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Abstract

I formulate an econometric model of consumer learning and experimentation about new products

in markets for packaged goods that nests alternative sources of dynamics. The model is estimated

on household level scanner data of laundry detergent purchases, and the results suggest that con-

sumers have very similar expectations of their match value with new products before consumption

experience with the good, but once consumers have learned their true match values they are very

heterogeneous. I demonstrate that resolving consumer uncertainty about the new products in-

creases market shares by 24 to 58%. The estimation results also suggest significant switching costs:

removing switching costs increases new product market shares by 12 to 23%. Using counterfactual

computations derived from the estimates of the structural demand model, I demonstrate that the

presence of switching costs with learning changes the implications of the standard empirical learning

model: the intermediate run impact of an introductory price cut on a new product’s market share

is significantly greater when the only source of dynamics is switching costs as opposed to when both

learning and switching costs are present, which suggests that firms should combine price cuts with

introductory advertising or free samples to increase their impact.

Because my model includes two different types of dynamics, I am able to assess the impact

of ignoring learning or switching costs on the model’s imputed long run price elasticities by re-

estimating the model assuming that one of these dynamics is not present. I find that ignoring

learning will i) lead to underestimates of the own price elasticities of new products by 30%, ii) will

underestimate the cross-price elasticities between new and established products by up to 90%, iii)

will overestimate the cross-price elasticities of established products by up to 15%. Ignoring switching

costs will lead to underestimates of own price elasticities of up to 60%, and underestimates of cross-

price elasticities of up to 90%.



1 Introduction

An experience good is a product that must be consumed before an individual learns how much she

likes it. This makes purchasing the product a dynamic decision, since the consumer’s decision to

experiment with a new product is an investment that will pay off if the consumer likes the product

and purchases it again in the future. Consumer learning in experience goods markets has been an

important subject of theoretical research in industrial organization and marketing since the 1970’s.

Learning can be an especially important factor in the demand for new products, and there is a

small empirical literature that quantifies learning in household panel data using structural demand

models with forward-looking consumers (for example, Erdem and Keane (1996), Crawford and Shum

(2005)). In these papers it is assumed that the only type of dynamics in demand come from learning,

and alternative types of dynamics, such as switching costs or consumer taste for variety, are not

modeled. Similarly, papers that estimate other forms of dynamics (see Chintagunta, Kyriazidou,

and Perktold (2001) for an example) usually only allow for one type of dynamics in demand.

In this paper, I estimate a structural model of learning and experimentation that nests alternative

sources of dynamics in demand, such as the cost of switching between different products. In my

model, consumers are forward-looking and take into account the effect of learning and other sources

of dynamics on their future utility. I also allow a rich distribution of heterogeneity in consumer

tastes, price sensitivities, expectations of new product match values, and alternative dynamics. To

my knowledge, this paper is the first to estimate a demand model with such a rich dynamic structure.

The model is estimated on household-level longitudinal data on laundry detergent purchases.

During the time the data was collected, three new product introductions are observed. Learning

can be empirically separated from switching costs through differences in the effect of having made

a first purchase of a new product on a consumer’s current purchase relative to the effect of having

used a product in the previous purchase event. Allowing for switching costs in addition to learning

changes the implications of the standard empirical learning model: for example, the presence of

switching costs makes consumers less likely to experiment with new products. Additionally, I find

that the intermediate run impact of an introductory price cut increases when both learning and

switching costs are present, compared to the case where only learning is present, since consumers

who purchase the product and find they have a low match value for the product (alternatively, a

low permanent taste for the product) may find it too costly to switch away from it.

Another contribution of this paper to the industrial organization literature is to examine the

impact of misspecifying dynamics on estimates of long term price elasticities. This issue is econom-

ically relevant because cross-price elasticities are used to assess the impact of mergers, and it has

been examined in some previous empirical research: for example, Hendel and Nevo (2006a) show

that there are large biases from ignoring dynamics. In addition to estimating a model of learning

and switching costs, I estimate two restricted structural demand models: one with no switching



costs, and one with no learning. I find that in both cases, own and cross price elasticities elasticities

are underestimated by leaving out dynamics, often by as much as 90%. An exception to this is that

cross-price elasticities between established products are slightly overestimated in the model with no

learning. A final contribution of this paper relative to the existing literature is that I use a recently

developed technique allowing Bayesian estimation of a dynamic discrete choice model to include a

richer heterogeneity structure than has been included in most papers.

Although my empirical results are found in a data set on laundry detergents, they should be

applicable to other product categories where similar sorts of behavior have been observed. In

consumer packaged goods markets, consumer switching costs or taste for variety has been found to

play an important role in many product categories: some examples are nondiet soft drinks and liquid

laundry detergents (Chintagunta 1999), ketchup (Roy, Chintagunta, and Haldar 1996), margarine,

yogurt and peanut butter (Erdem 1996), breakfast cereals (Shum 2004), and orange juice (Dubé,

Hitsch, and Rossi 2006). Evidence of learning has been found in liquid laundry detergents (Erdem

and Keane 1996) and yogurts (Ackerberg 2003). Since new product introductions are very frequent

in packaged goods markets, the issues that were raised in the first few paragraphs are going to

be important. These types of dynamics are present in markets other than packaged goods. For

example, learning has been found to play an important role in pharmaceuticals (Crawford and

Shum 2005), automobile insurance (Israel 2005), and personal computers (Erdem, Keane, Öncü,

and Strebel 2005). Markets where switching costs play an important role are discussed in Farrell

and Klemperer (2006); some examples are cellular phones, credit cards, cigarettes, air travel, online

brokerage services, automobile insurance, and electricity suppliers. It is certainly conceivable that

consumer learning could also play a role in these markets. For example, in cellular phone markets

consumers will likely learn about aspects of their provider’s service after signing a contract with

them. Cellular phone contracts often penalize consumers for switching providers, which creates

switching costs and makes the decision to invest in a plan a forward-looking one.

The underlying model of consumer learning that is used in this paper is similar to many of the

papers that I have mentioned in the previous paragraphs. In particular, I assume that learning

occurs during consumption of the product: laundry detergent is assumed to be an experience good.

I assume that consumers have an individual-level match value for each product that does not change

over time. For the three new products, I assume that consumers may not know their true match

values beforehand, and will have expectations about their match values which are right on average.

If the consumers’ true match values are equal to their expected match values, then there is no

learning. This might be the case if consumers learn their match value beforehand through other

means, such as experience with established products or by examining the new product’s package. I

also assume that consumers are forward-looking, which means that they will recognize that there

is value to learning about new products. If there is indeed learning, and there are no other sources

of dynamics in demand, one should expect to see consumers purchasing the new products very
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soon after they are introduced. Also, after experimenting with the new product, consumers who

have a high match value for the new product will continue to purchase it after experimenting, and

consumers who have a low match value will switch back to the established product. These behaviors

will identify the magnitude of the learning.

One problem with this identification approach is the presence of dynamics in demand that are not

learning. For example, some consumers may be variety-seeking: holding fixed their intrinsic match

values, a previous purchase of the new product will decrease their current marginal utility for the

product. These consumers will tend to purchase the new product very soon after its introduction

and will switch away from it afterwards. To the researcher, it may look like these consumers

experimented with the product and found their match value was low. Alternatively, there could be

switching costs for some consumers: holding fixed their intrinsic match values, their marginal utility

for products other than the new product will decrease after purchasing the new product. When a

consumer with switching costs makes a first purchase of the new product, she will be likely to keep

on purchasing it. Switching costs could arise in packaged goods markets for psychological reasons:

for example, it may be costly for consumers to reoptimize their utility across purchase events, which

could bias them to purchase the same product as in their previous purchase, or consumers may

become more brand loyal in response to a previous purchase (Klemperer (1995) notes that brand

loyalty can create switching costs).2 To a researcher it may look like these consumers have a high

match value for the new product. Thus, will be important to take into account that these other types

of dynamics exist in order to properly isolate learning. I will argue that these types of dynamics can

be identified in the long run, during periods where there have been no new product introductions

for a long time. Learning can then be identified using the arguments specified above in the first few

periods after the new product introductions.

Previous papers that have estimated structural models of consumer learning on household level

panel data have not included these other types of dynamics; three well-known papers in this cate-

gory which I previously discussed are Erdem and Keane (1996), Ackerberg (2003), and Crawford and

Shum (2005), which estimate structural models of Bayesian learning in laundry detergents, yogurts,

and ulcer medications, respectively. A paper that raised the problem of leaving out alternative dy-

namics is Israel (2005), which looks for learning in the time-series behavior of departure probabilities

from an automobile insurance firm. The paper’s model allows consumers to learn about the firm’s

quality, and also controls for consumer lock-in by allowing the number of time periods spent with

the firm to enter utility directly. Although this paper was an important first step in examining the

importance of more than one type of dynamics, there are two important aspects of demand which

need to be addressed in a unified structural model of dynamics. First, the paper does not distinguish

between consumer lock-in and unobserved heterogeneity in preferences. A researcher may observe a

2In the empirical marketing literature, these types of switching costs are equivalently referred to as habit persistence

or inertia. As discussed above, they have been found to play an important role in many packaged goods markets.

3



consumer staying with the firm for a long time because she has a strong preference for the firm, or it

may be because she becomes locked in to it. This issue may not be critical in automobile insurance

markets, but in packaged goods markets it is important not to confuse these two behaviors, because

the long run effect of a temporary price cut on a product’s future share will be different under

switching costs as opposed to taste heterogeneity. Under switching costs, a temporary price cut will

increase a product’s future market share; under heterogeneity, this will not be the case. Second,

the paper does not directly model the forward-looking behavior of consumers by solving for their

value function, but instead includes a term in the utility function which is interpreted as the value

function. The estimated parameters of this paper are potentially subject to the Lucas critique: they

will be functions of policy variables, such as the distribution of future prices.

To assess the impact of ignoring switching costs in a model of consumer learning, I compare

the estimates from my model of learning and switching costs to estimates produced by a restricted

model, where I assume that there are no switching costs. In the model with no switching costs,

the variances in consumer taste distributions are estimated to be much larger. Consistent with the

intuition above, the impact of learning is estimated to be smaller: consumers are much less similar in

their initial predictions of how much they will like the new products. This difference is economically

significant: in the full model, learning increases new product market shares by 24% to 58%; in the

model with no switching costs, the impact of learning on market shares is smaller, ranging from

9.9% to 34%.3 Furthermore, when switching costs are ignored, the impact of introductory price

cuts on future market shares is underestimated, and long term price elasticities are significantly

underestimated.

An alternative way of misspecifying the model would be to ignore learning, and assume that the

only source of dynamics is switching costs or consumer taste for variety. I also estimate a restricted

version of my model, where I assume that switching costs and taste for variety are the only source

of dynamics. I find if learning is ignored, the distributions of price sensitivities, taste distributions,

and switching costs look similar to those implied by the full model. However, the model does a

significantly worse job at predicting the initial market shares of both new and established products.

The model overpredicts the impact of introductory price cuts on the subsequent market shares of

new products, and significantly underestimates long term price elasticities.

As with the literature on learning, there are many papers that estimate models of switching costs.

In economics, perhaps the most well-known work about forward-looking switching costs is the work

on rational addiction in Becker and Murphy (1988) and Becker, Grossman, and Murphy (1994). In

marketing, there are many papers which estimate structural models of switching costs (alternatively,

inertia or habit-formation) or variety-seeking in the presence of unobserved taste heterogeneity (for

an example see Seetharaman (2004)). Although these papers account for rich sources of dynamics

3To quantify the importance of learning, I simulate the new product market shares using my model estimates, and then

re-simulate them assuming that consumers have full information.
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in demand, they typically do not model consumers as forward-looking. Two examples of papers

that do allow for forward-looking behavior in this type of model are Chintagunta, Kyriazidou, and

Perktold (2001) and Hartmann (2006). Chintagunta, Kyriazidou, and Perktold (2001) estimates a

model of consumer switching costs in panel data on yogurt purchases. Hartmann (2006) examines

intertemporal consumption effects in consumer decisions to play golf. In this paper, consumers are

forward-looking, and dynamics arise through the fact that a consumer’s decision to play golf will

affect her future marginal utility for golf.

A third type of misspecification arises from failing to control for unobserved heterogeneity. As I

mentioned above, this can bias the predictions of the impact of price cuts on future market shares.

Additionally, it can make the identification of learning more difficult. To see why, suppose that

when a new product is introduced, its price is initially low and then it is raised, a practice that is

common and is observed in the data set used in this paper. Suppose further that there is a group of

consumers who are very responsive to price cuts. These consumers will purchase the new product

right after its introduction, when it is inexpensive, and will switch away from it as it gets more

expensive. To a researcher who does not take into account that they are price sensitive, it may look

like they experimented with the product and disliked it.

For computational reasons, most papers that estimate structural models of consumer learning

or switching costs have had to be parsimonious in how they specify consumer heterogeneity, if it is

modeled at all. For example, Erdem and Keane (1996) do not allow for consumer heterogeneity,4

while Crawford and Shum (2005) allows for individual level heterogeneity in two dimensions: how

serious the patient’s sickness is, and how good a match a particular ulcer medication is for the

patient. The paper assumes that the distribution of unobserved heterogeneity is discrete: in each of

the 2 dimensions, consumers fall into a small number of types. Ackerberg (2003) allows 2 dimensions

of individual-level heterogeneity: the intercept of each consumer’s utility for a new yogurt, which

is assumed to be known and observed by the consumer, and the consumer’s intrinsic match value

which is being learned. Unlike Crawford and Shum (2005), who assume that the population dis-

tribution of unobserved heterogeneity is discrete, this paper assumes the heterogeneity is normally

distributed across the population. Although allowing for continuously distributed heterogeneity in-

creases computational burden, the model is kept computationally tractable since consumer choice is

binary: there is only one new product introduction, and consumers either purchase the new product

or they do not. This approach would be less tractable in markets where there are multiple new

product introductions.

These papers estimate their econometric models using classical methods such as the maximum-

4In Erdem and Keane (1996), consumers are learning about one unobserved attribute of each brand of laundry detergent,

which is interpreted as the detergent’s cleaning power. Each time an individual purchases a product she receives a signal

of the product’s quality, which is her perceived product quality. Under full information, consumer tastes for each product

are this attribute level plus an idiosyncratic error term that is i.i.d. across time and consumers.
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likelihood estimator. In models where consumers are forward-looking, it is necessary to solve their

Bellman equation whenever the parameters of the model are changed, such as when a derivative

is evaluated. This makes the model estimation computationally difficult. Allowing for unobserved

heterogeneity substantially increases the computational difficulty of the estimation due to the fact

that the unobserved heterogeneity must be integrated out by simulation. Because of these issues,

researchers who have estimated these types of models have had to be parsimonious in their specifi-

cation of unobserved heterogeneity. As I have already discussed using my example with consumer

price sensitivities, failing to account for unobserved heterogeneity can result in biases. One way to

reduce this computational burden is to use an importance sampling method developed by Ackerberg

(2001) to reduce the computational burden induced by the heterogeneity. Hartmann (2006) uses

this to allow for a richer distribution of heterogeneity than in the learning papers I have previously

discussed.

I overcome the problems associated with unobserved heterogeneity by estimating my model

using the Bayesian method of Markov Chain Monte Carlo, which is well suited to dealing with

high-dimensional unobserved heterogeneity than classical techniques. To reduce the computational

burden that is created by solving the consumers’ Bellman equations, I apply a new technique by

Imai, Jain, and Ching (2005). In contrast to most classical techniques, which require the Bellman

equation to be calculated many times, this new technique only requires one full solution of the

Bellman equation. The basic idea behind this method is to update the value function once in each

step of the Markov Chain Monte Carlo algorithm using information from previous steps, so that by

the time the estimation is completed an accurate approximation of the value function is obtained.

This paper is the first to apply this new technique to field data. It would also likely be possible to

estimate this model using the method of Ackerberg (2001). An interesting topic for future research

would be to compare the computational speed and accuracy of these two estimation techniques.

2 Data Set

2.1 Discussion of the Scanner Data

The data set I am using is A.C. Nielsen supermarket scanner data on detergent purchases in the

city of Sioux Falls, South Dakota between December 29, 1985 and August 20, 1988. This data is

particularly useful for identifying consumer learning for two reasons: first, since this data is a panel

of household purchases, it allows one to track individual household behavior over time. Second,

during the period that this data was collected, three new brands of liquid laundry detergents were

introduced to the market: Cheer in May 1986, Surf in September 1986 and Dash in May 1987.

Households that participated in this study were given magnetic swipe cards, and each time the

household shopped at a major grocery or drugstore in the city, the swipe card was presented at
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the checkout counter. Additionally, households that participated in the study filled out a survey

containing basic demographic information. The distributions of household demographics are shown

in Table 1.

Although a visit to the grocery store will reveal many different brands of laundry detergent,

the market is dominated by 3 large companies: Procter and Gamble (Dash, Cheer, Era, Tide),

Unilever (Wisk, Surf) and Colgate-Palmolive (Fab, Ajax). During this period, laundry detergents

were available in two forms: liquids and powders. Table 2 shows the distribution of sizes for liquid

and powder products. For liquids, the most popular size was the 64 ounce size. Table 3 shows

the market share for the 7 most popular brands of laundry detergents (the other category covers

purchases of smaller brands), in their liquid and powdered forms. As can be seen from the last

column of the table, the market share of liquids is about 52%. Well known brands, such as Wisk

and Tide, have high market shares.

Table 4 shows the market shares of different brands of liquids over different periods of time. It is

notable that for all three new products, their market share tends to be significantly higher in the first

12 weeks after introduction than it is for the remainder of the sample period. This fact is consistent

with learning, since the option value of learning induces consumers to purchase new products early.

However, it is also consistent with consumer response to introductory pricing. The average prices

of different brands at different periods of time are shown in the same table, underneath the shares.

There are two noteworthy facts in this table. First, prices of the new brands Cheer and Surf tend

to be lower in the first 12 weeks after introduction than they are later on in the data. This fact

suggests that we should be aware of possible biases due to consumer heterogeneity: for example,

price sensitive consumers could purchase the new products initially when they are cheap, and switch

away from them as they get more expensive, which could be mistaken for learning. Second, when

Cheer is introduced to the market by Procter and Gamble, the price of Wisk, a popular product

of Unilever, goes down. Similarly, when Unilever’s Surf is new, Procter and Gamble’s Tide drops

in price. Cheer and Surf have been successful products since their introductions, but Dash was

discontinued in the United States in 1992. One possible reason for this is that Dash was more of a

niche product: it was intended for front-loading washers, which constituted about 5% of the market

at the time.

2.2 An Overview of the Laundry Detergent Market Prior to 1988

The fact that the three new products were liquid detergents was not a coincidence, and to see why

it is useful to briefly discuss the evolution of this industry. The first powdered laundry detergent for

general usage to be introduced to the United States was Tide, which was introduced in 1946. Liquid

laundry detergents were introduced later: the popular brand Wisk was introduced by Unilever in

1956. The market share of liquid laundry detergents was much lower than powders until the early
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1980’s. The very successful introduction of liquid Tide in 1984 changed this trend, and detergent

companies began to introduce more liquid detergents. Product entry in this industry is costly: an

industry executive quoted the cost of a new product introduction at 200 million dollars (Cannon

et al. 1987). Industry literature suggests a number of reasons for the popularization of liquids during

this time: first, low oil and natural gas prices, which made higher concentrations of surfactants5

more economical; second, a trend towards lower washing temperatures; third, increases in synthetic

fabrics; fourth, on the demand side, an increased desire for convenience. In the third and fourth

points, liquids had an advantage over powders since they dissolved better in cold water, and did not

tend to cake or leave powder on clothes after a wash was done.

The fact that new liquids were being introduced at this time suggests that learning could be

an important component of consumer behavior. Many consumers may not have been familiar with

the way liquids differed from powders, and they might learn more about liquids from experimenting

with the new products. Further, there may be learning across the different brands of liquids. For

example, using liquid Tide might not give consumers enough information to know exactly how

liquid Cheer or Surf will clean their clothes. Learning about these products could be important

for consumers to know how well these products will work for a number of reasons. First, laundry

detergents are fairly expensive and the household will use the product for a long period of time, so

the cost of making a mistake is not trivial. Second, consumers may have idiosyncratic needs which

require different types of detergents. As an example, a consumer whose wardrobe consists of bright

colors will likely prefer to wash in cold water, where liquids are more effective.

3 Econometric Model

3.1 Specification of Consumer Flow Utility

In my structural econometric model an observation is an individual consumer’s purchase event of a

liquid laundry detergent. In the following discussion, I index each consumer with the subscript i,

and number the purchase events for consumer i with the subscript t. The dependent variable in this

model is the consumer’s choice of a given size of one of the 13 different laundry detergents listed

in Table 3. I index each product with the variable j, and each size with of the product with s. In

a particular purchase event t for consumer i, not all of the 49 choices may be available. I denote

the set of products available to consumer i in purchase t as Jit. I assume that a consumer’s period

utility is linear, as in traditional discrete choice models. The period, or flow utility for consumer i

for product-size (j, s) ∈ Jit on purchase event t is assumed to be

5The most important chemical ingredient to laundry detergents are two-part molecules called synthetic surfactants

which loosen and remove soil. Surfactants are manufactured from petrochemicals and/or oleochemicals (which are derived

from fats and oils).
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uijst(Sit−1, αi, pijt, cijt, βi, xijt, ηi, yijt−1, εijt)

= Γij(Sijt−1, yijt−1) + ξis + αi(pijst − αiccijt) + βixijt + ηiyijt−1 + εijst,
(1)

where Γij(sijt−1, yijt−1) is consumer i’s match value, or taste, for product j. A consumer’s match

value with a product is a function of the two “state variables” sijt−1 and yijt−1. The variable yijt

is a dummy variable that is 1 if consumer i chooses product j in purchase event t, so yijt−1 keeps

track of whether consumer i chose product j in her previous purchase event. The state variable sijt

keeps track of whether consumer i has ever purchased product j prior to purchase event t, and it

evolves as follows:

sijt = sijt−1 + 1{sijt−1 = 0 and yijt−1 = 1}. (2)

For the 10 established products, I assume that consumer match values do not change over time,

so Γij(sit−1, yit−1) = γij . For identification purposes, I normalize every consumer’s match for other

liquid (product 1) to 0. For the three new products, I assume that the evolution of the consumer’s

permanent taste is as follows:

Γij(sijt−1, yijt−1) = γ0
ij if sijt−1 = 0, and yijt−1 = 0

Γij(sijt−1, yijt−1) = γij if sijt−1 = 1, or yijt−1 = 1.
(3)

The consumer’s match value for the new product is γ0
ij if the consumer has never purchased the

product before, and it is γij once she has. For the three new products, γ0
ij is consumer i’s prediction

of how much she will like product j before she has made her first purchase of it. γij is her “true”

match with the product.

I assume that

γij ∼ N(γ0
ij , σ

2
ij), (4)

where σ2
ij is consumer i’s uncertainty about her true taste for product j. I allow σ2

ij to vary with

the household i’s income and size as follows:

σ2
ij = σmax

exp(σ0ij + σ1jINCi + σ2jSIZEi)

1 + exp(σ0ij + σ1jINCi + σ2jSIZEi)
. (5)

Note that there is unobserved heterogeneity in σ2
ij as well as observed heterogeneity: σ0ij varies

across individuals and accounts for unobserved heterogeneity. INCi is a variable that varies from 1

to 4, where the four possible categories correspond to the four income groups in Table 1. Household

size, the variable SIZEi, also varies from 1 to 4 and is defined similarly. Note that σ2
ij is always
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positive and bounded above by σmax, which I assume is equal to 5.6

The parameter αi is consumer i’s price sensitivity. I also allow this parameter to vary with

household income and size as follows,

αi = αmax
exp(α0i + α1INCi + α2SIZEi)

1 + exp(α0i + α1INCi + α2SIZEi)
, (6)

where αmax is set to -100. αi is assumed to always be negative and, like σ2
ij , it is bounded. pijst is

the price in dollars per ounce of size s of product j in the store during purchase event t, and the

variable cijt is the value of a manufacturer coupon for product j that consumer i has on hand in

purchase event t, also measured in dollars per ounce. The parameter αic is consumer i’s sensitivity

to coupons. I assume that αic lies between 0 and 1, and that

αic =
exp(α0ic)

1 + exp(α0ic)
, (7)

where α0ic lies on the real line.

In Equation (1), βi is a vector that measures consumer i’s sensitivity to other variables, xijt.

The first and second elements of the xijt vector are dummy variables which are equal to 1 if product

j is on feature or display, respectively. The third element is a dummy variable that is 1 if purchase

event t occurs in the first week after the introduction of Cheer, and j is Cheer. The fourth is the

same thing for the second week of Cheer, the fifth for the third and so on up to the fourteenth

week after the Cheer introduction. The next element is a dummy variable that is 1 if purchase

event t occurs in the third week after the introduction of Surf, and j is Surf (the first and second

week dummy variables were dropped because they were not identified in simple logit estimations

of the demand model). The next 11 elements are the same thing for weeks 4 to 14 after the Surf

introduction. The next 14 elements of the vector are the same time-product dummy variables for

the Dash introduction. These time dummy variables are included to capture the effect of unobserved

introductory advertising for the new products.

The consumer’s utility in purchase event t is increased by ηi if she purchases the same product

that she did in purchase t− 1.7 Note that the parameter ηi and the function Γ(sijt−1, yijt−1) allow

two different sources of dynamics in consumer behavior: consumer’s previous product choices can

6The choice of the number 5 is somewhat ad hoc, but the important thing is that when choosing the upper bound for

this parameter the number should be high enough to not be binding - there should not be consumers with values of σ2
ij

greater than five. In the model estimates section I will examine the distribution of σ2
ij across the population - they do

not appear to approach the upper bound. Furthermore, in my thesis research I estimate a version of this demand model

where there is no learning and consumers are not forward-looking. The estimates of the taste variances for all the three

new products are significantly smaller than 5.
7Although some purchases were dropped due to data problems as described in Section 4.1, yijt−1 is defined to be the

product chosen in the consumer’s previous purchase event, even if that purchase event was dropped. When two product

choices are made in the same week, I set yijt−1 to be the second (or third, if there were three) recorded purchase. This

avoids measurement error in yijt−1. Also, the fact that I include the consumer’s previous purchase event in the model
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affect her current utility. One way in which a consumer’s past product choices affect her current

product choice is through the Γ(sijt−1, yijt−1) function: this is learning. If she has never purchased

the new product j prior to purchase event t, her taste for this product is her expected taste, γ0
ij ,

whereas if she has purchased it at some point in the past I assume that she knows her true taste

for the product, γij . The term ηi accounts for the dynamic behaviors of switching costs or variety-

seeking. If ηi > 0, consumer i’s utility is greater if she consumes the same product twice in a row.

Thus, a positive ηi induces a switching cost (Pollack (1970), Spinnewyn (1981)). An alternative

way to model switching costs would be to subtract a positive ηi from all products except the one

that was previously chosen; since utility functions are ordinal and there is no outside good in this

model, these two formulations are equivalent. As discussed in the introduction, switching costs

have been found to be an important part of demand for consumer packaged goods, and could arise

if there are costs of recalculating utility if a consumer decides to switch products. If ηi < 0, the

consumer will prefer to consume something different than her previous product choice: I label this as

variety-seeking (McAlister and Pessemier 1982). Variety-seeking is not likely an important behavior

in laundry detergent markets, but I allow it in the model for the sake of generality. As with the

price coefficient and consumer uncertainty, I allow both observed and unobserved heterogeneity in

ηi:

ηi = ηi0 + η1INCi + η2SIZEi (8)

Last, the εijst is an idiosyncratic taste component that is i.i.d. across i, j, s and t, and has a

logistic distribution. I assume this error is observed to the consumer but not the econometrician

and is independent of the model’s explanatory variables and the individual’s utility parameters such

as αi and βi.

I allow unobserved heterogeneity in most of the individual-level parameters for every consumer:

the γij ’s for all products except for the Powder Other and Powder Tide products, the γ0
ij ’s, the

α0i’s, the the ξis’s’s, the α0ic’s and σ0ij ’s for the three new products, the intercept of the switching

costs parameter ηi0, and the βi vector. Denote the vector of population-varying individual level

parameters for consumer i listed previously as θi, and the vector of individual level parameters with

the γij ’s for the three new products removed as θ̃i. I assume that θ̃i ∼ N(b,W ) across the population,

where W is diagonal.8 This assumption means that the household’s uncertainties about tastes for

creates an initial conditions problem: I do not observe the consumer’s purchase event before the data collection starts.

To get around this problem, I estimate the model using data from the period after the introduction of Cheer Liquid, so

that the consumer’s initial yijt−1 is her latest purchase before the introduction of Cheer. For a very small number of

households the first observed purchase event occurs after the introduction of Cheer. For these households I impute the

first purchase as the most frequently purchased established product.
8A possible worry may be that the assumption of normally distributed heterogeneity is too restrictive. In my thesis

research I present the results of the estimation of an extended model where some of the heterogeneity is assumed to be
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the new products, σ2
ij ’s, and the price sensitivities αi’s will be transformations of normals as shown

in Equations (5) and (6). Their distribution is Johnson’s SB distribution, which is discussed in

Johnson and Kotz (1970), page 23. The parameters which do not vary across the population are

the γij ’s for Other Powder and Tide Powder, the coefficients on household demographics for the

learning parameters, the price sensitivities and the switching costs, which are σ1j and σ2j , α1j and

α2j and η1 and η2 respectively, and a group of parameters which capture consumer expectations of

future coupons cijt. These latter parameters will be discussed further in the next section. I denote

the vector of population-fixed parameters as θ.

3.2 Consumer Dynamic Optimization Problem

I assume consumers are forward-looking9 and in each purchase event they maximize the expected

discounted sum of utility from the current purchase into the future. The consumer’s expected

discounted utility in purchase event t is

V (Σit; θi, θ) = max
Πi

E

[
∞∑

τ=t

δτ−tuijsτ (Siτ−1, pijτ , cijτ , xijτ , yijτ−1, εijτ , θi)|Σit,Πi; θi, θ

]
, (9)

where Πi is a set of decision rules that map the state in purchase t, Σit, into actions, which are the

yijt’s in purchase event t. The parameter δ is a discount factor, which is assumed to equal 0.95.10

The function V (Σit; θi, θ) is a value function, and is a solution to the Bellman equation

V (Σit; θi, θ) = Eεijt [ max
(j,s)∈Jit

{uijst(Sit−1, pijt, cijt, xijt, yijt−1, εijt, θi) + δEV (Σit+1; θi, θ)}]. (10)

The state vector in purchase event t, Σit, has the following elements: the Sijt−1’s for the new

products, the yijt−1’s for all 13 products, the prices of all products, pijt, the set of available products,

Jit, and a new state variable nt, which will be discussed later.

The expectation in front of the term V (Σit+1; θi, θ) in Equation (10) will be taken over the

distributions of future variables, which are

i) the true tastes for new products the consumer has never purchased, as in Equation (4),

ii) future prices,

a two point mixture of normals. Identification of some parameters becomes more difficult in this case, but generally the

results do not change, which suggests that the assumption of normality is a good fit.
9In my thesis research (Osborne 2006), evidence is provided that consumers are forward-looking in this data set.

10The discount factor is usually difficult to identify in forward-looking structural models, so it is common practice to

assign it a value. Since the timing between purchase events varies across consumers, it is possible that the discount

factors may also vary across consumers. As I will discuss in a few paragraphs, I assume that all consumers have the same

expectations about when their next purchase will occur, which removes this problem. Also, the estimation method I will

use requires that the discount factor is not an estimated parameter.
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iii) future coupons, and

iv) future product availabilities.

For reasons of computational tractability that will be discussed in the next section, I assume

that consumers have naive expectations about future xijt’s, which are the feature, display, and time

dummies. By this I mean that consumers expect all these variables to have future levels of zero. A

result of this assumption is that these variables do not have to be included in the state space.11

I account for consumer expectations about future prices pijst and product availability Jit in

the following way. I estimate a Markov transition process for prices and availability from the data

on a store-by-store basis, using a method similar to Erdem, Imai, and Keane (2003) which I will

briefly summarize. A detailed description of the estimation of this process can be found in Appendix

A.2. I assume that consumers’ actual expectations about these variables are equal to this estimated

process. In my data, prices tend to be clustered at specific values, so the transition process for prices

is modeled as discrete/continuous. The probability of a price change for a product conditional on

its price in the previous week, last week’s prices for other products, and whether a new product was

recently introduced is modeled as a binary logit. Conditional on a price change, the probability of

a particular value of the new price is assumed to be lognormal given the previous week’s prices in

the same store and whether a new product introduction recently occured. Note that there are 49

possible brand-size combinations, which makes the state space of prices very large. To reduce the

size of the state space, the Markov process for prices is only estimated on the most popular sizes

of liquids and powders. The prices of other sizes are assumed to be a function of the prices of the

popular sizes.

An important part of the price process is that we observe introductory pricing for the new

products. I assume consumers understand that the prices of new products will rise after their

introduction, so I include a dummy variable in both the price transition logit and regression which

is 1 for the first 12 weeks after the introduction of Cheer, a separate dummy variable which is 1

for the first 12 weeks after the introduction of Surf, and one for the first 12 weeks after Dash’s

introduction. Allowing for introductory pricing in this way will complicate the state space. To see

why, consider a consumer who purchases a laundry detergent on the week of Cheer’s introduction.

Suppose further that this person purchases detergent every 10 weeks, and she knows exactly when

she will make her future purchases. This person’s next purchase will occur in 10 weeks, when the

price of Cheer is still low. Her next purchase after that will occur in 20 weeks, when the price

process is in its long run state. The number of purchase events before the consumer enters the long

11Assuming that consumers do not expect future advertising is probably not that unrealistic in the laundry detergent

market. For this product category, it is likely that consumers will care more about future prices and how well the product

they purchase will function. Future advertising is likely to be more important with “prestige” products, such as shoes or

clothing.
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run price state will be a state variable, which I denote as nt.

A complication this variable nt creates is that consumers probably do not know exactly when

their next purchases of laundry detergents will be. Because the econometrician does not observe

consumer expectations, the best we can do is to make an assumption about this. I assume that

all households expect to make their next purchase of laundry detergent in exactly 8 weeks. In the

sample of households I use to estimate the model on, household interpurchase times are clustered

between 6 and 8 weeks, with a median interpurchase time of 8 weeks. This means that nt will take

on 2 values: 1 if the consumer’s purchase occurs within the first 4 weeks after the new product

introduction, and zero anytime afterwards.

For the state variable Jit, I estimate the probability of each detergent being available in a given

calendar week for a given store separately using a binary logit. As was the case with prices, the

process for availability is only estimated for the most popular sizes of each product, and so the only

part of Jit that is a true state variable are the availabilities of these products. This means I estimate

13 logits, one for each product, where one of the regressors is whether the product was available

in the previous week. The availabilities of less popular sizes are assumed to be a function of the

availability of the popular sizes. I assume that the introductions of new products are a surprise to

consumers, so this aspect of the state space is not taken into account by my availability estimation.

A result of this assumption is that consumers will recalculate their value functions after each new

product introduction: there will be a value function for after the Cheer introduction, a new one after

the Surf introduction, and another one after the Dash introduction. Hence, there will be three times

where it will be possible for nt to be equal to 1, right after the introduction of each new product.

I treat consumer expectations about future coupons, which are the cijt’s, differently than future

prices. As I will discuss further in the Section 4.2, I specify a process for the distribution of coupons

and estimate the parameters of this process along with the other model parameters. I assume that

the future cijt’s are composed of two random variables: a binary random variable cijt which is 1

if consumer i receives a coupon for product j in purchase t, and a random variable vijt which is

the value of the coupon received. Denote probability of a consumer having a coupon on hand and

available for use for product j when nt = 0 as p0
cj . Because consumers may expect more coupons

to be available for new products when they are new, I allow the probability of receiving a coupon

for a given product j to be different when nt = 1. In particular, for the new products j = Cheer,

Surf and Dash I assume the probability of having a coupon is p0
cj + p1

cj . For established products,

I assume the probability of receiving a coupon when nt = 1 after the Cheer introduction to be

p0
cj + pCheer,1

c , after the Surf introduction to be p0
cj + pSurf,1

c , and after the Dash introduction to

be p0
cj + pDash,1

c . Note that the parameters pCheer,1
c , pSurf,1

c and pDash,1
c do not vary by product.

If a consumer receives a coupon for product j, the value of that coupon, which I denote as vijt, is

multinomial and drawn from the empirical density of coupon values. Coupon values are clustered at

certain numbers (such as 50 cents, 60 cents, or 1 dollar), so I calculate the probability of getting a
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particular coupon value for a particular brand in a period12 by tabulating the number of redeemed

coupons of that value for that brand in that period, and dividing by the total number of redeemed

coupons for that product in that period.

The last part of the state space is the process on the state variables summarizing purchase

history, Sijt−1 and yijt−1. Because these state variables are influenced by consumer choices, it is

instructive to examine how we compute the value functions as these parts of the state space change.

Suppose first that Sijt−1 = 0 for some product j. If the consumer decides to purchase product j for

the first time, then Sijt will be zero and yijt will be 1. When we construct the next period value

function we will integrate out the consumer’s true taste for product j, conditional on γ0
ij and σ2

ij .

Let γ be a random variable with the distribution of true tastes for product j, where f(γ|γ0
ij , σ

2
ij) is

N(γo
ij , σ

2
ij), and denote θi(γ) as the vector of individual level parameters for consumer i with her

true taste draw for product j replaced by γ. Denote vikst+1(γ) as consumer i’s utility for size s of

product k in purchase event t+ 1 as a function of γ, minus the logit error εijst+1:

Product k = j : vikst+1(γ) = γ + ξis − αi(pikst+1 − cikt+1) + ηiyikt + δEV (Σit+2; θi(γ), θ)

Product k 6= j : vikst+1(γ) = Γik(Sikt, yikt) + ξis − αi(pikst+1 − cikt+1) + ηiyikt

+δEV (Σit+2; θi(γ), θ).

(11)

Consumer i’s expected value function in purchase event t+ 1, at her first purchase of product j

(Sijt = 0 and yijt = 1) will be

EV (Σit+1; θi, θ)

= Ecit+1Epit+1|pit
EJit+1|Jit

∫
γij

ln

 ∑
(k,s)∈Jit+1

exp(vikst+1(γij))

 f(γij |γ0
ij , σ

2
ij) dγij

 . (12)

When the consumer has purchased product j in the past, such as at state space points Sijt = 1

and yijt = 1 or Sijt = 1 and yijt = 0, the value function will be defined similarly, but will be simpler:

the consumer’s utility for all products given in Equation (11) will be a function of the true taste γij

rather than γ and the value function in (12) will not include the integral over γ. Note that even if

consumer i knows her true taste for all 3 new products (Sijt = 1 for all these products), there will

still be dynamics in demand arising from the ηi. The consumer will take into account the fact that

her purchase today will change yijt, and affect her utility in period t+ 1.

12There are six periods in all - when nt = 1 after Cheer’s introduction, when nt = 0 after Cheer’s introduction, when

nt = 1 and nt = 0 after Surf’s introduction, and when nt = 1 and nt = 0 after Dash’s introduction.
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3.3 Model Identification

I will explain the identification of the model in two steps. For simplicity, assume that we are

examining a market with one new product introduction, similar to the market analyzed with the

simple model in section 3. Assume further that we see each consumer for a long period of time.

Although the estimation procedure I am using is likelihood-based, for brevity I will discuss it in the

context of method of moments estimation. Thus, I will consider which moments in the data will be

necessary to solve for the model’s parameters. This is sufficient to show that the likelihood-based

estimates are identified since the likelihood-based estimator, if it is correctly specified, is consistent

and will converge to the same value as the method of moments estimator.

First, consider the period after most or all of the learning has occurred. In the long run, there

will be no learning: since the distribution of the idiosyncratic error, εijst, has infinite support, at

some point in time everyone in the market will purchase the new product at least once. After every

consumer has experimented with the new product, the only dynamics left in demand will be the

switching costs or variety-seeking captured by the ηi’s. At this point we are left with separately

identifying the distribution of ηi’s and the distribution of the “non-dynamic” coefficients in the

consumer’s flow utility: consumer tastes for established products, consumer price sensitivities, and

the distribution of the coefficients for the xijt’s, the βi’s.

Consider first the task of identifying ηi for an individual consumer. The ηi causes state de-

pendence in her demand: a consumer’s choice in purchase event t − 1 will affect her choice today.

Chamberlain (1985) has argued that state dependence can be identified through the effect of pre-

vious exogenous variables on today’s purchase probabilities. As an example, consider the effect of

a price cut for Tide in purchase event t − 1 on the probability of consumer i purchasing Tide in

purchase event t. If the price cut has no effect of this probability, then ηi = 0. If the price cut

increases the probability that the consumer purchases Tide in purchase event t, then ηi > 0 and the

consumer has a switching cost. If the price cut decreases the probability of the consumer purchasing

Tide in purchase event t, then ηi < 0 and the consumer is a variety-seeker. If we observe consumer

i for a long period of time, and there is variation in the time series path of prices the consumer

observes, then it should be possible to infer the size of the consumer’s ηi. In the data, for many

consumers we will not observe them long enough to be able to accurately estimate a consumer’s

individual ηi; identification is made easier by the fact that ηi is assumed to only be a function of

household demographics.

Once the ηi distribution has been identified, we are left with identifying the heterogeneity of

the non-dynamic coefficients in the consumer’s flow utility. Identification of this part of consumer

heterogeneity is straightforward and will come through the effect of variation in purchase event t

exogenous variables on purchase event t purchase probabilities.

Now consider the periods right after the new product introduction, when we will need to identify
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σ2
ij and γ0

ij for the new product j. In my model I allow these parameters to vary across the

population, but to get a feel for identification it is easier to start with the case where there is

no heterogeneity. Hence, for the next few paragraphs I will drop the i subscript. First, consider

the identification of σ2
j . In my thesis research (Osborne 2006), I solve a simplified version of the

econometric model and simulate it numerically under different values of σ2
j . In the simplified model

there is one new product introduction, and one established product, and I assume that ηi is fixed

across the population. Prices for each product are constant over time and there is no advertising, so

product switching will be induced by variation in the error term. I simulate the model when σ2
j =0,

when it is positive, and for different values of ηi. Doing this allows me to find the model’s testable

implications, where the null hypothesis is σ2
j =0 and the alternative is σ2

j > 0.

There are two testable implications to this model which are examined in Osborne (2006), who

finds support for them in the same laundry detergent scanner data which is used in this paper.

The test statistics associated with them are shares of consumers who take actions at certain times,

controlling for any time-series variation in prices. The first implication is that, under the maintained

hypothesis that δ is high and ηi = 0 ∀i, in the first two periods after the new product’s introduction,

the share of consumers who purchase the new product and then do not is greater than the share

who do not and then do. This is due to the fact that when there is learning and ηi = 0, there will

be a positive option value of learning which induces consumers to purchase the new product sooner

rather than later.13 When there is no learning, the test statistic will be zero since the order of

purchase does not matter. This share difference is an increasing function of σ2
j , because the option

value of learning induces consumers to purchase the new product sooner rather than later, and the

option value of learning is increasing in σ2
j . If this share difference is greater in the data than the

model would predict at σ2
j = 0, then σ2

j will pick up that difference.

The second testable implication is that for any value of the discount factor and for any value of

ηi, among consumers whose previous purchase was the new product, the share of consumers who

repurchase the product increases over time if σ2 > 0. This is because initially the consumers whose

previous purchase was the new product consist mostly of consumers who are experimenting; later

it consists mostly of consumers who like the new product. The share of consumers who repurchase

the new product is an increasing function of the population variance in tastes for the new product.

Immediately following the new product introduction, this share will reflect the population variance

in expected tastes, the γ0
ij ’s (which for the moment we have assumed to have zero variance). As

consumers learn, the population variance in tastes will be increased by σ2
j . Since consumers’ taste

draws will be taken from more extreme ends of the taste distribution, those who purchase the

new product will tend to have higher taste draws after the learning has occurred and will be more

likely to repurchase it. An increase in σ2
j will increase the share of consumers who repurchase the

13Since evidence in favor of this implication is found in the data set I use (Osborne 2006), it is reasonable to conclude

that for some new products the option value of learning is positive, and that consumers are forward-looking.
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new product in periods after all learning has occurred. Hence, σ2
j can also be identified from the

difference between the share of consumers who repurchase the new product immediately following

the new product introduction and the share of consumers who repurchase the new product after all

learning has occurred: the greater this difference, the greater is σ2
j .

The identification of the mean of γ0
j and its variance is straightforward when σ2

j is constant

across the population. First, note that in the period after the learning occurs, we can identify the

distribution of true tastes for the new product. The mean of the population distribution of tastes

for the new product will be the same as the mean of the γ0
i distribution. The variance in the

distribution of true tastes for the new product is the variance of γ0
j plus σ2

j . We can identify σ2
j

using the share difference moment or from the change in the share of consumers who repurchase the

new product. The variance of γ0
j will simply be the variance in the population distribution of true

tastes minus the σ2
j .

Last, I will relax the assumption that σ2
j is constant across the population. Separating out

heterogeneity in σ2
ij and γi0 is a harder task, because we only observe consumers making one first

purchase of each new product. To see why this could be a problem, let us reconsider the simplified

model which was just discussed, and assume that there are only 3 periods in it, the distribution of

the error term for product 2 is standard normal, ηi is 0 for all consumers, and consumers discount

the future at a rate of 0.95. Figure 1 shows the probability of experimenting with the new product

in period 1 for different values of γi0 and σ2. I assume that the price of product 2 is zero in the

first two periods, and 1 in the 3rd period, that consumer price sensitivities are equal to 1, and that

consumers know the path of future prices. The lines on the bottom of Figure 1 are the level curves

of the probability of experimenting. The set of consumers who are on a level curve are the set of

consumers who have the same probability of experimenting for certain values of γ0
i and σ2. We can

see that if we take a consumer with some value of γi0 and a low σ2, a consumer with a higher σ2

and a somewhat lower γ0
i will have the same probability of experimenting. There needs to be some

way to tell apart these consumers in order to separately identify the population distributions of γ0
i

and σ2
ij .

The intuition behind how this is done is that σ2
ij will affect how consumers respond to changes

in future prices. In the case where the ηi = 0, consumers with values of σ2
ij close to zero will be

very unresponsive to future price changes compared with consumers who have higher values of σ2
ij .

In Figure 2, I show the probability of experimenting when the price path is 0,0, and 1 minus the

probability of experimenting when the price path is 0, 1 and 1. These probabilities are very close

when σ2
ij is close to zero, but are large when it is greater. The direction of the response depends on

the value of γi0: it is positive for consumers with low γi0’s and negative for those with high γi0’s.
14

Figure 3 shows an overlay of the level curves from Figures 1 and 2. The level curves from Figure

14In my thesis work, I demonstrate that the option value of learning can be increasing or decreasing in future prices.
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1 are shown in solid lines, and the probability associated with the given level is labeled. The level

curves from Figure 2 are shown in the dotted lines. They are not labeled, but the important thing

to notice about them is them is that the level curve for 0 is the curve that starts in between γ0
i = 0.5

and γ0
i = 1 on the γ0

i axis. In the area below that line, the level curves increase as σ2 increases,

and above that they decrease. In general, it appears that for a given value of the probability of

experimentation, the response to future price changes increases as we increase σ2. As an example,

consider the set of consumers for which the probability of experimenting with the new product is

0.4, which is shown by the line 0.4 in Figure 3. We can see that as σ2 increases, the response of

these consumers to future price changes also increases. Thus, even though all these consumers will

have the same probability of experimenting, we can tell apart consumers with high σ2’s and low σ2’s

by their response to future price changes. Unfortunately, there are some consumers we cannot tell

apart by their response to future prices. For example, take the set of consumers whose probability of

experimenting with the new product is 0.8. The level curve for which the response to future prices

is 0 crosses this line twice, and we cannot tell apart the consumers at the points where it crosses.

In my thesis research (Osborne 2006) I argue that the set of consumers that we cannot tell apart

by this method is of zero measure.

In the data set we observe variation in future prices that is qualitatively similar to this example;

the reason for this is that there is introductory pricing for the three new products. Some consumers

will arrive to the market right after the new product introduction, when future prices will be low,

and some will arrive near the end of the introductory pricing period, when future prices will be high.

Increasing the variance in σ2
ij will make some consumers more responsive to future price changes,

and some consumers less responsive to future price changes. The population response to a change

in price will be a function of the moments of the distributions of γi0 and σ2
ij . Unfortunately, I have

not been able to find a population moment that is a monotonic function of the variance of σ2
ij .

However, I believe that the arguments presented so far, which demonstrate that households with

different γi0’s and σ2
ij ’s behave differently, suggest that identification of these parameters is possible.

Moreover, as I will discuss in Section 5.1, my model estimation procedure produces an empirical

density for the variance of σ2
ij for the new products, conditional on the data. I show in that section

that the density has a small variance and thin tails, which suggests that there is enough information

in the data to identify the parameters in question.

4 Estimation Procedure

4.1 Selection of Household Sample

Although there are 1693 households in the total sample, I remove roughly two thirds of them

from the sample before estimation, leaving a final sample of 519 households. There are two main
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reasons for reducing the sample so much: first, and most importantly, for computational reasons

and second, to address data issues. The full structural model takes more than 1 week to estimate,

so many of the households I remove were randomly dropped from the sample. Some households

were dropped due to data issues, such as lack of observations. More than 80 percent of the dropped

households were removed for these reasons. The other households who were removed from the

sample were taken out for a third reason: they were households who were thought to be prone to

inventory behavior. There are two reasons for removing these types of households: first, modeling

inventory behavior structurally is computationally difficult (see Erdem, Imai, and Keane (2003) for

an example), and adding this element to my model of learning and switching costs would make the

model computationally intractable. Second, stockpiling behavior can potentially lead to a source

of bias that is similar to that caused by ignoring heterogeneity in price sensitivities. Since new

products are introduced at low initial prices, some consumers may be induced to purchase them

simply in order to stockpile. These consumers will likely purchase something else when the new

products are more expensive and they need to buy detergent again.

Household sample selection is performed as follows. The full sample includes 1693 households.

First, I remove households who are likely to be extremely price sensitive, and who will stockpile the

products. Hendel and Nevo (2006a) examine stockpiling behavior in laundry detergents, and find

that suburban families, non-white families and households with 5 or more members are more price

sensitive.15 In my data set, it was not possible to determine whether a household was suburban

or not. Data was collected on the type of residence where the household lived, and about 85% of

households live in a single family home. 94% of these households owned the home rather than rented

it. If all these families were suburban, it would not be feasible to cut them out. Household racial

characteristics were collected in the data set. I constructed a household race variable which was

defined to be the race of the male head of household if there was a male head of household, and the

female head of household otherwise. I found that over 99% of households were white. For household

size, there were 211 households with 5 or more people in them. I remove all these households from

the sample.

In my thesis research (Osborne 2006), I examine whether 5 person households were indeed more

likely to stockpile than other households. First, I examine time series patterns in the quantities

purchased by households. Households that do not stockpile will likely be less responsive to sales

in stores, and will be more likely to repeatedly purchase the quantity that suits the household’s

needs. To examine this, for each household in the sample I calculate the standard deviation of the

quantity purchased by the household over the household’s purchase history. I find that the standard

deviation of quantity purchased by 5 person households is larger than for smaller households, and

this difference is statistically significant.

15The data set used in that paper is different from the one I use.
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Another way to tell if these households are stockpiling is to look at how much they buy in

response to sales in the detergent product category. We would expect households who stockpile to

purchase larger quantities in response to store price drops. To examine this, I regress the quantity

purchased by a household during a given week on the minimum store price in the laundry detergent

category that week, the price interacted with a dummy variable for whether the household has 5

or more persons in it, the next week’s price, feature, display and household inventory. Household

fixed effects were also included in the regression. The coefficient on the interaction between price

and household size of 5 is negative and significant.

A third way to tell if 5 person households are stockpiling they should be more likely to make

a purchase in the laundry detergent category in response to a store price drop. In the data set,

household shopping trips were recorded, so it was possible to tell if a household visited a store in a

given week but did not buy anything. To estimate a household’s sensitivity to store price drops, for

each household in my data set I estimate a binary logit model where the dependent variable is 1 if

the household makes a purchase in a given week, and the independent variables are the minimum

price observed in the store during the current week, the minimum price in the next week, a measure

of the household’s inventory, and two dummy variables for whether any products were on feature

and display during the current week. I find that households with 5 or more people in them have

lower price coefficients, but the difference is not large or statistically significant.

I also examine a number of different statistics to verify that the households I removed actually

had the potential to impart the positive bias described above. I examine this using the two testable

implications which were described in Section 3.3. Recall that the first testable implication was that

the share of consumers who purchase the new product and then do not minus the share who do

not and then do is increasing in in the amount of learning. If 5 person households are imparting

positive bias to the sample, then including them should make this test statistic larger in magnitude.

I computed the test statistic for both the full sample and the sample with less than 5 households

in it and find that this is the case. The second testable implication can also be used to examine

this. The share of consumers who repurchase the new product should increase more if there is more

learning. The results of this test are not sensitive to the choice of sample.

A potential problem with this procedure is that there may still be significant stockpiling in

the sample that is left. All households likely stockpile to some degree, so it may be difficult to

remove this source of bias entirely. To examine whether this bias still exists in the sample I have

left, I examine whether there is less learning among households who are less likely to stockpile. In

particular, I compute the share difference test statistic for households that have only 1 person, or

are in the highest income bracket. I find that the share difference test statistic for smaller and higher

income households does not vary systematically across products. Another problem with selecting

out 5 person households is that this demographic variable may be correlated with consumer tastes,

leading to sample selection bias. In my estimates of reduced form demand models, I find that taste
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coefficients, coefficients on the previous product purchase, and coefficients on prices do not change

very much when I remove 5 person households from the sample. Thus, the impact of removing these

households on these quantities is likely to be small.

Removing 5 person households might not be the only method of selecting a sample of households

that are not prone to stockpiling. Another way is to remove households who are sensitive to price

drops in the laundry detergent category. Recall that I estimated binary logit models for each

household in the sample to examine whether 5 person households were more sensitive to category

price drops than smaller households. An alternative sample selection criterion I examine is to

remove households who have estimated price coefficients less than 1 standard deviation below the

population mean price coefficient. There are 148 such households. I find that the share difference

test statistic decreases when these households are removed, which suggests they may also be subject

to the problem of bias. The tenure test is not impacted by changing the sample. A disadvantage

of this selection criterion is that it is less transparent than removing 5 person households. The

estimates of reduced form demand models produced using this selection criterion look similar to

those produced by removing 5 person households, so it will probably not matter which one is used.

Another possible selection criterion is to examine household interpurchase timing behavior.

Households who do not stockpile likely wait until they run out of detergent to purchase more of it.

To examine this, for each household I compute a consumption rate, which is the total number of

ounces the household purchased in the three year period, divided by the number of weeks. Then, at

each purchase event I predict the week when the household will use up the amount they purchased

on that occasion, assuming a constant consumption rate. I compute a measure of the error of this

prediction on a household by household basis by taking the average of the absolute difference be-

tween the predicted week of the next purchase and the actual week of the next purchase. I remove

households whose error is larger than the population mean of the error, which was 7.43. There are

425 such households. I find that when I use this sample selection criterion to estimate the share

difference test, the share difference increases. This is the opposite of what should happen if these

households are indeed stockpilers. The tenure test is not affected by this sample. I also find that

households with more predictable purchase behavior are more sensitive to category price drops, and

that they tend to be larger households. This suggests that error in predicted interpurchase timing

is not a good proxy for how likely households are to stockpile.

After removing 5 person households, I remove households where there appeared to be issues with

data. Households that made more than 50 purchases in the three year period were removed. Also,

any households who made less than 5 purchases were removed from the sample. It is probable that

these households were purchasing at stores which were not included in the survey, and I felt it was

best to remove them since we might not be observing many of their purchases. 188 households were

removed for these reasons.

In addition to removing households from the sample, some individual purchase events needed
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to be removed from the sample. Recall that in my model, an observation is a household purchase

of one of the 49 possible brand-size combinations. Any purchase events of products outside these

categories were removed from the sample. Purchase events where the household purchased different

products in the same week were also removed. Purchase events where the only product available in

the store was the product purchased were also removed from the sample. Any households whose first

purchase of one of the new products was removed for these reasons were dropped from the sample.

Also, for the share differences test to work (and for the identification arguments laid out later in the

paper to apply), we need to observe a household’s first and second purchase events after the new

product introduction. Any households for whom we do not see at least 2 purchase events in either

the window of time after Cheer’s introduction and before Surf, or the time after Surf and before

Dash, or the time after Dash, are removed from the sample. 238 households were dropped for these

reasons. Of the households who were kept, 12.6% of purchases were removed, about half of those

being multiple brand purchases. Of the 1066 households remaining, one half of these households

were dropped randomly to ease computational burden. The sample of households remaining was

519.

4.2 Coupon Parameters

Before I discuss in detail the estimation procedure, I wish to discuss an issue that arises in estimation

due to the inclusion of coupons. In my model, I assume that the price of a product j to a consumer

is the shelf price, pijst, minus the value of a coupon cijt. Coupons present an estimation difficulty:

in my data set, I only observe whether a consumer has a coupon for the particular product that

she purchases in a given purchase event. We do not observe whether the consumer has a coupon

for any other products at that time. I overcome this problem by treating any coupons for products

that the consumer did not choose as unobservables.

I assume that for each purchase event every coupon cijt for a non-purchased product (one

for which yijt = 0) received by the consumer is drawn from the same distribution as consumer

expectations about future coupons that is described in Section 3.2; hence, consumer expectations

about future coupons are rational. To summarize the notation developed in that section, recall

that the cijt for a non-purchased product is composed of two random variables, the binary random

variable cijt which is 1 if the consumer receives a coupon for product j, and vijt, which is the value

of the coupon received. Then the variable cijt is equal to cijtvijt, and the vector of population-fixed

parameters, θ, contains the parameters p0
cj , p

1
cj for Cheer, Surf and Dash, and pCheer,1

c , pSurf,1
c , and

pDash,1
c .

This specification is a first approximation to solving the problem of unobserved coupons and

represents a step forward from most papers that estimate discrete choice dynamic programming

problems. The procedure I use is similar to Erdem, Keane, and Sun (1999), who also propose a dis-
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crete distribution for the probability a consumer has a coupon on hand for a non-purchased product,

and estimate the parameters of the distribution. Note that there is more than one explanation for

why a consumer might have or not have a coupon on hand for a non-purchased product. It could

be that no coupon was available for the product, or it could be that a coupon was available but

the consumer found it too costly to search for it and cut it out. The scanner data does not contain

information on coupon availability and how likely a consumer was to search for coupons, so there

is no way to separate these explanations. There is also a subtle endogeneity issue that could arise

with coupon use: consumers could be more likely to search for coupons for products for which they

have high tastes. I do not take this source of endogeneity into account, and to my knowledge this

problem has not been addressed in scanner data research.

A more difficult issue with estimating the coupon parameters is that it may be difficult to

separately identify p1
cj , which is the amount that the probability of getting a coupon for the new

products differs in their introductory periods, from the learning parameters. To see why, recall that

introductory pricing can cause patterns in purchase behavior which look like learning. Introductory

couponing may also have the same effect: if a lot of coupons for one of the new products are available

right after its introduction, consumers will be induced to purchase the new product sooner rather

than later, which will look like learning. Obviously, if we observe the entire distribution of coupon

availability then there will be no identification problem - we can treat coupons just like prices. Since

we are estimating the probability a consumer gets a coupon for a new product, it may be difficult

to tell whether or not consumers are likely to make an initial purchase of the new product because

the option value of learning is high, or because the likelihood they have a coupon for it is high.16

There are three things that help the identification. First, for some consumers the first purchase

events after the new product introduction will occur when nt = 0. Given that the coupon proba-

bilities when nt = 0 can be estimated from the period when most consumers have learned, if the

probability of making a first purchase of the new product when nt = 0 is higher than it should

be, then that difference will pin down σ2
ij . Second, some consumers will experiment with the new

product when nt = 1, and will make a second purchase when nt = 1. For these consumers, their

purchases will be pinned down by parameters we have already estimated - the state dependence

and taste parameters. Hence, if the likelihood of them purchasing the new product is higher than it

should be, this will raise the probability that they got coupons for the new product. Third, since we

observe coupon use for a product when consumers purchase it the probability of receiving a coupon

for the product will be bounded. As an example, suppose that during Cheer’s introductory period

10 percent of all purchases involve a Cheer coupon, and 50 percent of Cheer purchases involve a

coupon. The probability of receiving a coupon for Cheer will not likely be lower than ten percent,

and not likely be higher than 50 percent, since 50 percent of the consumers who purchased Cheer

16Further, if nt = 1, raising the probability a consumer gets future coupons will raise the value of purchasing the new

product when there is no learning and only switching costs.
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did not have (or use) a coupon for it.

4.3 The Markov Chain Monte Carlo Estimator

I estimate the structural model described in the previous section using Markov Chain Monte Carlo,

which is abbreviated as MCMC. MCMC methods are Bayesian methods, which differ from classical

methods in that they do not involve maximizing or minimizing a function. In models with high

dimensional unobserved heterogeneity, like the one I have specified, maximization of a likelihood

function can be numerically difficult. Bayesian procedures proceed differently: the researcher must

specify a prior on the model parameters and then repeatedly draw new parameters from their

posterior distribution conditional on the observed data.

Drawing from the posterior is made easier using an MCMC procedure called Gibbs sampling,

which involves breaking the model’s parameter vector into different blocks, where each block’s

posterior distribution, conditional on the other blocks and the observed data, has a form that is

convenient to draw from. Gibbs sampling proceeds by successively drawing from each parameter

block’s conditional posterior. This procedure results in a sequence of draws which converge to

draws from the joint distribution of all the model parameters. The initial draws in the sequence

are discarded, and remaining draws from the converged distribution are used to calculate statistics

of model parameters, such as mean or variance.17 My underlying demand model is the random

coefficients logit model, with two differences: the coupon parameters and the value function solution.

Thus, the setup for my Gibbs sampler is very similar to that used to estimate the random coefficients

logit model. This estimator is well understood and is described in Train (2003), pgs xxx - xxx.

To form the conditional posterior distributions for the blocks of parameters it is necessary to

impose a prior distribution on some of the model parameters. I assume flat priors on θ, a normal

prior on b which I denote k(b), and inverse gamma priors on the elements of the diagonal matrix W ,

which I denote as IG(W ). The posterior distribution of the model parameters will depend on the

parameters’ prior distribution and the probability of the data given the parameters. The priors on

the p0
cj ’s are uniform on [0,1], the priors on p1

cj are uniform on [-p0
cj ,1-p0

cj ] for Cheer, Surf and Dash,

and the priors on pCheer,1
c , pSurf,1

c and pDash,1
c are uniform on [-minj{p0

cj},1-maxj{p0
cj}]. The priors

on b and W are assumed to be non-informative, so that k(b) has zero mean and infinite variance.

The prior on W is also chosen to be non-informative, so that the scale is set to 1 and the degrees

of freedom approaches 1. The posterior distribution of the model parameters will depend on the

17Determining when the sequence of draws produced by the Gibbs sampler has converged to draws from the joint

posterior distribution is difficult, which is a tradeoff of Bayesian methods relative to classical methods. The simplest

approach is for the researcher to observe the sequence and to see the draws trending towards the posterior. After

convergence the draws will traverse the posterior. A more formal method of testing for convergence is suggested in

Gelman and Rubin (1992), who propose running the Gibbs sampler from several different starting points and testing

whether the posterior means calculated from the converged sequences are equal across runs.
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parameters’ prior distribution and the probability of the data given the parameters.

The probability a consumer chooses a particular product in purchase event t, given her prefer-

ences and the values of observables, can be expressed using a simple logit formula. Denote dijst as

the variable that is 1 if consumer i chooses size s of product j in purchase event t. Denote dit as

the vector of observed dijst’s, cit as the vector of cijt’s, xit as the vector of xijt’s and vijst as the

consumer’s flow utility minus the logit error. The probability of the consumer’s choice in purchase

event t will be

Pr(dit|θi, θ,Σit, cit, xit) =
∑

(j,s)∈Jit

dijst
exp(vijst + δEV (Σit+1; θi, θ))∑

(k,l)∈Jit
exp(viklt + δEV (Σit+1; θi, θ))

. (13)

Denote g(θi|b,W ) as the density of an individual level θi and Pr(cit|θ) as the probability of a

particular cit. Then the posterior density of the parameters is proportional to

Λ(θi∀i, b,W, cit∀i and t, θ) ∝
I∏

i=1

[
Ti∏

t=1

{Pr(dit|θi, θ,Σit, cit, xit)Pr(cit|θ)} g(θi|b,W )

]

· k(b)IG(W )

(14)

I draw from this posterior in 5 different blocks, where each block has a functional form that is

convenient to draw from. I will describe these formulas briefly in the next few paragraphs. More

details on the specifics of the Gibbs steps are given in detail in the Appendix.

The first block draws θi for each household conditional on the dit’s, the cit’s, b and W . Because

of the assumption that the error term is logit, the conditional posterior likelihood of a particular

vector of θi is proportional to
∏Ti

t=1 {Pr(dit|θi, θ,Σit, cit, xit)} g(θi|b,W ). This distribution is not

conjugate, which means that the Metropolis-Hastings algorithm (see Appendix A.1 for the steps I

use to implement this) must be used in this step.18

In the second step, I draw a new vector of fixed parameters, θ. The posterior distribution of θ

conditional on θi, the cijt’s, vit and the dit’s is

I∏
i=1

Ti∏
t=1

{Pr(dit|θi, θ,Σit, cit, xit)Pr(cit|θ)} . (15)

This distribution is also not conjugate and the Metropolis-Hastings algorithm must be used to draw

from it.

The third step draws a new b vector conditional on θ̃i for i = 1, ...I and W . The conditional

posterior distribution for b is normal, so this step is straightforward. Similarly, the conditional pos-

terior of the elements of W given θ̃i for i = 1, ...I and b are inverse Gamma, which is straightforward

to draw from. For unobserved coupons, each cijt is drawn separately across households, products

and purchase events, and has a Bernoulli posterior distribution conditional on vit, θi, θ and dit.

18Note that when we perform this step, we will need to evaluate the consumer’s expected value function in Equation

(13), EV (Σit+1; θi, θ). The procedure I use to do this is described in Section 4.4.
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4.4 Value Function Solution

The method of Imai, Jain, and Ching (2005) works in conjunction with the Gibbs sampler to obtain

a solution of the value function. In this section I will broadly describe how I solve for the value

function in Equation (13) and how the method works. The innovation of this new method is that

discrete choice dynamic programming problem is solved only once, along with the estimation of the

model parameters.

Recall that in the Gibbs sampling algorithm described in the previous section, we draw a sequence

of model parameters that converges to draws from the parameters’ joint distribution. The basic idea

of the value function solution method can then be broken up into two steps. First, at a particular

point g in sequence, draw small number of values of the unobservable and calculate expected utility

at all state space points. The expected utility and the current parameter value are then retained

for use in later iterations of the MCMC sequence. In order to calculate expected utility at some

point g in the sequence, it is necessary to have an approximation of the value function at the

current parameter value. In the second step, the value function is calculated as a weighted average

of previously retained expected utilities, where the weights are kernel densities of the difference

between the current parameter and the previous saved parameters. In actual implementation these

steps are performed in reverse order: first the value function is interpolated at the current parameter

draw, and then the expected utilities are calculated. However, I believe it is easier to understand the

algorithm by looking at the steps in the order I have laid them out, rather than the order in which

they are executed. In the following paragraphs I will describe these two steps in greater detail.

Consider the first step, which is to draw some values of the model’s unobservables and calculate

expected utility. This calculation is done at points in the state space, Σ = (s, p, J, y, n), and

the expected utilities and current parameter value are retained. There are two different sets of

unobservables which are unobserved to the consumer at the time she makes her purchase decision,

and must be integrated out when the value function is formed: the εijst’s, and the consumer’s

future tastes for products she has not yet purchased, the γij ’s. Integrating out the εijst’s does

not require numerical approximation: because of the assumption that they are logit errors, the

consumer’s expected utility has a closed form solution, conditional on θi, θ, and future coupons.

This is not true when we integrate out the future γij ’s and cijt’s, so these must be approximated

numerically. As an example, let us consider constructing an analogue to the consumer’s expected

value function in Equation (12), which is the value at state space point sj = 0, yj = 1 for some

new product j. First I draw L = 10 draws from the true taste distribution for product j, which is

N(γ0
ij , σ

2
ij), and from the coupon distribution implied by θ. To calculate the expected utility, we

need to calculate first each consumer’s exact utility (ignoring the logit error) at each product at

simulation l. Denote the lth taste draw as γl
ij and the lth coupon draw as clij , and denote θl

i as

the vector of θi with the consumers true taste for product j (γij) taken out and replaced with the
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simulated tastes (γl
ij). Assume that we have an approximation of the expected value function at

point n of the sequence for next period’s state space point, Σ′ = (s′, p′, J ′, y′, n′), which I will denote

as E(p′,J′)|(p,J)Vn(s′, p′, J ′, y′, n′; θl
i, θ).

19 Then the consumer’s utility for product j at simulation l,

vl
ij , will be

Product k = j : vl
iks = γl

ik + ξis − αi(pks − clik) + ηiyk

+δE(p′,J′)|(p,J)Vn(S′, p′, J ′, y′, n′; θl
i, θ)

Product k 6= j : vl
iks = γik(Sk) + ξis − αi(pks − clik) + ηiyk

+δE(p′,J′)|(p,J)Vn(S′, p′, J ′, y′, n′; θl
i, θ),

(16)

which corresponds to Equation (11).

Her expected utility for purchasing product j for the first time (state space point yj = 1, sj = 0)

at the individual i’s θi is then calculated as

ÊV g(S, p, J, y, n; θi, θ) =
1

L

L∑
l=1

ln

 ∑
(k,s)∈J

exp(vl
iks)

 . (17)

The second step of the algorithm is to calculate the approximation of the value function at

the parameter draw for the current point in the sequence, g. Denote consumer i’s individual level

parameters at this iteration as θi,g, the population-fixed parameters as θg, and the vector of θi,g

stacked on θg as θi,g. Recall that at each point in the sequence, the expected utilities calculated

in the first step are retained along with the parameter draws. Assume that at iteration g we

have retained N(g) previous parameter draws and expected utilities, and we want to calculate the

expected value function at θi,g. This is then calculated as

E(p′,J′)|(p,J)Vg(s, p, J, y, n, θi,g, θg) =

∑N(g)
r=1

[
ÊV r(s, p, J, y, n; θi,r, θg)

]
k((θi,g − θ

r
i )/hk)∑N(g)

i=1 k((θi,g − θi,r)/hk)
, (18)

where k(·) is a kernel density function and hk is a bandwidth parameter, and ÊV r(s, p, J, y, n; θi,r, θ)

is the rth retained expected utility. The approximated value function is used to calculate the utilities

in Equation (16).

5 Estimation Results

The main estimation results are shown in Table 5. Recall that in my model, the coefficients of

consumer i’s flow utility are broken up into two groups: those that vary across the population,

denoted θi, and those that are fixed across the population, denoted θ. The population-varying

19Since the state space is quite large, and computer memory is limited, I only evaluate the value function at a subset of

the state space points, and interpolate it everywhere else. The details of this procedure, as well as other computational

details associated with the value function solution, are described in the Appendix.
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coefficients are normally distributed across the population with mean b and diagonal variance matrix

W . The Markov Chain Monte Carlo estimator produces a simulated posterior distribution of b, W ,

and the fixed parameters, θ. The two columns of estimates under the headings “Mean” show the

means and standard deviations (shown in parentheses) of the simulated posterior density for each

element of b; similarly, the two columns of estimates under the headings “Variance” show the mean

and standard deviation of the simulated posterior for W . Estimates of parameters that are fixed

across the population, θ, are shown under the “Mean” heading; the corresponding entries under the

“Variance” heading are dashed for these parameters. Although the numbers in the table are means

and standard deviations of parameter posterior densities, they can be interpreted in the same way

as the estimated coefficients and standard errors that are produced by classical methods.

Consider the first block of estimates, labeled “Taste parameters”. The first 9 rows show the

estimated tastes for each established product. The liquid Other product is normalized to 0, and

the Other Powder, Tide Powder and parameters associated with switching costs are fixed across the

population. The first element of the first row shows the population average of consumer tastes for

liquid Era, which is -0.908. It may look like people like Era less than the Other product, but this is

not the whole story. The fourth column shows the variance in tastes for Era across the population,

which is 3.258. This variance is large, which indicates that consumers are very heterogeneous in

their taste for Era: some consumers like it a lot, and some do not like it very much at all. The

results are very similar for almost all the established products: the mean tastes are negative, and

most of the variances are high, so there is a lot of heterogeneity in tastes. Consumer heterogeneity

in tastes is very important in this market, which is consistent with these products being experience

goods. It is also consistent with important heterogeneity in factors such as the types of fabrics in a

household’s wardrobe, the types of soils and stains that need to be cleaned, the water temperature

used, the household’s washing machine quality, and the types of scents the household prefers. The

next six rows show the taste parameters for the different size categories.

Skipping the last three rows of the taste parameters section, which will be discussed later,

consider the second block of estimates in the table, under the heading “Learning Parameters”.

The first row of this section shows the estimated population mean and variance of consumer’s

expected tastes for Cheer, γ0
ij . The population average predicted taste for Cheer is -0.518, and

this estimate is statistically different from zero. The population variance of predicted tastes is

statistically significant, but small relative to the mean at 0.356. This means that there is not a lot

of heterogeneity in how much consumers expect to like Cheer: most of them don’t expect to like

it very much, and most consumers do not have a very good idea of how much they will like the

product in advance.

Consider the next three parameters, which correspond to the consumer’s uncertainty about her

true taste for Cheer. The mean of the parameter σ2
0ji, the intercept, is precisely estimated at -0.58,

while the parameters on household size and income are negative and statistically significant. The
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positive coefficients suggest that the amount of variance in true tastes is higher among larger and

higher income households. Recall that the actual consumer uncertainty in tastes is a transformation

of these parameters (as specified in Equation (5)). As an example, for a household of income 3

and size 3 that has population average value of σ2
0ji, the variance in her true taste for Cheer is

5 exp(−0.58+0.148·3−0.068·3)
1+exp(−0.58+0.148·3−0.068·3) , which is about 2.08. If the consumer’s expected taste for Cheer is

−0.58, the population average, then her true taste will be drawn from a N(−0.58, 2.44). Her true

taste distribution looks very similar to the taste distributions for the established products. The

results for Surf and Dash follow a similar pattern to those of Cheer.

In summary, there are two important facts about the learning parameters: first, the variance

across consumers in γ0
i is low. Before consumers make their first purchases of the new product, their

expectations are similar. Second, the variance in their true tastes is large, which indicates that after

consumers make their first purchases of the new products, they are very different in how much they

like it. These facts are consistent with these products being experience goods: consumers need to

purchase and consume the product in order to find out how much they like it.

Let us return to the last three rows of the first block of parameter estimates. This shows the

estimates for the coefficient on yijt−1, which is ηi. The intercept for ηi, ηi0, is allowed to vary across

the population. Its mean is 1.311, and its variance is large at 2.002. The distribution of ηi across the

population will depend on two things: the distribution of unobserved heterogeneity, which is normal,

and the distribution of demographics. Taking both of these into account, the expected value of ηi

in the population is 1.32, and its variance is 1.98. This means that most households have switching

costs, but a small portion of them are variety-seeking (about 84% of them have values of ηi that are

positive). The coefficient on household size, η1, is negative and the one on household income, η2, is

positive. The fact that switching costs is increasing in income is consistent with the idea that the

switching cost is generated by a cost of recalculating utility: for high income consumers, time is likely

more valuable and the cost of recalculating utility may be higher. There are a few explanations

for the negative coefficient on household size. One is that larger households may switch brands

more easily since detergent is a smaller part of household consumption. A second explanation for

the negative coefficient on household size could be due to within household heterogeneity in tastes.

Different members of a household may have different tastes, and since the data does not record

consumption by different members, brand switching among households with more members may be

due to different members purchasing different products rather than variety-seeking. Similar findings

are documented in Che, Sudhir, and Seetharaman (2006).

The fact that most consumers have switching costs has interesting implications for pricing policy.

As an example, suppose that it has been a long time since the introduction of Dash, so that most

consumers have experimented with all the three new products. Suppose that Unilever decides to

temporarily drop the price of Wisk. Procter and Gamble might worry that this price drop could

decrease the market share of Tide in the intermediate run. The price drop will draw consumers
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away from Tide who will have a cost of switching back to Wisk. It would be optimal for Procter

and Gamble to respond with a subsequent price drop in order to get them back.

The last block of parameters shows consumer responses to the exogenous variables prices, features

and displays. The parameter for consumer price sensitivities is constructed in the same way as for the

learning parameters (Equation (6)). The population average value of the price coefficient is about

-24.9. The parameter on household income is positive while that of household size is negative,

which means that higher income and larger households are more price sensitive. The fact that the

coefficient on income is positive is surprising, but the magnitude of the coefficient is very small.

The variance in the intercept of the price coefficient is quite large, which indicates that there is

substantial heterogeneity in price sensitivity. The population distribution of the price coefficient is

shown in Figure 4. The distribution of price coefficients is right skewed, and somewhat less than

half of all households have price coefficients that are less than 5 (about one quarter have price

coefficients that are less than 1). The estimates of the coupon sensitivity parameter, α0ic, show

that its mean is -0.673 and its variance is 0.229. Recall that the coupon sensitivity coefficient that

enters the consumer flow utility, αic, is a transformation of α0ic,
exp(α0ic)

1+exp(α0ic)
(Equation (7)). The

population mean of αic is 0.35, and its variance is 0.01, so there is very little heterogeneity in

consumers’ sensitivities to coupons. The feature and display variables are both positive on average

in the population, which is to be expected.

Table 6 shows the parameters of the coupon distribution. The first column of the table shows

the mean of the posterior draws of the p0
cj ’s, the p1

cj ’s, and the pCheer,1
c , the pSurf,1

c , pDash,1
c ;

the second column shows their standard deviation. Almost all the mean parameters are precisely

estimated. To see how to interpret the parameters, recall that the p0
cj ’s are the probability that a

consumer receives a coupon for product j after the “introductory pricing” period. So the probability

a consumer gets a coupon for Tide Liquid is 0.263. The parameters under nt = 1 are added to the

nt = 0 parameters during introductory pricing periods. So the probability of a consumer getting a

coupon during the introductory period for Surf Liquid is p0
cj + p1

cj = 0.237 − 0.078 = 0.159. The

probability a consumer gets a coupon for Tide Liquid during the introductory period for Surf Liquid

is p0
cj + pSurf,1

cj = 0.263− 0.038 = 0.225.

5.1 An Examination of Consumer Uncertainty About the New Prod-

ucts

In this section I will examine two aspects of consumers’ uncertainty about their true tastes for the

three new products. First, I will examine how consumer uncertainty varies across the population.

Recall from the previous discussion that consumer i’s uncertainty about her true taste for a new

product j, σ2
ij , is a transformation of the three parameters in the second block of Table 5, σ2

0ij , σ
2
1j

and σ2
2j , and the consumer’s household income and size. Heterogeneity in consumer uncertainty
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about product j will come from two sources: unobserved heterogeneity in the random coefficient

σ2
0ij , and observed heterogeneity in household demographics. I will demonstrate that across the

population as a whole, there is not a lot of variance in the σ2
ij ’s. I will also show there is not a

consistent pattern in the σ2
ij ’s across demographics. Second, I will examine the effect of removing

consumer uncertainty on the market shares for new products. I will demonstrate that removing

consumer uncertainty substantially increases the overall market share for a new product, and the

impact is largest for niche products.

The first column of Table 7 shows the average value of σ2
ij in the population for each of the

three new products, and the second shows the standard deviation across the population.20 There

are two important patterns to notice. First, we can see from the table that the average amount

of uncertainty is greater for Cheer than for Surf, the first two liquid introductions observed in my

data set. This may be due to the fact that these products are liquid detergents, and consumers’

experience with Cheer helped them resolve some uncertainty about liquids as a product category.

The amount of learning about Dash, the last liquid introduction in this data set, is a little bit lower

than Surf, which may also be a result of consumers learning more from Surf’s introduction. Second,

we can see that the variance of the learning parameters is small, which indicates that the amount

of learning does not vary a lot across the population. Recall that in the previous section, I showed

that consumer’s expected tastes for the new products also did not vary significantly across the

population. These two facts together indicate that consumer expectations about their true tastes

for the new product did not vary across the population by very much.

Table 8 shows the average consumer uncertainty broken down by household income and size.

For Surf and Dash, the amount of learning is decreasing in income and household size. For Cheer,

the amount of learning increases in household size until it reaches 4, where it drops. The amount

of learning for Cheer is increasing in household income.

To examine the effect of learning on the market shares of the new products, I conduct the

following simulation experiment. First, using the retained draws on θi and θ in each step g of

the Gibbs sampler I simulate each consumer’s product choice in each purchase event. The error

terms and unobserved coupons observed by the consumer in each purchase event are drawn from

their underlying distribution. I then calculate the overall market share for each product from the

simulated choices, averaged over the g draws. The first column of Table 9 shows the average of

this simulated market share over all the weeks that the product was available, and over the first 12

20When I compute the population distribution of σ2
ij , I use the estimated individual level parameters, the θi’s, rather

than the estimated b and W , which are respectively the population mean and variance of the θi’s. Recall that in a given

step g of the Gibbs sampler, I draw the population-varying coefficients θi for each consumer i, and the population-fixed

coefficients θ. In step g (assuming step g is retained), I calculate each consumer’s uncertainty, σ2
ij,g , using θi,g , θg , and

demographics for i (Equation (5)). I then calculate the population mean and variance of σ2
ij,g . The numbers in the table

are the average over draws of the mean and variance calculated in each step g.
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weeks that each new product was available.

Then I run the same simulation setting sijt−1 = 1 for all three new products: in this case

consumer tastes for the new products are assumed to always be γij . These simulated market shares

are shown in the second column of Table 9, and are substantially larger than the shares in the first

column: the market share of Cheer rises by 34%, Surf by 24%, and Dash by 58%. In the period right

after the new products are introduced, the impact of removing learning is smaller: for Cheer, the

market share rises by only 9%, 10% for Surf, and 33% for Dash. Why does this happen? The answer

to this question is twofold. First, consider the short run (the first 3 months after the introduction),

and assume that δ = 0.

I refer the reader to Figure 8, which shows the estimated population distribution of tastes

for Cheer before and after all learning has occurred. The thinner distribution is the population

distribution of predicted means for Cheer (the γ0
i ’s), or the tastes for consumers who have not yet

learned about Cheer. This distribution is normal with mean of -0.518 and variance of 0.356 (Table

5). The flatter one is the population distribution of true tastes for Cheer, tastes after learning has

occurred. This distribution is normal, and has mean of -0.518, and a variance of 2.59. The number

2.59 is the variance in γ0
ij , 0.36, plus the average of σ2

ij across the population, which is 2.03.

A myopic consumer will experiment with Cheer when her prior draw is greater than her maximum

utility for other products. In the figure, the line labeled δ = 0 shows the cutoff for a consumer with

average values of tastes for all products, assuming that there is no state dependence, prices for

all products are the same, and the error terms are set to zero. The share of consumers who will

experiment will be those whose prior is to the right of this line. We can see that the share will

increase when consumers know their true tastes, since the area under the posterior curve is larger

than under the prior.

Since I assume consumers are forward-looking, there will be an option value of learning, which

will shift the cutoff to the left and result in more experimentation. I compute this option value of

learning at the given parameter values (assuming the consumer has average tastes, and that there is

no switching costs), assuming consumers expect prices to stay the same over time. This new cutoff

is shown by the line δ = 0.95; when the option value of learning is taken into account, significantly

more consumers experiment. Although it is difficult to see from the picture, the shaded area to

the right of δ = 0.95 line on the expected tastes distribution is a little bit smaller than that to

the right of the δ = 0 line on the true taste distribution. This means that informing consumers

of their true match values will cause an increase in the product’s short run market share, even

in when consumers are forward-looking. During the first three months after Cheer’s introduction,

the increase in Cheer’s market share from removing learning increases from 9.1% to 10.0%, which

is a 9% increase. In the intermediate run, the effect of giving consumers their true taste draws

will be even greater. The consumers who will be affected by this will be those who have not yet

experimented. The consumers who have experimented will tend to be those who have a high option
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value of learning, so the consumers who will be left will have a low option value of learning. Their

behavior will be closer to consumers who are myopic. This explains why the increase in market

shares over the intermediate run is 34%, which is much larger than the increase in the short run,

which was only 9%.

Note that it is possible to do a similar exercise where I set the switching costs parameter, ηi to

be 0 for all consumers to see the impact of switching costs on the new product market shares. The

results of this exercise show that removing switching costs increases Cheer’s market share by 23%,

Surf’s market share by 13%, and Dash’s market share by 23%. This result is intuitive: when there

are switching costs, consumers will find it costly to switch away from one of the established products

at the time the new products are introduced, which will make them less likely to experiment with

them.

One final issue to discuss is the identification of the population variances of the learning pa-

rameters. This was discussed to some degree in Section 3.3, where I argue that individuals with

different values of σ2
ij can theoretically be distinguished. This does not imply that they can easily

be distinguished in the population, which might mean that the variance of σ2
0ij is not identified.

One method of assessing this is to examine the posterior densities of the variances of σ2
0ij . If they

look very similar to the prior densities, then we have not obtained identification. Figures 5, 6, and

7 show plots of the kernel density of the saved draws on the variances of σ2
0ij for each of the three

new products. Recall that the priors on these parameters were assumed to be noninformative; in

contrast, the posterior densities have easily visible global maxima and thin tails. The posterior

density for Cheer, and to a lesser extent Dash, have second modes; these modes occur with less

probability than the model’s highest peak. This suggests that overall, there is enough information

in the data to identify the variance of σ2
0ij ; an inverse gamma prior might be too restrictive, though,

since it is unimodal.

5.2 Estimates from the No Switching Costs and No Learning Mod-

els

One of the important contributions of this research is that I estimate a model with two types of

dynamics in it: learning and switching costs. In this section I will discuss how the model estimates

differ when one of the two types of dynamics is left out. I will also discuss how the model fit changes

when different dynamics are ignored.

First, I re estimated the model with the parameter on alternative dynamics, ηi, restricted to be

zero for all consumers, so that the only dynamics in demand were learning.21 The taste variances

produced by the model were larger, which is to be expected. The price coefficient estimate is similar

21The tables of estimation results produced by this restricted model and the next one are not shown, but are available

upon request from the author.
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to that of the full model; the average of the price coefficient across the population is -26.9, which is

slightly higher than the estimate produced by the full model. Consumers are estimated to be less

sensitive to coupons than in the full model, and the feature and display variables look the same. The

most interesting change is in the estimates of the learning parameters. The means of the γ0
i ’s drop,

but the pattern is the same - one average consumers expect to like Surf more than Cheer, and Cheer

more than Dash. The variances in the γ0
i ’s are significantly higher, which indicates that consumers

are heterogeneous in how much they expect to like the new products. The estimates of the σ2’s, the

amount of uncertainty consumers have about their true tastes for the new products, also change.

On average, the σ2 for Cheer is 0.909, for Surf it is 2.239, and for Dash it is 1.473. Thus, the model

predicts that consumers are significantly more certain about their true tastes for Cheer and Dash,

and less certain for Surf (although they are more heterogeneous ex-ante). Thus, the estimates do

not give as strong support to the hypothesis that these products are experience goods. This result

is intuitive when we consider the results associated with the share difference implication, which is

what will identify the amount of learning (Section 3.3). Recall that the estimates of the full model

suggest that switching costs plays an important role, and that the share difference test statistic is

negatively biased in the presence of switching costs. Thus, it is not surprising that the estimates of

this model suggest a less important role for learning.

The importance of learning in this restricted model can also be assessed by simulating the market

shares for the new products when there is learning and when there is no learning, as was done for

the full model. The results of this simulation are shown in Table 10. As expected, the impact of

learning on the new product’s market share is smaller in the no switching costs model than the no

learning model. Hence, researchers who ignore switching costs will underestimate the importance

of learning.

The second restricted model I estimate has the learning parameters, the σ2’s, restricted to zero for

all consumers. Compared to the estimates from the full model, the no learning model generally tends

to underestimate the amount of variance in consumer tastes. The population average of the price

coefficient is -24.8, which is a little bit smaller than the full model; there is less estimated variance

in the heterogeneity parameter for price sensitivities as well. Consumers are slightly more sensitive

to coupons, and slightly less sensitive to features and displays. The estimates of the switching cost

parameters also look very similar to those produced by the full model. The population mean of ηi

is 1.37, and its variance is 2.04; both of these numbers are slightly higher than those produced by

the full model. Overall, the results for this model look similar to the full model results, which is

not entirely surprising. To see why, recall my model identification argument (Section 3.3). I argued

that consumer taste distributions and switching cost coefficients will be identified from longer run

behavior. In the no learning model, the first few periods after the new product introduction will

have some impact on the estimates, but most of the model’s identification will come from longer

run behavior since we observe consumers for a long period of time after the product introductions.
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In order to assess how each type of misspecification affects the model’s predictive power, I

compute the simulated market shares for each of the three models. Table 11 shows the actual

market shares compared to the simulated market shares produced by each model. The final row

of the table shows the average of the absolute difference between the predicted market share and

the actual market share, where the average is taken across the 13 products. Overall, the full model

does the best job at predicting market shares - on average, it will mispredict market shares by 0.26

percent. The model with no switching costs is almost as good as the full model, with an error of

0.33 percent, while the model with no learning is significantly worse, with an error of 1.8 percent.

Much of this difference is due to the no learning model poorly predicting consumer response to

new product introductions. To see this, consider the final four lines of the table, which shows

the absolute average prediction error for market shares in the periods directly following the new

product introductions, and for the final 63 weeks of data. During the periods after the new product

introduction, the full model and the no switching costs model have similar prediction errors. There

is almost twice as much error in the no learning model during these periods. During the final 63

weeks of the sample, the prediction error is very similar across all 3 models.

In summary, it appears that ignoring learning is a more serious misspecification error than

ignoring switching costs, if the aim of the researcher is to simply fit market shares. Learning has

a large impact on the market shares of products right after the introduction of a new product, so

leaving it out will significantly reduce the model’s predictive power.

5.3 Counterfactuals

In this section I will examine two important counterfactuals that I have computed: the effect of

an introductory price cut for a new product on its intermediate run market share, and the effect

of informative advertising on the new product’s market share. There are two different ways I will

compute each counterfactual. First, using the estimated results from the full model, I will compute

the impact of the introductory price cut and introductory advertising when there is learning and

switching costs, no switching costs, and no learning. This exercise allows me to explore the impact of

dynamics on the impact of introductory pricing and introductory informative advertising. I will also

compute these counterfactuals for the restricted models I discussed earlier. This will show how model

misspecification affects the counterfactuals. These results will be of interest to brand managers who

wish to better understand the effects of their pricing and advertising policies. They will also be

of interest to government agencies that are interested in the impact of information provision about

new products, and to industrial organization economists who wish to better understand the role for

introductory pricing.

First let us consider the effect of an introductory price cut for each of the new products. I

compute this counterfactual as follows. First, I set xijt = 0 and cijt = 0 for all i, j and t. For each
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product j, I set pijt to its average across all purchase events where the product is available. Thus,

aside from the introductory price cuts, prices are the same across time and consumers. If there are

any new product introductions after the new product for which I am calculating the price cut, I do

not introduce them. I also assume that all other products are always available, so Jit does not vary

across i and t, except for the introduction of the new product I am interested in. When I compute

the counterfactuals, all 519 consumers make exactly one purchase in each period. Since the modal

interpurchase time is 8 weeks, each period can be thought of occurring every two months. I compute

the counterfactuals for ten periods, so the total length of time covered by these counterfactuals can

be thought of as occurring over a twenty month period.

I then solve for every consumer’s value function, assuming that they know the path of future

prices, and simulate each persons’s choice in each period.22 This requires that I draw 49 new εijt’s

for each period. To reduce simulation error, I simulate each consumer’s sequence of choices ten

times and take the average of these choices. I simulate choices for each retained draw on θi and

θ from the Gibbs sampler (a total of 750 times) under three different assumptions on the type of

dynamics in demand: when there is both switching costs and learning, which is at the estimated

parameters, when there is no learning, which means every consumer knows γij from the beginning,

and when there are no switching costs, which means ηi = 0 for all i. I also assume that there is no

learning for any product other than the one for which I am examining the effect of the price cut;

for example, if the price cut is for Surf, then I assume consumers know their true taste for Cheer.

I repeat this exercise for an introductory price cut for each new product, which means I cut the

price of the new product by 10 percent in period 1, period 3, and period 5. The ten percent price

cut is applied to all 4 sizes of the new product. This is a partial equilibrium counterfactual: all

other prices are held fixed. I assume that consumers correctly view the price cut as temporary and

expect the new product’s price to rise to its average in period 2. The first column of Table 12 shows

the percentage impact on period t marketshares of the period 1 price cut. For all three products,

a ten percent price cut results in a greater than 10 percent increase in period 1 market shares, so

own price elasticities are elastic. The intertemporal price elasticities are small. For instance, a ten

percent price cut for Cheer only leads to a 0.87% increase in Cheer’s period 2 market share. The

impact on Cheer’s market share drops as time increases. The second column show the response to

a price cut that occurs in period 3, and the third in period 5. As time increases, the own price

elasticity of each new product drops: in other words, when consumers learn about the new products

their demand becomes more inelastic. This provides an alternative explanation for why we observe

introductory pricing of the new products to the idea that firms recognize dynamics and are pricing

with them in mind. It may be that firms are myopic and simply observe that short run demand

22The fact that there is learning about one of the new products means that I need to integrate over the distribution of

future tastes for that product. I compute this integral using Gauss-Hermite quadrature. Also, it is necessary to pick a

value for yit−1 in period 1. I assume that the period 0 choice is whichever brand gives the highest static utility.
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elasticity is falling, and raise their prices in response.

The fourth, fifth and sixth columns show the impact of the price cut under the model parameters

estimated for the full model when consumers are assigned their true tastes for the product. The own

price elasticities are smaller when there is no learning. Generally, the intertemporal price response is

larger when the learning is removed. The only place where this does not hold is for Dash in periods

after the second, where the intertemporal price elasticity is slightly smaller. The intuition behind

this result is that when there is no learning, consumers who respond to the price cut will continue

to purchase the new product due to the cost of switching products; when learning is added to the

price cut, some consumers who experiment with the product will receive a low match value for it

and will switch away to something else. This can also be seen in the first three columns, where the

intertemporal elasticity rises as time increases.

This result suggests that firms who wish to make their price cuts more effective at building

future market share should combine them with informative advertising. This does not take into

account the impact of advertising itself, which could increase or decrease revenues. The increase in

revenues for the 10 simulated periods from the price cut alone was 13.14 dollars for Cheer, 18.41

dollars for Surf, and 9.64 for Dash. The increase in revenues from removing learning was 338.45 for

Cheer, 122.68 for Surf, and 305.07 for Dash. Finally, the increase in revenues from the price cut

combined with removing learning was 349.32 for Cheer, 139.16 for Surf, and 314.69 for Dash. Since

removing learning increases overall revenues, price cuts combined with advertising increase revenues

more than price cuts alone (this does not take costs of advertising into account).

When switching costs are removed from the model, price cuts become much less effective at

building future market shares. This is because when there is learning and switching costs, some

of the consumers who experiment with the new product and find they dislike it will continue to

purchase it due to the cost of switching products. For introductory price cuts in period 1, the own

price elasticity of demand drops when switching costs is removed; it rises for periods 3 and 5.

The tenth to twelfth columns show the impact of these price cuts under the results produced by

the no learning model. The impact of a period t price cut on the new product’s period t market

share can be either higher or lower than in the full model. For Cheer, these elasticities drop, but

for Surf and Dash, all but one of them rise. The intertemporal price elasticities are overestimated,

especially in the earlier periods. The last three columns show the impact of these price cuts produced

by the model with no switching costs. The own price, current period elasticities appear to be

underestimated, except for Dash in period 5. This result seems somewhat counterintuitive: one

would expect that, all else equal, increasing switching costs should reduce a product’s own price

elasticity. However, recall that in the no switching costs model, estimated taste variances were much

larger, which will tend to raise price elasticities. As expected, the intertemporal elasticities are much

lower in the no switching costs model. Thus, the impact of misspecifying dynamics on the model’s

implied intertemporal price elasticities is significant.
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The second counterfactual, shown in Table 13, demonstrates the effect of informative advertising

on the short run and intermediate run market shares for the new products. The market shares are

simulated in the same way as the price cut counterfactuals. The informative advertising is modeled

as follows: when the new product is introduced, I assume that every consumer receives a signal aij

about their true match value for the new product which is normally distributed with mean γij and

variance σ2
aj . I assume that consumers update their expected true taste, γ0

uij , and the variance of

their true taste distribution, σ2
uij , using a Bayesian updating rule (see DeGroot (1970), pg. 166-167):

γ0
uij =

γ0
ij

σ2
ij

+
aij

σ2
aj

1
σ2

ij
+ 1

σ2
aj

σ2
uij =

1
1

σ2
ij

+ 1
σ2

aj

(19)

For each product, I assume that the signal variance σ2
aj is one half of the population variance in

Table 7, so that for the Cheer counterfactual σ2
aj is 1.015, for Surf it is 0.925, and for Dash it is

0.905). This counterfactual is simulated using the results of the full model, the full model with

switching costs removed, and the no switching costs model.

The simulated market shares are shown in Table 13. For Cheer, informative advertising increases

the product’s market share in all periods. For Surf, informative advertising reduces the market share

in the short run, but increases it in the longer run. One explanation for this is that when consumers

have a better signal of how much they will like the new product, their option value of learning is

reduced. Also, the informative advertising informs consumers who have low match values with the

product that they should not switch into it, which would be very bad when there is a switching cost;

when there is no advertising, consumers expect to like Surf (recall that the distribution of expected

tastes for Surf has the highest mean out of all three new products) and those who have lower match

values for it will continue to purchase it due to the switching cost.23 For Dash, advertising has the

largest impact of all the three products. The reason for this is that consumers’ expected taste for

Dash is lower than Cheer or Surf, which means that the option value of learning about Dash will

be lower than for Cheer or Surf and the fact that advertising reduces it will not matter that much.

What the advertising does is it gives consumers a better idea of their true match value for Dash.

Since the population variance of true match values for Dash is high, those who have high match

values will become more likely to experiment. This makes the advertising have a stronger effect on

23The fact that advertising reduced Surf’s market share in the presence of switching costs may seem counterintuitive

in light of the discussion in Section 5.1. Recall that in the counterfactual experiment discussed there, removing learning

increased Surf’s market share in the presence of switching costs. A reason for this is that the simulation experiment per-

formed in Section 5.1 was done at the actual data, where there is significant price variation, whereas these counterfactuals

are computed at constant prices. Price variation will reduce the impact of the switching costs, making the results look

more like the no switching costs case.
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the market share for Dash than for Cheer or Surf. This result is interesting, since it suggests that

informative advertising is more effective for niche products. The second column shows the predicted

revenue increase resulting from the advertising.

The third and fourth columns show the predicted market shares and revenues under the full

model with the switching costs parameter, ηi, set to 0 for all agents. For all three new products,

informative advertising increases the new product’s market share more when there is no switching

costs than when it is present, for the first one or two periods. For Cheer and Dash, the impact of

the advertising dies out more quickly when there are no switching costs, which is not surprising. For

Surf, the advertising increases the product’s market share rather than decreasing it. This suggests

that the decrease in Surf’s market share in the full model was driven by the switching costs. The

results of the no switching costs model are shown in the third and fourth columns. The impact of

the advertising is smaller for Cheer, but larger for Surf and Dash. Part of this result may be due to

the fact that the learning parameter for Dash is estimated to be smaller, and for Surf it is estimated

to be larger. For Dash, the learning parameter is slightly smaller, but the lack of switching costs

will tend to increase the impact of the advertising.

6 Empirical Price Elasticities

In Table 14 I compute the empirical price elasticities implied by the full model, the no learning

model, and the no switching costs model. The price elasticities are computed in a method similar to

how I computed the impacts of price cuts in the counterfactual exercises from the previous section.

First, I compute the market shares for ten periods, holding the prices of all products fixed over time

at their averages. Then, I cut the price of all sizes of one of the products by ten percent for all ten

periods, and compute the percentage change in the product’s market share, divided by ten. Note

that this type of price elasticity is not simply the impact of a 1 period price cut on the product’s

market share. When I compute the market shares at the lower price, consumers expect the lower

price to last forever, and adjust their value functions accordingly.

The first column of the table shows the impact of a long term price cut for Cheer Liquid on

Cheer Liquid, Wisk Liquid, Tide Liquid, and Tide Powder. I show the simulated elasticity for 3

of the ten periods I simulate, periods 1, 3 and 5. Thus, the own price elasticity of Cheer for a

permanent price cut in Cheer is -1.85 in period 1, -1.73 in period 3, and -1.64 in period 5. The

cross-price elasticity of a price cut on Cheer for Wisk’s quantity in period 1 is 0.11. Note that when

I computed the elasticities in the first column, I assumed that Surf and Dash were not available,

and that there was learning in Cheer. The second, third, and fourth columns show the impacts of

long term price cuts in Surf Liquid, Dash Liquid, and Tide Liquid respectively. For the Tide Liquid

price cut, I assume that all products are available, and that there is learning in Dash. The own price

elasticity of all products are estimated to be significantly larger than in the case of temporary price
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cuts: they range from -1.45 to -1.87. This is likely due to the fact that the price cuts are affecting

consumers’ future utility through the switching costs and the learning, in addition to their current

utility. The cross-elasticities of demand are roughly between 5% and 30%, with the highest cross

elasticity between Dash and Tide Liquid.

One reason that computing these elasticities is important is that own and cross-price elasticities

are used by the Federal Trade Commission and the US Department of Justice to evaluate the

competitive impact of mergers. Cross-price elasticities are an input into “unilateral effects” analysis,

where agency personnel examine whether a producer of several products could profitably raise the

price of one (or some) of them post-merger. As an example, suppose that all the laundry detergents

analyzed in this paper were produced by different firms, and a merger between Cheer and Wisk was

announced. A unilateral effects analysis would ask whether the producer of both products would

find it profitable to raise the price of Cheer, for example. If Cheer and Wisk were very similar

products, then many consumers of Cheer would switch to Wisk, which would mitigate the impact of

the price increase on the merged firm’s profits. Clearly, the higher the cross-price elasticity between

the two products is, the larger will be the unilateral effect.

Own price elasticities are used in merger analysis to define “antitrust markets.” An antitrust

market is a group of products such that a hypothetical monopolist who produced those products

would find it profit maximizing to raise price above current levels by at least some percentage (in

practice this percentage is often taken to be 5%), assuming that the prices of other products did not

change. Antitrust markets are used to address the question of market definition in merger analysis:

when computing the market shares of merging firms, it is necessary to determine which products

should be included in the denominator of the share calculation. A convention that is used by federal

agencies is to define the relevant market to be the smallest antitrust market. For example, again

suppose that all the laundry detergents analyzed in this paper were produced by different firms. If

one was evaluating a merger between Cheer and Wisk, one might want to know whether these two

products were in a separate antitrust market from other detergents. One would then ask whether a

hypothetical monopolist who produced Cheer and Wisk would find it profit-maximizing to raise the

prices of these products by at least 5%. An important input into this exercise will be the own price

elasticities of demand for these products (the own price elasticities will themselves be functions of

the cross-price elasticities with other laundry detergents). To complete the hypothetical monopolist

exercise, an understanding of the production costs of the products is also necessary.

In order to carry out these exercises, it is necessary to have correct estimates of own and cross-

price elasticities. If certain types of dynamics are ignored, such as learning or switching costs, then

our estimated elasticities will be wrong. Because I have estimated the model without learning and

without habit formation, it is possible to assess the magnitude of ignoring these types of dynamics.

The results for the no learning model are shown in the fifth through eighth columns. The own price

elasticities for the new products drop significantly. One reason for this is that the learning makes
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consumers more likely to switch into the new products; the option value of learning makes them

more attractive, and a permanent price drop will generally raise this option value. It is notable

that the own price elasticity for the established product, Tide Liquid, is not affected much by

ignoring learning. The cross price elasticities between new products and established products drops

significantly when learning is removed, for the same reason. In contrast, the cross price elasticity

between established products rises. Thus, by ignoring learning we would tend to underestimate the

unilateral impact of mergers between new and established products, and overestimate the unilateral

impact of mergers between established products. Cross price elasticities can differ across models by

a factor of as much as 90% (for example, Surf Liquid and Wisk Liquid).

7 Conclusions and Extensions

In this paper I propose a structural model of learning and experimentation that nests alternative

sources of dynamics in demand, such as switching costs or consumer taste for variety. In this model,

consumers are forward-looking, and I allow a rich distribution of heterogeneity in consumer tastes,

price sensitivities, consumer expectations of true match values, and the type of alternative dynamics.

I estimate the model on laundry detergent scanner data and find evidence for switching costs

and significant learning. The model is estimated using a Markov Chain Monte Carlo and I employ

a new method for solving for consumers’ value functions that substantially reduces the estimation

procedure’s computational burden. The results show strong support for learning and suggest that

new products are experience goods. Before consumers make their first purchases of the new product,

they have very similar expectations of what their true tastes will be. Those who make first purchases

end up being very heterogeneous in their true tastes. The results also suggest most consumers have

switching costs in addition to learning. Both learning and switching costs have a significant impact

on the market shares of new products.

I re estimated the model twice to examine the impact of ignoring dynamics on the model pre-

dictions: once without learning, and once without switching costs. I find that if learning is ignored,

model parameter estimates for other parameters look similar, but the model does a much worse

job at predicting market shares during the periods after new product introductions. If switching

costs are left out, the model underpredicts the importance of learning. I also examine the im-

pact of misspecification on If learning is left out, the model underpredicts own price elasticities for

new products, and underpredicts cross price elasticities between new and established products. If

switching costs are left out, the model underpredicts own and cross price elasticities for all products.

I also examine the effect of two “what-if” experiments. In the first experiment I drop the price of

the new products and simulate the products’ intermediate run market share in a partial equilibrium

setting, under different assumptions about dynamic demand. The results of this counterfactual

exercise suggest that the impact of the price cut is greater when consumers both learn and have
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costs of switching products, as opposed to when there are no switching costs and they only learn.

The impact of the price cut is also greater when there are only switching costs than when consumers

learn and have switching costs, which suggests that price cuts may be more effective when they are

combined with informative advertising or free samples. In my second “what-if” experiment, I give

consumers informative advertisements which reduce their uncertainty about their true match value

for the new products in the same partial equilibrium setting. The results suggest that for the

two mainstream new products, informative advertising reduces the product’s market share in the

presence of switching costs. For a niche product, informative advertising is beneficial.

There are a number of extensions for this research that would be useful. First, this paper

abstracts from the supply side: for example, the counterfactuals I compute are partial equilibrium

counterfactuals and do not account for competitor responses. It would be interesting to examine

the model’s supply side implications: for example, we might be interested in knowing the impact

of learning on the ease of new product entry, or on equilibrium pricing behavior. One way to

perform this kind of exercise would be to take the demand system as given, solve for the market

equilibrium, and compute comparative statics. This sort of exercise has been performed in markets

with switching costs in Dubé, Hitsch, and Rossi (2006) and Che, Sudhir, and Seetharaman (2006).

In these papers, the computation of the market equilibrium is tractable because switching costs are

the only source of dynamics, and consumers are not forward-looking (Dubé, Hitsch, and Rossi (2006)

argue that the problem with forward-looking consumers is similar to the problem with myopic ones,

when firms prices follow a Markov process.). Solving the model with forward-looking consumers

who learn their match values for new products is a more difficult task.

Second, the modeling technique I have used in this paper could be used to examine other problems

where consumers are forward-looking and are heterogeneous in dimensions such as price sensitivities.

One empirical question would be to examine the patterns of price promotions in supermarkets. For

many products, supermarkets have periodic price promotions and quantity purchased spikes sharply

during those promotions. Hendel and Nevo (2006b) find that consumer behavior is consistent with

stockpiling behavior; Pesendorfer (2002) also finds that sales are consistent with demand accumu-

lation. Villas-Boas and Villas-Boas (2006) provide an alternative explanation for these promotions:

they could be due to learning and forgetting. It may be possible to disentangle these stories with

a structural demand model that is similar to the one that was estimated in this paper. It would

be more complicated to estimate than the one provided in this paper, since there is an additional

source of dynamics, which is consumer stockpiling behavior.

Another potential area of application would be consumer demand for durable goods.Two ex-

amples of papers that examine the relationship between price declines and consumer dynamics for

durables are Gowrisankaran and Rysman (2006) and Nair (2004). These papers have assumed that

the only dynamic decision on the consumer side is the decision of when to make a purchase in

the presence of declining prices. There may be additional sources of dynamics which will impact

43



price declines, such as the existence of a used market. Adding another source of dynamics to these

models will make them more computationally burdensome, but the new technique I have used could

ameliorate this problem.

A Appendices

A.1 Markov Chain Monte Carlo Algorithm

Essentially, there are 2 levels to the MCMC algorithm: a level in which population-varying individ-

ual parameters on unobserved heterogeneity are drawn, and a level in which the population-fixed

parameters are drawn (which includes the parameters that generate unobserved coupons and govern

consumer expectations about future unobserved coupons).

1. Update value function at chosen state space points (see Section 4.4 and Appendix A.3 for more

details on this process).

2. For each household, draw a new θi. The posterior of θi is proportional to

 T i∏
t=1

Pr(dit|θi, θ, cit, pit, xit)

φ(θi|b,W )k(b,W ),

where φ(θi|b,W ) is the joint normal density and k(b,W ) is the prior on b and W . It is difficult

to draw from this posterior directly since Pr(dit|θi, cit, pit, xit) is multinomial logit. Hence, I

use the Metropolis-Hastings algorithm. This means that for each household i I draw a trial θ1i ,

where θ1i ∼ N(θ0i , ρW̃ ), and θ0i is the previous iteration’s θi. W̃ ) is the variance matrix W with

three extra variances added in to correspond to the posterior draws. In my program, I draw

the difference between γij and γ0
ij . For a particular person, this difference has variance σ2

ij .

We might be tempted to use this value in W , but it would violate the reversibility condition

for the proposal distribution. Hence, I put in the average population mean of the σ2
ij ’s.

I accept the new draw θ1i with likelihood

(∏T i

t=1 Pr(dit|θ1i , θ, cit, pit, xit)
)
φ(θ1i |b̃, W̃ )(∏T i

t=1 Pr(dit|θ0i , θ, cit, pit, xit)
)
φ(θ0i |b̃, W̃ )

.

The scalar ρ is automatically selected so the acceptance rate is about 0.3.

3. Then I draw b conditional on θ̃i,W and W conditional on θ̃i, b. The formulas for the posteriors

of these parameters are the usual ones. Note that in the posterior distributions for b and W ,

the individual level posterior draws will drop out since they only directly depend on σ2
ij .

4. Population-fixed parameter layer: at the beginning of this layer, I draw a new set of unobserved

coupons, which means drawing the cijt’s and the vijt’s. As described in the body of the paper,
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the vijt’s are drawn from the empirical distribution of coupon values in the data. Denote pcjt

as the probability a consumer gets a coupon for product j in period t. This probability will

be a function of parameters in θ, as described in Section 3.2. The cijt’s are binary, and their

distribution is:

Pr(cijt = 1)

=
Pr(dit|cit, cijt = 1, vit, θi, θ)pcjt

Pr(dit|cit, cijt = 1, vit, θi, θ)pcjt + Pr(dit|cit, cijt = 0, vit, θi, θ)(1− pcjt)
.

The more difficult task is drawing the θ, which is performed next. The posterior distribution

of θ is proportional to

I∏
i=1

Ti∏
t=1

{Pr(dit|θi, θ,Σit, cit, xit)Pr(cit|θ)} .

As with the θi, the Metropolis-Hastings algorithm is also used here. I draw a trial θ1 from a

N(θ0, ρ2) distribution. Any trial draw where the coupon probabilities, like p0
cj or p0

cj +p1
cj , are

outside of the [0, 1] interval are automatically rejected. For cases where the draws are inside

this interval, the new draw is accepted with likelihood

∏I
i=1

∏Ti
t=1

{
Pr(dit|θi, θ

1,Σit, cit, xit)Pr(cit|θ)
}∏I

i=1

∏Ti
t=1 {Pr(dit|θi, θ0,Σit, cit, xit)Pr(cit|θ)}

.

This procedure for drawing fixed coefficients is similar to what is suggested by Train (2003),

pgs 311-313, for drawing fixed coefficients in static mixed logit models. I adjust the parameter

ρ2 so that the acceptance rate is about 0.3.

These steps are iterated 15,000 times, with the first 7,500 parameter draws discarded for burn-in.

A.2 Estimation of the Price Process

When I construct consumer price expectations, I estimate a price and product availability process

for a number of brand-size combinations in the market. In my data set, prices are only recorded

when a consumer makes a purchase of a product. Before we can construct a process for prices, we

will need a set of prices and availabilities for all products in all the stores in the data. The data

set includes a set of “price files” which contain prices imputed from the household purchase data

by A.C. Nielsen; one possibility would be to use this file. A drawback to using these files is that

some brand-size combinations were not included. In order to calculate the average price per ounce

of every brand in my estimation, I would like to keep track of the prices of the most popular brand-

sizes. I therefore use a simple algorithm that is somewhat similar to Nielsen’s to impute prices and

availability of products in a store during a given calendar week.24

24A possible problem is that the imputed prices may not be exactly the same as the actual prices. Pesendorfer (2002)

examines retail pricing of ketchups, another product included in this data set, and notes no problems with the constructed
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In the data set, when a consumer makes a purchase I observe an identification number for the

store where the purchase was made. The actual identity of the store was not recorded. When

constructing the price series, first I run through all household purchases and store the price of the

product purchased in that purchase event. If two different prices are observed at the same store

during the same week, I assume that the weekly price is the price that is observed earlier. A

“product” denotes a brand-size combination, as is used in estimation - the brand is one of the 13

brands and types described in Table 3, and the size is in one of the categories shown in Table 2. If

no consumer purchases a particular product from a given store for an interval greater than 4 weeks,

I assume that product is unavailable in that store for that period. No imputed prices are filled in

for these periods. Some stores had very few observed purchases, and these stores were not included

in the estimation. In all, 15 stores were used for the estimation.

Most of the stores in the sample are identified by Nielsen as being in 1 of five different chains.

When Nielsen constructed their price file, they assumed that for two of the chains, pricing patterns

were the same across stores in the same chain. I hold the same assumption as they do. Thus, if

in a given store in one of these chains, no price is observed for a certain week and the product is

assumed to be available during the week, then the price of the product is imputed to be the modal

observed price at all the other stores in the same chain (or the lowest price if there are multiple

modes). If there is no observed price in the other stores, then the price of the product is imputed

to be the same as the previous week’s price. For other stores, the price is calculated on a store by

store basis. That is, if the price is not observed in a given week, it is imputed to be the same as the

previous week’s price. Also, during the first few weeks of the data we may not see prices for some

products. These prices are imputed backwards from first observed price. Periodically products are

marked below their shelf price, which is recorded by a variable in the model. I assume that these

discounts only last during the week they are recorded.

Once I have constructed an array of prices and availability for each product, I estimate a dis-

crete/continuous Markov process on prices and availability, for all products, similar to Erdem, Imai,

and Keane (2003). As noted earlier, there are 48 possible brand-size combinations. Even though the

space of prices is discrete, it would be difficult to accurately interpolate the value function over a 48

dimensional state space. In order to reduce the size of the state space, I estimate the Markov price

process for the most popular sizes of liquids and powders, which are the 64 oz bottle for liquids, and

the second category for powders. I will denote these sizes as the reference sizes for these products.

For the other sizes, I assume that the price and availability is a function of the price and availability

of the reference size’s price and availability.

An observation in the price process estimation is the price/availability of a product in a given

store during a given week. The price process is estimated only for weeks after the introduction

price series. It would also be possible to estimate a price distribution along with the model parameters, treating prices for

nonpurchased brands as latent unobservables like I did for coupons.
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of Cheer. First, I will describe the estimation of the Markov process for the reference sizes. If a

particular product was available in the store I assume the probability of a product j’s price staying

the same in weeks t and t− 1 is

exp(κ′jXjt)

1 + exp(κ′jXjt)
,

where

The Xjt’s include a constant term, three dummy variables that are 1 for the first three months

after each new product introduction, a dummy variable that is 1 during the period after the intro-

duction of Cheer and before the introduction of Surf, which I will denote as D1, a dummy variable

that is 1 during the period after the introduction of Surf and before the introduction of Dash. To

allow previous prices to affect the probability of a price change, I also include the difference between

the price of product j in week t− 1 and the average of all other brands available in week t− 1 (that

is, pjt−1 − pjt−1, where pjt−1 = (1/J)
∑J

k=1 pkt−1), and this difference interacted with D1 and D2.

The probability of a price change varies with the difference between the brand’s previous price and

the average price of other products in order to allow for competitive responses. The price difference

regressors are interacted with D1 and D2 to allow the price process to be different when different

sets of products are available on the market. If the price changes in period t then I assume the

density of the price change is

ln(pjt−1) = λ′jX2jt + εitj ,

where X2jt includes a constant, three dummy variables for the first three months after each new

product introduction, the dummy variables D1 and D2, the log of the price of product j in week

t − 1, the average of the logarithm of the prices of all other products in week t − 1 (that is,

(1/J)
∑J

k=1 ln(pkt−1)), and these previous two variables interacted with D1 and D2. I assume

εitj ∼ N(0, σ2
j ). If a product is not available in week t−1 but is available in week t then I estimate a

similar regression to the one above but I leave out the previous price of product j. Last, I estimate

a logit to model product stockouts from week to week. Letting ajt−1 be a dummy variable that is 1

if product j is not available in period t− 1, I assume the probability of a store stockout in week t is

exp(ζ′jX3jt)

1 + exp(ζ′jX3jt)
,

where X3jt includes a constant, the dummy variables D1 and D2, ajt−1, D1 and D2 interacted with

ajt−1, (1 − ajt−1)(pjt−1 − pt−1), the interaction of the previous term with D1 and D2, ajt−1pt−1,

and this term interacted with D1 and D2. I run these estimations in Stata and keep the results in

data files my fortran programs can access. Parameter estimates are not shown in this paper, but

are available upon request from the author.

For the non reference sizes, I assume that the price of the product is
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ln(pjst) =ψ0js + ψ1jsD1 + ψ2jsD2 + ψ3jsD1(1− ajt) ln(pjt) + ψ4jsD2(1− ajt) ln(pjt)

+ ψ5js(1− ajt) ln(pjt) + ψ6jsD1ajt + ψ7jsD2ajt + ψ8jsajt + εjst,

where the εjst is normally distributed, and the probability of the product stocking out is

exp(ϕ0js + ϕ1jsD1 + ϕ2jsD2 + ϕ3jsajt)

1 + exp(ϕ0js + ϕ1jsD1 + ϕ2jsD2 + ϕ3jsajt)
.

As before, pjt and ajt are the price and availability of the reference size of product j in week t.

Tables of parameter estimates are available upon request from the author.

For some products, it was difficult to identify parameters of the price process due to lack of

observations. For example, there were only 2 observations for the log price regression for Other

Liquid when it was not available in the previous period, and only 7 for the Other Powder product.

This is not surprising since these products were popular and almost always available. For these

products, I tabulate the empirical distribution of prices when the product is not available and draw

from it when I form consumer’s price expectations rather than using the regression results. For

Dash Powder, there were also only 7 observations for the price change regression when the product

was available. I also tabulate these 7 observations and draw from their empirical distribution to

form consumer’s price expectations.

As described in the paper, I solve the value function on a grid of M = 100 prices. Each time

a household makes a purchase, it is necessary to calculate the probability of each price point pm

conditional on the observed price vector at the time of purchase. A complication is that the price

process is weekly, but households do not make purchases every week. As I describe in the paper,

I assume that every household expects their next purchase to take place in 8 weeks, the median

interpurchase time.25 When I calculate the probability of a particular grid point pm given today’s

price, I simulate the transition probability 100 times in the 7 intervening weeks.

A.3 Details of the Value Function Solution

In this section I will describe some of the details about the computation of the value function

that were left out of Section 4.4. The first detail is about dealing with the large size of the state

space, which is the vector of (S, p, J, y, n). One important part of the state space is the vector of

prices pijst and the set of available products, Jit, in a given purchase event. Recall that I only

include the prices of the most popular size of each product in the price state space. Even with this

simplification, because there are 13 products, this portion of the state space is still high-dimensional.

Recall that the expected utility which is calculated in (17) must be retained for future use. During

25A less restrictive assumption would be to allow the household’s expected next purchase time to be the average

interpurchase time for that particular household. Doing this will mean calculating a separate value function for each

household, increasing memory requirements substantially.
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the estimation, these expected utilities must be stored in computer memory, which is limited in

size. Because of this, I do not evaluate the value function at all possible price/availability states,

but I instead do it only on a grid of M points, following Rust (1987). Although the estimated price

process treats prices as a continuous variable, prices in the data are clustered at certain points. I

choose the grid points as follows: for each product, I find the five most frequently occurring prices,

and randomly choose each product’s price from these points. This ensures that the approximated

value function will be more accurate at frequently visited state space points. At any other point,

I interpolate the value function as follows. Suppose that the estimated transition density of a

price/availability grid point (pm, Jm), where m = 1, ...,M , given a price/availability vector (p, J),

is f(pm, Jm|p, J) (details of the estimation of this density are described in Appendix A.2). Assume

that at the current point in the MCMC sequence we have an approximation to the value function

for individual i, who is represented by the parameter vector θi, at all the price/availability grid

points, (pm, Jm), the learning state S, the previous product purchase y and the time state n, which

I denote ÊV i(S, p
m, Jm, y, n; θi). Then the expected value function for some other price/availability

vector (p, J) at θi is approximated as

E(p′,J′)|(p,J)Vi(S, p, a, y, n; θi, θ) ≈
∑M

m=1 ÊV i(S, p
m, Jm, y, n; θi, θ)f(pm, Jm|p, J)∑M

m=1 f(pm, Jm|p, J)
. (20)

This equation is plugged into Equation (18) in the second step of the value function calculation,

so the version of Equation (18) that is used in practice is

E(p′,J′)|(p,J)Vg(S, p, J, y, n, θi,g, θg)

=

∑N(g)
r=1

[∑M
m=1 ÊV r(S,pm,Jm,y,n;θi,r,θr)f(pm,Jm|p,J)∑M

m=1 f(pm,Jm|p,J)

]
k((θi,g − θi,r)/hk)∑N(g)

i=1 k((θi,g − θi,r)/hk)
.

(21)

I choose to save N(g) = 800 previous value functions. When I estimate the model, I make a

simplification to steps 1 and 2. Saving 800 previous value functions at all the state space points for all

519 households will still require a large amount of computer memory, and will be computationally

intensive. I overcome this problem by recognizing that the value function only depends on the

θi’s and θ, and not any individual specific characteristics. Demographics enter utility in linear

combinations with the θi’s, so in practice I store α0i +α1INCi +α2SIZEi rather than storing α0i,

α1 and α2 separately and treating demographics as state space variables. The same is done for the

learning parameters. At the end of step 1 I randomly select a household whose parameter draw is

accepted in the first Metropolis-Hastings step (the one for the population-varying coefficients) and

I store only that θi. The θi,r that is used in (18) will in practice not depend on i.

For the kernel function hk(·), I use the Epanechnikov kernel for computational efficiency. Optimal

bandwidth selection requires that the bandwidth parameter of the kernel, hk, is a function of N

and that as N → ∞, hk(N) → 0 and Nhk(N)2k → ∞, where k is the dimension of the vector in
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the kernel function. In my model, there are 46 parameters that enter the kernel function. 20 of

these parameters are population-fixed parameters (the 18 coupon parameters and the 2 fixed taste

coefficients), and the rest are population-varying coefficients which include tastes, the underlying

learning parameters, price coefficient, switching costs and coupon sensitivity parameter. For the

full model, hk(N) is set to be 2/N (1/124). There are less parameters in the kernel function for the

restricted models, so the bandwidth is slightly different in them. For the no switching costs model,

it is 2/N (1/124), and for the no learning model, it is 2/N (1/112).
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Table 1: Distributions of Household Demographics

Income Bracket: Less than 20,000 20,000 - 40,000 40,000 - 60,000 60,000+
Percent: 11.5 21.9 29.1 37.6

Household Size: 1 2 3 4+
Percent: 16.9 33.7 17.1 32.4

Income and size distributions are calculated as the fraction of households observed of a particular income/size

in the Sioux Falls, SD sample. Household demographics were collected in a survey that was given to all

households who participated in the study.

Table 2: Shares of Sizes

Size Distribution of Liquids:
32 oz 64 oz 96 oz 128 oz Other
15.5 52.9 11.4 17.5 2.7

Size Distribution of Powders:

17 to 20 oz 34 to 49 oz 65 to 84 oz 144 to 157 oz Other
8.8 33.5 32.3 20.5 4.9

Size distributions were calculated by taking the number of observed purchases of liquids (powders) in a certain size category

and dividing them by the number of liquid (powder) purchases observed in the entire sample.

Table 3: Market Shares for all Products

Type Other Era Wisk Tide Solo Cheer Surf Dash Total
Liquid 0.14 0.06 0.10 0.09 0.03 0.03 0.06 0.02 0.53
Powder 0.21 - - 0.16 - 0.07 0.03 0.01 0.47

Market share is calculated as the total number of observed purchases of a specific brand divided by the total number of

observed purchases. The sample is all observed purchases in Sioux Falls over the sample time period, which starts on

December 29, 1985 and ends on August 20, 1988.

53



Table 4: Market Shares, Average Prices: Liquids Only at Different Periods

Period Actual Time Other Era Wisk Tide Solo Cheer Surf Dash

YYYY/MM

Entire 1985/12 - 0.26 0.12 0.19 0.17 0.06 0.06 0.11 0.03

Sample 1988/08 2.80 4.21 2.90 3.97 4.12 3.57 2.67 3.12

Before Any 1985/12 - 0.41 0.14 0.19 0.16 0.10 0.00 0.00 0.00

Product Intro 1986/05 2.56 4.12 3.03 4.41 3.26 . . .

First Quarter 1986/05 - 0.24 0.11 0.27 0.11 0.07 0.20 0.00 0.00

After Cheer 1986/08 2.69 3.55 2.79 3.98 4.10 3.13 . .

First Quarter 1986/09 - 0.24 0.13 0.15 0.17 0.06 0.05 0.19 0.00

After Surf 1986/11 2.91 3.87 3.05 3.10 3.85 3.76 2.01 .

First Quarter 1987/03 - 0.24 0.10 0.18 0.10 0.05 0.07 0.15 0.12

After Dash 1987/06 2.80 4.15 2.88 3.96 4.42 2.90 2.70 3.15

Remaining 1987/06 - 0.24 0.11 0.18 0.21 0.04 0.05 0.12 0.04

Time 1988/08 2.91 4.42 2.88 4.01 4.83 4.07 2.95 3.11

Market share is calculated as the total number of observed purchases of a specific brand divided by the total number of

observed purchases in a given time period. Brand introduction is defined as the first time a purchase is observed of a

new brand. The actual introduction dates were verified by telephone conversation with representatives of the companies;

these dates coincide closely with my definition of the introduction date. According to my definition, Cheer was introduced

in the last week of May, 1986, Surf in the first week of September, 1986, and Dash in the third week of March, 1987.

Average prices in dollars are shown under the market share. Prices are calculated using observed purchase data. If

there are I purchases in a given period, the average price for a specific brand in the particular period is calculated as

(1/I)
∑I

i=1(pi − ci), where pi is the shelf price at the time of purchase, and ci is the total value of coupons used at the

time of purchase.
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Table 5: Parameter Estimates of b, θ, and W (Utility Function)

Coefficient Mean, b, θ Variance, W Coefficient Mean, b, θ Variance, W

Taste Learning

Parameters Parameters

Era L -0.908 (0.161) 3.258 (0.462) Cheer, γ0
i -0.518 (0.089) 0.356 (0.167)

Wisk L -0.456 (0.104) 2.249 (0.326) Cheer, σ2
i0 -0.58 (0.072) 0.368 (0.157)

Tide L -0.049 (0.106) 1.511 (0.28) Cheer, Size (σ2
j1) 0.148 (0.005) -

Solo L -2.208 (0.677) 5.632 (2.061) Cheer, Inc (σ2
j2) -0.068 (0.004) -

Other P 0.218 (0.004) - Surf, γ0
i -0.161 (0.07) 0.432 (0.123)

Tide P 0.031 (0.005) - Surf, σ2
i0 -0.324 (0.08) 0.425 (0.072)

Cheer P -1.417 (0.254) 3.6 (0.849) Surf Size (σ2
j1) -0.127 (0.004) -

Surf P -0.461 (0.184) 1.139 (0.448) Surf Inc (σ2
j2) 0.019 (0.003) -

Dash P -1.664 (0.214) 2.603 (0.388) Dash, γ0
i -0.943 (0.109) 0.408 (0.09)

64 oz 0.839 (0.072) 1.308 (0.194) Dash, σ2
i0 -0.528 (0.079) 0.287 (0.079)

96 oz 0.045 (0.105) 2.056 (0.324) Dash, Size (σ2
j1) -0.025 (0.008) -

128 oz -0.491 (0.165) 2.974 (0.595) Dash, Inc (σ2
j2) -0.003 (0.003) -

34-49 oz 0.402 (0.093) 2.251 (0.271) Exogenous

65-84 oz 0.316 (0.119) 2.897 (0.419) Variables

144-157 oz -0.551 (0.172) 5.851 (0.768) Price (αi0) -2.382 (0.471) 11.915 (5.502)

S.C. (ηi0) 1.311 (0.081) 2.002 (0.253) Price, Size (α1) -0.094 (0.006) -

S.C. Size (η1) -0.079 (0.008) - Price, Inc (α2) 0.014 (0.006) -

S.C. Inc (η2) 0.068 (0.01) - Coupon (αi0c) -0.673 (0.17) 0.229 (0.102)

Feature 0.888 (0.055) 0.483 (0.104)

Display 0.944 (0.041) 0.242 (0.053)

This table shows the estimated parameters of the consumer flow utility (Section 3.1). In most parameters I allow normally-

distributed heterogeneity across the population, and so I have estimated the population mean of the coefficient (b) and

the variance (W ). Because my model estimation procedure is Bayesian, the numbers in this table show statistics from

the simulated posterior distribution of each parameter. The first two columns of numbers in the table, under the heading

“Mean”, show the posterior means of the mean parameters of the taste distributions, and the standard deviations of these

mean parameters (in parentheses). The third and fourth columns show the mean and standard deviation of the variance

parameters of the taste distributions. The last four columns of numbers show these quantities for parameters other than

the taste distribution parameters. The posterior means and standard deviations in this table may be interpreted in the

same way as estimated parameters and estimated standard errors that are produced by classical procedures. Some utility

coefficients, such as the price coefficient and the consumer uncertainty (see Equations (6) and (5)), are transformations

of the parameters in the table. For some utility coefficients, such as the Other Powder taste, the population variance was

restricted to be 0. These parameters are shown with dashes.
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Table 6: Parameter Estimates: Coupon Probabilities

Coefficient Mean Standard Err.
Non-Introductory Periods (p0

cj)
Other L 0.268 0.018
Era L 0.259 0.023
Wisk L 0.314 0.014
Tide L 0.263 0.017
Solo L 0.349 0.019

Cheer L 0.16 0.016
Surf L 0.237 0.018
Dash L 0.001 0.001
Other P 0.191 0.024
Tide P 0.221 0.023
Cheer P 0.214 0.013
Surf P 0.039 0.012
Dash P 0.038 0.012

Introductory Adjustment
Cheer (p1

cj) -0.001 0.007
Surf (p1

cj) -0.078 0.007
Dash (p1

cj) 0.13 0.004
Est., After Cheer (pCheer,1

c ) -0.038 0.012
Est., After Surf (pCheer,1

c ) -0.038 0.012
Est., After Dash (pCheer,1

c ) 0.015 0.009

This table shows the estimates of the coupon distribution described in Section 3.2. The numbers in the first column under

the heading “Non-Introductory Periods” are the probability a consumer receives a coupon for a given product after any

new product’s “introductory” period: the period after the first 3 months after a new product introduction. The numbers

under the heading “Introductory Adjustment” are added to the probabilities under the previous heading during a given

product’s introductory period (the first 3 months after its introduction). For example, the probability of getting Surf

during its introductory period is 0.237 - 0.078 = 0.159, and the probability of getting a Liquid Tide coupon during Surf’s

introductory period is 0.263 - 0.038 = 0.225.

Table 7: Average Values of Consumer Uncertainty for New Products

Product Mean of σ2 Population Variance
Cheer 2.03 0.47
Surf 1.85 0.50
Dash 1.81 0.34

I computed the uncertainties in the table using the individual-level draws denoted as θi in the body of the paper: for each

consumer I save her individual-level parameter draws in each step of the MCMC algorithm, and her individual level σ2

for each product, which is computed according to equation (5). In a given step I compute the population mean of σ2 and

its variance, and average calculate her uncertainty. These values are averaged across steps.
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Table 8: Average Consumer Uncertainty, Across Demographics

Cheer
Size/Income < 20,000 20,000 - 40,000 40,000 - 60,000 60,000+ Averages

1 1.969 2.059 2.194 2.393 2.021

2 1.837 2.021 2.253 2.399 2.042

3 1.789 1.927 2.128 2.304 2.073

4+ 1.686 1.865 2.025 2.189 1.988

Averages 1.864 1.936 2.096 2.265 2.029

Surf
Size/Income < 20,000 20,000 - 40,000 40,000 - 60,000 60,000+ Averages

1 2.006 1.907 1.727 1.497 1.944

2 2.046 1.89 1.799 1.603 1.889

3 2.032 1.902 1.782 1.682 1.821

4+ 1.997 1.933 1.801 1.679 1.831

Averages 2.024 1.911 1.792 1.669 1.852

Dash
Size/Income < 20,000 20,000 - 40,000 40,000 - 60,000 60,000+ Averages

1 1.868 1.827 1.786 1.914 1.851

2 1.863 1.83 1.813 1.764 1.829

3 1.927 1.813 1.798 1.759 1.802

4+ 1.893 1.826 1.792 1.77 1.805

Averages 1.878 1.823 1.796 1.766 1.814

This table shows the average uncertainty in the population for each new product, which corresponds to the variable σ2

from Section 3.1. They are computed in the same way as the numbers from the previous table.

Table 9: Effect of Removing Learning On New Product Market Share (Full Model)

Predicted Market Share, Predicted Market Share,

Product Learning No Learning % Change

Entire Period

Cheer 3.0 4.0 34

Surf 6.9 8.5 24

Dash 1.4 2.2 58

1st 12 Weeks After Intro

Cheer 8.8 9.6 9.0

Surf 12.4 13.7 10

Dash 6.9 9.0 30

The first column of the table shows the simulated market share at the parameter estimates (average of market shares

predicted at each step of the MCMC algorithm). The second column of the table shows the market share when every

consumer knows her true taste draws for all three products. The market shares are predicted at the data, so prices,

features, etc. are not changed. The first three rows show the market shares aggregated over the entire data length, and

the last 3 show the market shares for each new product during the first 12 weeks after its introduction.
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Table 10: Effect of Removing Learning On New Product Market Share (No switching costs Model)

Predicted Market Share, Predicted Market Share,
Product Learning No Learning % Change

Entire Period
Cheer 3.5 3.8 9.9
Surf 6.8 7.8 15
Dash 1.8 2.4 34

1st 12 Weeks After Intro
Cheer 9.3 10.2 9.5
Surf 11.9 13.6 14
Dash 8.1 9.9 22

Table 11: Actual and Predicted Market Shares

Actual Full Model No switching costs No Learning
Other L 12.0 11.5 11.3 9.1

Era 6.8 6.8 6.8 6.4
Wisk 10.2 10.3 10.1 8.6
Tide 11.0 10.7 11.1 10.5
Solo 3.3 3.2 3.3 3.0

Cheer 3.2 3.0 3.5 1.4
Surf 6.6 6.9 6.8 5.5
Dash 1.6 1.4 1.8 1.8

Other P 18.6 19.1 17.1 15.1
Tide P 16.1 15.4 17.0 18.9
Cheer P 7.4 7.4 7.3 9.8
Surf P 3.1 3.4 3.2 8.7
Dash P 0.75 0.90 0.86 1.13

Avg Abs Prediction Error
Full Period (12/85 - 08/88) 0.26 0.33 1.8
Cheer Intro (05/86 - 08/86) 1.3 1.7 3.2
Surf Intro (09/86 - 11/86) 0.9 0.9 2.0
Dash Intro (03/87 - 06/87) 0.7 0.7 1.8

Last 63 Weeks (06/87 - 08/88) 0.6 0.5 0.6

The first thirteen rows of the first column of the table shows the actual market share of each of the products during the

times they were available. The first thirteen rows of the second, third and fourth columns show the simulated market

shares at the parameter estimates from each model. The last 5 rows show the absolute difference between the predicted

and actual shares, averaged over products in different periods. The periods Cheer Intro, Surf Intro, and Dash Intro refer

to the first 12 weeks after the introduction of each new product.
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Table 12: Counterfactual: Impact of Price Cuts in Periods 1,3 and 5

Model Full Model No Learning Model No S.C. Model

Dynamics All Dynamics No Learning No S.C.

Period 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

Cheer

1 12.3 9.65 11.5 11.9 9.95

2 0.87 1.17 0.16 2.18 0.08

3 0.41 10.6 0.60 7.85 0.15 10.8 1.54 9.09 0.06 9.43

4 0.22 0.99 0.31 1.14 0.14 0.13 1.29 1.22 0.05 0.05

5 0.17 0.46 9.72 0.20 0.60 7.37 0.14 0.12 10.3 1.20 0.55 8.61 0.05 0.04 9.18

6 0.14 0.26 1.00 0.14 0.32 1.11 0.12 0.11 0.11 1.15 0.29 1.17 0.05 0.04 0.05

7 0.12 0.18 0.48 0.10 0.21 0.58 0.12 0.11 0.11 1.12 0.19 0.54 0.04 0.04 0.04

8 0.11 0.14 0.26 0.08 0.14 0.30 0.11 0.10 0.10 1.10 0.13 0.29 0.04 0.04 0.04

9 0.10 0.12 0.20 0.06 0.11 0.20 0.10 0.09 0.09 1.08 0.10 0.19 0.04 0.03 0.03

10 0.09 0.11 0.15 0.05 0.09 0.14 0.10 0.09 0.08 1.07 0.07 0.13 0.03 0.03 0.03

Surf

1 11.9 10.2 11.3 13.7 10.2

2 0.80 1.34 0.00 3.22 0.08

3 0.33 10.3 0.69 8.33 0.03 10.8 2.60 10.1 0.13 9.84

4 0.13 1.10 0.35 1.27 0.05 0.04 2.34 1.39 0.15 0.15

5 0.09 0.50 9.53 0.24 0.69 7.80 0.06 0.05 10.5 2.25 0.62 9.66 0.16 0.14 9.48

6 0.07 0.22 1.18 0.17 0.36 1.25 0.07 0.06 0.05 2.20 0.31 1.38 0.15 0.14 0.15

7 0.06 0.14 0.58 0.13 0.24 0.67 0.07 0.06 0.06 2.18 0.19 0.65 0.14 0.13 0.14

8 0.06 0.09 0.28 0.10 0.17 0.34 0.07 0.06 0.06 2.16 0.12 0.33 0.13 0.12 0.13

9 0.06 0.07 0.19 0.08 0.12 0.23 0.06 0.06 0.05 2.14 0.09 0.21 0.12 0.12 0.12

10 0.06 0.06 0.14 0.07 0.10 0.16 0.06 0.06 0.05 2.14 0.07 0.14 0.12 0.11 0.11

Dash

1 14.2 11.8 13.9 15.0 13.3

2 1.34 1.45 0.39 2.25 0.61

3 0.78 12.5 0.71 9.64 0.35 13.2 1.52 12.8 0.49 12.4

4 0.52 1.43 0.38 1.43 0.31 0.31 1.25 1.53 0.40 0.40

5 0.42 0.77 11.8 0.24 0.69 9.10 0.28 0.27 12.7 1.15 0.63 12.4 0.34 0.34 11.9

6 0.35 0.50 1.41 0.17 0.36 1.39 0.25 0.24 0.24 1.09 0.31 1.62 0.29 0.29 0.29

7 0.31 0.41 0.77 0.12 0.24 0.71 0.23 0.22 0.22 1.07 0.19 0.67 0.25 0.25 0.25

8 0.28 0.33 0.48 0.10 0.16 0.39 0.21 0.20 0.20 1.06 0.13 0.35 0.22 0.22 0.22

9 0.25 0.28 0.37 0.08 0.12 0.25 0.19 0.18 0.18 1.04 0.10 0.23 0.20 0.20 0.20

10 0.22 0.24 0.30 0.06 0.10 0.16 0.17 0.17 0.16 1.02 0.07 0.16 0.18 0.18 0.18

This table shows simulated percentage change in market share due to a ten percent, 1 period price cut in Cheer, Surf or

Dash. The columns labeled “Period” denotes the period when the price cut takes place. The first three columns show the

impact of the price cut under the estimates of the full model. The next three show the impact of the price cut under the

full model estimates when consumers know their tastes, and the next three when the switching costs parameters are set

to zero. The final six columns show the impact of the price cut using the estimates of the restricted models.
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Table 13: Counterfactual: Effect of Informative Advertising

Product Full Model No S.C. Model
Dynamics All Dynamics No S.C.

Share Revenue Share Revenue Share Revenue
Cheer

1 15.06 17.51 17.74 28.92 10.96 14.87
2 17.58 22.99 16.65 27.64 8.82 12.00
3 18.97 26.47 15.70 26.39 7.52 10.23
4 19.22 27.72 14.78 25.13 6.60 8.97
5 19.14 28.29 13.93 23.90 5.92 8.04
...

10 16.90 26.84 10.38 18.45 3.96 5.38
Total 261.36 234.53 85.34
Surf
1 -6.04 -9.77 5.01 10.39 10.88 18.30
2 -2.61 -4.25 5.38 11.01 13.17 21.40
3 0.18 0.96 5.69 11.60 13.95 22.56
4 1.80 4.18 5.86 11.95 14.02 22.76
5 2.89 6.45 5.88 12.02 13.79 22.54
...

10 5.04 11.14 5.06 10.55 11.39 19.40
Total 46.86 113.33 211.34
Dash

1 24.49 12.75 32.09 26.18 33.09 21.42
2 28.26 16.40 29.77 24.93 30.37 20.43
3 29.81 18.62 27.96 23.95 28.01 19.46
4 29.97 19.49 26.33 23.04 25.97 18.54
5 29.66 19.98 24.94 22.26 24.15 17.70
...

10 26.58 19.88 19.34 18.63 18.08 14.46
Total 188.12 220.56 175.66

This table shows the impact of informative advertising in the first period on product market shares, in percentage terms,

and on product revenues, which are in dollars. Consumers are given a signal on the product’s quality which has half the

variance of their uncertainty about their match value with the product. The first two columns show the simulated shares

and revenues using the results of the full model, while the third and fourth use the results of the full model with the

switching cost parameters restricted to 0. The final two columns show the results for the model with no switching costs.
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Table 14: Counterfactual: Long Term Empirical Price Elasticities

Full Model No Learning Model No S.C. Model

Cheer Surf Dash Tide L Cheer Surf Dash Tide L Cheer Surf Dash Tide L

Cheer

1 -1.85 0.14 0.04 0.12 -1.19 0.06 0.03 0.14 -1.10 0.10 0.05 0.09

3 -1.73 0.15 0.05 0.12 -1.21 0.08 0.04 0.14 -1.02 0.09 0.05 0.09

5 -1.64 0.15 0.05 0.11 -1.22 0.09 0.04 0.14 -0.99 0.09 0.05 0.09

Surf

1 - -1.80 0.05 0.18 - -1.37 0.04 0.20 - -1.14 0.05 0.11

3 - -1.67 0.07 0.16 - -1.44 0.05 0.19 - -1.08 0.05 0.11

5 - -1.60 0.08 0.16 - -1.47 0.06 0.19 - -1.06 0.05 0.11

Dash

1 - - -1.84 0.27 - - -1.50 0.20 - - -1.42 0.16

3 - - -1.87 0.27 - - -1.62 0.22 - - -1.42 0.17

5 - - -1.87 0.27 - - -1.66 0.23 - - -1.39 0.17

Wisk L

1 0.11 0.19 0.06 0.20 0.05 0.10 0.04 0.23 0.08 0.12 0.06 0.13

3 0.12 0.21 0.07 0.19 0.07 0.14 0.06 0.21 0.08 0.11 0.06 0.13

5 0.12 0.20 0.08 0.18 0.08 0.15 0.06 0.21 0.08 0.12 0.06 0.13

Tide L

1 0.10 0.17 0.05 -1.55 0.04 0.07 0.03 -1.56 0.06 0.09 0.04 -0.82

3 0.12 0.19 0.07 -1.48 0.06 0.10 0.04 -1.48 0.06 0.09 0.04 -0.82

5 0.12 0.19 0.07 -1.45 0.06 0.11 0.05 -1.47 0.06 0.09 0.05 -0.82

Tide P

1 0.10 0.19 0.05 0.12 0.05 0.07 0.03 0.13 0.05 0.08 0.03 0.07

3 0.09 0.17 0.05 0.11 0.05 0.08 0.03 0.12 0.05 0.07 0.03 0.07

5 0.09 0.16 0.05 0.11 0.05 0.08 0.03 0.12 0.05 0.07 0.04 0.07

This table shows the empirical price elasticities implied by my model estimates, ∂Qit
∂Pj

Pj

Qit
. The row labels show the product

i that is being affected, and the period of interest. The column labels show the product j whose price is being changed.

The price change is assumed to occur from period 1 onwards, and consumers are assumed to understand this, which is

why this is a long term elasticity. Furthermore, when this elasticity is computed, the prices of all products are set to be

constant over time. Thus the number in the first row and second column, 0.14, shows the impact of a permanent price cut

in Cheer from period 1 onwards on Surf’s period 1 market share. The first four columns show the elasticities implied by

the full model, the next four show the elasticities for the no learning model, and the next four for the no switching costs

model.
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Figure 1: Probability of Experimenting
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Figure 2: Response of Probability of Experiment to a Future Price Increase
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Figure 3: Overlay of Level Curves From Previous Figures
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Figure 4: Histogram of Estimated αi
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Figure 5: Posterior Density of σ2
i0 for Cheer
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Figure 6: Posterior Density of σ2
i0 for Surf
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Figure 7: Posterior Density of σ2
i0 for Dash
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Figure 8: Estimated Taste Distributions For Cheer
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