomized comparative trial versus separate administration of both constituents. Revue du Rhumatisme (English Edition) 1995; 62: 288-94.
- 95. Sorva A, Risteli J, Risteli L, Valimaki M, Tilvis R: Effects of vitamin D and calcium on markers of bone metabolism in geriatric patients with low serum 25-hydroxyvitamin D levels. Calcified Tissue International 1991; 49 Suppl: S88-S89.
- 96. Sorva A, Valimaki M, Tilvis R: Effects of vitamin D and calcium supplementation in geriatric patients with low vitamin D status. Arch Gerontol Geriatr 1991; 12: 481-4.
- 97. Sorva A, Valimaki M, Risteli J, Risteli L, Elfving S, Takkunen H, Tilvis R: Serum ionized calcium, intact PTH and novel markers of bone turnover in bedridden elderly patients. European Journal of Clinical Investigation 1994; 24: 806-12.
- Specker BL, Ho ML, Oestreich A, Yin TA, Shui QM, Chen XC, Tsang RC: Prospective study of vitamin D supplementation and

rickets in China. Journal of Pediatrics 1992; 120: 733-9.

- Stephens WP, Klimiuk PS, Berry JL, Mawer EB: Annual high-dose vitamin D prophylaxis in Asian immigrants. Lancet 1981; 2: 1199-202.
- 100. Storm D, Eslin R, Porter ES, Musgrave K, Vereault D, Patton C, Kessenich C, Mohan S, Chen T, Holick MF, Rosen CJ: Calcium supplementation prevents seasonal bone loss and changes in biochemical markers of bone turnover in elderly New England women: a randomized placebo-controlled trial. Journal of Clinical Endocrinology & Metabolism 1998; 83: 3817-25.
- 101. Tangpricha V, Koutkia P, Rieke SM, Chen TC, Perez AA, Holick MF: Fortification of orange juice with vitamin D: a novel approach for enhancing vitamin D nutritional health. American Journal of Clinical Nutrition 2003; 77: 1478-83.
- 102. Tfelt-Hansen J, Torring O: Calcium and vitamin D3 supplements in calcium and vitamin D3 sufficient early postmenopausal healthy women. European Journal of Clinical Nutrition 2004; 58: 1420-4.
- 103. Tjellesen L, Hummer L, Christiansen C, Rodbro P: Serum concentration of vitamin D metabolites during treatment with vitamin D2 and D3 in normal premenopausal women. Bone & Mineral 1986; 1: 407-13.
- 104. Toss G, Andersson R, Diffey BL, Fall PA, Larko O, Larsson L: Oral vitamin D and ultraviolet radiation for the prevention of vitamin D deficiency in the elderly. Acta Paediatrica Scandinavica 1982; 212: 157-61.
- 105. Trang HM, Cole DE, Rubin LA, Pierratos A, Siu S, Vieth R: Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. American Journal of Clinical Nutrition 1998; 68: 854-

8.

- Subclinical vitamin D deficiency in neonates: definition and response to vitamin D supplements. American Journal of Clinical Nutrition 1997; 65: 771-8.
- 106. Trivedi DP, Doll R, Khaw KT: Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ 2003; 326: 469.
- 107. van der Klis FR, Jonxis JH, van Doormaal JJ, Sikkens P, Saleh AE, Muskiet FA: Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curacao. British Journal of Nutrition 1996; 75: 637-46.
- 108. Vieth R, Chan PC, MacFarlane GD: Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level. American Journal of Clinical Nutrition 2001; 73: 288-94.
- 109. Vieth R, Kimball S, Hu A, Walfish PG: Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutrition Journal 2004; 3: 8.
- Weisman Y, Schen RJ, Eisenberg Z, Amarilio N, Graff E, Edelstein-Singer M, Goldray D, Harell A: Single oral high-dose vitamin D3 prophylaxis in the elderly. Journal of the American Geriatrics Society 1986; 34: 515-8.
- 111. Zeghoud F, Ben Mekhbi H, Djeghri N, Garabedian M: Vitamin D prophylaxis during infancy: comparison of the long-term effects of three intermittent doses (15, 5, or 2.5 mg) on 25-hydroxyvitamin D concentrations. American Journal of Clinical Nutrition 1994; 60: 393-6.
- 112. Zeghoud F, Vervel C, Guillozo H, Walrant-Debray O, Boutignon H, Garabedian M:

Appendix F: Additional Data Provided by Study Authors

The following additional data were provided:

- 1. Chapuy MC, Pamphile R, Paris E, Kempf C, Schlichting M, Arnaud S, et al. Combined calcium and vitamin D3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Osteoporos Int 2002 Mar;13(3):257-64. (Provided additional fracture data, and data on hypercalcemia)
- Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997 Sep 4;337(10):670-6. (Provided more detailed information on breakdown by gender for 25(OH)D and falls data)
- Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebocontrolled trial. Lancet 2005 May;365(9471):1621-8. (Provided adverse event data breakdown by group)
- 4. Harwood RH, Sahota O, Gaynor K, Masud T, Hosking DJ. A randomised, controlled comparison of different calcium and vitamin D supplementation regimens in elderly women after hip fracture: The Nottingham Neck of Femur (NONOF) Study. Age Ageing 2004 Jan;33(1):45-51. (Provided number of individuals with falls and fractures)
- 5. Porthouse J, Cockayne S, King C, Saxon L, Steele E, Aspray T, et al. Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ 2005 Apr 30;330(7498):1003. (Provided falls data)
- 6. Dawson-Hughes B, Dallal GE, Krall EA, Harris S, Sokoll LJ, Falconer G. Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Ann Intern Med 1991 Oct 1;115(7):505-12. (Provided clarification on BMD data)
- 7. Ooms ME, Roos JC, Bezemer PD, van der Vijgh WJ, Bouter LM, Lips P. Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. J Clin Endocrinol Metab 1995 Apr;80(4):1052-8. (Provided BMD data)
- 8. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ 2003 Mar 1;326(7387):469. (Provided clarification on vitamin D assay)

Appendix G. List of Unobtained Articles

- 1) Vitamin D may prevent falls. Med Today 2004;5(7):8-9. Not obtainable at time of submission.
- 2) Vitamin D reduces risk of falls. Geriatrics and Aging 2004;7(6). Not obtainable at time of submission.
- 3) Commentary on Vitamin D3 and calcium to prevent hip fractures in elderly women [original article by Chapuy M et al appears in New Engl J Med 1992;327(23):1637-42]. AWHONN's Women's Health Nursing Scan 1993;7(3):5. Not obtainable at time of submission.
- 4) Lee P E, McElhaney J E, Dian L. Calcium and vitamin D supplementation for the prevention of fractures in postmenopausal women. Aging Health 2006;2(2):241-243. Not obtainable at time of submission.
- 5) O'Dowd K J. Dietary factors, sunlight exposure, and vitamin D status among elderly nursing home residents living in the New York City area. 1990. Error in electronic citation. Not obtainable at time of submission.
- 6) Al Maatouq M A, El Desouki M I, Othman S A et al. Prevalence of osteoporosis among postmenopausal females with diabetes mellitus. Saudi Med J 2004;25(10):1423-1427. Not obtainable at time of submission.

Appendix H. Additional Acknowledgments

The UO-EPC gratefully acknowledges the following individuals who served on our Technical Expert Panel (TEP). Acknowledgment does not reflect endorsement of this report.

Bess Dawson-Hughes, MD Tufts University Boston, MA, U.S.

John A Eisman, AO, MBBS, PhD, FRACP University of New South Wales, Sydney, Australia

Murray J. Favus, MD University of Chicago Hospitals Chicago, IL, U.S.

Frank R. Greer, MD University of Wisconsin-Madison Medical School Perinatal Center, Meriter Hospital Madison, WI, U.S.

Bruce W. Hollis, PhD Medical University of South Carolina Charleston, SC, U.S. **Bonny Specker, PhD** South Dakota State University, Brookings, SD, U.S.

Connie M. Weaver, PhD Purdue University West Lafayette, IN, U.S.

***David Atkins, MD, MPH** Chief Medical Officer Center for Outcomes and Evidence Representing the Agency for Healthcare Research and Quality (AHRQ), U.S.

*Mary Frances Picciano, PhD Senior Nutrition Research Scientist Representing the NIH Office of Dietary Supplements (ODS), U.S.

*Anne L. Thurn, PhD Director, Evidence-Based Review Program Representing the NIH Office of Dietary Supplements (ODS), U.S. The UO-EPC gratefully acknowledges the following individuals who reviewed the initial draft of this evidence report, and provided constructive feedback. Acknowledgement does not reflect endorsement of this report.

Jonathan D. Adachi, MD, FRCP(C) Charlton Medical Centre Hamilton, ON, Canada

David E.C. Cole, MD, PhD University of Toronto, Sunnybrook & Women's College Health Sciences Centre Toronto, ON, Canada

John A Eisman, AO, MBBS, PhD, FRACP University of New South Wales Sydney, Australia

Murray J. Favus, MD University of Chicago Hospitals Chicago, IL, U.S.

David Feldman, MD Stanford University School of Medicine Stanford, CA, U.S.

Frank R. Greer, MD University of Wisconsin Madison Medical School Perinatal Center, Madison, WI, U.S.

Robert P. Heaney, M.D., F.A.C.P., F.A.C.N. Creighton University Medical Center Omaha, NE, U.S. Anthony Hodsman, MD University of Western Ontario St. Joseph's Health Care London, ON, Canada

Bonny Specker, PhD South Dakota State University, Brookings, SD, U.S.

Connie M. Weaver, PhD Purdue University West Lafayette, IN, U.S.

David Goltzman, MD McGill University Royal Victoria Hospital Montreal, PQ, Canada

Review also provided by:

*David Atkins, MD, MPH Chief Medical Officer Center for Outcomes and Evidence Representing the Agency for Healthcare Research and Quality (AHRQ), U.S.

*Mary Frances Picciano, PhD Senior Nutrition Research Scientist Representing the NIH Office of Dietary Supplements (ODS), U.S.

*Anne L. Thurn, PhD Director, Evidence-Based Review Program Presenting the NIH Office of Dietary Supplements (ODS), U.S

Appendix I. List of Excluded Studies at Full-Text Screening (Level 2 screening)

Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials 1998;19(1):61-109. Does not meet criteria for eligibility.

Hazards of overuse of vitamin D. Am J Clin Nutr 1975;28(5):512-513. Does not meet criteria for eligibility.

Rickets in the premature baby. Br Med J 1971;3(768):205. Does not meet criteria for eligibility.

25-hydroxycholecalciferol. JAMA 1970;213(9):1480-1481. Does not meet criteria for eligibility.

Vitamin D. S Afr Med J 1967;Suid-Afrikaanse Tydskrif Vir Geneeskunde. 41(23):565-566. Does not meet criteria for eligibility.

Vitamin D may prevent falls. Med Today 2004;5(7):8-9. Not obtainable at time of submission.

Vitamin D reduces risk of falls. Geriatrics and Aging 2004;7(6):Not obtainable at time of submission.

Vitamin D: Cheap and viable primary prevention of fractures. Geriatrics and Aging 2003;6(4):11. Does not meet criteria for eligibility.

Secondary prevention of hip fractures should be standard care for patients who sustain a hip fracture. Drugs & Therapy Perspectives 2003;19(1):14-17. Does not meet criteria for eligibility.

Underutilization of calcium and vitamin D supplements in an academic long-term care facility. J Am Med Dir Assoc 2004;5(2):98-100. Does not meet criteria for eligibility.

Cost-effectiveness of hip protectors in the prevention of osteoporosis related hip fractures in elderly nursing home residents. Br J Rheumatol 2004;31(8):1607-1613. Does not meet criteria for eligibility.

Review: prophylactic use of vitamin D reduced falls in older people. Evid Based Nurs 2004;7(4):119. Does not meet criteria for eligibility.

Vitamin D and falls in the elderly. Bandolier 2004;11(7):7. Does not meet criteria for eligibility.

Resistance exercises or vitamin D did not improve physical health or reduce falls in frail older people. Evid Based Nurs 2003;6(4):116-117. Does not meet criteria for eligibility.

Oral vitamin D3 supplementation reduced fractures in community dwelling elderly people. Evid Based Nurs 2003;6(4):113. Does not meet criteria for eligibility.

Evidence for practice. Effect of vitamin D3 supplementation. AORN J 2003;78(5):852, 854. Does not meet criteria for eligibility.

Bonafide advice: smart choices in childhood can lay the foundation for strong bones to last a lifetime. USC Health 2003;10(4):20-23. Does not meet criteria for eligibility.

Can vitamin D prevent fractures in men and women?. Evidence-Based Practice 2003;6(6):4, 2p. Does not meet criteria for eligibility.

Lessons to be learned: a case study approach. Sunshine-induced hypercalcaemia?. Journal of the Royal Society for the Promotion of Health 2002;122(3):194-196. Does not meet criteria for eligibility.

Vitamin D helps to prevent hip fractures in elderly women. Alternative & Complementary Therapies 2003;9(2):52. Does not meet criteria for eligibility.

Research and professional briefs. Intake of calcium and vitamin D in 3 Canadian long-term care facilities. J Am Diet Assoc 2002;102(2):244-247. Does not meet criteria for eligibility.

Positive effects of anabolic steroids, vitamin D and calcium on muscle mass, bone mineral density and clinical function after a hip fracture: a randomised study of 63 women. Journal of Bone and Joint Surgery (British) 2002;84B(4):497-503. Does not meet criteria for eligibility.

Therapeutics in osteoporosis: a case study. Journal of Orthopaedic Nursing 2002;6(1):30-34. Does not meet criteria for eligibility.

Research briefings. Boston University School of Medicine: researchers report vitamin D intoxification from supplements. On Call 2001;4(7):10. Does not meet criteria for eligibility.

Does parathyroid hormone use safely reduce the risk of fracture in women with osteoporosis?. commentary on Neer RM, Arnaud CD, Zanchetta JR et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N ENGL J MED 2001;344:1434-41. Evidence-Based Practice 2001;4(8):3, insert. Does not meet criteria for eligibility.

Preventing falls and subsequent injury in older people. Qual Health Care 1996;5(4):243-249. Does not meet criteria for eligibility.

The A, B, C's of bone building in adolescence. J Am Acad Nurse Pract 2000;12(4):135-140. Does not meet criteria for eligibility.

Calcium and vitamin D reduced non-vertebral fractures and bone loss in the elderly [commentary on Dawson-Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. NEW ENGL J MED 1997 Sep 4;337:670-6]. Evid Based Nurs 1998;1(2):48. Does not meet criteria for eligibility.

Bone loss and vitamin D intoxication. Nurses' Drug Alert 1997;21(9):70-71. Does not meet criteria for eligibility.

Commentary on Vitamin D3 and calcium to prevent hip fractures in elderly women [original article by Chapuy M et al appears in NEW ENGL J MED 1992;327(23):1637-42]. AWHONN's Women's Health Nursing Scan 1993;7(3):5. Not obtainable at time of submission.

Vitamin D3 plus calcium to prevent fractures. Nurses' Drug Alert 1993;17(2):10. Does not meet criteria for eligibility.

WHO calls for adequate vitamin D supplementation. Can Pharm J 2005;. 275(7357):09 . Does not meet criteria for eligibility.

Vitamin D deficiency common in postmenopausal women. Geriatrics and Aging 2005;8(10):11. Does not meet criteria for eligibility.

Prevalence of vitamin D inadequacy among postmenopausal north American women receiving osteoporosis therapy. Obstet Gynecol Surv 2005;60(10):658-659. Does not meet criteria for eligibility.

Calcium/vitamin D not effective for secondary prevention of fracture. J Fam Pract 2005;54(8):658-662. Does not meet criteria for eligibility.

Calcium and vitamin D supplements offer modest improvements in bone and greater benefits with faithful adherence. Nutr Today 2006;41(2):87. Does not meet criteria for eligibility.

Vitamin D: the bone builder. Johns Hopkins Medical Letter, Health After 50 2006;17(12):7. Does not meet criteria for eligibility.

In brief. Nurs Times 2006;102(8):8. Does not meet criteria for eligibility.

Bad bones. Nutrition Action Healthletter 2005;32(5):12. Does not meet criteria for eligibility.

Drugs and herbs. Calcium and vitamin D: beyond the bones. Consum Rep Health 2005;17(9):7. Does not meet criteria for eligibility.

Are you getting enough vitamin D to fight fractures? Analysis shows older adults need more than the RDA to build bone health. Tufts University Health & Nutrition Letter 2005;23(10):1-2. Does not meet criteria for eligibility.

New horizons for vitamin D. Tufts University Health & Nutrition Letter 2004;22(5):3. Does not meet criteria for eligibility.

Clinical highlights. Do vitamin D and calcium curb fractures in the elderly?. RN 2005;68(10):18. Does not meet criteria for eligibility.

Doubt over ability of calcium and vitamin D to prevent fractures. Practice Nurse 2005;29(9):6. Does not meet criteria for eligibility.

Breaking up: strong bones need more than calcium. Nutrition Action Healthletter 2005;32(3):3-8. Does not meet criteria for eligibility.

Vitamin D's muscle-strengthening effect and fracture prevention. HealthFacts 2004;29(6):6. Does not meet criteria for eligibility.

Osteoporosis. Obstet Gynecol 2004;104(4):Supplement-76S. Does not meet criteria for eligibility.

Aarskog D, Aksnes L, Markestad T. Effect of parathyroid hormone on vitamin D metabolism in osteopetrosis. Pediatrics 1981;68(1):109-112. Does not meet criteria for eligibility.

Abrahamsen B, Madsen J S, Tofteng C L et al. A common methylenetetrahydrofolate reductase (C677T) polymorphism is associated with low bone mineral density and increased fracture incidence after menopause: Longitudinal data from the Danish osteoporosis prevention study. Journal of Bone & Mineral Research 2003;18(4):723-729. Does not meet criteria for eligibility.

Adams N D, Gray R W, Lemann J. The calciuria of increased fixed acid production in humans: evidence against a role for parathyroid hormone and 1,25(OH)2-vitamin D. Calcif Tissue Int 1979;28(3):233-238. Does not meet criteria for eligibility.

Akashi S, Motizuki H. Screening for hypercalciuria. Nippon Shonika Gakkai Zasshi 1990;32(6):701-709. Does not meet criteria for eligibility. Aksoy S, Abali H, Dincer M et al. Hypocalcemic effect of zoledronic acid or other bisphosphonates may contribute to their antiangiogenic properties.[see comment]. Med Hypotheses 2004;62(6):942-944. Does not meet criteria for eligibility.

Al Ali H, Fuleihan G E. Nutritional osteomalacia: substantial clinical improvement and gain in bone density posttherapy. J Clin Densitom 2000;3(1):97-101. Does not meet criteria for eligibility.

Al Maatouq M A, El Desouki M I, Othman S A et al. Prevalence of osteoporosis among postmenopausal females with diabetes mellitus. Saudi Med J 2004;25(10):1423-1427. Not obtainable at time of submission.

Al Qadreh A, Schulpis K H, Athanasopoulou H et al. Bone mineral status in children with phenylketonuria under treatment. Acta Paediatr 1998;87(11):1162-1166. Does not meet criteria for eligibility.

Alekel D L, Mortillaro E, Hussain E A et al. Lifestyle and biologic contributors to proximal femur bone mineral density and hip axis length in two distinct ethnic groups of premenopausal women. Osteoporos.Int. 1999;9(4):327-338. Does not meet criteria for eligibility.

Alfaham M, Woodhead S, Pask G et al. Vitamin D deficiency: a concern in pregnant Asian women. Br J Nutr 1995;73(6):881-887. Does not meet criteria for eligibility.

Ali M Y, Gopal K V, Llerena L A et al. Hypercalcemia associated with infection by Cryptococcus neoformans and Coccidioides immitis. Am J Med Sci 1999;318(6):419-423. Does not meet criteria for eligibility.

Allen S H, Shah J H. Calcinosis and metastatic calcification due to vitamin D intoxication. A case report and review. [Review] [49 refs]. Horm Res 1992;37(1-2):68-77. Does not meet criteria for eligibility.

Aloia J F. Role of calcitriol in the treatment of postmenopausal osteoporosis. Metabolism: Clinical & Experimental 1990;39(4 Suppl 1):35-38. Does not meet criteria for eligibility.

Aloia J F, Miele G, Culleton J et al. Treatment of osteoporosis with salmon calcitonin clinical

experience with 100 patients. Adv Ther 1991;8(1):36-47. Does not meet criteria for eligibility.

Aloia J F, Mikhail M, Pagan C D et al. Biochemical and hormonal variables in black and white women matched for age and weight.[see comment]. Journal of Laboratory & Clinical Medicine 1998;132(5):383-389. Does not meet criteria for eligibility.

Alon U, Berkowitz D, Berant M. Idiopathic infantile hypercalcemia: rapid response to treatment with calcitonin. Child Nephrology & Urology 1992;12(1):47-50. Does not meet criteria for eligibility.

Alper B S. Evidence-based medicine. Efficacy of calcium and vitamin D for fracture prevention questioned. Clinical Advisor 2005;8(7):94-95. Does not meet criteria for eligibility.

Anatoliotaki M, Tsilimigaki A, Tsekoura T et al. Congenital rickets due to maternal vitamin D deficiency in a sunny island of Greece. Acta Paediatr 2003;92(3):389-391. Does not meet criteria for eligibility.

Anderson F. Vitamin D for older people: How much, for whom and - Above all - Why?. Age & Ageing 2005;34(5):425-426. Does not meet criteria for eligibility.

Antoniucci D M, Vittinghoff E, Blackwell T et al. Vitamin D insufficiency . Does not affect bone mineral density response to raloxifene. J Clin Endocrinol Metab 2005;90(8):4566-4572. Does not meet criteria for eligibility.

Apostolou T, Tziamalis M, Christodoulidou C et al. Regression of massive tumoral calcinosis of the ischium in a dialysis patient after treatment with reduced calcium dialysate and i.v. administration. Clin Nephrol 1998;50(4):247-251. Does not meet criteria for eligibility.

Ardawi M, Salleh Nasrat, Hassan A N et al. Vitamin D status and calcium-regulating hormones in Saudis: A prospective study. Saudi Med J 1995;16(5):402-409. Does not meet criteria for eligibility.

Arden N K, Major P, Poole J R et al. Size at birth, adult intestinal calcium absorption and 1,25(OH)2 vitamin D. Qjm: Monthly Journal of the Association of Physicians 2002;95(1):15-21. Does not meet criteria for eligibility.

Arneil G C. The return of infantile rickets to Britain. World Review of Nutrition & Dietetics 1969;10239-261. Does not meet criteria for eligibility.

Arnold C M, Busch A J, Schachter C L et al. The relationship of intrinsic fall risk factors to a recent history of falling in older women with osteoporosis. J Orthop Sports Phys Ther 2005;35(7):452-460. Does not meet criteria for eligibility.

Ashby J P, Newman D J, Rinsler M G. Is intact PTH a sensitive biochemical indicator of deranged calcium homeostasis in vitamin D deficiency?. Ann Clin Biochem 1989;26(Pt 4):324-327. Does not meet criteria for eligibility.

Atiq Mehnaz, Fadoo Zehra, Naz Fouzia et al. Myelofibrosis in severe vitamin D deficiency rickets. JPMA - Journal of the Pakistan Medical Association 1999;49(7):174-177. Does not meet criteria for eligibility.

Avenell A, Handoll H H. Nutritional supplementation for hip fracture aftercare in the elderly.[update of Cochrane Database Syst Rev. 2000;(4):CD001880; PMID: 11034731]. [Review] [77 refs]. Cochrane Database Syst Rev 2004;(1):CD001880. Does not meet criteria for eligibility.

Backstrom M C, Maki R, Kuusela A L et al. Randomised controlled trial of vitamin D supplementation on bone density and biochemical indices in preterm infants. Archives of Disease in Childhood Fetal & Neonatal Edition 1999;80(3):F161-F166. Does not meet criteria for eligibility.

Baker M R, Peacock M, Nordin B E. The decline in vitamin D status with age. Age & Ageing 1980;9(4):249-252. Does not meet criteria for eligibility.

Balasubramanian S, Shivbalan So, Saravana Kumar P. Hypocalcemia due to vitamin D deficiency in exclusively breastfed infants. Indian Pediatr 2006;43(3):247-251. Does not meet criteria for eligibility.

Balsan S. 25-hydroxycholecalciferol: effects in idiopathic vitamin D-resistant rickets. Calcif

Tissue Res 1970;Suppl-6. Does not meet criteria for eligibility.

Balsan S, Garabedian M. 25-Hydroxycholecalciferol. A comparative study in deficiency rickets and different types of resistant rickets. Eur J Clin Invest 1972;51(4):749-759. Does not meet criteria for eligibility.

Balsan S, Tieder M. Linear growth in patients with hypophosphatemic vitamin D-resistant rickets: influence of treatment regimen and parental height.[see comment]. Eur J Pediatr 1990;116(3):365-371. Does not meet criteria for eligibility.

Balsan S, Garabedian M, Sorgniard R et al. 1,25dihydroxyvitamin D3 and 1, alphahydroxyvitamin D3 in children: biologic and therapeutic effects in nutritional rickets and different types of vitamin D resistance. Pediatr Res 1975;9(7):586-593. Does not meet criteria for eligibility.

Barger-Lux M J, Heaney R P, Lanspa S J et al. An investigation of sources of variation in calcium absorption efficiency.[erratum appears in J Clin Endocrinol Metab 1995 Jul;80(7):2068]. Journal of Clinical Endocrinology & Metabolism 1995;80(2):406-411. Does not meet criteria for eligibility.

Baroncelli G I, Federico G, Bertelloni S et al. Vitamin-D receptor genotype . Does not predict bone mineral density, bone turnover, and growth in prepubertal children. Horm Res 1999;51(3):150-156. Does not meet criteria for eligibility.

Barrueto F, Wang-Flores H H, Howland M A et al. Acute vitamin D intoxication in a child. Pediatrics 2005;116(3):e453-e456. Does not meet criteria for eligibility.

Bartl R. RECORD study: Secondary prevention of low-trauma fractures in elderly patients. Internist Prax 2006;47(5):541-544. Does not meet criteria for eligibility.

Barzel U S. Recommended testing in patients with low bone density.[comment]. Journal of Clinical Endocrinology & Metabolism 2003;88(3):1404-1405. Does not meet criteria for eligibility. Basha Bassem, Rao Sudhaker, Han Zei et al. Osteomalacia due to vitamin D depletion: A neglected consequence of intestinal malabsorption. Am J Med 2000;108(4):296-300. Does not meet criteria for eligibility.

Bashir T, Macdonald H N, Peacock M. Biochemical evidence of vitamin D deficiency in pregnant Asian women. J Hum Nutr 1981;35(1):49-52. Does not meet criteria for eligibility.

Batch J A, Couper J J, Rodda C et al. Use of bisphosphonate therapy for osteoporosis in childhood and adolescence. Journal of Paediatrics & Child Health 2003;39(2):88-92. Does not meet criteria for eligibility.

Bauman W A, Morrison N G, Spungen A M. Vitamin D replacement therapy in persons with spinal cord injury. J Spinal Cord Med 2005;28(3):203-207. Does not meet criteria for eligibility.

Baumgartl H J, Standl E, Schmidt-Gayk H et al. Changes of vitamin D3 serum concentrations at the onset of immune-mediated type 1 (insulindependent) diabetes mellitus. Diabetes Res 1991;16(3):145-148.

Beck B R, Shoemaker M R. Osteoporosis: understanding key risk factors and therapeutic options. Phys Sportsmed 2000;28(2):69-4, 76. Does not meet criteria for eligibility.

Bell N H. Hypercalcemic and hypocalcemic disorders: diagnosis and treatment. Nephron 1979;23(2-3):147-151. Does not meet criteria for eligibility.

Bell N H, Godsen R N, Henry D P et al. The effects of muscle-building exercise on vitamin D and mineral metabolism. Journal of Bone & Mineral Research 1988;3(4):369-373. Does not meet criteria for eligibility.

Bell N H, Williamson B T, Hollis B W et al. Effects of race on diurnal patterns of renal conservation of calcium and bone resorption in premenopausal women. Osteoporos.Int. 2001;12(1):43-48. Does not meet criteria for eligibility.

Belobradkova J, Hodan J. Primary vitamin D refractory rickets. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove Suppl 1969;12(3):325-329. Does not meet criteria for eligibility.

Benhamou C L, Tourliere D, Gauvain J B et al. Calciotropic hormones in elderly people with and without hip fracture. Osteoporos.Int. 1995;5(2):103-107. Does not meet criteria for eligibility.

Berg J P. Stronger bonds between 25hydroxyvitamin D 1alpha-hydroxylase and pseudovitamin D-deficiency rickets. Eur J Endocrinol 1998;138(3):264-265. Does not meet criteria for eligibility.

Bergenfelz A, Ahren B. Serum osteocalcin levels do not change during rapidly induced hypercalcemia in healthy subjects. Horm Res 1992;37(1-2):29-32. Does not meet criteria for eligibility.

Berger Christian E, Marteau Robert, Pabinger Christoph et al. Decreased cutaneous vitamin Dsynthesis in heavily melanized individuals: A rare cause for pathologic fractures of the hip. Wien Klin Wochenschr 2003;115(5-6):186-190. Does not meet criteria for eligibility.

Beringer T R, Ardill J, Taggart H M. Absence of evidence for a role of calcitonin in the etiology of femoral neck fracture. Calcif Tissue Int 1986;39(5):300-303. Does not meet criteria for eligibility.

Beringer T, Heyburn G, Finch M et al. Prevalence of vitamin D inadequacy in Belfast following fragility fracture. Current Medical Research & Opinion 2006;22(1):101-105. Does not meet criteria for eligibility.

Berlyne G M. Parathyroid hormone and 25hydroxyvitamin D concentrations in the elderly. British Medical Journal Clinical Research Ed 1983;. 287(6402):1379. Does not meet criteria for eligibility.

Bhattoa H P, Kiss E, Bettembuk P et al. Bone mineral density, biochemical markers of bone turnover, and hormonal status in men with systemic lupus erythematosus. Rheumatol Int 2001;21(3):97-102. Does not meet criteria for eligibility.

Biale Y, Shany S, Levi M et al. 25 Hydroxycholecalciferol levels in Beduin women in labor and in cord blood of their infants. Am J Clin Nutr 1979;32(12):2380-2382. Does not meet criteria for eligibility.

Bischoff-Ferrari H A, Conzelmann M, Stahelin H B et al. Is fall prevention by vitamin D mediated by a change in postural or dynamic balance?. Osteoporos Int 2006;17(5):656-663. Does not meet criteria for eligibility.

Bischoff-Ferrari H A, Dawson-Hughes B, Willett W C et al. Effect of Vitamin D on falls: a meta-analysis. JAMA 2004;291(16):1999-2006. Does not meet criteria for eligibility.

Biser-Rohrbaugh A, Hadley-Miller N. Vitamin d deficiency in breast-fed toddlers. J Pediatr Orthop 2001;21(4):508-511. Does not meet criteria for eligibility.

Black D M. Screening and treatment in the elderly to reduce osteoporotic fracture risk. British Journal of Obstetrics & Gynaecology 1996;103(SUPPL. 13):2-8. Does not meet criteria for eligibility.

Blumsohn Aubrey, Naylor Kim E, Timm Wolfram et al. Seasonal variation present and biologically significant?. Journal of Bone & Mineral Research 2004;19(1):170-171. Does not meet criteria for eligibility.

Bogaisky M, Leipzig R M. Vitamin D3, calcium, or both did not prevent secondary fractures in older persons. ACP J Club 2005;143(3):74, 72-74, 73. Does not meet criteria for eligibility.

Bogaisky M, Leipzig R M. Calcium and vitamin D supplementation did not reduce fractures in women greater than or equal to 70 years of age. ACP J Club 2005;143(3):73, 72, 74. Does not meet criteria for eligibility.

Bonofiglio D, Maggiolini M, Catalano S et al. Parathyroid hormone is elevated but bone markers and density are normal in young female subjects who consume inadequate dietary calcium. Br J Nutr 2000;84(1):111-116. Does not meet criteria for eligibility.

Bonofiglio D, Maggiolini M, Marsico S et al. Critical years and stages of puberty for radial bone mass apposition during adolescence. Hormone & Metabolic Research 1999;31(8):478-482. Does not meet criteria for eligibility. Boonen S, Rizzoli R, Meunier P J et al. The need for clinical guidance in the use of calcium and vitamin D in the management of osteoporosis: A consensus report. Osteoporos.Int. 2004;15(7):511-519. Does not meet criteria for eligibility.

Boonen Steven, Vanderschueren Dirk, Cheng Xiao et al. Age-related (Type II) femoral neck osteoporosis in men: Biochemical evidence for both hypovitaminosis D- and androgen deficiency-induced bone resorption. Journal of Bone & Mineral Research 1997;12(12):2119-2126. Does not meet criteria for eligibility.

Boothby L A. Bisphosphonates for the prevention and treatment of osteoporosis. P & T 2002;27(10):506-513. Does not meet criteria for eligibility.

Bordier P, Hioco D, Rouquier M et al. Effects of intravenous vitamin D on bone and phosphate metabolism in osteomalacia. Calcif Tissue Res 1969;4(1):78-83. Does not meet criteria for eligibility.

Bordier P, Rasmussen H, Marie P et al. Vitamin D metabolites and bone mineralization in man. Journal of Clinical Endocrinology & Metabolism 1978;46(2):284-294. Does not meet criteria for eligibility.

Boucher B J. Serum retinol levels and fracture risk.[comment]. N Engl J Med 2003;348(19):1927-1928. Does not meet criteria for eligibility.

Briefel R, Hanson C, Fox M K et al. Feeding Infants and Toddlers Study: do vitamin and mineral supplements contribute to nutrient adequacy or excess among US infants and toddlers?. J Am Diet Assoc 2006;106(1):Supplement-65. Does not meet criteria for eligibility.

Brot C, Jorgensen N R, Sorensen O H. The influence of smoking on vitamin D status and calcium metabolism. Eur J Clin Nutr 1999;53(12):920-926. Does not meet criteria for eligibility.

Brunvand L, Haug E. Vitamin D deficiency amongst Pakistani women in Oslo. Acta Obstet Gynecol Scand 1993;72(4):264-268. Does not meet criteria for eligibility. Brunvand L, Quigstad E, Urdal P et al. Vitamin D deficiency and fetal growth. Early Hum Dev 1996;45(1-2):27-33. Does not meet criteria for eligibility.

Brunvand L, Shah S S, Bergstrom S et al. Vitamin D deficiency in pregnancy is not associated with obstructed labor. A study among Pakistani women in Karachi. Acta Obstet Gynecol Scand 1998;77(3):303-306. Does not meet criteria for eligibility.

Bruyere O, Edwards J, Reginster J. Clinical Evidence Concise. Fracture prevention in postmenopausal women. Am Fam Physician 2005;71(11):2151-2152. Does not meet criteria for eligibility.

Brzozowska A, Enzi G, Amorin Cruz J. Medicine use and supplementation practice among participants of SENECA Study. J Nutr Health Aging 2002;6(1):34-38. Does not meet criteria for eligibility.

Buchanan J R, Santen R J, Cavaliere A et al. Interaction between parathyroid hormone and endogenous estrogen in normal women. Metabolism: Clinical & Experimental 1986;35(6):489-494. Does not meet criteria for eligibility.

Buckle R M, Gamlen T R, Pullen I M. Vitamin D intoxication treated with porcine calcitonin. Br Med J 1972;3(820):205-207. Does not meet criteria for eligibility.

Buntain H M, Greer R M, Schluter P J et al. Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: a controlled cross sectional study. Thorax 2004;59(2):149-155. Does not meet criteria for eligibility.

Burns J, Paterson C R. Single dose vitamin D treatment for osteomalacia in the elderly. British Medical Journal Clinical Research Ed 1985;. 290(6464):281-282. Does not meet criteria for eligibility.

Burns J, Davidson A V, MacLennan W J et al. The value of serum 25-hydroxyvitamin D assays in screening elderly patients for vitamin D deficiency. Journal of Clinical & Experimental Gerontology 1985;7(3):213-222. Does not meet criteria for eligibility. Butler Meg, Norton Robyn, Lee-Joe Trevor et al. Preventing falls and fall-related injuries among older people living in institutions: Current practice and future opportunities. N Z Med J 1998;111(1074):25, 1998-361. Does not meet criteria for eligibility.

Buysschaert M, Lejeune D, Esselinckx W et al. Treatment of postmenopausal osteoporosis with vitamin D and severe hypercalcemia. Acta Clin Belg 1984;39(3):171-173. Does not meet criteria for eligibility.

Calvo M S, Whiting S J. Prevalence of vitamin D insufficiency in Canada and the United States: Importance to health status and efficacy of current food fortification and dietary supplement use. Nutr Rev 2003;61(3):107-113. Does not meet criteria for eligibility.

Calvo M S, Whiting S J, Barton C N. Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr 2004;80(6 Suppl):1710S-1716S. Does not meet criteria for eligibility.

Campbell A J, Robertson M C, La Grow S J et al. Randomised controlled trial of prevention of falls in people aged > or =75 with severe visual impairment: the VIP trial. BMJ 2005;331(7520):817. Does not meet criteria for eligibility.

Campbell B G, Ketchell D, Gunning K. Clinical inquiries. Do calcium supplements prevent postmenopausal osteoporotic fractures?. [Review] [13 refs]. J Fam Pract 2003;52(3):234-237. Does not meet criteria for eligibility.

Caniggia A, Nuti R, Lore F et al. Long-term treatment with calcitriol in postmenopausal osteoporosis. Metabolism: Clinical & Experimental 1990;39(4 Suppl 1):43-49. Does not meet criteria for eligibility.

Cardinal H, Brossard J H, Roy L et al. The set point of parathyroid hormone stimulation by calcium is normal in progressive renal failure. Journal of Clinical Endocrinology & Metabolism 1998;83(11):3839-3844. Does not meet criteria for eligibility.

Carmeliet G, Van Cromphaut S, Daci E et al. Disorders of calcium homeostasis. [Review] [70 refs]. Best Practice & Research Clinical Endocrinology & Metabolism 2003;17(4):529-546. Does not meet criteria for eligibility.

Carter G D, Carter R, Jones J et al. How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin Chem 2004;50(11):2195-2197. Does not meet criteria for eligibility.

Casella S J, Reiner B J, Chen T C et al. A possible genetic defect in 25-hydroxylation as a cause of rickets.[see comment]. Eur J Pediatr 1994;124(6):929-932. Does not meet criteria for eligibility.

Chailurkit L O, Pongchaiyakul C, Charoenkiatkul S et al. Different mechanism of bone loss in ageing women and men in Khon Kaen Province. J Med Assoc Thai 2001;84(8):1175-1182. Does not meet criteria for eligibility.

Chailurkit L O, Rajatanavin R, Teerarungsikul K et al. Serum vitamin D, parathyroid hormone and biochemical markers of bone turnover in normal Thai subjects. J Med Assoc Thai 1996;79(8):499-504. Does not meet criteria for eligibility.

Challa A, Apazidou H, Tzoufi M et al. Nutritional rickets revisited in children of Albanian origin (two cases). Adv Food Nutr Res 2003;23(11):1495-1502. Does not meet criteria for eligibility.

Challem J. Medical journal watch: Context and applications. Alternative & Complementary Therapies 2006;12(2):102-106. Does not meet criteria for eligibility.

Chan G M. Dietary calcium and bone mineral status of children and adolescents.[see comment]. Am J Dis Child 1991;145(6):631-634. Does not meet criteria for eligibility.

Chan G M, Mileur L J. Posthospitalization growth and bone mineral status of normal preterm infants. Feeding with mother's milk or standard formula. Am J Dis Child 1985;139(9):896-898. Does not meet criteria for eligibility.

Chan G M, Hess M, Hollis J et al. Bone mineral status in childhood accidental fractures.[see

comment]. Am J Dis Child 1984;138(6):569-570. Does not meet criteria for eligibility.

Chapuy M C, Arlot M. Prevention of non vertebral fractures and cortical bone loss in elderly women: a prospective controlled trial using calcium and vitamin D3 supplements [abstract]. Osteoporos-Int 1993;3(Suppl. 1):258. Does not meet criteria for eligibility.

Chapuy M C, Arlot M E, Delmas P D et al. Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. Br Med J 1994;308(6936):1081-1082. Does not meet criteria for eligibility.

Chary-Valckenaere I, Blum A, Pere P et al. Insufficiency fractures of the ilium.[see comment]. Revue du Rhumatisme (English Edition) 1997;64(10):542-548. Does not meet criteria for eligibility.

Chaussain-Miller C, Sinding C, Wolikow M et al. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1hydroxyvitamin D. Eur J Pediatr 2003;142(3):324-331. Does not meet criteria for eligibility.

Chen J S, Cameron I D, Cumming R G et al. Effect of age-related chronic immobility on markers of bone turnover. Journal of Bone & Mineral Research 2006;21(2):324-331. Does not meet criteria for eligibility.

Chen J Y, Ling U P, Chiang W L et al. Total body bone mineral content in small-forgestational -age, appropriate-for-gestational -age, large-for-gestational -age term infants and appropriate-for-gestational -age preterm infants. Chung Hua i Hsueh Tsa Chih - Chinese Medical Journal 1995;56(2):109-114. Does not meet criteria for eligibility.

Chertow Glenn M. (Untitled). Nephrology Dialysis Transplantation 2001;16(2):429-430. Does not meet criteria for eligibility.

Chesney R W, Mazess R B, Rose P et al. Longterm influence of calcitriol (1,25dihydroxyvitamin D) and supplemental phosphate in X-linked hypophosphatemic rickets. Pediatrics 1983;71(4):559-567. Does not meet criteria for eligibility. Chesney Russell W. Rickets: An old form for a new century. Pediatr Int 2003;45(5):509-511. Does not meet criteria for eligibility.

Christiansen C, Rodbro P. Serum vitamin D metabolites in younger and elderly postmenopausal women. Calcif Tissue Int 1984;36(1):19-24. Does not meet criteria for eligibility.

Christiansen C, Christensen M S, McNair P et al. Vitamin D metabolites in diabetic patients: decreased serum concentration of 24,25dihydroxyvitamin D. Scandinavian Journal of Clinical & Laboratory Investigation 1982;42(6):487-491. Does not meet criteria for eligibility.

Cifuentes R F, Kooh S W, Radde I C. Vitamin D deficiency in a calcium-supplemented very lowbirth-weight infant. Eur J Pediatr 1980;96(2):252-255. Does not meet criteria for eligibility.

Cigolini M, Miconi V, Soffiati G et al. Hypovitaminosis D among unselected medical inpatients and outpatients in Northern Italy [2]. Clin Endocrinol (Oxf) 2006;64(4):475. Does not meet criteria for eligibility.

Cohanim M, DeLuca H F, Yendt E R. Effects of prolonged treatment with 25hydroxycholecalciferol in hypophosphatemic (vitamin D refractory) rickets and osteomalacia. Johns Hopkins Med J Suppl 1972;131(2):118-132. Does not meet criteria for eligibility.

Cohen H N, Fogelman I, Boyle I T et al. Deafness due to hypervitaminosis D. Lancet 1979;1(8123):985. Does not meet criteria for eligibility.

Cole P A, Bhandari M. What's new in orthopaedic trauma. Journal of Bone & Joint Surgery - American Volume 2005;87(12 I):2823-2838. Does not meet criteria for eligibility.

Colic-Baric I, Kajfez R, Satalic Z et al. Comparison of dietary habits in the urban and rural Croatian schoolchildren. Eur J Nutr 2004;43(3):169-174. Does not meet criteria for eligibility.

Coll P P. Vitamin D deficiency in long-term care residents. Annals of Long Term Care

2006;14(3):36-37. Does not meet criteria for eligibility.

Compston J E, Silver A C, Croucher P I et al. Elevated serum intact parathyroid hormone levels in elderly patients with hip fracture. Clin Endocrinol (Oxf) 1989;31(6):667-672. Does not meet criteria for eligibility.

Compston Juliet E. The role of vitamin D and calcium supplementation in the prevention of osteoporotic fractures in the elderly. Clin Endocrinol (Oxf) 1995;43(4):393-405. Does not meet criteria for eligibility.

Connors M H, Sheikholislam B M, Irias J J. Vitamin D toxicity after dieting in hypoparathyroidism. Pediatrics 1976;57(5):794-796. Does not meet criteria for eligibility.

Cooke R, Hollis B, Conner C et al. Vitamin D and mineral metabolism in the very low birth weight infant receiving 400 IU of vitamin D. Eur J Pediatr 1990;116(3):423-428. Does not meet criteria for eligibility.

Corless D, Dawson E. Failure of calciferol to improve physical capabilities in elderly hospital patients with low or normal plasma 25 hydroxyvitamin D [abstract]. Clin-Sci 1984;67(Supl. 9):16P. Does not meet criteria for eligibility.

Cortet B, Bera-Louville A, Gauthier P et al. Comparative efficacy and safety study of etidronate and alendronate in postmenopausal osteoporosis. effect of adding hormone replacement therapy. Joint, Bone, Spine: Revue du Rhumatisme 2001;68(5):410-415. Does not meet criteria for eligibility.

Cosman F, Morgan D C, Nieves J W et al. Resistance to bone resorbing effects of PTH in black women. Journal of Bone & Mineral Research 1997;12(6):958-966. Does not meet criteria for eligibility.

Cosman F, Shen V, Morgan D et al. Biochemical responses of bone metabolism to 1,25dihydroxyvitamin D administration in black and white women. Osteoporos.Int. 2000;11(3):271-277. Does not meet criteria for eligibility.

Crofton P M. What is the cause of benign transient hyperphosphatasemia? A study of 35

cases. Clin Chem 1988;34(2):335-340. Does not meet criteria for eligibility.

Cross N A, Hillman L S, Allen S H et al. Changes in bone mineral density and markers of bone remodeling during lactation and postweaning in women consuming high amounts of calcium. Journal of Bone & Mineral Research 1995;10(9):1312-1320. Does not meet criteria for eligibility.

Curino A, Skliar M, Boland R. Identification of 7-dehydrocholesterol, vitamin D3, 25(OH)vitamin D3 and 1,25(OH)2-vitamin D3 in Solanum glaucophyllum cultures grown in absence of light. Biochim Biophys Acta 1998;1425(3):485-492. Does not meet criteria for eligibility.

Dahl M V, Holick M F. Sun Exposure, Vitamin D Metabolism, and Skin Cancer [4] (multiple letters). Mayo Clin Proc 2004;79(5):699-701. Does not meet criteria for eligibility.

Dandona P, Mohiuddin J, Weerakoon J W et al. Persistence of parathyroid hypersecretion after vitamin D treatment in Asian vegetarians. Journal of Clinical Endocrinology & Metabolism 1984;59(3):535-537. Does not meet criteria for eligibility.

Daniels E D, Pettifor J M, Schnitzler C M et al. Differences in mineral homeostasis, volumetric bone mass and femoral neck axis length in black and white South African women. Osteoporos.Int. 1997;7(2):105-112. Does not meet criteria for eligibility.

Dastur D K, Gagrat B M, Wadia N H et al. Nature of muscular change in osteomalacia: light- and electron-microscope observations. Am J Pathol 1975;117(4):211-228. Does not meet criteria for eligibility.

Davey D A. Vitamin D and its analogues and the prevention and treatment of osteoporosis. S Afr Med J 1997;Suid-Afrikaanse Tydskrif Vir Geneeskunde. 87(4):423-425. Does not meet criteria for eligibility.

Davidson C W, Merrilees Megan J, Wilkinson Tim J et al. Hip fracture mortality and morbidity: Can we do better?. N Z Med J 2001;114(1136):329-331. Does not meet criteria for eligibility. Davidson W M. Comparative effects of vitamin D and 25-hydroxycholecalciferol on the calcium content of cultured bone rudiments. Pharmacology & Therapeutics in Dentistry 1975;2(3-4):223-228. Does not meet criteria for eligibility.

Davie M, Lawson D E, Jung R T. Low plasma-25-hydroxyvitamin D without osteomalacia. Lancet 1978;1(8068):820. Does not meet criteria for eligibility.

Davies M, Adams P H. The continuing risk of vitamin-D intoxication. Lancet 1978;2(8090):621-623. Does not meet criteria for eligibility.

Davies M, Adams P H, Berry J L et al. Familial hypocalciuric hypercalcaemia: observations on vitamin D metabolism and parathyroid function. Acta Endocrinol (Copenh) 1983;104(2):210-215. Does not meet criteria for eligibility.

Davies M, Hayes M E, Yin J A et al. Abnormal synthesis of 1,25-dihydroxyvitamin D in patients with malignant lymphoma. Journal of Clinical Endocrinology & Metabolism 1994;78(5):1202-1207. Does not meet criteria for eligibility.

Dawson-Hughes B. Racial/ethnic considerations in making recommendations for vitamin D for adult and elderly men and women. Am J Clin Nutr 2004;80(6 Suppl):1763S-1766S. Does not meet criteria for eligibility.

Dawson-Hughes B. Calcium plus vitamin D and the risk of fractures.[comment]. N Engl J Med 2006;354(21):2285-2287. Does not meet criteria for eligibility.

Dawson-Hughes B, Harris S S. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women.[see comment]. Am J Clin Nutr 2002;75(4):773-779. Does not meet criteria for eligibility.

De Torrente, De La, Jara Pecoud A et al. Lesson of the week: Musculoskeletal pain in female asylum seekers and hypovitaminosis D3. Br Med J 2004;329(7458):156-157. Does not meet criteria for eligibility.

Delmez J A, Tindira C, Grooms P et al. Parathyroid hormone suppression by intravenous 1,25-dihydroxyvitamin D. A role for increased sensitivity to calcium. Eur J Clin Invest 1989;83(4):1349-1355. Does not meet criteria for eligibility.

Delmi M, Rapin C H, Bengoa J M et al. Dietary supplementation in elderly patients with fractured neck of the femur.[see comment]. Lancet 1990;335(8696):1013-1016. Does not meet criteria for eligibility.

DeLucia M C, Carpenter T O. Rickets in the sunshine?. Adv Nutr Res 2002;18(1):97-99. Does not meet criteria for eligibility.

Delvin E E, Glorieux F H, Salle B L et al. Control of vitamin D metabolism in preterm infants: feto-maternal relationships. Arch Dis Child 1982;57(10):754-757. Does not meet criteria for eligibility.

Demiaux B, Arlot M E, Chapuy M C et al. Serum osteocalcin is increased in patients with osteomalacia: correlations with biochemical and histomorphometric findings. Journal of Clinical Endocrinology & Metabolism 1992;74(5):1146-1151. Does not meet criteria for eligibility.

Demiaux-Domenech B, Bonjour J P, Rizzoli R. Axial osteomalacia: report of a new case with selective increase in axial bone mineral density. Bone 1996;18(6):633-637. Does not meet criteria for eligibility.

Dequeker J, Bouillon R. Parathyroid hormone secretion and 25-hydroxyvitamin D levels in primary osteoporosis. Calcif Tissue Res 1977;22 Suppl495-496. Does not meet criteria for eligibility.

Dhonukshe-Rutten R A, Lips M, de Jong N et al. Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men. Br J Nutr 2003;133(3):801-807. Does not meet criteria for eligibility.

Di Monaco M, Vallero F, Di Monaco R et al. Serum levels of 25-hydroxyvitamin D and functional recovery after hip fracture. Archives of Physical Medicine & Rehabilitation 2005;86(1):64-68. Does not meet criteria for eligibility.

Di Munno O, Beghe F, Favini P et al. Prevention of glucocorticoid-induced osteopenia: effect of oral 25-hydroxyvitamin D and calcium. Clin Rheumatol 1989;8(2):202-207. Does not meet criteria for eligibility.

Dietrich T, Joshipura K J, Dawson-Hughes B et al. Association between serum concentrations of 25-hydroxyvitamin D3 and periodontal disease in the US population. Am J Clin Nutr 2004;80(1):108-113. Does not meet criteria for eligibility.

Doetsch A M, Faber J, Lynnerup N et al. The effect of calcium and vitamin D3 supplementation on the healing of the proximal humerus fracture: a randomized placebocontrolled study. Calcif Tissue Int 2004;75(3):183-188. Does not meet criteria for eligibility.

Dominguez J H, Gray R W, Lemann J. Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. Journal of Clinical Endocrinology & Metabolism 1976;43(5):1056-1068. Does not meet criteria for eligibility.

Douglas A S, Robins S P, Hutchison J D et al. Carboxylation of osteocalcin in post-menopausal osteoporotic women following vitamin K and D supplementation. Bone 1995;17(1):15-20. Does not meet criteria for eligibility.

Down P F, Polak A, Regan R J. A family with massive acute vitamin D intoxication. Postgrad Med J 1979;55(654):897-902. Does not meet criteria for eligibility.

Drinka P J. The importance of parathyroid hormone and vitamin D status in the treatment of osteoporosis and renal insufficiency.[see comment]. [Review] [47 refs]. J Am Med Dir Assoc 2004;5(6):382-386. Does not meet criteria for eligibility.

Duda Grazyna, Przyslawski Juliusz. Dietary risk factors for osteoporosis in the elderly. Polish Journal of Food & Nutrition Sciences 2002;11(3):87-91. Does not meet criteria for eligibility.

Dukas L C, Schacht E, Mazor Z et al. A new significant and independent risk factor for falls in elderly men and women: a low creatinine clearance of less than 65 ml/min. Osteoporos.Int. 2005;16(3):332-338. Does not meet criteria for eligibility.

Dunnigan M G, Henderson J B, Hole D J et al. Meat consumption reduces the risk of nutritional rickets and osteomalacia. Br J Nutr 2005;94(6):983-991. Does not meet criteria for eligibility.

Dunnigan Matthew G, Henderson Janet B. An epidemiological model of privational rickets and osteomalacia. Proc Nutr Soc 1997;56(3):939-956. Does not meet criteria for eligibility.

Duplechin R Y, Nadkarni M, Schwartz R P. Hypocalcemic tetany in a toddler with undiagnosed rickets. Ann Emerg Med 1999;34(3):399-402. Does not meet criteria for eligibility.

Earp H S, Ney R L, Gitelman H J et al. Effects of 25-hydroxycholecalciferol in patients with familial hypophosphatemia and vitamin-Dresistant rickets. N Engl J Med 1970;283(12):627-630. Does not meet criteria for eligibility.

Eastell Richard, Lambert Helen. Diet and healthy bones. Calcif Tissue Int 2002;70(5):400-404. Does not meet criteria for eligibility.

Eastwood J B, De Wardener H E, Gray R W et al. Normal plasma-1,25-(OH)2-vitamin-D concentrations in nutritional osteomalacia. Lancet 1979;1(8131):1377-1378. Does not meet criteria for eligibility.

Ebeling P R. Megadose therapy for vitamin D deficiency. Med J Aust 2005;. 183(1):04. Does not meet criteria for eligibility.

Ebeling P R, Sandgren M E, DiMagno E P et al. Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women. Journal of Clinical Endocrinology & Metabolism 1992;75(1):176-182. Does not meet criteria for eligibility.

El Desouki M I, Othman S M, Fouda M A. Bone mineral density and bone scintigraphy in adult Saudi female patients with osteomalacia. Saudi Med J 2004;25(3):355-358. Does not meet criteria for eligibility.

Engels Y, van Assema P, Dorant E et al. Factors associated with the intention to use vitamin D

supplements: quantitative study among a sample of elderly people in a medium-sized town in the Netherlands. J Nutr Educ 2001;33(3):134-142. Does not meet criteria for eligibility.

Ensrud K E, Stone K, Cauley J A et al. Vitamin D receptor gene polymorphisms and the risk of fractures in older women. For the Study of Osteoporotic Fractures Research Group. Journal of Bone & Mineral Research 1999;14(10):1637-1645. Does not meet criteria for eligibility.

Eriksen E F, Glerup H. Vitamin D deficiency and aging: implications for general health and osteoporosis. Biogerontology 2002;3(1-2):73-77. Does not meet criteria for eligibility.

Eriksen E F, Mosekilde L, Melsen F. Effect of sodium fluoride, calcium, phosphate, and vitamin D2 on trabecular bone balance and remodeling in osteoporotics. Bone 1985;6(5):381-389. Does not meet criteria for eligibility.

Erkkola M, Karppinen M, Jarvinen A et al. Folate, vitamin D, and iron intakes are low among pregnant Finnish women. Eur J Clin Nutr 1998;52(10):742-748. Does not meet criteria for eligibility.

Ettinger M P, Felsenberg D, Harris S T et al. Safety and tolerability of oral daily and intermittent ibandronate are not influenced by age. Br J Rheumatol 2005;32(10):1968-1974. Does not meet criteria for eligibility.

Evans J R, Allen A C, Stinson D A et al. Effect of high-dose vitamin D supplementation on radiographically detectable bone disease of very low birth weight infants. Eur J Pediatr 1989;115(5 Pt 1):779-786. Does not meet criteria for eligibility.

Evans T R, Colston K W, Lofts F J et al. A phase II trial of the vitamin D analogue Seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br J Cancer 2002;86(5):680-685. Does not meet criteria for eligibility.

Even Lea, Weisman Yosef, Goldray David et al. Selective modulation by vitamin D of renal response to parathyroid hormone: A study in calcitriol-resistant rickets. Journal of Clinical Endocrinology & Metabolism 1996;81(8):2836-2840. Does not meet criteria for eligibility. Eventov I, Frisch B, Alk D et al. Bone biopsies and serum vitamin-D levels in patients with hip fracture. Acta Orthop Scand 1989;60(4):411-413. Does not meet criteria for eligibility.

Fahraeus B, Andersson L, Bergdahl L et al. Postoperative hypoparathyroidism. Hazards from vitamin D therapy. Acta Chir Scand 1973;139(5):437-441. Does not meet criteria for eligibility.

Fahrleitner A, Dobnig H, Obernosterer A et al. Vitamin D deficiency and secondary hyperparathyroidism are common complications in patients with peripheral arterial disease.[see comment]. J Gen Intern Med 2002;17(9):663-669. Does not meet criteria for eligibility.

Fairney A, Naughten E, Oppe T E. Vitamin D and human lactation. Lancet 1977;2(8041):739-741. Does not meet criteria for eligibility.

Falch J A, Mowe M, Bohmer T et al. Serum levels of intact parathyroid hormone in elderly patients with hip fracture living at home. Acta Endocrinol (Copenh) 1992;126(1):10-12. Does not meet criteria for eligibility.

Falch J A, Odegaard O R, Finnanger A M et al. Postmenopausal osteoporosis: no effect of three years treatment with 1,25dihydroxycholecalciferol. Acta Med Scand 1987;221(2):199-204. Does not meet criteria for eligibility.

Falch J A, Oftebro H, Haug E. Early postmenopausal bone loss is not associated with a decrease in circulating levels of 25hydroxyvitamin D, 1,25-dihydroxyvitamin D, or vitamin D-binding protein. Journal of Clinical Endocrinology & Metabolism 1987;64(4):836-841. Does not meet criteria for eligibility.

Fehily A M, Coles R J, Evans W D et al. Factors affecting bone density in young adults. Am J Clin Nutr 1992;56(3):579-586. Does not meet criteria for eligibility.

Feit J M. Calcium and vitamin D supplements for elderly patients. J Fam Pract 1997;45(6):471-472. Does not meet criteria for eligibility.

Feleke Y, Abdulkadir J, Mshana R et al. Low levels of serum calcidiol in an African population compared to a North European population. Eur J Endocrinol 1999;141(4):358-360. Does not meet criteria for eligibility.

Feliciano E S, Ho M L, Specker B L et al. Seasonal and geographical variations in the growth rate of infants in China receiving increasing dosages of vitamin D supplements. J Trop.Pediatr. 1994;40(3):162-165. Does not meet criteria for eligibility.

Fetter W P, Mettau J W, Degenhart H J et al. Plasma 1.25-dihydroxyvitamin D concentrations in preterm infants. Acta Paediatr Scand 1985;74(4):549-554. Does not meet criteria for eligibility.

Finkelstein J S. Calcium plus vitamin D for postmenopausal women - Bone appetit?. N Engl J Med 2006;354(7):750-752. Does not meet criteria for eligibility.

Fisher A A, Davis M W, Goh S et al. The second hip fracture - An analysis of 84 elderly patients (multiple letters) [1]. J Orthop Trauma 2004;18(4):256-257. Does not meet criteria for eligibility.

Fisher A A, Davis M W, Smith P N et al. Undertreatment of osteoporosis following hip fracture [8] (multiple letters). Journal of Bone & Joint Surgery - American Volume 2003;85(7):1394-1396. Does not meet criteria for eligibility.

Fleischman A R, Rosen J F, Nathenson G. 25hydroxyvitamin D. Serum levels and oral administration of calcifediol in neonates. Arch Intern Med 1978;138 Spec No869-873. Does not meet criteria for eligibility.

Fleurence R L. Cost-effectiveness of fracture prevention treatments in the elderly. Int J Technol Assess Health Care 2004;20(2):184-191. Does not meet criteria for eligibility.

Flicker L, MacInnis R, Stein M et al. Should older people in residential care be supplemented with vitamin D to prevent falls? Results of a randomised trial [abstract]. 14th National Conference on Falls and Postural Instability, 2003, London. 2003. Excluded as an abstract.

Fogelman I. Where now for the management of osteoporosis?. Hospital Medicine (London) 2005;66(5):284-287. Does not meet criteria for eligibility.

Forli L, Halse J, Haug E et al. Vitamin D deficiency, bone mineral density and weight in patients with advanced pulmonary disease. J Intern Med 2004;256(1):56-62. Does not meet criteria for eligibility.

Fradinger E E. Letter re: 25-OH-vitamin D assays.[comment]. Journal of Clinical Endocrinology & Metabolism 2005;90(11):6337-6338. Does not meet criteria for eligibility.

Frame B. Osteomalacia--current concepts. 1982. Ir J Med Sci 1983;152(7 Suppl):3-11. Does not meet criteria for eligibility.

Francis R M, Peacock M. Local action of oral 1,25-dihydroxycholecalciferol on calcium absorption in osteoporosis. Am J Clin Nutr 1987;46(2):315-318. Does not meet criteria for eligibility.

Francis R M, Baillie S P, Chuck A J et al. Management of osteoporosis in patients with hip fractures. QJM 2000;93(8):501-506. Does not meet criteria for eligibility.

Francis R M, Peacock M, Storer J H et al. Calcium malabsorption in the elderly: the effect of treatment with oral 25-hydroxyvitamin D3. Eur J Clin Invest 1983;13(5):391-396. Does not meet criteria for eligibility.

Fraser D R. Vitamin D-deficiency in Asia. [Review] [12 refs]. Journal of Steroid Biochemistry & Molecular Biology 2004;89-90(1-5):491-495. Does not meet criteria for eligibility.

Frederich A, Guibaud P, David M. [Comparative effects of 25-hydroxycholecalciferol and vitamin D in the treatment of hypocalcemia caused by D-avitaminosis in children]. [French]. Therapie 1974;29(5):681-691. Non-english publication.

Freitag A, Barzel U S. Differential diagnosis of osteoporosis. Gerontology 2002;48(2):98-102. Does not meet criteria for eligibility.

Fujisawa Y, Kida K, Matsuda H. Role of change in vitamin D metabolism with age in calcium and phosphorus metabolism in normal human subjects. Journal of Clinical Endocrinology & Metabolism 1984;59(4):719-726. Does not meet criteria for eligibility. Fujisawa Y, Yamashita K, Hirai N et al. Transient late neonatal hypocalcemia with high serum parathyroid hormone. J Pediatr Endocrinol 1997;10(4):433-436. Does not meet criteria for eligibility.

Fuller Kathleen E, Casparian J, Michael. Vitamin D: Balancing cutaneous and systemic considerations. South Med J 2001;94(1):58-64. Does not meet criteria for eligibility.

Gajewska J, Ambroszkiewicz J, Hozyasz K K. Markers of bone turnover in prepubertal children with celiac disease. Indian J Gastroenterol 2004;23(6):230-231. Does not meet criteria for eligibility.

Gallacher S. Importance of vitamin D in preventing fractures. Nursing & Residential Care 2005;7(11):504-506. Does not meet criteria for eligibility.

Gallagher J C. Metabolic effects of synthetic calcitriol (Rocaltrol) in the treatment of postmenopausal osteoporosis. Metabolism: Clinical & Experimental 1990;39(4 Suppl 1):27-29. Does not meet criteria for eligibility.

Gallagher J C, Riggs B L. Action of 1,25dihydroxyvitamin D3 on calcium balance and bone turnover and its effect on vertebral fracture rate. Metabolism: Clinical & Experimental 1990;39(4 Suppl 1):30-34. Does not meet criteria for eligibility.

Gallagher J C, Bishop C W, Knutson J C et al. Effects of increasing doses of 1 alphahydroxyvitamin D2 on calcium homeostasis in postmenopausal osteopenic women. Journal of Bone & Mineral Research 1994;9(5):607-614. Does not meet criteria for eligibility.

Gallagher J C, Fowler S E, Detter J R et al. Combination treatment with estrogen and calcitriol in the prevention of age-related bone loss. Journal of Clinical Endocrinology & Metabolism 2001;86(8):3618-3628. Does not meet criteria for eligibility.

Garnero P, Munoz F, Borel O et al. Vitamin D receptor gene polymorphisms are associated with the risk of fractures in postmenopausal women, independently of bone mineral density. Journal of Clinical Endocrinology & Metabolism 2005;90(8):4829-4835. Does not meet criteria for eligibility.

Gau J T, Clay S, Carlsen W. Parathyroid hormone, vitamin D, and calcium intake.[comment]. JAMA 2006;295(15):1769-1770. Does not meet criteria for eligibility.

Gau J-T, Barcikowski R S, Clay S et al. Falls and supplementation of vitamin D and calcium [15]. J Am Geriatr Soc 2006;54(6):1020-1021. Does not meet criteria for eligibility.

Gertner J M, Domenech M. 25-Hydroxyvitamin D levels in patients treated with high-dosage ergo- and cholecalciferol. J Clin Pathol 1977;30(2):144-150. Does not meet criteria for eligibility.

Ghose R. Osteomalacia: Recovery of bone density [2]. N Z Med J 2004;117(1196):2p. Does not meet criteria for eligibility.

Ghose R. Sub-clinical osteomalacia [5]. N Z Med J 2004;117(1200):2p. Does not meet criteria for eligibility.

Ghose R R. Vitamin D deficiency and muscle weakness in the elderly [3]. N Z Med J 2005;118(1219):1p. Does not meet criteria for eligibility.

Giangiacoma J, Gleason W A. 25hydroxyvitamin D levels and rickets. Pediatrics 1977;60(5):761. Does not meet criteria for eligibility.

Gillespie W J, Avenell A, Henry D A et al. Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis.[update of Cochrane Database Syst Rev. 2000;(2):CD000227; PMID: 10796331]. [Review] [105 refs]. Cochrane Database Syst Rev 2001;(1):CD000227. Does not meet criteria for eligibility.

Ginty F. Vitamin D and bone health. Clin Geriatr Med 2005;35(4):69-74. Does not meet criteria for eligibility.

Ginty F, Prentice A. Can osteoporosis be prevented with dietary strategies during adolescence?[comment]. Br J Nutr 2004;92(1):5-6. Does not meet criteria for eligibility. Giraldo Alejandro, Pino W, Garcia-Ramirez L F et al. Vitamin D dependent rickets type II and normal vitamin D receptor cDNA sequence. A cluster in a rural area of Cauca, Colombia, with more than 200 affected children. Clin Genet 1995;48(2):57-65. Does not meet criteria for eligibility.

Giunta J L. Dental changes in hypervitaminosis D. Oral Surgery Oral Medicine Oral Pathology Oral Radiology & Endodontics 1998;85(4):410-413. Does not meet criteria for eligibility.

Givon U, Friedman E, Reiner A et al. Stress fractures in the Israeli defense forces from 1995 to 1996. Clinical Orthopaedics & Related Research 2000;(373):227-232. Does not meet criteria for eligibility.

Glendenning P. Vitamin D deficiency and multicultural Australia. Med J Aust 2002;176(5):242-243. Does not meet criteria for eligibility.

Glendenning P, Vasikaran S D. Vitamin D status and redefining serum PTH reference range in the elderly.[comment]. Journal of Clinical Endocrinology & Metabolism 2002;87(2):946-947. Does not meet criteria for eligibility.

Glerup H, Rytter L, Mortensen L et al. Vitamin D deficiency among immigrant children in Denmark. Eur J Pediatr 2004;163(4-5):272-273. Does not meet criteria for eligibility.

Glintborg D, Andersen M, Hagen C et al. Higher bone mineral density in Caucasian, hirsute patients of reproductive age. Positive correlation of testosterone levels with bone mineral density in hirsutism. Clin Endocrinol (Oxf) 2005;. 62(6):. Does not meet criteria for eligibility.

Glorieux F H. Calcitriol treatment in vitamin Ddependent and vitamin D-resistant rickets. Metabolism: Clinical & Experimental 1990;39(4 Suppl 1):10-12. Does not meet criteria for eligibility.

Glorieux F H, Salle B L, Delvin E E et al. Vitamin D metabolism in preterm infants: serum calcitriol values during the first five days of life. Eur J Pediatr 1981;99(4):640-643. Does not meet criteria for eligibility.

Gloth F M, Alam W, Hollis B. Vitamin D vs broad spectrum phototherapy in the treatment of seasonal affective disorder. J Nutr Health Aging 1999;3(1):5-7. Does not meet criteria for eligibility.

Gloth F M, Smith C E, Hollis B W et al. Functional improvement with vitamin D replenishment in a cohort of frail, vitamin Ddeficient older people. J Am Geriatr Soc 1995;43(11):1269-1271. Does not meet criteria for eligibility.

Gloth F M, Tobin J D, Sherman S S et al. Is the recommended daily allowance for vitamin D too low for the homebound elderly?. J Am Geriatr Soc 1991;39(2):137-141. Does not meet criteria for eligibility.

Glowacki J, Hurwitz S, Thornhill T S et al. Osteoporosis and vitamin-D deficiency among postmenopausal women with osteoarthritis undergoing total hip arthroplasty. Journal of Bone & Joint Surgery - American Volume 2003;85-A(12):2371-2377. Does not meet criteria for eligibility.

Goldman J M, Wheeler M F. Vitamin D-induced hypercalcemia. Am J Med 1987;82(6):1277. Does not meet criteria for eligibility.

Goldman J M, Ahn Y H, Wheeler M F. Vitamin D and hypercalcemia. JAMA 1985;254(13):1719. Does not meet criteria for eligibility.

Goodyer P R, Kronick J B, Jequier S et al. Nephrocalcinosis and its relationship to treatment of hereditary rickets. Eur J Pediatr 1987;111(5):700-704. Does not meet criteria for eligibility.

Gordon C M, Bachrach L K, Carpenter T O et al. Bone health in children and adolescents: A Symposium at the Annual Meeting of the Pediatric Academic Societies/Lawson Wilkins Pediatric Endocrine Society, May 2003. Current Problems in Pediatric & Adolescent Health Care 2004;34(6):226-242. Does not meet criteria for eligibility.

Graafmans W C, Lips P, Ooms M E et al. The effect of vitamin D supplementation on the bone mineral density of the femoral neck is associated with vitamin D receptor genotype. Journal of Bone & Mineral Research 1997;12(8):1241-1245. Does not meet criteria for eligibility.

Gravholt C H, Lauridsen A L, Brixen K et al. Marked disproportionality in bone size and mineral, and distinct abnormalities in bone markers and calcitropic hormones in adult turner syndrome: a cross-sectional study. Journal of Clinical Endocrinology & Metabolism 2002;87(6):2798-2808. Does not meet criteria for eligibility.

Greenspan S L, Schneider D L, McClung M R et al. Alendronate improves bone mineral density in elderly women with osteoporosis residing in long-term care facilities: A randomized, doubleblind, placebo-controlled trial. Ann Intern Med 2002;136(10):742-746. Does not meet criteria for eligibility.

Greer F R. Vitamin D deficiency--it's more than rickets.[comment]. Eur J Pediatr 2003;143(4):422-423. Does not meet criteria for eligibility.

Greer F R, Tsang R C. Vitamin D in human milk: is there enough?. Journal of Pediatric Gastroenterology & Nutrition 1983;2 Suppl 1S277-S281. Does not meet criteria for eligibility.

Greer F R, Steichen J J, Tsang R C. Effects of increased calcium, phosphorus, and vitamin D intake on bone mineralization in very low-birthweight infants fed formulas with Polycose and medium-chain triglycerides. Eur J Pediatr 1982;100(6):951-955. Does not meet criteria for eligibility.

Grove O, Halver B. Relief of osteoporotic backache with fluoride, calcium, and calciferol. Acta Med Scand 1981;209(6):469-471. Does not meet criteria for eligibility.

Gruber H E, Gutteridge D H, Baylink D J. Osteoporosis associated with pregnancy and lactation: bone biopsy and skeletal features in three patients. Metab Bone Dis Relat Res 1984;5(4):159-165. Does not meet criteria for eligibility.

Guillemant J, Guillemant S. Acute PTH response to oral calcium load and seasonal variation of vitamin D status in healthy young adult subjects. Eur J Clin Nutr 1996;50(7):469-472. Does not meet criteria for eligibility.

Guinot C, Ezzedine K, Mauger E et al. Phototype, vitamin D status and bone mineral density among women at risk of osteoporosis. Rev Med Interne 2006;27(5):369-374. Nonenglish publication.

Guirguis-Blake J, Phillips R L. Oral vitamin D3 decreases fracture risk in the elderly. J Fam Pract 2003;52(6):431+435. Does not meet criteria for eligibility.

Gullu S, Erdogan M F, Uysal A R et al. A potential risk for osteomalacia due to sociocultural lifestyle in Turkish women. Endocr J 1998;45(5):675-678. Does not meet criteria for eligibility.

Gutteridge D H, Holzherr M L, Retallack R W et al. A randomized trial comparing hormone replacement therapy (HRT) and HRT plus calcitriol in the treatment of postmenopausal osteoporosis with vertebral fractures: Benefit of the combination on total body and hip density. Calcif Tissue Int 2003;73(1):33-43. Does not meet criteria for eligibility.

Gutteridge D H, Price R I, Kent G N et al. Spontaneous hip fractures in fluoride-treated patients: potential causative factors. Journal of Bone & Mineral Research 1990;5 Suppl 1S205-S215. Does not meet criteria for eligibility.

Haddad J G, Chyu K J, Hahn T J et al. Serum concentrations of 25-hydroxyvitamin D in sexlinked hypophosphatemic vitamin D-resistant rickets. Journal of Laboratory & Clinical Medicine 1973;81(1):22-27. Does not meet criteria for eligibility.

Haining S A, Atkins R M, Guilland-Cumming D F et al. Vitamin D metabolites in patients with established non-union of fracture. Bone & Mineral 1986;1(3):205-209. Does not meet criteria for eligibility.

Hall R T, Callenbach J C, Sheehan M B et al. Comparison of calcium- and phosphorussupplemented soy isolate formula with wheypredominant premature formula in very low birth weight infants. Journal of Pediatric Gastroenterology & Nutrition 1984;3(4):571-576. Does not meet criteria for eligibility.

Hamoui N, Anthone G, Crookes P F. Calcium metabolism in the morbidly obese. Obes Surg 2004;14(1):9-12. Does not meet criteria for eligibility.

Hampson G, Martin F C, Moffat K et al. Effects of dietary improvement on bone metabolism in elderly underweight women with osteoporosis: a randomised controlled trial. Osteoporos.Int. 2003;14(9):750-756. Does not meet criteria for eligibility.

Hamson C, Goh L, Sheldon P et al. Comparative study of bone mineral density, calcium, and vitamin D status in the Gujarati and white populations of Leicester. Postgrad Med J 2003;79(931):279-283. Does not meet criteria for eligibility.

Hansen M A. Assessment of age and risk factors on bone density and bone turnover in healthy premenopausal women.[see comment]. Osteoporos.Int. 1994;4(3):123-128. Does not meet criteria for eligibility.

Harada A, Matsui Y, Mizuno M et al. Japanese orthopedists' interests in prevention of fractures in the elderly from falls. Osteoporos.Int. 2004;15(7):560-566. Does not meet criteria for eligibility.

Harinarayan C V. What's in a name--25(OH)D or 25(OH)D3?[comment]. Natl Med J India 2004;17(2):114-115. Does not meet criteria for eligibility.

Harinarayan C V, Ramalakshmi T, Venkataprasad U. High prevalence of low dietary calcium and low vitamin D status in healthy south Indians. Asia Pac J Clin Nutr 2004;13(4):359-364. Does not meet criteria for eligibility.

Harju E J, Heikinheimo R J, Haavisto M U et al. Prevention of bone fractures by annual intramuscular injection of ergocalciferol in the aged [Abstract]. Br J Surg 1991;78(9):1145. Does not meet criteria for eligibility.

Harju E, Punnonen R, Tuimala R et al. Vitamin D and calcitonin treatment in patients with femoral neck fracture: a prospective controlled clinical study. J Int Med Res 1989;17(3):226-242. Does not meet criteria for eligibility.

Harju E, Sotaniemi E, Puranen J et al. High incidence of low serum vitamin D concentration in patients with hip fracture. Archives of Orthopaedic & Traumatic Surgery 1985;103(6):408-416. Does not meet criteria for eligibility. Harrington M, Bennett T, Jakobsen J et al. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women and its interaction with vitamin D receptor genotype. Br J Nutr 2004;91(1):41-51. Does not meet criteria for eligibility.

Harrison H E, Lifshitz F, Blizzard R M. Comparison between crystalline dihydrotachysterol and calciferol in patients requiring pharmacologic vitamin D therapy. N Engl J Med 1967;276(16):894-900. Does not meet criteria for eligibility.

Hashemipour S, Larijani B, Adibi H et al. The status of biochemical parameters in varying degrees of vitamin D deficiency. Journal of Bone & Mineral Metabolism 2006;24(3):213-218. Does not meet criteria for eligibility.

Hathcock J. Tolerable upper intake level of vitamin D.[comment]. Am J Clin Nutr 2001;74(6):864-865. Does not meet criteria for eligibility.

Heaney R P. Functional indices of vitamin D status and ramifications of vitamin D deficiency. [Review] [27 refs]. Am J Clin Nutr 2004;80(6 Suppl):1706S-1709S. Does not meet criteria for eligibility.

Heaney R P. Lessons for nutritional science from vitamin D.[comment]. Am J Clin Nutr 1999;69(5):825-826. Does not meet criteria for eligibility.

Heaney R P. Constructive interactions among nutrients and bone-active pharmacologic agents with principal emphasis on calcium, phosphorus, vitamin D and protein. J Am Coll Nutr 2001;20(5 Supplement):2001-409S. Does not meet criteria for eligibility.

Heaney R P. Serum 25-hydroxyvitamin D and parathyroid hormone exhibit threshold behavior.[see comment]. J Endocrinol Invest 2005;28(2):180-182. Does not meet criteria for eligibility.

Heldenberg D, Tenenbaum G, Weisman Y. Effect of iron on serum 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D concentrations. Am J Clin Nutr 1992;56(3):533-536. Does not meet criteria for eligibility. Henriksen C, Helland I B, Ronnestad A et al. Fat-soluble vitamins in breast-fed preterm and term infants. Eur J Clin Nutr 2006;60(6):756-762. Does not meet criteria for eligibility.

Hesse V. A start with vitamin D prophylaxis. Gynakol Prax 2005;. 29(2):. Does not meet criteria for eligibility.

Heubi J E, Hollis B W, Specker B et al. Bone disease in chronic childhood cholestasis. I. Vitamin D absorption and metabolism. J Gastroenterol Hepatol 1989;9(2):258-264. Does not meet criteria for eligibility.

Hilgenfeld M S, Simon S, Blowey D et al. Lack of seasonal variations in urinary calcium/creatinine ratio in school-age children. Pediatr Nephrol 2004;19(10):1153-1155. Does not meet criteria for eligibility.

Hill T R, O'Brien M M, Lamberg-Allardt C et al. Vitamin D status of 51-75-year-old Irish women: Its determinants and impact on biochemical indices of bone turnover. Public Health Nutr 2006;9(2):225-233. Does not meet criteria for eligibility.

Hill T, Collins A, O'Brien M et al. Vitamin D intake and status in Irish postmenopausal women. Eur J Clin Nutr 2005;59(3):404-410. Does not meet criteria for eligibility.

Hillman L S, Hoff N, Salmons S et al. Mineral homeostasis in very premature infants: serial evaluation of serum 25-hydroxyvitamin D, serum minerals, and bone mineralization. Eur J Pediatr 1985;106(6):970-980. Does not meet criteria for eligibility.

Hillman L S, Hollis B, Salmons S et al. Absorption, dosage, and effect on mineral homeostasis of 25-hydroxycholecalciferol in premature infants: comparison with 400 and 800 IU vitamin D2 supplementation. Eur J Pediatr 1985;106(6):981-989. Does not meet criteria for eligibility.

Hillman L, Sateesha S, Haussler M et al. Control of mineral homeostasis during lactation: interrelationships of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, 1,25dihydroxyvitamin D, parathyroid hormone, calcitonin, prolactin, and estradiol. American Journal of Obstetrics & Gynecology 1981;139(4):471-476. Does not meet criteria for eligibility.

Hirani V, Primatesta P. Vitamin D concentrations among people aged 65 years and over living in private households and institutions in England: population survey. Age Ageing 2005;34(5):485-491. Does not meet criteria for eligibility.

Hirano T, Janakiraman N, Rosenthal I M. Vitamin D poisoning: from ingestion of concentrated vitamin D used to fortify milk. IMJ - Illinois Medical Journal 1977;151(6):418-420. Does not meet criteria for eligibility.

Hitz M F, Eskildsen P C, Jensen J B. Bioavailability of calcium: comparison of calcium carbonate and milk and the effect of vitamin D, age, and sex using 24-hour urine calcium as a method. Calcif Tissue Int 2005;77(6):361-366. Does not meet criteria for eligibility.

Hochwald O, Harman-Boehm I, Castel H. Hypovitaminosis D among inpatients in a sunny country.[see comment]. Israel Medical Association Journal: Imaj 2004;6(2):82-87. Does not meet criteria for eligibility.

Hock A D. Divalent cations, hormones, psyche and soma: four case reports. Journal of Chronic Fatigue Syndrome 2000;6(3-4):117-131. Does not meet criteria for eligibility.

Hoff N, Haddad J, Teitelbaum S et al. Serum concentrations of 25-hydroxyvitamin D in rickets of extremely premature infants. Eur J Pediatr 1979;94(3):460-466. Does not meet criteria for eligibility.

Holcomb S S. Boning up on osteoporosis. Nursing Made Incredibly Easy! 2005;3(2):6-12, 14. Does not meet criteria for eligibility.

Holick M F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. [Review] [129 refs]. Am J Clin Nutr 2004;80(6 Suppl):1678S-1688S. Does not meet criteria for eligibility.

Holick M F. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis.[erratum appears in Am J Clin Nutr. 2004 May;79(5):890]. [Review] [74 refs]. Am J Clin Nutr 2004;79(3):362-371. Does not meet criteria for eligibility.

Holick M F. Photosynthesis of vitamin D in the skin: effect of environmental and life-style variables. Fed Proc 1987;46(5):1876-1882. Does not meet criteria for eligibility.

Holick M F. Calcium and vitamin D in human health. Ann Nestle [Fr] 2002;60(3):83-93. Does not meet criteria for eligibility.

Holick M F. The influence of vitamin D on bone health across the life cycle. Br J Nutr 2005;135(11):2726S-2727S. Does not meet criteria for eligibility.

Hollis B W. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: Implications for establishing a new effective dietary intake recommendation for vitamin D. Br J Nutr 2005;135(2):317-322. Does not meet criteria for eligibility.

Hollis B W, Frank N E. Quantitation of vitamin D2, vitamin D3, 25-hydroxyvitamin D2, and 25-hydroxyvitamin D3 in human milk. Methods Enzymol 1986;123167-176. Does not meet criteria for eligibility.

Hollis B W, Wagner C L. Assessment of dietary vitamin D requirements during pregnancy and lactation. [Review] [115 refs]. Am J Clin Nutr 2004;79(5):717-726. Does not meet criteria for eligibility.

Hoogenboezem T, Degenhart H J, de Muinck et al. Vitamin D metabolism in breast-fed infants and their mothers. Pediatr Res 1989;25(6):623-628. Does not meet criteria for eligibility.

Horani M H, Morley J E. Hormonal fountains of youth. Clin Geriatr Med 2004;20(2):275-292. Does not meet criteria for eligibility.

Hordon L D, Peacock M. Vitamin D metabolism in women with femoral neck fracture. Bone & Mineral 1987;2(5):413-426. Does not meet criteria for eligibility.

Horowitz S. Natural, active approaches to osteoporosis prevention and treatment. Alternative & Complementary Therapies 2004;10(3):125-130. Does not meet criteria for eligibility. Hossain M. Vitamin-D intoxication during treatment of hypoparathyroidism. Lancet 1970;1(7657):1149-1151. Does not meet criteria for eligibility.

Hough S. Osteoporosis Clinical Guideline. South African Medical Association--Osteoporosis Working Group. S Afr Med J 2000;Suid-Afrikaanse Tydskrif Vir Geneeskunde. 90(9 Pt 2):907-944. Does not meet criteria for eligibility.

Humphrey B, Sheehy R. Are residents in licensed residential centres at increased risk of vitamin D deficiency?. Geriaction 2000;18(2):7-11. Does not meet criteria for eligibility.

Iannuzzi-Sucich M, Prestwood K M, Kenny A M. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women.[see comment]. Journals of Gerontology Series A-Biological Sciences & Medical Sciences 2002;57(12):M772-M777. Does not meet criteria for eligibility.

Ingemansson S G, Hugosson C H, Woodhouse N J. Vitamin D deficiency and hyperparathyroidism with severe bone disease. World J Surg 1988;12(4):517-521. Does not meet criteria for eligibility.

Inoue S, Igarashi M, Karube S et al. Vitamin D3 metabolism in idiopathic osteonecrosis of femoral head. Nippon Seikeigeka Gakkai Zasshi - Journal of the Japanese Orthopaedic Association 1987;61(6):659-666. Does not meet criteria for eligibility.

Iqbal S J, Featherstone S, Kaddam I M et al. Family screening is effective in picking up undiagnosed Asian vitamin D deficient subjects. Journal of Human Nutrition & Dietetics 2001;14(5):371-376. Does not meet criteria for eligibility.

Iqbal S J, Taylor W H, Fraher L J et al. Glutethimide and circulating 1,25dihydroxyvitamin D in vitamin D intoxication. BMJ 1988;297(6653):902-903. Does not meet criteria for eligibility.

Irnell L. Metastatic calcification of soft tissue on overdosage of vitamin D. Acta Med Scand 1969;185(3):147-152. Does not meet criteria for eligibility. Ishikawa T, Kawai K, Kanayama M et al. Increased serum creatine kinase due to hypocalcemia in vitamin D deficiency. Pediatr Neurol 1987;3(1):37-39. Does not meet criteria for eligibility.

Islam M Z, Akhtaruzzaman M, Lamberg-Allardt C. Hypovitaminosis D is common in both veiled and nonveiled Bangladeshi women. Asia Pac J Clin Nutr 2006;15(1):81-87. Does not meet criteria for eligibility.

Islam M Z, Lamberg-Allardt C, Karkkainen M et al. Vitamin D deficiency: a concern in premenopausal Bangladeshi women of two socio-economic groups in rural and urban region. Eur J Clin Nutr 2002;56(1):51-56. Does not meet criteria for eligibility.

Ismail F, Epstein S, Pacifici R et al. Serum bone gla protein (BGP) and other markers of bone mineral metabolism in postmenopausal osteoporosis.[erratum appears in Calcif Tissue Int 1987 Feb;40(2):117]. Calcif Tissue Int 1986;39(4):230-233. Does not meet criteria for eligibility.

Ittner J, Dambacher M A, Muff R et al. Reduced parathyroid hormone response to peroral phosphate in osteoporotic patients. Mineral & Electrolyte Metabolism 1986;12(3):199-203. Does not meet criteria for eligibility.

Jackson J A, Kleerekoper M, Parfitt A M et al. Bone histomorphometry in hypogonadal and eugonadal men with spinal osteoporosis. Journal of Clinical Endocrinology & Metabolism 1987;65(1):53-58. Does not meet criteria for eligibility.

Jackson J A, Riggs M W, Spiekerman A M. Testosterone deficiency as a risk factor for hip fractures in men: a case-control study. Am J Med Sci 1992;304(1):4-8. Does not meet criteria for eligibility.

Jansen T L, Janssen M, de Jong A J. Severe hypercalcaemia syndrome with daily low-dose vitamin D supplementation. Br J Rheumatol 1997;36(6):712-713. Does not meet criteria for eligibility.

Janssen H C J, Samson M M, Verhaar H J. Vitamin D deficiency, muscle function, and falls in elderly people. Am J Clin Nutr 2002;75(4):611-615. Does not meet criteria for eligibility.

Jevon M, Hirayama T, Brown M A et al. Osteoclast formation from circulating precursors in osteoporosis. Scand J Rheumatol 2003;32(2):95-100. Does not meet criteria for eligibility.

Jibani M, Hodges N H. Prolonged hypercalcaemia after industrial exposure to vitamin D3. British Medical Journal Clinical Research Ed 1985;. 290(6470):748-749. Does not meet criteria for eligibility.

Johansen A, Stone M D, O'Mahony M S et al. Reliability of parathyroid hormone measurements in the period immediately following hip fracture. Age & Ageing 1997;26(3):175-178. Does not meet criteria for eligibility.

Johnell O. Review: vitamin D plus calcium, but not vitamin D alone, prevents osteoporotic fractures in older persons. ACP J Club 2006;144(1):14. Does not meet criteria for eligibility.

Judge J O, Kenny A. Vitamin D and quadriceps exercise - Got milk? Got a chair?. J Am Geriatr Soc 2003;51(3):427-428. Does not meet criteria for eligibility.

Kanis J A, McCloskey E V, de Takats D et al. Treatment of osteoporosis with vitamin D. Osteoporos.Int. 1997;7 Suppl 3S140-S146. Does not meet criteria for eligibility.

Kantorovich V, Gacad M A, Seeger L L et al. Bone mineral density increases with vitamin D repletion in patients with coexistent vitamin D insufficiency and primary hyperparathyroidism. Journal of Clinical Endocrinology & Metabolism 2000;85(10):3541-3543. Does not meet criteria for eligibility.

Kaplan B, Hirsch M. Current approach to fracture prevention in postmenopausal osteoporosis. Clinical & Experimental Obstetrics & Gynecology 2004;31(4):251-255. Does not meet criteria for eligibility.

Karadavut K I, Gokce Kutsal Y, Basaran A et al. Analysis of the clinical, biochemical and risk factors of presenil osteoporotic men. Journal of Rheumatology & Medical Rehabilitation 2003;14(1):9-15. Non-english publication.

Karkoszka H, Chudek J, Strzelczyk P et al. Does the vitamin D receptor genotype predict bone mineral loss in haemodialysed patients?. Nephrology Dialysis Transplantation 1998;13(8):2077-2080. Does not meet criteria for eligibility.

Karlsson M K, Gerdhem P, Ahlborg H G. The prevention of osteoporotic fractures. Journal of Bone & Joint Surgery - British Volume 2005;87(10):1320-1327. Does not meet criteria for eligibility.

Kawaguchi M, Mitsuhashi Y, Kondo S. Iatrogenic hypercalcemia due to vitamin D3 ointment (1,24(OH)2D3) combined with thiazide diuretics in a case of psoriasis. Australas J Dermatol 2003;30(11):801-804. Does not meet criteria for eligibility.

KD W. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: A longitudinal study: Commentary. Obstet Gynecol Surv 2006;61(5):305-307. Does not meet criteria for eligibility.

Keddie K M. Severe depressive illness in the context of hypervitaminosis D. Br J Psychiatry Suppl 1987;150394-396. Does not meet criteria for eligibility.

Keiver K, Ellis L, Anzarut A et al. Effect of prenatal ethanol exposure on fetal calcium metabolism. Alcoholism: Clinical & Experimental Research 1997;21(9):1612-1618. Does not meet criteria for eligibility.

Kemppainen T, Kroger H, Janatuinen E et al. Osteoporosis in adult patients with celiac disease. Bone 1999;24(3):249-255. Does not meet criteria for eligibility.

Kessel B. Hip fracture prevention in postmenopausal women. [Review] [84 refs]. Obstet Gynecol Surv 2004;59(6):446-455. Does not meet criteria for eligibility.

Kessenich C. An approach to postmenopausal osteoporosis treatment: a case study review. [Review] [44 refs]. J Am Acad Nurse Pract 2003;15(12):539-545. Does not meet criteria for eligibility. Kien C L, Browning C, Jona J et al. Rickets in premature infants receiving parenteral nutrition: a case report and review of the literature. Jpen: Journal of Parenteral & Enteral Nutrition 1982;6(2):152-156. Does not meet criteria for eligibility.

Kikuchi K, Okamoto T, Nishino M et al. Vitamin D-dependent rickets type II: report of three cases. J Dent Child 1988;55(6):465-468. Does not meet criteria for eligibility.

Kimlin M G. The climatology of Vitamin D producing ultraviolet radiation over the United States. Journal of Steroid Biochemistry & Molecular Biology 2004;89-90(1-5):479-483. Does not meet criteria for eligibility.

Klausen T, Breum L, Sorensen H A et al. Plasma levels of parathyroid hormone, vitamin D, calcitonin, and calcium in association with endurance exercise. Calcif Tissue Int 1993;52(3):205-208. Does not meet criteria for eligibility.

Komulainen M, Kroger H, Tuppurainen M T et al. Identification of early postmenopausal women with no bone response to HRT: results of a five-year clinical trial. Osteoporos.Int. 2000;11(3):211-218. Does not meet criteria for eligibility.

Koo W W, Antony G, Stevens L H. Continuous nasogastric phosphorus infusion in hypophosphatemic rickets of prematurity. Am J Dis Child 1984;138(2):172-175. Does not meet criteria for eligibility.

Koo W W, Gupta J M, Nayanar V V et al. Skeletal changes in preterm infants. Arch Dis Child 1982;57(6):447-452. Does not meet criteria for eligibility.

Koo W W, Krug-Wispe S, Neylan M et al. Effect of three levels of vitamin D intake in preterm infants receiving high mineral-containing milk. Journal of Pediatric Gastroenterology & Nutrition 1995;21(2):182-189. Does not meet criteria for eligibility.

Koo W W, Sherman R, Succop P et al. Serum vitamin D metabolites in very low birth weight infants with and without rickets and fractures.[see comment]. Eur J Pediatr 1989;114(6):1017-1022. Does not meet criteria for eligibility. Koo W W, Tsang R C, Steichen J J et al. Vitamin D requirement in infants receiving parenteral nutrition. Jpen: Journal of Parenteral & Enteral Nutrition 1987;11(2):172-176. Does not meet criteria for eligibility.

Koutkia P, Chen T C, Holick M F. Vitamin D intoxication associated with an over-the-counter supplement. N Engl J Med 2001;345(1):66-67. Does not meet criteria for eligibility.

Krabbe S, Christiansen C, Hummer L. Serum vitamin D metabolites are not related to growth rate, bone mineral content, or serum alkaline phosphatase in male puberty. Calcif Tissue Int 1986;38(3):127-129. Does not meet criteria for eligibility.

Kragballe K, Avrach W W, Politi Y et al. Climatotherapy at the Dead Sea stimulates vitamin D3 metabolism. Acta Derm Venereol 1996;76(4):324-325. Does not meet criteria for eligibility.

Krall E A, Dawson-Hughes B. Relation of fractional 47Ca retention to season and rates of bone loss in healthy postmenopausal women. Journal of Bone & Mineral Research 1991;6(12):1323-1329. Does not meet criteria for eligibility.

Kreiter Shelley R, Schwartz Robert P. Rickets resurgence in the United Kingdom: Improving antenatal management in Asians: Reply. Eur J Pediatr 2001;139(2):338. Does not meet criteria for eligibility.

Kristensen M, Jensen M, Kudsk J et al. Shortterm effects on bone turnover of replacing milk with cola beverages: a 10-day interventional study in young men. Osteoporos Int 2005;16(12):1803-1808. Does not meet criteria for eligibility.

Kroger H, Penttila I M, Alhava E M. Low serum vitamin D metabolites in women with rheumatoid arthritis. Scand J Rheumatol 1993;22(4):172-177. Does not meet criteria for eligibility.

Kruger D M, Lyne E D, Kleerekoper M. Vitamin D deficiency rickets. A report on three cases. Clinical Orthopaedics & Related Research 1987;(224):277-283. Does not meet criteria for eligibility. Kruse K, Feldmann E. Healing of rickets during vitamin D therapy despite defective vitamin D receptors in two siblings with vitamin D-dependent rickets type II. Eur J Pediatr 1995;126(1):145-148. Does not meet criteria for eligibility.

Kubota T, Kotani T, Miyoshi Y et al. A spectrum of clinical presentations in seven Japanese patients with vitamin D deficiency. Clinical Pediatric Endocrinology 2006;15(1):23-28. Does not meet criteria for eligibility.

Kuehn B M. Better osteoporosis management a priority: impact predicted to soar with aging population. JAMA: Journal of the American Medical Association 2005;293(20):2453, 2457-2453, 2458. Does not meet criteria for eligibility.

Kung A W, Luk K D, Chu L W et al. Agerelated osteoporosis in Chinese: an evaluation of the response of intestinal calcium absorption and calcitropic hormones to dietary calcium deprivation.[see comment]. Am J Clin Nutr 1998;68(6):1291-1297. Does not meet criteria for eligibility.

Kuno H. Vitamin D status and nonhemiplegic bone mass in patients following stroke. Kurume Med J 1998;45(3):257-263. Does not meet criteria for eligibility.

Kurabayashi Takumi, Matsushita Hiroshi, Kato Nozomi et al. Effect of vitamin D receptor and estrogen receptor gene polymorphism on the relationship between dietary calcium and bone mineral density in Japanese women. Journal of Bone & Mineral Metabolism 2004;22(2):139-147. Does not meet criteria for eligibility.

Laaksonen M M, Karkkainen M U, Outila T A et al. Vitamin D receptor gene start codon polymorphism (FokI) is associated with forearm bone mineral density and calcaneal ultrasound in Finnish adolescent boys but not in girls. Journal of Bone & Mineral Metabolism 2004;22(5):479-485. Does not meet criteria for eligibility.

Laaksonen M, Karkkainen M, Outila T et al. Vitamin D receptor gene BsmI-polymorphism in Finnish premenopausal and postmenopausal women: its association with bone mineral density, markers of bone turnover, and intestinal calcium absorption, with adjustment for lifestyle factors. Journal of Bone & Mineral Metabolism 2002;20(6):383-390. Does not meet criteria for eligibility.

Ladhani S, Srinivasan L, Buchanan C et al. Presentation of vitamin D deficiency. Arch Dis Child 2004;89(8):781-784. Does not meet criteria for eligibility.

Ladizesky M, Lu Z, Oliveri B et al. Solar ultraviolet B radiation and photoproduction of vitamin D3 in central and southern areas of Argentina. Journal of Bone & Mineral Research 1995;10(4):545-549. Does not meet criteria for eligibility.

Lagman R, Walsh D. Dangerous nutrition? Calcium, vitamin D, and shark cartilage nutritional supplements and cancer-related hypercalcemia.[see comment]. Support Care Cancer 2003;11(4):232-235. Does not meet criteria for eligibility.

Landin-Wilhelmsen K, Wilhelmsen L, Lappas G et al. Serum intact parathyroid hormone in a random population sample of men and women: relationship to anthropometry, life-style factors, blood pressure, and vitamin D. Calcif Tissue Int 1995;56(2):104-108. Does not meet criteria for eligibility.

Larchet M, Garabedian M, Bourdeau A et al. Calcium metabolism in children during longterm total parenteral nutrition: the influence of calcium, phosphorus, and vitamin D intakes. Journal of Pediatric Gastroenterology & Nutrition 1991;13(4):367-375. Does not meet criteria for eligibility.

Lawoyin S, Zerwekh J E, Glass K et al. Ability of 25-hydroxyvitamin D3 therapy to augment serum 1,25- and 24,25-dihydroxyvitamin D in postmenopausal osteoporosis. Journal of Clinical Endocrinology & Metabolism 1980;50(3):593-596. Does not meet criteria for eligibility.

Leape L L, Valaes T. Rickets in low birth weight infants receiving total parenteral nutrition. J Pediatr Surg 1976;11(5):665-674. Does not meet criteria for eligibility.

Lebrun J B, Moffatt M E, Mundy R J et al. Vitamin D deficiency in a Manitoba community. Can J Public Health 1993;Revue Canadienne de Sante Publique. 84(6):394-396. Does not meet criteria for eligibility. Lee D C, Lee G Y. The use of pamidronate for hypercalcemia secondary to acute vitamin D intoxication. Journal of Toxicology - Clinical Toxicology 1998;36(7):719-721. Does not meet criteria for eligibility.

Lee P E, McElhaney J E, Dian L. Calcium and vitamin D supplementation for the prevention of fractures in postmenopausal women. Aging Health 2006;2(2):241-243. Not obtainable at time of submission.

Lee W P, Lin L W, Yeh S H et al. Correlations among serum calcium, vitamin D and parathyroid hormone levels in the elderly in southern Taiwan. Journal of Nursing Research: JNR 2002;10(1):65-72. Does not meet criteria for eligibility.

Legius E, Proesmans W, Eggermont E et al. Rickets due to dietary calcium deficiency. Eur J Pediatr 1989;148(8):784-785. Does not meet criteria for eligibility.

Legroux-Gerot I, Catanzariti L, Marchandise X et al. Bone mineral density changes in hypercalciuretic osteoporotic men treated with thiazide diuretics. Joint, Bone, Spine: Revue du Rhumatisme 2004;71(1):51-55. Does not meet criteria for eligibility.

Leslie W D, Roe E B. Preventing falls in elderly persons.[comment]. N Engl J Med 2003;348(18):1816-1818. Does not meet criteria for eligibility.

Levendoglu F, Ugurlu H, Gurbilek M et al. Increased bone resorption in the proximal femur in patients with hemiplegia. Am J Phys Med Rehabil 2004;83(11):835-841. Does not meet criteria for eligibility.

Levin M. Recent developments in antimutagenesis and anticarcinogenesis. Med Actual 2002;38(7):495-499. Does not meet criteria for eligibility.

Ley Sarah J, Horwath Caroline C, Stewart Joanna M. Attention is needed to the high prevalence of vitamin D deficiency in our older population. N Z Med J 1999;112(1101):10, 1999-472. Does not meet criteria for eligibility.

Li T, Guo X X. Prevention of rickets and vitamin D intoxication in China.[see comment]. Acta

Paediatr 1995;84(8):940. Does not meet criteria for eligibility.

Libow L S, Ross F, Goldberg K. Letter: "One tablet per day" for osteoporosis: hypercalcemia. Ann Intern Med 1974;81(1):120-121. Does not meet criteria for eligibility.

LICATA A A. Osteoporosis, teriparatide, and dosing of calcium and vitamin D.[comment]. N Engl J Med 2005;352(18):1930-1931. Does not meet criteria for eligibility.

Liebman B. Behind the headlines. Nutrition Action Healthletter 2006;33(3):1, 3-1, 7. Does not meet criteria for eligibility.

Lilliu H, Pamphile R, Chapuy M C et al. Calcium-vitamin D3 supplementation is costeffective in hip fractures prevention. Maturitas 2003;44(4):299-305. Does not meet criteria for eligibility.

Lim H W, Gilchrest B A, Cooper K D et al. Sunlight, tanning booths, and vitamin D. J Am Acad Dermatol 2005; 52(5):. Does not meet criteria for eligibility.

Lim L S, Takahashi P Y. Osteoporosis intervention in men with hip fracture [4]. Age & Ageing 2004;33(5):507-508. Does not meet criteria for eligibility.

Lindholm T S, Nilsson O S, Elmstedt E et al. Changes in bone histomorphometry and bone mineral during treatment of osteoporosis with 1 alpha-hydroxyvitamin D3 and calcium. Acta Vitaminol Enzymol 1981;3(3):170-176. Does not meet criteria for eligibility.

Lippuner K, Zehnder H J, Casez J P et al. PTHrelated protein is released into the mother's bloodstream during location: evidence for beneficial effects on maternal calcium-phosphate metabolism. Journal of Bone & Mineral Research 1996;11(10):1394-1399. Does not meet criteria for eligibility.

Lips P. Which circulating level of 25hydroxyvitamin D is appropriate?. [Review] [23 refs]. Journal of Steroid Biochemistry & Molecular Biology 2004;89-90(1-5):611-614. Does not meet criteria for eligibility.

Lips P, Bouillon R, Jongen M J et al. The effect of trauma on serum concentrations of vitamin D

metabolites in patients with hip fracture. Bone 1985;6(2):63-67. Does not meet criteria for eligibility.

Lips P, Gramans W C, Ooms M E et al. The effect of vitamin D supplementation on the incidence of hip fractures in elderly people [Abstract]. J Bone Miner Res 1994;9(Suppl 1):S148-S128. Does not meet criteria for eligibility.

Livshits G, Yakovenko C, Seibel M. Substantial Genetic Effects Involved in Determination of Circulating Levels of Calciotropic Hormones in Human Pedigrees. Biochem Genet 2003;41(9-10):269-289. Does not meet criteria for eligibility.

Lore F, Di Cairano G, Periti P et al. Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int 1982;34(6):539-541. Does not meet criteria for eligibility.

Loveridge Nigel, Power Jon, Reeve Jonathan et al. Bone mineralization density and femoral neck fragility. Bone 2004;35(4):929-941. Does not meet criteria for eligibility.

Lowenthal M N, Shany S. Osteomalacia in Bedouin women of the Negev. Isr J Med Sci 1994;30(7):520-523. Does not meet criteria for eligibility.

Lowenthal M N, Galinsky D, Fried V et al. Acromegaly and proximal femoral fracture in an aged person: bone histomorphometry, vitamin D metabolites and parathormone. Isr J Med Sci 1990;26(5):280-283. Does not meet criteria for eligibility.

Luboshitzky R, Hardoff R. Recovery from metabolic bone disease in a girl with vitamin D deficiency rickets associated with primary hyperparathyroidism. J Pediatr Endocrinol 1997;10(2):237-241. Does not meet criteria for eligibility.

Luft F C. Phosphate's fate made easier. J Mol Med 2005;83(1):1-2. Does not meet criteria for eligibility.

Lund B, Hjorth L, Kjaer I et al. Treatment of osteoporosis of ageing with 1alphahydroxycholecalciferol. Lancet 1975;2(7946):1168-1171. Does not meet criteria for eligibility.

Lutz J. Bone mineral, serum calcium, and dietary intakes of mother/daughter pairs. Am J Clin Nutr 1986;44(1):99-106. Does not meet criteria for eligibility.

Lyles K W, Colon-Emeric C. Treating vitamin D deficiency in long-term care: It should be done yesterday, but how?. J Am Med Dir Assoc 2004;5(6):416-417. Does not meet criteria for eligibility.

Lyles K W, Harrelson J M, Drezner M K. The efficacy of vitamin D2 and oral phosphorus therapy in X-linked hypophosphatemic rickets and osteomalacia. Journal of Clinical Endocrinology & Metabolism 1982;54(2):307-315. Does not meet criteria for eligibility.

Lyles Kenneth W. Management of patients with vertebral compression fractures. Pharmacotherapy 2002;19(1 PART 2):Jan-24S. Does not meet criteria for eligibility.

Lyman D. Undiagnosed vitamin D deficiency in the hospitalized patient.[see comment]. [Review] [14 refs]. Am Fam Physician 2005;71(2):299-304. Does not meet criteria for eligibility.

MacDonald D, Swaminathan R. Seasonal variation in 25-OH vitamin D in plasma of Hong Kong Chinese. Clin Chem 1988;34(11):2375. Does not meet criteria for eligibility.

MacDonald D, Lau E, Chan E L et al. Serum intact parathyroid hormone levels in elderly Chinese females with hip fracture. Calcif Tissue Int 1992;51(6):412-414. Does not meet criteria for eligibility.

Macdonald H M, McGuigan F E, Stewart A et al. Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. Journal of Bone & Mineral Research 2006;21(1):151-162. Does not meet criteria for eligibility.

MacFarlane G D, Sackrison J L, Body J J et al. Hypovitaminosis D in a normal, apparently healthy urban European population. Journal of Steroid Biochemistry & Molecular Biology 2004;89-90(1-5):621-622. Does not meet criteria for eligibility. Macfarlane G J, Palmer B, Roy D et al. An excess of widespread pain among South Asians: Are low levels of vitamin D implicated?. Ann Rheum Dis 2005;64(8):1217-1219. Does not meet criteria for eligibility.

MacLennan W J, Hamilton J C. Low plasma-25hydroxyvitamin D without osteomalacia. Lancet 1978;1(8075):1210. Does not meet criteria for eligibility.

Malabanan A O, Holick M F. Vitamin D and bone health in postmenopausal women. Journal of Women's Health 2003;12(2):151-156. Does not meet criteria for eligibility.

Mallet E, Nguyen T, Garabedian M et al. Circulating parathyroid hormone and dihydroxylated vitamin D metabolites after oral 25 hydroxycholecalciferol in infantile rickets. Hormone & Metabolic Research 1982;14(9):503-504. Does not meet criteria for eligibility.

Mamelle N, Meunier P J, Dusan R et al. Riskbenefit ratio of sodium fluoride treatment in primary vertebral osteoporosis. Lancet 1988;2(8607):361-365. Does not meet criteria for eligibility.

Mandla S, Jones G, Tenenhouse H S. Normal 24-hydroxylation of vitamin D metabolites in patients with vitamin D-dependency rickets type I. Structural implications for the vitamin D hydroxylases. Journal of Clinical Endocrinology & Metabolism 1992;74(4):814-820. Does not meet criteria for eligibility.

Marcinowska-Suchowierska E, Lorenc R, Brzozowski R. Vitamin D deficiency in patients with chronic gastrointestinal disorders: response to UVB exposure. Mater Med Pol 1994;26(2):59-63. Does not meet criteria for eligibility.

Margiloff L, Harris S S, Lee S et al. Vitamin D status of an outpatient clinic population. Calcif Tissue Int 2001;69(5):263-267. Does not meet criteria for eligibility.

Markestad T, Aksnes L, Finne P H et al. Plasma concentrations of vitamin D metabolites in premature infants. Pediatr Res 1984;18(3):269-272. Does not meet criteria for eligibility. Markestad T, Aksnes L, Finne P H et al. Vitamin D nutritional status of premature infants supplemented with 500 IU vitamin D2 per day. Acta Paediatr Scand 1983;72(4):517-520. Does not meet criteria for eligibility.

Marshall T G. Puzzling vitamin D results.[comment]. CMAJ Canadian Medical Association Journal 2002;167(8):849-850. Does not meet criteria for eligibility.

Martinez M E, Miguel J L, Selgas R et al. Compensation by solar irradiation of depletion of 25(OH)D in CAPD patients. Nephron 1986;42(3):268-269. Does not meet criteria for eligibility.

Martinez M E, Villa E, Vazquez Martul M et al. Influence of calcium intake on calcitriol levels in idiopathic hypercalciuria in children. Nephron 1993;65(1):36-39. Does not meet criteria for eligibility.

Masuda S, [Reprint author], Okano T et al. Changes in plasma levels of vitamin d and its metabolites in normal subjects received daily oral administration of a multivitamin preparation for 44 weeks. Vitamins (Kyoto) 1991;65(11):579-594. Does not meet criteria for eligibility.

Maurer M, Riesen W, Muser J et al. Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. American Journal of Physiology - Renal Fluid & Electrolyte Physiology 2003;284(1):F32-F40. Does not meet criteria for eligibility.

Mawer E B, Arlot M E, Reeve J et al. The relationship between serum vitamin D concentrations and in vivo tetracycline labeling of osteoid in crush fracture osteoporosis. Calcif Tissue Int 1991;48(2):78-81. Does not meet criteria for eligibility.

Mawer E B, Backhouse J, Hill L F et al. Vitamin D metabolism and parathyroid function in man. Clinical Science & Molecular Medicine 1975;48(5):349-365. Does not meet criteria for eligibility.

Mawer E B, Stanbury W, Robinson M J et al. Vitamin D nutrition and vitamin D metabolism in the premature human neonate. Clin Endocrinol (Oxf) 1986;25(6):641-649. Does not meet criteria for eligibility.

Maxwell J D. Seasonal variation in vitamin D. Proc Nutr Soc 1994;53(3):533-543. Does not meet criteria for eligibility.

McAlindon T E, Felson D T, Zhang Y et al. Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann Intern Med 1996;125(5):353-359. Does not meet criteria for eligibility.

McCarty M F. Vitamin D, parathyroid hormone, and insulin sensitivity.[comment]. Am J Clin Nutr 2004;80(5):1451-1452. Does not meet criteria for eligibility.

McCarty M F, Janssen H C J P, Samson M M et al. Vitamin D status and muscle strength [1] (multiple letters). Am J Clin Nutr 2002;76(6):1454-1456. Does not meet criteria for eligibility.

McCowen C, Hey E. Plasma 25-hydroxyvitamin D and rickets in low birthweight babies. Arch Dis Child 1983;58(6):476-477. Does not meet criteria for eligibility.

McGovern V. Shedding light on vitamin D deficiency in women. Environ Health Perspect 2004;112(10):A548. Does not meet criteria for eligibility.

McGrath N, Singh V, Cundy T. Severe vitamin D deficiency in Auckland. N Z Med J 1993;106(969):524-526. Does not meet criteria for eligibility.

McIntosh N, Livesey A, Brooke O G. Plasma 25-hydroxyvitamin D and rickets in infants of extremely low birthweight. Arch Dis Child 1982;57(11):848-850. Does not meet criteria for eligibility.

McKenna M J, Freaney R. Bone density and vitamin D intoxication.[comment]. Ann Intern Med 1998;128(6):507-508. Does not meet criteria for eligibility.

McKinney J. The patient's page. Bone health facts. South Med J 2005;98(10):1058. Does not meet criteria for eligibility.

Meller Y, Kestenbaum R S, Shany S et al. Parathormone, calcitonin, and vitamin D metabolites during normal fracture healing in geriatric patients. Clinical Orthopaedics & Related Research 1985;(199):272-279. Does not meet criteria for eligibility.

Meller Y, Shainkin-Kestenbaum R, Shany S et al. Parathyroid hormone, calcitonin, and vitamin D metabolites during normal fracture healing in humans. A preliminary report. Clinical Orthopaedics & Related Research 1984;(183):238-245. Does not meet criteria for eligibility.

Menczel J, Foldes J, Steinberg R et al. Alfacalcidol (alpha D3) and calcium in osteoporosis. Clinical Orthopaedics & Related Research 1994;(300):241-247. Does not meet criteria for eligibility.

Mendoza C, Ortega E, Ruiz E et al. Calcium metabolism in post-menopausal women. Rev Esp Fisiol 1985;41(4):447-450. Does not meet criteria for eligibility.

Meunier P. Prevention of hip fractures by correcting calcium and vitamin D insufficiencies in elderly people. Scandinavian Journal of Rheumatology - Supplement 1996;10375-78. Does not meet criteria for eligibility.

Meunier P J, Roux C, Seeman E et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis.[see comment]. N Engl J Med 2004;350(5):459-468. Does not meet criteria for eligibility.

Meunier P J, Sebert J L, Reginster J Y et al. Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin D in postmenopausal osteoporosis: the FAVOStudy. Osteoporos.Int. 1998;8(1):4-12. Does not meet criteria for eligibility.

Meyer H E, Falch J A, Sogaard A J et al. Vitamin D deficiency and secondary hyperparathyroidism and the association with bone mineral density in persons with Pakistani and Norwegian background living in Oslo, Norway, The Oslo Health Study. Bone 2004;35(2):412-417. Does not meet criteria for eligibility. Miljkovic D, Miljkovic N, McCarty M F. Upregulatory impact of boron on vitamin D function - . Does it reflect inhibition of 24hydroxylase?. Med Hypotheses 2004;63(6):1054-1056. Does not meet criteria for eligibility.

Miller M, Crotty M, Whitehead C et al. Nutritional assessment and intervention in patients admitted with a femoral neck fracture: a chronicle of missed opportunities. Australian Journal of Nutrition and Dietetics 2001;58(2):86-91. Does not meet criteria for eligibility.

Miravet L, Gueris J, Redel J et al. Action of vitamin D metabolites on PTH secretion in man. Calcif Tissue Int 1981;33(3):191-194. Does not meet criteria for eligibility.

Misselwitz J, Hesse V, Markestad T. Nephrocalcinosis, hypercalciuria and elevated serum levels of 1,25-dihydroxyvitamin D in children. Possible link to vitamin D toxicity. Acta Paediatr Scand 1990;79(6-7):637-643. Does not meet criteria for eligibility.

Molgaard C, Michaelsen K F. Vitamin D and bone health in early life. [Review] [43 refs]. Proc Nutr Soc 2003;62(4):823-828. Does not meet criteria for eligibility.

Molla A M, Al Badawi M, Hammoud M S et al. Vitamin D status of mothers and their neonates in Kuwait. Pediatr Int 2005;47(6):649-652. Does not meet criteria for eligibility.

Moniz C, Dew T, Dixon T. Prevalence of vitamin D inadequacy in osteoporotic hip fracture patients in London. Current Medical Research & Opinion 2005;21(12):1891-1894. Does not meet criteria for eligibility.

Moore A. Osteoporosis -- why all the fuss?. World of Irish Nursing & Midwifery 2005;13(10):27. Does not meet criteria for eligibility.

More C, Bhattoa H P, Bettembuk P et al. The effects of pregnancy and lactation on hormonal status and biochemical markers of bone turnover. European Journal of Obstetrics, Gynecology, & Reproductive Biology 2003;106(2):209-213. Does not meet criteria for eligibility. Moya M, Beltran J, Colomer J. Therapeutic and collateral effects of 25-hydroxycholecalciferol in vitamin D deficiency. Eur J Pediatr 1977;127(1):49-55. Does not meet criteria for eligibility.

Moya M, Cortes E, Ballester M I et al. Shortterm polycose substitution for lactose reduces calcium absorption in healthy term babies.[see comment]. Journal of Pediatric Gastroenterology & Nutrition 1992;14(1):57-61. Does not meet criteria for eligibility.

Moyad M A. The potential benefits of dietary and/or supplemental calcium and vitamin D. [Review] [71 refs]. Urol Oncol 2003;21(5):384-391. Does not meet criteria for eligibility.

Moyer-Mileur L, Luetkemeier M, Boomer L et al. Effect of physical activity on bone mineralization in premature infants. Eur J Pediatr 1995;127(4):620-625. Does not meet criteria for eligibility.

Munro I. Derivation of tolerable upper intake levels of nutrients.[comment]. Am J Clin Nutr 2001;74(6):865-867. Does not meet criteria for eligibility.

Muskiet F A, Dijck-Brouwer D A, van der V et al. Do we really need > or = 100 microg vitamin D/d, and is it safe for all of us?[comment]. Am J Clin Nutr 2001;74(6):862-864. Does not meet criteria for eligibility.

Nakamura K. Vitamin D insufficiency in Japanese populations: from the viewpoint of the prevention of osteoporosis. [Review] [41 refs]. Journal of Bone & Mineral Metabolism 2006;24(1):1-6. Does not meet criteria for eligibility.

Namgung R, Tsang R C, Specker B L et al. Reduced serum osteocalcin and 1,25dihydroxyvitamin D concentrations and low bone mineral content in small for gestational age infants: evidence of decreased bone formation rates. Eur J Pediatr 1993;122(2):269-275. Does not meet criteria for eligibility.

Narchi H. Case-control study of diet and sun exposure in adolescents with symptomatic rickets. Ann Trop Paediatr 2000;20(3):217-221. Does not meet criteria for eligibility. Nawawi H, Girgis S I. Serum levels of bonespecific alkaline phosphatase and procollagen type I carboxyterminal peptide in vitamin D deficiency. Southeast Asian Journal of Tropical Medicine & Public Health 2002;33 Suppl 2124-130. Does not meet criteria for eligibility.

Neer R M. Environmental light: effects on vitamin D synthesis and calcium metabolism in humans. Ann N Y Acad Sci 1985;45314-20. Does not meet criteria for eligibility.

Nisbet J A, Eastwood J B, Colston K W et al. Detection of osteomalacia in British Asians: a comparison of clinical score with biochemical measurements. Clin Sci 1990;78(4):383-389. Does not meet criteria for eligibility.

Nishimura K, Shima M, Tsugawa N et al. Longterm hospitalization during pregnancy is a risk factor for vitamin D deficiency in neonates.[erratum appears in J Bone Miner Metab. 2003;21(4):253]. Journal of Bone & Mineral Metabolism 2003;21(2):103-108. Does not meet criteria for eligibility.

Noble J M, McGuiness M, Glendenning P. Low rate of compliance with ergocalciferol therapy in vitamin-D-deficient patients with hip fracture. Med J Aust 2002;177(5):280. Does not meet criteria for eligibility.

Norman A W. Sunlight, season, skin pigmentation, vitamin D, and 25-hydroxyvitamin D: integral components of the vitamin D endocrine system.[see comment][comment]. Am J Clin Nutr 1998;67(6):1108-1110. Does not meet criteria for eligibility.

Nurmi I, Kaukonen J P, Luthje P et al. Half of the patients with an acute hip fracture suffer from hypovitaminosis D: a prospective study in southeastern Finland. Osteoporos Int 2005;16(12):2018-2024. Does not meet criteria for eligibility.

Nuti R, Bianchi G, Brandi M L et al. Superiority of alfacalcidol compared to vitamin D plus calcium in lumbar bone mineral density in postmenopausal osteoporosis. Rheumatol Int 2006;26(5):445-453. Does not meet criteria for eligibility.

Nuti R, Martini G, Valenti R et al. Vitamin D status and bone turnover in women with acute hip fracture. Clinical Orthopaedics & Related

Research 2004;208-213. Does not meet criteria for eligibility.

O'Dowd K J. Dietary factors, sunlight exposure, and vitamin D status among elderly nursing home residents living in the New York City area. 1990. Error in electronic citation. Not obtainable at time of submission.

O'Shea D, Carter G D. Hypovitaminosis D in medical inpatients.[comment]. N Engl J Med 1998;339(5):345-346. Does not meet criteria for eligibility.

Ogle S J, Davison J G. Vitamin D status in healthy elderly subjects in Auckland. N Z Med J 1985;98(778):351. Does not meet criteria for eligibility.

Okazaki R, Matsumoto T, Harada S et al. Erythrocytosis in hypophosphatemic rickets: irreversible complication due to nephrocalcinosis after vitamin D and phosphate therapy. Jpn J Med 1991;30(6):545-547. Does not meet criteria for eligibility.

Okonofua F, Menon R K, Houlder S et al. Calcium, vitamin D and parathyroid hormone relationships in pregnant Caucasian and Asian women and their neonates. Ann Clin Biochem 1987;24(Pt 1):22-28. Does not meet criteria for eligibility.

Oliveira Steve, Aro Antonio, Sparrow David et al. Season modifies the relationship between bone and blood lead levels: The Normative Aging Study. Arch Environ Health 2002;57(5):466-472. Does not meet criteria for eligibility.

Oliveri B, Gomez Acotto C, Mautalen C. Osteomalacia in a patient with severe anorexia nervosa. Revue du Rhumatisme (English Edition) 1999;66(10):505-508. Does not meet criteria for eligibility.

Oliveri M B, Wittich A, Mautalen C et al. Peripheral bone mass is not affected by winter vitamin D deficiency in children and young adults from Ushuaia. Calcif Tissue Int 2000;67(3):220-224. Does not meet criteria for eligibility.

Orbak Z, Hatun S, Ozkan B et al. Rickets in early infancy: The characteristic features. Cocuk

Sagligi Ve Hastaliklari Dergisi 2005;. 48(1):. Does not meet criteria for eligibility.

Orimo H, Shiraki M, Hayashi Y et al. Effects of 1 alpha-hydroxyvitamin D3 on lumbar bone mineral density and vertebral fractures in patients with postmenopausal osteoporosis. Calcif Tissue Int 1994;54(5):370-376. Does not meet criteria for eligibility.

Orwoll E S, McClung M R, Oviatt S K et al. Histomorphometric effects of calcium or calcium plus 25-hydroxyvitamin D3 therapy in senile osteoporosis. Journal of Bone & Mineral Research 1989;4(1):81-88. Does not meet criteria for eligibility.

Osher L, Lembach L, Brooks T S et al. Rickets. A study with case report. J Am Podiatr Med Assoc 1996;86(6):266-274. Does not meet criteria for eligibility.

Ott S M, Chesnut C H. Calcitriol treatment is not effective in postmenopausal osteoporosis.[see comment]. Ann Intern Med 1989;110(4):267-274. Does not meet criteria for eligibility.

Overton T R, Basu T K. Longitudinal changes in radial bone density in older men. Eur J Clin Nutr 1999;53(3):211-215. Does not meet criteria for eligibility.

Ovesen L, Andersen R, Jakobsen J. Geographical differences in vitamin D status, with particular reference to European countries. [Review] [96 refs]. Proc Nutr Soc 2003;62(4):813-821. Does not meet criteria for eligibility.

Ozsoylu S. Rickets in Nigerian children.[comment]. Eur J Pediatr 2001;138(6):955-956. Does not meet criteria for eligibility.

Ozsoylu S, Hansaoglu A. 25hydroxycholecalciferol serum levels in breastfed infants. Arch Dis Child 1981;56(4):318. Does not meet criteria for eligibility.

Pak C Y, DeLuca H F, Bartter F C et al. Treatment of vitamin D-resistant rickets with 25hydroxycholecalciferol. Arch Intern Med 1972;129(6):894-899. Does not meet criteria for eligibility. Palmieri G M, Pitcock J A, Brown P et al. Effect of calcitonin and vitamin D in osteoporosis. Calcif Tissue Int 1989;45(3):137-141. Does not meet criteria for eligibility.

Pan W H, Wang C Y, Li L A et al. No significant effect of calcium and vitamin D supplementation on blood pressure and calcium metabolism in elderly Chinese.[erratum appears in Chin J Physiol 1993;36(3):192]. Chin J Physiol 1993;36(2):85-94. Does not meet criteria for eligibility.

Panda Dibyendu K, Miao Dengshun, Bolivar Isabel et al. Inactivation of the 25hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 2004;279(16):16754-16766. Does not meet criteria for eligibility.

Parry Nicola M A, Phillippo Michael, Reid Martin D et al. Molybdenum-induced changes in the epiphyseal growth plate. Calcif Tissue Int 1993;53(3):180-186. Does not meet criteria for eligibility.

Partanen J, Heikkinen J, Jamsa T et al. Characteristics of lifetime factors, bone metabolism, and bone mineral density in patients with hip fracture. Journal of Bone & Mineral Metabolism 2002;20(6):367-375. Does not meet criteria for eligibility.

Passeri G, Pini G, Troiano L et al. Low vitamin D status, high bone turnover, and bone fractures in centenarians.[see comment]. Journal of Clinical Endocrinology & Metabolism 2003;88(11):5109-5115. Does not meet criteria for eligibility.

Paterson C R. Hypercalcaemia in alphacalcidol therapy. Postgrad Med J 1981;57(669):431-432. Does not meet criteria for eligibility.

Pattanaungkul S, Riggs B L, Yergey A L et al. Relationship of intestinal calcium absorption to 1,25-dihydroxyvitamin D [1,25(OH)2D] levels in young versus elderly women: evidence for age-related intestinal resistance to 1,25(OH)2D action. Journal of Clinical Endocrinology & Metabolism 2000;85(11):4023-4027. Does not meet criteria for eligibility. Pawley N, Bishop N J. Prenatal and infant predictors of bone health: the influence of vitamin D. [Review] [23 refs]. Am J Clin Nutr 2004;80(6 Suppl):1748S-1751S. Does not meet criteria for eligibility.

Pazianas M, Butcher G P, Subhani J M et al. Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake. Osteoporos.Int. 2005;16(1):56-63. Does not meet criteria for eligibility.

Peacock M, Liu G, Carey M et al. Effect of calcium or 25OH vitamin D3 dietary supplementation on bone loss at the hip in men and women over the age of 60.[see comment]. Journal of Clinical Endocrinology & Metabolism 2000;85(9):3011-3019. Does not meet criteria for eligibility.

Pedersen A N. Danish dietary recommendations for the elderly. Aging-Clinical & Experimental Research 1993;5(2 Suppl 1):85-91. Does not meet criteria for eligibility.

Peregrin T. Expanding Vitamin D fortification: a balance between deficiency and toxicity. J Am Diet Assoc 2002;102(9):1214-1216. Does not meet criteria for eligibility.

Perez-Duenas B, Cambra F J, Vilaseca M A et al. New approach to osteopenia in phenylketonuric patients. Acta Paediatr 2002;91(8):899-904. Does not meet criteria for eligibility.

Peris P, Guanabens N, Monegal A et al. Aetiology and presenting symptoms in male osteoporosis. Br J Rheumatol 1995;34(10):936-941. Does not meet criteria for eligibility.

Petersen M M, Briggs R S, Ashby M A et al. Parathyroid hormone and 25-hydroxyvitamin D concentrations in sick and normal elderly people. British Medical Journal Clinical Research Ed 1983;. 287(6391):521-523. Does not meet criteria for eligibility.

Pettifor J M, Bikle Daniel D, Cavaleros Meropi et al. Serum levels of free 1,25-dihydroxyvitamin D in vitamin D toxicity. Ann Intern Med 1995;122(7):511-513. Does not meet criteria for eligibility. Pettifor J M, Moodley G P, Hough F S et al. The effect of season and latitude on in vitro vitamin D formation by sunlight in South Africa. S Afr Med J 1996;Suid-Afrikaanse Tydskrif Vir Geneeskunde. 86(10):1270-1272. Does not meet criteria for eligibility.

Pettifor J M, Stein H, Herman A et al. Mineral homeostasis in very low birth weight infants fed either own mother's milk or pooled pasteurized preterm milk. Journal of Pediatric Gastroenterology & Nutrition 1986;5(2):248-253. Does not meet criteria for eligibility.

Pettifor John M, jmpe@chironwitsacza]. Rickets. Calcif Tissue Int 2002;70(5):398-399. Does not meet criteria for eligibility.

Pfeifer M, Minne H W. Prevention of falls and fractures in elderly persons-supplementation with vitamin D and calcium are efficacious. Dtsch Arztebl 2006;103(3):C99-C100. Does not meet criteria for eligibility.

Pfeifer M, Begerow B, Minne H W et al. Effects of a short-term vitamin D(3) and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. Journal of Clinical Endocrinology & Metabolism 2001;86(4):1633-1637. Does not meet criteria for eligibility.

Pfeifer M, Dobnig H, Begerow B et al. Effects of vitamin D and calcium supplementation on falls and parameters of muscle function: a prospective randomized, double-blind muliti-centre study [abstract]. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2004;19(Suppl 1):S58. Does not meet criteria for eligibility.

Phillips F. Diet and bone health. Food Nutr Bull 2004;29(2):99-110. Does not meet criteria for eligibility.

Phillips P, Lovell G A, Byth J et al. Plasma 25hydroxyvitamin D levels in elderly, institutionalised subjects in a sub-tropical climate. [abstract]. Aust NZ J Med Suppl 1988;18(2 Suppl 1):193. Does not meet criteria for eligibility.

Pittard W B, Geddes K M, Sutherland S E et al. Longitudinal changes in the bone mineral content of term and premature infants.[see comment]. Am J Dis Child 1990;144(1):36-40. Does not meet criteria for eligibility.

Plotnikoff G A, Quigley J M. Prevalence of severe hypovitaminosis D in patients with persistent, nonspecific musculoskeletal pain.[see comment]. Mayo Clin Proc 2003;78(12):1463-1470. Does not meet criteria for eligibility.

Pollak R D, Karmeli F, Eliakim R et al. Femoral neck osteopenia in patients with inflammatory bowel disease. Am J Gastroenterol 1998;93(9):1483-1490. Does not meet criteria for eligibility.

Porcu L, Meloni A, Casula L et al. A novel splicing defect (IVS6+1G>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest 2002;25(6):557-560. Does not meet criteria for eligibility.

Porthouse J, Cockayne S, King C et al. Randomised controlled trial of calcium and vitamin D supplementation for fracture prevention in primary care. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2004;15(Suppl 2):S13. Does not meet criteria for eligibility.

Prabhala A, Garg R, Dandona P. Severe myopathy associated with vitamin D deficiency in western New York. Arch Intern Med 2000;160(8):1199-1203. Does not meet criteria for eligibility.

Prentice, A., Yan, L., Jarjou, L. M., Dibba, B., Laskey, M. A., Stirling, D. M., and Fairweather-Tait, S., Vitamin D status . Does not influence the breast-milk calcium concentration of lactating mothers accustomed to a low calcium intake, *Acta Paediatrica*, 86(9), 1997, p.1006 – 1008. Does not meet criteria for eligibility.

Prestwood K M, Thompson D L, Kenny A M et al. Low dose estrogen and calcium have an additive effect on bone resorption in older women. Journal of Clinical Endocrinology & Metabolism 1999;84(1):179-183. Does not meet criteria for eligibility.

Price D I, Stanford L C J, Braden D S et al. Hypocalcemic rickets: An unusual cause of dilated cardiomyopathy. Pediatr Cardiol 2003;24(5):510-512. Does not meet criteria for eligibility.

Prince Richard L, Dick Ian, Devine Amanda et al. The Effects of Menopause and Age on Calcitropic Hormones: A Cross-Sectional Study of 655 Healthy Women Aged 35 to 90. Journal of Bone & Mineral Research 1995;10(6):835-842. Does not meet criteria for eligibility.

Pugliese Michael T, Blumberg Denise L, Hludzinski Joanne et al. Nutritional rickets in suburbia. J Am Coll Nutr 1998;17(6):637-641. Does not meet criteria for eligibility.

Pun K K, Lau P, Wong F H et al. 25-Hydroxycholecalciferol and insulin-like growth factor I are determinants of serum concentration of osteocalcin in elderly subjects with and without spinal fractures. Bone 1990;11(6):397-400. Does not meet criteria for eligibility.

Puschett J B, Genel M, Rastegar A et al. Effects of 25-hydroxycholecalciferol on urinary electrolyte excretion in hypophosphataemic rickets. Lancet 1974;2(7886):920-922. Does not meet criteria for eligibility.

Puschett J B, Genel M, Rastegar A et al. Longterm therapy of viramin D-resistant richets with 25-hydroxycholecalciferol. Clinical Pharmacology & Therapeutics 1975;17(2):202-211. Does not meet criteria for eligibility.

Quesada J M, Alonso J, Gonzalez J et al. Serum beta-2 microglobulin is a marker of high bone remodelling in elderly women. Mechanisms of Ageing & Development 1998;102(2-3):293-298. Does not meet criteria for eligibility.

Raef H, Frayha H H, El-Shaker M et al. Recommendations for the diagnosis and management of osteoporosis: a local perspective. Ann Saudi Med 2004;24(4):242-252. Does not meet criteria for eligibility.

Raiten D J, Picciano M F. Vitamin D and health in the 21st century: bone and beyond. Executive summary. [Review] [20 refs]. Am J Clin Nutr 2004;80(6 Suppl):1673S-1677S. Does not meet criteria for eligibility.

Ramakrishnan K, Holick M F. Understimation of serum 25-hydroxyvitamin d by the nichols advantage assay in patients receiving vitamin D replacement therapy [13]. Clin Chem 2005;. 51(6):1074-1074. Does not meet criteria for eligibility.

Ranganath L, Jamal H, Jones L et al. Value of assessing parathyroid hormone-like activity in a case of extreme hypercalcaemia. J Clin Pathol 1998;51(3):257-258. Does not meet criteria for eligibility.

Rapin C H, Lagier R, Boivin G et al. Biochemical findings in blood of aged patients with femoral neck fractures: a contribution to the detection of occult osteomalacia. Calcif Tissue Int 1982;34(5):465-469. Does not meet criteria for eligibility.

Rapin C H, Lagier R, Boivin G et al. Is a certain degree of osteomalacia involved in femoral neck fractures of the elderly? Histological approach to the problem and practical applications. Z Gerontol 1983;16(6):277-283. Does not meet criteria for eligibility.

Rasmussen Lone, Banke Reprint, author Hansen et al. Vitamin D: Should the supply in the Danish population be increased?. International Journal of Food Sciences & Nutrition 2000;51(3):209-215. Does not meet criteria for eligibility.

Reeve J, Abraham R, Walton J et al. Increasing mineral density after menopause in individual lumbar vertebrae as a marker for incident degenerative disease: a pilot study for the effects of body composition and diet. Br J Rheumatol 2004;31(10):1986-1992. Does not meet criteria for eligibility.

Reeves G D, Bachrach S, Carpenter T O et al. Vitamin D-deficiency rickets in adopted children from the former Soviet Union: an uncommon problem with unusual clinical and biochemical features. Pediatrics 2000;106(6):1484-1488. Does not meet criteria for eligibility.

Reginster J Y, Frederick I, Deroisy R et al. Parathyroid hormone plasma concentration in response to low 25-OH vitamin D circulating levels increases with age in elderly women. Osteoporos.Int. 1998;8(4):390-392. Does not meet criteria for eligibility.

Reginster J Y, Sarkar S, Zegels B et al. Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk. Bone 2004;34(2):344-351. Does not meet criteria for eligibility.

Reginster J Y, Zegels B, Lejeune E et al. Influence of daily regimen calcium and vitamin D supplementation on parathyroid hormone secretion. Calcif Tissue Int 2002;70(2):78-82. Does not meet criteria for eligibility.

Reginster J-Y. Treatment of postmenopausal osteoporosis. Br Med J 2005;. 330(7496):16. Does not meet criteria for eligibility.

Renner R P, Boucher L J, Kaufman H W. Osteoporosis in postmenopausal women. J Prosthet Dent 1984;52(4):581-588. Does not meet criteria for eligibility.

Renoult-Pierre P. Calcium and vitamin D: Supplementation or pharmacological treatment. Annales d Endocrinologie 2005;. 66(2 I):. Does not meet criteria for eligibility.

Resch H, Pietschmann P, Woloszczuk W et al. Bone mass and biochemical parameters of bone metabolism in men with spinal osteoporosis. Eur J Clin Invest 1992;22(8):542-545. Does not meet criteria for eligibility.

Rettberg P, Horneck G, Zittermann A et al. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis. Adv Space Res 1998;22(12):1643-1652. Does not meet criteria for eligibility.

Richardson J P. Vitamin D deficiency--the once and present epidemic.[comment]. Am Fam Physician 2005;71(2):241-242. Does not meet criteria for eligibility.

Riggs B L, Seeman E, Hodgson S F et al. Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis. Comparison with conventional therapy. N Engl J Med 1982;306(8):446-450. Does not meet criteria for eligibility.

Ringe J D, Faber H, Fahramand P et al. Alfacalcidol versus plain vitamin D in the treatment of glucocorticoid/inflammationinduced osteoporosis. Journal of Rheumatology -Supplement 2005;7633-40. Does not meet criteria for eligibility. Roberts N B, Holding J D, Walsh H P et al. Serial changes in serum vitamin K1, triglyceride, cholesterol, osteocalcin and 25-hydroxyvitamin D3 in patients after hip replacement for fractured neck of femur or osteoarthritis. Eur J Clin Invest 1996;26(1):24-29. Does not meet criteria for eligibility.

Robertson W C. Calcium carbonate consumption during pregnancy: An unusual cause of neonatal hypocalcemia. J Child Neurol 2002;17(11):853-855. Does not meet criteria for eligibility.

Robinson M J, Merrett A L, Tetlow V A et al. Plasma 25-hydroxyvitamin D concentrations in preterm infants receiving oral vitamin D supplements. Arch Dis Child 1981;56(2):144-145. Does not meet criteria for eligibility.

Rockell J E, Green T J, Skeaff C M et al. Season and ethnicity are determinants of serum 25hydroxyvitamin D concentrations in New Zealand children aged 5-14 y. Br J Nutr 2005;135(11):2602-2608. Does not meet criteria for eligibility.

Rosen J F, Finberg L. Vitamin D-dependent rickets: actions of parathyroid hormone and 25hydroxycholecalciferol. Pediatr Res 1972;6(6):552-562. Does not meet criteria for eligibility.

Rossouw J E, Anderson G L, Oberman A. Annals of Epidemiology: Foreword. Ann Epidemiol 2003;13(9 SUPPL.):S1-S4. Does not meet criteria for eligibility.

Roth D E, Martz P, Yeo R et al. Are national vitamin D guidelines sufficient to maintain adequate blood levels in children?. Can J Public Health 2005;Revue Canadienne de Sante Publique. 96(6):443-449. Does not meet criteria for eligibility.

Rothacker D Q, Ellis P K. Elevated intakes of calcium and vitamin D without added calories and fat in overweight adults: A crossover study in Wisconsin. Current Therapeutic Research, Clinical & Experimental 2002;63(8):507-512. Does not meet criteria for eligibility.

Rucker D, Allan J A, Fick G H et al. Vitamin D insufficiency in a population of healthy western Canadians. CMAJ Canadian Medical Association Journal 2002;166(12):1517-1524. Does not meet criteria for eligibility. Rudman D, Rudman I W, Mattson D E et al. Fractures in the men of a Veterans Administration Nursing Home: relation to 1,25dihydroxyvitamin D. [Review] [42 refs]. J Am Coll Nutr 1989;8(4):324-334. Does not meet criteria for eligibility.

Saha H. Calcium and vitamin D homeostasis in patients with heavy proteinuria. Clin Nephrol 1994;41(5):290-296. Does not meet criteria for eligibility.

Sahota O, Dhesi J K, Allain T J. A rationale for vitamin D prescribing in a falls clinic population (multiple letters) [4]. Age & Ageing 2003;32(6):681-682. Does not meet criteria for eligibility.

Saitta Joseph C, Ott Susan M, Sherrard Donald J et al. Metabolic bone disease in adults receiving long-term parenteral nutrition: Longitudinal study with regional densitometry and bone biopsy. Jpen: Journal of Parenteral & Enteral Nutrition 1993;17(3):214-219. Does not meet criteria for eligibility.

Salamoni F, Roulet M, Gudinchet F et al. Bone mineral content in cystic fibrosis patients: correlation with fat-free mass. Arch Dis Child 1996;74(4):314-318. Does not meet criteria for eligibility.

Salle B L. Perinatal Vitamin D metabolism. Riv Ital Pediatr 2003;29(5):315-318. Does not meet criteria for eligibility.

Salle B L, David L, Glorieux F H et al. Early oral administration of vitamin D and its metabolites in premature neonates. Effect on mineral homeostasis. Pediatr Res 1982;16(1):75-78. Does not meet criteria for eligibility.

Salle B L, Glorieux F H, Lapillone A. Vitamin D status in breastfed term babies.[comment]. Acta Paediatr 1998;87(7):726-727. Does not meet criteria for eligibility.

Salle B L, Glorieux F H, Delvin E E et al. Vitamin D metabolism in preterm infants. Serial serum calcitriol values during the first four days of life. Acta Paediatr Scand 1983;72(2):203-206. Does not meet criteria for eligibility.

Salle B L, Senterre J, Glorieux F H et al. Vitamin D metabolism in preterm infants. [Review] [32 refs]. Biol Neonate 1987;52 Suppl 1119-130. Does not meet criteria for eligibility.

Salmen T, Heikkinen A M, Mahonen A et al. Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. Ann Med 2003;35(4):282-288. Does not meet criteria for eligibility.

Salmen T, Heikkinen A M, Mahonen A et al. Relation of androgen receptor gene polymorphism to bone mineral density and fracture risk in early postmenopausal women during a 5-year randomized hormone replacement therapy trial. Journal of Bone & Mineral Research 2003;18(2):319-324. Does not meet criteria for eligibility.

Sambrook P. Vitamin D and fractures: Quo vadis?. Lancet 2005;. 365(9471):07. Does not meet criteria for eligibility.

Sambrook P N, Chen C J S, March L et al. High bone turnover is an independent predictor of mortality in the frail elderly. Journal of Bone & Mineral Research 2006;21(4):549-555. Does not meet criteria for eligibility.

Sambrook P N, Chen J S, March L M et al. Serum parathyroid hormone is associated with increased mortality independent of 25-hydroxy vitamin d status, bone mass, and renal function in the frail and very old: a cohort study. Journal of Clinical Endocrinology & Metabolism 2004;89(11):5477-5481. Does not meet criteria for eligibility.

Sanchez C P. Chronotherapy of high-dose active Vitamin D(3): is evening dosing preferable?. [Review] [11 refs]. Pediatr Nephrol 2004;19(7):722-723. Does not meet criteria for eligibility.

Sanchez P A, Idrisa A, Bobzom D N et al. Calcium and vitamin D status of pregnant teenagers in Maiduguri, Nigeria. J Natl Med Assoc 1997;89(12):805-811. Does not meet criteria for eligibility.

Saraux A, Valls I, Guedes C et al. Insufficiency fractures of the sacrum in elderly subjects. Revue du Rhumatisme (English Edition) 1995;62(9):582-586. Does not meet criteria for eligibility. Sato K, Emoto N, Toraya S et al. Progressively increased serum 1,25-dihydroxyvitamin D2 concentration in a hypoparathyroid patient with protracted hypercalcemia due to vitamin D2 intoxication. Endocr J 1994;41(4):329-337. Does not meet criteria for eligibility.

Sato Y, Asoh T, Oizumi K. High prevalence of vitamin D deficiency and reduced bone mass in elderly women with Alzheimer's disease. Bone 1998;23(6):555-557. Does not meet criteria for eligibility.

Sato Y, Iwamoto J, Kanoko T et al. Substandard studies or substandard 'standard-of-care' [2]. Journal of Bone & Mineral Research 2006;21(3):492. Does not meet criteria for eligibility.

Sato Y, Kaji M, Higuchi F et al. Changes in bone and calcium metabolism following hip fracture in elderly patients. Osteoporos.Int. 2001;12(6):445-449. Does not meet criteria for eligibility.

Sato Y, Kaji M, Honda Y et al. Abnormal calcium homeostasis in disabled stroke patients with low 25-hydroxyvitamin D. Bone 2004;34(4):710-715. Does not meet criteria for eligibility.

Sato Y, Kanoko T, Satoh K et al. Risk factors for hip fracture among elderly patients with Alzheimer's disease.[see comment]. J Neurol Sci 2004;223(2):107-112. Does not meet criteria for eligibility.

Sato Y, Kanoko T, Satoh K et al. Menatetrenone and vitamin D2 with calcium supplements prevent nonvertebral fracture in elderly women with Alzheimer's disease. Bone 2005;36(1):61-68. Does not meet criteria for eligibility.

Sato Y, Kanoko T, Satoh K et al. In reply [5]. Arch Intern Med 2006;166(10):1145. Does not meet criteria for eligibility.

Sato Y, Kuno H, Kaji M et al. Increased bone resorption during the first year after stroke. Stroke 1998;29(7):1373-1377. Does not meet criteria for eligibility.

Sato Y, Oizumi K, Kuno H et al. Effect of immobilization upon renal synthesis of 1,25dihydroxyvitamin D in disabled elderly stroke patients. Bone 1999;24(3):271-275. Does not meet criteria for eligibility.

Schleithoff S S, Zittermann A, Tenderich G et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial.[see comment]. Am J Clin Nutr 2006;83(4):754-759. Does not meet criteria for eligibility.

Schnoes H K, DeLuca H F. Recent progress in vitamin D metabolism and the chemistry of vitamin D metabolites. Fed Proc 1980;39(10):2723-2729. Does not meet criteria for eligibility.

Schwartz G G, Hall M C, Stindt D et al. Phase I/II study of 19-nor-1alpha-25-dihydroxyvitamin D2 (paricalcitol) in advanced, androgeninsensitive prostate cancer. Clin Cancer Res 2005;11(24 Pt 1):8680-8685. Does not meet criteria for eligibility.

Schwartzman M S, Franck W A. Vitamin D toxicity complicating the treatment of senile, postmenopausal, and glucocorticoid-induced osteoporosis. Four case reports and a critical commentary on the use of vitamin D in these disorders. Am J Med 1987;82(2):224-230. Does not meet criteria for eligibility.

Scragg R, Sowers M, Bell C. Serum 25hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 2004;27(12):2813-2818. Does not meet criteria for eligibility.

Seelig M S. Are American children still getting an excess of vitamin D? Hyperreactive children at risk. Clin Pediatr (Phila) 1970;9(7):380-383. Does not meet criteria for eligibility.

Seeman E. Hot stuff - Can't get enough. Osteoporos Int 2006;17(6):791-794. Does not meet criteria for eligibility.

Seftel A. Low serum levels of testosterone in men with minimal traumatic hip fractures: Commentary. Br J Urol 2006;175(3):1054. Does not meet criteria for eligibility.

Segal E, Zinnman H, Raz B et al. Adherence to vitamin D supplementation in elderly patients after hip fracture [6]. J Am Geriatr Soc

2004;52(3):474-475. Does not meet criteria for eligibility.

Seibel Markus J, Meier Christian, Woitge Henning et al. Seasonal variation of bone turnover?. Journal of Bone & Mineral Research 2004;19(1):168-169. Does not meet criteria for eligibility.

Seikaly M G, Quigley R, Baum M. Effect of dipyridamole on serum and urinary phosphate in X-linked hypophosphatemia. Pediatr Nephrol 2000;15(1-2):57-59. Does not meet criteria for eligibility.

Serhan E, Holland M R. Relationship of hypovitaminosis D and secondary hyperparathyroidism with bone mineral density among UK resident Indo-Asians. Ann Rheum Dis 2002;61(5):456-458. Does not meet criteria for eligibility.

Seymour H M, Glendenning P. Fit for a fracture. Med J Aust 2005;183(4):213-214. Does not meet criteria for eligibility.

Shahla A, Charehsaz S, Talebi R et al. Vitamin D deficiency in young females with musculoskeletal complaints in Urmia, Northwest of Iran. Iranian Journal of Medical Sciences 2005;30(2):88-90. Does not meet criteria for eligibility.

Sharkey J R, Giuliani C, Haines P S et al. Summary measure of dietary musculoskeletal nutrient (calcium, vitamin D, magnesium, and phosphorus) intakes is associated with lowerextremity physical performance in homebound elderly men and women. Am J Clin Nutr 2003;77(4):847-856. Does not meet criteria for eligibility.

Shea B, Wells G, Cranney A et al. Review: Calcium supplementation has a small positive effect on bone mineral density but not fractures in postmenopausal women. Evidence Based Medicine 2004;9(6):170. Does not meet criteria for eligibility.

Shetty K R, Ajlouni K, Rosenfled P S et al. Protracted vitamin D intoxication. Arch Intern Med 1975;135(7):986-988. Does not meet criteria for eligibility.

Shike M, Shils M E, Heller A et al. Bone disease in prolonged parenteral nutrition: osteopenia

without mineralization defect. Am J Clin Nutr 1986;44(1):89-98. Does not meet criteria for eligibility.

Shiraki M, Kushida K, Yamazaki K et al. Effects of 2 years' treatment of osteoporosis with 1 alpha-hydroxy vitamin D3 on bone mineral density and incidence of fracture: a placebocontrolled, double-blind prospective study. Endocr J 1996;43(2):211-220. Does not meet criteria for eligibility.

Shiraki M, Miyagawa A, Akiguchi I et al. Evidence of hypovitaminosis D in patients with mitral ring calcification. Jpn Heart J 1988;29(6):801-808. Does not meet criteria for eligibility.

Sidwell A I, Wilkinson T J, Hanger H C. Secondary prevention of fractures in older people: evaluation of a protocol for the investigation and treatment of osteoporosis. Intern Med J 2004;34(3):129-132. Does not meet criteria for eligibility.

Silverman S L, Delmas P D, Kulkarni P M et al. Comparison of fracture, cardiovascular event, and breast cancer rates at 3 years in postmenopausal women with osteoporosis. J Am Geriatr Soc 2004;52(9):1543-1548. Does not meet criteria for eligibility.

Simonelli C. The role of vitamin D deficiency in osteoporosis and fractures. Minn Med 2005;88(11):34-36. Does not meet criteria for eligibility.

Simonelli C, Weiss T W, Morancey J et al. Prevalence of vitamin D inadequacy in a minimal trauma fracture population. Current Medical Research & Opinion 2005;21(7):1069-1074. Does not meet criteria for eligibility.

Smith H, Anderson F, Raphael H et al. Effect of annual intramuscular vitamin D supplementation on fracture risk: population-based, randomised, double-blind, placebo-controlled trial [abstract]. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2004;15(Suppl 1):S8. Does not meet criteria for eligibility.

Smith R L. Calcium and vitamin D supplementation in nursing home residents. J

Am Med Dir Assoc 2003;4(2 SUPPL.):S24-S31. Does not meet criteria for eligibility.

Smith S M, Zwart S R, Block G et al. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. Br J Nutr 2005;135(3):437-443. Does not meet criteria for eligibility.

Snell A P, MacLennan W J, Hamilton J. Diet, sunlight, and 25-hydroxy vitamin D. Br Med J 1979;1(6166):823. Does not meet criteria for eligibility.

Snijder M B, van Dam R M, Visser M et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. Journal of Clinical Endocrinology & Metabolism 2005;90(7):4119-4123. Does not meet criteria for eligibility.

So K-W, Ng P-C. Treatment and prevention of neonatal osteopenia. Current Paediatrics 2005;. 15(2):. Does not meet criteria for eligibility.

Sogaard C H, Mosekilde L, Richards A et al. Marked decrease in trabecular bone quality after five years of sodium fluoride therapy--assessed by biomechanical testing of iliac crest bone biopsies in osteoporotic patients. Bone 1994;15(4):393-399. Does not meet criteria for eligibility.

Solanki T, Hyatt R H, Kemm J R et al. Are elderly Asians in Britain at a high risk of vitamin D deficiency and osteomalacia?. Age & Ageing 1995;24(2):103-107. Does not meet criteria for eligibility.

Sollitto R B, Kraemer K H, DiGiovanna J J. Normal vitamin D levels can be maintained despite rigorous photoprotection: six years' experience with xeroderma pigmentosum.[see comment]. J Am Acad Dermatol 1997;37(6):942-947. Does not meet criteria for eligibility.

Souberbielle J C, Fayol V, Sault C et al. Assayspecific decision limits for two new automated parathyroid hormone and 25-hydroxyvitamin D assays. Clin Chem 2005;51(2):395-400. Does not meet criteria for eligibility.

Souberbielle J C, Lawson-Body E, Hammadi B et al. The use in clinical practice of parathyroid

hormone normative values established in vitamin D-sufficient subjects.[see comment]. Journal of Clinical Endocrinology & Metabolism 2003;88(8):3501-3504. Does not meet criteria for eligibility.

Souberbielle Jean-Claude, Reprint author, Lawson-Body Ethel et al. Authors' response: Vitamin D status and redefining serum PTH reference range in the elderly. Journal of Clinical Endocrinology & Metabolism 2002;87(2):947. Does not meet criteria for eligibility.

Sowers M R, Wallace R B, Hollis B W. The relationship of 1,25-dihydroxyvitamin D and radial bone mass. Bone & Mineral 1990;10(2):139-148. Does not meet criteria for eligibility.

Spence J T, Serwint J R. Secondary prevention of vitamin D-deficiency rickets. Pediatrics 2004;113(1 Pt 1):e70-e72. Does not meet criteria for eligibility.

Stamp T C, Round J M, Haddad J G. Effect of oral vitamin D, 25-hydroxycholecalciferol (25-HCC) and whole-body ultra-violet irradiation on plasma 25-HCC levels in man. Clin Sci 1973;44(2):3P-4P. Does not meet criteria for eligibility.

Stein M S, Scherer S C, Walton S L et al. Risk factors for secondary hyperparathyroidism in a nursing home population. Clin Endocrinol (Oxf) 1996;44(4):375-383. Does not meet criteria for eligibility.

Steingrimsdottir L, Gunnarsson O, Indridason O S et al. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 2005;294(18):2336-2341. Does not meet criteria for eligibility.

Sterkel B B. Bone density and vitamin D intoxication.[comment]. Ann Intern Med 1998;128(6):507. Does not meet criteria for eligibility.

Stevenson J C, Allen P R, Abeyasekera G et al. Osteoporosis with hip fracture: changes in calcium regulating hormones. Eur J Clin Invest 1986;16(5):357-360. Does not meet criteria for eligibility.

Stickler G B, Morgenstern B Z. Hypophosphataemic rickets: final height and clinical symptoms in adults.[see comment]. Lancet 1989;2(8668):902-905. Does not meet criteria for eligibility.

Storm T L, Sorensen O H, Lund B et al. Vitamin D metabolism in insulin-dependent diabetes mellitus. Metab Bone Dis Relat Res 1983;5(3):107-110. Does not meet criteria for eligibility.

Strange R C, Hoban P, Salim A. Skin cancer and exposure to sunlight, polycyclic aromatic hydrocarbons, and arsenic. Clinics in Occupational & Environmental Medicine 2002;2(4):803-828. Does not meet criteria for eligibility.

Summers G D. Osteoporosis in men. Radiography 2001;7(2):119-123. Does not meet criteria for eligibility.

Swindells K, Rhodes L E. Influence of oral antioxidants on ultraviolet radiation-induced skin damage in humans. Photodermatol Photoimmunol Photomed 2004;20(6):297-304. Does not meet criteria for eligibility.

Takeda E, [Reprint author], Yokota I et al. Effect of long-term treatment with massive doses of 1alpha hydroxyvitamin d-3 on calcium phosphate balance in patients with vitamin d-dependent rickets TYPE II. Nippon Shonika Gakkai Zasshi 1990;32(1):39-43. Does not meet criteria for eligibility.

Takeda E, Takata K, Yamanaka H et al. Vitamin D3 elicits calcium response and activates blood monocyte-derived macrophages from patients with vitamin D dependent rickets type II. FEBS Lett 1996;396(2-3):157-160. Does not meet criteria for eligibility.

Tangpricha V, Flanagan J N, Whitlatch L W et al. 25-hydroxyvitamin D-1alpha-hydroxylase in normal and malignant colon tissue. Lancet 2001;357(9269):1673-1674. Does not meet criteria for eligibility.

Tannenbaum C, Clark J, Schwartzman K et al. Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women.[see comment]. Journal of Clinical Endocrinology & Metabolism 2002;87(10):4431-4437. Does not meet criteria for eligibility. Tauber C, Noff D, Noff M et al. Blood levels of active metabolites of vitamin D3 in fracture repair in humans. A preliminary report. Archives of Orthopaedic & Trauma Surgery 1990;109(5):265-267. Does not meet criteria for eligibility.

Terenetskaya I. Two methods for direct assessment of the Vitamin D synthetic capacity of sunlight and artificial UV sources. Journal of Steroid Biochemistry & Molecular Biology 2004;89-90623-626. Does not meet criteria for eligibility.

Terris S. Calcium plus vitamin D and the risk of fractures.[comment]. N Engl J Med 2006;354(21):2285-2287. Does not meet criteria for eligibility.

Thacher T D, Fischer P R, Pettifor J M et al. Nutritional rickets in ichthyosis and response to calcipotriene. Pediatrics 2004;114(1):e119-e123. Does not meet criteria for eligibility.

Thacher T, Glew R H, Isichei C et al. Rickets in Nigerian children: response to calcium supplementation.[erratum appears in J Trop Pediatr 2000 Feb;46(1):62]. J Trop Pediatr 1999;45(4):202-207. Does not meet criteria for eligibility.

Thiedke C C. Menopause. Clinics in Family Practice 2002;4(4):985-1003. Does not meet criteria for eligibility.

Thomas M K, Lloyd-Jones D M, Thadhani R I et al. Hypovitaminosis D in medical inpatients.[see comment]. N Engl J Med 1998;338(12):777-783. Does not meet criteria for eligibility.

Thu B D, Schultink W, Dillon D et al. Effect of daily and weekly micronutrient supplementation on micronutrient deficiencies and growth in young Vietnamese children. Am J Clin Nutr 1999;69(1):80-86. Does not meet criteria for eligibility.

Thys-Jacobs S, Alvir M J. Calcium-regulating hormones across the menstrual cycle: evidence of a secondary hyperparathyroidism in women with PMS. Journal of Clinical Endocrinology & Metabolism 1995;80(7):2227-2232. Does not meet criteria for eligibility. Tilyard M. Low-dose calcitriol versus calcium in established postmenopausal osteoporosis. Metabolism: Clinical & Experimental 1990;39(4 Suppl 1):50-52. Does not meet criteria for eligibility.

Tilyard M W. 1,25-dihydroxyvitamin D3 (calcitriol) in the treatment of postmenopausal osteoporosis. Aktuelle Rheumatologie 1994;19(SUPPL. 1):23-26. Does not meet criteria for eligibility.

Tiwari L, Puliyel J M. Vitamin D level in slum children of Delhi [9]. Indian Pediatr 2004;41(10):1076-1077. Does not meet criteria for eligibility.

Toivonen J, Tahtela R, Laitinen K et al. Markers of bone turnover in patients with differentiated thyroid cancer with and following withdrawal of thyroxine suppressive therapy. Eur J Endocrinol 1998;138(6):667-673. Does not meet criteria for eligibility.

Torgerson D J, Kanis J A. Cost-effectiveness of preventing hip fractures in the elderly population using vitamin D and calcium. QJM 1995;88(2):135-139. Does not meet criteria for eligibility.

Torgerson D, Donaldson C, Reid D. Using economics to prioritize research: a case study of randomized trials for the prevention of hip fractures due to osteoporosis. Journal of Health Services & Research Policy 1996;1(3):141-146. Does not meet criteria for eligibility.

Toss G, Almqvist S, Larsson L et al. Vitamin D deficiency in welfare institutions for the aged. Acta Med Scand 1980;208(1-2):87-89. Does not meet criteria for eligibility.

Tsai K S, Heath H, Kumar R et al. Impaired vitamin D metabolism with aging in women. Possible role in pathogenesis of senile osteoporosis. Eur J Clin Invest 1984;73(6):1668-1672. Does not meet criteria for eligibility.

Tucker K L, Hannan M T, Chen H et al. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 1999;69(4):727-736. Does not meet criteria for eligibility. Tuppurainen M, Heikkinen A M, Penttila I et al. Does vitamin D3 have negative effects on serum levels of lipids? A follow-up study with a sequential combination of estradiol valerate and cyproterone acetate and/or vitamin D3. Maturitas 1995;22(1):55-61. Does not meet criteria for eligibility.

Tylavsky F A, Cheng S, Lyytikainen A et al. Strategies to improve vitamin D status in northern European children: exploring the merits of vitamin D fortification and supplementation. Br J Nutr 2006;136(4):1130-1134. Does not meet criteria for eligibility.

Tylavsky F A, Holliday K, Danish R et al. Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am J Clin Nutr 2004;79(2):311-317. Does not meet criteria for eligibility.

Ubara Y, Katori H, Tagami T et al. Severe ectopic calcification of the intestinal wall in a patient on long-term continuous ambulatory peritoneal dialysis therapy. Am J Kidney Dis 2000;35(4):761-766. Does not meet criteria for eligibility.

Utiger R D. The need for more vitamin D.[comment]. N Engl J Med 1998;338(12):828-829. Does not meet criteria for eligibility.

Valimaki V V, Alfthan H, Ivaska K K et al. Serum estradiol, testosterone, and sex hormonebinding globulin as regulators of peak bone mass and bone turnover rate in young Finnish men. Journal of Clinical Endocrinology & Metabolism 2004;89(8):3785-3789. Does not meet criteria for eligibility.

Valimaki V V, Alfthan H, Lehmuskallio E et al. Risk factors for clinical stress fractures in male military recruits: a prospective cohort study. Bone 2005;37(2):267-273. Does not meet criteria for eligibility.

Vasquez A. Health care for our bones: A practical nutritional approach to preventing osteoporosis. Journal of Manipulative & Physiological Therapeutics 2005;. 28(3):. Does not meet criteria for eligibility.

Vasquez A, Cannell J. Calcium and vitamin D in preventing fractures: data are not sufficient to show inefficacy.[comment]. BMJ 2005;331(7508):108-109. Does not meet criteria for eligibility.

Vasudevan A R, Raju J M, Ganesh A et al. Symptomatic hypercalcaemia due to vitamin D intoxication. J Assoc Physicians India 1991;39(12):972. Does not meet criteria for eligibility.

Venning G. Recent developments in vitamin D deficiency and muscle weakness among elderly people. Br Med J 2005;330(7490):524-526. Does not meet criteria for eligibility.

Verge C F, Lam A, Simpson J M et al. Effects of therapy in X-linked hypophosphatemic rickets.[see comment]. N Engl J Med 1991;325(26):1843-1848. Does not meet criteria for eligibility.

Verhaar H J, Samson M M, Jansen P A et al. Muscle strength, functional mobility and vitamin D in older women.[see comment]. Aging-Clinical & Experimental Research 2000;12(6):455-460. Does not meet criteria for eligibility.

Verhage A H, Cheong W K, Allard J P et al. Harry M. Vars Research Award. Increase in lumbar spine bone mineral content in patients on long-term parenteral nutrition without vitamin D supplementation. Jpen: Journal of Parenteral & Enteral Nutrition 1995;19(6):431-436. Does not meet criteria for eligibility.

Vezzoli G, Soldati L, Arcidiacono T et al. Urinary calcium is a determinant of bone mineral density in elderly men participating in the InCHIANTI study. Kidney Int 2005;. 67(5):. Does not meet criteria for eligibility.

Vieth R. Why the optimal requirement for Vitamin D3 is probably much higher than what is officially recommended for adults. [Review] [62 refs]. Journal of Steroid Biochemistry & Molecular Biology 2004;89-90(1-5):575-579. Does not meet criteria for eligibility.

Waele B D, Smitz J, Willems G. Recurrent pancreatitis secondary to hypercalcemia following vitamin D poisoning. Pancreas 1989;4(3):378-380. Does not meet criteria for eligibility.

Wagman R B, Marcus R. Beyond bone mineral density-navigating the laboratory assessment of

patients with osteoporosis.[comment]. Journal of Clinical Endocrinology & Metabolism 2002;87(10):4429-4430. Does not meet criteria for eligibility.

Wang L Y, Hung H Y, Hsu C H et al. Congenital rickets--a patient report. J Pediatr Endocrinol 1997;10(4):437-441. Does not meet criteria for eligibility.

Weaver C M, Fleet J C. Vitamin D requirements: current and future.[erratum appears in Am J Clin Nutr. 2005 Mar;81(3):729]. [Review] [36 refs]. Am J Clin Nutr 2004;80(6 Suppl):1735S-1739S. Does not meet criteria for eligibility.

Wei G S, Jackson J L, Herbers J E. Ethnic disparity in the treatment of women with established low bone mass. Journal of the American Medical Womens Association 2003;58(3):173-177. Does not meet criteria for eligibility.

Weinstock M A, Lazovich D. Tanning and vitamin D status. Tangpricha V, Turner A, Spina C et al. Tanning is associated with optimal vitamin D status (serum 25-hydroxyvitamin D concentration) and higher bone mineral density. Am J Clin Nutr 0204;80:1645-9. Am J Clin Nutr 2005;82(3):707. Does not meet criteria for eligibility.

Weinstock-Guttman B, Gallagher E, Baier M et al. Risk of bone loss in men with multiple sclerosis. Mult Scler 2004;10(2):170-175. Does not meet criteria for eligibility.

Weisman Y. Osteoporosis and vitamin D deficiency in Israel. Public Health Rev 2000;28(1-4):59-65. Does not meet criteria for eligibility.

Weisman Y. Vitamin D deficiency rickets and osteomalacia in Israel. Israel Medical Association Journal: Imaj 2003;5(4):289-290. Does not meet criteria for eligibility.

Weisman Y, Salama R, Harell A et al. Serum 24,25-dihydroxyvitamin D and 25hydroxyvitamin D concentrations in femoral neck fracture. Br Med J 1978;2(6146):1196-1197. Does not meet criteria for eligibility.

White D. Vitamin D prevents falls in the elderly. Evidence-Based Practice 2005;8(1):1-2, 8, 2p. Does not meet criteria for eligibility. Willett A M. Vitamin D status and its relationship with parathyroid hormone and bone mineral status in older adolescents. Proc Nutr Soc 2005;. 64(2):. Does not meet criteria for eligibility.

Willig R, Jalovaara P. Effect of age on some blood variables relating to bone metabolism in women. Int J Surg Investig 2000;1(6):495-502. Does not meet criteria for eligibility.

Willis M S. The health economics of calcium and vitamin D3 for the prevention of osteoporotic hip fractures in Sweden. Int J Technol Assess Health Care 2002;18(4):791-807. Does not meet criteria for eligibility.

Wilz D R, Gray R W, Dominguez J H et al. Plasma 1,25-(OH)2-vitamin D concentrations and net intestinal calcium, phosphate, and magnesium absorption in humans. Am J Clin Nutr 1979;32(10):2052-2060. Does not meet criteria for eligibility.

Woitge H W, Knothe A, Witte K et al. Circaannual rhythms and interactions of vitamin D metabolites, parathyroid hormone, and biochemical markers of skeletal homeostasis: a prospective study. Journal of Bone & Mineral Research 2000;15(12):2443-2450. Does not meet criteria for eligibility.

Wong P K, Spencer D G, McElduff P et al. Secondary screening for osteoporosis in patients admitted with minimal-trauma fracture to a major teaching hospital. Intern Med J 2003;33(11):505-510. Does not meet criteria for eligibility.

Wooltorton E. Too much of a good thing? Toxic effects of vitamin and mineral supplements. CMAJ: Canadian Medical Association Journal 2003;169(1):47-48. Does not meet criteria for eligibility.

Xu L, McElduff P, D'Este C et al. Does dietary calcium have a protective effect on bone fractures in women? A meta-analysis of observational studies.[see comment]. [Review] [45 refs]. Br J Nutr 2004;91(4):625-634. Does not meet criteria for eligibility.

Yanoff L B, Parikh S J, Spitalnik A et al. The prevalence of hypovitaminosis D and secondary

hyperparathyroidism in obese Black Americans. Clin Endocrinol (Oxf) 2006;64(5):523-529. Does not meet criteria for eligibility.

Yoon H K, Kim S W, Yim C H et al. Metabolic characteristics and prevalence of osteoporosis among women in Tae-An area. J Korean Med Sci 2001;16(3):323-327. Does not meet criteria for eligibility.

Yoshida T, Monkawa T, Tenenhouse H S et al. Two novel 1alpha-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I1.[see comment]. Kidney Int 1998;54(5):1437-1443. Does not meet criteria for eligibility.

Young G, Marcus R, Minkoff J R et al. Agerelated rise in parathyroid hormone in man: the use of intact and midmolecule antisera to distinguish hormone secretion from retention. Journal of Bone & Mineral Research 1987;2(5):367-374. Does not meet criteria for eligibility.

Young R, May H, Murphy S et al. Rates of bone loss in peri- and postmenopausal women: a 4 year, prospective, population-based study. Clin Sci 1996;91(3):307-312. Does not meet criteria for eligibility.

Zadshir A, Tareen N, Pan D et al. The prevalence of hypovitaminosis D among US adults: data from the NHANES III. Ethn Dis 2005;15(4 Suppl 5):S5-101. Does not meet criteria for eligibility.

Zambrano Marlene, Nikitakis Nikolaos G, Sanchez-Quevedo M et al. Oral and dental manifestations of vitamin D-dependent rickets type I: Report of a pediatric case. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, & Endodontics 2003;95(6):705-709. Does not meet criteria for eligibility.

Zargar A H, Mithal A, Wani A I et al. Pseudovitamin D deficiency rickets--a report from the Indian subcontinent. Postgrad Med J 2000;76(896):369-372. Does not meet criteria for eligibility.

Zasloff M. Sunlight, vitamin D, and the innate immune defenses of the human skin. J Invest Dermatol 2005;125(5):xvi-xvii. Does not meet criteria for eligibility. Zeimer H. Re: Vitamin D for older people: How much, for whom and - Above all - Why? [7]. Age & Ageing 2006;35(1):98. Does not meet criteria for eligibility.

Zhao D H, Xue Q B, Xue Y. Serum 25-OHD levels in maternal and cord blood in Beijing, China. Acta Paediatr Scand 1990;79(12):1240-1241. Does not meet criteria for eligibility.

Zimmermann B, Dorr H G, Muller W et al. Maternal administration of high dose vitamin D3 for cerebral palsy in her child. Eur J Pediatr 2004;163(4-5):279-280. Does not meet criteria for eligibility.

Zittermann A. Serum 25-hydroxyvitamin D response to oral vitamin D intake in children.[comment]. Am J Clin Nutr 2003;78(3):496-497. Does not meet criteria for eligibility.

Zittermann A, Dembinski J, Stehle P. Low vitamin D status is associated with low cord blood levels of the immunosuppressive cytokine interleukin-10. Pediatric Allergy & Immunology 2004;15(3):242-246. Does not meet criteria for eligibility.

Zofkova I, Kancheva R L. The effect of 1,25(OH)2 vitamin D3 on CD4+/CD8+ subsets of T lymphocytes in postmenopausal women. Life Sci 1997;61(2):147-152. Does not meet criteria for eligibility.

Appendix J. List of Excluded Studies on the Basis Study Design (Level 3 screening)

Note: the following list of studies was excluded from the evidence synthesis on the basis of study design as determined by pre-set criteria for each key question.

Abdul-Motaal A, Gettinby G, McIntosh W B et al. Relationships between radiological and biochemical evidence of rickets in Asian schoolchildren. Postgrad Med J 1985;61(714):307-312.

Abrams S A, Copeland K C, Gunn S K et al. Calcium absorption and kinetics are similar in 7- and 8-yearold Mexican-American and Caucasian girls despite hormonal differences. Br J Nutr 1999;129(3):666-671.

Abrams S A, Griffin I J, Hawthorne K M et al. Relationships among vitamin D levels, parathyroid hormone, and calcium absorption in young adolescents. J Clin Endocrinol Metab 2005;90(10):5576-5581.

Abrams S A, Grusak M A, Stuff J et al. Calcium and magnesium balance in 9-14-y-old children. Am J Clin Nutr 1997;66(5):1172-1177.

Adams J S, Lee G. Gains in bone mineral density with resolution of vitamin D intoxication.. Ann Intern Med 1997;127(3):203-206.

Adams J S, Kantorovich V, Wu C et al. Resolution of vitamin D insufficiency in osteopenic patients results in rapid recovery of bone mineral density. J Clin Endocrinol Metab 1999;84(8):2729-2730.

Agarwal K S, Mughal M Z, Upadhyay P et al. The impact of atmospheric pollution on vitamin D status of infants and toddlers in Delhi, India. Arch Dis Child 2002;87(2):111-113.

Al Arabi K M, Elidrissy A W, Sedrani S H. Is avoidance of sunlight a cause of fractures of the femoral neck in elderly Saudis? Tropical & Geographical Medicine 1984;36(3):273-279.

Al Faraj S, Al Mutairi K. Vitamin D deficiency and chronic low back pain in Saudi Arabia. Spine 2003;28(2):177-179.

Al Jurayyan N A, El Desouki M E, Al Herbish A S et al. Nutritional rickets and osteomalacia in school

children and adolescents. Saudi Med J 2002;23(2):182-185.

Ala-Houhala M, Koskinen T, Parviainen M T et al. 25-Hydroxyvitamin D and vitamin D in human milk: effects of supplementation and season. Am J Clin Nutr 1988;48(4):1057-1060.

Alagol F, Shihadeh Y, Boztepe H et al. Sunlight exposure and vitamin D deficiency in Turkish women. J Endocrinol Invest 2000;23(3):173-177.

Albanese C V, Civitelli R, Tibollo F G et al. Endocrine and physical determinants of bone mass in late postmenopause. Exp Clin Endocrinol Diabetes 1996;104(3):263-270.

Aloia J F, Vaswani A N, Yeh J K et al. Determinants of bone mass in postmenopausal women. Arch Intern Med 1983;143(9):1700-1704.

Andersen R, Molgaard C, Skovgaard L T et al. Teenage girls and elderly women living in northern europe have low winter vitamin D status. Eur J Clin Nutr 2005;59(4):e-pub ahead of print

Anderson D M, Hollis B W, LeVine B R et al. Dietary assessment of maternal vitamin D intake and correlation with maternal and neonatal serum vitamin D concentrations at delivery. Am J Perinatol 1988;8(1):46-48.

Andiran N, Yordam N, Ozon A. Risk factors for vitamin D deficiency in breast-fed newborns and their mothers. Adv Nutr Res 2002;18(1):47-50.

Ardawi M S, Nasra H A N, Ba'aqueel H S M et al. Vitamin D status and calcium-regulating hormones in Saudi pregnant females and their babies: A crosssectional study. Saudi Med J 1997;18(1):15-24.

Arnaud S B, Matthusen M, Gilkinson J B et al. Components of 25-hydroxyvitamin D in serum of young children in upper midwestern United States. Am J Clin Nutr 1977;30(7):1082-1086. Arunabh S, Pollack S, Yeh J et al. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab 2003;88(1):157-161.

Arya V, Bhambri R, Godbole M M et al. Vitamin D status and its relationship with bone mineral density in healthy Asian Indians. Osteoporos Int 2004;15(1):56-61.

Atiq M, Suria A, Nizami S Q et al. Vitamin D status of breastfed Pakistani infants. Acta Paediatr 1998;87(7):737-740.

Atli T, Gullu S, Uysal A R et al. The prevalence of Vitamin D deficiency and effects of ultraviolet light on Vitamin D levels in elderly Turkish population. Arch Gerontol Geriatr 2005;40(1):53-60.

Awumey E M, Mitra D A, Hollis B W et al. Vitamin D metabolism is altered in Asian Indians in the southern United States: a clinical research center study. J Clin Endocrinol Metab 1998;83(1):169-173.

Bahijri S M. Serum 25-hydroxy cholecalciferol in infants and preschool children in the Western region of Saudi Arabia. Etiological factors. Saudi Med J 2001;22(11):973-979.

Baker M R, McDonnell H, Peacock M et al. Plasma 25-hydroxy vitamin D concentrations in patients with fractures of the femoral neck. Br Med J 1979;1(6163):589

Barger-Lux M J, Heaney R P. Effects of above average summer sun exposure on serum 25hydroxyvitamin D and calcium absorption. J Clin Endocrinol Metab 2002;87(11):4952-4956.

Barger-Lux M J, Heaney R P, Dowell S et al. Vitamin D and its major metabolites: serum levels after graded oral dosing in healthy men. Osteoporos Int 1998;8(3):222-230.

Barth J, Gerlach B, Knuschke P et al. Serum 25(OH)D3 and ultraviolet exposure of residents in an old people's home in Germany. Photodermatol Photoimmunol Photomed 1992;9(5):229-231.

Bassir M, Laborie S, Lapillonne A et al. Vitamin D deficiency in Iranian mothers and their neonates: a pilot study. Acta Paediatr 2001;90(5):577-579.

Bates C J, Carter G D, Mishra G D et al. In a population study, can parathyroid hormone aid the definition of adequate vitamin D status? A study of people aged 65 years and over from the British

National Diet and Nutrition Survey. Osteoporos Int 2003;14(2):

Bell N H. 25-Hydroxyvitamin D3 reverses alteration of the vitamin D-endocrine system in blacks.[erratum appears in Am J Med 1996 Aug;101(2):239]. Am J Med 1995;99(6):597-599.

Benucci A, Tommasi M, Fantappie B et al. Serum 25-hydroxyvitamin D levels in normal subjects: seasonal variations and relationships with parathyroid hormone and osteocalcin. J Nucl Biol Med 1993;37(2):77-82.

Berlin T, Emtestam L, Bjorkhem I. Studies on the relationship between vitamin D3 status and urinary excretion of calcium in healthy subjects: effects of increased levels of 25-hydroxyvitamin D3. Scand J Clin Lab Invest 1986;46(8):723-729.

Bettica P, Bevilacqua M, Vago T et al. High prevalence of hypovitaminosis D among free-living postmenopausal women referred to an osteoporosis outpatient clinic in northern Italy for initial screening. Osteoporos Int 1999;9(3):226-229.

Bhattoa H P, Bettembuk P, Ganacharya S et al. Prevalence and seasonal variation of hypovitaminosis D and its relationship to bone metabolism in community dwelling postmenopausal Hungarian women. Osteoporos Int 2004;15(6):447-451.

Bikle D D, Ettinger B, Sidney S et al. Differences in calcium metabolism between black and white men and women. Miner Electrolyte Metab 1999;25(3):178-184.

Bischoff H A, Stahelin H B, Tyndall A et al. Relationship between muscle strength and vitamin D metabolites: are there therapeutic possibilities in the elderly? Z Rheumatol 2000;59(Suppl 1):39-41.

Bischoff H A, Stahelin H B, Urscheler N et al. Muscle strength in the elderly: its relation to vitamin D metabolites. Arch Phys Med RehabilArch Phys Med Rehabil 1999;80(1):54-58.

Bischoff H, Stahelin H B, Vogt P et al. Immobility as a major cause of bone remodeling in residents of a long-stay geriatric ward. Calcif Tissue Int 1999;64(6):485-489.

Bischoff-Ferrari H A, Dietrich T, Orav E J et al. Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 2004;116(9):634-639.

Bischoff-Ferrari H A, Dietrich T, Orav E J et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged greater than or equal to 60 y. Am J Clin Nutr 2004;80(3):752-758.

Bischoff-Ferrari H A, Orav J E, Dawson-Hughes B. Effect of Vitamin D3 plus calcium on fall risk in older men and women: a 3-year randomized controlled trial. ASBMR 26th Annual Meeting 2004;Concurrent Oral : Osteoporosis: Treatment II : 10/5/2004 (Abstract #1221).

Blain H, Vuillemin A, Guillemin F et al. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab 2002;87(3):1030-1035.

Blank S, Scanlon K S, Sinks T H et al. An outbreak of hypervitaminosis D associated with the overfortification of milk from a home-delivery dairy. Am J Public Health 1995;85(5):656-659.

Blok B H, Grant C C, McNeil A R et al. Characteristics of children with florid vitamin D deficient rickets in the Auckland region in 1998. N Z Med J 2000;113(1117):374-376.

Blumsohn A, Naylor K E, Timm W et al. Absence of Marked Seasonal Change in Bone Turnover: A Longitudinal and Multicenter Cross-Sectional Study. J Bone Miner Res 2003;18(7):1274-1281.

Bolland M J, Grey A B, Ames R W et al. Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone 2006;38(3):317-321.

Boonen S, Cheng X G, Nijs J et al. Factors associated with cortical and trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int 1997;60(2):164-170.

Boonen S, Lesaffre E, Aerssens J et al. Deficiency of the growth hormone-insulin-like growth factor-I axis potentially involved in age-related alterations in body composition.[see comment]. Gerontology 1996;42(6):330-338.

Boonen S, Lesaffre E, Dequeker J et al. Relationship between baseline insulin-like growth factor-I (IGF-I) and femoral bone density in women aged over 70 years: potential implications for the prevention of age-related bone loss. J Am Geriatr Soc 1996;44(11):1301-1306.

Boonen S, Nicholson P H, Lowet G et al. Determinants of age-associated changes in os calcis ultrasonic indices in elderly women: potential involvement of geriatric hyposomatotropism in bone fragility. Age & Ageing 1997;26(2):139-146.

Booth S L, Tucker K L, McKeown N M et al. Relationships between dietary intakes and fasting plasma concentrations of fat-soluble vitamins in humans. Br J Nutr 1997;127(4):587-592.

Bouillon R A, Auwerx J H, Lissens W D et al. Vitamin D status in the elderly: seasonal substrate deficiency causes 1,25-dihydroxycholecalciferol deficiency. Am J Clin Nutr 1987;45(4):755-763.

Brazerol W F, McPhee A J, Mimouni F et al. Serial ultraviolet B exposure and serum 25 hydroxyvitamin D response in young adult American blacks and whites: no racial differences. J Am Coll Nutr 1988;7(2):111-118.

Brazier M, Kamel S, Maamer M et al. Markers of bone remodeling in the elderly subject: effects of vitamin D insufficiency and its correction. J Bone Miner Res 1995;10(11):1753-1761.

Brock K, Wilkinson M, Cook R et al. Associations with Vitamin D deficiency in "at risk" Australians. J Steroid Biochem Mol Biol 2004;89-90(1-5):581-588.

Brooke O G, Brown I R, Cleeve H J et al. Observations on the vitamin D state of pregnant Asian women in London. Br J Obstet Gynaecol 1981;88(1):18-26.

Brot C, Jorgensen N, Madsen O R et al. Relationships between bone mineral density, serum vitamin D metabolites and calcium:phosphorus intake in healthy perimenopausal women. J Intern Med 1999;245(5):509-516.

Brot C, Vestergaard P, Kolthoff N et al. Vitamin D status and its adequacy in healthy Danish perimenopausal women: relationships to dietary intake, sun exposure and serum parathyroid hormone. Br J Nutr 2001;86 Suppl 1S97-103.

Brown I R, Bakowska A, Millard P H. Vitamin D status of patients with femoral neck fractures. Age & Ageing 1976;5(3):127-131.

Bruce D G, St John A, Nicklason F et al. Secondary hyperparathyroidism in patients from Western Australia with hip fracture: relationship to type of hip fracture, renal function, and vitamin D deficiency. J Am Geriatr Soc 1999;47(3):354-359.

Brustad M, Alsaker E, Engelsen O et al. Vitamin D status of middle-aged women at 65-71 degrees N in relation to dietary intake and exposure to ultraviolet radiation. Public Health Nutr 2004;7(2):327-335.

Brustad M, Sandanger T, Aksnes L et al. Vitamin D status in a rural population of northern Norway with high fish liver consumption. Public Health Nutr 2004;7(6):783-789.

Brustad M, Sandanger T, Wilsgaard T et al. Change in plasma levels of vitamin D after consumption of cod-liver and fresh cod-liver oil as part of the traditional north Norwegian fish dish "Molje". Int J Circumpolar Health 2003;62(1):40-53.

Budak N, Cicek B, Sahin H et al. Bone mineral density and serum 25-hydroxyvitamin D level: Is there any difference according to the dressing style of the female university students. Int J Food Sci Nutr 2004;55(7):569-575.

Burnand B, Sloutskis D, Gianoli F et al. Serum 25hydroxyvitamin D: distribution and determinants in the Swiss population. Am J Clin Nutr 1992;56(3):537-542.

Cancela L, Le Boulch N, Miravet L. Relationship between the vitamin D content of maternal milk and the vitamin D status of nursing women and breast-fed infants. Rom J Endocrinol 1986;110(1):43-50.

Cankurtaran M, Yavuz B B, Halil M et al. General characteristics, clinical features and related factors of osteoporosis in a group of elderly Turkish men. Aging Clin Exp Res 2005;17(2):108-115.

Canto-Costa M H S, Kunii I, Hauache O M. Body fat and cholecalciferol supplementaion in elderly homebound individuals. Braz J Med Biol Res 2006;39(1):91-98.

Carnevale V, Modoni S, Pileri M et al. Longitudinal evaluation of vitamin D status in healthy subjects from southern Italy: seasonal and gender differences. Osteoporos Int 2001;12(12):1026-1030.

Center J R, Nguyen T V, Sambrook P N et al. Hormonal and biochemical parameters and osteoporotic fractures in elderly men. J Bone Miner Res 2000;15(7):1405-1411.

Center J R, Nguyen T V, Sambrook P N et al. Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J Clin Endocrinol Metab 1999;84(10):3626-3635.

Challa A, Ntourntoufi A, Cholevas V et al. Breastfeeding and vitamin D status in Greece during the first 6 months of life. Eur J Pediatr 2005;164(12):724-729.

Chapuy M C, Chapuy P, Meunier P J. Calcium and vitamin D supplements: effects on calcium metabolism in elderly people. Am J Clin Nutr 1987;46(2):324-328.

Chapuy M C, Chapuy P, Thomas J L et al. Biochemical effects of calcium and vitamin D supplementation in elderly, institutionalized, vitamin D-deficient patients. Revue du Rhumatisme (English Edition) 1996;63(2):135-140.

Chapuy M C, Preziosi P, Maamer M et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 1997;7(5):439-443.

Chapuy M C, Schott A M, Garnero P et al. Healthy elderly French women living at home have secondary hyperparathyroidism and high bone turnover in winter. EPIDOS Study Group. J Clin Endocrinol Metab 1996;81(3):1129-1133.

Charlton K E, Labadarios D, Lombard C J et al. Vitamin D status of older South Africans. S Afr Med J 1996;86(11):1406-1410.

Cheng S, Tylavsky F, Kroger H et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 2003;78(3):485-492.

Chesney R W, Rosen J F, Hamstra A J et al. Absence of seasonal variation in serum concentrations of 1,25dihydroxyvitamin D despite a rise in 25hydroxyvitamin D in summer. J Clin Endocrinol Metab 1981;53(1):139-142.

Cheung E Y, Ho A Y, Lam K F et al. Determinants of bone mineral density in Chinese men. Osteoporos Int 2005;16(12):1481-1486.

Chuck A, Todd J, Diffey B. Subliminal ultraviolet-B irradiation for the prevention of vitamin D deficiency in the elderly: a feasibility study. Photodermatol Photoimmunol Photomed 2001;17(4):168-171.

Cieslukowski Z, Lorenc R S, Lukaszkiewicz J. Insolation effect on vitamin D supply in children during sanatorium treatment. Acta Physiol Pol 1984;35(4):373-381.

Cockburn F, Belton N R, Purvis R J et al. Maternal vitamin D intake and mineral metabolism in mothers and their newborn infants. Br Med J 1980;281(6232):11-14.

Collins D, Jasani C, Fogelman I et al. Vitamin D and bone mineral density. Osteoporos Int 1998;8(2):110-114.

Congdon P, Horsman A, Kirby P A et al. Mineral content of the forearms of babies born to Asian and white mothers. Br Med J (Clin Res Ed) 1983;286(6373):1233-1235.

Corless D, Gupta S P, Sattar D A et al. Vitamin D status of residents of an old people's home and long-stay patients. Gerontology 1979;25(6):350-355.

Corless D, Gupta S P, Switala S et al. Response of plasma-25-hydroxyvitamin D to ultraviolet irradiation in long-stay geriatric patients. Lancet 1978;2(8091):649-651.

Corstens F, Kerremans A, Claessens R. Resolution of massive technetium-99m methylene diphosphonate uptake in the stomach in vitamin D intoxication. Eur J Nucl Med 1986;27(2):219-222.

Crocombe S, Mughal M Z, Berry J L. Symptomatic vitamin D deficiency among non-Caucasian adolescents living in the United Kingdom. Arch Dis Child 2004;89(2):197-199.

Cumming R G, Cummings S R, Nevitt M C et al. Calcium intake and fracture risk: results from the study of osteoporotic fractures. Am J Epidemiol 1997;145(10):926-934.

Cummings SR. Endogenous Hormones and the Risk of Hip and Vertebral Fractures Among Older Women. N Engl J Med 2006;339(11):733-738.

D'Amore M, Cantatore F P, Carrozzo M et al. Serum 25(OH)D3 in the Apulian population (Southern Italy). Epidemiologic study. Panminerva Med 1984;26(4):287-289.

Dabek J T. Plasma profile of hydroxylated vitamin D metabolites: methods and results in normals for spring-winter in Southern Finland. Ann Clin Res 1980;12(1):17-24.

Dagnelie P C, Vergote F J, van Staveren W A et al. High prevalence of rickets in infants on macrobiotic diets. Am J Clin Nutr 1990;51(2):202-208.

Dattani J T, Exton-Smith A N, Stephen J M. Vitamin D status of the elderly in relation to age and exposure to sunlight. Hum Nutr Clin Nutr 1984;38(2):131-137.

Davie M, Lawson D E. Assessment of plasma 25hydroxyvitamin D response to ultraviolet irradiation over a controlled area in young and elderly subjects. Clin Sci 1980;58(3):235-242.

Davies D M. Calcium metabolism in healthy men deprived of sunlight. Ann N Y Acad Sci 1985;453:21-27.

Davies M, Mawer E B, Hann J T et al. Seasonal changes in the biochemical indices of vitamin D deficiency in the elderly: a comparison of people in residential homes, long-stay wards and attending a day hospital. Age & Ageing 1986;15(2):77-83.

Davies P S, Bates C J, Cole T J et al. Vitamin D: seasonal and regional differences in preschool children in Great Britain.. Eur J Clin Nutr 1999;53(3):195-198.

Dawodu A, Absood G, Patel M et al. Biosocial factors affecting vitamin D status of women of childbearing age in the United Arab Emirates. J Biosoc Sci 1998;30(4):431-437.

Dawodu A, Agarwal M, Hossain M et al. Hypovitaminosis D and vitamin D deficiency in exclusively breast-feeding infants and their mothers in summer: a justification for vitamin D supplementation of breast-feeding infants. Eur J Pediatr 2003;142(2):169-173.

Dawodu A, Dawson K P, Amirlak I et al. Diet, clothing, sunshine exposure and micronutrient status of Arab infants and young children. Ann Trop Paediatr 2001;21(1):39-44.

Dawson-Hughes B, Harris S S, Dallal G E. Plasma calcidiol, season, and serum parathyroid hormone concentrations in healthy elderly men and women. Am J Clin Nutr 1997;65(1):67-71.

Dawson-Hughes B, Harris S S, Krall E A et al. Effect of withdrawal of calcium and vitamin D supplements on bone mass in elderly men and women. Am J Clin Nutr 2000;72(3):745-750.

DeLucia M C, Mitnick M E, Carpenter T O. Nutritional rickets with normal circulating 25hydroxyvitamin D: a call for reexamining the role of dietary calcium intake in North American infants. J Clin Endocrinol Metab 2003;88(8):3539-3545.

Delvin E E, Imbach A, Copti M. Vitamin D nutritional status and related biochemical indices in an autonomous elderly population. Am J Clin Nutr 1988;48(2):373-378.

Delvin E E, Salle B L, Claris O et al. Oral vitamin A, E and D supplementation of pre-term newborns either breast-fed or formula-fed: A 3-month longitudinal study. J Pediatr Gastroenterol Nutr 2005;40(1):43-47.

Devgun M S, Johnson B E, Paterson C R. Ultraviolet radiation, weather and the blood levels of 25hydroxyvitamin D. Clin Physiol Biochem 1983;1(6):300-304.

Devine A, Wilson S G, Dick I M et al. Effects of vitamin D metabolites on intestinal calcium absorption and bone turnover in elderly women. Am J Clin Nutr 2002;75(2):283-288.

Dhesi J K, Bearne L M, Moniz C et al. Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status. J Bone Miner Res 2002;17(5):891-897.

Dhesi J K, Moniz C, Close J C et al. A rationale for vitamin D prescribing in a falls clinic population.. Age & Ageing 2002;31(4):267-271.

Di Monaco M, Vallero F, Di Monaco R et al. 25hydroxyvitamin D, parathyroid hormone, and functional recovery after hip fracture in elderly patients. J Bone Miner Metab 2006;24(1):42-47.

Diamond T H, Ho K W, Rohl P G et al. Annual intramuscular injection of a megadose of cholecalciferol for treatment of vitamin D deficiency: Efficacy and safety data. Med J Aust 2005;183(1):1-4.

Diamond T H, Levy S, Smith A et al. High bone turnover in Muslim women with vitamin D deficiency. Med J Aust 2002;177(3):139-141. Dibba B, Prentice A, Laskey M A et al. An investigation of ethnic differences in bone mineral, hip axis length, calcium metabolism and bone turnover between West African and Caucasian adults living in the United Kingdom. Ann Hum Biol 1999;26(3):229-242.

Dirschl D R, Henderson R C, Oakley W S. Correlates of bone mineral density in elderly patients with hip fractures. J Orthop Trauma 1995;9(6):470-475.

Dlugos D J, Perrotta P L, Horn W G. Effects of the submarine environment on renal-stone risk factors and vitamin D metabolism. Undersea Hyperb Med 1995;22(2):145-152.

Docio S, Riancho J A, Perez A et al. Seasonal deficiency of vitamin D in children: a potential target for osteoporosis-preventing strategies? J Bone Miner Res 1998;13(4):544-548.

Du X, Greenfield H, Fraser D R et al. Vitamin D deficiency and associated factors in adolescent girls in Beijing. Am J Clin Nutr 2001;74(4):494-500.

Du X, Zhu K, Trube A et al. School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10-12 years in Beijing. Br J Nutr 2004;92(1):159-168.

Dubbelman R, Jonxis J H, Muskiet F A et al. Agedependent vitamin D status and vertebral condition of white women living in Curacao (The Netherlands Antilles) as compared with their counterparts in The Netherlands. Am J Clin Nutr 1993;58(1):106-109.

Dukas L, Staehelin H B, Schacht E et al. Better functional mobility in community-dwelling elderly is related to D-hormone serum levels and to daily calcium intake. J Nutr Health Aging 2005;9(5):347-351.

Dunnigan M G, Fraser S A, McIntosh W B et al. The prevention of vitamin D deficiency in the elderly. Scott Med J 1986;31(3):144-149.

Duplessis C A, Harris E B, Watenpaugh D E et al. Vitamin D supplementation in underway submariners. Aviat Space Environ Med 2005;76(6):

Earnshaw S A, Worley A, Hosking D J. Current diet does not relate to bone mineral density after the menopause. The Nottingham Early Postmenopausal Intervention Cohort (EPIC) Study Group. Br J Nutr 1997;78(1):65-72. Egsmose C, Lund B, McNair P et al. Low serum levels of 25-hydroxyvitamin D and 1,25dihydroxyvitamin D in institutionalized old people: influence of solar exposure and vitamin D supplementation. Age & Ageing 1987;16(1):35-40.

El Hajj F G, Nabulsi M, Choucair M et al. Hypovitaminosis D in healthy schoolchildren. Pediatrics 2001;107(4):E53

el Sonbaty M R, Abdul-Ghaffar N U. Vitamin D deficiency in veiled Kuwaiti women. Eur J Clin Nutr 1996;50(5):315-318.

Elidrissy A T, Sedrani S H, Lawson D E. Vitamin D deficiency in mothers of rachitic infants. Calcif Tissue Int 1984;36(3):266-268.

Elliott M E, Binkley N C, Carnes M et al. Fracture risks for women in long-term care: high prevalence of calcaneal osteoporosis and hypovitaminosis D. Pharmacotherapy 2003;23(6):702-710.

Ellis G, Cooke W T. Serum concentrations of 25hydroxy vitamin D in Europeans and Asians after oral vitamin D3. Br Med J 1978;1(6114):685-686.

Ellis G, Woodhead J S, Cooke W T. Serum-25hydroxyvitamin-D concentrations in adolescent boys. Lancet 1977;1(8016):825-828.

Elmstahl S, Gullberg B, Janzon L et al. Increased incidence of fractures in middle-aged and elderly men with low intakes of phosphorus and zinc. Osteoporos Int 1998;8(4):333-340.

Fairney A, Fry J, Lipscomb A. The effect of darkness on vitamin D in adults. Postgrad Med J 1979;55(642):248-250.

Fairney A, Sloan M A, Patel K V et al. Vitamin A and D status of black South African women and their babies. Hum Nutr Clin Nutr 1987;41(1):81-87.

Falch J A, Steihaug S. Vitamin D deficiency in Pakistani premenopausal women living in Norway is not associated with evidence of reduced skeletal strength.. Scand J Clin Lab Invest 2000;60(2):103-109.

Falkenbach A, Sedlmeyer A. Travel to sunny countries is associated with changes in immunological parameters. Photodermatol Photoimmunol Photomed 1997;13(4):139-142. Falkenbach A, Sedlmeyer A, Unkelbach U. UVB radiation and its role in the treatment of postmenopausal women with osteoporosis. Int J Biometeorol 1998;41(3):128-131.

Fardellone P, Sebert J L, Garabedian M et al. Prevalence and biological consequences of vitamin D deficiency in elderly institutionalized subjects. Revue du Rhumatisme (English Edition) 1995;62(9):576-581.

Farrerons J, Barnadas M, Rodriguez J et al. Clinically prescribed sunscreen (sun protection factor 15) does not decrease serum vitamin D concentration sufficiently either to induce changes in parathyroid function or in metabolic markers. Br J Dermatol 1998;139(3):422-427.

Faulkner K A, Cauley J A, Zmuda J M et al. Higher 1,25-dihydroxyvitamin D(3) concentrations associated with lower fall rates in older community-dwelling women. Osteoporos Int 2006;17(9):1318-1328.

Finch P J, Ang L, Colston K W et al. Blunted seasonal variation in serum 25-hydroxy vitamin D and increased risk of osteomalacia in vegetarian London Asians. Eur J Clin Nutr 1992;46(7):509-515.

Fonseca V, Agnew J E, Nag D et al. Bone density and cortical thickness in nutritional vitamin D deficiency: effect of secondary hyperparathyroidism. Ann Clin Biochem 1988;25(Pt 3):271-274.

Fonseca V, Tongia R, el Hazmi M et al. Exposure to sunlight and vitamin D deficiency in Saudi Arabian women. Postgrad Med J 1984;60(707):589-591.

Ford J A, McIntosh W V, Butterfield R et al. Clinical and subclinical vitamin D deficiency in Bradford children. Arch Dis Child 1976;51(12):939-943.

Fradinger E E, Zanchetta J R. Vitamin D and bone mineral density in ambulatory women living in Buenos Aires, Argentina. Osteoporos Int 2001;12(1):24-27.

Francis R M, Peacock M, Taylor G A et al. Calcium malabsorption in elderly women with vertebral fractures: evidence for resistance to the action of vitamin D metabolites on the bowel. Clin Sci 1984;66(1):103-107.

Freaney R, McBrinn Y, McKenna M J. Secondary hyperparathyroidism in elderly people: combined

effect of renal insufficiency and vitamin D deficiency. Am J Clin Nutr 1993;58(2):187-191.

Gallagher J C, Kinyamu H K, Fowler S E et al. Calciotropic hormones and bone markers in the elderly. J Bone Miner Res 1998;13(3):475-482.

Gannage-Yared M H, Azoury M, Mansour I et al. Effects of a short-term calcium and vitamin D treatment on serum cytokines, bone markers, insulin and lipid concentrations in healthy post-menopausal women. J Endocrinol Invest 2003;26(8):748-753.

Gannage-Yared M H, Chemali R, Yaacoub N et al. Hypovitaminosis D in a sunny country: relation to lifestyle and bone markers. J Bone Miner Res 2000;15(9):1856-1862.

Garnero P, Sornay-Rendu E, Chapuy M C et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 1996;11(3):337-349.

Gessner B D, Plotnik J, Muth P T. 25hydroxyvitamin D levels among healthy children in Alaska. Eur J Pediatr 2003;143(4):434-437.

Ghannam N N, Hammami M M, Bakheet S M et al. Bone mineral density of the spine and femur in healthy Saudi females: relation to vitamin D status, pregnancy, and lactation. Calcif Tissue Int 1999;65(1):23-28.

Gibson R S, Bindra G S, Nizan P et al. The vitamin D status of East Indian Punjabi immigrants to Canada. Br J Nutr 1987;58(1):23-29.

Ginty F, Cavadini C, Michaud P A et al. Effects of usual nutrient intake and vitamin D status on markers of bone turnover in Swiss adolescents. Eur J Clin Nutr 2004;58(9):1257-1265.

Giovannucci E, Liu Y, Rimm E B et al. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men.[see comment]. J Natl Cancer Inst 2006;98(7):451-459.

Glerup H, Mikkelsen K, Poulsen L et al. Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int 2000;66(6):419-424.

Glerup H, Mikkelsen K, Poulsen L et al. Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited. J Intern Med 2000;247(2):260-268. Gloth F M, Gundberg C M, Hollis B W et al. Vitamin D deficiency in homebound elderly persons. JAMA 1995;274(21):1683-1686.

Gloth F M, Gundberg C M, Hollis B W et al. Vitamin D deficiency in homebound elderly persons. JAMA 1995;274(21):1683-1686.

Goel K M, Sweet E M, Logan R W et al. Florid and subclinical rickets among immigrant children in Glasgow. Lancet 1976;1(7970):1141-1145.

Goldzieher J W, Zerwekh J E, Castracane V D. Single-monthly-dose vitamin D supplementation in elderly patients. Endocr Pract 1999;5(5):229-232.

Gomez J M, Maravall F J, Gomez N et al. Relationship between 25-(OH) D3, the IGF-I system, leptin, anthropometric and body composition variables in a healthy, randomly selected population. Horm Metab Res 2004;36(1):48-53.

Gomez-Alonso C, Naves-Diaz M L, Fernandez-Martin J L et al. Vitamin D status and secondary hyperparathyroidism: the importance of 25hydroxyvitamin D cut-off levels. Kidney Int Suppl 2003;8563(S85):44-48.

Gordon C M, DePeter K C, Feldman H A et al. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 2004;158(6):531-537.

Goswami R, Gupta N, Goswami D et al. Prevalence and significance of low 25-hydroxyvitamin D concentrations in healthy subjects in Delhi. Am J Clin Nutr 2000;72(2):472-475.

Greenspan S L, Resnick N M, Parker R A. Vitamin D supplementation in older women. J Gerontol A Biol Sci Med Sci 2005;60(6):754-759.

Gregg E W, Kriska A M, Salamone L M et al. Correlates of quantitative ultrasound in the Women's Healthy Lifestyle Project. Osteoporos Int 1999;10(5):416-424.

Griffiths A P, Fairney A. Effect of phototherapy on serum 25-hydroxyvitamin D in the Antarctic. Eur J Appl Physiol Occup Physiol 1989;59(1-2):68-72.

Grover S R, Morley R. Vitamin D deficiency in veiled or dark-skinned pregnant women. Med J Aust 2001;175(5):251-252.

Gruson M, Cancela L, Denne M A et al. Relationship between bone GLA-protein (BGP) and calcidiol (25hydroxycalciferol) in serum of breast-fed infants. Endocrinol Exp 1986;20(2-3):329-334.

Guggenheim K, Kravitz M, Tal R et al. Biochemical parameters of vitamin D nutriture in old people in Jerusalem. Ann Nutr Metab 1979;23(3):172-178.

Guillemant J, Cabrol S, Allemandou A et al. Vitamin D-dependent seasonal variation of PTH in growing male adolescents. Bone 1995;17(6):513-516.

Guillemant S, Guillemant J, Feteanu D et al. Effect of vitamin D3 administration on serum 25hydroxyvitamin D3, 1,25-dihydroxyvitamin D3 and osteocalcin in vitamin D-deficient elderly people. J Steroid Biochem 1989;33(6):1155-1159.

Gultekin A, Ozalp I, Hasanoglu A et al. Serum-25hydroxycholecalciferol levels in children and adolescents. Turk J Pediatr 1987;29(3):155-162.

Guzel R, Kozanoglu E, Guler-Uysal F et al. Vitamin D status and bone mineral density of veiled and unveiled Turkish women. J Womens Health Gend Based Med 2001;10(8):765-770.

Haden S T, Fuleihan G E, Angell J E et al. Calcidiol and PTH levels in women attending an osteoporosis program. Calcif Tissue Int 1999;64(4):275-279.

Haney E M, Stadler D, Bliziotes M M. Vitamin D insufficiency in internal medicine residents. Calcif Tissue Int 2005;76(1):11-16.

Harinarayan C V. Prevalence of vitamin D insufficiency in postmenopausal south Indian women. Osteoporos Int 2005;16(4):397-402.

Harkness L, Cromer B. Low levels of 25-hydroxy vitamin D are associated with elevated parathyroid hormone in healthy adolescent females. Osteoporos Int 2005;16(1):109-113.

Harkness L S, Cromer B A. Vitamin D deficiency in adolescent females. J Adolesc Health 2005;37(1):75.

Harris S S, Dawson-Hughes B. Seasonal changes in plasma 25-hydroxyvitamin D concentrations of young American black and white women. Am J Clin Nutr 1998;67(6):1232-1236.

Harris S S, Soteriades E, Coolidge J A et al. Vitamin D insufficiency and hyperparathyroidism in a low

income, multiracial, elderly population. J Clin Endocrinol Metab 2000;85(11):4125-4130.

Hartwell D, Riis B J, Christiansen C. Comparison of vitamin D metabolism in early healthy and late osteoporotic postmenopausal women. Calcif Tissue Int 1990;47(6):332-337.

Hartwell D, Riis B J, Christiansen C et al. Bone metabolism and bone status in osteoporotic patients. Acta Med Scand 1987;222(5):453-458.

Hartwell D, Rodbro P, Jensen S B et al. Vitamin D metabolites--relation to age, menopause and endometriosis. Scand J Clin Lab Invest 1990;50(2):115-121.

Hashemipour S, Larijani B, Adibi H et al. Vitamin D deficiency and causative factors in the population of Tehran. BMC Public Health 2004;4(1):38

Hatun S, Islam O, Cizmecioglu F et al. Subclinical vitamin D deficiency is increased in adolescent girls who wear concealing clothing. Br J Nutr 2005;135(2):218-222.

Hatun S, Ozkan B, Orbak Z et al. Vitamin D deficiency in early infancy. Br J Nutr 2005;135(2):279-282.

Heckmatt J Z, Peacock M, Davies A E et al. Plasma 25-hydroxyvitamin D in pregnant Asian women and their babies. Lancet 1979;2(8142):546-548.

Heese H, Westcott D, Ryder C et al. Prevalence of rickets at the age of 12 months. A study of appropriately developed for gestational age but premature infants. S Afr Med J 1984;66(16):604-608.

Hegarty V, Woodhouse P, Khaw K T. Seasonal variation in 25-hydroxyvitamin D and parathyroid hormone concentrations in healthy elderly people. Age & Ageing 1994;23(6):478-482.

Heikinheimo R J, Haavisto M V, Harju E J et al. Serum vitamin D level after an annual intramuscular injection of ergocalciferol. Calcif Tissue Int 1991;49 SupplS87

Heikinheimo R J, Inkovaara J A, Harju E J et al. Annual injection of vitamin D and fracture of aged bones.. Calcif Tissue Int 1992;51(2):105-110.

Heikinheimo R, Sievanen H, Jantti P et al. Vitamin D treatment and bone mineral density in the aged. Maturitas 1996;23 SupplS77-S80. Henriksen C, Brunvand L, Stoltenberg C et al. Diet and vitamin D status among pregnant Pakistani women in Oslo. Eur J Clin Nutr 1995;49(3):211-218.

Hillman L S, Haddad J G. Perinatal vitamin D metabolism. III. Factors influencing late gestational human serum 25-hydroxyvitamin D. Am J Obstet Gynecol 1976;125(2):196-200.

Hillman L S, Haddad J G. Perinatal vitamin D metabolism. II. Serial 25-hydroxyvitamin D concentrations in sera of term and premature infants. Eur J Pediatr 1975;86(6):928-935.

Hillman L S, Chow W, Salmons S S et al. Vitamin D metabolism, mineral homeostasis, and bone mineralization in term infants fed human milk, cow milk-based formula, or soy-based formula. Eur J Pediatr 1988;112(6):864-874.

Hillman L S, Salmons S, Dokoh S. Serum 1,25dihydroxyvitamin D concentrations in premature infants: preliminary results. Calcif Tissue Int 1985;37(3):223-227.

Hine T J, Roberts N B. Seasonal variation in serum 25-hydroxy vitamin D3 does not affect 1,25dihydroxy vitamin D. Ann Clin Biochem 1994;31(Pt 1):31-34.

Holdsworth M D, Dattani J T, Davies L et al. Factors contributing to vitamin D status near retirement age. Hum Nutr Clin Nutr 1984;38(2):139-149.

Holick M F, Siris E S, Binkley N et al. Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 2005;90(6):3215-3224.

Holvik K, Meyer H E, Haug E et al. Prevalence and predictors of vitamin D deficiency in five immigrant groups living in Oslo, Norway: The Oslo immigrant health study. Eur J Clin Nutr 2005;59(1):57-63.

Hunt S P, O'Riordan J L, Windo J et al. Vitamin D status in different subgroups of British Asians. Br Med J 1976;2(6048):1351-1354.

Ilich J Z, Brownbill R A, Tamborini L. Bone and nutrition in elderly women: protein, energy, and calcium as main determinants of bone mineral density. Eur J Clin Nutr 2003;57(4):554-565.

Inderjeeth C A, Barrett T, Al Lahham Y et al. Seasonal variation, hip fracture and vitamin D levels in Southern Tasmania. N Z Med J 2002;115(1152):183-185.

Inderjeeth C A, Nicklason F, Al Lahham Y et al. Vitamin D deficiency and secondary hyperparathyroidism: clinical and biochemical associations in older non-institutionalised Southern Tasmanians. Aust N Z J Med 2000;30(2):209-214.

Innes A M, Seshia M M, Prasad C et al. Congenital rickets caused by maternal vitamin D deficiency. Paediatrics & Child Health 2002;7(7):455-458.

Isaia G, Giorgino R, Rini G B et al. Prevalence of hypovitaminosis D in elderly women in Italy: clinical consequences and risk factors. Osteoporos Int 2003;14(7):577-582.

Ito M, Murakami T, Nagase T et al. Vitamin D metabolism in a Japanese submarine crew after fourweek deprivation of sunlight. Boei Ika Daigakko Zasshi 2003;28(3):100-108.

Jacobus C H, Holick M F, Shao Q et al. Hypervitaminosis D associated with drinking milk.. N Engl J Med 1992;326(18):1173-1177.

Jacques P F, Felson D T, Tucker K L et al. Plasma 25-hydroxyvitamin D and its determinants in an elderly population sample. Am J Clin Nutr 1997;66(4):929-936.

Jesudason D, Need A G, Horowitz M et al. Relationship between serum 25-hydroxyvitamin D and bone resorption markers in vitamin D insufficiency. Bone 2002;31(5):626-630.

Jones G, Blizzard C, Riley M D et al. Vitamin D levels in prepubertal children in Southern Tasmania: prevalence and determinants. Eur J Clin Nutr 1999;53(10):824-829.

Jones G, Dwyer T, Hynes K L et al. Vitamin D insufficiency in adolescent males in Southern Tasmania: Prevalence, determinants, and relationship to bone turnover markers. Osteoporos Int 2005;16(6):636-641.

Juttmann J R, Visser T J, Buurman C et al. Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J (Clin Res Ed) 1981;282(6273):1349-1352.

Kano K, Yoshida H, Yata J et al. Age and seasonal variations in the serum levels of 25-hydroxyvitamin

D and 24,25-dihydroxyvitamin D in normal humans. Endocrinol Jpn 1980;27(2):215-221.

Katakity M, Webb J F, Dickerson J W. Some effects of a food supplement in elderly hospital patients: a longitudinal study. Hum Nutr Appl Nutr 1983;37(2):85-93.

Kauppinen-Makelin R, Tahtela R, Loyttyniemi E et al. A high prevalence of hypovitaminosis D in Finnish medical in- and outpatients. J Intern Med 2001;249(6):559-563.

Keane E M, Healy M, O'Moore R et al. Hypovitaminosis D in the healthy elderly. Br J Clin Pract 1995;49(6):301-303.

Keane E M, Rochfort A, Cox J et al. Vitamin-Dfortified liquid milk--a highly effective method of vitamin D administration for house-bound and institutionalised elderly. Gerontology 1992;38(5):280-284.

Kenny A M, Gallagher J C, Prestwood K M et al. Bone density, bone turnover, and hormone levels in men over age 75. J Gerontol A Biol Sci Med Sci 1998;53(6):M419-M425.

Khaw K T, Sneyd M J, Compston J. Bone density parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women. BMJ 1992;305(6848):273-277.

Kim J H, Moon S J. Time spent outdoors and seasonal variation in serum concentrations of 25hydroxyvitamin D in Korean women. Int J Food Sci Nutr 2000;51(6):439-451.

Kinyamu H K, Gallagher J C, Balhorn K E et al. Serum vitamin D metabolites and calcium absorption in normal young and elderly free-living women and in women living in nursing homes. Am J Clin Nutr 1997;65(3):790-797.

Kinyamu H K, Gallagher J C, Rafferty K A et al. Dietary calcium and vitamin D intake in elderly women: effect on serum parathyroid hormone and vitamin D metabolites. Am J Clin Nutr 1998;67(2):342-348.

Kligman E W, Watkins A, Johnson K et al. The impact of lifestyle factors on serum 25-hydroxy vitamin D levels in older adults: a preliminary study. Fam Pract Res J 1989;9(1):11-19. Kobayashi T, Okano T, Shida S et al. Variation of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 levels in human plasma obtained from 758 Japanese healthy subjects. J Nutr Sci Vitaminol (Tokyo) 1983;29(3):271-281.

Koenig J, Elmadfa I. Status of calcium and vitamin D of different population groups in Austria. Int J Vitam Nutr Res 2000;70(5):214-220.

Kokkonen J, Koivisto M, Kirkinen P. Seasonal variation in serum-25-OH-D3 in mothers and newborn infants in northern finland. Acta Paediatr Scand 1983;72(1):93-96.

Kokot F, Pietrek J, Cekanski A. Concentration of 25hydroxyvitamin D (25-OH-D) in peripheral and uterine blood of pregnant women, in amniotic fluid and in the umbilical cord blood. Acta Med Pol 1980;21(1):31-38.

Kokot F, Schmidt-Gayk H, Wiecek A et al. Influence of ultraviolet irradiation on plasma vitamin D and calcitonin levels in humans. Kidney Int Suppl 1989;27S143-S146.

Komar L, Nieves J, Cosman F et al. Calcium homeostasis of an elderly population upon admission to a nursing home. J Am Geriatr Soc 1993;41(10):1057-1064.

Krall E A, Sahyoun N, Tannenbaum S et al. Effect of vitamin D intake on seasonal variations in parathyroid hormone secretion in postmenopausal women. N Engl J Med 1989;321(26):1777-1783.

Kreiter S R, Schwartz R P, Kirkman H N et al. Nutritional rickets in African American breast-fed infants. Eur J Pediatr 2000;137(2):153-157.

Krieg M A, Cornuz J, Jacquet A F et al. Influence of anthropometric parameters and biochemical markers of bone metabolism on quantitative ultrasound of bone in the institutionalized elderly. Osteoporos Int 1998;8(2):115-120.

Kristinsson J O, Valdimarsson O, Sigurdsson G et al. Serum 25-hydroxyvitamin D levels and bone mineral density in 16-20 years-old girls: lack of association. J Intern Med 1998;243(5):381-388.

Kudlacek S, Schneider B, Peterlik M et al. Assessment of vitamin D and calcium status in healthy adult Austrians.[comment] Eur J Clin Invest 2003;33(4):323-331. Kuroda E, Okano T, Mizuno N et al. Plasma levels of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in maternal, cord and neonatal blood. J Nutr Sci Vitaminol (Tokyo) 1981;27(1):55-65.

Kyriakidou-Himonas M, Aloia J F, Yeh J K. Vitamin D supplementation in postmenopausal black women. J Clin Endocrinol Metab 1999;84(11):3988-3990.

Lamberg-Allardt C. Vitamin D intake, sunlight exposure and 25-hydroxyvitamin D levels in the elderly during one year. Ann Nutr Metab 1984;28(3):144-150.

Lamberg-Allardt C. The relationship between serum 25-hydroxy-vitamin D levels and other variables related to calcium and phosphorus metabolism in the elderly. Acta Endocrinol (Copenh) 1984;105(1):139-144.

Lamberg-Allardt C J, Outila T A, Karkkainen M U et al. Vitamin D deficiency and bone health in healthy adults in Finland: could this be a concern in other parts of Europe? J Bone Miner Res 2001;16(11):2066-2073.

Lamberg-Allardt C, Ala-Houhala M, Ahola M et al. Vitamin D status of children and adolescents in Finland. Ann Nutr Metab 1986;30(4):267-272.

Lamberg-Allardt C, Karkkainen M, Seppanen R et al. Low serum 25-hydroxyvitamin D concentrations and secondary hyperparathyroidism in middle-aged white strict vegetarians. Am J Clin Nutr 1993;58(5):684-689.

Lamberg-Allardt C, Kirjarinta M, Dessypris A G. Serum 25-hydroxy-vitamin D, parathyroid hormone and calcium levels in adult inhabitants above the arctic circle in Northern Finland. Ann Clin Res 1983;15(4):142-145.

Lamberg-Allardt C, Larjosto M, Schultz E. 25-Hydroxyvitamin D concentrations in maternal and cord blood at delivery and in maternal blood during lactation in Finland. Hum Nutr Clin Nutr 1984;38(4):261-268.

Lamberg-Allardt C, von Knorring J, Slatis P et al. Vitamin D status and concentrations of serum vitamin D metabolites and osteocalcin in elderly patients with femoral neck fracture: a follow-up study. Eur J Clin Nutr 1989;43(5):355-361.

Landin-Wilhelmsen K, Wilhelmsen L, Wilske J et al. Sunlight increases serum 25(OH) vitamin D concentration whereas 1,25(OH)2D3 is unaffected. Results from a general population study in Goteborg, Sweden (The WHO MONICA Project). Eur J Clin Nutr 1995;49(6):400-407.

Lapatsanis D, Moulas A, Cholevas V et al. Vitamin D: a necessity for children and adolescents in Greece. Calcif Tissue Int 2005;77(6):348-355.

Lawson D E, Paul A A, Black A E et al. Relative contributions of diet and sunlight to vitamin D state in the elderly. Br Med J 1979;2(6185):303-305.

Lawson M, Thomas M, Hardiman A. Dietary and lifestyle factors affecting plasma vitamin D levels in Asian children living in England. Eur J Clin Nutr 1999;53(4):268-272.

Lee W T, Cheng J C, Jiang J et al. Calcium absorption measured by stable calcium isotopes ((42)Ca & (44)Ca) among Northern Chinese adolescents with low vitamin D status. J Orthop Surg (Hong Kong) 2002;10(1):61-66.

Lee W T, Jiang J, Hu P et al. Use of stable calcium isotopes (42Ca & 44Ca) in evaluation of calcium absorption in Beijing adolescents with low vitamin D status. Food Nutr Bull 2002;23(3 Suppl):42-47.

Lehtonen-Veromaa M, Mottonen T, Irjala K et al. Vitamin D intake is low and hypovitaminosis D common in healthy 9- to 15-year-old Finnish girls. Eur J Clin Nutr 1999;53(9):746-751.

Lehtonen-Veromaa M, Mottonen T, Nuotio I et al. The effect of conventional vitamin D(2) supplementation on serum 25(OH)D concentration is weak among peripubertal Finnish girls: a 3-y prospective study. Eur J Clin Nutr 2002;56(5):431-437.

Lester E, Skinner R K, Foo A Y et al. Serum 25hydroxyvitamin D levels and vitamin D intake in healthy young adults in Britain and Denmark. Scand J Clin Lab Invest 1980;40(2):145-150.

Leung S S, Lui S, Swaminathan R. Vitamin D status of Hong Kong Chinese infants. Acta Paediatr Scand 1989;78(2):303-306.

Levis S, Gomez A, Jimenez C et al. Vitamin d deficiency and seasonal variation in an adult South Florida population. J Clin Endocrinol Metab 2005;90(3):1557-1562. Lichtenstein P, Specker B L, Tsang R C et al. Calcium-regulating hormones and minerals from birth to 18 months of age: a cross-sectional study. I. Effects of sex, race, age, season, and diet on vitamin D status. Pediatrics 1986;77(6):883-890.

Linhares E R, Jones D A, Round J M et al. Effect of nutrition on vitamin D status: studies on healthy and poorly nourished Brazilian children. Am J Clin Nutr 1984;39(4):625-630.

Lips P, Duong T, Oleksik A et al. A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab 2001;86(3):1212-1221.

Liu B A, Gordon M, Labranche J M et al. Seasonal prevalence of vitamin D deficiency in institutionalized older adults. J Am Geriatr Soc 1997;45(5):598-603.

Looker A C, Dawson-Hughes B, Calvo M S et al. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone 2002;30(5):771-777.

Lore F, Di Cairano G, Di Perri G. Vitamin D status in the extreme age of life. Ann Med Interne (Paris) 1986;137(3):209-211.

Lore F, Di Cairano G, Signorini A M et al. Serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int 1981;33(5):467-470.

Lovell G A, Phillips P A, Thomas M J. The effect of oral vitamin D supplementation on plasma 25 hydroxy vitamin D in institutionalized elderly patients in a subtropical climate: a twelve month follow-up. J Hum Nutr Diet 1990;3(2):141-144.

Lowik M R, van den, Berg H et al. Marginal nutritional status among institutionalized elderly women as compared to those living more independently (Dutch Nutrition Surveillance System). J Am Coll Nutr 1992;11(6):673-681.

Lucas J A, Bolland M J, Grey A B et al. Determinants of vitamin D status in older women living in a subtropical climate. Osteoporos Int 2005;16(12):1641-1648.

Lukert B P, Carey M, McCarty B et al. Influence of nutritional factors on calcium-regulating hormones and bone loss. Calcif Tissue Int 1987;40(3):119-125.

Lukert B, Higgins J, Stoskopf M. Menopausal bone loss is partially regulated by dietary intake of vitamin D. Calcif Tissue Int 1992;51(3):173-179.

Lund B, Sorensen O H. Measurement of 25hydroxyvitamin D in serum and its relation to sunshine, age and vitamin D intake in the Danish population. Scand J Clin Lab Invest 1979;39(1):23-30.

M'Buyamba-Kabangu J R, Fagard R, Lijnen P et al. Calcium, vitamin D-endocrine system, and parathyroid hormone in black and white males. Calcif Tissue Int 1987;41(2):70-74.

MacLennan W J, Hamilton J C. Vitamin D supplements and 25-hydroxy vitamin D concentrations in the elderly. Br Med J 1977;2(6091):859-861.

MacLennan W J, Hamilton J C, Darmady J M. The effects of season and stage of pregnancy on plasma 25-hydroxy-vitamin D concentrations in pregnant women. Postgrad Med J 1980;56(652):75-79.

Maenpaa P H, Pirhonen A, Pirskanen A et al. Biochemical indicators related to antioxidant status and bone metabolic activity in Finnish elderly men. Int J Vitam Nutr Res 1989;59(1):14-19.

Maggio D, Cherubini A, Lauretani F et al. 25(OH)D Serum levels decline with age earlier in women than in men and less efficiently prevent compensatory hyperparathyroidism in older adults. J Gerontol A Biol Sci Med Sci 2005;60(11):1414-1419.

Malavolta N, Pratelli L, Frigato M et al. The relationship of vitamin D status to bone mineral density in an Italian population of postmenopausal women. Osteoporos Int 2005;16(12):1691-1697.

Markestad T. Effect of season and vitamin D supplementation on plasma concentrations of 25hydroxyvitamin D in Norwegian infants. Acta Paediatr Scand 1983;72(6):817-821.

Markestad T. Plasma concentrations of vitamin D metabolites in unsupplemented breast-fed infants. Eur J Pediatr 1983;141(2):77-80.

Markestad T. Plasma concentrations of 1,25dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25,26-dihydroxyvitamin D in the first year of life. J Clin Endocrinol Metab 1983;57(4):755-759. Markestad T, Aksnes L, Ulstein M et al. 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin D of D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Am J Clin Nutr 1984;40(5):1057-1063.

Markestad T, Elzouki A, Legnain M et al. Serum concentrations of vitamin D metabolites in maternal and umbilical cord blood of Libyan and Norwegian women. Hum Nutr Clin Nutr 1984;38(1):55-62.

Markestad T, Hesse V, Siebenhuner M et al. Intermittent high-dose vitamin D prophylaxis during infancy: effect on vitamin D metabolites, calcium, and phosphorus. Am J Clin Nutr 1987;46(4):652-658.

Markestad T, Kolmannskog S, Arntzen E et al. Serum concentrations of vitamin D metabolites in exclusively breast-fed infants at 70 degrees north. Acta Paediatr Scand 1984;73(1):29-32.

Markestad T, Ulstein M, Aksnes L et al. Serum concentrations of vitamin D metabolites in vitamin D supplemented pregnant women. A longitudinal study. Acta Obstet Gynecol Scand. 1986;65(1):63-67.

Martinez M E, del Campo M T, Sanchez-Cabezudo M J et al. Relations between calcidiol serum levels and bone mineral density in postmenopausal women with low bone density. Calcif Tissue Int 1994;55(4):253-256.

Matsuoka L Y, Wortsman J, Hollis B W. Suntanning and cutaneous synthesis of vitamin D3. J Lab Clin Med 1990;116(1):87-90.

Matsuoka L Y, Wortsman J, Chen T C et al. Compensation for the interracial variance in the cutaneous synthesis of vitamin D. J Lab Clin Med 1995;126(5):452-457.

Matsuoka L Y, Wortsman J, Haddad J G et al. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol 1991;127(4):536-538.

Matsuoka L Y, Wortsman J, Hanifan N et al. Chronic sunscreen use decreases circulating concentrations of 25-hydroxyvitamin D. A preliminary study. Arch Dermatol 1988;124(12):1802-1804.

Matsuoka M, Otsuka H, Masuda S et al. Changes in the concentrations of vitamin D and its metabolites in the plasma of healthy subjects orally given physiological doses of vitamin D2 by multivitamin or vitamin D preparations. J Nutr Sci Vitaminol (Tokyo) 1989;35(4):253-266. Mawer E B, Berry J L, Sommer-Tsilenis E et al. Ultraviolet irradiation increases serum 1,25dihydroxyvitamin D in vitamin-D-replete adults. Miner Electrolyte Metab 1984;10(2):117-121.

McAuley K A, Jones S, Lewis-Barned N J et al. Low vitamin D status is common among elderly Dunedin women. N Z Med J 1997;110(1048):275-277.

McKenna M J, Freaney R, Meade A et al. Hypovitaminosis D and elevated serum alkaline phosphatase in elderly Irish people. Am J Clin Nutr 1985;41(1):101-109.

McMurtry C T, Young S E, Downs R W et al. Mild vitamin D deficiency and secondary hyperparathyroidism in nursing home patients receiving adequate dietary vitamin D. J Am Geriatr Soc 1992;40(4):343-347.

McNeill G, Vyvyan J, Peace H et al. Predictors of micronutrient status in men and women over 75 years old living in the community. Br J Nutr 2002;88(5):555-561.

Meddeb N, Sahli H, Chahed M et al. Vitamin D deficiency in Tunisia. Osteoporos Int 2005;16(2):180-183.

Meier D E, Luckey M M, Wallenstein S et al. Calcium, vitamin D, and parathyroid hormone status in young white and black women: association with racial differences in bone mass. J Clin Endocrinol Metab 1991;72(3):703-710.

Melin A L, Wilske J, Ringertz H et al. Vitamin D status, parathyroid function and femoral bone density in an elderly Swedish population living at home. Aging Clin Exp Res 1999;11(3):200-207.

Meller Y, Kestenbaum R S, Galinsky D et al. Seasonal variation in serum levels of vitamin D metabolites and parathormone in geriatric patients with fractures in Southern Israel. Isr J Med Sci 1986;22(1):8-11.

Meulmeester J F, van den Berg H et al. Vitamin D status, parathyroid hormone and sunlight in Turkish, Moroccan and Caucasian children in The Netherlands. Eur J Clin Nutr 1990;44(6):461-470.

Meyer H E, Smedshaug G B, Kvaavik E et al. Can vitamin D supplementation reduce the risk of fracture in the elderly? A randomized controlled trial. J Bone Miner Res 2002;17(4):709-715.

Mezquita-Raya P, Munoz-Torres M, Luna J D et al. Relation between vitamin D insufficiency, bone density, and bone metabolism in healthy postmenopausal women. J Bone Miner Res 2001;16(8):1408-1415.

Mezquita-Raya P, oz-Torres M, Alonso G et al. Susceptibility for postmenopausal osteoporosis: Interaction between genetic, hormonal and lifestyle factors. Calcif Tissue Int 2004;75(5):373-379.

Mirsaeid Ghazi A A, Rais Zadeh F, Pezeshk P et al. Seasonal variation of serum 25 hydroxy D3 in residents of Tehran. J Endocrinol Invest 2004;27(7):676-679.

Mishal A A. Effects of different dress styles on vitamin D levels in healthy young Jordanian women. Osteoporos Int 2001;12(11):931-935.

Miyako K, Kinjo S, Kohno H. Vitamin D deficiency rickets caused by improper lifestyle in Japanese children. Pediatr Int 2005;47(2):142-146.

Moreiras O, Carbajal A, Perea I et al. The influence of dietary intake and sunlight exposure on the vitamin D status in an elderly Spanish group. Int J Vitam Nutr Res 1992;62(4):303-307.

Morris H A, Morrison G W, Burr M et al. Vitamin D and femoral neck fractures in elderly South Australian women. Med J Aust 1984;140(9):519-521.

Mowe M, Bohmer T, Haug E. Serum calcidiol and calcitriol concentrations in elderly people: Variations with age, sex, season and disease. Clin Nutr 1996;15(4):201-206.

Mowe M, Haug E, Bohmer T. Low serum calcidiol concentration in older adults with reduced muscular function. J Am Geriatr Soc 1999;47(2):220-226.

Mukamel M N, Weisman Y, Somech R et al. Vitamin D deficiency and insufficiency in Orthodox and non-Orthodox Jewish mothers in Israel. Isr Med Assoc J 2001;3(6):419-421.

Munger R G, Cerhan J R, Chiu B C H. Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr 1999;69(1):147-152.

Murphy S, Khaw K T, Prentice A et al. Relationships between parathyroid hormone, 25-hydroxyvitamin D,

and bone mineral density in elderly men. Age & Ageing 1993;22(3):198-204.

Najjar S S, Yazigi A. Abuse of vitamin D: a report on 15 cases of vitamin D poisoning. J Med Liban 1972;25(1):113-122.

Nakamura K, Nashimoto M, Yamamoto M. Are the serum 25-hydroxyvitamin D concentrations in winter associated with forearm bone mineral density in healthy elderly Japanese women? Int J Vitam Nutr Res 2001;71(1):25-29.

Nakamura K, Nashimoto M, Yamamoto M. Summer/winter differences in the serum 25hydroxyvitamin D3 and parathyroid hormone levels of Japanese women. Int J Biometeorol 2000;44(4):186-189.

Nakamura K, Nashimoto M, Hori Y et al. Serum parathyroid hormone in healthy Japanese women in relation to serum 25-hydroxyvitamin D. Int J Vitam Nutr Res 2000;70(6):287-292.

Nakamura K, Nashimoto M, Hori Y et al. Serum 25hydroxyvitamin D concentrations and related dietary factors in peri- and postmenopausal Japanese women. Am J Clin Nutr 2000;71(5):1161-1165.

Nakamura K, Nashimoto M, Hori Y et al. Serum 25hydroxyvitamin D levels in active women of middle and advanced age in a rural community in Japan. Adv Nutr Res 1999;15(11-12):870-873.

Nakamura K, Nashimoto M, Matsuyama S et al. Low serum concentrations of 25-hydroxyvitamin D in young adult Japanese women: a cross sectional study. Adv Nutr Res 2001;17(11-12):921-925.

Nakamura K, Nashimoto M, Tsuchiya Y et al. Vitamin D insufficiency in Japanese female college students: a preliminary report. Int J Vitam Nutr Res 2001;71(5):302-305.

Nakamura K, Nishiwaki T, Ueno K et al. Serum 25hydroxyvitamin D levels and activities of daily living in noninstitutionalized elderly Japanese requiring care. J Bone Miner Metab 2005;23(6):488-494.

Nakamura K, Ueno K, Nishiwaki T et al. Nutrition, mild hyperparathyroidism, and bone mineral density in young Japanese women. Am J Clin Nutr 2005;82(5):1127-1133.

Nako Y, Tomomasa T, Morikawa A. Risk of hypervitaminosis D from prolonged feeding of high

vitamin D premature infant formula. Pediatr Int 2004;46(4):439-443.

Narchi H, El Jamil M, Kulaylat N. Symptomatic rickets in adolescence. Arch Dis Child 2001;84(6):501-503.

Nashimoto M, Nakamura K, Matsuyama S et al. Hypovitaminosis D and hyperparathyroidism in physically inactive elderly Japanese living in nursing homes: relationship with age, sunlight exposure and activities of daily living. Aging Clin Exp Res 2002;14(1):5-12.

Nayal A S, MacLennan W J, Hamilton J C et al. 25hydroxy-vitamin D, diet and sunlight exposure in patients admitted to a geriatric unit. Gerontology 1978;24(2):117-122.

Need A G, Horowitz M, Morris H A et al. Vitamin D status: effects on parathyroid hormone and 1, 25dihydroxyvitamin D in postmenopausal women. Am J Clin Nutr 2000;71(6):1577-1581.

Need A G, Morris H A, Horowitz M et al. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr 1993;58(6):882-885.

Need A G, O'Loughlin P D, Morris H A et al. The effects of age and other variables on serum parathyroid hormone in postmenopausal women attending an osteoporosis center. J Clin Endocrinol Metab 2004;89(4):1646-1649.

Nehama H, Wientroub S, Eisenberg Z et al. Seasonal variation in paired maternal-newborn serum 25hydroxyvitamin D and 24,25-dihydroxyvitamin D concentrations in Israel. Isr J Med Sci 1987;23(4):274-277.

Nesby-O'Dell S, Scanlon K S, Cogswell M E et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988-1994. Am J Clin Nutr 2002;76(1):187-192.

Newton H M, Sheltawy M, Hay A W et al. The relations between vitamin D2 and D3 in the diet and plasma 25OHD2 and 25OHD3 in elderly women in Great Britain. Am J Clin Nutr 1985;41(4):760-764.

Nordin B E, Need A G, Morris H A et al. Effect of age on calcium absorption in postmenopausal women. Am J Clin Nutr 2004;80(4):998-1002.

Nozza J M, Rodda C P. Vitamin D deficiency in mothers of infants with rickets. Med J Aust 2001;175(5):253-255.

Nyomba B L, Auwerx J, Bormans V et al. Pancreatic secretion in man with subclinical vitamin D deficiency. Diabetologia 1986;29(1):34-38.

O'Dowd K J, Clemens T L, Kelsey J L et al. Exogenous calciferol (vitamin D) and vitamin D endocrine status among elderly nursing home residents in the New York City area.. J Am Geriatr Soc 1993;41(4):414-421.

O'Hare A E, Uttley W S, Belton N R et al. Persisting vitamin D deficiency in the Asian adolescent. Arch Dis Child 1984;59(8):766-770.

Obinata I, Tamiya Y, Hatakeyama K et al. Changes in biochemical markers of bone turnover and in calcaneal ultrasonometric parameters during wintering in the Antarctic. Acta Med Biolog 2002;50(3):125-134.

Okonofua F, Houlder S, Bell J et al. Vitamin D nutrition in pregnant Nigerian women at term and their newborn infants. J Clin Pathol 1986;39(6):650-653.

Oliveri B, Cassinelli H, Mautalen C et al. Vitamin D prophylaxis in children with a single dose of 150000 IU of vitamin D. Eur J Clin Nutr 1996;50(12):807-810.

Oliveri B, Plantalech L, Bagur A et al. High prevalence of vitamin D insufficiency in healthy elderly people living at home in Argentina. Eur J Clin Nutr 2004;58(2):337-342.

Oliveri B, Zeni S, Lorenzetti M P et al. Effect of one year residence in Antarctica on bone mineral metabolism and body composition. Eur J Clin Nutr 1999;53(2):88-91.

Oliveri M B, Ladizesky M, Mautalen C A et al. Seasonal variations of 25 hydroxyvitamin D and parathyroid hormone in Ushuaia (Argentina), the southernmost city of the world. Bone Miner 1993;20(1):99-108.

Oliveri M B, Mautalen C, Bustamante L et al. Serum levels of 25-hydroxyvitamin D in a year of residence on the Antarctic continent. Eur J Clin Nutr 1994;48(6):397-401. Omdahl J L, Garry P J, Hunsaker L A et al. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr 1982;36(6):1225-1233.

Ong S P, Ryley J, Bashir T et al. Nutrient intake and associated biochemical status of pregnant Asians in the United Kingdom. Hum Nutr Appl Nutr 1983;37(1):23-29.

Ono Y, Suzuki A, Kotake M et al. Seasonal changes of serum 25-hydroxyvitamin D and intact parathyroid hormone levels in a normal Japanese population. J Bone Miner Metab 2005;23(2):147-151.

Ooms M E, Lips P, Roos J C et al. Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. J Bone Miner Res 1995;10(8):1177-1184.

Osler M, Schroll M. A dietary study of the elderly in the City of Roskilde 1988/1989 (II). A nutritional risk assessment. Dan Med Bull 1991;38(5):410-413.

Otto-Buczkowska E, Kokot F, Wiedermann G et al. Blood 25-OH-D levels in children. Critical remarks on current prophylaxis of rachitis. Acta Univ Carol [Med] (Praha) 1986;32(5-6):327-331.

Outila T A, Karkkainen M U, Lamberg-Allardt C J. Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr 2001;74(2):206-210.

Outila T A, Karkkainen M U, Seppanen R H et al. Dietary intake of vitamin D in premenopausal, healthy vegans was insufficient to maintain concentrations of serum 25-hydroxyvitamin D and intact parathyroid hormone within normal ranges during the winter in Finland. J Am Diet Assoc 2000;100(4):434-441.

Overgaard K, Nilas L, Johansen J S et al. Lack of seasonal variation in bone mass and biochemical estimates of bone turnover. Bone 1988;9(5):285-288.

Pal B R, Marshall T, James C et al. Distribution analysis of vitamin D highlights differences in population subgroups: preliminary observations from a pilot study in UK adults. Rom J Endocrinol 2003;179(1):119-129.

Papapoulos S E, Clemens T L, Fraher L J et al. Metabolites of vitamin D in human vitamin-D deficiency: effect of vitamin D3 or 1,25dihydroxycholecalciferol. Lancet 1980;2(8195 pt 1):612-615.

Park W, Paust H, Kaufmann H J et al. Osteomalacia of the mother--rickets of the newborn. Eur J Pediatr 1987;146(3):292-293.

Parviainen M T, Koskinen T. Vitamin A, D and E status in a Finnish population--a multivitamin study. Hum Nutr Clin Nutr 1983;37(6):397-403.

Parviainen M T, Kumpusalo E, Halonen P et al. Epidemiology of vitamins A, E, D and C in rural villages in Finland: biochemical, nutritional and socioeconomical aspects. Int J Vitam Nutr Res 1992;62(3):238-243.

Pasco J A, Henry M J, Kotowicz M A et al. Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong Osteoporosis Study. J Bone Miner Res 2004;19(5):752-758.

Pasco J A, Henry M J, Nicholson G C et al. Vitamin D status of women in the Geelong Osteoporosis Study: association with diet and casual exposure to sunlight. Med J Aust 2001;175(8):401-405. Paterson C R. Vitamin-D poisoning: survey of causes in 21 patients with hypercalcaemia. Lancet 1980;1(8179):1164-1165.

Paunier L, Lacourt G, Pilloud P et al. 25hydroxyvitamin D and calcium levels in maternal, cord and infant serum in relation to maternal vitamin D intake. Helv Paediatr Acta 1978;33(2):95-103.

Peacey S R, Wright D, Harries M J. Failure to normalize parathyroid hormone during treatment of vitamin D deficiency in Asian patients. Clin Endocrinol (Oxf) 2004;61(5):603-606.

Pehlivan I, Hatun S, Aydogan M et al. Maternal serum vitamin D levels in the third trimester of pregnancy. Turkish Journal of Medical Sciences 2002;32(3):237-241.

Pepe J, Romagnoli E, Nofroni I et al. Vitamin D status as the major factor determining the circulating levels of parathyroid hormone: A study in normal subjects. Osteoporos Int 2005;16(7):805-812.

Perry H M, Bernard M, Horowitz M et al. The effect of aging on bone mineral metabolism and bone mass in Native American women. J Am Geriatr Soc 1998;46(11):1418-1422. Perry H M, Horowitz M, Morley J E et al. Aging and bone metabolism in African American and Caucasian women. J Clin Endocrinol Metab 1996;81(3):1108-1117.

Perry H M, Horowitz M, Morley J E et al. Longitudinal changes in serum 25-hydroxyvitamin D in older people. Metab Clin Exp 1999;48(8):1028-1032.

Pettifor J M, Isdale J M, Sahakian J et al. Diagnosis of subclinical rickets. Arch Dis Child 1980;55(2):155-157.

Pettifor J M, Ross F P, Solomon L. Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J 1978;1(6116):826-827.

Pfeifer M, Begerow B, Minne H W et al. Vitamin D status, trunk muscle strength, body sway, falls, and fractures among 237 postmenopausal women with osteoporosis. Exp Clin Endocrinol Diabetes 2001;109(2):87-92.

Pfitzner M A, Thacher T D, Pettifor J M et al. Absence of vitamin D deficiency in young Nigerian children. Eur J Pediatr 1998;133(6):740-744.

Picard D, Imbach A, Couturier M et al. Longitudinal study of bone density and its determinants in women in peri- or early menopause. Calcif Tissue Int 2000;67(5):356-360.

Pietrek J, Otto-Buczkowska E, Kokot F et al. Concentration of 25-hydroxyvitamin D in serum of infants under the intermittent high-dose vitamin D3 prophylactic treatment. Arch Immunol Ther Exp (Warsz) 1980;28(5):805-814.

Pietrek J, Preece M A, Windo J et al. Prevention of vitamin-D deficiency in Asians. Lancet 1976;1(7970):1145-1148.

Pillow J J, Forrest P J, Rodda C P. Vitamin D deficiency in infants and young children born to migrant parents. J Paediatr Child Health 1995;31(3):180-184.

Pitson G A, Lugg D J, Roy C R. Effect of seasonal ultraviolet radiation fluctuations on vitamin D homeostasis during an Antarctic expedition. Eur J Appl Physiol Occup Physiol 1996;72(3):231-234. Pittard W B, Geddes K M, Hulsey T C et al. How much vitamin D for neonates? Am J Dis Child 1991;145(10):1147-1149.

Poskitt E M, Cole T J, Lawson D E. Diet, sunlight, and 25-hydroxy vitamin D in healthy children and adults. Br Med J 1979;1(6158):221-223.

Premaor M O, Alves G V, Crossetti L B et al. Hyperparathyroidism secondary to hypovitaminosis D in hypoalbuminemic is less intense than in normoalbuminemic patients: a prevalence study in medical inpatients in southern Brazil. Endocrine 2004;24(1):47-53.

Prentice A, Yan L, Jarjou L M et al. Vitamin D status does not influence the breast-milk calcium concentration of lactating mothers accustomed to a low calcium intake. Acta Paediatr 1997;86(9):1006-1008.

Prestwood K M, Pannullo A M, Kenny A M et al. The effect of a short course of calcium and vitamin D on bone turnover in older women. Osteoporos Int 1996;6(4):314-319.

Pun K K, Wong F H, Wang C et al. Vitamin D status among patients with fractured neck of femur in Hong Kong. Bone 1990;11(5):365-368.

Quesada J M, Coopmans W, Ruiz B et al. Influence of vitamin D on parathyroid function in the elderly. J Clin Endocrinol Metab 1992;75(2):494-501.

Raghuramulu N, Reddy V. Studies on vitamin D metabolism in malnourished children. Br J Nutr 1982;47(2):231-234.

Raghuramulu N, Reddy V. Serum 25-hydroxyvitamin D levels in malnourished children with rickets. Arch Dis Child 1980;55(4):285-287.

Rahman SA, Chee WS, Yassin Z et al. Vitamin D status among postmenopausal Malaysian women. Asia Pac J Clin Nutr 2004;13(3):255-260.

Rajeswari J, Balasubramanian K, Bhatia V et al. Aetiology and clinical profile of osteomalacia in adolescent girls in northern India. Natl Med J India 2003;16(3):139-142.

Rapin C H, Lagier R. Comparative blood chemical data related to aging, femoral neck fracture and hip osteoarthrosis. Z Rheumatol 1989;48(4):175-181.

Rapuri P B, Gallagher J C. Effect of Vitamin D supplement use on serum concentrations of total 25OHD levels in elderly women. Journal of Steroid Biochemistry & Molecular Biology 2004;89-90(1-5):601-604.

Rapuri P B, Gallagher J C, Haynatzki G. Effect of vitamins D2 and D3 supplement use on serum 250HD concentration in elderly women in summer and winter. Calcif Tissue Int 2004;74(2):150-156.

Rapuri P B, Kinyamu H K, Gallagher J C et al. Seasonal changes in calciotropic hormones, bone markers, and bone mineral density in elderly women. J Clin Endocrinol Metab 2002;87(5):2024-2032.

Rashid A, Mohammed T, Stephens W P et al. Vitamin D state of Asians living in Pakistan. Br Med J (Clin Res Ed) 1983;286(6360):182-184.

Rassouli A, Milanian I, Moslemi-Zadeh M. Determination of serum 25-hydroxyvitamin D(3) levels in early postmenopausal Iranian women: relationship with bone mineral density. Bone 2001;29(5):428-430.

Reginster J Y, Deroisy R, Pirenne H et al. High prevalence of low femoral bone mineral density in elderly women living in nursing homes or community-dwelling: a plausible role of increased parathyroid hormone secretion. Osteoporos Int 1999;9(2):121-128.

Rejnmark L, Jorgensen M E, Pedersen M B et al. Vitamin D insufficiency in Greenlanders on a westernized fare: ethnic differences in calcitropic hormones between Greenlanders and Danes. Calcif Tissue Int 2004;74(3):255-263.

Rizzoli R, Stoermann C, Ammann P et al. Hypercalcemia and hyperosteolysis in vitamin D intoxication: effects of clodronate therapy. Bone 1994;15(2):193-198.

Roberts C C, Chan G M, Folland D et al. Adequate bone mineralization in breast-fed infants. Eur J Pediatr 1981;99(2):192-196.

Rock C L, Thornquist M D, Kristal A R et al. Demographic, dietary and lifestyle factors differentially explain variability in serum carotenoids and fat-soluble vitamins: baseline results from the sentinel site of the Olestra Post-Marketing Surveillance Study. Br J Nutr 1999;129(4):855-864. Romagnoli E, Caravella P, Scarnecchia L et al. Hypovitaminosis D in an Italian population of healthy subjects and hospitalized patients. Br J Nutr 1999;81(2):133-137.

Rossini M, Alberti V, Flor L et al. Effect of oral vitamin D2 yearly bolus on hip fracture risk in elderly women: a community primary prevention study. Aging Clin Exp Res 2004;16(6):432-436.

Rucker D, Ezzat S, Diamandi A et al. IGF-I and testosterone levels as predictors of bone mineral density in healthy, community-dwelling men. Clin Endocrinol (Oxf) 2004;60(4):491-499.

Rudnicki M, Thode J, Jorgensen T et al. Effects of age, sex, season and diet on serum ionized calcium, parathyroid hormone and vitamin D in a random population. J Intern Med 1993;234(2):195-200.

Rushton C. Vitamin D hydroxylation in youth and old age. Age & Ageing 1978;7(2):91-95.

Ryan P, Dixon T. Prevalence of vitamin D inadequacy in patients attending a metabolic bone clinic in Medway. Curr Med Res Opin 2006;22(1):211-216.

Saadi H F, Reed R L, Carter A O et al. Correlation of quantitative ultrasound parameters of the calcaneus with bone density of the spine and hip in women with prevalent hypovitaminosis D. J Clin Densitom 2004;7(3):313-318.

Sachan A, Gupta R, Das V et al. High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. Am J Clin Nutr 2005;81(5):1060-1064.

Sahota O, Gaynor K, Harwood R H et al. Hypovitaminosis D and 'functional hypoparathyroidism'-the NoNoF (Nottingham Neck of Femur) study. Age & Ageing 2001;30(6):467-472.

Sahota O, Masud T, San P et al. Vitamin D insufficiency increases bone turnover markers and enhances bone loss at the hip in patients with established vertebral osteoporosis. Clin Endocrinol (Oxf) 1999;51(2):217-221.

Sahota O, Mundey M K, San P et al. The relationship between vitamin D and parathyroid hormone: Calcium homeostasis, bone turnover, and bone mineral density in postmenopausal women with established osteoporosis. Bone 2004;35(1):312-319. Salamone L M, Dallal G E, Zantos D et al. Contributions of vitamin D intake and seasonal sunlight exposure to plasma 25-hydroxyvitamin D concentration in elderly women. Am J Clin Nutr 1994;59(1):80-86.

Saraiva G L, Cendoroglo M S, Ramos L R et al. Influence of ultraviolet radiation on the production of 25 hydroxyvitamin D in the elderly population in the city of Sao Paulo (23 degrees 34'S), Brazil. Osteoporos Int 2005;16(12):1649-1654.

Sato Y, Inose M, Higuchi I et al. Changes in the supporting muscles of the fractured hip in elderly women. Bone 2002;30(1):325-330.

Savolainen K, Maenpaa P H, Alhava E M et al. A seasonal difference in serum 25-hydroxyvitamin D3 in a Finnish population. Med Biol 1980;58(1):49-52.

Scanlon K S, Blank S, Sinks T et al. Subclinical health effects in a population exposed to excess vitamin D in milk. Am J Public Health 1995;85(10):1418-1422.

Scharla S H, Scheidt-Nave C, Leidig G et al. Lower serum 25-hydroxyvitamin D is associated with increased bone resorption markers and lower bone density at the proximal femur in normal females: a population-based study. Exp Clin Endocrinol Diabetes 1996;104(3):289-292.

Scopacasa F, Wishart J M, Horowitz M et al. Relation between calcium absorption and serum calcitriol in normal men: evidence for age-related intestinal resistance to calcitriol. Eur J Clin Nutr 2004;58(2):264-269.

Scotti A, Bianchini C, Abbiati G et al. Absorption of calcium administered alone or in fixed combination with vitamin D to healthy volunteers. Arzneimittelforschung 2001;51(6):493-500.

Scragg R, Holdaway I, Jackson R et al. Plasma 25hydroxyvitamin D3 and its relation to physical activity and other heart disease risk factors in the general population. Ann Epidemiol 1992;2(5):697-703.

Scragg R, Holdaway I, Singh V et al. Serum 25hydroxyvitamin D3 is related to physical activity and ethnicity but not obesity in a multicultural workforce. Aust N Z J Med 1995;25(3):218-223.

Scragg R, Khaw K T, Murphy S. Life-style factors associated with winter serum 25-hydroxyvitamin D

levels in elderly adults. Age & Ageing 1995;24(4):271-275.

Sedrani S H, Reprint author, Abanmy A et al. Vitamin D status of Saudis: V. Are Saudi children at risk of developing vitamin D deficiency rickets? Saudi Med J 1992;13(5):430-433.

Sedrani S H, Al Arabi K, Abanmy A et al. Vitamin D status of Saudis: IV. Seasonal variations. Saudi Med J 1992;13(5):423-429.

Sedrani S H, Al Arabi K, Abanmy A et al. Vitamin D status of Saudis II : effect of regional and environmental location. Saudi Med J 1992;13(3):206-213.

Sedrani S H, Elidrissy A W, El Arabi K M. Sunlight and vitamin D status in normal Saudi subjects. Am J Clin Nutr 1983;38(1):129-132.

Sem S W, Sjoen R J, Trygg K et al. Vitamin D status of two groups of elderly in Oslo: living in old people's homes and living in own homes. Compr Gerontol [C] 1987;Section A, Clinical & Laboratory Sciences. 1(3):126-130.

Semba R D, Garrett E, Johnson B A et al. Vitamin D deficiency among older women with and without disability. Am J Clin Nutr 2000;72(6):1529-1534.

Serenius F, Elidrissy A T, Dandona P. Vitamin D nutrition in pregnant women at term and in newly born babies in Saudi Arabia. J Clin Pathol 1984;37(4):444-447.

Serhan E, Holland M R. Calcium and vitamin D supplementation failed to improve bone mineral density in Indo-Asians suffering from hypovitaminosis D and secondary hyperparathyroidism. Rheumatol Int 2005;25(4):276-279.

Seton M, Jackson V, Lasser K E et al. Low 25hydroxyvitamin D and osteopenia are prevalent in persons > or =55 yr with fracture at any site: a prospective, observational study of persons fracturing in the community. J Clin Densitom 2005;8(4):454-460.

Shany S, Chaimovitz C, Yagev R et al. Vitamin Ddeficiency in the elderly: treatment with ergocalciferol and hydroxylated analogues of vitamin D3. Isr J Med Sci 1988;24(3):160-163. Shaunak S, Colston K, Ang L et al. Vitamin D deficiency in adult British Hindu Asians: a family disorder. Br Med J (Clin Res Ed) 1985;291(6503):1166-1168.

Sheltawy M, Newton H, Hay A et al. The contribution of dietary vitamin D and sunlight to the plasma 25-hydroxyvitamin D in the elderly. Hum Nutr Clin Nutr 1984;38(3):191-194.

Sherman S S, Tobin J D, Hollis B W et al. Biochemical parameters associated with low bone density in healthy men and women. J Bone Miner Res 1992;7(10):1123-1130.

Shuster S, Chadwick L, Afacan A S et al. Serum 25hydroxy vitamin D in coalworkers and surface workers in winter. Br Med J (Clin Res Ed) 1982;284(6313):386

Shuster S, Chadwick L, Afacan A S et al. Serum 25hydroxy vitamin D in surface and underground coalminers. Br Med J (Clin Res Ed) 1981;283(6284):106

Sigurdsson G, Franzson L, Steingrimsdottir L et al. The association between parathyroid hormone, vitamin D and bone mineral density in 70-year-old Icelandic women. Osteoporos Int 2000;11(12):1031-1035.

Smerdely P, Seller M, Smith A et al. Predictors of bone mass in healthy older men in the community. Med J Aust 2000;173(4):183-186.

Somerville P J, Lien J W, Kaye M. The calcium and vitamin D status in an elderly female population and their response to administered supplemental vitamin D3. J Gerontol 1977;32(6):659-663.

Soontrapa S, Soontrapa S, Pongchaiyakul C et al. Prevalence of hypovitaminosis D in elderly women living in urban area of Khon Kaen province, Thailand. J Med Assoc Thai 2001;84 Suppl 2S534-S541.

Souberbielle J C, Cormier C, Kindermans C et al. Vitamin D status and redefining serum parathyroid hormone reference range in the elderly. J Clin Endocrinol Metab 2001;86(7):3086-3090.

Sowers M R, Wallace R B, Hollis B W et al. Parameters related to 25-OH-D levels in a population-based study of women. Am J Clin Nutr 1986;43(4):621-628. Specker B L, Tsang R C. Cyclical serum 25hydroxyvitamin D concentrations paralleling sunshine exposure in exclusively breast-fed infants. Eur J Pediatr 1987;110(5):744-747.

Specker B L, Tsang R C, Hollis B W. Effect of race and diet on human-milk vitamin D and 25hydroxyvitamin D. Am J Dis Child 1985;139(11):1134-1137.

Specker B L, Tsang R C, Ho M et al. Seasonal differences in serum vitamin D binding protein in exclusively breast-fed infants: negative relationship to sunshine exposure and 25-hydroxyvitamin D. J Pediatr Gastroenterol Nutr 1986;5(2):290-294.

Specker B L, Valanis B, Hertzberg V et al. Sunshine exposure and serum 25-hydroxyvitamin D concentrations in exclusively breast-fed infants. Eur J Pediatr 1985;107(3):372-376.

Spindler A, Lucero E, Berman A et al. Bone mineral density in a native population of Argentina with low calcium intake. Br J Rheumatol 1995;22(11):2148-2151.

Staberg B, Christiansen C, Rossing N. Serum vitamin D metabolites in normal subjects after phototherapy. Scand J Clin Lab Invest 1984;44(1):53-56.

Stamp T C, Haddad J G, Twigg C A. Comparison of oral 25-hydroxycholecalciferol, vitamin D, and ultraviolet light as determinants of circulating 25hydroxyvitamin D. Lancet 1977;1(8026):1341-1343.

Stein E M, Laing E M, Hall D B et al. Serum 25hydroxyvitamin D concentrations in girls aged 4-8 y living in the southeastern United States. Am J Clin Nutr 2006;83(1):75-81.

Stein M S, Flicker L, Scherer S C et al. Relationships with serum parathyroid hormone in old institutionalized subjects. Clin Endocrinol (Oxf) 2001;54(5):583-592.

Stephens W P, Klimiuk P S, Warrington S et al. Observations on the dietary practices of Asians in the United Kingdom. Hum Nutr Appl Nutr 1982;36(6):438-444.

Stern P H, Taylor A B, Bell N H et al. Demonstration that circulating 1 alpha, 25-dihydroxyvitamin D is loosely regulated in normal children. Eur J Clin Invest 1981;68(5):1374-1377. Sullivan S S, Rosen C J, Halteman W A et al. Adolescent girls in Maine are at risk for vitamin D insufficiency. J Am Diet Assoc 2005;105(6):971-974.

Suzuki Y, Davison K S, Chilibeck P D. Total calcium intake is associated with cortical bone mineral density in a cohort of postmenopausal women not taking estrogen. J Nutr Health Aging 2003;7(5):296-299.

Szulc P, Munoz F, Marchand F et al. Role of vitamin D and parathyroid hormone in the regulation of bone turnover and bone mass in men: the MINOS study. Calcif Tissue Int 2003;73(6):520-530.

Taha W, Chin D, Silverberg A I et al. Reduced spinal bone mineral density in adolescents of an Ultra-Orthodox Jewish community in Brooklyn. Pediatrics 2001;107(5):E79

Takeuchi A, Okano T, Ishida Y et al. Effects of dietary vitamin D intake on plasma levels of parathyroid hormone and vitamin D metabolites in healthy Japanese. Miner Electrolyte Metab 1995;21(1-3):217-222.

Takeuchi A, Okano T, Tsugawa N et al. Effects of ergocalciferol supplementation on the concentration of vitamin D and its metabolites in human milk. Br J Nutr 1989;119(11):1639-1646.

Tamatani M, Morimoto S, Nakajima M et al. Decreased circulating levels of vitamin K and 25hydroxyvitamin D in osteopenic elderly men. Metab Clin Exp 1998;47(2):195-199.

Tandon N, Marwaha R K, Kalra S et al. Bone mineral parameters in healthy young Indian adults with optimal vitamin D availability.[see comment]. Natl Med J India 2003;16(6):298-302.

Tangpricha V, Pearce E N, Chen T C et al. Vitamin D insufficiency among free-living healthy young adults. Am J Med 2002;112(8):659-662.

Tangpricha V, Turner A, Spina C et al. Tanning is associated with optimal vitamin D status (serum 25hydroxyvitamin D concentration) and higher bone mineral density. Am J Clin Nutr 2004;80(6):1645-1649.

Tareen N, Martins D, Zadshir A et al. The impact of routine vitamin supplementation on serum levels of 25 (OH) D3 among the general adult population and patients with chronic kidney disease. Ethn Dis 2005;15(4 Suppl 5):S5-S6.

Taylor A F, Norman M E. Vitamin D metabolite levels in normal children. Pediatr Res 1984;18(9):886-890.

Theiler R, Bischoff H, Tyndall A et al. Elevated PTH levels in hypovitaminosis D are more rapidly suppressed by the administration of 1,25-dihydroxyvitamin D3 than by vitamin D3. Int J Vitam Nutr Res 1998;68(1):36-41.

Theiler R, Stahelin H B, Kranzlin M et al. Influence of physical mobility and season on 25hydroxyvitamin D-parathyroid hormone interaction and bone remodelling in the elderly. Eur J Endocrinol 2000;143(5):673-679.

Theiler R, Stahelin H B, Kranzlin M et al. High bone turnover in the elderly. Arch Phys Med Rehabil 1999;80(5):485-489.

Theiler R, Stahelin H B, Tyndall A et al. Calcidiol, calcitriol and parathyroid hormone serum concentrations in institutionalized and ambulatory elderly in Switzerland. Int J Vitam Nutr Res 1999;69(2):96-105.

Thomson K, Morley R, Grover S R et al. Postnatal evaluation of vitamin D and bone health in women who were vitamin D-deficient in pregnancy, and in their infants. Med J Aust 2004;181(9):486-488.

Tjellesen L, Christiansen C. Vitamin D metabolites in normal subjects during one year. A longitudinal study. Scand J Clin Lab Invest 1983;43(1):85-89.

Toss G, Larsson L, Lindgren S. Serum levels of 25hydroxyvitamin D in adults and elderly humans after a prophylactic dose of vitamin D2. Scand J Clin Lab Invest 1983;43(4):329-332.

Tsai K S, Chen J S, Hwang K M et al. Age-related changes in vitamin D metabolites, osteocalcin, alkaline phosphatase and parathyrin in normal Chinese women in Taipei. J Formos Med Assoc 1991;90(11):1033-1037.

Tsai K S, Hsu S H, Cheng J P et al. Vitamin D stores of urban women in Taipei: effect on bone density and bone turnover, and seasonal variation. Bone 1997;20(4):371-374.

Tsai K S, Wahner H W, Offord K P et al. Effect of aging on vitamin D stores and bone density in women. Calcif Tissue Int 1987;40(5):241-243.

Turton C W, Stanley P, Stamp T C et al. Altered vitamin-D metabolism in pregnancy. Lancet 1977;1(8005):222-225.

Ulivieri F M, Verdoia C, Ortolani S et al. Vitamin D concentrations in women of postmenopausal age with fractures of the femoral neck. Italian Journal of Orthopaedics & Traumatology 1986;12(3):401-405.

Valimaki V V, Alfthan H, Lehmuskallio E et al. Vitamin D status as a determinant of peak bone mass in young Finnish men. J Clin Endocrinol Metab 2004;89(1):76-80.

van der Wielen R P, Lowik M R et al. Serum vitamin D concentrations among elderly people in Europe. Lancet 1995;346(8969):207-210.

van der Sluis I, Hop W C et al. A cross-sectional study on biochemical parameters of bone turnover and vitamin d metabolites in healthy dutch children and young adults. Horm Res 2002;57(5-6):170-179.

Varghese M, Rodman J S, Williams J J et al. The effect of ultraviolet B radiation treatments on calcium excretion and vitamin D metabolites in kidney stone formers. Clin Nephrol 1989;31(5):225-231.

Vecino-Vecino C, Gratton M, Kremer R et al. Seasonal variance in serum levels of vitamin D determines a compensatory response by parathyroid hormone: Study in an ambulatory elderly population in Quebec. Gerontology 2006;52(1):33-39.

Verity C M, Burman D, Beadle P C et al. Seasonal changes in perinatal vitamin D metabolism: maternal and cord blood biochemistry in normal pregnancies. Arch Dis Child 1981;56(12):943-948.

Vieth R, Cole D E, Hawker G A et al. Wintertime vitamin D insufficiency is common in young Canadian women, and their vitamin D intake does not prevent it. Eur J Clin Nutr 2001;55(12):1091-1097.

Vik T, Try K, Stromme J H. The vitamin D status of man at 70 degrees north. Scand J Clin Lab Invest 1980;40(3):227-232.

von Knorring J, Slatis P, Weber T H et al. Serum levels of 25-hydroxyvitamin D, 24,25dihydroxyvitamin D and parathyroid hormone in patients with femoral neck fracture in southern Finland. Clin Endocrinol (Oxf) 1982;17(2):189-194.

von Muhlen D G, Greendale G A, Garland C F et al. Vitamin D, parathyroid hormone levels and bone mineral density in community-dwelling older women: The Rancho Bernardo Study. Osteoporos Int 2005;Epub

von Muhlen D G, Greendale G A, Garland C F et al. Vitamin D, parathyroid hormone levels and bone mineral density in community-dwelling older women: the Rancho Bernardo Study. Osteoporos Int 2005;16(12):1721-1726.

Waiters B, Godel J C, Basu T K. Perinatal vitamin D and calcium status of northern Canadian mothers and their newborn infants. J Am Coll Nutr 1999;18(2):122-126.

Webb A R, Pilbeam C, Hanafin N et al. An evaluation of the relative contributions of exposure to sunlight and of diet to the circulating concentrations of 25-hydroxyvitamin D in an elderly nursing home population in Boston. Am J Clin Nutr 1990;51(6):1075-1081.

Webb A R, Steven M D, Hosking D J et al. Correction of vitamin D deficiency in elderly longstay patients by sunlight exposure. Journal of Nutritional Medicine 1990;1(3):201-208.

Weiler H, Fitzpatrick-Wong S, Veitch R et al. Vitamin D deficiency and whole-body and femur bone mass relative to weight in healthy newborns.[see comment]. CMAJ 2005;172(6):757-761.

Weisman Y, Schen R J, Eisenberg Z et al. Inadequate status and impaired metabolism of vitamin D in the elderly. Isr J Med Sci 1981;17(1):19-21.

Whyte M P, Haddad J G, Walters D D et al. Vitamin D bioavailability: serum 25-hydroxyvitamin D levels in man after oral, subcutaneous, intramuscular, and intravenous vitamin D administration. J Clin Endocrinol Metab 1979;48(6):906-911.

Woitge H W, Scheidt-Nave C, Kissling C et al. Seasonal variation of biochemical indexes of bone turnover: results of a population-based study. J Clin Endocrinol Metab 1998;83(1):68-75.

Wortsman J, Matsuoka L Y, Chen T C et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72(3):690-693.

Wu F, Staykova T, Horne A et al. Efficacy of an oral, 10-day course of high-dose calciferol in correcting vitamin D deficiency. N Z Med J 2003;116(1179):U536 Yan L, Prentice A, Zhang H et al. Vitamin D status and parathyroid hormone concentrations in Chinese women and men from north-east of the People's Republic of China. Eur J Clin Nutr 2000;54(1):68-72.

Yonei T, Hagino H, Katagiri H et al. Bone metabolic changes in Antarctic wintering team members. Bone 1999;24(2):145-150.

Zamboni M, Zoico E, Tosoni P et al. Relation between vitamin D, physical performance, and disability in elderly persons. J Gerontol A Biol Sci Med Sci 2002;57(1):M7-11.

Zerath E, Holy X, Gaud R et al. Decreased serum levels of 1,25-(OH)2 vitamin D during 1 year of sunlight deprivation in the Antarctic. Eur J Appl Physiol Occup Physiol 1999;79(2):141-147.

Zerwekh J E, Sakhaee K, Glass K et al. Long term 25-hydroxyvitamin D3 therapy in postmenopausal osteoporosis: demonstration of responsive and nonresponsive subgroups. J Clin Endocrinol Metab 1983;56(2):410-413.

Zhang Z-L, Qin Y-J, Huang Q-R et al. Association of estrogen receptor-alpha and vitamin D receptor genotypes with therapeutic response to calcium in postmenopausal Chinese women. Acta Pharmacol Sin. 2004;25(12):1690-1697.

Zhu K, Zhang Q, Foo L H et al. Growth, bone mass, and vitamin D status of Chinese adolescent girls 3 y after withdrawal of milk supplementation. Am J Clin Nutr 2006;83(3):714-721.

Zittermann A, Scheld K, Stehle P. Seasonal variations in vitamin D status and calcium absorption do not influence bone turnover in young women. Eur J Clin Nutr 1998;52(7):501-506.

Zochling J, Chen J S, Seibel M et al. Calcium metabolism in the frail elderly. Clin Rheumatol 2005;24(6):576-582.

Zochling J, Sitoh Y Y, Lau T C et al. Quantitative ultrasound of the calcaneus and falls risk in the institutionalized elderly: sex differences and relationship to vitamin D status. Osteoporos Int 2002;13(11):882-887.

Zofkova I, Bahbouh R, Bendlova B et al. Circulating beta(2) microglobulin in relation to bone metabolism: implications for bone loss with aging. Calcif Tissue Int 1999;65(6):442-446.