Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

2004 Progress Report: Plasma Polymerization: A Novel, Environmentally-Compatible Process for Surface Engineering of Metals

EPA Grant Number: R829579
Title: Plasma Polymerization: A Novel, Environmentally-Compatible Process for Surface Engineering of Metals
Investigators: Boerio, F. James , Bengu, B. , Gupta, M.
Institution: University of Cincinnati
EPA Project Officer: Richards, April
Project Period: March 11, 2002 through March 10, 2006
Project Period Covered by this Report: March 11, 2004 through March 10, 2005
Project Amount: $300,000
RFA: Technology for a Sustainable Environment (2001)
Research Category: Pollution Prevention/Sustainable Development

Description:

Objective:

The main objective of this research is to develop environmentally compatible, all-plasma processes for surface engineering of metals prior to adhesive bonding. Plasma processes for etching or cleaning of metal substrates such as aluminum and for the subsequent deposition of plasma-polymerized primer films have been investigated. The mechanisms by which typical epoxy adhesive systems interact with plasma-polymerized primer films also have been investigated. Although most of this research involves plasma processes carried out at pressures below atmospheric pressure, the use of air plasmas at atmospheric pressure for surface engineering of metal substrates also is being explored.

Progress Summary:

Plasma-polymerized silica-like films can be effectively applied as primers to metals such as aluminum prior to adhesive bonding or coating operations. Plasma-etching is an effective method for preparing metals for deposition of plasma-polymerized primers; however, magnesium that is present in the oxide layers of some aluminum alloys must be removed from the surface before deposition of the primers to form durable bonds to those alloys. Atmospheric-pressure air plasmas can be used effectively to etch the surfaces of metals and to deposit plasma-polymerized primers onto the clean surfaces. Epoxy adhesives cured with dicyandiamide interact with metal substrates such as aluminum mostly by end-on coordination of the lone pair of electrons on the nitrile group of dicyandiamide to metal atoms. The same adhesive systems, however, interact with silica-like substrates mostly by hydrogen bonding and/or formation of covalent bonds through ring-opening of epoxide groups.

Conclusion

Plasma processing is an effective method for surface engineering of metals prior to adhesive bonding or coating operations. The technique is compatible with the environment. Atmospheric-pressure air plasmas are especially attractive because they do not require vacuum systems, can be applied to large objects with complex shapes, especially when combined with robotic controls, and can be adapted easily for continuous processing.

Future Activities:

No future activities were reports by the investigators.

Journal Articles:

No journal articles submitted with this report: View all 7 publications for this project

Supplemental Keywords:

plasma-polymerization, plasma-etching, adhesion, adhesive bonding, air plasmas, atmospheric pressure plasmas, , Sustainable Industry/Business, Scientific Discipline, RFA, Technology for Sustainable Environment, Sustainable Environment, Chemical Engineering, Environmental Engineering, Environmental Chemistry, clean manufacturing designs, industrial design for environment, environmental sustainability, waste reduction, clean technologies, green design, plasma polymerization, coating processes, engineering, waste minimization, environmentally conscious manufacturing, industrial innovations, environmentally benign coating, metal surface engineering, alternative materials, metal finishing, innovative technology, environmentally conscious design, pollution prevention
Relevant Websites:

http://www.eng.uc.edu/~fboerio exit EPA

Progress and Final Reports:
2002 Progress Report
2003 Progress Report
Original Abstract
Final Report

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.