
Extent of Areal Inundation of Riverine Wetlands Along Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers, West-Central Florida

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 02-4254

Prepared in cooperation with the SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

Cover photographs

Top— Downstream view of the Peace River from the gaging station near Bartow (02294655); Polk County, Florida *Photograph by B.R. Lewelling, January 2003*

Bottom— Downstream view of Cypress Creek from Old Ranch Road in section 9, township 27 south, and range 19 east; Hillsborough County, Florida *Photograph by Dan Duerr, January 2003*

Extent of Areal Inundation of Riverine Wetlands Along Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers, West-Central Florida

By B.R. Lewelling

U.S. Geological Survey

Water-Resources Investigations Report 02-4254

Prepared in cooperation with the SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY Charles G. Groat, Director

Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

For additional information write to:

U.S. Geological Survey 2010 Levy Avenue Tallahassee, FL 32310 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 888-ASK-USGS

Additional information about water resources in Florida is available on the internet at http://fl.water.usgs.gov

CONTENTS

Abstra	act	1
Introd	luction	1
	Purpose and Scope	2
	Previous Investigations	2
	Acknowledgments	2
Descr	iption of Study Area	2
Metho	odology	4
Cypre	ess Creek	6
Peace	River	9
	Reach 1-Arcadia to Zolfo Springs	12
	Reach 2–Zolfo Springs to Fort Meade	
	Reach 3–Fort Meade to Bartow	
	Inundated Area and Effects of Potential Discharge Withdrawals Along the Three Peace River Reaches	
Alafia	River System	33
	Alafia River	33
	North Prong Alafia River	
	South Prong Alafia River	
	Inundated Area and Effects of Potential Discharge Withdrawals Along the Alafia River System	59
	nary	
	ted References	
	ndices:	
	Extent of inundation at Cypress Creek cross sections for selected percentile discharges	
	Hydraulic depth at Cypress Creek cross sections for selected percentile discharges	
	Acreage of areal inundation between adjacent Cypress Creek cross sections	76
D.	Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at Cypress Creek	
	cross sections	
	Extent of inundation at cross sections along reach 1 of the Peace River for selected percentile discharges	
	Hydraulic depth at cross sections along reach 1 of the Peace River for selected percentile discharges	
	Acreage of areal inundation between adjacent cross sections along reach 1 of the Peace River	80
H.	Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections	0.1
	along reach 1 of the Peace River	
	Extent of inundation at cross sections along reach 2 of the Peace River for selected percentile discharges	
	Hydraulic depth at cross sections along reach 2 of the Peace River for selected percentile discharges	
	Acreage of areal inundation between adjacent cross sections along reach 2 of the Peace River	84
L.	Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections	0.5
	along reach 2 of the Peace River	
	Extent of inundation at cross sections along reach 3 of the Peace River for selected percentile discharges	
	Hydraulic depth at cross sections along reach 3 of the Peace River for selected percentile discharges	
	Acreage of areal inundation between adjacent cross sections along reach 3 of the Peace River	8 /
P.	Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections	07
0	along reach 3 of the Peace River	8 /
Q.	Extent of inundation at cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for	0.0
D	selected percentile discharges	88
K.		90
C	selected percentile discharges	89
٥.	Acreage of areal inundation between adjacent cross sections along the Alafia, North Prong Alafia, and South	00
т	Prong Alafia Rivers for selected percentile discharges	90
1.		Ω1
	along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges	y I

FIGURES

1. Map showing location of study area including Cypress Creek and the Peace, Alafia, North Prong Alafia, and
South Prong Alafia Rivers, west-central Florida
2. Graph showing percentiles of daily mean discharge for the Peace River at Arcadia, Alafia River at Lithia,
and Cypress Creek near Sulphur Springs gaging stations for selected periods
3. Diagram showing example cross section showing Manning's <i>n</i> -values, subareas, and water-surface elevation
4. Map showing locations of Cypress Creek and the Sulphur Springs, Worthington Gardens, and San Antonio
gaging stations and the study cross sections, west-central Florida
5. Graph showing water-surface profiles along Cypress Creek for existing conditions and a potential 10-percent
discharge withdrawal, from the mouth to SR 52
6. Diagram showing extent of areal inundation along the Cypress Creek channel and floodplain for selected
percentile discharges
7-8. Graphs showing:
7. Estimated extent and frequency of areal inundation and hydraulic depth for Cypress Creek at selected cross
sections for each of the selected percentile discharges
8. Estimated total inundated area along Cypress Creek for existing conditions and for a potential 10-percent
discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge
withdrawal for each of the selected percentile discharges
9. Diagrams showing extent of areal inundation along Cypress Creek for the P ₅₀ , P ₇₀ , P ₈₀ , P ₉₀ , P ₉₈ , P _{99.5} ,
and P _{99,9} discharges for existing conditions and a potential 10-percent discharge withdrawal
10-11. Maps showing location of:
10. The Peace River, study reaches, and the Arcadia, Zolfo Springs, Fort Meade, and Bartow gaging stations,
west-central Florida 15
11. Reach 1 and channel cross sections along the Peace River from Arcadia to Zolfo Springs, west-central
Florida2
12. Graph showing water-surface profiles along reach 1 of the Peace River for existing conditions and a potential
10-percent discharge withdrawal22
13. Diagram showing extent of areal inundation along reach 1 of the Peace River channel and floodplain for
selected percentile discharges
14-15. Graphs showing:
14. Estimated extent and frequency of areal inundation and hydraulic depth for Peace River cross sections along
reaches 1, 2, and 3 for each of the selected percentile discharges
15. Estimated total inundated area along reach 1 of the Peace River for existing conditions and for a potential
10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent
discharge withdrawal for each of the selected percentile discharges
16. Diagram showing extent of areal inundation along reach 1 of the Peace River channel and floodplain for
the P ₁₀ , P ₅₀ , P ₇₀ , P ₈₀ , P ₉₀ , P ₉₈ , P _{99.5} , and P _{99.9} discharges for existing conditions and a potential 10-percent
discharge withdrawal
17. Map showing location of reach 2 and cross sections along the Peace River from Zolfo Springs to Fort Meade,
west-central Florida
18. Graph showing water-surface profiles along reach 2 of the Peace River for existing conditions and a potential
10-percent discharge withdrawal
19. Diagram showing areal inundation along reach 2 of the Peace River channel and floodplain for selected
percentile discharges
20. Graph showing estimated total inundated area along reach 2 of the Peace River for existing conditions and for
a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent
discharge withdrawal for each of the selected percentile discharges
21. Diagrams showing extent of areal inundation along reach 2 of the Peace River channel and floodplain for
the P ₁₀ , P ₅₀ , P ₇₀ , P ₈₀ , P ₉₀ , P ₉₈ , P _{99.5} , and P _{99.9} discharges for existing conditions and a potential 10-percent
discharge withdrawal 34-3
22. Map showing location of reach 3 and study cross sections along the Peace River from Fort Meade to Bartow,
west-central Florida 3

2:	3. Graph showing water-surface profiles along reach 3 of the Peace River for existing conditions and a potential
_	10-percent discharge withdrawal
2	4. Diagram showing extent of areal inundation along reach 3 of the Peace River channel and floodplain for selected
	percentile discharges
2:	5. Graph showing estimated total inundated area along reach 3 of the Peace River for existing conditions and for
	a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential
	10-percent discharge withdrawal for each of the selected percentile discharges
2	6. Diagrams showing extent of areal inundation along reach 3 of the Peace River channel and floodplain for
	the P ₁₀ , P ₅₀ , P ₇₀ , P ₈₀ , P ₉₀ , P ₉₈ , P _{99.5} , and P _{99.9} discharges for existing conditions and a potential 10-percent
	discharge withdrawal
2	7. Graph showing estimated total inundated area along the three reaches of the Peace River for existing
	conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased
	by a potential 10-percent discharge withdrawal for each of the selected percentile discharges
2	8. Map showing location of the Alafia, North Prong Alafia, and South Prong Alafia Rivers and cross sections,
2	west-central Florida
2	
2	9. Graph showing water-surface profiles along the Alafia River for existing conditions and a potential 10-percent discharge
	withdrawal, from the SR 640 bridge to the confluence with the North and South Prong Alafia Rivers
30	0. Diagram showing extent of areal inundation along the Alafia River channel and floodplain for selected percentile
	discharges, from SR 640 to the confluence with the North and South Prong Alafia Rivers
31-32	2. Graphs showing:
	31. Estimated extent and frequency of areal inundation and hydraulic depth for Alafia, North Prong Alafia,
	and South Prong Alafia Rivers selected cross sections for each of the percentile discharges
	32. Estimated total inundated area along the Alafia River for existing conditions and for a potential 10-percent
	discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge
	withdrawal for each of the selected percentile discharges
3:	3. Diagrams showing extent of areal inundation along the Alafia River channel and floodplain for the P_{10} , P_{50} ,
	P ₇₀ , P ₈₀ , P ₉₀ , P ₉₈ , P _{99.5} , and P _{99.9} discharges for existing conditions and a potential 10-percent discharge
	withdrawal
3,	4. Graph showing water-surface profiles along the North Prong Alafia River for existing conditions and a
	potential 10-percent discharge withdrawal, from the confluence with the Alafia and South Prong Alafia
	Rivers to cross section 23
3	5. Diagram showing extent of areal inundation along the North Prong Alafia River channel and floodplain for
٥.	selected percentile discharges, from the confluence with the Alafia and South Prong Alafia Rivers to cross
	section 23
2	
3	6. Graph showing estimated total inundated area along the North Prong Alafia River for existing conditions and
	for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential
	10-percent discharge withdrawal for each of the selected percentile discharges
3'	7. Diagrams showing extent of areal inundation along the North Prong Alafia River channel and floodplain for
	the P ₁₀ , P ₅₀ , P ₇₀ , P ₈₀ , P ₉₀ , P ₉₈ , P _{99.5} , and P _{99.9} discharges for existing conditions and a potential 10-percent
	discharge withdrawal
3	8. Graph showing water-surface profiles along the South Prong Alafia River for existing conditions and a
	potential 10-percent discharge withdrawal, from the confluence with the Alafia and North Prong Alafia Rivers
	to cross section 29
3	9. Diagram showing extent of areal inundation along the South Prong Alafia River channel and floodplain for
	selected percentile discharges, from the confluence with the Alafia and North Prong Alafia Rivers to section 29 66
4	0. Graph showing estimated total inundated area along the South Prong Alafia River for existing conditions and
	for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential
	10-percent discharge withdrawal for each of the selected percentile discharges
4	1. Diagrams showing extent of areal inundation along the South Prong Alafia River channel and floodplain for
,	the P_{10} , P_{50} , P_{70} , P_{80} , P_{99} , $P_{99.5}$, and $P_{99.9}$ discharges for existing conditions and for a potential 10-percent
	discharge withdrawal
1	2. Graph showing estimated total inundated area along the Alafia, North Prong Alafia, and South Prong Alafia
4.	Rivers for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated
	area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges 72

TABLES

1. Cross sections, drainage are	a, and percentile discharges used in step-backwater analysis based on the concurrent	
period 1965-98 at the Cypre	ess Creek, Sulphur Springs, and San Antonio gages	9
2. Approximate number of day	s daily mean discharge equaled or exceeded the selected percentile discharges at Cypress	
Creek near Sulphur Springs	, 1965-98	12
3. Cross sections, drainage are	a, and percentile discharges used in step-backwater analysis based on the concurrent	
period 1940-98 at the Peace	River at the Arcadia, Zolfo Springs, and Bartow gages	19
4. Approximate number of day	s daily mean discharge equaled or exceeded the selected percentile discharges at	
Peace River at Arcadia, 194	0-98	20
5. Cross sections, drainage are	a, and percentile discharges used in step-backwater analysis based on the concurrent	
period 1964-92 at the Alafia	n, North Prong Alafia, and South Prong Alafia Rivers gages	48
6. Approximate number of day	s daily mean discharge equaled or exceeded the percentile discharges at Alafia River	
at Lithia, 1964-92		50

CONVERSION FACTORS, DATUMS, ACRONYMS, AND ABBREVIATIONS

Multiply	Ву	To obtain
acre	4047	square meter
foot (ft)	0.3048	meter
inch (in.)	25.4	millimeter
mile (mi)	1.609	kilometer
square mile (mi ²)	2.590	square kilometer
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second

ACRONYMS USE IN THIS REPORT

HEC-RAS	Hydrologic Engineering Center River Analysis System
NWI	National Wetlands Inventory
SR	State Road
SWFWMD	Southwest Florida Water Management District
US	U.S. Highway
USGS	U.S. Geological Survey

Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929 (NGVD of 1929); horizontal coordinate information is referenced to the North American Datum of 1927 (NAD 27).

Extent of Areal Inundation of Riverine Wetlands Along Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers, West-Central Florida

By B.R. Lewelling

ABSTRACT

Riverine and palustrine system wetlands are a major ecological component of river basins in west-central Florida. Healthy wetlands are dependent upon the frequency and duration of periodic flooding or inundation. This report assesses the extent, area, depth, frequency, and duration of periodic flooding and the effects of potential surfacewater withdrawals on the wetlands along Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers. Results of the study were derived from step-backwater analysis performed at each of the rivers using the U.S. Army Corps of Engineers Hydrologic Engineering Center-River Analysis System (HEC-RAS) onedimensional model. The step-backwater analysis was performed using selected daily mean discharges at the 10th, 50th, 70th, 80th, 90th, 98th, 99.5th, and 99.9th percentiles to compute extent of areal inundation, area of inundation, and hydraulic depth to assess the net reduction of areal inundation if 10 percent of the total river flow were diverted for potential withdrawals.

The extent of areal inundation is determined by cross-sectional topography and the degree to which the channel is incised. Areal inundation occurs along the broad, low relief of the Cypress Creek floodplain during all selected discharge percentiles. However, areal inundation of the Peace and Alafia Rivers floodplains, which generally have deeply incised channels, occurs at or above discharges at the 80th percentile. The greatest area of inundation along the three rivers generally occurs between the 90th and 98th percentile discharges. The decrease in inundated area resulting from a potential 10-percent withdrawal in discharge ranged as follows: Cypress Creek, 22 to 395 acres (1.7 to 8.4 percent); Peace River, 17 to 1,900 acres (2.1 to 13.6 percent); Alafia River, 1 to 90 acres (1 to 19.6 percent); North Prong Alafia River, 1 to 46 acres (0.7 to 23.4 percent); and South Prong Alafia River, 1 to 75 acres (1.5 to 13.4 percent).

INTRODUCTION

Locating alternative sources of water supply to meet the demand caused by an increasing population has become a major concern in west-central Florida. The need for water supply is further complicated by declining ground-water levels in the Upper Floridan aquifer, the principal source of supply in the area. Surface-water withdrawals from area rivers, however, have become an increasingly important alternate supply source. The health of the riverine wetlands

located along these rivers depends upon the frequency and duration of periodic flooding or inundation. The U.S. Geological Survey (USGS), in cooperation with the Southwest Florida Water Management District (SWFWMD), evaluated a potential range in areal inundation resulting from withdrawals of 10 percent of average daily flows when flows exceed regulatory minimum for Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers (Southwest Florida Water Management District, 2001).

Purpose and Scope

The purpose of this report is to present the extent of areal inundation using period-of-record streamflow and the extent of areal inundation based on a potential diversion of 10 percent of the total discharge during periods when flows exceed the regulatory minimum along Cypress Creek, and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers (fig. 1). Extent of areal inundation was determined for the 10th, 50th, 70th, 80th, 90th, 98th, 99.5th, and 99.9th percentiles. Percentiles were determined based on the long-term concurrent daily mean discharge record for gages on Cypress Creek (1965-98), Peace River (1940-98), and Alafia River (1964-92). Regulatory minimums determined by the SWFWMD for the Peace and Alafia Rivers approximate the 10th percentile discharge used in this report at 130 and 67 ft³/s, respectively.

Water-surface elevations at selected cross sections of the study rivers were computed using the U.S. Army Corps of Engineers Hydrologic Engineering Center-River Analysis System (HEC-RAS) one-dimensional step-backwater model (Warner and Brunner, 1998). Computed water-surface elevations were used to generate water-surface profiles, areal inundation width and acreage, and hydraulic depth (the ratio of the cross-sectional area to the surface width). Existing hydrologic, hydraulic, and cross-sectional data were used for the step-backwater analysis.

Previous Investigations

Most analyses of data from flooding events in west-central Florida have focused on hazard and damage analysis of peak flows and widespread areal inundation for events with a relatively rare probability of occurrence (for example, the 25-, 50-, or 100-year flood). Robertson (1978) presented flood profiles based on E431 step-backwater analysis (Shearman, 1976)

along a 19.2-mi reach of the Alafia River, a 9.5-mi reach of the North Prong Alafia River, and a 9.8-mi reach of the South Prong Alafia River. Murphy (1978) computed flood profiles using E431 step-backwater analysis along a 27.3-mi reach, from the mouth of Cypress Creek to the gage at State Highway 52, and along a 4.0-mi tributary and a 1.2-mi distributary reach. Murphy and others (1978) computed flood profiles using E431 step-backwater analysis along a 70-mi reach of the Peace River from Arcadia to Bartow.

Acknowledgments

The author gratefully acknowledges Dr. Arthur Miller, Pennsylvania State University, and the Texas Department of Transportation for their assistance with the HEC-RAS model. Special thanks are given to Caroline (Humphrey) Masek, engineering student, for her contribution to the study.

DESCRIPTION OF STUDY AREA

The study area includes three river systems located in west-central Florida: Cypress Creek in south-central Pasco and north-central Hillsborough Counties; Peace River in Polk, Hardee, and De Soto Counties; and the Alafia, North Prong Alafia, and South Prong Alafia Rivers in southeastern Hillsborough and southwestern Polk Counties (fig. 1).

Based on map delineation by the National Wetlands Inventory (NWI) of the U.S. Fish and Wildlife Service, the three study rivers have been classified predominately as riverine system and palustrine system wetlands (Cowardin and others, 1979). The riverine system includes all the wetlands contained within a channel, and the palustrine system consists of river floodplains. Water in a riverine system is usually, but not always, flowing. The riverine system is bounded by the palustrine system, which is bounded by uplands.

Cypress Creek is a major tributary to the Hillsborough River and is characterized by low-topographic relief and frequent, widespread, and prolonged areal inundation. Much of the 27-mi-long study reach has a poorly incised and poorly defined low-gradient channel, located within a broad, swampy floodplain. The extent of areal inundation at locations along Cypress Creek can be large during the relatively low-discharge conditions that occur at the 50th percentile or median discharge (4 to 21 ft³/s).

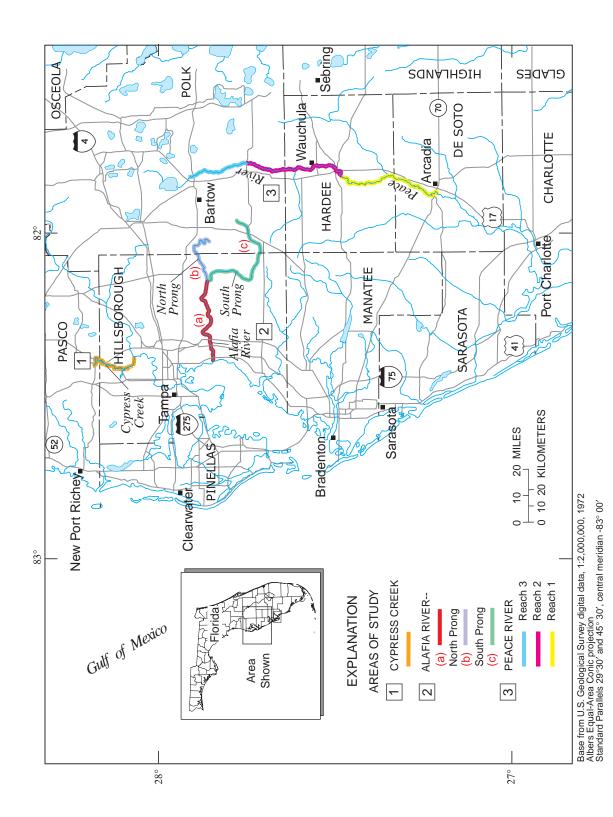
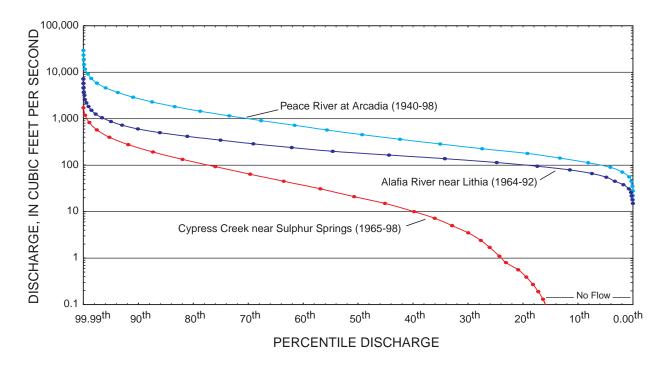


Figure 1. Location of study area including Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers, west-central Florida.

The Peace River channel generally is deeply incised and well defined along most of the 70-mi-long study reach, except for areas along the upper Peace River where the banks are low lying. Much of the surface drainage to the upper reach of the Peace River is controlled by phosphate-mine outfall structures and reclaimed channels. Surface drainage to the middle and lower reaches of the Peace River typically is from well-developed, naturally formed tributaries. The Peace River floodplain, generally characterized by low topographic relief, is subject to periodic inundation.


Channels along the Alafia River system study reaches typically are deeply incised, confining all but the highest discharges within the bank. The Alafia River system channel has a moderate gradient and meanders slightly. The Alafia River is affected by tidally influenced backwater from the mouth to the reach directly downstream from the Alafia River at the Lithia gage.

Unique physiographic characteristics (shape, gradient, and length of the basin and channel) affect the hydraulic conditions of the three river systems. Percentile discharges at each of the three study rivers were determined from cumulative frequency curves for selected record periods. Cumulative frequency curves indicate the percentage of time that the daily mean

discharge is less than or equaled over specific periods of time (fig. 2). Periods of zero flow at Cypress Creek result from poorly incised channel reaches that occur above the water table, limiting baseflow contribution. Both the Peace and Alafia Rivers have similar flow regimes due to the size of the watersheds and their generally deeply incised channels, which support baseflow conditions sufficient to avoid zero-flow days. Although the record periods differ, a comparison of the 50th percentile or median discharge for Cypress Creek, Peace River and Alafia River indicates a wide variation in flow characteristics, of 21, 481, and 184 ft³/s, respectively.

METHODOLOGY

The HEC-RAS step-backwater analysis model was used to estimate water-surface elevation, extent of areal inundation, and hydraulic depth at each cross section. Water-surface profiles were generated along the channels using computed water-surface elevation at each cross section. Study river reaches are referenced in this report from a downstream to upstream location, consistent with the direction the step-backwater analysis was performed.

Figure 2. Percentiles of daily mean discharge for the Peace River at Arcadia, Alafia River at Lithia, and Cypress Creek near Sulphur Springs gaging stations for selected periods.

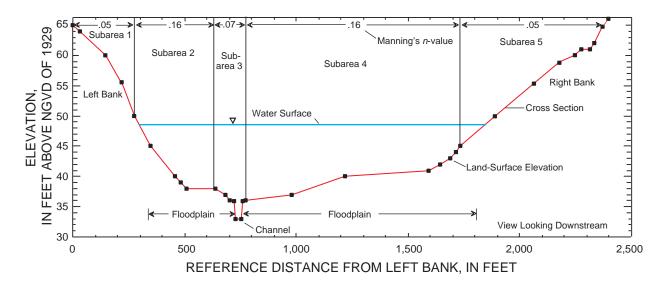
Hydraulic and cross-sectional geometry data for the stream channels and floodplains were determined from three sources: (1) field surveys; (2) detailed aerial 1-ft topographic contour maps (scale 1:200); or (3) previous step-backwater analyses by Murphy (1978), Murphy and others (1978), and Robertson (1978). Original E431 hydraulic and cross-sectional data were reformatted or modified to be compatible with HEC-RAS.

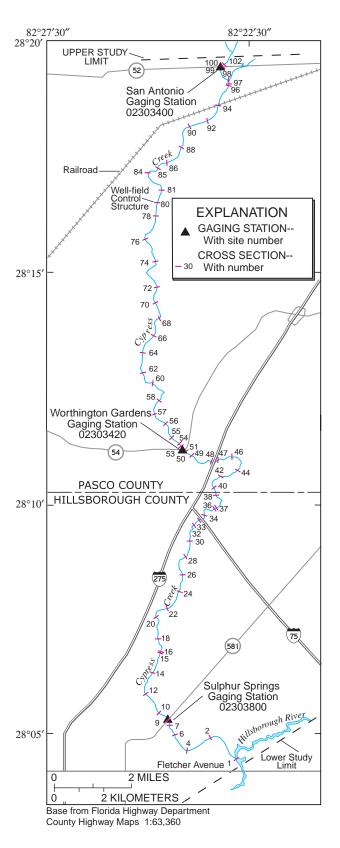
Cross-section geometry of the channel and floodplains are defined by coordinates of both the horizontal distance from the left bank (looking downstream) and the corresponding land-surface elevation (fig. 3). The land-surface elevation of the first and last horizontal coordinate were selected to contain the highest watersurface elevation estimated at each cross section. However, because water elevations computed in this study represent more frequently occurring discharge conditions, the maximum water-surface elevation rarely approached the estimated elevation in the original stepbackwater analysis for a 100-year flood. The reference distance of the cross-section location, measured in feet upstream from the mouth, and the corresponding reference identification number assigned to each cross section were obtained from the previous referenced investigations of the three river systems. The area of inundation for a given flow was estimated by extending straight lines between the landward extents of inundation at the various cross sections and calculating the water-surface area within this boundary. Such estimates do not reflect the natural shape of the topographic

contours between adjacent cross sections. Selection of cross-section locations were determined to best represent existing field conditions along the reach.

Cross sections were divided into subareas based on existing hydraulic characteristics. The Manning's roughness coefficient, n, was used to describe the degree of flow resistance of the channel and floodplain, and is a function of bed material size, depth of flow, cross sectional geometry, type and density of vegetation, and degree of channel meandering. Most of the roughness coefficients used in previous step-backwater analyses of Cypress Creek (Murphy, 1978), Peace River (Murphy and others, 1978), and Alafia River (Robertson, 1978) were used in this study.

Percentile discharges used in the step-backwater analysis were based on concurrent long-term streamflow records for each study location. Selected percentiles included the 10th, 50th, 70th, 80th, 90th, 98th, 99.5th, and 99.9th. Percentile is a value on a scale of 0 to 100 that indicates the percentage of a streamflow distribution that is equal to or less than a specific discharge. For example, at the 90th percentile discharge, 90 percent of the flows are equal to or less than a specific discharge, based on the selected period, and 10 percent of the flows are greater. To simplify terminology in this report, the 10th percentile of daily mean discharge is identified as P₁₀ discharge, the 50th percentile as the P₅₀ discharge, and so forth for each of the selected percentile discharges. Also, the potential 10-percent withdrawal at the P₁₀ discharge is identified as P_{10-10} discharge, the P_{50} discharge as the P_{50-10} discharge, and so forth. The P_{10} discharge was omitted from the Cypress Creek analysis because the daily mean discharge was less than 0.01 ft³/s.




Figure 3. Example cross section showing Manning's n-values, subareas, and water-surface elevation.

To estimate differences in area of inundation resulting from a potential 10-percent surface-water withdrawal for the three river systems, a second step-backwater analysis was performed using 10-percent less discharge for each of the selected percentile discharges. To differentiate between the two analyses, the analysis performed using 100 percent of the discharge for the selected period of record is identified as the "existing step-backwater analysis" and the analysis performed using 10-percent less discharge is identified as the "potential step-backwater analysis." Results of the existing and potential analyses were then compared to evaluate effects of the potential withdrawals.

The reliability of the step-backwater analysis is limited by the quality of hydraulic and cross-sectional data. The basis for the selection of discharge data is critical when considering the period of record for analysis and the confidence in the data and method used to develop the analysis. Selection of Manning's n-value roughness coefficients is subjective, and affects the computed water-surface elevation at a cross section. Accuracy of the cross-sectional data, whether field surveyed or determined from aerial-contour maps, affects the reliability of the results of the step-backwater analysis. If the distance between adjacent crosssection locations is too great, it can affect the stepbackwater energy balance computation. Results of the step-backwater analysis are judged to be good when the computed water-surface elevation converges successfully within +/- 0.5 ft of the established stagedischarge relation at an upstream gaged cross section.

CYPRESS CREEK

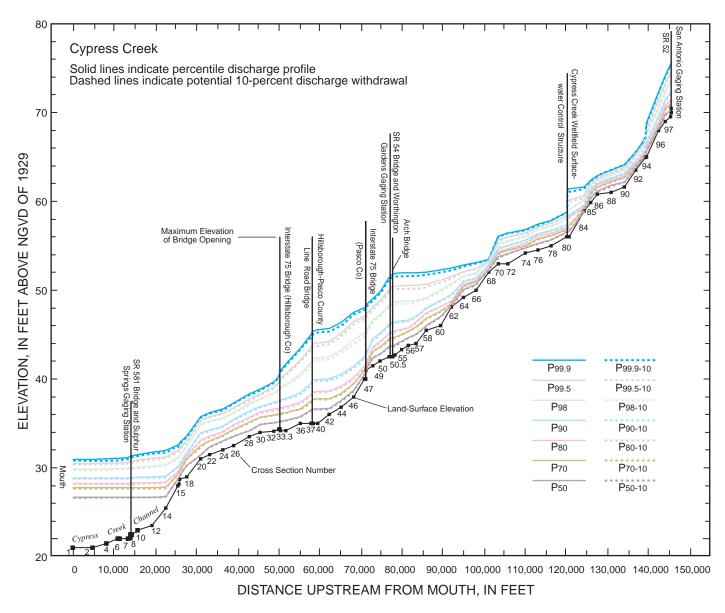
Cypress Creek drains approximately 164 mi ² in south-central Pasco and north-central Hillsborough Counties and is a major tributary to the Hillsborough River (fig. 1). The upstream half of the watershed is largely undeveloped, whereas the downstream half is dominated by numerous residential subdivisions. The floodplain is characterized by low topographic relief and frequent, widespread, and prolonged areal inundation. The low-gradient channel generally is poorly incised and poorly defined. The USGS operates three long-term streamflow gages on Cypress Creek at: Sulphur Springs (02303800); Worthington Gardens (02303420); and San Antonio (02303400) (fig. 4).

Figure 4. Locations of Cypress Creek and the Sulphur Springs, Worthington Gardens, and San Antonio gaging stations and the study cross sections, west-central Florida. (Location of study area shown in figure 1).

The Cypress Creek channel and floodplain were delineated by the NWI and are classified as predominately forested wetlands of the palustrine system. Because the channel is poorly incised and poorly defined along most of its length, limited open-water reaches are classified as riverine wetlands. These riverine wetlands typically are located along contracted reaches bounded by uplands. The forested wetlands that occur along the broad Cypress Creek floodplain are classified by the NWI as either broad-leaved, needle-leaved, or indeterminate deciduous. The length of the study floodplain corridor is bounded by uplands.

Step-backwater analysis was performed along the 27.3-mi Cypress Creek study reach, from the mouth at the confluence with the Hillsborough River to the San Antonio gage at SR 52 (fig. 4). Initial watersurface elevations for each of the selected percentile discharges were determined from the stage-discharge relation developed at the Sulphur Springs gage at SR 581. Selected percentile discharges, P₅₀, P₇₀, P₈₀, P_{90} , P_{98} , $P_{99.5}$, and $P_{99.9}$, were based on the concurrent period 1965-98 at the Sulphur Springs and San Antonio gages. The Worthington Gardens gage at SR 54 was not included in the analysis because the gage had a 10-yr shorter period of record than the other two gages. However, the stage-discharge relation developed at the Worthington Gardens gage was used to check computed water-surface elevations.

Water-surface profiles were based on elevations computed at the 97 cross sections along Cypress Creek for each of the seven selected percentile discharges (fig. 5). Water-surface elevations computed at the Worthington Gardens and San Antonio gages for each of the percentile discharges were considered reliable because they converged within 0.5 ft of the developed stage-discharge relation. Modeled discharges were proportionally reduced at selected upstream cross sections during the analysis to adjust for the decrease in size of contributing drainage area (table 1).


Topographic relief, channel gradient and depth, and discharge control the extent of areal inundation along Cypress Creek. Areal inundation may be substantial during relatively low-discharge conditions. At the mouth of Cypress Creek, for example, the width of the areal extent of inundation can range from more than 6,000 ft during a P_{50} discharge (21 ft³/s) to 8,000 ft during a $P_{99.9}$ discharge (1,602 ft³/s) (figs. 6 and 7a and app. A). Many cross sections along Cypress Creek have low topographic relief that result in widespread areal inundation for most of the selected percentile

discharges. The reach from the Interstate 75 bridge (cross section 33) to the arched bridge (cross section 54) is controlled by high relief, limiting areal inundation to only the highest percentile discharges (fig. 6). A comparison of the maximum extent of areal inundation for the selected percentile discharges at each cross section is shown in figure 6. However, the figure does not indicated the existence of elevated land surface along the cross section that may be completely inundated during high-flow periods or may form islands during low-flow periods, thus reducing the actual distance inundated. Appendix A presents the actual distance, in feet, each cross section is inundated.

Based on the number of days that streamflow equaled or exceeded the selected percentile discharges during the 34-year study period, areal inundation along Cypress Creek was highly variable among years (table 2). The number of days that flow was at the P_{50} discharge ranged from a minimum of 35 days (1992) to a maximum of 284 days (1966), with an average of 180 days per year. However, the $P_{99.9}$ discharge occurred only once (1965) for a 2-day period. By far the percentiles of common occurrence to the wetlands are the P_{50} , P_{70} , P_{80} , P_{90} discharges, which generally occur annually, with durations typically exceeding 100 days during moderate-to-wet conditions. The frequency of the P_{98} and $P_{99.5}$ discharges occurred in less than one-half of the years during the 34-year record period.

The estimated mean number of days per year during the 34-year record that selected percentile discharges occurred at two example cross sections are shown in figure 7. Cross section 1 is widely inundated during the P_{50} discharge, which occurs on an average of 180 days per year. At cross section 28, however, the extent of areal inundation for the P_{50} discharge is confined within the banks of the channel during that same period. Areal inundation of the floodplain along the entire study reach occurs only for percentiles above the P_{70} discharge. Floodplain inundation at the P_{80} discharge occurs an average of 72 days per year.

Hydraulic depths were computed at each cross section for the selected percentile discharges (app. B). Because the channel is not well defined or incised along much of Cypress Creek, hydraulic depth at many cross sections can be considered an estimate of the floodplain inundation depth. Hydraulic depth increases at locations where reaches contract, whether the contraction is the result of channel modifications, such as a bridge, culvert, or control structure, or the result of the natural topography (fig. 5). Differences in hydraulic

Figure 5. Water-surface profiles along Cypress Creek for existing conditions and a potential 10-percent discharge withdrawal, from the mouth to SR 52.

depth shown at cross sections 1 (mouth) and 28 in figure 7 may be attributed to topography, channel configuration, and slope. Hydraulic depth at cross section 1 is affected by backwater from the Hillsborough River. Mean hydraulic depth of the channel and floodplain ranged from approximately 0.85 to 2.89 ft. The relatively shallow mean depths of Cypress Creek reflect the effects of widespread inundation.

Areal inundation along Cypress Creek was computed in acres for each of the selected percentile discharges (app. C). Total acreage of inundated area along Cypress Creek was calculated by totaling the computed water-surface area between adjacent cross sections. This calculation was done for each of the selected percentile discharges. Areal inundation ranged from approximately 1,200 (P_{50}) to 9,000 ($P_{99.9}$) acres (fig. 8). The greatest increase in inundated area between percentile discharges is 2,326 acres, which occurs between the P_{90} to the P_{98} discharges.

Based on the period of streamflow record 1965-98, the difference in total inundated area of the existing step-backwater analysis was compared to the inundated area that resulted from a potential 10-percent withdrawal in streamflow. This evaluation was made by

Table 1. Cross sections, drainage area, and percentile discharges used in step-backwater analysis based on the concurrent period 1965-98 at the Cypress Creek, Sulphur Springs, and San Antonio gages

[ft³/s, cubic feet per second; mi², square miles]

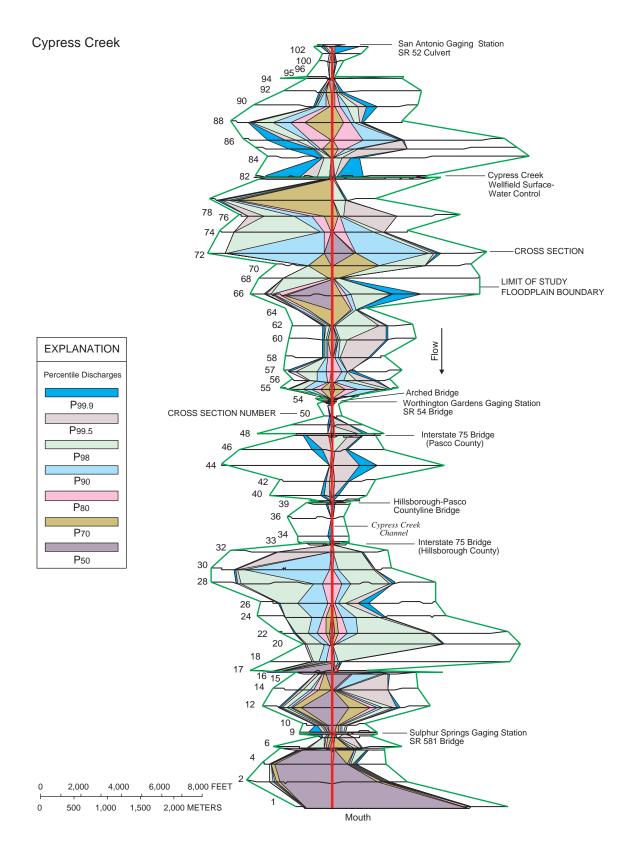
Cross- section	Drainage			Dis	charge	(ft³/s)		
range	area (mi²)	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
1-8	165	21	67	124	250	670	1,124	1,602
¹ 9-17	160	20	65	120	242	650	1,090	1,554
18-26	134	13	44	80	164	449	796	1,233
28-48	122	12	40	73	149	409	725	1,123
² 40-72	117	12	38	70	143	392	695	1,077
74-81	76	8	25	46	93	255	451	700
82-94.5	70	7	23	42	86	235	416	644
³ 95-102	56	4	14	25	52	148	284	487

¹Sulphur Springs gage at SR 581.

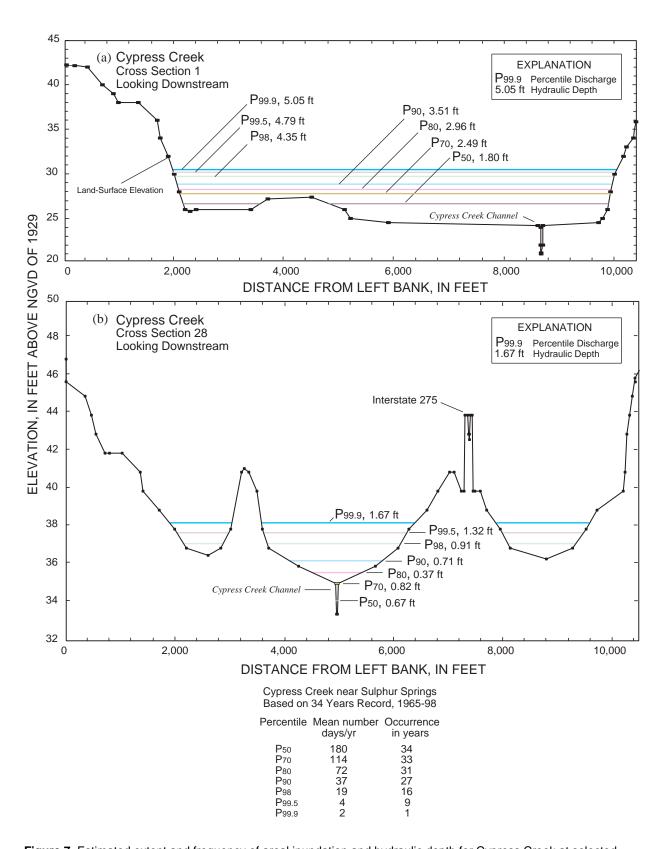
performing a second step-backwater analysis for the concurrent period using the same selected percentile discharges reduced by 10 percent. The difference in the total inundated area was compared between the two step-backwater analyses. Hydraulic and geometric data used for both analyses were identical, except for the starting discharge and water-surface elevation used at the initial cross section. Rated and computed watersurface elevations of the second step-backwater analysis converged successfully at both the Worthington Garden and the San Antonio gages. A comparison in elevation of the computed water-surface profiles resulting from a potential 10-percent discharge withdrawal is shown in figure 5. The lower water-surface elevation profiles resulting from a potential 10-percent discharge withdrawal reduces the extent of areal inundation from about 22 (P_{50}) to 395 (P_{90}) acres, which corresponds to an approximate 1.7 and 8.4 percent decrease of inundated area, respectively (fig. 8 and app. D). The greatest decrease in inundated area (395 acres) occurs at the P₉₀₋₁₀ discharge (fig. 9a-g), and most of the decrease in area is attributed to the reaches between cross sections 70, 72, and 74 (fig. 9d).

PEACE RIVER

The 2,350-mi² Peace River watershed is located in Polk, Hardee, De Soto, and Charlotte Counties (fig. 10). The Peace River begins northeast of Bartow,


at the confluence of Saddle Creek and the Peace Creek Drainage Canal, and flows southward for about 105 mi to Charlotte Harbor. The watershed is predominately rural with several small municipalities. Much of the upper and middle watershed has been strip-mined for phosphate and subsequently reclaimed.

Generally well defined and deeply incised, the Peace River channel is delineated on maps by the NWI predominately as a riverine system (Cowardin and others, 1979). The riverine system is further classified as lower perennial because the gradient is low and the velocity is slow. In areas along the upper Peace River, where the channel is poorly defined and poorly incised, the channel may be classified as a palustrine forest wetland. Palustrine wetlands, dominated by either broad-leaved, needle-leaved, or indeterminate deciduous forest, occur along most of the Peace River floodplain. The length of the study floodplain corridor, from Arcadia to Bartow, is bounded by uplands.


Surface-water drainage to the upper Peace River, from Bartow to Bowling Green, is generally limited to phosphate-mine outfalls and reclaimed channels. Along this reach, much of the natural surface drainage has been altered by the effects of strip mining. Surface-water drainage to the Peace River, from downstream of Bowling Green to Charlotte Harbor, typically is from well-developed, naturally formed tributaries. The lower reach of the Peace River, from downstream of Arcadia to Charlotte Harbor, is affected by tidally influenced backwater.

²Worthington Gardens gage at SR 54.

³San Antonio gage at SR 52.

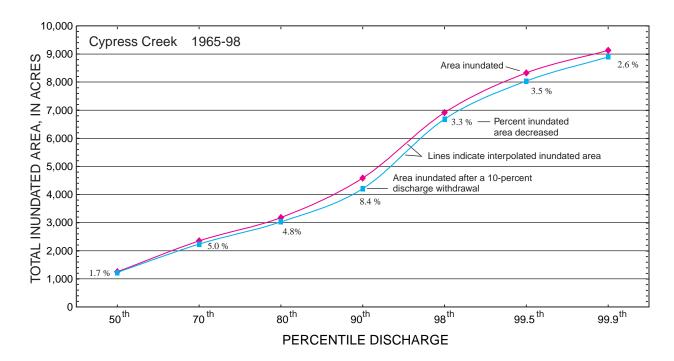
Figure 6. Extent of areal inundation along the Cypress Creek channel and floodplain for selected percentile discharges.

Figure 7. Estimated extent and frequency of areal inundation and hydraulic depth for Cypress Creek at selected cross sections for each of the selected percentile discharges.

Table 2. Approximate number of days daily mean discharge equaled or exceeded the selected percentile discharges at Cypress Creek near Sulphur Springs, 1965-98

[P₅₀, 50-percentile discharge; --, no days]

Year	Number of days/year										
Ieai	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}				
1965	258	176	101	66	33	10	2				
1966	284	216	134	61							
1967	188	118	57	34	11						
1968	112	80	48	6							
1969	263	121	83	49	8	2					
1970	277	257	190	109	16						
1971	155	81	47	20	5						
1972	189	95	30								
1973	178	120	82								
1974	211	150	115	77	19	1					
1975	169	86	64	16							
1976	207	132	61	9							
1977	122	18	4								
1978	219	144	87	41	3						
1979	156	108	83	44	22	1					
1980	209	73	32	73	10	1					
1981	113	77	50	77	17						
1982	246	173	114	62	13	4					
1983	283	227	165	103	34	4					
1984	277	211	106	16							
1985	61	57	48	25	5						
1986	232	158	57	10							
1987	282	123	58	26	13	5					
1988	156	69	35	18	12						
1989	156	74	38	10							
1990	57										
1991	104	68	46	8							
1992	35	9									
1993	92	23									
1994	59	34	9								
1995	206	104	57	13							
1996	226	134	45	13							
1997	72	34	11	3							
1998	267	219	182	133	84	10					
Mean number days	180	114	72	37	19	4	2				

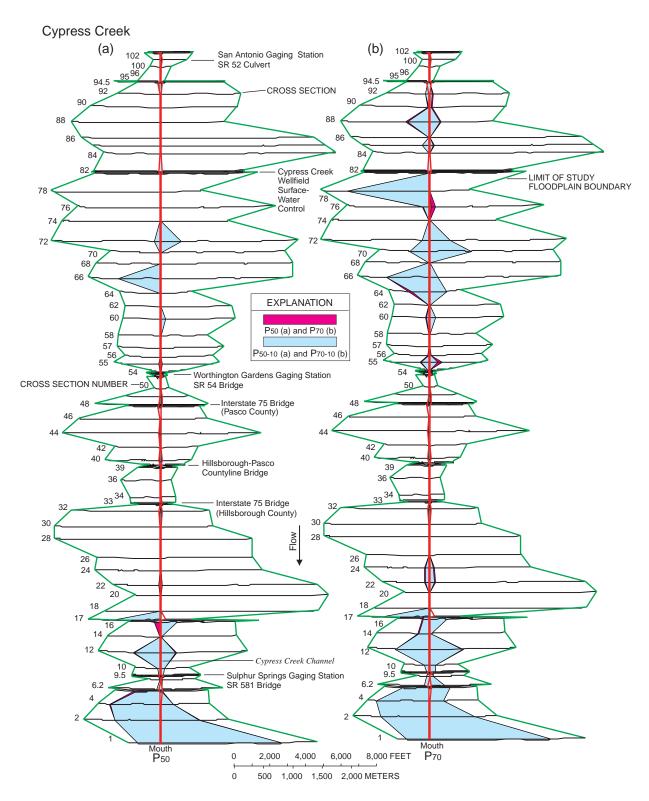

Step-backwater analysis was performed at 238 cross sections located along a 70-mi length of the Peace River channel from Arcadia to Bartow. Step-backwater analysis was performed using the selected percentile discharges (P_{10} , P_{50} , P_{70} , P_{80} , P_{90} , P_{98} , $P_{99.5}$, and $P_{99.9}$) for the concurrent long-term period 1940-98 at three Peace River gages: Arcadia (02296750); Zolfo Springs (02295637); and Bartow (02294650). Proportionally reduced discharges, based on gaged data, were introduced into the step-backwater analysis at selected cross sections to compensate for the decrease in contributing drainage area (table 3).

Because of the large number of cross sections and variations in channel and hydraulic characteristics, the step-backwater analysis of the Peace River was divided into three study reaches. Each reach began and ended at a long-term streamflow gage. Reach 1 included 81 cross sections along the 32.3-mi length from the Arcadia to Zolfo Springs gages; reach 2 included 95 cross sections along the 23.6-mi length from the Zolfo Springs to Fort Meade gages; and reach 3 included 64 cross sections along the 13.9-mi length from the Fort Meade to Bartow gages (fig. 10). The reach downstream from Arcadia to Charlotte Harbor was not included in the analysis because of tidally affected backwater conditions. Cross sections used for the Peace River were developed by Murphy and others (1978), except at bridge locations.

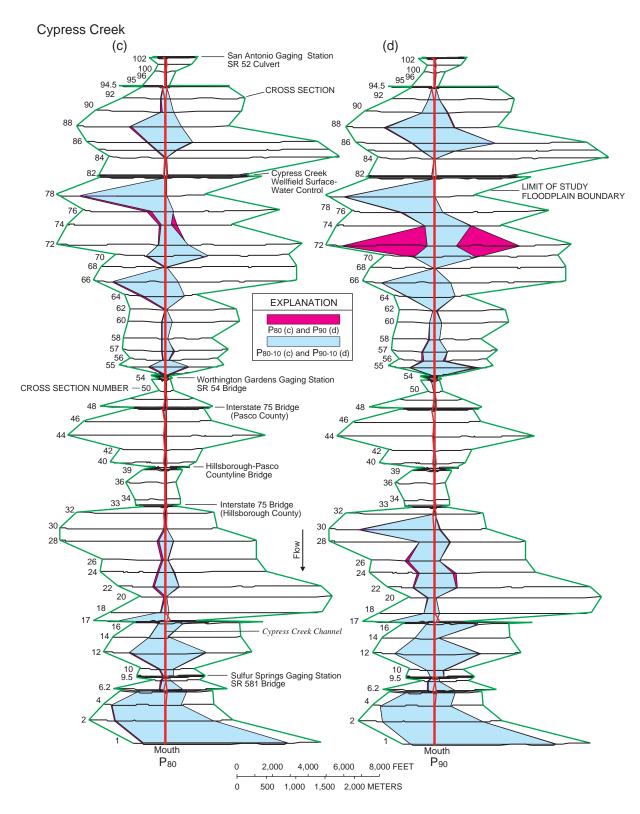
The number of days areal inundation occurs annually along the Peace River for a specific percentile discharge is variable, based predominantly on seasonal climatic conditions. However, discharge conditions along the upper Peace River may be affected by a limited number of surface-water control structures at phosphate-mine outfalls and losses to sinkholes. Most of the percentiles at or below the P_{90} discharge occur annually, based on the Arcadia gage (table 4). However, the highest percentile discharge ($P_{99.9}$) occurred for only 6 years out of the 59-year period, 1940-98.

Reach 1-Arcadia to Zolfo Springs

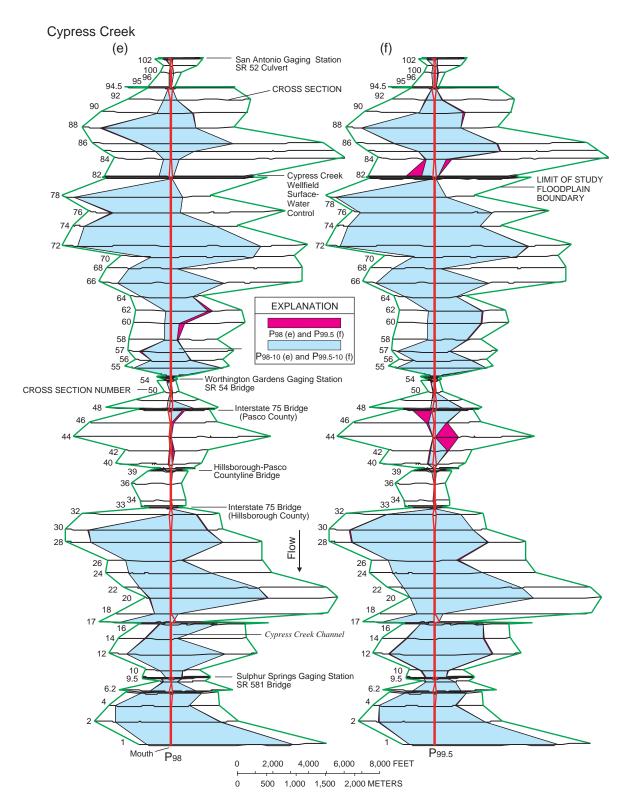
The Peace River channel along reach 1, from Arcadia to Zolfo Springs, is generally broad, well defined, and deeply incised (fig. 11). The channel generally confines all but the highest discharges within the banks. Numerous meanders and oxbows along the reach are characteristic of a sandy, low-gradient channel. Daily mean discharge at the Arcadia gage during the study period (1940-98) ranged from 14 to 24,200 ft³/s, with a median discharge of 481 ft³/s (P₅₀) (fig. 2).


Figure 8. Estimated total inundated area along Cypress Creek for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.

Water-surface profiles were based on elevations computed at the 81 cross sections along reach 1 for each of the eight selected percentile discharges (fig. 12). Extent of areal inundation, acreage of inundation, and hydraulic depth also were computed based on the results of the water-surface elevations.


Estimated maximum extent of floodplain inundation exceeds 12,400 ft (cross section 264) during P_{qq q} discharge (fig. 13 and app. E). Mean extent of inundation for the 81 cross sections along the reach 1 can range from 99 ft (P_{10}) to 5,181 ft $(P_{99.9})$. The channel along much of the reach generally confines most flow regimes at or below the P₈₀ discharge (fig. 13). The mean inundation extent at the P₈₀ discharge (238 ft) approximates the channel width. Mean inundation extents are similar for both the $P_{99.5}$ (4,529 ft) and $P_{99.9}$ (5,181 ft) discharges, which indicates a limited increase in inundation for increased discharge at these percentiles. However, an approximate four-fold increase in mean inundation extent occurs from the P_{90} (625 ft) to the P_{98} (2,521 ft) discharge, and about a two-fold increase from the P₉₈ (2,521 ft) to the $P_{99.5}$ (4,529 ft) discharge. A comparison of the maximum extent of areal inundation for the selected percentile discharges at each cross section is shown in figure 13. However, the figure does not indicated the existence of elevated land surface along the cross section that may be completely inundated during high-flow periods or may form islands during low-flow periods, thus reducing the actual distance inundated. Appendix E presents the actual distance, in feet, each cross section is inundated.

The estimated mean number of days a year and the number of years during the 59-year record that selected percentile discharges occurred at three example cross sections for the Peace River are shown in figure 14. In example cross section 208 (fig. 14a), surface-water elevations at or below the P_{90} discharge are confined within the banks of the channel and elevations at or above the P_{98} discharge can inundate the floodplain.


Hydraulic depths for the selected percentile discharges ranged from a minimum of 0.8 to a maximum of 12 ft, and a mean of 1.7 to 5.4 ft (app. F). A mean depth of approximately 5 ft occurs during the P_{80} discharge, and generally is confined within the channel. Because of the large cross-sectional area of the floodplain, hydraulic depths may be relatively shallow for those higher percentile discharges that inundate both the channel and the floodplain, which is illustrated in example cross section 208 (fig. 14a). The hydraulic depth for the P_{90} discharge is 10.2 ft, whereas, the P_{98} discharge depth is only 2.4 ft.

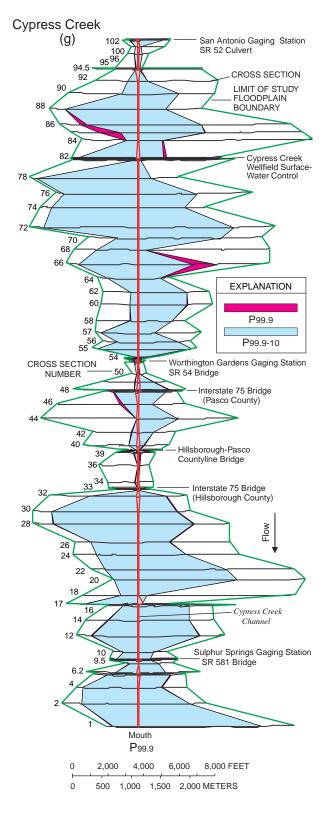

Figure 9. Extent of areal inundation along Cypress Creek for the (a) P_{50} , (b) P_{70} , (c) P_{80} , (d) P_{90} , (e) P_{98} , (f) $P_{99.5}$, and (g) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal.

Figure 9. Extent of areal inundation along Cypress Creek for the (a) P_{50} , (b) P_{70} , (c) P_{80} , (d) P_{90} , (e) P_{98} , (f) $P_{99.5}$, and (g) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 9. Extent of areal inundation along Cypress Creek for the (a) P_{50} , (b) P_{70} , (c) P_{80} , (d) P_{90} , (e) P_{98} , (f) $P_{99.5}$, and (g) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 9. Extent of areal inundation along Cypress Creek for the (a) P_{50} , (b) P_{70} , (c) P_{80} , (d) P_{90} , (e) P_{98} , (f) $P_{99.5}$, and (g) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Total area of areal inundation within the channel and floodplain for reach 1 ranged from 377 to 17,196 acres for the selected percentile discharges (fig. 15 and app. G). Inundated area that occurred below the P_{80} discharge generally was confined within the banks of the channel (fig. 13). The difference in total area inundated between the P_{10} (377 acres) and P_{80} (888 acres) discharges was 511 acres, which largely included just the channel. However, the area between the P_{90} (2,120 acres) and $P_{99.9}$ (17,196 acres) discharges was greater than 15,000 acres, which included both the channel and the floodplain. The greatest increase in area of inundation occurred from the P_{90} to P_{98} discharges and from the P_{98} to $P_{99.5}$ discharges, with more than 6,000 acres each.

Based on the period of streamflow record, 1940-98, differences in the total inundated area of the existing step-backwater analysis were compared with a potential reduction in streamflow of 10 percent. The loss of inundated area between the existing step-backwater analysis and the potential step-backwater analysis ranged from approximately 5 (P_{10}) to 1,500 (P_{98}) acres, which corresponds to a decrease in inundated area of 1.3 and 17.8 percent, respectively (fig. 15 and app. H). Decreases of inundated area at or below the P_{80-10} discharge generally occurred within the channel and ranged from 5 to 110 acres (fig. 16a-h and app. H). The greatest decrease of inundated area occurred at the P_{98-10} discharge with 1,469 acres. The decrease in inundated area at both the $P_{99.5-10}$ and the $P_{99.9-10}$ discharges was greater than 700 acres.

Reach 2-Zolfo Springs to Fort Meade

Reach 2 of the Peace River, from Zolfo Springs to Fort Meade, shares many of the same channel characteristics as reach 1 (fig. 17). The channel is generally well defined and deeply incised, confining low-to-moderate discharges (P_{10} , 106 ft³/s to P_{50} , 329 ft³/s) within the banks. At many locations along the channel, the banks are formed from rock outcrops. Daily mean discharge at the Zolfo Springs gage during the study period (1940-98) ranged from 19 to 15,200 ft³/s, with a median discharge of 329 ft³/s (P_{50}).

The step-backwater analysis computed watersurface profiles using 95 cross sections along the 23.6-mi reach 2 (fig. 18). Mean inundation extent along reach 2, based on the average of 95 cross sections along the reach, was similar to that of reach 1 for the P_{10} (82 ft) through P_{90} (448 ft) discharges, due to similar channel

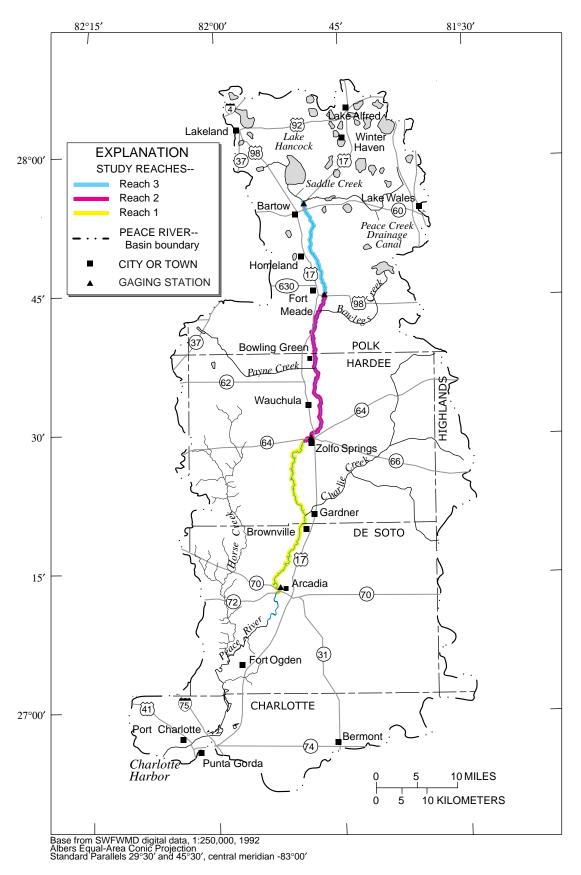


Figure 10. Location of the Peace River, study reaches, and the Arcadia, Zolfo Springs, Fort Meade, and Bartow gaging stations, westcentral Florida. (Location of study area shown in figure 1).

18

Table 3. Cross sections, drainage area, and percentile discharges used in step-backwater analysis based on the concurrent period 1940-98 at the Peace River at the Arcadia, Zolfo Springs, and Bartow gages

[ft³/s, cubic feet per second; mi², square miles]

Cross-	Drainage				Disch	arge (ft³/s	s)		
section range	area (mi²)	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
¹ 148-174	1,367	130	481	1,009	1,549	2,747	6,160	11,920	15,950
176-210	1,302	127	463	960	1,464	2,591	5,826	11,170	15,149
212-284	960	112	367	699	1,030	1,768	4,069	7,224	10,936
² 286-321	826	106	329	597	860	1,446	3,380	5,678	9,285
322-339	791	99	312	568	819	1,379	3,211	5,378	8,777
340-380	730	87	281	517	747	1,261	2,916	4,856	7,890
382-390	583	58	208	394	574	979	2,206	3,598	5,754
391-406	542	50	187	360	525	900	2,008	3,247	5,159
³ 406-446	465	35	148	296	434	752	1,636	2,588	4,040
448-490	434	29	133	270	398	693	1,487	2,323	3,589
492-4500	390	20	111	233	346	608	1,274	1,946	2,950

¹Arcadia gage upstream from SR 70 bridge.

characteristics (app. I). Maximum estimated floodplain inundation exceeds 4,600 ft (cross section 294) during $P_{qq,q}$ discharge. Mean extent for the 95 cross sections along the reach ranged from approximately 82 ft (P₁₀) to 2,542 ft ($P_{99.9}$). The channel generally confines most discharges at or below the P₉₀ discharge, except at a few cross sections of low relief (fig. 19). The mean extent at the P₈₀ discharge (209 ft) approximates the mean extent of a bankfull channel. Increases in the extent of mean areal inundation, of over 750 ft, occur from both the P_{90} (448 ft) to the P_{98} (1,209 ft) discharge and from the P_{98} (1,209 ft) to the $P_{99.5}$ (2,063 ft) discharge (app. I). Example cross section 292 shows river stages at or below the P₉₀ discharge are generally confined within the banks of the channel, whereas those above may inundate the floodplain (fig. 14b). A comparison of the maximum extent of areal inundation for the selected percentile discharges at each cross section is shown in figure 19. However, the figure does not indicated the existence of elevated land surface along the cross section that may be completely inundated during high-flow periods or may form islands during low-flow periods, thus reducing the actual distance inundated. Appendix I presents the actual distance, in feet, each cross section is inundated.

Hydraulic depths that occur below the P_{90} discharge generally are confined within the banks of the channel, except at a limited number of cross sections in low-lying areas. Mean hydraulic depths range from approximately 1.5 to 5.5 ft and maximum depths ranged from 2.5 to 11 ft (app. J). A large difference in hydraulic depth occurs in the transition between channel and floodplain, because of the increase in cross-sectional area. This difference is illustrated in example cross section 292, where the hydraulic depth for the P_{90} discharge (3.9 ft) is largely confined to the channel (fig. 14b). However, when the large cross-sectional area of the floodplain is included during the P_{98} discharge, a hydraulic depth of 1.3 ft is calculated.

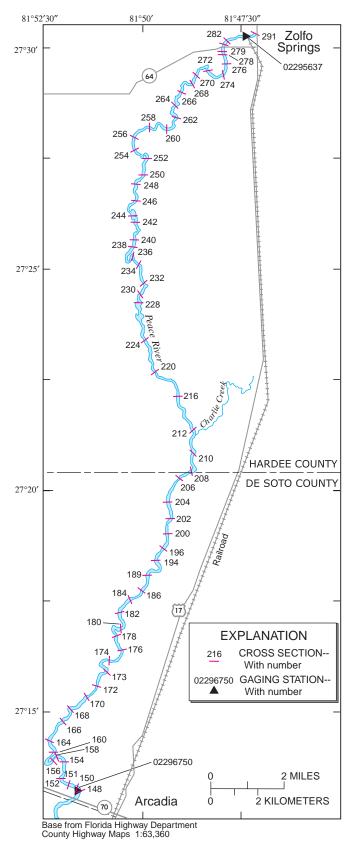
Total area of inundation within the channel and floodplain ranged from 225 (P_{10}) to 6,065 $(P_{99.9})$ acres (fig. 20 and app. K). Inundated area below the P_{90} discharge generally was confined to the channel (fig. 19).

²Zolfo Springs gage at US Highway 17 bridge.

³Fort Meade gage at US Highway 98 bridge.

⁴Bartow gage at SR 60.

Table 4. Approximate number of days daily mean discharge equaled or exceeded the selected percentile discharges at Peace River at Arcadia, 1940-98


[P₁₀, 10-percentile discharge; -- no days]

Year	Number of days									
Teal	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}		
1940	350	221	131	86	28					
1941	309	205	118	64	33					
1942	365	248	151	98	50	8				
1943	287	109	98	94	83	5				
1944	307	107	75	37	14					
1945	260	128	109	101	82	27				
1946	329	161	106	74	41					
1947	365	244	163	142	123	25	9	5		
1948	359	269	184	116	62	12	5	2		
1949	314	153	126	90	63	31	10	4		
1950	318	86	38	25	19	9				
1951	354	183	130	77	32					
1952	366	178	62	26	8	3				
1953	363	291	207	151	112	40				
1954	365	323	206	158	101	27				
1955	329	144	68	40	18					
1956	299	56	32	17	8					
1957	365	259	199	133	64					
1958	365	284	182	107	69	4				
1959	365	283	184	145	124	37				
1960	366	308	218	157	100	35	12	7		
1961	365	200	72	43	26	9				
1962	260	118	86	64	32	10				
1963	358	187	101	60	27					
1964	366	220	128	67	24					
1965	325	138	87	56	45					
1966	360	224	169	88	49	3				
1967	314	125	84	46	24					
1968	334	140	110	89	66	6				
1969	365	205	121	68	38					

Table 4. Approximate number of days daily mean discharge equaled or exceeded the selected percentile discharges at Peace River at Arcadia, 1940-98 (Continued)

[P₁₀, 10-percentile discharge; -- no days]

Vaar	Number of days										
Year	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}			
1970	365	314	217	114	43						
1971	336	92	63	28	14	4					
1972	366	130	75	25	5						
1973	359	170	128	90	32						
1974	294	116	91	68	46	15					
1975	281	94	55	28	7						
1976	311	159	119	60	25						
1977	290	86	33	8	5						
1978	356	203	112	73	38	5					
1979	336	170	94	62	27	1					
1980	366	151	62	29	16	6					
1981	216	47	27	15	2						
1982	234	139	114	97	60	14	6	2			
1983	365	252	179	122	78						
1984	345	175	91	34	1						
1985	123	60	34	13	4						
1986	305	125	62	17	4						
1987	347	148	74	40	16						
1988	345	196	125	74	34	10					
1989	316	88	13								
1990	316	100	34	11							
1991	281	127	89	73	37						
1992	285	110	83	58	31						
1993	365	169	96	38	12						
1994	315	146	80	62	37	13					
1995	353	296	182	113	82	18					
1996	366	224	88	48	21						
1997	239	98	52	34	13						
1998	329	243	180	157	129	33	4	3			
Mean number days	326	173	108	71	42	15	7	4			

Figure 11. Location of reach 1 and channel cross sections along the Peace River from Arcadia to Zolfo Springs, west-central Florida. (Location of study area shown on figures 1 and 10).

The difference in inundated area between the P_{10} (225 acres) and P_{90} (1,118 acres) discharges, which were confined largely to within the channel, was approximately 900 acres. In contrast, the area of inundation between the P_{90} (1,118 acres) and $P_{99.9}$ (6,065 acres) discharges was approximately 5,000 acres, reflecting inundation changes solely within the floodplain. The greatest increase in inundated area occurred between the P_{90} to P_{98} discharges and between the P_{98} to $P_{99.5}$ discharges, with 1,964 and 1,810 acres, respectively.

The loss of inundated area between the existing step-backwater analysis and the potential step-backwater analysis ranged from 5.6 (P_{10}) to 373 (P_{98}) acres, which corresponds to a decrease in inundated area of 2.0 and 17.7 percent, respectively (fig. 20 and app. L). Decrease in inundated area at or below the P_{80-10} discharge generally occurred within the channel, and ranged from 5.6 to 45.8 acres. The greatest decrease in inundated area was 373 acres at the P_{98-10} discharge (fig. 21a-h).

Reach 3-Fort Meade to Bartow

Channel characteristics along the 13.9-mi reach from Fort Meade to Bartow vary greatly (fig. 22). The channel is deeply incised in one part of the reach and poorly defined in another. Numerous sinkholes, located in the channel and floodplain, divert streamflow and recharge underlying aquifers. Elevated reclaimed phosphate-mined landforms define the outer boundary along much of the floodplain corridor. Although widespread floodplain inundation can occur at moderate-to-high-discharge conditions, the extent is confined generally to within the corridor by adjacent reclaimed landforms. Daily mean discharge at the Peace River at Bartow gage during the study period (1940-98) ranged from 1.2 to 4,100 ft³/s, with a median discharge of 111 ft³/s (P₅₀).

Water-surface profiles were based on elevations computed at the 60 cross sections along reach 3 for each of the eight selected percentile discharges. Extent of areal inundation, acreage of inundation, and hydraulic depth were also computed based on the results of the water-surface elevations (fig. 23). Of the eight selected percentile discharges studied, the channel mostly confined only the P₁₀ discharge (35 ft³/s). Widespread inundation of the floodplain occurs at the P₅₀ discharge in most areas, based on the Bartow (111 ft³/s) and Fort Meade (148 ft³/s) gaging stations, because the poorly incised channel cannot confine the streamflow

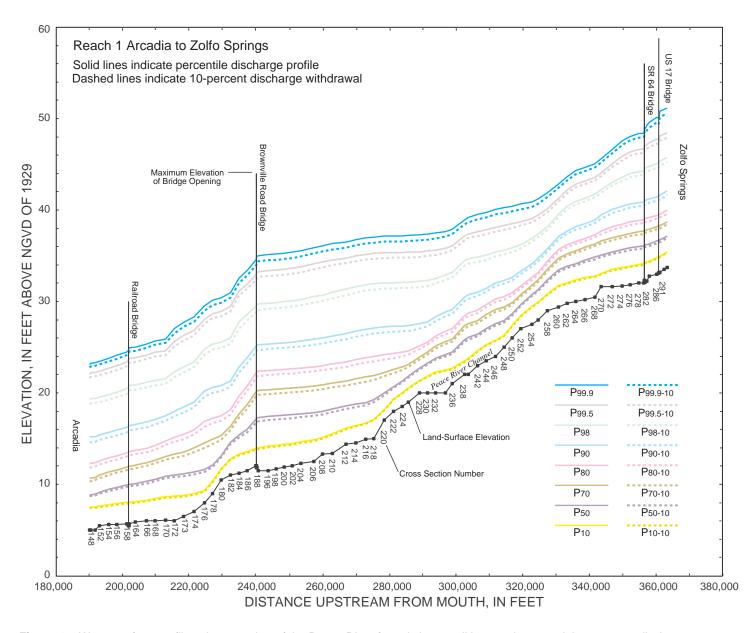
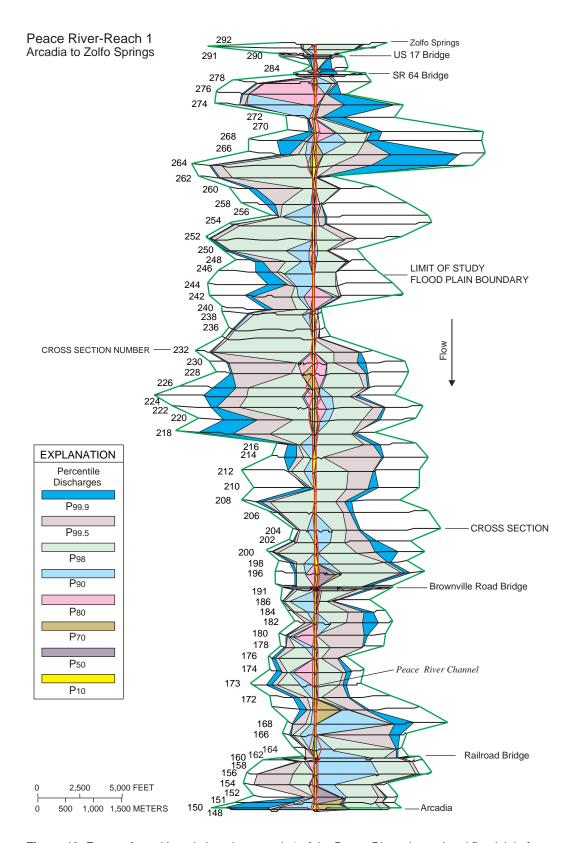
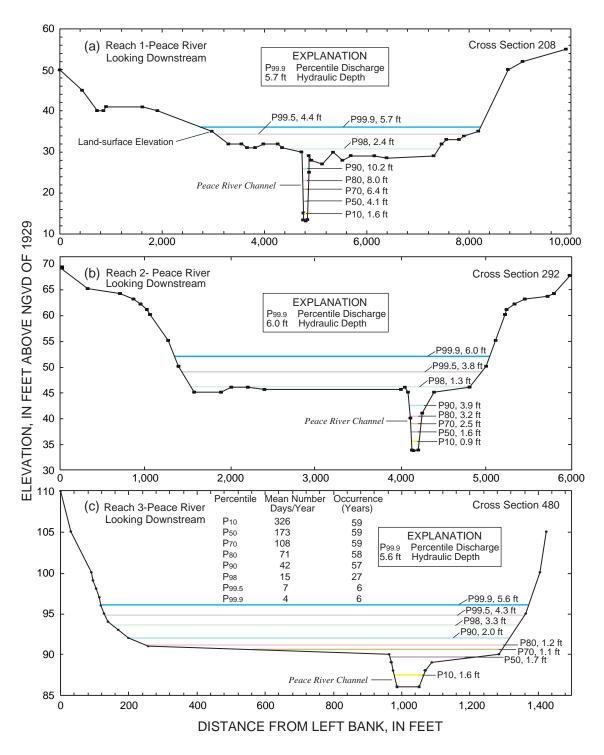



Figure 12. Water-surface profiles along reach 1 of the Peace River for existing conditions and a potential 10-percent discharge withdrawal.


within its banks. Maximum extent of floodplain inundation is 4,552 ft (cross section 492) during $P_{99.9}$ discharge (fig. 24 and app. M). The mean inundation width for the 60 cross sections along reach 3 can range from approximately 104 ft (P_{10}) to 1,953 ft ($P_{99.9}$). The inundated width of 104 ft may approximate the width of a bankfull channel. The largest increase in extent of mean inundation between percentiles is over 300 ft. This increase occurs both between the P_{10} (104 ft) to the P_{50} (424 ft) discharge and between the P_{50} (424 ft) to the P_{70} (819 ft) discharge (app. M). A comparison of the maximum extent of areal inundation for the

selected percentile discharges at each cross section is shown in figure 24. However, the figure does not indicated the existence of elevated land surface along the cross section that may be completely inundated during high-flow periods or may form islands during low-flow periods, thus reducing the actual distance inundated. Appendix M presents the actual distance, in feet, each cross section is inundated.

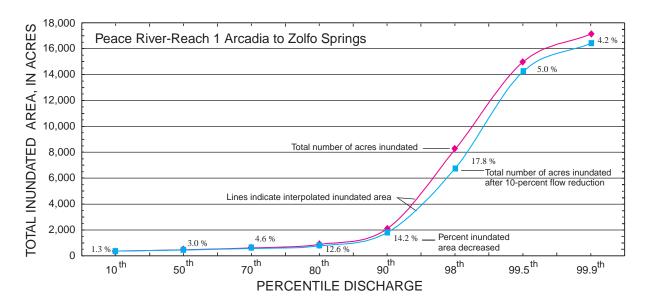
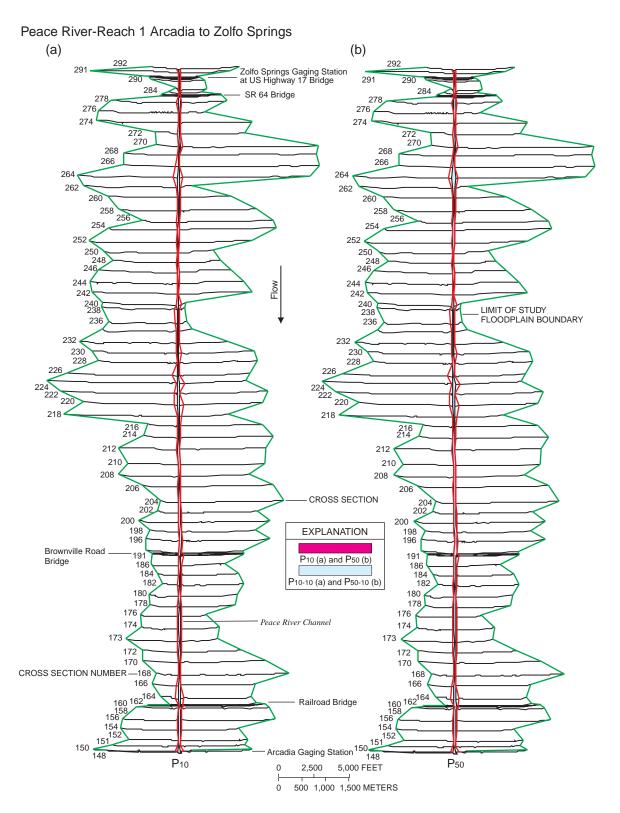

Example cross section 480 shows that areal inundation of the floodplain is widespread for all percentile discharges greater than the P_{10} discharge (fig. 14c). An abrupt rise in land-surface elevation exists along

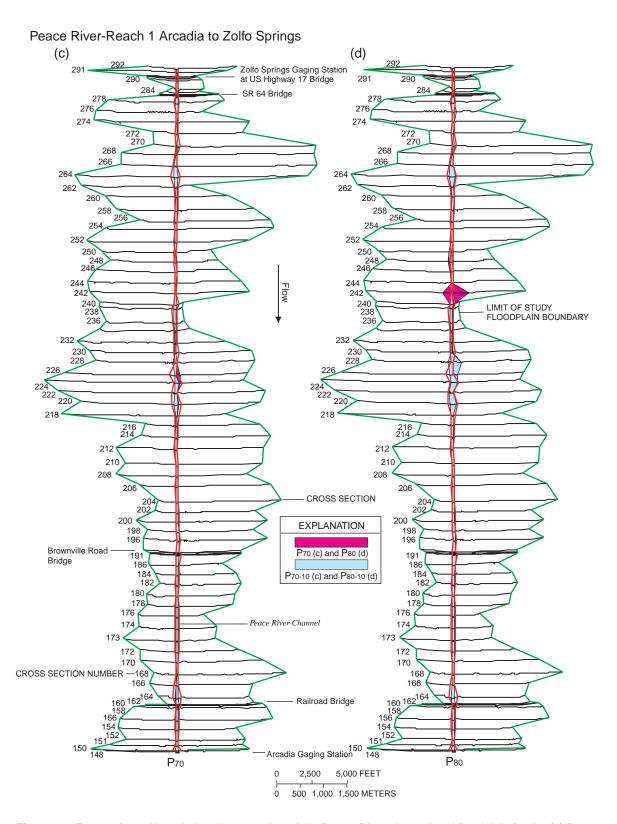
Figure 13. Extent of areal inundation along reach 1 of the Peace River channel and floodplain for selected percentile discharges.

Figure 14. Estimated extent and frequency of areal inundation and hydraulic depth for Peace River cross sections along reaches 1, 2, and 3 for each of the selected percentile discharges.

Figure 15. Estimated total inundated area along reach 1 of the Peace River for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.


much of the floodplain boundary, which limits the extent of areal inundation during high flows in some areas. This change in topography is the result of elevated reclaimed phosphate-mined landforms constructed along the floodplain corridor boundary.

Hydraulic depths that occur at or below the P₁₀ discharge generally are confined to the channel. Mean hydraulic depths ranged from 1.5 to 4.6 ft, and maximum depths ranged from 2.5 to 7.2 ft (app. N). Difference in mean hydraulic depth between successive percentile discharges is less than 1 ft. Example cross section 480 shows the mean number of days per year that a particular hydraulic depth could occur for an expected percentile discharge (fig. 14c). Because the channel generally is poorly incised, the maximum hydraulic depth for reach 3 is 7.2 ft, which is much less than the mean hydraulic depths for reach 1 or reach 2, which are 12 ft (app. F) and 11 ft (app. J), respectively.


Total inundated area within the channel and floodplain ranged from 173 (P_{10}) to 2,828 ($P_{99.9}$) acres (fig. 25 and app. O). Inundated area at or below the P_{10} discharge generally was confined within the channel at most cross sections (fig. 24). The greatest increase in

inundated area was from the P_{10} to the P_{50} discharges with 571 acres, which occurred during the transition from channel to floodplain inundation.

Loss of inundated area between the existing stepbackwater analysis and the potential step-backwater analysis, ranged from 6.5 (P₁₀) to 99.3 (P₉₈) acres, which corresponds to an approximate 4.0 and 1.1 percent decrease of inundated area, respectively (fig. 25 and app. P). However, the greatest percentage decrease of inundated area occurred at the P₅₀₋₁₀ discharge with 12.0 percent. The decrease of inundated area at the P₁₀₋₁₀ discharge generally occurred within the channel and was 6.5 acres. The greatest decrease in inundated area was 94.9 and 99.3 acres, which occurred at the P₅₀₋₁₀ and P_{99,9-10} discharges, respectively (fig. 26a-h and app. P). Decreases associated with the P₅₀₋₁₀ discharge occur frequently, because the P₅₀ discharge averages approximately 173 days per year (table 4). Whereas, the P_{99.9-10} discharge occurs rarely, approximately once every 10 yrs for an average of 4 days. Decrease of inundated area at the P₇₀, P₈₀, P₉₀, P₉₈, and P_{99,5} discharges were similar, and ranged from 48.1 to 76.7 acres, with a mean decrease of 61.6 acres (app. P).

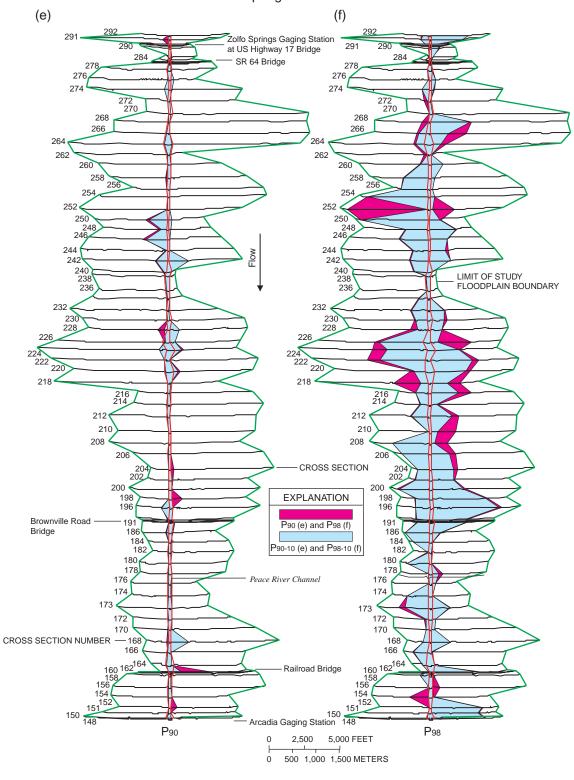


Figure 16. Extent of areal inundation along reach 1 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal.

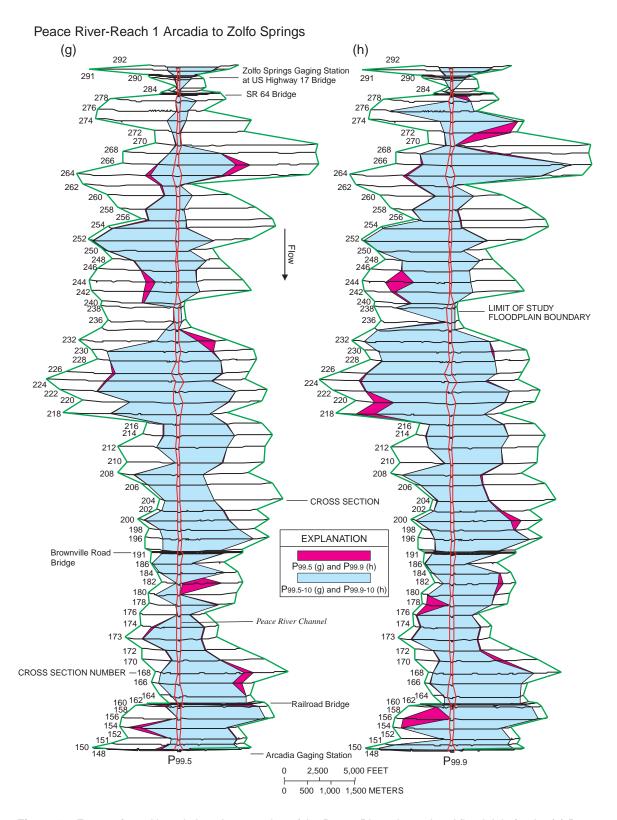


Figure 16. Extent of areal inundation along reach 1 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

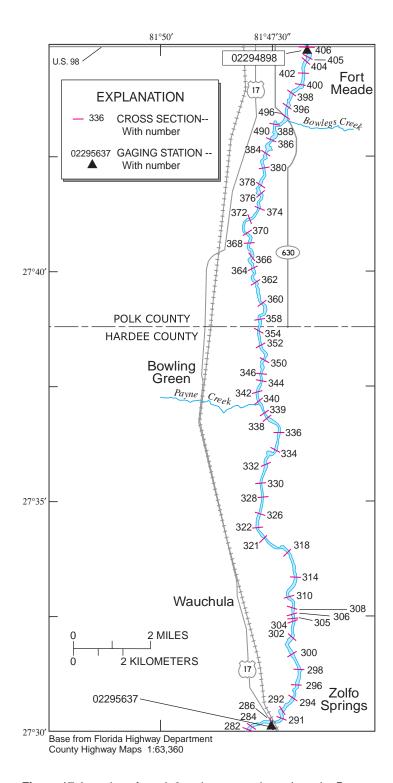

Peace River-Reach 1 Arcadia to Zolfo Spring

Figure 16. Extent of areal inundation along reach 1 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 16. Extent of areal inundation along reach 1 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 17. Location of reach 2 and cross sections along the Peace River from Zolfo Springs to Fort Meade, west-central Florida. (Location of study area shown in figures 1 and 10).

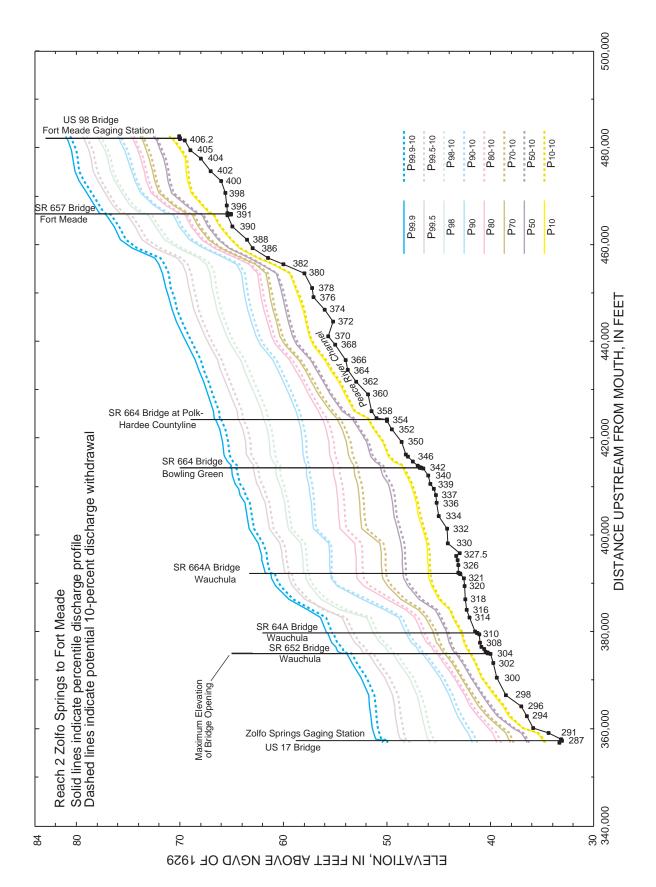
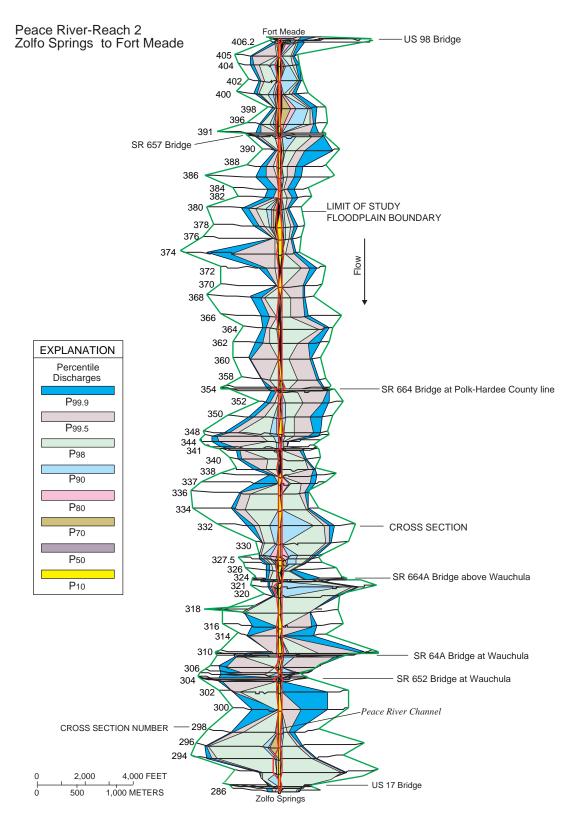
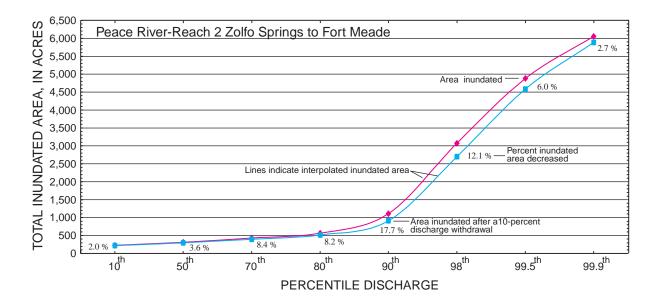
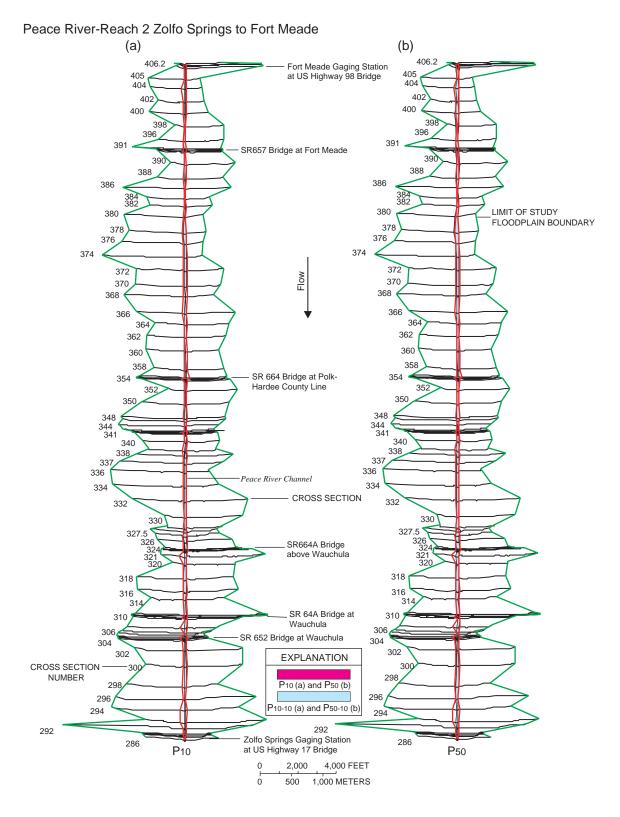




Figure 18. Water-surface profiles along reach 2 of the Peace River for existing conditions and a potential 10-percent discharge withdrawal

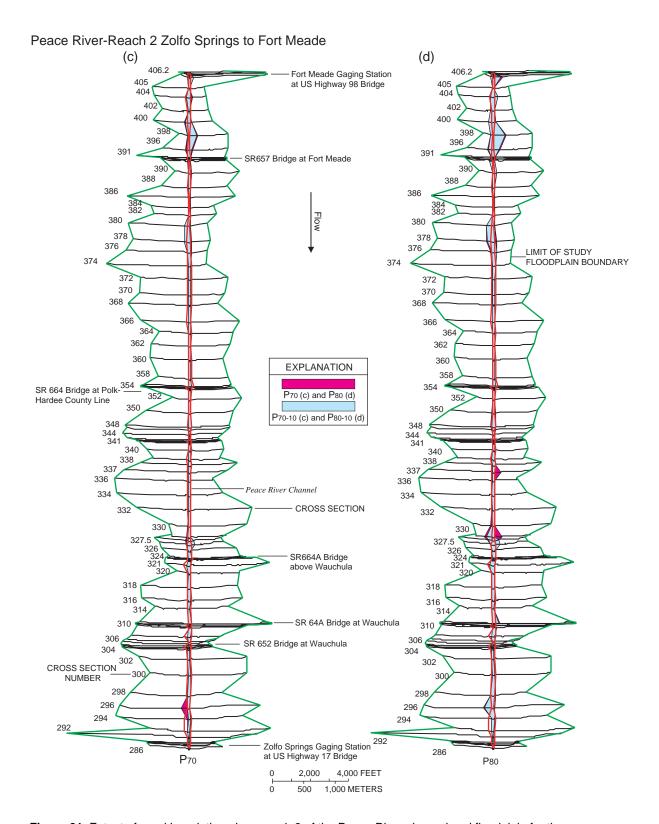
Figure 19. Areal inundation along reach 2 of the Peace River channel and floodplain for selected percentile discharges.

Figure 20. Estimated total inundated area along reach 2 of the Peace River for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.

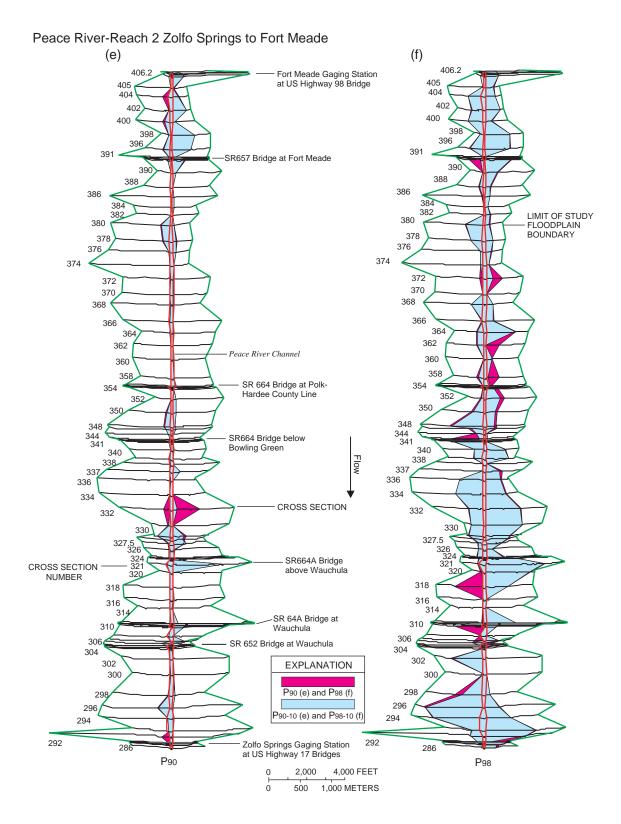
Inundated Area and Effects of Potential Discharge Withdrawals Along the Three Peace River Reaches


Combined area of total inundation for the three reaches of the Peace River, from Arcadia to Bartow, ranged from 775 (P₁₀ discharge) to 26,089 (P_{99,9} discharge) acres (fig. 27). The number of inundated acres for each of the reaches is based on differing reach lengths and their channel and floodplain configuration. Areal inundation along reaches 1 and 2, which share similar characteristics, is generally proportional to their channel lengths, 32.2 and 23.6 mi, respectively. However, reach 3 (13.9 mi), which is only 20 percent of the study channel length, has proportionally higher total areal inundation for most percentile discharges, especially the P₅₀, P₇₀, P₈₀, and P₉₀ discharges. Because of a poorly incised channel along much of reach 3, areal inundation for the P_{10} discharge was small. Total decrease of inundated area along the Peace River from a potential 10-percent discharge withdrawal, based on the selected percentile discharges, ranged from about 17.1 (P_{10} discharge) to 1,891 (P_{98} discharge) acres, which corresponds to an approximate 2.1 and 13.6 percent decrease of inundated area, respectively.

ALAFIA RIVER SYSTEM


The Alafia River System is defined in this report as the Alafia, North Prong Alafia, and South Prong Alafia Rivers. The Alafia River System drains an approximate 420 mi² area of southwestern Polk County and southeastern Hillsborough County (figs. 1 and 28). The two principal tributaries, the North and South Prong Alafia Rivers, join together at the confluence with the Alafia River to form the headwaters.

Alafia River


The Alafia River channel meanders westward for approximately 23 mi, from the confluence with its two tributaries to the mouth. The approximately 335-mi² area of the upper Alafia River watershed is drained at the Lithia gage (02301500) at SR 640. Streamflow data have been collected continuously by the USGS at the Lithia gage since 1932. Extremes in daily mean discharge at the gage ranged from 6.6 (1945) to 40,800 ft³/s (1933). The Alafia River downstream of the Lithia gage is affected by tidally influenced backwater.

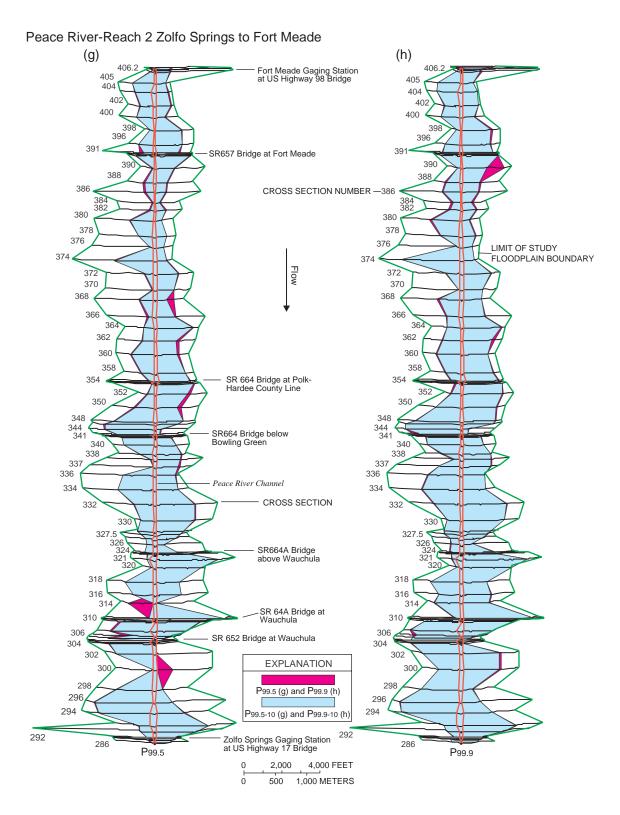

Figure 21. Extent of areal inundation along reach 2 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal.

Figure 21. Extent of areal inundation along reach 2 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 21. Extent of areal inundation along reach 2 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 21. Extent of areal inundation along reach 2 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 22. Location of reach 3 and study cross sections along the Peace River from Fort Meade to Bartow, west-central Florida. (Location of study area shown in figures 1 and 10).

The Alafia River study reach extends from SR 640 to the confluence with the North and South Prongs Alafia River. The channel generally is deeply incised and well defined, containing most low-to-moderate-discharge conditions (74.3 ft 3 /s at P_{10} to 601 ft 3 /s at P_{90}) within the banks. The floodplain corridor width is relatively narrow and uniform along the channel and is defined by high topographic relief at the boundary.

Although generally well defined and deeply incised, the channels along the Alafia, North Prong, and South Prong Alafia Rivers study reaches are delineated on NWI maps as palustrine forested wetlands. Most of the open-water channel of the Alafia River,

downstream of the study reach, is classified as riverine wetlands. The floodplain corridor along the Alafia River system is delineated as a palustrine forested wetlands, bounded by uplands.

Step-backwater analysis was performed at 21 cross sections located along a 8.2-mi reach of the Alafia River, from the Lithia gage at SR 640 to the confluence with the North and South Prongs of the Alafia River. Step-backwater analysis was not performed downstream of the Lithia gage because of tidally influenced backwater conditions. Cross sections used for the Alafia River and tributaries were developed by Robertson (1978), except at bridge locations. Step-backwater analysis was based on the selected

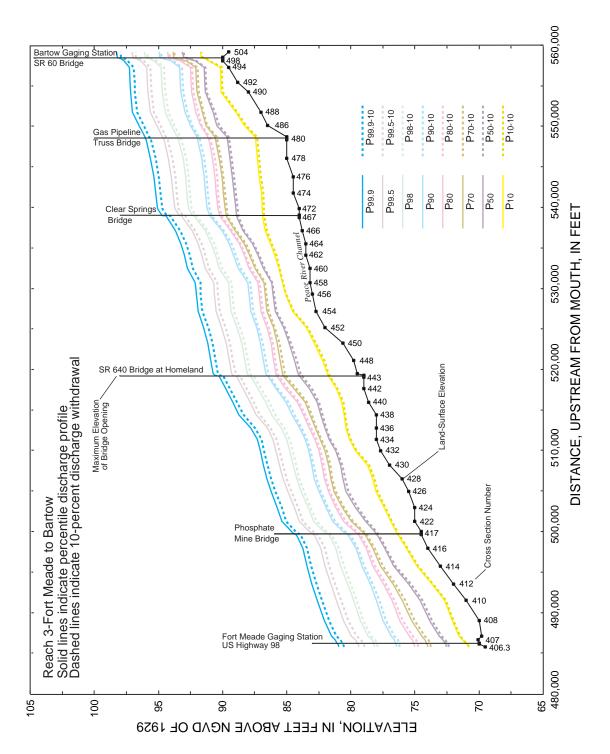
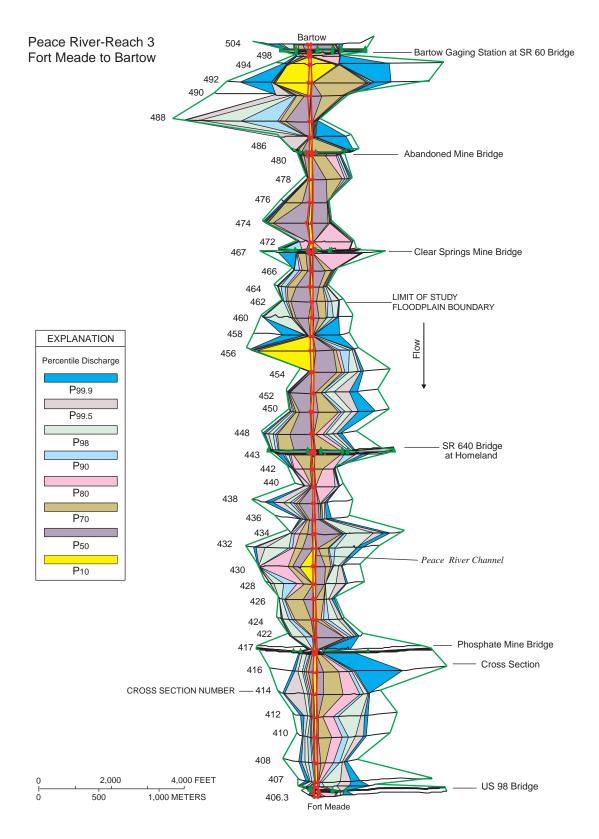
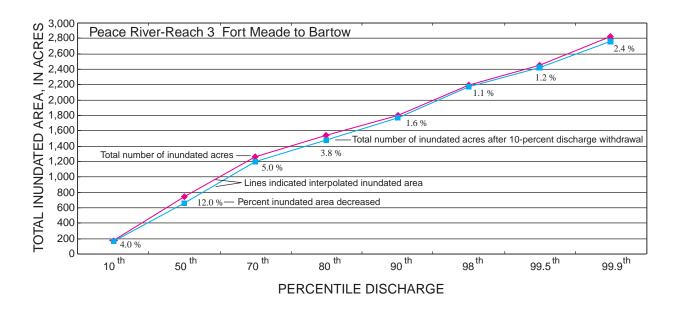
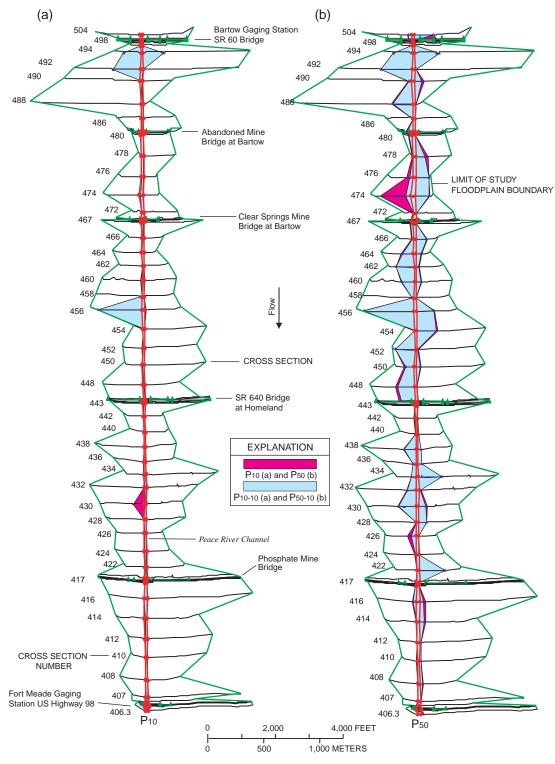




Figure 23. Water-surface profiles along reach 3 of the Peace River for existing conditions and a potential 10-percent discharge withdrawal.

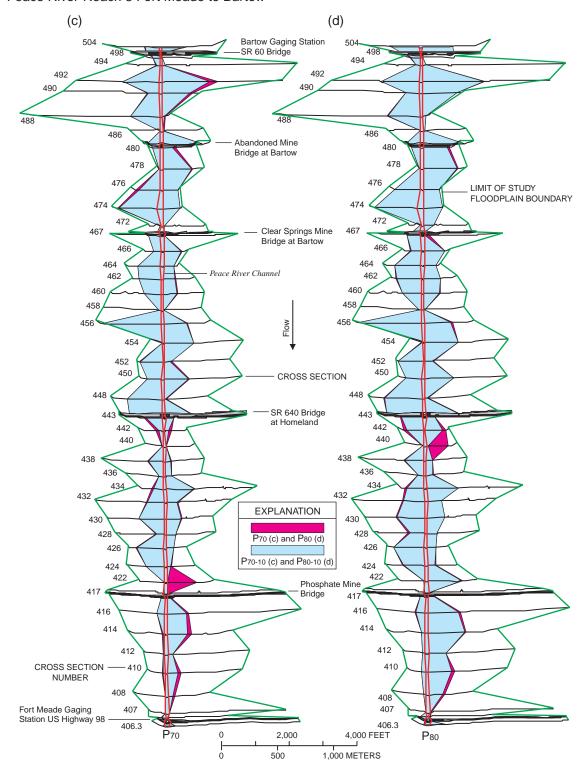
Figure 24. Extent of areal inundation along reach 3 of the Peace River channel and floodplain for selected percentile discharges.

Figure 25. Estimated total inundated area along reach 3 of the Peace River for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.


percentile discharges (P₁₀, P₅₀, P₇₀, P₈₀, P₉₀, P₉₈, P₉₉₅ and $P_{00,0}$) for the concurrent long-term period, 1964-92, at the Alafia River at Lithia, North Prong Alafia River at Keysville, and South Prong Alafia River near Lithia gages. The period of analysis included only concurrent record through 1992, because the North Prong Alafia River gage was temporarily discontinued during 1993-94. Proportionally reduced discharges were introduced at selected cross sections during the step-backwater analysis to compensate for the decrease in contributing drainage area (table 5). The results of the step-backwater analysis were considered reliable because the computed water-surface profiles converged within 0.5 ft of the stage-discharge relation at the North and South Prong Alafia River gages. Water-surface profiles, extent of areal inundation, and hydraulic depth at the 21 Alafia River cross sections were based on water-surface elevations computed during the step-backwater analysis (fig. 29).

The number of days per year that a specific percentile discharge occurred at Alafia River at Lithia gage was variable. The P_{10} , P_{50} , P_{70} , P_{80} , and P_{90} discharges occurred every year, and ranged from 1 (P $_{90}$) to 366 (P $_{10}$) days (table 6). During the 29-year study period, however, the frequency that the P_{98}

(19 years), $P_{99.5}$ (16 years), and $P_{99.9}$ (4 years) discharges actually occurred was limited. The mean number of days the discharges occurred for the P_{98} , $P_{99.5}$, and $P_{99.9}$ discharges were 8, 4, and 3 days, respectively.


Maximum extent of floodplain inundation exceeds 3,300 ft (cross section 77) during $P_{oo o}$ discharge (3,820 ft³/s) (fig. 30 and app. Q). Mean inundation width, based on the 21 cross sections, range from 61 ft (P_{10}) to 2,081 ft $(P_{99.9})$. The incised channel generally confines most discharges at or below the P₉₀ discharge (601 ft³/s) (table 5). Mean inundation width at the P₉₀ discharge (132 ft) may approximate the bankfull channel width. A large increase in mean inundation occurs in the transition from channel to floodplain during the P_{90} (132 ft) to the P_{98} (942 ft) discharge. A comparison of the maximum extent of areal inundation for the selected percentile discharges at each cross section is shown in figure 30. However, the figure does not indicated the existence of elevated land surface along the cross section that may be completely inundated during high-flow periods or may form islands during low-flow periods, thus reducing the actual distance inundated. Appendix Q presents the actual distance, in feet, each cross section is inundated.

Peace River-Reach 3 Fort Meade to Bartow

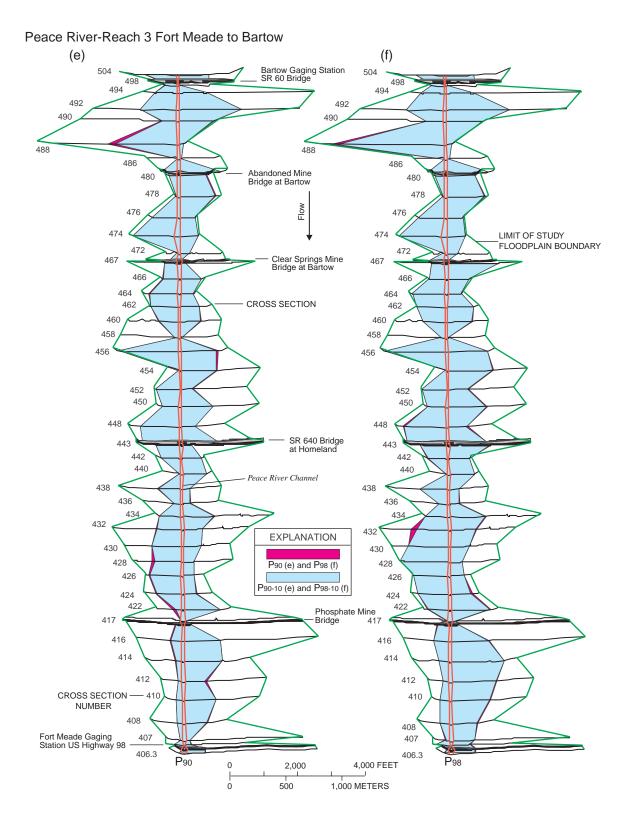


Figure 26. Extent of areal inundation along reach 3 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal.

Peace River-Reach 3 Fort Meade to Bartow

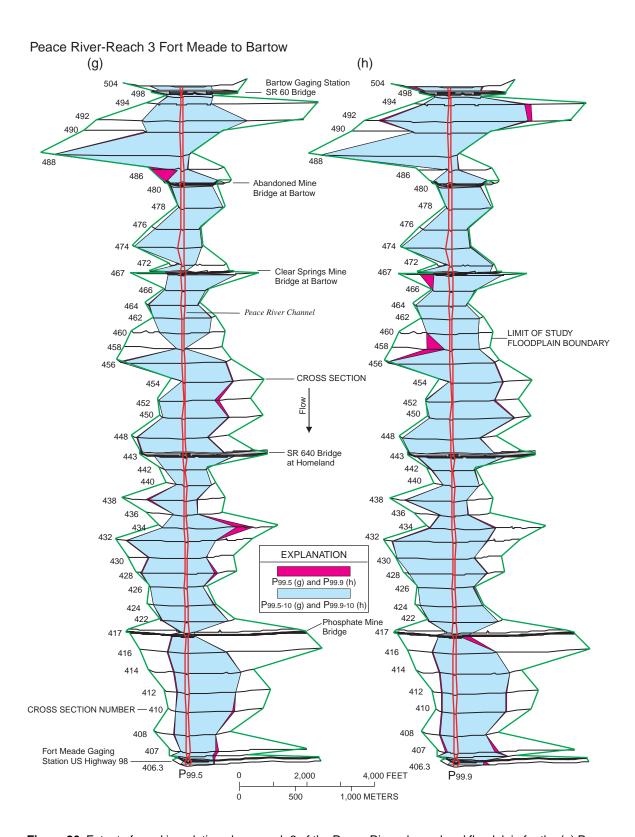


Figure 26. Extent of areal inundation along reach 3 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

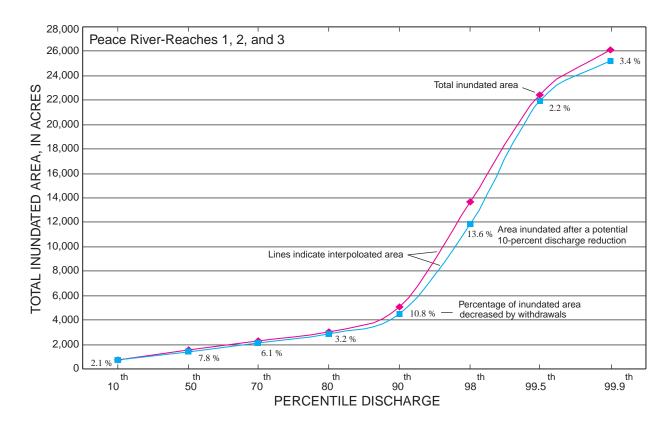
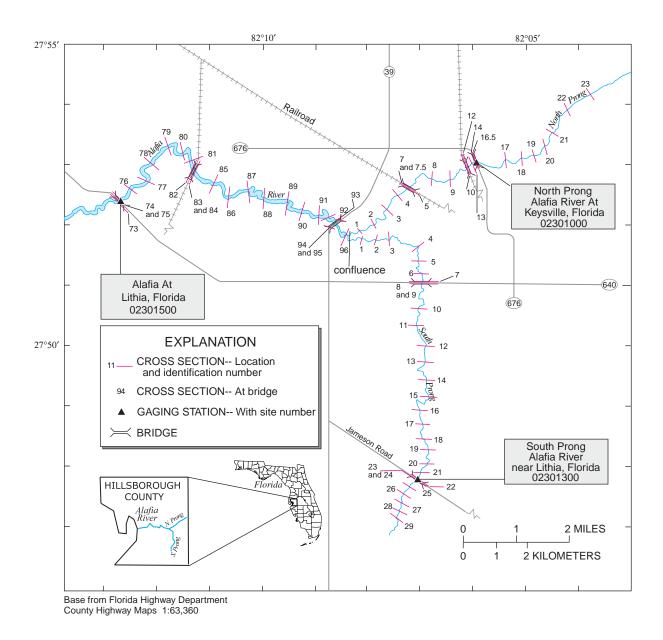


Figure 26. Extent of areal inundation along reach 3 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

44

Figure 26. Extent of areal inundation along reach 3 of the Peace River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)


Figure 27. Estimated total inundated area along the three reaches of the Peace River for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.

Example cross section 79 shows that percentile discharges at or below the P_{98} discharge (1,418 ft³/s) are confined to the channel, and those above can inundate the floodplain (fig. 31a and table 5). At cross section 79, the extent of inundation at the $P_{99.5}$ discharge (2,417 ft³/s) was approximately 1,500 ft, which occurred only 16 times during the 29-year study period, for an average of 4 days each time. Because the deeply incised channel contains most discharges, widespread inundation of the study reach floodplain may occur for a few days about every other year.

Maximum hydraulic depths ranged from 3.4 to 9.2 ft, and mean depths ranged from 1.8 to 4.8 ft. The hydraulic depth at the P_{90} discharge generally is confined to the channel (app. R). Total inundated area within the channel and floodplain ranged from 53 (P_{10}) to 1,445 ($P_{99.9}$) acres (fig. 32 and app. S). Inundated area below the P_{90} discharge (601 ft³/s) generally was confined within the channel (fig. 30, and table 5). The difference in inundated area from the P_{10} to the P_{90} discharges was approximately 50 acres, which largely

included the channel. However, the inundated area from the P_{90} to the P_{98} discharges (577 acres) and from the P_{98} to the $P_{99.5}$ discharges (469 acres) largely included the floodplain (app. S).

Total inundated area along the Alafia River for the period of streamflow record, 1964-92, was compared to inundated area resulting from a 10-percent discharge withdrawal. The decrease in inundated area between the existing conditions step-backwater analysis and the potential withdrawal step-backwater analysis ranged from approximately 1 (P_{10}) to 90 ($P_{99,9}$) acres, which approximate a 1.0 and 4.0 percent decrease of inundated area, respectively (fig. 32 and app. T). However, the greatest percentage decrease of inundated area occurred at the P₉₀₋₁₀ discharge with 19.6 percent. A decrease in inundated area at or below the P₉₀₋₁₀ discharge generally occurred within the channel and ranged from 0.7 to 20.6 acres (fig. 33a-h). The greatest decrease of inundated area occurred at the $P_{99.9-10}$ discharge with 89.5 acres (app. T).

Figure 28. Location of the Alafia, North Prong Alafia, and South Prong Alafia Rivers and cross sections, west-central Florida. (Location of study area shown in figure 1).

North Prong Alafia River

The North Prong Alafia River, a major tributary to the Alafia River, drains approximately 140 mi². The river flows in a southwesterly direction along an approximate 9.5-mi-long study reach, from cross section 23 to the confluence with the Alafia and South Prong Alafia Rivers (figs. 1 and 28). An approximate 135-mi² area of the North Prong Alafia River watershed is drained at the Keysville gage (02301000) at SR 676. Discharge data have been collected continu-

ously at the Keysville gage by the USGS from 1950-92 and from 1995 to the present. Extremes in daily mean discharge at the Keysville gage ranged from 3.9 (1952) to 8,200 ft³/s (1960). The channel along the study reach generally is deeply incised and well defined, confining all but the highest discharges within the banks.

Step-backwater analysis was performed at 22 cross sections along the North Prong Alafia River study reach, from the mouth (confluence) to cross section 23. The step-backwater analysis was based on the selected percentile discharges (P_{10} , P_{50} , P_{70} , P_{80} ,

Table 5. Cross sections, drainage area, and percentile discharges used in step-backwater analysis based on the concurrent period 1964-92 at the Alafia, North Prong Alafia, and South Prong Alafia Rivers gages

[ft³/s, cubic feet per second; mi², square miles]

Cross- section	Drainage area (mi²)	Discharge (ft³/s)										
range		P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}			
Alafia River at Lithia												
¹ 73-84	335	74.3	184	297	404	601	1,418	2,417	3,820			
85-95	285	62.6	172	275	363	544	1,348	2,272	3,717			
96- ² 1	275	60.2	170	271	355	532	1,334	2,242	3,696			
North Prong Alafia River at Keysville												
1-14	140	38.3	98	147	185	270	683	1,175	1,906			
³ 16-20	135	36.9	94	142	178	260	659	1,133	1,838			
21-23	130	35.5	90	136	172	251	635	1,091	1,770			
South Prong Alafia River near Lithia												
1-6	135	22	72	124	170	262	651	1,067	1,790			
6.5-12	130	21	70	119	164	253	627	1,028	1,724			
13-22	122	19.8	65	112	154	237	588	965	1,618			
⁴ 24-29	107	17.4	57	98	135	208	516	846	1,419			

¹Alafia River at Lithia gage.

 P_{90} , P_{98} , $P_{99.5}$ and $P_{99.9}$) for the concurrent long-term period 1964-92 at the Alafia River at Lithia, North Prong Alafia River at Keysville, and South Prong Alafia River near Lithia gages. The step-backwater analysis began at the Alafia River at Lithia gage and progressed upstream to the confluence with the North and South Prong Alafia Rivers. At the confluence and selected upstream cross sections, discharge was reduced to reflect the smaller contributing drainage area size (table 5). Step-backwater computations continued upstream along the North Prong Alafia River for approximately 4 mi to the Keysville gage at SR 676, then continued to termination at cross section 23. Water-surface profiles, extent of inundation, and hydraulic depth were based on the computed watersurface elevations for the selected discharge percentiles (fig. 34).

Estimated floodplain inundation exceeds 1,900 ft (cross section 16.5) during $P_{99.9}$ discharge (1,906 ft³/s) (app. Q). Mean inundation width, based on the 22 cross sections, ranges from 68 ft (P_{10}) to 1,237 ft ($P_{99.9}$). The incised channel along much of the reach generally confines most flows at or below the P_{80} discharge (185 ft³/s) upstream and the P_{90} discharge (270 ft³/s) downstream of the gage (fig. 35 and table 5).

The mean inundation width at the P_{80} discharge (160 ft) may approximate the mean width of the channel. The greatest increases in the extent of mean areal inundation, approximately 406 ft, occurs between the P_{90} (258 ft) to the P_{98} (664 ft) discharge (app. Q). A comparison of the maximum extent of areal inundation for the selected percentile discharges at each cross section is shown in figure 35. However, the figure does not indicated the existence of elevated land surface along the cross section that may be completely inundated during high-flow periods or may form islands during low-flow periods, thus reducing the actual distance inundated. Appendix Q presents the actual distance, in feet, each cross section is inundated.

Percentile discharges below P_{98} (683 ft³/s) at example cross section 17 generally are confined within the channel, and those percentiles at or above P_{98} may inundate the floodplain (fig. 31b and table 5). The approximate mean number of days that inundation of the floodplain occurs at the P_{98} discharge is 8 days per year based on the Alafia River at Lithia gage (table 6). During the 29-year study period, discharge conditions at the P_{98} occurred 19 times.

²Confluence with section 1 of the North and South Prong Alafia Rivers.

³North Prong Alafia River gage at Keysville.

⁴South Prong Alafia River near Lithia.

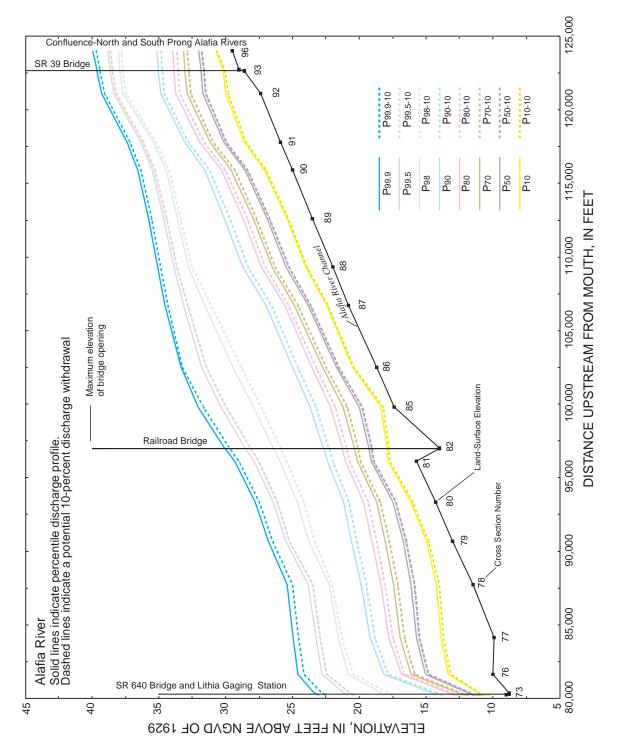


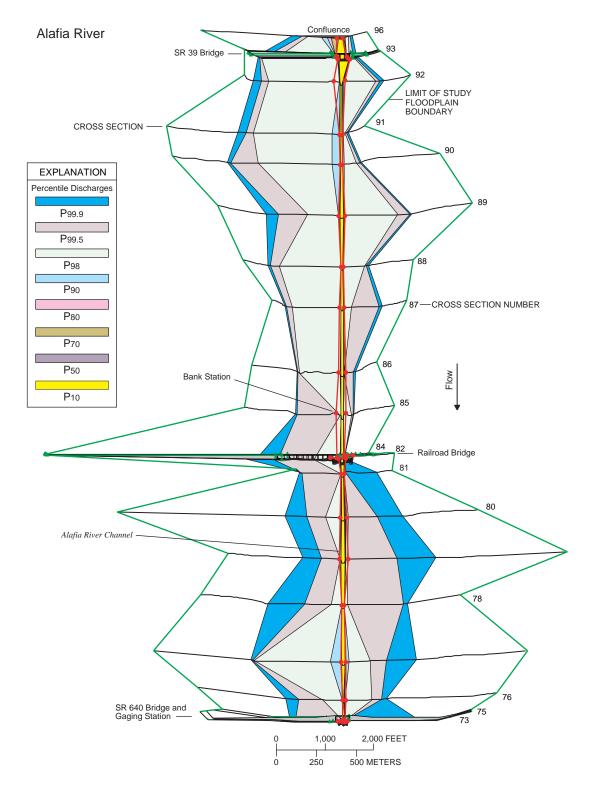
Figure 29. Water-surface profiles along the Alafia River for existing conditions and a potential 10-percent discharge withdrawal, from the SR 640 bridge to the confluence with the North and South Prong Alafia Rivers.

Table 6. Approximate number of days daily mean discharge equaled or exceeded the percentile discharges at Alafia River at Lithia, 1964-92

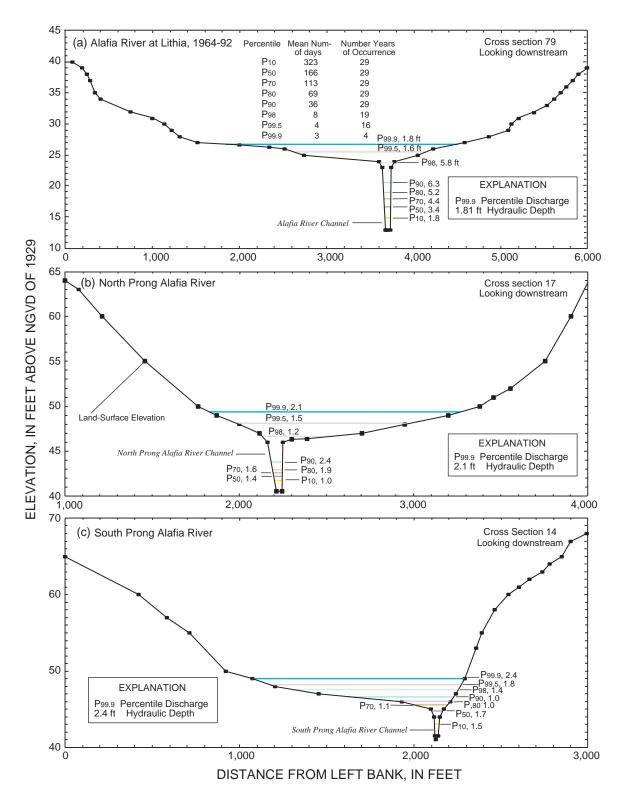
[P₁₀, 10-percentile discharge; -- no days]

.,	Percentiles									
Year	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}		
1964	366	260	187	101	49	7	2			
1965	365	231	122	69	39	10	3			
1966	365	282	200	136	67					
1967	348	191	130	78	39	15	7	3		
1968	348	159	135	99	77	19	7			
1969	365	237	168	102	52	5				
1970	363	321	250	135	57	10	1			
1971	345	125	93	49	19					
1972	366	141	85	56	27	3				
1973	365	198	149	96	52	4	2			
1974	350	135	85	62	42	15	3			
1975	314	107	84	57	22					
1976	341	208	140	84	43	2				
1977	270	60	21	7	2					
1978	333	157	96	62	32					
1979	352	203	147	113	81	21	10	3		
1980	366	276	157	72	23	4	2			
1981	252	72	43	29	19	3	1			
1982	346	152	112	74	32	6	2			
1983	365	211	178	140	96	7	2			
1984	350	225	145	77	23					
1985	178	66	38	19	9	3	1			
1986	284	111	73	39	18					
1987	313	145	113	81	45	5	4			
1988	349	164	118	62	31	9	6	4		
1989	312	106	58	25	16					
1990	247	77	32	13	1					
1991	233	111	76	45	25	8	5	1		
1992	228	74	41	21	12					
Mean	323	166	113	69	36	8	4	3		
Maximum	366	321	225	140	96	21	10	4		
Minimum	178	60	21	7	1	0	0	0		

Hydraulic depths below the P_{90} discharge generally are confined to the channel. Mean hydraulic depths ranged from approximately 1.6 to 3.7 ft, and maximum depths ranged from 2.8 to 6.9 ft (app. R). Because of the increase in cross-sectional area in the transition from the channel to floodplain in example cross section 17, the hydraulic depth of 2.4 ft at the P_{90} discharge is double that of the P_{98} discharge (1.2 ft) (fig. 31b).


Total area of inundation within the channel and floodplain ranged from 48.2 (P_{10}) to 854 ($P_{99.9}$) acres (fig. 36 and app. S). Inundated area below the P_{80} discharge upstream and the P_{90} discharge downstream of the gage generally was confined within the channel at most cross sections (fig. 35).The inundated area from the P_{10} to the P_{80} discharges was approximately 111 acres, which largely consists of the channel area, whereas, the inundated area from the P_{80} to the $P_{99.9}$ discharges, which includes both the channel and floodplain, was 695 acres. The greatest increase in area of inundation between percentiles was 248 acres, which occurred from the P_{90} to P_{98} discharges.

The difference in inundated area, between the existing conditions step-backwater analysis and a potential withdrawal step-backwater analysis, ranged from 0.4 (P_{10}) to 45.5 (P_{98}) acres, which corresponds to an approximate 0.7 and 9.0 percent decrease of inundated area, respectively (fig. 36 and app. T). However, the greatest percentage decrease of inundated area occurred at the P_{80-10} discharge with 23.4 percent. Decrease of inundated area at or below the P_{80-10} discharge generally occurred within the channel, and ranged from approximately 0.4 to 38 acres. The greatest decrease, 45.5 acres, occurred at the P_{98-10} discharge (fig. 37a-h).


South Prong Alafia River

The South Prong Alafia River drains approximately 135 mi². The 10-mi-long South Prong Alafia River study reach generally flows in a northerly direction, from cross section 29 to the confluence with the Alafia and North Prong Alafia Rivers at cross section 1 (figs. 1 and 28). A 107-mi² area of the watershed is drained at the South Prong Alafia River near Lithia gage (02301300) at Jameson Road. Discharge data have been collected continuously by the USGS at the gage from 1962 to the present. Extremes in daily mean discharge at the gage ranged from 1.2 ft³/s (1981) to 2,430 ft³/s (1967). The low-water channel along the study reach of the South Prong Alafia River generally is deeply incised and well defined.

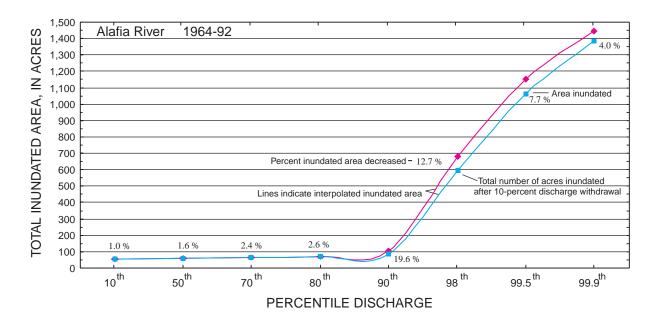
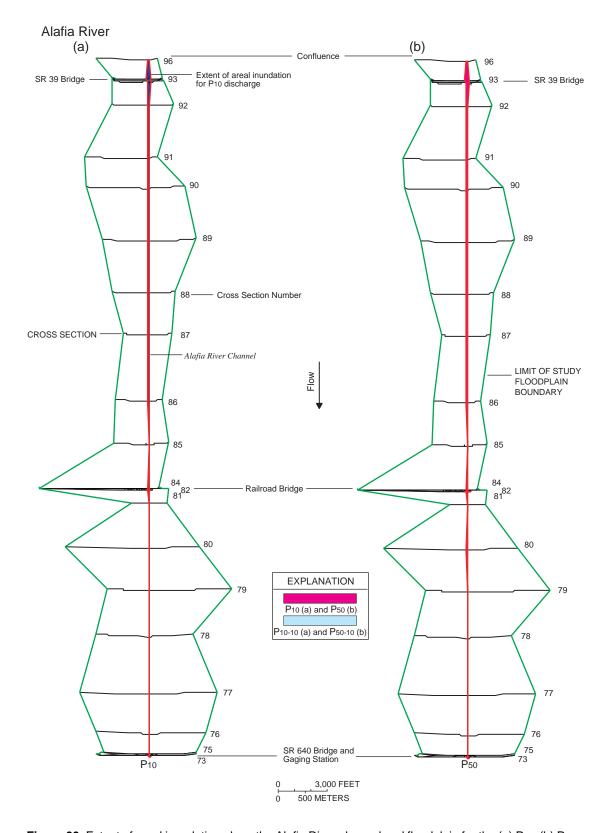

Step-backwater analysis was performed using 31 cross sections located along the South Prong Alafia River from cross section 1 (confluence) to cross section 29. Step-backwater analysis computations for the South Prong Alafia River began at the Alafia River near Lithia gage and progressed upstream to the confluence with the North and South Prong Alafia Rivers.

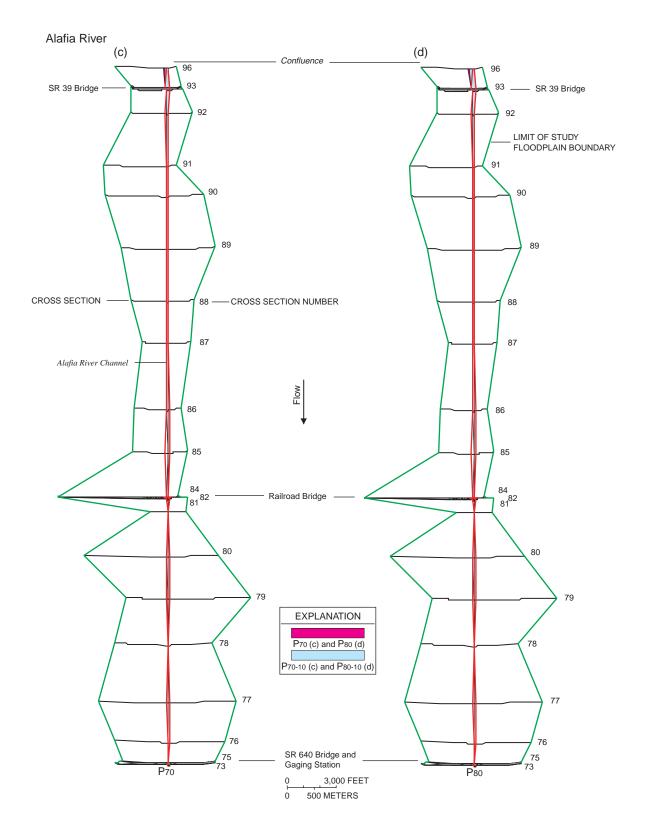
Figure 30. Extent of areal inundation along the Alafia River channel and floodplain for selected percentile discharges, from SR 640 to the confluence with the North and South Prong Alafia Rivers.

Figure 31. Estimated extent and frequency of areal inundation and hydraulic depth for (a) Alafia, (b) North Prong Alafia, and (c) South Prong Alafia Rivers selected cross sections for each of the percentile discharges.

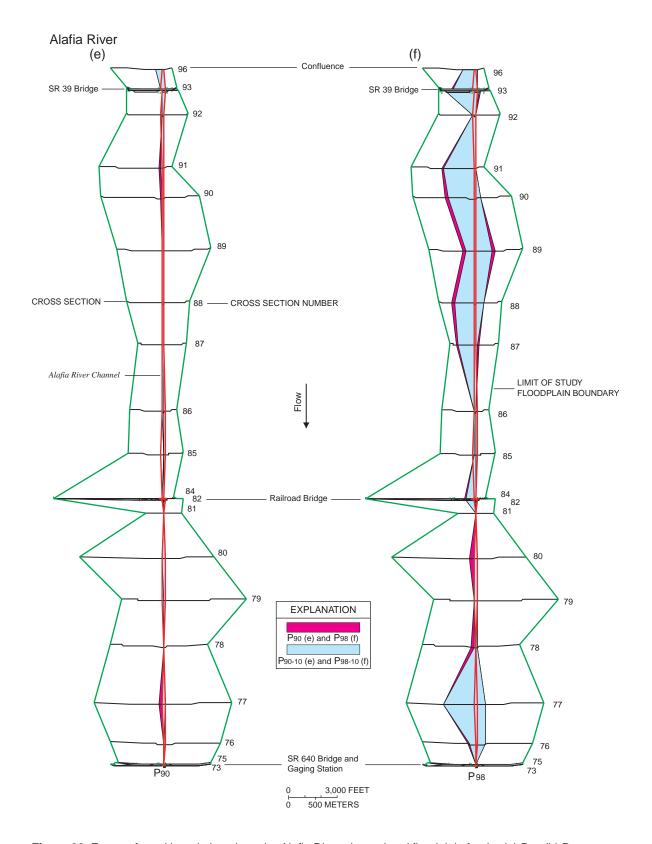
Figure 32. Estimated total inundated area along the Alafia River for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.


At the confluence, discharge was reduced to reflect the smaller drainage area contribution of the South Prong Alafia Rivers. Step-backwater computations continued upstream along the South Prong Alafia River for approximately 7.6 mi to the gage at Jameson Road, then continued to termination at cross section 29. Water-surface elevations, computed during the step-backwater analysis, were used to produce water-surface profiles, extent of areal inundation, and hydraulic depth at the 31 cross sections (fig. 38).

Estimated floodplain inundation exceeds 1,600 ft (cross section 20) during $P_{99.9}$ discharge (app. Q). Mean inundation width for the 31 cross sections along the reach can range from 36 ft (P_{10}) to 1,135 ft ($P_{99.9}$). The incised channel generally confines most flows within the banks below the P_{80} discharge (170 ft³/s) along much of the reach, except at a limited number of low-lying cross sections (fig. 39 and table 5). The mean inundation width at the P_{80} discharge (109 ft) may approximate the mean width of the bankfull channel. The greatest increase in the extent of mean inundation was 566 ft from the P_{90} (197 ft) to the P_{98} (763 ft) discharge (app. Q). A comparison of the maximum


extent of areal inundation for the selected percentile discharges at each cross section is shown in figure 39. However, the figure does not indicated the existence of elevated land surface along the cross section that may be completely inundated during high-flow periods or may form islands during low-flow periods, thus reducing the actual distance inundated. Appendix Q presents the actual distance, in feet, each cross section is inundated.

Example cross section 14 shows discharges at or below P_{50} generally are confined to the channel, and those above may inundate the floodplain (fig. 31c). The approximate mean number of days that inundation of the floodplain occurs at the P_{50} discharge is 166 days per year, based on the 29-year study period at Alafia River at Lithia (table 6).


Hydraulic depths at or below the P_{50} discharge generally reflect the channel. Mean hydraulic depths ranged from approximately 1.2 (P_{10}) to 2.5 (P_{80}) ft, and maximum depths ranged from 2.2 (P_{10}) to 4.4 (P_{90}) ft (app. R). Cross section 14 has an approximate 1-ft hydraulic depth that occurs during the P_{90} discharge an average of about 36 days per year, based on a width of more than 600 ft.

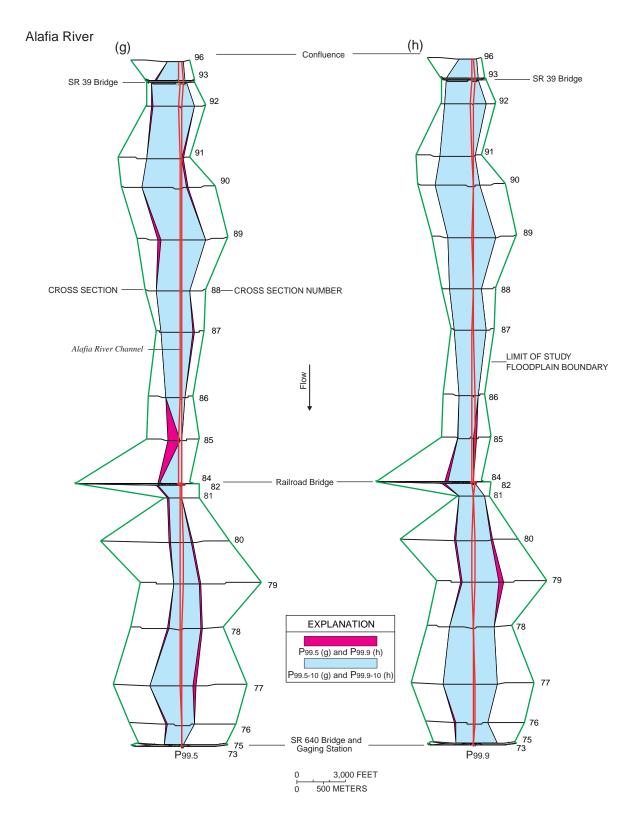

Figure 33. Extent of areal inundation along the Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal.

Figure 33. Extent of areal inundation along the Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 33. Extent of areal inundation along the Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 33. Extent of areal inundation along the Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

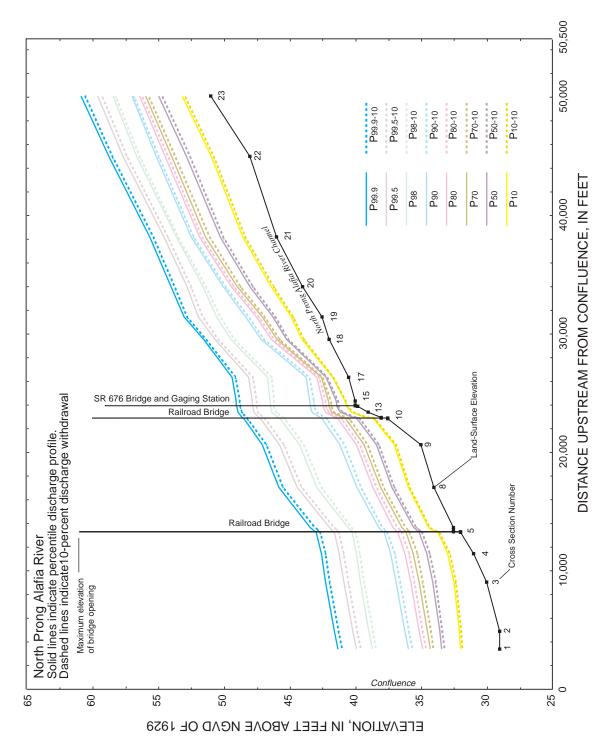
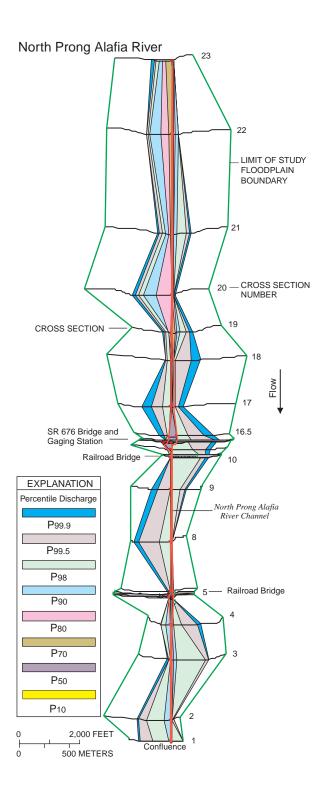
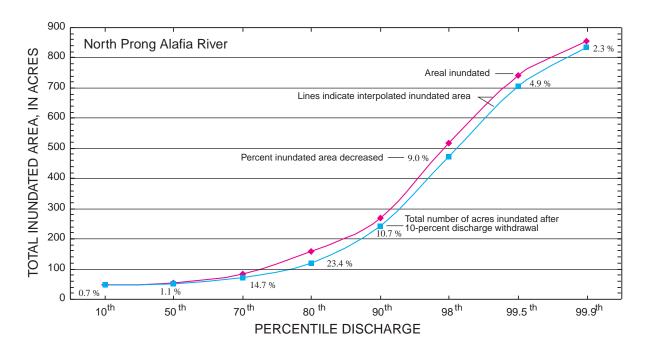



Figure 34. Water-surface profiles along the North Prong Alafia River for existing conditions and a potential 10-percent discharge withdrawal, from the confluence with the Alafia and South Prong Alafia Rivers to cross section 23.


Figure 35. Extent of areal inundation along the North Prong Alafia River channel and floodplain for selected percentile discharges, from the confluence with the Alafia and South Prong Alafia Rivers to cross section 23.

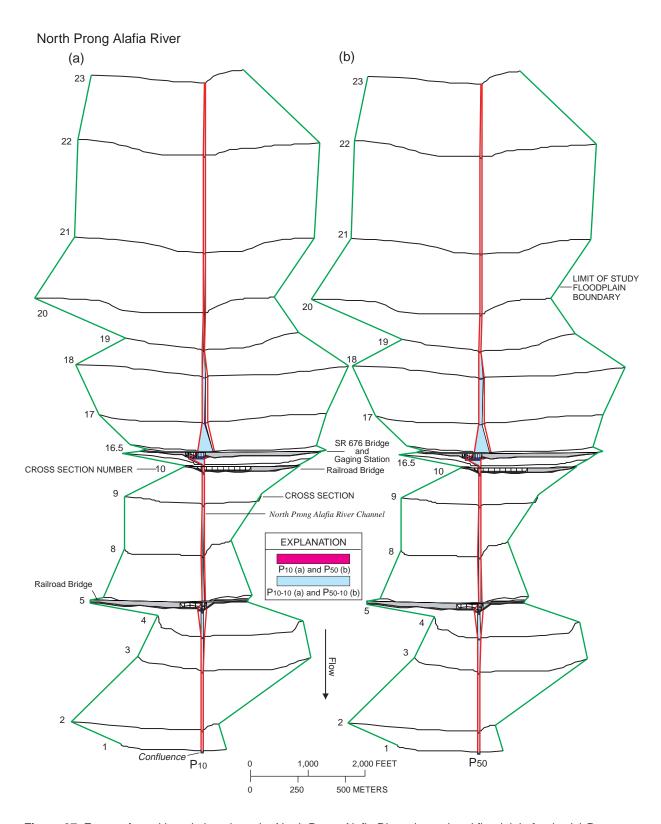
Total inundated area of the channel and floodplain ranged from 36.6 (P_{10}) to 1,055 ($P_{99.9}$) acres (fig. 40 app. S). The difference in inundated area between the P_{10} and P_{80} discharges was approximately 80 acres, which largely includes the area confined within the channel, whereas the inundated area between the P_{80} and $P_{99.9}$ discharges, which generally includes the floodplain, was 938 acres. The greatest increase in area of inundation (538 acres) occurs between the P_{90} and P_{98} discharges.

Decrease in inundated area, between the existing step-backwater analysis and the potential step-backwater analysis, ranged from 0.2 (P_{10}) to 75 (P_{98}) acres, which corresponds to an approximate 1.5- and 10-percent decrease of inundated area, respectively (fig. 40 and app. T). However, the greatest percentage decrease of inundated area occurred at the P_{90-10} discharge with 13.4 percent. Decrease of inundated area at or below the P_{80-10} discharge generally occurred within the channel and ranged from 0.2 to 10.4 acres. The greatest decrease in inundated area (75 acres) occurs at the P_{98-10} discharge (fig. 41a-h).

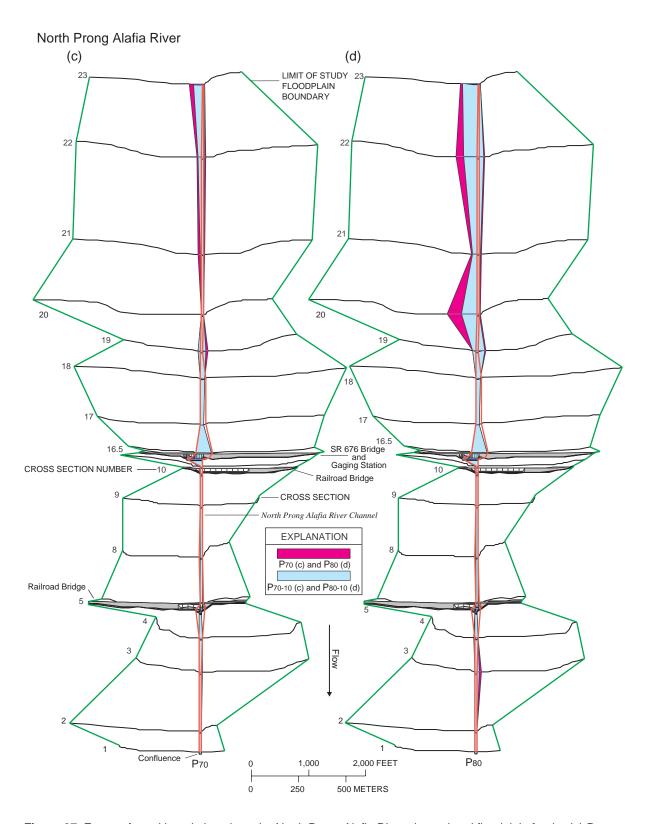
Inundated Area and Effects of Potential Discharge Withdrawals Along the Alafia River System

Total inundated area for the Alafia, North Prong Alafia, and South Prong Alafia Rivers ranged from 137.8 (P_{10} discharge) to 3,354 ($P_{99.9}$ discharge) acres (fig. 42 and app. S). Although the lengths of the Alafia, North Prong Alafia, and South Prong Alafia River study reaches are similar at 8.2, 9.5, and 10 mi, the acreage of inundation for the P_{99,9} discharge for the Alafia River was 41 and 27 percent greater than that of the North and South Prong Alafia River, respectively (app. S). At the P₈₀ discharge, the 348 acres inundated along the Alafia River system generally are confined to the channel. The largest increase in inundated area is 1,363 acres, which occurs between the P_{90} and the P_{98} discharges. Decrease of total inundated area along the Alafia, North Prong Alafia, and South Prong Alafia Rivers study reaches ranged from about 1.3 (P₁₀ discharge) to 196 (P₉₈ discharge) acres, which corresponds to a 1.1 and 10.7 percent decrease of inundated area, respectively. However, the greatest percentage decrease of inundated area occurred at the P₈₀₋₁₀ discharge with 14.5 percent.

Figure 36. Estimated total inundated area along the North Prong Alafia River for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.


SUMMARY

Riverine and palustrine wetlands are a major ecological component of river basins in west-central Florida. Healthy wetlands are dependent upon the frequency and duration of periodic inundation. This report assesses the extent, area, depth, frequency, and duration of periodic flooding and the effects of potential surface-water withdrawals on Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers. Results of the study were based on stepbackwater analysis performed at each of the river systems using the U.S. Army Corps of Engineers Hydrologic Engineering Center-River Analysis System (HEC-RAS) one-dimensional model. Step-backwater analysis of selected mean daily discharges at the 10th, 50th, 70th, 80th, 90th, 98th, 99.5th, and 99.9th percentiles was used to compute extent of inundation, area, and hydraulic depth. An assessment of the net changes of areal inundation was compared between existing and potential conditions, if 10 percent of the total river flow were diverted for potential withdrawals.


Cypress Creek, a major tributary to the Hills-borough River, drains a 164 mi² area north of the city of Tampa. The low-gradient channel generally is poorly

incised and defined. Widespread areal inundation of lower Cypress Creek occurs at the 50th percentile. However, the most widespread inundation of the broad palustrine wetlands, which dominate the length of the Cypress Creek floodplain, occurs at the 80th percentile. The total inundated area of Cypress Creek ranged from about 1,200 (50th percentile) to 9,000 (99.9th percentile) acres. The mean hydraulic depth ranged from 0.8 to 2.9 ft, with a maximum depth of 7.8 ft. Based on a potential 10-percent withdrawal in discharge, the decrease in area of inundation along Cypress Creek ranged from 22 to 395 acres, and the percent of decreased inundated area ranged from 1.7 to 8.4 percent.


A 70-mi-long channel of the Peace River was divided into three study reaches: Arcadia to Zolfo Springs (reach 1), Zolfo Springs to Fort Meade (reach 2), and Fort Meade to Bartow (reach 3). The step-backwater analysis was based on the concurrent long-term streamflow record, 1940-98, at the Peace River at Arcadia, Zolfo Springs, and Bartow gages. Total inundated area of reach 1 ranged from 377 to 17,196 acres. Mean hydraulic depth ranged from 1.7 to 5.4 ft, with a maximum depth of 12 ft. The decrease in area of inundation from a potential 10-percent withdrawal in discharge ranged from approximately 5 to 1,500 acres.

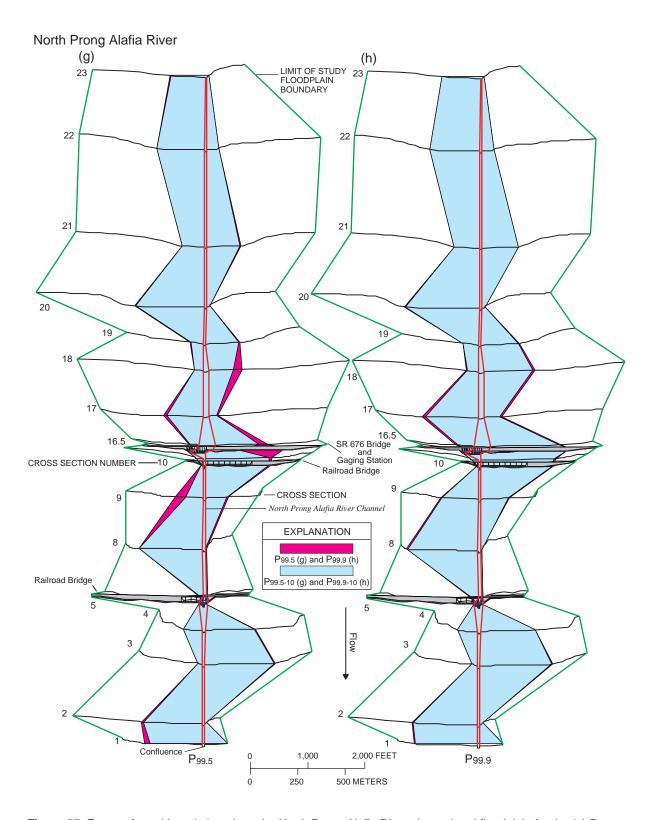

Figure 37. Extent of areal inundation along the North Prong Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal.

Figure 37. Extent of areal inundation along the North Prong Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 37. Extent of areal inundation along the North Prong Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

Figure 37. Extent of areal inundation along the North Prong Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and a potential 10-percent discharge withdrawal. (Continued)

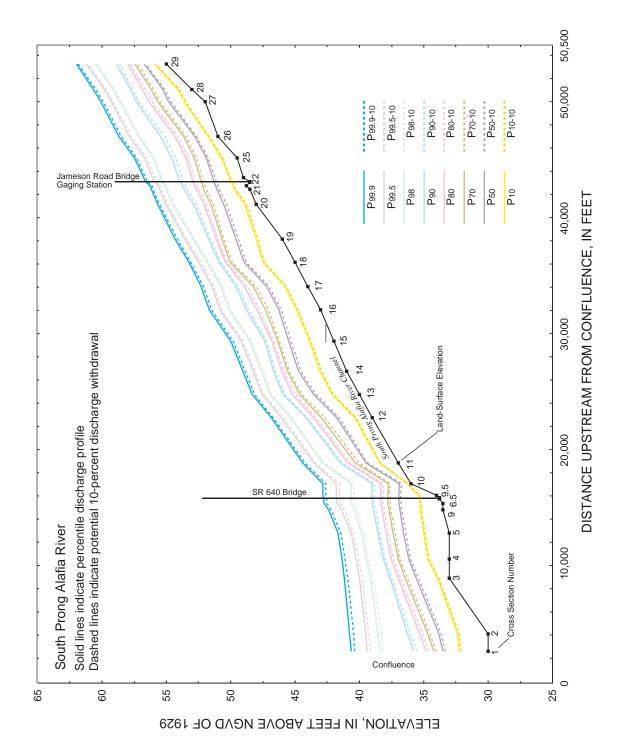
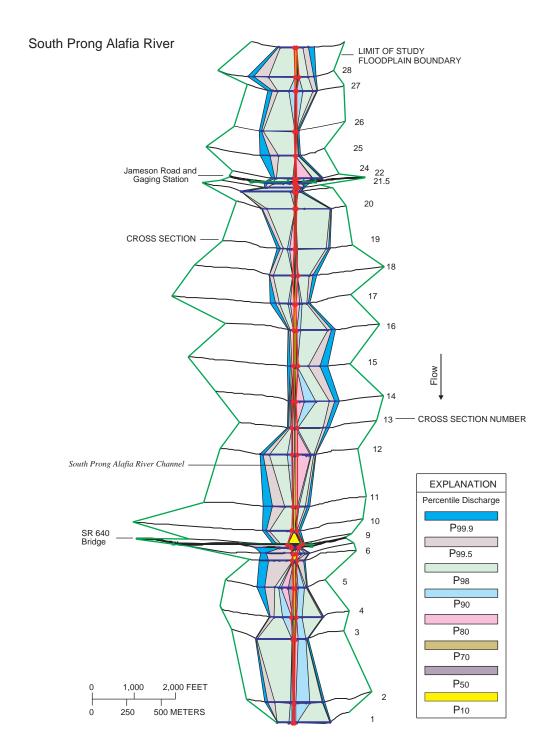
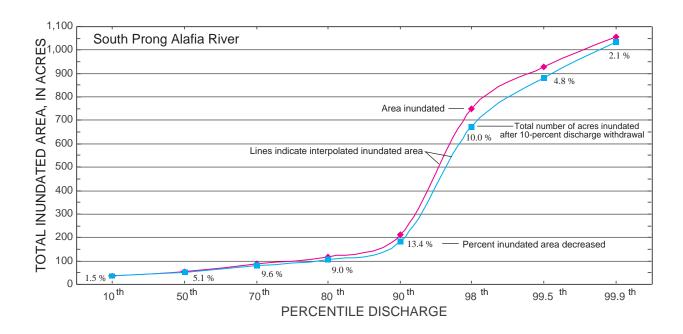
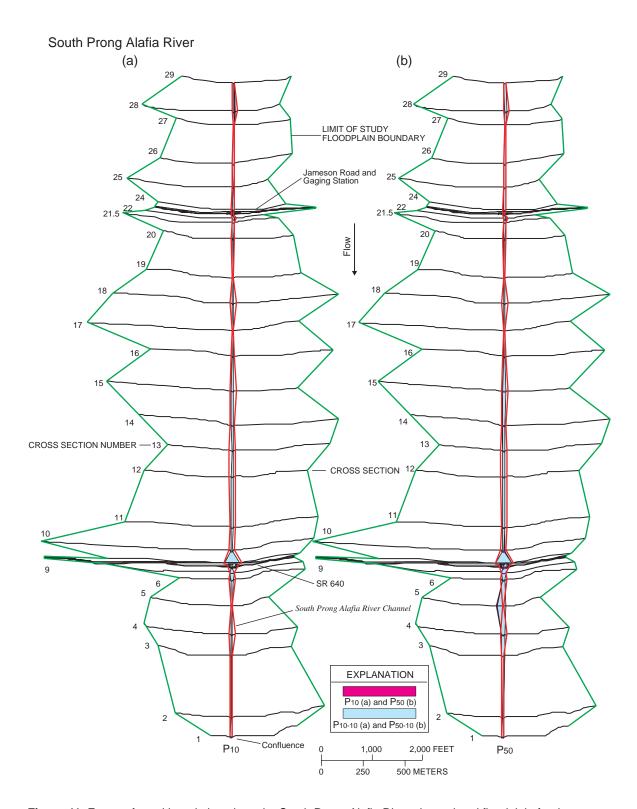




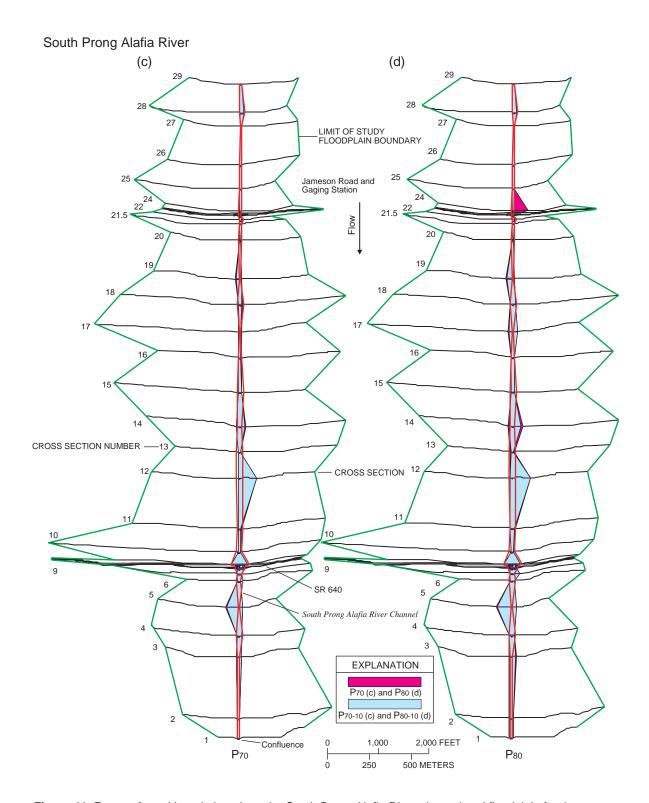
Figure 38. Water-surface profiles along the South Prong Alafia River for existing conditions and a potential 10-percent discharge withdrawal, from the confluence with the Alafia and North Prong Alafia Rivers to cross section 29.

Figure 39. Extent of areal inundation along the South Prong Alafia River channel and floodplain for selected percentile discharges, from the confluence with the Alafia and North Prong Alafia Rivers to cross section 29.

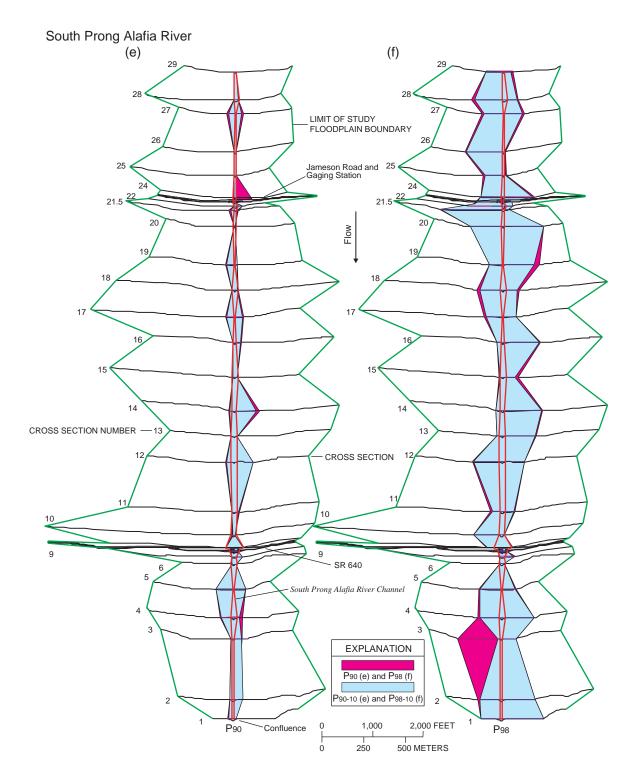
Figure 40. Estimated total inundated area along the South Prong Alafia River for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.

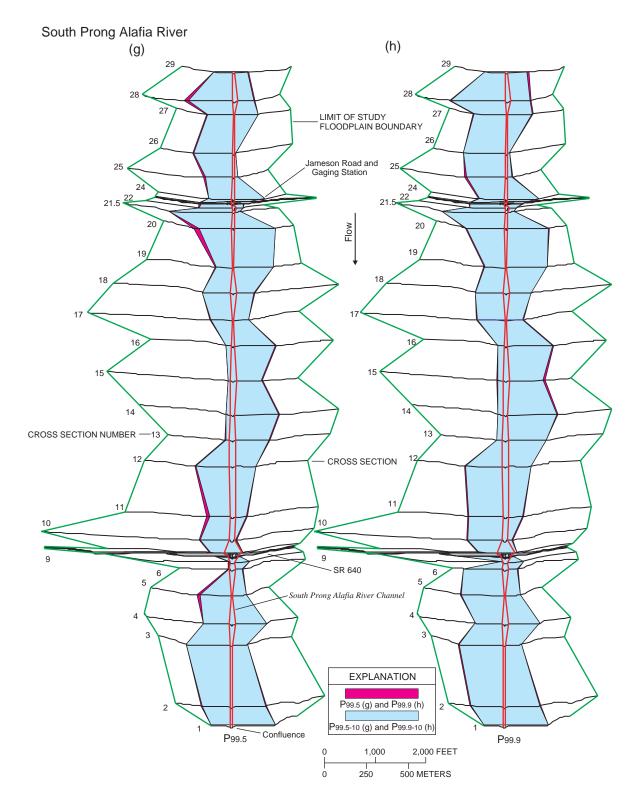

Total inundated area of reach 2 ranged from 225 to 6,100 acres. Mean hydraulic depth ranged from 1.5 to 5.5 ft, with a maximum depth of 11 ft. The decrease in area of inundation, from a potential 10-percent withdrawal in discharge, ranged from about 6 to 370 acres. Total inundated area of reach 3 ranged from about 170 to 2,800 acres. The mean hydraulic depth ranged from 1.5 to 4.6 ft, with a maximum depth of 7.2 ft. The decrease in area of inundation, from a potential 10percent withdrawal in discharge, ranged from about 7 to 100 acres. Total area of inundation for the three reaches of the Peace River ranged from 775 to 26,100 acres. Based on a potential 10-percent withdrawal in discharge, the decrease in area of inundation along the three reaches of the Peace River ranged from about 17 to 1,900 acres, and decreased inundation ranged from 2.1 to 13.6 percent.

The 8.2-mi-long Alafia River study channel, from the SR 640 bridge to the confluence with the North and South Prong Alafia Rivers, is deeply incised, confining most discharge at or below the 90th percentile. Total inundated area ranged from approximately 50 to 1,400 acres. Mean hydraulic depth ranged from 1.8 to 4.8 ft, with a maximum depth of 9.2 ft. Based on a potential 10-percent withdrawal in discharge, the decrease in area


of inundation along the Alafia River ranged from about 1 to 90 acres, and the percent of decreased inundated area ranged from 1.0 to 19.6 percent.

The 9.5-mi-long North Prong Alafia River study channel also is deeply incised. Discharges below the 80th percentile generally are confined within the banks. Step-backwater analysis was performed at 22 cross sections. Total inundated area ranged from about 48 to 850 acres. Mean hydraulic depth ranged from 1.6 to 3.7 ft, with a maximum depth of about 7 ft. Based on a potential 10-percent withdrawal in discharge, the decrease in area of inundation along the North Prong Alafia River ranged from less than 1 to about 46 acres, and the percent of decreased inundated area ranged from about 1 to 23 percent.


The 10-mi-long South Prong Alafia River channel is deeply incised and generally contains discharges below the 80th percentile. Step-backwater analysis was performed using 31 cross sections. Total inundated area ranged from about 40 to 1,100 acres. Mean hydraulic depth ranged from 1.2 to 2.5 ft, with a maximum depth of 4.4 ft. The decrease in area of inundation, from a potential 10-percent withdrawal in discharge, ranged from less than 1 to 75 acres, for discharges at the 10th and 98th percentiles, respectively. Based on a potential 10-percent withdrawal in discharge, the percent of decreased inundated area ranged from 1.5 to 13.4 percent.


Figure 41. Extent of areal inundation along the South Prong Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and for a potential 10-percent discharge withdrawal.

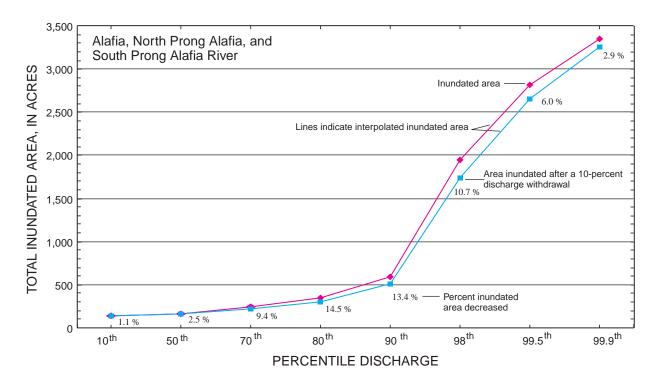

Figure 41. Extent of areal inundation along the South Prong Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and for a potential 10-percent discharge withdrawal. (Continued)

Figure 41. Extent of areal inundation along the South Prong Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and for a potential 10-percent discharge withdrawal. (Continued)

Figure 41. Extent of areal inundation along the South Prong Alafia River channel and floodplain for the (a) P_{10} , (b) P_{50} , (c) P_{70} , (d) P_{80} , (e) P_{90} , (f) P_{98} , (g) $P_{99.5}$, and (h) $P_{99.9}$ discharges for existing conditions and for a potential 10-percent discharge withdrawal. (Continued)

Figure 42. Estimated total inundated area along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for existing conditions and for a potential 10-percent discharge withdrawal, and percentage of inundated area decreased by a potential 10-percent discharge withdrawal for each of the selected percentile discharges.

SELECTED REFERENCES

Broska, J.C., and Knochenmus, L.A., 1996, Assessment of the hydrogeology and water quality in a near-shore wellfield, Sarasota, Florida: U.S Geological Survey Water-Resources Investigations Report 96-4036, 64 p.

Cowardin, Lewis, M., Carter, Virginia, Golet, Francis, C., and LaRoe, Edward, T., 1979, Classification of wetlands and deepwater habitats of the United States: U.S. Fish and Wildlife Service, FWS/OBS-79/31, 103 p.

Hammett, K.M., 1990, Land use, water use, streamflow characteristics, and water-quality characteristics of the Charlotte Harbor inflow area, Florida: U.S. Geological Survey Water-Supply Paper 2359-A, 64 p.

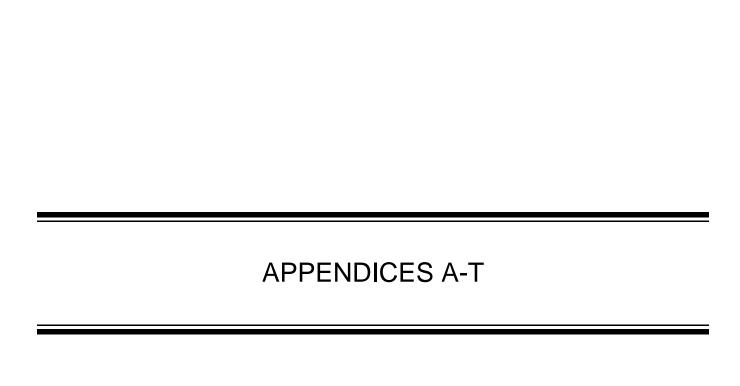
Murphy Jr., W.R., 1978, Flood profiles for Cypress Creek, west-central Florida: U.S. Geological Survey Water-Resources Investigations Report 78-8, 29 p.

Murphy Jr., W.R., Hammett, K.M., and Reeter, C.V., 1978, Flood profiles for Peace River, south-central Florida: U.S. Geological Survey Water-Resources Investigations Report 78-57, 35 p.

Robertson, A.F., 1978, Flood profiles of the Alafia River, west-central Florida: U.S. Geological Survey Water-Resources Investigations Report 77-74, 21 p.

Shearman, J.O., 1976, Computer program E431 user's manual, U.S. Geological Survey Open-File Report 76-499, 175 p.

Southwest Florida Water Management District, 2001, Brooksville, Fla., Regional Water-Supply Plan.


Stamey, T.C., 1985, Frequency and duration of flooding of Grove Creek near Kenansville, North Carolina, for present and proposed restored channel conditions: U.S. Geological Survey Water-Resources Investigations Report 85-4298, 52 p.

Warner, J.C., and Brunner, G.W., 1998, U.S. Army Corps of Engineers Hydrologic Engineering Center, 1998, HEC-RAS River Analysis System, Hydraulic Application Guide, version 2.2, CPD-70, 283 p.

—— 1998, U.S. Army Corps of Engineers Hydrologic Engineering Center, 1998, HEC-RAS River Analysis System, Hydraulic Reference Manual, version 2.2, CPD-69, 251 p.

White, W.A., 1970, The geomorphology of the Florida Peninsula: Tallahassee, Florida Bureau of Geology Bulletin No. 51, 164 p.

Wolansky, R.M., 1983, Hydrogeology of the Sarasota-Port Charlotte area Florida: U.S. Geological Survey Water-Resources Investigations Report 82-4089, 48 p.

Appendix A. Extent of inundation at Cypress Creek cross sections for selected percentile discharges

Percentiles Cross P₉₀ P_{99.5} P_{99.9} P₅₀ P₇₀ P₈₀ P₉₈ section Feet Mouth 6,475 7,802 7,840 7,889 7,964 8,012 8,049 4,989 2 3.002 3.966 4.231 4.482 4,828 5.072 3,122 4 2,468 2,823 2,959 3,344 3,502 3,638 6 1,293 1,661 2,005 3,225 854 2,861 3,288 6.1 112 127 130 134 214 385 507 6.2 289 608 773 1,035 1,732 2,025 2,269 360 471 1,088 151 616 746 1,227 8 171 277 344 447 1,049 1,225 1,531 177 197 142 223 254 886 1,073 9.1 SR 581 Bridge Cypress reek near Sulphur Springs Gage 9.2 142 178 255 1,123 197 224 895 9.5 479 594 224 729 855 1,026 1,560 387 900 1,379 1,548 641 751 1,165 5,575 12 2,372 3,777 4,200 4.629 5,310 5,808 14 46.0 732 994 1,275 1,707 3,012 3,320 15 104 319 647 1,227 1,945 2,448 2,808 16 85.8 98.7 105 114 132 147 159 17 276 746 1,113 1,416 1,959 2,280 2,395 18 42.2 1,296 1.353 1.427 26.4 444 868 20 24.0 38.6 112 479 4,682 5,811 5,948 22 183 608 1.455 2,372 5,607 5,750 5,944 24 33.5 514 939 2,112 4,279 4,695 4,772 26 35.1 39.3 365 1,888 3,125 3,817 4,306 28 34.5 71.1 936 1.721 4.371 5.015 5,617 5,675 30 34.1 38.0 169 1,882 3,783 5,050 32 90.7 103 1,949 66.2 80.5 1,117 1.716 33 37.8 40.6 42.6 45.2 49.3 56.3 63.2 33.1 39.6 43.6 46.5 49.8 54.6 89.9 116 33.2 Interstate 75 Bridge (Hillsborough County) 33.25 39.8 121 43.8 46.7 49.9 54.9 33.3 42.3 48.3 52.7 64.2 96.4 111 56.6 34 49.2 52.8 55.4 58.3 75.5 105 275 36 27.7 31.2 33.9 37.9 51.5 63.3 118 37 17.5 21.8 24.5 30.8 106 256 394 37.1 12.5 14.4 22.8 52.4 148 310 13.6 37.2 Hillsborough-Pasc o County Line Bridge 37.3 12.6 13.7 14.5 25.0 61.3 155 328 38 31.7 45.3 74.5 77.0 55.7 64.8 71.6 39 37.3 39.0 40.3 49.4 73.9 90.8 154 40 88.2 93.7 97.9 111 207 537 829 42 30.7 28.2 32.6 35.7 252 1,047 1,205 44 41.2 42.6 43.8 46.0 57.8 1,368 1,481 46 26.5 27.0 27.4 28.3 200 1,137 1,747 47 141 142 142 143 369 1,956 2,395 47.1 68.6 73.6 74.6 76.8 154 801 1,433 47.2 Interstate 75 Bridge (Paso County) 47.3 66.8 69.9 72.6 936 1,593 76.1 183 48 60.2 1,548 60.7 61.5 63.0 134 2.200 49 57.1 59.3 68.3 82.5 183 793 990 91.9 50 66.0 81.4 101 122 244 290 50.5 47.5 254 37.6 43.5 62.7 111 241 59.4 67.8 71.3 91.2 95.6 76.7 51.5 press Creek at Worthington Gardens Gage SR 54 Bridge-C 51.6 64.0 72.1 74.4 78.1 85.8 91.5 96.0 52 55.0 58.4 62.2 71.3 188 291 376 219 53 51.1 63.1 73.1 84.6 110 150 53.1 41.3 50.1 59.0 65.9 77.9 111 53.2 Bridge 53.3 41.3 50.4 55.9 59.1 65.9 78.5 112.3 53.4 38.3 56.3 66.6 71.9 83.2 100.2 138.3 54 23.7 82.7 338 531 691 810 1,014 55 217 1,223 2,205 3,766 4,836 4,923 4,987 56 159.4 3,36 1,285 2,254 3,300 26.4 3,148

74

Appendix A. Extent of inundation at Cypress Creek cross sections for selected percentile discharges (Continued)

					3 (-		- ,
~			<u>P</u>	ercentile	<u>s</u>		
Cross section	P ₅₀	P ₇₀	P ₈₀	P_{90}	P ₉₈	P _{99.5}	P _{99.9}
section _				Feet			
57	27.1	28.7	726	1,426	3,802	4,276	4,546
58	26.4	28.6	327	607	1,056	1,476	1,720
60	290	504	562	638	1,023	2,984	3,126
62	25.2	26.5	28.2	261	2,508	2,944	3,060
64	38.8	2,053	2,306	2,681	2,765	2,812	2,876
66	1,103	1,991	2,399	2,697	4,838	5,177	5,966
68	33.7	33.6	35.4	38.4	1,168	1,226	1,290
70	37.8	1,661	1,701	1,769	2,169	2,267	2,355
72	1,433	1,511	1,558	5,331	5,676	5,955	6,178
74	35.2	38.0	976	2,575	3,715	3,973	4,236
76	37.9	712	1,387	2,278	3,782	6,846	6,951
78	34.1	1,579	2,019	2,587	4,666	5,149	5,562
80	57.4	80.1	95.9	148	248	357	468
80.1	137	145	149	157	177	255	367
80.2	Surf	ace-Water	Control St	ructure at	Cypress Cr	eek Wellfi	eld
80.3	138	147	153	165	401	841	3,558
80.8	60.2	60.4	60.5	60.7	61.1	61.5	62.0
81	6.0	6.0	6.0	61.0	61.0	61.0	61.0
81.5	140	153	168	252	469	967	3,815
82	140	153	168	252	471	973	3,824
84	31.9	33.9	35.7	39.0	846	1,397	1,985
85	37.1	700	1,195	1,808	2,079	3,002	3,654
86	33.6	38.2	2,471	3,793	4,655	5,393	6,504
88	38.4	1,902	2,889	3,878	5,233	5,376	5,449
90	35.9	195	694	1,445	2,029	2,455	3,057
92	64.4	422	504	597	775	941	1,107
94	142.4	159	171	196	240	267	293
94.5	15.6	30.2	37.0	44.8	57.7	62.9	70.7
95	66.0	76.2	84.3	97.5	134	174	223
96	26.4	31.9	38.9	145.4	273	349	426
97	31.5	55.2	61.9	77.2	137	220	318
98	43.2	49.8	54.8	96.0	338	516	737
99	38.2	45.5	46.1	48.1	82.6	230	786
100	S					tonio Gage	
Mean	267	489	667	961	1,479	1,864	2,164
Maximum	6,475	7,802	7,840	7,889	7,964	8,012	8,049
Minimum	6.0	6.0	6.0	22.8	49.3	56.3	61.0

Appendix B. Hydraulic depth at Cypress Creek cross sections for selected percentile discharges

Percentiles Cross P_{99.5} P_{99.9} P₅₀ P₇₀ P80 P_{90} P98 section Feet Mouth 1 1.80 2.49 2.96 4.79 3.51 4.35 5.05 2 1.42 2.05 3.47 3.82 4.05 2.39 2.81 4 1.53 2.37 2.73 3.15 3.81 4.13 4.29 6 1.31 1.77 1.80 2.02 2.26 2.51 2.81 6.1 2.75 3.47 4.33 3.33 3.87 2.24 2.00 6.2 2.83 2.17 2.13 2.10 2.05 2.25 2.36 7 1.36 1.32 1.44 1.61 2.22 2.00 2.15 8 2.30 2.30 2.28 2.28 1.65 2.01 1.96 9 2.60 3.06 3.22 3.49 4.27 4.88 4.12 9.1 SR 581 Bridge-Cypress Creek near Sulphur Springs Gage 9.2 2.60 3.49 4.29 4.93 3.06 3.22 4.04 9.5 2.12 1.77 2.70 1.97 1.84 2.04 2.81 10 1.05 1.52 1.73 2.00 2.49 2.74 2.98 12 2.88 3.97 0.59 1.27 1.61 2.08 3.50 14 0.82 2.00 0.51 0.83 1.24 1.70 2.17 15 0.52 0.48 0.50 0.66 1.24 1.64 2.00 16 0.46 0.90 2.27 1.21 1.59 2.69 3.02 17 0.10 0.33 0.51 0.86 1.50 1.97 2.45 18 1.13 1.35 0.29 0.41 0.92 1.50 1.94 20 0.40 1.06 0.66 0.63 0.45 0.78 1.18 22 0.29 0.52 0.59 0.93 1.14 1.58 1.96 24 0.73 0.35 0.50 0.621.10 1.51 1.98 26 0.95 1.64 0.39 0.41 0.87 1.21 1.56 28 0.67 0.82 0.37 0.71 0.91 1.32 1.67 30 0.81 1.51 0.53 0.32 0.81 1.10 1.48 32 0.72 0.87 1.52 1.93 2.43 0.97 1.38 33 0.75 1.55 2.09 2.77 3.76 4.04 4.22 33.1 0.72 1.49 2.01 2.70 3.73 2.96 2.97 33.2 Interstate 75 Bridge (Hillsborough County) 33.25 0.74 1.50 2.03 2.72 3.78 2.91 3.01 33.3 0.92 1.63 2.11 2.80 3.80 3.38 3.78 34 0.97 1 77 2.34 3 11 3.73 3.76 2.04 36 2.05 2.85 3.89 0.68 1.48 4.59 3.35 37 1.18 1.86 2.38 2.98 2.17 2.06 2.52 37.1 1.41 2.29 2.93 2.77 2.90 2.19 3.33 37.2 Hillsborough-Pasco County Line Bridge 37.3 1.44 2.36 2.70 2.63 3.02 2.23 3.45 38 1.12 1.72 2.17 5.15 6.57 7.76 3.14 39 1.53 2.54 3.29 3.89 4.60 5.24 4.28 40 1.56 2.54 3.27 4.15 3.76 2.60 2.94 42 0.59 2.37 1.63 3 49 1.08 1 34 2.56 44 0.75 1.53 2.27 3.49 5.04 0.43 1.58 46 0.68 1.44 2.08 3.28 1.07 1.39 1.68 47 0.43 0.94 1 42 2.41 2.27 1.37 2.00 47.1 0.51 0.97 1.43 2.36 4.12 3.16 3.88 47.2 Interstate 75 Bridge (Pasco County) 47.3 0.66 2.49 3.92 3.29 4.08 1.18 1.62 48 0.11 0.38 0.85 1.75 2.31 0.99 1.84 49 0.87 1.53 1.85 2.31 2.45 1.50 2.00 50 0.70 1.27 1.71 2.44 3.95 4.95 5.60 50.5 1.03 1.69 2.19 2.48 3.05 2.78 3.92 51 0.98 1.69 2.26 3.10 4.91 6.23 7.24 51.5 SR 54 Bridge-Cypress Creek at Worthington Gardens Gage 51.6 0.97 1.70 2.31 3.22 5.08 6.41 7.44 52 2.42 2.95 3.50 1.12 1.90 2.44 3.11 53 1.73 2.13 2.82 4.19 4.42 1.17 4.26 53.1 1.17 1.76 2.23 3.14 4.97 5.70 6.35

Appendix B. Hydraulic depth at Cypress Creek cross sections for selected percentile discharges (Continued)

Cross Section P50 P70 P80 P90 P90 P98 P99.5 P99.9 53.2 Arch Bridge 53.3 1.18 1.76 2.24 3.15 4.98 5.67 6.38 53.4 1.10 1.48 1.89 2.76 4.51 5.25 4.97 54 0.92 0.95 0.63 1.32 2.92 4.10 4.51 55 0.23 0.42 0.66 1.14 2.97 4.64 6.01 56 0.82 0.39 0.51 0.60 2.24 3.03 4.30 57 0.99 1.74 0.28 0.66 1.77 3.20 4.55 58 0.49 1.26 0.39 0.60 1.60 2.14 3.12 60 0.22 0.57 0.99 1.48 1.75 1.48 2.55 62 0.19 0.40 0.64 0.33 0.62 1.27 2.17 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>` `</th> <th></th>							` `	
Section Pso				<u>P</u>	ercentile	e <u>s</u>		
Signature Sign		P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
53.3 1.18 1.76 2.24 3.15 4.98 5.67 6.38 53.4 1.10 1.48 1.89 2.76 4.51 5.25 4.97 54 0.92 0.95 0.63 1.32 2.92 4.10 4.51 55 0.23 0.42 0.66 1.14 2.97 4.64 6.01 56 0.82 0.39 0.51 0.60 2.24 3.03 4.30 57 0.99 1.74 0.28 0.66 1.77 3.20 4.55 58 0.49 1.26 0.39 0.60 1.60 2.14 3.12 60 0.22 0.57 0.99 1.48 1.75 1.48 2.55 62 0.19 0.40 0.64 0.33 0.62 1.27 2.17 64 0.78 0.22 0.36 0.58 0.82 1.25 1.67 64 0.79 0.44 0.49 0.7					Feet			
53.4 1.10 1.48 1.89 2.76 4.51 5.25 4.97 54 0.92 0.95 0.63 1.32 2.92 4.10 4.51 55 0.23 0.42 0.66 1.14 2.97 4.64 6.01 56 0.82 0.39 0.51 0.60 2.24 3.03 4.30 57 0.99 1.74 0.28 0.66 1.77 3.20 4.55 58 0.49 1.26 0.39 0.60 1.60 2.14 3.12 60 0.22 0.57 0.99 1.48 1.75 1.48 2.55 62 0.19 0.40 0.64 0.33 0.62 1.27 2.17 64 0.78 0.22 0.36 0.60 1.20 1.70 2.39 66 0.12 0.28 0.38 0.58 0.82 1.25 1.67 68 0.35 0.34 0.49 0.75<	53.2			A	Arch Bridg	e		
54	53.3	1.18	1.76	2.24	3.15	4.98	5.67	6.38
55 0.23 0.42 0.66 1.14 2.97 4.64 6.01 56 0.82 0.39 0.51 0.60 2.24 3.03 4.30 57 0.99 1.74 0.28 0.66 1.77 3.20 4.55 58 0.49 1.26 0.39 0.60 1.60 2.14 3.12 60 0.22 0.57 0.99 1.48 1.75 1.48 2.55 62 0.19 0.40 0.64 0.33 0.62 1.27 2.17 64 0.78 0.22 0.36 0.60 1.20 1.70 2.39 66 0.12 0.28 0.38 0.58 0.82 1.25 1.67 68 0.35 0.34 0.49 0.75 0.26 0.34 0.45 70 0.70 0.24 0.42 0.71 1.05 1.44 1.78 72 0.12 0.47 0.66 0.30 0.82 1.21 1.57 74 0.48 0.71 0.10 0.29 0.57 0.99 1.21 76 0.70 0.19 0.30 0.39 0.58 0.55 0.82 78 0.66 0.25 0.41 0.59 0.72 0.98 1.19 80 0.36 0.53 0.61 0.66 0.87 0.95 1.08 80.1 0.53 0.84 1.03 1.33 1.86 1.97 2.32 80.2 Surface-Water Control Structure at Cypress Creek Wellfield 80.3 0.57 0.93 1.20 1.64 2.40 3.52 4.76 80.8 0.58 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.51 3.3 1.40 1.09 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.22 0.36 0.75 0.77 0.85 86 0.30 0.70 0.19 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76		1.10	1.48	1.89	2.76	4.51	5.25	4.97
56		0.92	0.95	0.63	1.32	2.92	4.10	4.51
57		0.23	0.42	0.66	1.14	2.97	4.64	6.01
58		0.82	0.39	0.51	0.60	2.24	3.03	4.30
60		0.99	1.74	0.28	0.66	1.77	3.20	4.55
62		0.49	1.26	0.39	0.60	1.60	2.14	3.12
64 0.78 0.22 0.36 0.60 1.20 1.70 2.39 66 0.12 0.28 0.38 0.58 0.82 1.25 1.67 68 0.35 0.34 0.49 0.75 0.26 0.34 0.45 70 0.70 0.24 0.42 0.71 1.05 1.44 1.78 72 0.12 0.47 0.66 0.30 0.82 1.21 1.57 74 0.48 0.71 0.10 0.29 0.57 0.90 1.21 76 0.70 0.19 0.30 0.39 0.58 0.55 0.82 78 0.66 0.25 0.41 0.59 0.72 0.98 1.19 80 0.36 0.53 0.61 0.66 0.87 0.95 1.08 80.1 0.53 0.84 1.03 1.33 1.86 1.97 2.32 80.2 Surface-Water Control Structure at Cypress Creek Wellfield 80.3 0.57 0.93 1.20 1.64 2.40 3.52 4.76 80.8 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.77 2.51 3.74 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage		0.22	0.57	0.99	1.48	1.75	1.48	2.55
66 0.12 0.28 0.38 0.58 0.82 1.25 1.67 68 0.35 0.34 0.49 0.75 0.26 0.34 0.45 70 0.70 0.24 0.42 0.71 1.05 1.44 1.78 72 0.12 0.47 0.66 0.30 0.82 1.21 1.57 74 0.48 0.71 0.10 0.29 0.57 0.90 1.21 76 0.70 0.19 0.30 0.39 0.58 0.55 0.82 78 0.66 0.25 0.41 0.59 0.72 0.98 1.19 80 0.36 0.53 0.61 0.66 0.87 0.95 1.08 80.1 0.53 0.84 1.03 1.33 1.86 1.97 2.32 80.2 Surface-Water Control Structure at Cypress Creek Wellfield 80.3 0.57 0.93 1.20 1.64 2.40 3.52 4.76 80.8 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.77 2.51 3.74 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage		0.19	0.40	0.64	0.33		1.27	2.17
68		0.78	0.22	0.36	0.60	1.20	1.70	2.39
70		0.12	0.28	0.38	0.58	0.82	1.25	1.67
72		0.35	0.34	0.49	0.75	0.26	0.34	0.45
74					0.71			1.78
76								
78 0.66 0.25 0.41 0.59 0.72 0.98 1.19 80 0.36 0.53 0.61 0.66 0.87 0.95 1.08 80.1 0.53 0.84 1.03 1.33 1.86 1.97 2.32 80.2 Surface-Water Control Structure at Cypress Creek Wellfield 80.8 0.57 0.93 1.20 1.64 2.40 3.52 4.76 80.8 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.33 1.40 1.09 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85		0.48	0.71	0.10	0.29	0.57	0.90	1.21
80 0.36 0.53 0.61 0.66 0.87 0.95 1.08 80.1 0.53 0.84 1.03 1.33 1.86 1.97 2.32 80.2 Surface-Water Control Structure at Cypress Creek Wellfield 80.8 0.57 0.93 1.20 1.64 2.40 3.52 4.76 80.8 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.33 1.40 1.09 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80		0.70	0.19	0.30	0.39	0.58	0.55	0.82
80.1 0.53 0.84 1.03 1.33 1.86 1.97 2.32 80.2 Surface-Water Control Structure at Cypress Creek Wellfield 80.3 0.57 0.93 1.20 1.64 2.40 3.52 4.76 80.8 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.33 1.40 1.09 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.85 1.99 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage		0.66	0.25	0.41	0.59	0.72	0.98	1.19
80.2 Surface-Water Control Structure at Cypress Creek Wellfield 80.3 0.57 0.93 1.20 1.64 2.40 3.52 4.76 80.8 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.77 2.51 3.74 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage		0.36		0.61	0.66	0.87	0.95	1.08
80.3 0.57 0.93 1.20 1.64 2.40 3.52 4.76 80.8 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.33 1.40 1.09 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0								
80.8 0.58 0.97 1.26 1.75 2.91 4.00 5.19 81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.33 1.40 1.09 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94.5 0.19 0.26 0.34 0								
81 0.53 0.81 0.24 0.40 1.05 2.21 3.44 81.5 0.61 1.15 1.61 1.55 1.77 2.51 3.74 82 0.61 1.15 1.61 1.55 1.33 1.40 1.09 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.4								
81.5								
82 0.61 1.15 1.61 1.55 1.33 1.40 1.09 84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60<								
84 0.11 0.24 0.35 0.53 0.25 0.53 1.31 85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage								
85 0.51 0.09 0.22 0.36 0.75 0.77 0.85 86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage								
86 0.33 0.72 0.07 0.19 0.45 0.67 0.80 88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82<								
88 0.71 0.19 0.29 0.40 0.61 0.85 1.11 90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage								
90 0.53 0.21 0.19 0.27 0.56 0.74 0.86 92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
92 0.26 0.23 0.36 0.50 0.73 0.91 1.08 94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
94 0.20 0.31 0.45 0.64 1.04 1.35 1.63 94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
94.5 0.19 0.26 0.34 0.48 0.80 1.10 1.37 95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
95 0.56 0.86 1.03 1.31 1.66 1.85 1.99 96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
96 0.09 0.42 0.77 0.60 1.15 1.67 2.16 97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
97 0.65 1.08 1.32 1.60 1.66 1.69 1.88 98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
98 0.65 1.22 1.58 1.45 1.23 1.59 1.85 99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
99 0.07 0.62 1.09 1.82 2.02 2.16 3.07 100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
100 SR 52 CulvertCypress Creek near San Antonio Gage Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
Mean 0.85 1.22 1.41 1.79 2.28 2.49 2.89 Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
Maximum 2.83 3.47 3.87 4.33 5.15 6.57 7.76								
	Minimum	0.07	0.09	0.07	0.19	0.25	0.34	0.45

Appendix C. Acreage of areal inundation between adjacent Cypress Creek cross sections

			I	Percentil	e <u>s</u>		
Cross section	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
section				Acres			
1				Mouth			
2	420	520	534	548	567	576	582
4	204	254	269	284	305	317	326
6 6.1	106 2.8	131 4.1	144 5.1	158 6.1	186 8.8	200 10.4	206 10.9
6.2	0.9	1.4	1.7	2.2	3.5	4.3	5.0
7	9.5	19.7	24.9	32.7	48.9	60.8	68.1
8	2.4	4.7	6.0	7.7	13.2	17.5	20.6
9	0.2	0.3	0.4	0.5	0.9	1.4	1.8
9.1	SI	R 581 Brid	ge-Cypress	Creek nea	ar Sulphur	Springs Ga	age
9.2	0.6	0.8	0.9	1.0	1.2	4.1	5.0
9.5	0.4	0.6	0.8	0.9	1.1	1.9	2.6
10	9.9	18.2	21.9	26.4	32.8	38.9	49.8
12 14	108 86.4	170 158	190 182	212 206	247 244	266 293	281 311
15	5.2	36.5	57.0	87.0	127.0	190	213
16	0.4	1.0	1.7	3.1	4.8	6.0	6.8
17	0.8	1.9	2.8	3.5	4.8	5.6	5.9
18	5.5	14.2	28.1	41.3	58.9	66.0	69.5
20	1.9	3.0	17.3	41.0	176	210	216
22	4.9	15.1	37.3	68.8	214	237	244
24	7.2	35.4	74.7	141	318	337	345
26	2.1	15.0	34.9	105	195	226	242
28	3.0 2.0	4.5	45.2	130	266	309	344
30 32	3.8	3.2 4.5	29.4 7.9	91.2 50.4	209 115	260 157	291 177
33	1.4	1.7	1.8	2.1	11.5	18.8	21.5
33.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3
33.2					borough Co		
33.25	0.1	0.1	0.1	0.1	0.1	0.2	0.3
33.3	0.2	0.2	0.2	0.3	0.3	0.4	0.5
34	1.3	1.4	1.5	1.6	1.9	2.6	3.4
36	3.1	3.4	3.6	3.9	4.8	5.9	10.2
37 37.1	1.4 0.1	1.6 0.1	1.8 0.1	2.1 0.1	4.1 0.4	7.2 0.8	10.8 1.4
37.1	0.1				nty Line Bi		1.4
37.3	0.0	0.0	0.0	0.0	0.1	0.2	0.3
38	0.1	0.1	0.2	0.2	0.3	0.4	0.7
39	0.1	0.1	0.2	0.2	0.3	0.3	0.4
40	1.3	1.4	1.4	1.7	2.8	5.9	9.0
42	3.7	4.0	4.2	4.7	12.7	40.0	51.5
44	2.4	2.5	2.6	2.8	8.5	58.7	65.6
46	2.3	2.4	2.4	2.5	8.6	78.4	93.8
47 47.1	5.1 0.2	5.2 0.2	5.2 0.2	5.3 0.3	13.1 0.6	66.2 3.2	89.1 4.4
47.1	0.2				asco Count		7.7
47.3	0.3	0.3	0.3	0.3	0.8	4.0	6.9
48	0.1	0.2	0.2	0.2	0.4	2.8	4.4
49	2.2	2.2	2.4	2.7	5.3	31.4	42.9
50	2.3	2.6	3.0	3.4	5.2	14.6	17.7
50.5	2.7	3.3	3.7	4.2	5.8	11.5	12.8
51	0.1	0.1	0.1	0.2	0.2	0.3	0.4
51.5		_			orthington		~
51.6 52	0.1 0.1	0.1 0.2	0.1 0.1	0.1 0.2	0.2 0.3	0.1 0.4	0.2 0.6
53	0.1	0.2	0.6	0.2	1.3	1.9	2.6
53.1	0.3	0.0	0.0	0.7	0.2	0.2	0.3
53.2	J	v		Arch Bridg		J. _	2.2
53.3	0.0	0.1	0.1	0.1	0.1	0.1	0.1
53.4	0.0	0.1	0.1	0.1	0.1	0.1	0.1
54	0.4	0.7	1.9	2.8	3.5	4.1	5.2
55	4.2	22.2	43.0	72.5	93.4	96.9	101
56	4.1	23.1	42.5	84.6	118.5	135	139
57	1.2	4.1	22.6	59.5	131.3	159	168
58	1.5	1.6	25.4	50.1	116.4	137	148

Appendix C. Acreage of areal inundation between adjacent Cypress Creek cross sections (Continued)

			I	Percentil	es				
Cross section	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}		
_				Acres					
60	12.0	18.2	29.1	41.0	71.3	160	174		
62	7.0	12.1	13.4	20.3	75.5	125	131		
64	2.2	70.2	79.2	99.8	169	183	190		
66	38.1	136	159	181	258	271	299		
68	31.8	55.8	66.8	74.9	162	173	196		
70	2.0	44.5	45.6	47.4	87.4	91.5	95		
72	33.0	70.5	72.4	157	174	182	189		
74	57.0	60.1	98.2	306	364	385	405		
76	2.5	24.3	76.1	156	241	348	360		
78	2.6	76.2	113	162	280	396	413		
80	4.0	71.5	91.1	118	209	234	256		
80.1	0.3	0.4	0.4	0.5	0.7	1.1	1.4		
80.2	Surface-Water Control Structure at Cypress Creek Wellfield								
80.3	0.1	0.1	0.1	0.1	0.2	0.4	1.6		
80.8	0.0	0.1	0.1	0.0	0.1	0.2	0.8		
81	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
81.5	0.2	0.2	0.2	0.4	0.6	1.2	4.4		
82	0.5	0.5	0.6	0.9	1.6	3.3	13.2		
84	7.2	7.8	8.5	11.8	50.6	90.5	219.6		
85	1.3	13.4	21.2	30.8	49.4	71.0	91.0		
86	1.3	13.5	62.2	91.3	112	139	172		
88	2.7	60.2	172	250	317	344	380		
90	2.7	73.2	124	185	252	270	292		
92	3.1	18.7	36.1	61.6	84.2	102	124		
94	5.5	14.4	16.7	19.6	25.2	30.0	34.8		
94.5	0.3	0.3	0.3	0.4	0.5	0.5	0.6		
95	0.1	0.2	0.2	0.2	0.3	0.4	0.5		
96	3.2	3.7	4.2	8.2	13.6	17.4	21.6		
97	1.0	1.4	1.7	3.5	6.4	8.8	11.4		
98	1.1	1.6	1.8	2.6	6.6	9.9	14.0		
99	0.1	0.1	0.1	0.2	0.5	0.9	1.8		
100	:	SR 52 Culv	ertCypre	ess Creek r	near San A	ntonio Gag	ge		
Total	1,253	2,352	3,184	4,588	6,914	8,326	9,130		

Appendix D. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at Cypress Creek cross sections

]	Percentil	<u>es</u>		
Cross section _	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
section _				Acres			
1				Mouth			
2	4.52	3.33	1.89	2.14	2.1	1.93	1.58
4	1.68	3.57	2.18	2.45	2.34	2.78	2.37
6	0.05	2.08	1.95	2.22	1.6	1.83	1.63
6.1	0.03	0.11	0.15	0.16	0.19	0.18	0.16
6.2 7	0.5 0.15	0.04 0.86	0.05 1.09	0.07 1.25	0.13 1.11	0.19 2.31	0.19 2.22
8	0.13	0.80	0.24	0.28	0.72	0.51	2.19
9		0.23	0.01	0.01	0.06	0.03	0.27
9.1	SF	R 581 Brid				Springs Ga	
9.2	0.01	0.02	0.03		•		0.3
9.5	0.42	0.03	0.01	0.03	0.01	0.08	0.57
10	4.43	0.83	0.64	0.75	0.65	1.6	8.19
12	3.39	5.67	2.98	3.58	3.7	4.27	4.58
14	0.4	7.31	3.3	3.97	3.49	17.93	5.62
15	0.03	4.09	4.84	3.64	4.43	22.15	5.24
16	0.06	0.08	0.24	0.14	0.21	0.28	0.13 0.09
17 18	0.44 0.03	0.14 1.16	0.17 2.39	0.1 1.99	0.1 0.88	0.33 3.06	1.09
20	0.34	0.32	3.36	3.63	20.1	1.22	1.68
22	0.48	2.15	4.84	3.58	13.28	0.97	1.28
24	0.02	4.33	8.97	11.83	3.51	1.43	1.72
26	0.03	1.39	6.11	11.34	5.29	4.29	3.28
28		1.06	7.97	9.04	6.96	8.22	8.46
30	0.04	0.81	5.9	10.27	9.26	9.26	6.64
32	0.02	0.09	1.85	8.45	6.03	6.27	4.28
33		0.02	0.02	0.03	0.36	0.64	0.69
33.1		T., 4	4-4- 75 D.	0.01	h h C	0.02	0.02
33.2 33.25		0.01	0.01	iage (Hills	borough C	ounty)	0.02
33.23	0.01	0.01	0.01			0.03	0.02
34	0.01	0.01	0.01	0.02	0.11	0.08	0.3
36	0.01	0.03	0.05	0.04	0.2	0.17	1.87
37	0.01	0.03	0.03	0.06	0.34	0.63	1.25
37.1				0.02	0.03	0.09	0.28
37.2		Hill	sborough-l	Pasco Cou	nty Line B	ridge	
37.3							0.06
38	0.01	0.01	0.02	0	0.02	0.02	0.31
39 40	0.01	0.01	0.01	0.01	0.51	0.02	0.01
40	0.01	0.01 0.03	0.01 0.04	0.05 0.1	4.29	0.65 4.22	0.34 1.56
44		0.03	0.04	0.03	3.2	31.41	1.79
46	0.01	0.02	0.01	0.02	5.83	46.54	4.68
47		0.01		0.01	6.34	19.8	6.59
47.1					0.25	0.95	0.32
47.2		In	iterstate 75	Bridge (P	asco Coun	ty)	
47.3	0.01						0.68
48					0.13	0.53	0.23
49	0.03	0.02	0.05	0.06	0.57	4.89	1.48
50 50.5	0.03	0.06 0.07	0.04 0.04	0.06 0.09	0.28 0.32	1.03 0.13	0.76 0.14
50.5		0.07	0.04	0.09	0.32	0.13	0.14
51.5	SR 54	Bridge-Cv	press Cree		ington Gar		
51.6		0.01			J		
52			0.01		0.01	0.03	0.03
53		0.01	0.01	0.02	0.08	0.21	0.13
53.1			0.01		0.01	0.03	0.01
53.2				Arch Bridg	ge		
53.3	0.01	0.01			0.01	0.01	0.01
53.4	0.01	0.02	0.10	0.01	0.01	0.10	0.25
54 55	0.75 0.73	0.03 4.83	0.19 3.84	0.01 4.22	0.14 0.93	0.19 0.84	0.35 1.35
55	0.73	₹.03	2.04	7.22	0.73	0.04	1.33

Appendix D. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at Cypress Creek cross sections (Continued)

	<u>Percentiles</u>										
Cross	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}				
section _	30	70		Acres	76	77.3	77.5				
	0.01	5.20	2.60		1.55	1.00	0.7				
56	0.01	5.38	3.68	7.83	1.57	1.29	0.7				
57	0.01	0.7	4.06	6.73	5.44	1.42	0.86				
58	0.7	0.02	4.55	3.47	5.09	1.57	1.76				
60	0.39	0.93	1.56	2.3	11.94	4.55	3.94				
62	0.02	0.78	0.24	1.72	11.43	1.9	2				
64	0.68	6.96	1.37	4.29	7.41	1.06	1.92				
66	0.56	9.86	2.5	3.86	2.44	2.07	20.46				
68	0.01	2.86	0.95	1.38	2.07	1.74	16.79				
70	0.17	0.18	0.22	0.28	0.69	0.83	1.37				
72	0.29	0.32	0.37	82.18	1.27	1.64	1.5				
74	0.02	0.35	14.66	147.72	3.15	4.28	4.68				
76	0.04	9.37	17.97	6.76	6.73	2.4	3.06				
78	0.13	12.39	8.75	7.56	8.3	3.58	4.44				
80		3.87	3.7	4.61	3.89	4.76	5.67				
80.1		0.01	0.02	0.01	0.03	0.07	0.11				
80.2	Su	rface-Wate	r Control	Structure at	Cypress C	reek Welli	field				
80.3			0.01		0.03	0.05	0.43				
80.8	0.01		0.01		0.01	0.02	0.28				
81							0.01				
81.5	0.01	0.01		0.01	0.06	0.22	0.82				
82	0.04	0.01	0.02	0.02	0.16	0.67	2.48				
84	0.01	0.1	0.19	0.32	3.64	19.69	29				
85	0.01	2.18	1.21	1.4	1.2	5.42	7.15				
86	0.05	2.18	2.59	2.7	2.31	3.01	14.3				
88	0.03	4.24	7.1	6.76	8.01	4.75	12.55				
90	0.04	7.67	7.69	7.2	8.11	3.18	1.48				
92	0.08	2.9	3	1.89	2.78	3.57	1.92				
94		0.2	0.29	0.4	0.69	1.04	1.19				
94.5			0.01	0.02	0.01	0.01	0.02				
95	0.03		0.01	0.01	0.02	0.02	0.02				
96	0.02	0.06	0.12	0.56	0.5	0.76	0.89				
97		0.02	0.06	0.26	0.33	0.43	0.55				
98	0.01	0.03	0.04	0.3	0.56	0.53	1.17				
99				0.02	0.05	0.07	0.21				
100		SR 52 Cul	vertCypr	ess Creek r			ge				
Total	22	118	152	395	210	281	233				

Appendix E. Extent of inundation at cross sections along reach 1 of the Peace River for selected percentile discharges

Percentiles Cross P_{99.5} P_{99.9} P_{70} P98 P₁₀ P₅₀ P₈₀ P_{90} section Feet Arcadia Gaging Station 2,794 4,236 1.391 3.553 8.284 9.586 1,011 2,948 6,500 7,748 2,673 4,612 4,643 2.403 6,903 6.955 3,458 9,187 9,251 4.145 6,458 6.568 2,545 6,468 6,740 Railroad Bridge 2.935 161.5 6.579 6.799 1,351 3,863 5,055 5,241 3.106 5.185 5 225 6,175 1,302 6,298 3,596 1.690 6.481 6.860 1,794 3.286 3.883 2,945 3,269 4,253 4,591 2.986 1,028 2,260 3,812 4,177 1.110 3.467 3.743 1,513 4,349 4,482 1,661 4,293 4,574 1,066 3.329 3.743 2,416 4,158 4,618 2.380 2.791 2.889 1,293 3,350 4,292 4,605 1,311 3,363 4,307 4.623 Brownwille Road Bridge 190.5 3,398 4,351 1,345 4,682 3.469 4.094 4.368 1,067 1,925 5,818 6,342 6,542 4,702 5,564 5,847 3.462 6,094 6.753 2,642 3,667 4,660 2.546 3,448 3,605 2,797 4,105 4,332 2,927 4,938 5.483 3,426 4,067 2,484 4,948 5,052 5.002 5.382 1.135 3,053 4,549 5,184 2,055 6,542 8.915 1,057 3,858 6,212 8.969 1,329 6,683 9,684 9,983 5,883 7,602 1,716 8.747 5,878 8,105 8.996 1.419 2.615 7.692 7.772 2,127 7,427 7,883 2,660 7,149 8,624 1,571 3,842 4,642 1,378 3,256 3,843 1,103 3.018 3.643 1,237 2,599 2,936 2,310 2,791 4,251 5,446 2.380 2.892 3.949 1,738 3,326 3,759 4,660 3.514 4 987 5 3 7 0 1,755 4,110 5,739 5,889 4,071 8,314 8,477 4,268 5.125 5.359 2,166 2,621 2,720 2,198 2.705 3.113 1,549 3,797 4,833

Appendix E. Extent of inundation at cross sections along reach 1 of the Peace River for selected percentile discharges (Continued)

				Perce	ntiles			
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
				Fe	eet			
262	99	122	143	162	192	1,792	3,732	4,918
264	153	268	369	441	554	4,268	8,831	12,410
266	78	160	287	344	538	3,957	6,869	9,514
268	74	86	98	127	459	3,410	3,611	5,441
270	83	87	90	247	501	2,187	3,347	4,249
272	101	107	114	184	279	470	1,238	1,967
274	86	93	98	114	453	2,086	4,909	7,958
276	102	123	139	321	729	2,171	3,758	4,965
278	126	161	190	234	471	2,057	3,851	4,117
279	88	95	106	118	130	452	865	976
279.1	128	144	155	160	168	264	448	972
279.2				SR 64	Bridge			
279.5	128	144	155	160	168	264	449	980
280	69	75	81	90	102	117	130	139
282	80	84	88	116	228	420	519	790
284	80	100	115	126	173	262	291	718
286	81	85	89	99	133	791	998	1,290
287	65	70	74	86	141	758	1,112	1,481
288		US	17 Bridge	and Zolfo	Spring C	Gaging Sta	ition	
Mean	99	124	161	238	625	2,521	4,529	5,181
Maximum	178	268	369	1,067	2,310	6,683	9,684	12,410
Minimum	58	70	74	86	102	117	130	139

Appendix F. Hydraulic depth at cross sections along reach 1 of the Peace River for selected percentile discharges

				Perce	ntiles			
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
section				F	eet			
1.40	2.0	_			ging Stat		2.1	2.0
148 150	2.0 2.2	3 3.4	4 3.7	5.3 3.4	3.8 3.4	7.2 4.4	3.1 3.7	2.9 4.2
151	2.2	3.4	3.7	4	3.4	4.4	3.8	4.2
152	2.0	2.4	3.2	4	2.4	3.7	4.7	5.7
154	1.9	3.3	4.6	5.1	5.2	2.6	3.1	4.2
156	2.1	3.6	5	6	5.8	1.3	2.8	4
158	2.2	3.9	5.5	4.7	3.8	1.8	3.8	4.9
160	2.2	3.8	5.2	6.2	7.9	5.2	5.3	6.1
161	2.1	2.5	4.5		d Bridge	4.0	5.0	
161.5	2.1 2.0	3.5 3.3	4.7 4.6	5.7 5.6	7.2 2.1	4.3 3.9	5.8 5.7	6.9 6.6
162 164	2.0	3.5	4.0	5	5.4	1.9	3.7	5
166	2.1	3.7	5.3	6.4	3.4	5.5	2.5	3.7
168	2.1	3.8	5	5.6	1.8	4	4.5	5.5
170	2.5	4.2	5.1	4.5	3.3	3.1	4.1	4.6
172	2.6	4.8	6.6	7.9	9.7	5.4	3.1	4.1
173	2.1	4	4.8	5.2	4	2.5	4.8	5.9
174	1.9	3.9	5.7	4.3	3.2	4.5	5.5	6.5
176	1.3	3.3	5.5	7	9.1	2.9	3.2	4.4
178 180	1.2	2.6	4.4	5.7 3.4	3.2 3.6	3.5 5.5	3.6 4.7	5 5.8
182	1.1 1.6	2.2 2.9	4.1 4	5.1	2.6	3.7	3.4	3.8 4.4
184	1.8	3.4	5	6.3	4.6	2.3	4.2	5.1
186	1.8	3.6	5.1	5.9	2.9	4.9	7.4	8.5
188	1.7	3.5	5	5.6	7.6	6.5	9.9	11.5
189	1.7	3.5	5	5.6	7.7	6.5	10	11.6
190				wnwille	Road Bri	dge		
190.5	1.9	3.7	5.1	5.7	7.8	6.7	10.2	12
191	2.1	4.6	6.6	7.9	8.1	3.7	6.5	7.7
196 198	2.3 2.1	3.9 4.7	3.7 6.9	2.5 8.4	3.6 3.4	3.6 2.3	6.8 5.3	8.3 6.8
200	2.0	4.6	7.1	8.8	11	1.8	4	5.2
202	2.2	4.5	6.4	7.7	5.1	3.2	5.2	5.6
204	1.9	4.6	7	8.7	3.2	2.6	5.2	6.7
206	2.1	4.6	6.9	8.4	10.5	2.5	5	6.5
208	1.6	4.1	6.4	8	10.2	2.4	4.4	5.7
210	1.8	3.9	6	7.5	9.5	3.5	3.6	4.7
212	1.6	3.7	5.9	7.5	6.1	2.5	4.2	5.8
214	1.8 1.7	3.4 3.5	5.3 5.5	6.7 6.9	5.8 3.6	4.6 2.8	3.7 4.9	5.2 6
216 218	1.7	3.3	3.3 4.7	5.8	6.1	2.8	3.4	3.9
220	1.1	2.1	2.4	3.1	3.5	3.4	4.7	4.7
222	1.1	2.2	3.6	2	3.2	2.9	4.9	6.5
224	1.2	1.6	2.2	2.6	2.8	3.1	5.3	6.4
226	1.2	2.1	2.7	2.3	3	2	4.2	5.6
228	1.2	2.3	1.7	1.7	3	4.6	3.9	5.7
230	1.5	2.5	3.3	1.6	2.3	4.1	3.6	5.2
232 234	1.7 2.2	3 3.4	3.9 4.3	4.1 5	4.7 6.2	1.9 2.5	2.5 2.9	3.8 4.1
234	1.4	2.5	3.5	3 4.3	5.7	2.8	3.2	4.1 4.4
238	1.4	2.9	3.8	4.4	4.1	3.6	3.1	4.2
240	1.2	2.6	3.3	3.8	3.5	3.8	3.8	5.1
242	1.4	2.8	3.8	0.8	1.6	4.8	5.3	5.9
244	1.6	3	3.6	4	1.5	2.8	4.8	5.3
246	1.6	3.1	4.2	3.9	1.4	3.3	5.5	6.1
248	1.0	2.1	2.7	2.2	2.3	2.8	4.2	5.8
250	1.2	2.2	2.6	2.2	1.2	2.8	4.4	6.2
252 254	1.1 1.2	1.9 2.1	2.6 3	3.2 3.7	4.2 4.8	1.4 1.3	2.9 3.1	4.7 4.7
256	1.4	2.1	2.6	3.7	1.3	2.2	3.6	5.2
258	1.4	2.3	2.7	2.6	2.2	1.7	3.2	4.4
260	1.7	2.6	3	3.4	4	1.2	1.7	2.8

Appendix F. Hydraulic depth at cross sections along reach 1 of the Peace River for selected percentile discharges (Continued)

				Perce	entiles			
Cross section _	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
				F	eet			
262	1.8	3.1	4	4.4	5.1	1.4	1.8	2.6
264	1.4	2.2	2.8	3.3	4	1.7	2.1	2.5
266	2.3	2.6	2.4	2.9	3.2	1.5	2.1	2.7
268	2.1	3.7	4.7	5.1	2.5	2	3.7	3.7
270	1.4	3.3	4.7	2.9	2.5	2.1	2.7	3.5
272	1.8	3.6	5	4.3	4.2	5.1	2.8	3.1
274	1.9	3.7	5.1	5.7	2.7	2.7	2.2	2.7
276	1.9	3.4	4.5	3.4	2.5	3.5	3.2	4
278	1.7	3.1	4.2	4.7	4	2.3	3	4.5
279	2.0	3.7	4.9	5.6	6.9	5.4	3.5	4.7
279.1	1.4	3.1	4.4	5.5	7.2	7.0	7.2	7.9
279.2				SR 64	Bridge			
279.5	1.5	3.2	4.5	5.6	7.3	7.2	7.3	8.4
280	2.1	3.8	5.1	6.0	7	9.3	10.7	11.7
282	2.0	3.8	5.2	6.0	4.3	4.8	5.2	5.6
284	1.4	2.9	4.0	4.9	5.4	6.4	8.1	4.9
286	1.7	3.4	4.8	5.7	6.1	2.9	4.8	5.6
287	1.7	3.3	4.6	5.4	5	7.5	6.0	6.3
288		US 1'	7 Bridge	and Zolf	o Spring	Gaging S	tation	
Mean	1.7	3.3	4.4	4.9	4.6	3.6	4.5	5.4
Maximum	2.6	4.8	7.1	8.8	11	9.3	10.7	12
Minimum	1.0	1.6	1.7	0.8	1.2	1.2	1.7	2.5

Appendix G. Acreage of areal inundation between adjacent cross sections along reach 1 of the Peace River

Percentiles Cross \boldsymbol{P}_{10} P_{50} P_{99.5} P_{99.9} P₇₀ P80 P90 P98 section Acres 148 Arcadia Gaging Station 150 0.9 0.9 1.4 2.2 5.8 31.2 37.8 151 4.0 4.3 7.6 11.6 32.5 92.5 197.8 227.2 152 3.1 4.0 6.7 8.4 28.9 84.1 166.0 185.1 154 7.3 8.7 10.5 12.3 21.8 68.2 150.7 151.8 156 6.4 7.3 417.2 420.1 8.4 9.7 15.8 153.0 158 8.3 9.2 11.7 22.2 212.1 434.0 439.0 7.6 160 1.7 1.8 2.1 2.7 6.1 44.9 86.8 89.4 161 Railroad Bridge 0.3 0.4 0.4 8.8 9.1 161.5 0.5 0.8 3.9 162 0.2 0.2 0.3 0.3 1.5 5.7 9.3 9.5 164 5.7 6.9 8.8 10.4 30.2 110.9 162.0 166.4 9.0 379.8 166 10.4 13.1 15.2 41.0 150.0 374.3 168 5.7 6.6 7.7 8.8 58.8 116.6 300.6 312.5 170 5.9 6.9 8.6 11.6 64.3 150.3 275.0 302.8 172 22.7 7.0 7.6 8.8 11.3 72.4 181.9 207.0 173 19.7 95.5 192.7 209.2 7.8 8.4 10.2 12.1 174 7.3 8.2 10.6 17.1 49.9 139.4 191.1 207.2 176 7.8 8.8 10.4 14.9 34.4 100.5 232.9 252.9 178 5.2 7.6 9.0 18.9 62.9 182.3 191.8 6.1 180 5.4 6.6 8.0 11.5 27.3 58.3 116.9 121.5 5.4 182 204.2 6.6 7.6 11.0 28.7 65.9 223.0 184 4.5 5.6 6.7 7.7 22.7 94.0 189.8 211.3 186 5.2 6.5 8.0 9.6 29.8 119.4 177.7 192.9 188 5.8 8.5 11.5 14.9 58.7 191.9 202.8 156.0 189 0.2 0.3 0.5 0.7 1.9 7.0 9.2 9.9 190 Brownwille Road Bridge 190.5 0.3 0.5 0.8 14.9 16.0 1.0 4.6 11.6 191 1.2 1.7 2.2 2.7 6.5 29.0 35.5 37.8 196 8.5 11.4 229.5 257.5 269.1 18.2 33.5 54.8 198 6.3 8.2 13.0 31.9 71.9 242.8 276.2 288.2 200 6.9 8.4 9.3 9.9 25.0 227.9 330.6 357.9 202 6.2 7.8 8.9 9.7 16.1 142.3 223.0 259.3 204 7.3 8.4 9.2 30.8 215.6 156.4 251.1 206 9.2 10.5 11.6 12.4 25.6 182.8 243.8 255.3 208 5.6 6.4 7.2 7.8 8.5 170.8 269.9 292.9 210 5.8 6.8 7.8 8.4 9.4 107.9 230.7 263.0 212 8.0 94 10.7 11.7 15.8 120.8 337.6 365.4 214 8.0 9.5 18.5 300.1 6.6 10.5 112.7 315.3 9.9 216 8.1 11.0 24.9 117.9 265.7 293.7 6.5 218 4.1 5.0 6.4 7.4 17.6 146.3 306.9 381.5 220 4.7 6.9 14.6 21.0 40.5 171.5 356.4 492.5 222 6.5 8.9 16.0 33.4 66.8 282.6 427.5 512.5 224 437.4 7.0 11.2 15.8 33.9 79.7 298.5 405.3 226 4.3 7.3 10.8 19.1 46.2 221.1 294.4 333.7 228 7.5 9.0 16.2 35.3 65.8 255.9 474.3 503.7 230 5.3 6.2 11.0 27.6 108.8 341.0 353.0 53.5 232 4.6 5.4 6.1 13.3 27.7 119.0 368.7 418.4 234 5.8 6.6 7.5 8.9 11.3 110.7 280.1 334.8 236 3.9 5.0 5.7 6.3 7.3 56.2 134.7 161.0 238 7.4 10.4 12.3 13.8 19.4 80.8 193.8 230.4 240 9.2 27.3 2.4 3.6 4.6 5.4 63.5 74.2 242 5.8 7.6 9.4 23.8 71.5 101.2 164.8 199.4 244 3.8 4.6 5.8 18.7 66.5 108.7 150.5 198.2 6.0 246 5.2 7.3 9.3 71.6 131.1 156.4 209.8 248 7.1 8.9 14.1 192.7 220.7 56.9 151.1 250 5.5 7.0 9.1 15.2 53.0 147.7 211.0 221.6 252 5.4 6.8 8.7 12.5 52.8 222.7 379.4 387.9 254 7.2 9.5 10.7 11.6 13.2 130.4 199.8 207.1 256 4.0 5.3 207.1 6.2 6.9 26.0 177 2 214.4 258 4.7 11.2 40.0 142.7 6.7 8.7 172.3 188.7 260 5.2 7.6 10.1 19.3 150.2 12.8 90.9 181.5 262 4.9 6.4 8.0 9.2 11.2 90.0 196.7 253.7 264 7.5 11.7 15.3 18.0 22.3 122.7 247.2 343.4 266 7.2 13.3 19.2 22.7 31.1 184.2 341.3 464.4

Appendix G. Acreage of areal inundation between adjacent cross sections along reach 1 of the Peace River (Continued)

~		<u>Percentiles</u>						
Cross section _	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
				Ac	res			
268	5.1	8.2	12.1	14.3	25.0	169.3	237.6	330.2
270	3.6	4.0	4.3	7.3	16.3	81.7	101.3	142.1
272	6.9	7.3	7.7	12.8	20.7	57.3	94.0	124.6
274	6.2	6.6	7.1	10.0	23.5	83.9	186.9	278.3
276	5.4	6.2	6.8	13.1	34.8	108.7	223.1	358.4
278	6.6	8.1	9.4	16.5	36.5	112.5	197.0	238.3
279	3.6	4.3	4.9	5.9	10.0	41.8	78.5	84.8
279.1	0.5	0.6	0.6	0.6	0.7	1.6	3.0	4.5
279.2				SR 64	Bridge			
279.5	0.2	0.3	0.3	0.3	0.3	0.5	0.8	1.8
280	0.2	0.3	0.3	0.3	0.3	0.4	0.7	1.3
282	1.1	1.2	1.3	1.5	2.6	4.4	5.3	6.8
284	1.3	1.5	1.6	2.0	3.2	5.5	6.5	12.1
286	4.2	4.9	5.4	5.9	8.0	25.0	30.7	48.2
287	0.8	0.9	0.9	1.1	1.6	11.3	14.4	16.5
288		US 1	7 Bridge	and Zolf	Spring	Gaging S	Station	
Total	377	474	609	888	2,120	8,412	15,081	17,196

Appendix H. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections along reach 1 of the Peace River

_				Perce	ntiles			
Cross section _	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
section _				Ac	res			
148			A	rcadia Ga	ging Stat	ion		
150	0.01			0.2	0.6	0.8	4.9	1.4
151	0.02		0.4	1	4.2	7	35.5	4
152	0.05	0.02	0.4	0.4	10.4	6.7	22.5 0.5	2.3
154 156	0.04 0.05	0.03 0.69	0.3	0.6 0.4	6.5 2.7	6.3 63	3.4	0.4 1
158	0.03	0.57	0.2	0.4	3.9	118.7	4.6	1.6
160		0.11	0.2	0.2	1.2	19.1	1.4	1
161	0.18	0.08						
161.5	0.01	0.02	1.5		0.01	0.8	0.2	0.1
162	0.07				0.5	0.8	0.1	
164	0.08		0.4	0.4	7.3	23.9	1.5	0.5
166	0.06	0.02	0.4	0.6	5	43	30	1.6
168	0.05	0.15	0.3	0.3	8.6	10.9	43.3	2
170 172	0.01 0.04	0.19 0.09	0.4	0.8 0.6	10.9 2.3	27.8 25.9	28.3 6.9	5.1 6
172	0.04	0.09	0.5	0.6	1.7	21.8	6.0	5.9
174	0.05	0.08	0.5	2.7	5.8	19	4.1	4.7
176	0.04	0.07	0.3	2	3.4	14.2	15.9	6.2
178	0.06	0.1	0.4	0.3	0.7	17.6	9.1	3.5
180	0.07	0.11	0.3	1.6	2.1	7.1	1.7	1.6
182	0.06	0.11	0.1	1.7	9.8	5.6	15.2	7.1
184	0.05	0.11	0.2	0.2	6.9	24.2	15	6.7
186	0.08	0.11	0.2	0.7	6	22.9	6.3	3.2
188 189		0.11 0.18	0.6	1	30.7 1.1	8.1 0.4	3.8 0.2	3.9 0.3
161		0.18		Railroa	d Bridge	0.4	0.2	0.3
190.5	0.02	0.01	0.1	Ramoar	3.3	0.6	0.4	0.4
191	0.1		0.1	0.2	3.1	1.9	0.8	0.9
196	0.04		2.0	6.5	7.1	16.6	4.0	4.1
198	0.15	0.06	1.6	12.5	11.6	26.5	4.0	3.9
200	0.17	0.5	0.2	0.2	3.8	25.5	12.1	11.3
202	0.08	0.35	0.1	0.2	0.7	14.4	14.4	19
204	0.15	0.11	0.1	0.1	2.6	44.2	12 3.5	19.7 4.4
206 208	0.06 0.07	0.14 0.13	0.2	0.2 0.2	1.8 0.2	52.2 37	3.3 7.6	7.3
210	0.07	0.13	0.2	0.2	0.2	16.6	10.1	10.6
212	0.06	0.1	0.1	0.3	2.3	53.6	10.2	9.7
214	0.05	0.11	0.3	0.2	3.7	31.1	5.5	5
216	0.04	0.16	0.2	0.2	4.6	7.8	7.7	6.5
218	0.09	0.2	0.3	0.3	3.7	25.1	9.4	36.8
220	0.1	0.23	1.5	1.7	4.9	35.7	28.5	73.6
222	0.15	0.16	1.3	5.8	6.8	27.8	33.8	41.8
224 226	0.11 0.11	0.36 0.33	1 1	6.2 2.2	7.7 5.5	37.5 66.2	13.4 17	4.8
228	0.11	0.33	2.4	4.1	5.7	85.1	19.3	1.8
230	0.07	0.40	1.3	2.6	3.8	14.8	3.8	4
232	0.06	0.15	0.3	1.0	3.2	16.4	9.1	21.5
234	0.07	0.1	0.2	0.4	0.7	14.7	12.1	20.5
236	0.13	0.09	0.1	0.1	0.2	6.7	9.3	6.8
238	0.03	0.11	0.3	0.5	1.4	10.3	11.9	8.5
240	0.04	0.1	0.3	0.2	1.4	2.5	3.4	2.2
242	0.03	0.26	0.3	13.3	5.9	3.9	14.3	11.2
244 246	0.05 0.09	0.15 0.27	0.2	12.3 1.4	6.1 7.3	7 6.5	12.6 4.4	12 14.8
248	0.09	0.27	0.2	3.0	5.5	3.3	5.6	10.2
250	0.08	0.11	0.5	2.5	8.3	6.9	4.5	1.9
252	0.22	0.19	0.4	1.3	7.3	36.6	2.6	1.3
254	0.12	0.19	0.2	0.2	0.3	23	2.1	2.2
256	0.12	0.18	0.1	0.2	5.6	20.7	2.3	1.8
258	0.13	0.19	0.4	0.6	8.5	13.2	3.8	4.7
260	0.09	0.12	0.5	0.6	1.9	11	11	5.9

Appendix H. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections along reach 1 of the Peace River (Continued)

				Perce	ntiles			
Cross section _	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
				Ac	res			
262	0.18	0.29	0.2	0.4	0.4	16.5	19.6	10.7
264	0.14	0.38	0.7	0.7	0.8	21.8	21.9	52
266	0.03	0.21	0.9	1	1.9	38.8	36.8	43.3
268	0.02	0.51	0.5	0.5	2.9	32.3	23.4	21.8
270	0.02	1.17	0.1	0.8	2.3	2.7	3.8	14.9
272	0.03	0.83		1.9	1.6	3.1	14	7.7
274	0.04	0.03	0.1	1.5	2	5.3	18.5	29.3
276	0.08	0.05		1.9	2.3	6	9.5	38.4
278	0.04	0.05	0.3	1.9	3.1	17.7	5.3	8
279	0.01	0.09	0.1	0.3	1.2	12.7	1.4	1.5
279.1		0.18	0.1			0.4	0.1	0.7
279.2				SR 64	Bridge			
279.5		0.01			0.1			0.1
280	0.01		0.1	0.1			0.1	1.0
282	0.02			0.2	0.3	0.2	0.5	7.5
284	0.05		0.1	0.2	0.2	0.2	1.9	7.5
286		0.02	0.1	0.2	0.5	3	5.2	4.6
287		0.02		0.1	0.2	2.2	0.6	0.4
288		US 17	Bridge	and Zolfo	Spring	Gaging S	tation	
Total	4.96	13.7	29.9	110	307	1,469	751	715

Appendix I. Extent of inundation at cross sections along reach 2 of the Peace River for selected percentile discharges

Percentiles Cross P_{10} P₅₀ P₇₀ P_{80} P_{99.5} P_{99.9} P₉₀ P98 section Feet 1,010 1.291 1,127 1,477 Zolfo Springs Gaging Station at US 17 Bridge 1,150 1,493 1,358 1,441 2,874 3.047 2.960 3,304 3,509 3,671 3.229 4.348 4.612 3,791 3,936 4,077 1,775 2,332 2,645 3.174 1,473 2,024 3,978 2,408 2.632 304.1 304.2 SR 652 Bridge at Wauchula 304.3 304.4 2,680 2.908 3.063 1,130 2,552 3,643 3.832 4.233 1,173 3,774 4,504 1,941 310.1 2,923 3,684 3,980 310.2 SR 64A Bridge at Wauchula 310.3 1,956 2,932 3,699 4,035 310.4 3,941 1.740 3.836 1,382 2,801 1,364 2,709 2.492 2,771 2,862 1,671 2,784 2,166 2,563 2.348 3.167 3.635 3.833 1,768 2,137 2,377 322.1 1,695 2,583 322.2 SR 664A Bridge near Wauchula 322.3 1,713 2,629 1.453 1,662 2.268 1,090 1,259 1.456 1.605 327.5 1.165 1,802 1,987 2.186 1,542 2,147 2,329 2,408 2.587 2.766 2.927 1,819 2,676 3,106 3,683 2.595 3.043 3.270 1,329 2,647 2.889 1,314 2,589 1,529 1.920 1,802 2,118 2,535 1.551 2.643 2.853 1,676 2,513 2,790 1,516 2,553 3,230 342.2 SR 664 Bridge at **Bowling Green** 1,517 2,554 3,232 343.5 1.541 2.191 2.541 2,842 3,191 1,364 3,726 4.440 2.313 3,491 4.091 1,252 2,225 3,100 1.132 2.118 2.635 2,131 2,365 354.1 2,133 2,338 354.2 SR 664 Bridge at Poll -Hardee Countyline 354.5 2,136 2,344 2,442 2.121 2,224 2,435

Appendix I. Extent of inundation at cross sections along reach 2 of the Peace River for selected percentile discharges (Continued)

	<u>Percentiles</u>								
Cross	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	Pos	P _{99.5}	P _{99.9}	
section _	10	30	70		eet	76	77.3	77.7	
360	59	94	105	115	134	451	2,418	2,615	
362	62	83	94	103	121	1,173	1,769	2,592	
364	75	95	111	123	186	1,967	2,491	2,777	
366	56	79	97	111	137	532	1,360	1,955	
368	42	67	96	117	154	972	1,347	2,192	
370	88	121	133	142	158	191	1,076	1,208	
372	63	92	111	125	148	563	1,711	2,374	
374	87	121	147	165	196	422	2,641	3,683	
376	97	160	234	288	381	563	688	792	
378	154	239	355	477	691	1,115	1,410	1,801	
380	46	152	309	448	699	1,211	1,574	1,975	
382	61	77	84	92	108	367	782	1,375	
384	51	66	94	114	151	238	307	1,008	
386	47	54	60	102	184	361	974	1,745	
388	54	73	106	127	164	541	1,086	1,697	
390	69	129	180	216	276	723	1,030	1,410	
391	89	113	138	251	766	1,546	2,460	2,743	
392	71	92	114	130	157	293	2,468	2,942	
392.1			SR 65	7 Bridge	near For	t Meade			
392.5	72	98	120	137	164	1,384	2,575	2,970	
393	83	89	113	129	142	167	1,489	2,482	
396	86	115	278	565	1,396	2,007	2,170	2,278	
398	63	141	477	726	1,319	1,485	1,570	1,716	
400	82	199	323	393	579	1,162	1,383	1,644	
402	64	83	96	124	896	1,438	1,557	1,697	
404	58	150	286	390	550	1,355	1,635	2,026	
405	61	71	79	84	170	561	1,635	1,794	
406.2	95	226	347	596	744	897	1,002	1,282	
406.3	68	106	137	158	711	816	923	1,041	
406.4		For	t Meade	Gaging S	Station at	US 98 B1	ridge		
Mean	82	113	159	209	448	1,209	2,063	2,542	
Maximum	173	295	512	726	2,348	3,791	4,348	4,612	
Minimum	30	38	53	67	108	150	277	339	

Appendix J. Hydraulic depth at cross sections along reach 2 of the Peace River for selected percentile discharges

	<u>Percentiles</u>									
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}		
section _				Fe	eet					
286	1.7	3.3	4.7	5.6	6.1	2.9	4.7	5.7		
287	1.7	3.2	4.5	5.3	5	7.8	5.1	6.6		
288	1.6		fo Springs					6.5		
289	1.6	3.2	4.5	5.3	4.9	7.8	4.8	6.7		
290 291	1.7 0.9	3.2 2.3	4.5 3.6	5.1 4.6	5.8 1.1	5 2.6	5.2 4.9	7.3 7.3		
292	0.9	1.6	2.5	3.2	3.9	1.3	3.6	6		
294	1.4	2.2	2.5	2.6	3.1	2.4	4	6.2		
296	1.4	2.3	0.9	1.4	2.4	2.4	4.6	6.9		
298	0.8	1.7	2.3	2.1	2.8	1.8	3.4	5.3		
300	1.2	2.2	2.9	3.4	4.4	6.5	1.9	2.7		
302	1.5	2.4	3	3.4	4	2.5	3.9	4.1		
304	1.3	2.1	2.8	3.2	4.1	5.9	1.8	3.8		
304.1	1.2	2.1	3	3.5	4.6	6.6	7.3	8.8		
304.2	1.1	2.2		_	e at Wauc		7.4	0.2		
304.3 304.4	1.1 1.3	2.2 1.8	3 2.2	3.6 2.7	4.7 3.8	6.8 5.9	7.4 7.2	9.2 4.2		
305	1.5	2.7	3	3.5	1.8	3.8	2.5	4.7		
306	1.2	2.3	2.7	3.1	2.5	3.9	3.4	4.5		
308	1.4	2.6	3	3.4	4.1	5.5	2.7	4.7		
310	1.5	2.7	3.5	3.3	2.5	4.3	2.6	4.3		
310.1	1.2	2.2	3.3	4.3	3.5	6.5	8.7	10.9		
310.2			SR 6	4A Bridg	ge at Wau					
310.3	1.2	2.1	3.3	4.3	3.5	6.5	8.8	11		
310.4	0.9	1.8	2.5	2.2	3.4	3.1	3	5.2		
314	1.5	2.5	3.6	4.4	5.5	7.7	4.2	4.5		
316	1.4	2.7	4.1	5.1	6.7	9.9	3.8	4.7		
318 320	1.9 2.4	3.6 4	5 5.1	6.1 6.2	7.9 1.7	2.8 3.5	4 4.4	5.4 5.7		
320	2.4	3.6	4.6	5.4	2.1	3.5	4.6	6		
322	2.5	4.5	6	7.7	8.6	2.5	3.6	4.9		
322.1	2.5	4.6	6.1	7.5	9	10.3	9.5	9.7		
322.2					e near Wa					
322.3	2.5	4.6	6.1	7.5	9	10.3	9.7	10.1		
324	2.4	4.3	5.7	7.2	7	2.7	4	4.6		
326	2.3	4.3	5.6	6.3	6.2	4.6	5.1	5.9		
327	2.2	3.8	3.4	4.8	4.3	5.1	6.1	7.5		
327.5	1.9	3.1	3.8	4.8	4.2	4.9	6.3	7.7		
328 330	2.3 1.8	3.8 3.8	3.7 4.4	3.2 5.1	3.1 6	4.5 2.6	5.9 4.3	7.8 6.2		
332	2	3.7	5.8	7	1.5	3	4.2	5.4		
334	1.6	3.6	5.9	7.3	9	2.7	3.9	5.6		
336	1.7	3.8	6.3	7.8	9.7	2.5	2.8	4.6		
337	1.5	3	5.5	3.6	5.3	4.3	4.9	5.2		
338	1.6	3.1	5.4	6.8	8.6	9.7	3.4	4.6		
339	1.7	3.2	4.7	5.8	7.1	2.3	3.8	5.2		
340	1.6	2.8	4.8	6.2	7.9	3.5	4	5.9		
341	1.6	3.2	5.1	6.3	4.6	1.7	2.8	4.7		
342 342.2	1.5	3.2	5.1	6.3	6.3 t Bowling	6.4	6.6	8.9		
342.2	1.5	3.2	5K 004	6.2	6.2	6.4	6.6	8.9		
343.5	1.3	2.9	4.3	5.2	3.8	1.3	2.7	4.5		
344	1.5	2.5	4	4.5	3.8	3.1	2.2	4.1		
346	1.3	2.6	4	3.6	2.8	3	2.5	4.2		
348	1.3	2.4	3.6	3.9	3.7	3	3.8	5.4		
350	1.3	2.4	3.6	3.3	3.1	3.1	3.4	4.5		
352	1.3	2.3	3.2	4.2	3.2	2.3	3	4.5		
354	1.5	2.6	3.4	4.4	6.2	2.4	2.7	4.7		
354.1	1.6	2.9	3	3.2	4.1	6.1	6.5	8.9		
354.2	1.4		R 664 Bri	-		-		9.0		
354.5 356	1.6 0.7	2.9 1.7	3 2.4	3.2 3.1	4.1 4.1	6.1 4.1	6.6 2.5	8.9 4.4		
358	1.3	2	2.4	3.4	4.8	2.4	2.3	4.4		
220	1.5	-	,	2.1	0	'				

Appendix J. Hydraulic depth at cross sections along reach 2 of the Peace River for selected percentile discharges (Continued)

				Perce	ntiles			
Cross	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
section _		30		Fe		70	77.0	,,,,
360	1.7	2.3	3.1	3.8	5	3.7	2.2	4.2
362	1.2	2.2	3	3.6	4.8	1.8	2.9	3.9
364	1.3	2.3	3	3.5	3.6	2.1	3.6	5.3
366	1.4	2.2	2.8	3.3	4.1	2.7	2.3	3.5
368	1.6	2.3	2.6	2.9	3.5	2.8	3.8	4.1
370	1.4	2.5	3.4	4	5	6.6	2.3	4.1
372	1.9	2.7	3.3	3.8	4.6	2.6	2.4	3.6
374	1.6	2.6	3.3	3.8	4.6	4	2.4	3.5
376	0.9	1.9	2.3	2.7	3.3	4.7	5.7	7.1
378	1.1	1.9	2.2	2.4	2.9	4.3	5.2	6.1
380	1.2	1	1.2	1.5	2.2	3.6	4.7	5.8
382	0.8	1.7	2.1	2.5	3.3	2.6	2.7	3.4
384	0.7	1.3	1.6	1.8	2.3	3.4	4.4	2.7
386	1	1.9	2.5	1.9	1.9	2.7	2.3	3
388	1.2	1.9	2.2	2.4	2.9	2	2.4	3.3
390	0.8	1.3	1.8	2.1	2.7	2.5	3.2	4.1
391	1	1.8	2.3	2.4	2.3	3	3.3	4.9
392	1.3	2	2.5	2.8	3.4	3.4	3.5	5.4
392.1			SR 65	7 Bridge 1	near Fort	Meade		
392.5	1.3	2	2.5	2.9	3.5	2.2	3.8	5.8
393	1.4	2.6	3	3.3	4.2	5.7	1.5	2.5
396	1.6	2.6	1.8	1.4	1.4	2.7	4	5.4
398	1.7	2.1	1.4	1.5	1.7	3.1	4.3	5.4
400	2	2.2	2.4	2.7	2.7	2.8	3.7	4.6
402	1.7	3.3	4.2	3.9	1.2	2.6	3.8	5.1
404	1	1.8	1.9	2.2	2.6	2.6	3.4	4.3
405	1	2.5	3.5	4.1	2.8	2.1	1.7	3.1
406.2	1	1.5	2	1.8	2.7	4	4.9	5.1
406.3	0.8	1.8	2.5	2.9	1.8	3.6	4.8	6.2
406.4						JS 98 Bri		
Mean	1.5	2.6	3.5	4.0	4.2	4.1	4.2	5.5
Maximum	2.5	4.6	6.3	7.8	9.7	10.3	9.7	11
Minimum	0.7	1.0	0.9	1.4	1.1	1.3	1.5	2.5

Appendix K. Acreage of areal inundation between adjacent cross sections along reach 2 of the Peace River

Percentiles Cross P₁₀ $\boldsymbol{P_{50}}$ P_{99.5} P_{99.9} P_{80} P₇₀ P₉₀ P₉₈ section Acres 288 Zolfo Springs Gaging Station at US 17 Bridge 289 0.3 0.3 0.3 0.4 0.4 1.0 1.9 2.2 290 0.2 0.3 0.3 0.3 0.4 1.7 3.3 4.3 291 1.9 2.1 2.2 2.5 7.8 46.9 63.7 65.9 292 1.6 1.8 2.1 2.3 7.4 63.1 66.0 68.4 294 4.3 6.3 8.0 12.7 132.3 156.7 165.3 5.1 296 3.5 4.4 11.3 14.6 21.3 139.4 164.6 172.6 298 4.9 6.4 14.5 19.5 26.6 129.3 145.5 156.2 300 9.1 10.9 12.5 15.8 19.0 61.6 98.1 180.5 7.9 302 6.3 7.1 8.5 9.8 59.8 95.8 217.9 304 3.1 3.9 4.5 5.1 6.0 32.9 87.0 138.4 304.1 0.7 0.7 0.8 0.9 1.1 7.7 304.2 SR 652 Bridge at Wauchula 304.3 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.5 304.4 0.4 0.6 0.8 0.8 0.9 1.1 1.4 8.3 305 1.0 19.0 1.4 2.0 2.2 4.5 7.1 32.5 306 0.9 1.1 9.2 25.1 30.8 0.7 1.3 308 1.9 2.2 2.9 3.4 8.9 14.0 63.0 78.3 310 4.0 4.5 5.5 7.4 16.7 28.2 144.6 165.4 310.1 0.8 1.9 2.1 7.3 11.8 1.1 21.4 24.3 310.2 SR 64A Bridge at Wauchula 310.3 0.4 0.6 1.2 9.2 1.2 4.5 6.7 8.5 310.4 0.9 1.5 2.4 8.2 16.1 25.9 27.5 3.1 314 6.3 8.4 10.0 14.5 16.1 48.8 135.6 173.0 316 3.8 4.2 4.5 4.7 5.0 5.8 47.6 95.8 7.5 318 6.5 7.0 7.8 8.4 70.1 112.2 147.5 320 6.0 7.0 7.8 9.0 48.1 116.7 133.2 140.9 321 3.0 4.2 5.2 6.9 61.2 94.4 101.0 81.2 322 2.3 3.1 3.7 4.6 37.1 72.7 84.9 90.7 322.1 0.3 0.3 2.3 0.3 0.4 0.5 4.4 5.7 322.2 SR 66 A Bridge near Wauchula 322.3 0.3 0.2 0.3 0.3 0.4 0.4 1.3 1.8 324 0.4 0.5 0.5 0.6 0.9 2.9 5.1 8.8 326 3.9 5.3 9.5 28.9 34.9 44.9 6.5 327 4.0 6.2 14.3 3.1 8.1 23.7 28.6 33.0 327.5 2.9 4.4 7.1 9.6 18.2 27.4 30.7 33.8 328 1.8 2.9 4.4 7.7 18.6 27.2 29.7 31.6 330 3.8 49 7.7 15.9 39.7 103.3 111.2 116.3 332 4.9 8.4 10.7 66.0 166.9 209.4 6.1 186.1 4.9 35.5 334 7.6 100.2 112.7 6.1 8.6 86.6 336 5.4 6.3 7.4 8.1 9.0 115.7 167.6 181.3 337 2.9 3.7 4.2 10.3 13.0 41.8 71.6 94.4 338 2.3 3.3 3.9 7.8 9.6 16.7 39.8 64.8 339 1.7 2.9 3.9 47.0 3.3 21.3 38.1 340 3.3 4.3 92.3 2.2 5.0 6.0 56.6 81.4 341 1.8 2.8 3.3 3.8 6.4 54.3 86.2 94.3 342 0.5 0.8 0.3 0.4 0.4 4.1 7.7 9.3 342.2 SR 664 Bridge at Bowling Green 343 0.2 0.2 0.2 0.3 0.4 1.2 1.8 2.3 343.5 0.4 0.5 0.6 0.7 1.4 10.5 16.3 19.9 344 0.7 1.0 1.3 1.7 4.2 22.4 52.8 60.0 346 1.9 7.1 17.4 1.1 1.5 2.8 55.7 65.2 348 0.9 1.2 1.6 2.4 6.2 20.1 39.5 46.6 4.9 350 6.7 8.8 12.5 24.4 72.5 113.7 141.9 352 3.4 4.5 5.8 8.3 20.6 61.4 111.4 146.9 354 2.7 3.4 4.3 4.9 34.3 76.0 89.6 354.1 0.5 0.6 0.9 0.3 0.4 2.4 9.5 10.0 354.2 SR 664 Bridge at Polk -Hardee Countyline 0.1 354.5 0.1 0.2 0.2 0.3 0.4 1.5 1.7 0.5 356 0.4 0.8 1.1 1.6 2.7 16.4 18.2 358 1.8 2.5 3.4 5.7 14.0 57.9 4.2 51.8 360 4.7 8.0 8.9 10.6 30.0 118.0 128.0 6.8 362 3.6 5.3 5.9 6.5 7.6 35.1 90.3 111.2 364 3.8 4.9 5.6 6.2 68.5 92.0 115.0 8.1 5.4 366 3.0 4.8 4.0 7.4 50.7 78.0 96.6

Appendix K. Acreage of areal inundation between adjacent cross sections along reach 2 of the Peace River (Continued)

	<u>Percentiles</u>								
Cross section_	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}	
				Ac	eres				
368	3.6	5.4	7.1	8.4	10.7	31.7	51.2	73.1	
370	2.7	3.9	4.7	5.4	6.4	19.9	38.0	52.8	
372	5.2	7.3	8.4	9.2	10.5	23.0	76.8	97.5	
374	4.3	6.1	7.4	8.3	9.9	23.5	106.0	149.5	
376	5.3	8.1	10.7	12.6	15.8	26.2	85.4	114.3	
378	5.8	9.0	11.6	14.2	18.7	27.4	33.5	40.6	
380	6.9	13.3	21.1	28.6	42.0	68.8	87.7	110.3	
382	2.2	4.7	7.9	10.7	15.9	30.3	45.0	63.8	
384	1.8	2.3	2.8	3.2	3.9	8.6	15.3	33.7	
386	2.1	2.6	3.1	3.9	5.4	8.8	15.3	29.1	
388	2.1	2.6	3.4	4.4	6.3	15.1	34.6	57.9	
390	3.8	5.5	7.4	8.8	11.0	26.4	41.7	59.5	
391	4.2	5.4	6.5	8.7	16.6	33.6	51.1	60.4	
392	0.4	0.6	0.7	1.1	2.4	4.6	12.7	14.8	
392.1			SR 65	57 Bridge	near Fort	Meade			
392.5	0.2	0.2	0.3	0.3	0.4	2.1	6.4	7.5	
393	0.3	0.4	0.5	0.5	0.6	3.8	9.2	11.8	
396	2.9	3.5	6.1	10.0	20.7	28.8	47.6	61.5	
398	4.4	7.3	19.5	32.5	66.9	85.8	91.8	98.0	
400	3.7	7.5	15.7	21.4	35.3	48.0	53.4	60.5	
402	3.5	6.7	9.9	12.1	34.8	60.4	68.3	77.6	
404	3.6	7.0	10.5	13.4	31.6	59.1	67.0	77.7	
405	2.2	4.1	5.9	7.0	9.4	19.0	29.9	34.4	
406.2	3.8	6.5	8.9	13.8	18.2	28.4	49.5	57.7	
406.3	0.7	1.3	1.9	3.0	5.8	6.9	7.7	9.3	
406.4		Fo	ort Meade	Gaging S	tation at U	S 98 Bri	dge		
Total	225	312	431	565	1,118	3,082	4,892	6,065	

Appendix L. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections along reach 2 of the Peace River

	<u>Percentiles</u>								
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}	
section .				Ac	eres				
286									
287					0.1	2.4	0.4	0.3	
288		Zol		s Gaging	Station at	US 17 Br	~		
289			0.1			0.1	0.4	0.1	
290		0.1		0.1	0.1	0.2	0.3	0.1	
291 292		0.1	0.1	0.1 0.1	4.3	0.3 4.3	0.5 0.5	0.5	
292		0.1	0.1	0.1	1.1	15	2.3	0.4 1.5	
296	0.1	0.1	6.2	1.1	1.5	8.7	2.3	1.4	
298	0.2	0.2	7.2	1.1	1.6	9.8	2.7	2.5	
300		0.2	0.3	0.6	0.8	11.5	22.1	6.1	
302	0.2		0.2	0.2	0.2	3.7	15.9	7.3	
304		0.1	0.1	0.1	0.2	2	2.5	4.6	
304.1			0.1				0.4	0.2	
304.2			SR	652 Bridg	ge at Wau	chula			
304.3		0.1		0.1	0.1	0.1	0.1	0.2	
304.4	0.1		0.1	0.1	0.1	0.1	0.1	0.3	
305 306	0.1		0.1 0.1	0.1	0.1 0.2	1.5 2.5	3.4 5.5	0.5 1.1	
308		0.1	0.1	0.1	0.2	3.8	6.6	2.8	
310		0.1	0.3	0.8	0.3	9.1	14.8	1.6	
310.1		0.1		0.1	1.5	1.8	2.2	0.2	
310.2			SR	64A Bridg	ge at Wau	chula			
310.3	0.7	0.1	0.1	•	1.2	0.2		0.1	
310.4		0.2			1.8	1.2	0.6	0.3	
314	0.2	0.3	0.2	0.3	0.3	5.9	36.1	1.8	
316			0.1	0.1	0.1	0.1	20.9	2	
318	0.1	0.1	0.1	0.1	0.1	29.3	1	2.9	
320	0.2	0.2	0.1	0.3	37.9	30.1	0.8	0.8	
321 322	0.1	0.1 0.1	0.2 0.2	0.5 0.3	23.4 1.2	1.8 2.4	1.1 1.4	0.7 1.2	
322.1	0.1	0.1	0.2	0.3	0.1	0.1	0.1	0.2	
322.2	0.1		SR 66	4A Bride	e near Wa		0.1	0.2	
322.3		0.1	51100		,0 11041 110	·uomum	0.1		
324		0	0.1		0.1	0.3	1	0.2	
326	0.1	0.1	0.1	0.3	1.2	2.9	1	1.7	
327	0.1	0.1	0.4	0.3	1.2	1.2	1	1.1	
327.5	0.1	0.3	0.4	0.6	2.7	1	0.6	0.7	
328	0.1	0.1	0.6	0.8	3.2	0.6	0.5	0.5	
330		0.2	1.3	2.2	5.2	3	1.5	1.2	
332	0.1	0.1	0.4	0.6	46.1	5.1	4.4	4.9	
334 336	0.1	0.2	0.1 0.2	0.2 0.2	22.5 0.1	1.7 35.8	2.2 2.7	3.2 3.2	
337	0.1	0.1	0.2	5.9	0.1	21.1	2.7	1.3	
338	0.1	0.1	0.1	3.6	0.1	2.1	4	2.2	
339	***		0.1	0.2	0.1	8.4	2.7	3.1	
340	0.1	0.1	0.1	0.2	0.2	12.8	2	4	
341		0.1	0.2	0.1	0.6	0.7	1.5	1.7	
342	0.1				0.1	0.3	0.1	0.4	
342.2			SR 66	4 Bridge a	at Bowling	_			
343					0.1	0.1	0.1		
343.5		0.1	0.1	0.1	0.4	4.3	0.4	0.7	
344		0.1	0.1	0.2	0.4	13.5	1.9	0.8	
346 348			0.1	0.6 0.6	0.7 0.6	2.7 1.9	4.6 3.3	3.2 2	
350	0.1	0.3	0.1	2.3	1.9	6.6	7.7	1.9	
352	0.1	0.1	0.3	1.6	2.2	9.7	10.8	1.9	
354	0.1	0.1	0.2	0.1	0.6	7.6	4.8	2.4	
354.1			0.1	0.1	0.1	0.5	0.8	0.1	

Appendix L. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections along reach 2 of the Peace River (Continued)

				Perc	<u>entiles</u>			
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
_					cres			
354.2		S	R 664 Br	idge at Po	olk-Harde	e Countyli		
354.5							0.1	0.1
356			0.1	0.1	0.1	0.3	1.3	0.4
358		0.1	0.2	0.2	0.3	2.9	3	1.1
360	0.1	0.2	0.3	0.3	0.3	4.7	8.1	1.5
362		0.1		0.1	0.2	14.5	7.8	5.1
364	0.1	0.1	0.2	0.3	0.9	18.8	5.4	5.9
366	0.1	0.1	0.1	0.1	0.9	4.5	3.7	4.3
368	0.1	0.3	0.4	0.4	0.5	2.3	2.7	3.8
370	0.1	0.1	0.2	0.2	0.3	0.8	2	2.4
372	0.2	0.3	0.2	0.3	0.3	1.1	6.5	4.4
374	0.1	0.2	0.2	0.3	0.3	2	6.5	4.2
376	0.2	0.3	0.5	0.5	0.7	2	3.2	1.7
378	0.1	0.3	0.6	0.8	1	1.3	1.3	1.8
380	0.2	1	1.9	2.4	2.9	3.6	4.1	5.6
382		0.5	0.7	0.8	1.2	2.1	3.5	4.5
384		0.1	0.1	0.1	0.2	0.8	1.8	4.4
386	0.1		0.2	0.3	0.3	0.5	1.6	3.2
388	0.1	0.2	0.1	0.3	0.4	2	4.6	5.1
390		0.2	0.3	0.4	0.5	2.9	3.5	4
391	0.1	0.1	0.2	0.3	1.6	1.6	3	1.9
392		0.1			0.1	0.3	0.7	0.1
392.1			SR 65	7 Bridge	near Fort	Meade		
392.5						1.4	0.4	0.1
393		0.1	0.1	0.1	0.1	2.9	1.1	0.3
396		0.1	1	1.1	0.5	0.7	4.9	2
398	0.1	0.5	3.7	3.6	1.9	1.8	1	2.3
400	0.2	0.6	1.5	1.5	2.4	1	1.3	2.5
402	0.1	0.5	0.6	1	2.6	1.5	1.9	2.3
404	0.2	0.4	0.6	1	0.9	1.4	2.2	2.1
405		0.2	0.4	0.3	0.8	0.6	1.2	0.8
406.2	0.1	0.3	0.4	1.4	1.6	1.1	1.4	3
406.3		0.2		0.2	0.2	0.2	0.1	0.6
Total	5.6	11.7	36.5	45.8	196	373	297	165

Appendix M. Extent of inundation at cross sections along reach 3 of the Peace River for selected percentile discharges

Appendix N. Hydraulic depth at cross sections along reach 3 of the Peace River for selected percentile discharges

				Perc	entiles			
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
section					eet			
406.5	71	112	148	208	730	847	946	1,072
406.6	71	156	232	307	577	1,061	1,542	2,170
407	63	84	103	163	286	896	1,272	1,639
408 410	82 78	179 154	338 612	644 982	922	1,142 1,520	1,286 1,819	1,432 1,945
410	65	159	317	670	1,210 847	1,610	1,807	2,029
414	57	303	950	1,378	1,657	1,938	2,322	2,519
416	100	443	1,000	1,320	1,512	1,674	1,792	2,626
417	68	133	329	396	485	647	718	1,660
418	77	157	327	384	472	662	745	1,708
418.5			P	hosphate	Mine Bri	dge		
419	79	165	337	390	482	672	750	836
420	50	67	83	94	121	310	435	577
422	40	139	376	1,098	1,436	1,888	1,984	2,075
424	46	136	759	934	1,209	1,658	1,823	1,869
426	57	387	1,134	1,213	1,346	1,501	1,582	1,670
428	71	359	633	857	1,267	1,851	2,285	2,368
430	64	993	1,284	1,509	1,633	1,916	2,281	2,508
432	74	502	987	1,106	1,388	2,357	2,727	3,133
434	65	919	1,304	1,520	1,667	1,823	2,006	2,639
436 438	97 68	315 584	386 726	429 835	502 988	642 1,218	746 1,608	966 1,895
440	69	115	129	710	824	852	1,008	1,085
442	44	123	603	1,173	1,192	1,228	1,259	1,083
443	48	97	1,158	1,412	1,905	2,125	2,352	2,781
444	47	98	1,178	1,431	1,912	2,129	2,357	2,790
444.5	• •	,,,	,	-	ge at Hom		2,507	2,770
445	48	159	1,209	1,456	1,928	2,147	2,460	2,919
446	68	660	1,880	2,049	2,181	2,357	2,456	2,540
448	46	736	1,154	1,432	1,603	1,919	2,177	2,342
450	68	557	1,268	1,364	1,516	1,799	2,026	2,543
452	91	788	948	976	1,092	1,392	1,881	2,133
454	56	787	957	1,021	1,135	1,437	1,535	1,626
456	1,807	2,374	2,482	2,591	2,929	3,061	3,122	3,168
458	81	125	144	158	182	228	264	1,713
460	159	678	1,003	1,060	1,288	1,817	1,890	1,983
462	57	7,79	1,117	1,253	1,454	1,691	1,711	1,737
464	80	709	1,089	1,170	1,323	1,447	1,468	1,495
466 467	38 70	540 206	881 466	988 644	1,171 821	1,194	1,213	1,236 2,346
468	124	233	470	608	739	1,972 961	2,004 1,072	1,502
468.5	124	233			s Mine B		1,072	1,302
469	124	236	471	615	748	967	1,158	1,521
470	129	217	397	563	665	1,363	1,651	1,939
472	71	105	127	1,193	1,290	1,415	1,470	1,537
474	89	1,671	1,869	1,896	1,922	1,969	2,004	2,042
476	56	733	1,251	1,258	1,270	1,290	1,306	1,325
478	91	522	1,016	1,110	1,182	1,249	1,300	1,340
480	86	246	717	1,048	1,112	1,183	1,225	1,253
481	144	291	768	1,054	1,119	1,195	1,235	1,277
482					Mine Br	-		
483	144	295	785	1,056	1,121	1,196	1,238	1,278
484	45	331	1,632	1,654	1,697	1,747	1,786	1,825
486	46	90	109	118	135	168	354	642
488	72	852	1,026	1,126	2,237	3,530	4,001	4,067
490	24	527	1,382	1,451	1,539	1,688	2,177	2,204
492	90	922	2,812	2,886	2,987	3,041	3,110	4,552
494	83	268	397	406	423	456	483	3,213
498 500	61 36	93 132	211 373	430 589	792 818	1,002 1,025	1,335 1,293	1,358 1,450
501	30	134			818 Station a		1,493	1,450
Mean	104	424	819	1,007	1,096	1,466	1,641	1,953
1710411	107							
Maximum	1.807	2,374	2,812	2,886	2,987	3,530	4,001	4,552

				Perce	ntiles			
Cross section _	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P_{98}	P _{99.5}	P _{99.9}
section _				Fe				
406.5	0.9	1.9	2.7	3.2	1.8	3.4	4.5	4.9
406.6	0.9	1.5	2.2	2.5	2.4	2.7	2.9	3.6
407	1.3	2.3	3.1	2.7	2.7	2.4	2.7	3.5
408	1.6	2.1	2.0	1.8	2.4	3.5	4.4	5.3
410	1.1	2.0	1.2	1.4	2.3	3.4	4.1	5.3
412	1.4	1.6	1.7	1.4	2.0	2.3	3.3	4.3
414	1.4	1.0	0.9	1.2	1.8	3.1	3.6	4.7
416	1.3 1.2	1.0	1.1	1.3 1.6	1.9	3.2 2.9	4.1	4.0
417 418	1.4	1.8 1.9	1.4 1.6	1.6	2.1 2.3	2.9	3.7 4.0	2.4 5.4
418.5	1.4	1.9			4.3 Mine Brid		4.0	3.4
419	1.4	1.9	1.6	1.9	2.3	2.9	4.1	5.5
420	1.7	2.7	3.1	3.2	3.3	2.3	2.6	3.2
422	1.8	1.6	1.3	1.0	1.5	2.5	3.5	4.7
424	1.9	1.8	1.0	1.2	1.6	2.4	3.2	4.5
426	1.7	0.9	0.9	1.3	1.9	3.0	3.9	4.9
428	2.1	1.7	1.7	1.6	1.8	2.3	2.9	4.0
430	0.8	0.8	1.5	1.7	2.4	3.3	3.8	4.7
432	1.5	0.6	0.9	1.3	1.8	2.1	2.9	3.7
434	1.3	0.7	1.1	1.4	2.0	3.2	3.9	4.0
436	1.5	1.5	1.9	2.1	2.5	3.2	3.8	4.1
438	2.3	0.9	1.4	1.7	2.3	3.3	3.6	4.3
440	1.8	2.7	3.3	0.9	1.6	3.0	3.6	4.8
442	1.7	1.8	0.8	1.0	1.7	3.0	4.1	5.3
443	1.9	2.5	0.8	1.1	1.5	2.6	3.4	4.1
444	1.6	2.4	1.9	1.8	2.0	3.3	4.4	5.8
444.5				_	e at Home			
445	1.7	1.6	1.9	1.8	2.1	3.5	4.7	6.1
446	1.9	0.9	1.1	1.5	2.2	3.4	4.5	5.7
448	1.5	0.9	1.5	1.7	2.2	3.2	4.0	5.1
450	1.5	0.9	1.2	1.6	2.2	3.2	4.0	4.5
452	1.1	1.0	1.6	2.0	2.6	3.4	3.5	4.4
454	1.3	0.6	1.1	1.5	2.1	3.1	4.0	5.1
456 458	0.2	1.0	1.5 1.9	1.9	2.5	3.8	5.0	6.3 1.4
458	1.3 0.8	1.5 0.9	1.9	2.2 1.6	2.6 2.1	3.4 2.7	4.1 3.6	4.8
462	1.6	0.8	1.1	1.4	2.0	3.1	4.1	5.4
464	1.3	0.6	1.0	1.3	1.9	3.1	4.1	5.3
466	2.0	0.6	0.9	1.1	1.6	2.8	3.8	5.0
467	2.1	1.8	1.5	1.5	1.8	1.9	2.8	3.6
468	2.4	3.2	4.0	4.3	4.8	5.3	5.3	3.2
468.5					Mine Bri			
469	2.5	3.3	4.0	4.3	4.8	5.4	5.0	3.6
470	2.4	3.0	2.3	2.0	2.4	2.3	2.8	3.7
472	2.5	3.3	3.5	0.7	1.5	2.7	3.7	4.9
474	2.1	0.6	1.3	1.9	2.7	4.0	5.0	6.3
476	1.7	1.0	1.3	1.8	2.6	4.0	5.1	6.4
478	2.2	1.0	1.2	1.6	2.3	3.6	4.6	5.8
480	1.6	1.7	1.1	1.2	2.0	3.3	4.3	5.6
481	1.7	2.7	3.1	3.7	4.5	6.0	7.2	5.9
482					Mine Brid	-		
483	1.8	2.7	3.2	3.7	4.6	6.1	7.2	5.8
484	1.6	0.9	0.8	1.3	2.1	3.6	4.6	5.9
486	1.3	2.2	2.6	2.8	3.2	3.9	2.5	2.4
488	1.4	0.9	1.6	1.9	1.6	2.3	3.1	4.5
490	1.7	0.4	0.6	1.0	1.7	3.0	3.4	4.7
492	0.9	0.4	0.5	0.9	1.7	3.1	4.2	4.0
494	0.4	0.9	1.2	1.6	2.3	3.5	4.4	1.8
498 500	1.0 0.8	1.4 0.9	1.1	0.9 0.9	1.1 1.4	2.0	2.4	3.7
500	0.8	0.9	0.8 Bartow		1.4 Station at	2.5 SR 60	3.0	4.2
Mean	1.5	1.5	1.7	1.8	2.3	3.2	4.0	4.6
Maximum	2.5	3.3	4.0	4.3	4.8	6.1	7.2	6.4
Minimum	0.2	0.4	0.5	0.7	1.1	1.9	2.4	1.4
	7.2	V. I	0.0	0.7	***	,		

Appendix O. Acreage of areal inundation between adjacent cross sections along reach 3 of the Peace River

Percentiles Cross P₇₀ P₁₀ P_{50} P₉₀ P₉₈ P_{99.5} P_{99.9} section Acres 406.4 Fort Meade Gaging Station at US 98 Bridge 0.2 0.2 406.5 0.3 0.4 1.3 1.4 1.5 1.8 406.6 0.7 1.4 1.99 2.6 5.6 8.0 10.3 13.0 1.9 407 0.8 2.83 4.1 7.4 14.9 20.7 27.3 408 3.1 5.2 8.16 13.9 20.1 33.1 41.3 49.2 410 4.4 8.4 37.5 49.0 71.2 77.4 22.3 61.1 412 3.1 6.2 17.23 30.3 37.4 56.5 65.1 70.9 414 3.1 10.2 26.12 41.5 50.6 71.3 83.4 92.1 416 4.0 16.3 42.55 68.0 82.8 103.7 58.7 75.9 417 3.3 9.9 20.34 25.8 30.3 36.3 39.7 63.0 0.1 0.2 418 0.38 0.4 0.8 0.8 1.9 0.6 418.5 Phosphate Mine Bridge 419 0.2 0.4 0.75 0.9 1.4 1.5 1.1 1.1 0.4 0.7 420 1.2 1.4 1.7 2.8 3.4 4.1 422 1.3 2.8 5.81 14.3 18.5 25.9 28.5 31.1 424 1.7 5.1 20.27 45.0 34.2 61.0 65.1 67.5 426 2.4 10.2 35.02 39.7 47.2 58.4 63.0 65.5 428 2.2 11.5 25.42 29.4 36.6 47.7 56.1 58.9 82.5 430 2.6 24.6 34.79 42.8 52.3 68.0 88.0 432 2.9 30.1 45.07 52.0 59.9 84.9 99.7 112.0 434 2.2 24.96 33.3 45.7 51.6 15.7 28.8 61.4 436 2.4 16.0 21.81 25.1 27.9 31.6 35.2 46.0 438 3.0 19.55 22.2 32.5 40.8 49.8 15.7 26.1 2.5 440 10.9 13.32 25.6 29.9 33.8 42.0 46.9 442 2.2 14.29 38.9 40.2 44.5 46.1 4.6 36.4 1.5 28.31 443 3.5 41.5 49.6 53.8 57.9 65.3 444 0.1 0.2 2.69 3.3 4.4 4.9 5.4 6.4 444.5 SR 640 Bridge at Homeland 445 0.1 0.3 2.74 3.3 4.4 4.9 5.5 6.5 446 0.3 1.3 6.84 8.1 9.8 10.7 11.8 13.3 448 2.1 25.4 51.82 58.3 63.1 70.9 76.6 80.3 450 2.8 21.3 44.31 53.0 60.0 72.9 83.4 99.8 452 3.6 30.6 45.91 48.2 53.0 63.3 75.7 88.7 454 3.3 33.7 40.89 42.9 47.9 61.0 73.7 81.2 456 37.0 61.1 66.21 69.4 77.7 85.8 88.7 91.3 458 40.0 45.8 49.8 26.5 36.2 38.13 48.4 72.3 460 4.6 14.7 20.55 21.8 26.1 36.5 38.5 65.4 462 3.8 24.4 34.38 37.4 43.9 56.2 57.7 59.6 464 2.2 19.7 29.21 32.1 36.7 41.5 42.1 42.8 466 2.2 18.7 28.92 31.6 36.3 38.4 38.9 39.6 2.1 467 13.2 22.79 27.7 33.8 55.3 56.2 61.7 468 0.7 1.4 1.9 2.3 4.4 4.6 5.7 468.5 Clear Springs Mine Bridge 469 0.3 0.4 0.58 0.7 1.0 1.3 2.3 470 0.2 0.4 0.7 0.9 1.1 1.9 2.3 2.8 472 1.8 3.0 4.75 15.6 17.3 25.1 28.2 31.4 474 3.5 34.2 38.41 62.2 55.5 57.6 60.6 64.2 476 3.3 48.7 67.8 62.9 63.6 64.3 65.7 66.7 478 3.9 26.7 45.14 47.3 49.0 50.8 52.1 53.3 480 4.7 34.45 42.1 44.7 47.3 49.2 50.6 16.5 481 0.4 0.9 2.56 3.6 3.8 4.1 4.2 4.4 482 Abandoned Mine Bridge 483 0.3 0.5 0.99 1.4 2.2 1.3 1.3 1.4 484 0.2 0.7 2.77 3.1 3.2 3.4 3.5 3.6 1.5 7.0 24.35 25.7 26.9 30.5 34.9 486 24.8 488 2.2 16.4 19.72 21.6 41.0 63.9 75.2 81.3 490 2.8 31.6 55.82 59.6 84.6 114.9 134.9 137.0 492 1.6 18.9 52.56 54.3 56.7 59.2 66.5 85.3 494 3.3 20.8 43.24 44.1 45.5 46.7 48.0 102.0 1.2 498 2.5 3.46 4.8 7.0 8.8 11.5 30.2 500 0.3 0.6 1.68 2.8 4.3 5.2 6.5 7.0 501 Bartow Gaging Station at SR 60 173 744 2,449 2,828 Total 1,266 1,537 1,798 2,196

Appendix P. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections along reach 3 of the Peace River

	<u>Percentiles</u>							
Cross section _	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
section _					res			
406.4		Fo	rt Meade	Gaging St		JS 98 Brid	lge	
406.5	0.1	0.1	0.1	0.2	0.2	0.2	0.0	0.2
406.6 407		0.1 0.2	0.1 0.2	0.3 0.6	0.6 0.7	0.3 0.7	0.9 2.3	0.3 0.7
408	0.1	0.2	1.5	1.6	0.7	0.7	2.9	1.6
410	0.2	0.4	4.5	3.8	1.4	1.9	2.4	1.5
412	0.1	0.5	2.4	2.1	1.6	1.6	2.1	1.4
414	0.1	1.3	3.1	1.3	2.1	1.2	5.6	2.2
416	0.1	2.7	4.8	2.7	1.3	0.6	3.2	2.3
417 418	0.1	1.3	1.7	1.4	0.8 0.1	0.8 0.1	0.9	12.8 0.5
418.5			P	hosphate I				0.5
419		0.1	0.1	0.1	0.1	50		0.1
420		0.1	0.1	0.1	0.1	0.2	0.1	0.2
422		0.1	0.5	0.5	1.1	0.8	0.6	0.4
424		0.4	1.6	1.5	2.7	1.5	0.5	0.4
426	0.1	2.6	1.4	1.3	1.6	1.2	0.6	0.5
428 430	0.1 0.6	1.8 1.7	1.1 1.6	1.1 1.6	1.5 1.9	2.2 3.2	0.6 2.3	0.6 0.6
430	0.7	3.0	2.1	1.0	1.1	5.8	2.9	2.0
434	0.1	1.2	1.5	1.1	0.5	3.0	1.3	4.4
436	0.2	0.8	0.9	1.0	0.4	0.6	1.6	5.8
438	0.2	0.6	0.7	0.8	0.8	1.4	2.0	2.1
440		0.4	0.5	11.0	0.7	1.0	1.5	0.8
442		0.2	3.9	12.7	0.4	0.2	0.3	0.4
443 444		0.2	9.8 0.6	2.5 0.2	0.4 0.1	0.4 0.1	1.0 0.1	2.0 0.3
444.5				640 Bridge			0.1	0.5
445		0.1	0.2	0.1		- Turiu	0.2	0.2
446		0.3	0.4	0.4	0.1	0.1	0.3	0.5
448		3.8	1.2	3.8	0.9	1.3	1.4	0.6
450	0.1	2.5	1.1	6.1	1.4	2.1	2.7	1.1
452 454	0.1 0.2	2.0 1.8	0.9 0.8	0.7 0.6	1.3 1.5	1.5 1.4	3.1 3.0	1.6 2.0
456	0.2	1.5	0.8	1.4	1.7	0.8	0.5	0.7
458	0.6	0.3	0.3	0.9	1.3	0.4	0.3	9.1
460	0.7	0.8	0.3	0.4	0.9	0.4	0.5	12.4
462	0.6	1.3	1.0	0.8	1.4	0.3	0.4	0.6
464	0.1	1.7	1.0	0.8	1.0	0.1	0.1	0.2
466	0.1	1.9	1.0	0.8	0.9	0.1	0.1	0.2
467 468	0.1	1.1 0.1	0.9	1.0 0.1	1.1 0.1	0.2 0.1	0.2 0.1	5.0 0.5
468.5		0.1	Cle	ar Springs			0.1	0.3
469			Cit	ur opring.	Willie Di	iuge	0.2	0.1
470						0.1	0.2	0.1
472		0.1	0.3	0.3	0.3	0.4	0.8	0.5
474		18.2	0.6	0.3	0.4	0.4	0.4	0.5
476	0.1	19.3	1.6	0.2	0.1	0.3	0.3	0.2
478 480	0.1 0.1	3.5 2.5	1.2 2.2	0.6 1.5	0.2 0.4	0.3 0.4	0.3 0.5	0.2 0.2
481	0.1	0.1	0.3	0.1	0.4	0.4	0.5	0.2
482		0.1		oandoned	Mine Brid	ige		0.1
483			0.1	0.1		U		
484		0.1	0.1	0.0				0.1
486		1.0	0.1	0.2	0.2	0.2	2.9	2.0
488	0.1	1.2	0.1	1.5	3.9	3.6	3.2	2.8
490 492	0.1 0.1	3.6 3.1	3.5 6.7	2.1 0.4	5.1 0.4	4.6 0.3	0.4 0.3	0.6 4.0
494	0.1	3.0	4.1	0.4	0.4	0.3	0.3	7.2
498	0.1	0.1	0.1	0.3	0.4	0.1	VT	1.9
500			0.2	0.3	0.3	0.1	0.1	0.1
501				w Gaging				
Total	6.5	94.9	75.6	76.7	48.1	49.0	58.6	99.3

Appendix Q. Extent of inundation at cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges

				Perc	<u>entiles</u>			
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}
section _				F	eet			
				Alafi	a River			
73	29	40	42	42	44	48	950	1326
74		R 640 Br	idge and	Alafia Ri	iver near	Lithia Ga	ging Stati	on
75	36	37	38	39	40	44	759	2,494
76	16	25	31	34	55	983	1,657	2,010
77	66	78	86	92	386	2,322	2,679	3,313
78	43	45	46	47	49	319	1,983	2,806
79 80	68 57	75 71	80 83	84 93	90 107	156 447	1,512 1,411	2,671 2,364
81	42	43	44	45	46	50	864	1,401
82	70	73	76	78	82	348	1,311	1,914
83	, 0	,,,	, 0		ıd Bridge	5.0	1,511	1,,,1.
84	54	58	61	64	73	422	1,241	1,728
85	41	43	44	45	47	141	896	1,016
86	62	63	64	65	67	356	927	1,173
87	42	44	45	46	48	1,191	1,866	1,958
88	42	44	45	46	48	1,695	1,924	2,025
89	60	76	87	96	110	1,799	2,628	2,907
90	33	36	38	39	236	1,967	2,599	2,680
91	36	52	62	69	235	1,846	2,016	2,199
92	40	43	49	57	72	1,890	2,340	2,620
93	179	198	210	219	238	1,644	1,801	1,988
94		400	• • • •		Bridge			
95	190	199	206	211	217	1,306	1,624	1,899
96	72	104	239	338	478	813	948	1,202
Mean Maximum	61 190	69 199	80 239	88 338	132 478	942 2,322	1,616 2,679	2,081
Minimum	16	25	31	34	478	2,322 44	759	3,313 1,016
Willimmum	10	23			g Alafia l		139	1,010
1	35	37	39	40	98	1,004	1,519	1,600
2	35	38	39	45	311	931	1,187	1,278
3	35	38	49	123	243	1,291	1,398	1,471
4	38	44	48	94	262	683	1,319	1,421
5	30	31	32	42	77	113	126	146
6				Railroa	d Bridge			
7	30	31	33	50	84	114	128	193
7.5	31	32	33	33	34	57	126	216
8	34	36	38	39	49	442	1,215	1,362
9	33	35	36	37	39	348	946	1,234
10	32	35	36	38	40	596	1,250	1,386
11	22	25	26		d Bridge	600	1.260	1 201
12	32	35	36	38	40	690	1,268	1,391
13 14	37	39	41	42	202	900	1,381	1,553
15	272	278	282 SR 676	286 Bridge a	293 and Gagin	783	1,157	1,865
16	276	280	284	287	ina Gagin 293	783	1,165	1,869
16.5	278	280	282	284	288	712	1,417	1,908
17	43	49	53	56	65	400	985	1,439
18	54	69	78	83	103	270	868	1,240
19	36	39	181	240	378	719	887	1,026
20	35	38	40	584	1,093	1,247	1,360	1,470
21	35	39	115	180	379	827	1,068	1,179
22	36	40	151	531	982	1,062	1,117	1,176
23	35	40	264	369	491	641	699	781
Mean	68	72	100	160	258	664	1,027	1,237
Maximum	278	280	284	584	1,093	1,291	1,519	1,908
Minimum	30	31	32	33	34	57	126	146

Appendix Q. Extent of inundation at cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges (Continued)

~				Perce	ntiles					
Cross section	P_{10}	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}		
section _					eet					
			Son	th Prong		River				
1	35	39	57	98	180	1,268	1,279	1,291		
2	28	30	56	94	275	1,146	1,314	1,425		
3	29	72	116	153	348	1,189	1,220	1,268		
4	39	65	85	109	460	1,139	1,263	1,298		
5	37	204	348	414	609	744	1,008	1,211		
6	40	49	64	73	82	105	597	1,095		
6.5	78	82	84	169	190	334	845	1,035		
7	34	108	132	140	151	181	488	839		
8		SR 640								
9	34	108	132	140	151	182	490	847		
9.5	185	210	221	233	302	538	662	759		
10	28	34	43	48	55	510	693	914		
11	39	47	66	95	150	482	821	1,106		
12	24	29	128	190	368	919	1,238	1,337		
13	21	33	53	75	122	792	896	1,009		
14	29	65	193	310	611	953	1,098	1,222		
15	37	51	64	75	93	385	706	971		
16	33	38	46	60	164	889	1,017	1,126		
17	24	28	82	211	348	646	786	941		
18	19	30	81	101	124	850	1,039	1,127		
19	25	29	130	173	230	1,020	1,166	1,263		
20	17	20	22	23	25	1,313	1,627	1,668		
21	33	36	38	39	190	1,392	1,420	1,455		
21.5	28	32	35	37	145	871	902	947		
22	25	28	30	32	34	567	832	1,087		
23			Jameson	n Road ar	nd Gagin	g Station				
24	25	28	30	31	33	585	853	1,093		
24.5	25	31	35	39	111	1,074	1,138	1,221		
25	22	24	26	27	29	458	686	973		
26	27	30	33	35	38	804	870	944		
27	23	26	27	29	335	846	1,042	1,196		
28	43	58	68	76	88	942	1,425	1,638		
29	30	35	40	43	48	539	705	884		
Mean	36	55	83	109	197	763	972	1,135		
Maximum	185	210	348	414	611	1,392	1,627	1,668		
Minimum	17	20	22	23	25	105	488	759		

Appendix R. Hydraulic depth at cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges

~	<u>Percentiles</u>								
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}	
section _				Fe	eet				
				Alafia	River				
73	0.6	1.2	2.1	2.9	4.1	7.5	2.4	4.4	
74			-	Alafia Riv		_	-		
75 -	2.0	2.7	3.4	4.0	5.1	8.3	2.6	4.3	
76	1.6	2.5	3.1	3.4	3.2	1.5	2.4	3.7	
77 78	3.1 2.5	4.4 4.4	5.1 5.5	5.7 6.4	1.8 7.6	2.0 1.9	3.3 1.1	4.2 2.1	
78 79	1.8	3.4	4.4	5.2	6.3	5.8	1.6	1.8	
80	1.5	2.5	3.3	3.9	4.7	2.3	1.9	2.2	
81	2.0	3.3	4.2	5.0	6.2	9.2	1.7	2.3	
82	3.3	4.5	5.4	6.1	7.2	3.1	2.2	3.6	
83					l Bridge				
84	3.4	4.5	5.4	6.1	6.6	2.8	2.3	3.7	
85	0.9	2.5	3.6	4.5	5.9	3.8	1.3	2.6	
86	1.7	2.9	3.9	4.7	6.0	2.5	2.7	3.5	
87	1.6	2.9	3.8	4.5	5.7	0.9	1.9	3.2	
88	1.9	3.3	4.3	5.0	6.2	1.3	2.2	3.2	
89	1.6	2.6	3.2	3.7	4.5	1.1	1.6	2.5	
90	2.0	3.3	4.1	4.7	1.2	1.4	2.1	3.0	
91	1.7	2.5	3.1	3.5	1.8	0.9	1.7	2.6	
92	2.4	3.9	4.5	4.7	4.8	0.9	1.5	2.2	
93	1.3	2.8	3.8	4.5	5.3	6.2	6.1	6.9	
94	0.0	2.6	2.0		Bridge	(0	()	7.2	
95 96	0.9 1.0	2.6	3.6	4.4	5.4 2.3	6.0	6.3	7.3	
Mean	1.8	1.8 3.1	1.6 3.9	1.8 4.5	4.8	3.5	2.5	4.1 3.1	
Maximum	3.4	4.5	5.5	6.4	7.6	9.2	6.3	7.3	
Minimum	0.6	1.2	1.6	1.8	1.2	0.9	1.1	1.8	
	0.0	1.2		th Prong			*.*	1.0	
1	2.7	4.0	4.7	5.2	2.9	1.6	2.1	3.5	
2	2.8	4.1	4.8	4.8	1.0	2.2	3.0	4.2	
3	2.3	3.7	3.7	1.9	1.8	1.3	2.5	3.8	
4	1.7	3.0	3.7	2.3	1.6	2.2	2.4	3.6	
5	1.6	3.0	3.8	3.4	2.7	4.0	4.9	5.5	
6					d Bridge				
7	1.2	2.4	3.1	2.6	2.4	3.9	4.8	4.2	
7.5	1.5	2.6	3.5	4.1	5.0	4.7	3.1	3.0	
8	1.8	2.9	3.6	4.1	4.4	1.9	2.1	3.2	
9	1.9	3.2	3.9	4.5	5.5	1.8	1.5	2.4	
10	1.1	2.2	2.9	3.4	4.4	0.9	1.8	3.1	
11 12	1.1	2.0	2.7	3.1	d Bridge 4.1	0.9	1.9	3.2	
13	1.1	2.0	2.7	3.0	3.9	1.1	1.9	2.8	
14	0.6	1.4	1.9	2.4	3.3	5.5	6.4	6.7	
15	0.0	1.7		Bridge ar			0.4	0.7	
16	0.7	1.4	2.0	2.4	3.3	5.6	6.4	6.9	
16.5	0.7	1.4	2.0	2.4	3.3	3.1	2.5	3.0	
17	1.0	1.4	1.6	1.9	2.4	1.2	1.5	2.1	
18	1.6	2.3	2.8	3.0	3.1	2.8	1.5	1.8	
19	2.2	3.3	1.2	1.3	1.5	2.5	3.3	3.9	
20	2.2	3.6	4.4	0.5	0.8	2.1	3.1	4.1	
21	2.3	3.8	1.8	1.6	1.2	1.4	1.9	2.8	
22	2.6	4.3	1.7	0.8	1.0	2.3	3.2	4.1	
23	1.9	3.5	1.0	1.1	1.4	2.4	3.3	4.1	
Mean	1.6	2.8	2.9	2.7	2.8	2.5	3.0	3.7	
Maximum	2.8	4.3	4.8	5.2	5.5	5.6	6.4	6.9	
Minimum	0.6	1.4	1	0.5	0.8	0.9	1.5	1.8	

Appendix R. Hydraulic depth at cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges (Continued)

	<u>Percentiles</u>								
Cross	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}	
section _	10	30	70			76	77.3	99.9	
	Feet South Prong Alafia River								
1	2	3.1	2.7	tn Prong 2	Alana K 1.9	1.9	3.0	4.3	
2	2.2	3.5	2.7	2	1.9	1.7	2.5	3.6	
3	0.7	3.3 1.4	1.5	1.6	1.2	0.9	1.8	2.9	
3 4	1.6	2.1	2.3	2.3	0.8	1.3	2.0	3.0	
5	1.8	0.9	1.2	1.5	1.6	2.5	2.5	3.1	
6	1.5	2.7	2.8	3	3.3	3.8	1.1	1.5	
6.5	1.5	3	3.8	2.3	2.7	2.7	1.1	2.4	
7	0.9	1.1	1.7	2.3	2.7	3.7	3.5	4.2	
8	0.9	1.1	1./	SR		3.7	3.3	4.2	
9	0.9	1.1	1.7	2.2	2.7	3.7	3.5	4.2	
9.5	0.9	2.3	3.1	3.4	3.2	3.0	3.5	3.9	
10	0.3	0.8	1.4	1.8	2.2	1.0	1.7	2.2	
11	1.2	2.1	2.1	1.9	1.7	1.3	1.3	1.7	
12	1.2	2.3	1.3	1.4	1.1	1.2	1.5	2.1	
13	1.3	1.9	2.1	1.9	1.8	1.2	1.6	2.2	
14	1.5	1.7	1.1	1.5	1.0	1.4	1.9	2.4	
15	1.2	2.3	2.6	2.6	2.6	1.1	1.2	1.5	
16	1.3	2.5	2.9	2.8	1.6	1.3	1.8	2.4	
17	1.4	2.5	1.3	1	1.1	1.5	1.9	2.3	
18	1.2	2	1.4	1.5	1.7	0.8	1.2	1.9	
19	1.8	3.1	1.3	1.4	1.5	1.0	1.5	2.1	
20	0.8	2.2	3	3.4	3.9	0.6	0.9	1.5	
21	1.2	2.4	3.2	3.7	1.2	1.2	1.7	2.2	
21.5	1	2.1	2.9	3.4	1.4	0.8	1.3	1.9	
22	1.2	2.4	3.1	3.6	4.3	1.3	1.8	2.4	
23				n Road an	d Gaging				
24	1.3	2.4	3.2	3.6	4.4	1.4	1.9	2.5	
24.5	1	2	2.7	3.1	1.6	1.0	1.5	2.1	
25	1.1	2.2	3	3.5	4.3	0.9	1.2	1.5	
26	0.7	1.6	2.3	2.8	3.7	0.9	1.6	2.2	
27	1.5	2.5	3.2	3.7	0.7	1.2	1.5	2.1	
28	0.9	1.7	2.3	2.7	3.2	1.0	1.2	1.9	
29	0.8	1.5	2	2.3	2.9	0.8	1.3	1.7	
Mean	1.2	2.1	2.3	2.4	2.2	1.6	1.8	2.5	
Maximum	2.2	3.5	3.8	3.7	4.4	3.8	3.5	4.3	
Minimum	0.3	0.8	1.1	1	0.7	0.6	0.9	1.5	

Appendix S. Acreage of areal inundation between adjacent cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges

	<u>Percentiles</u>										
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}			
section				A	cres						
	Alafia River										
73	S	SR 640 Bridge and Alafia River near Lithia Gaging Station									
74											
75 - c	0.1	0.1	0.1	0.1	0.1	0.1	1.3	2.4			
76	0.8	0.9	1	1.1	1.4	12.7	29.4	54.6			
77	2.3	3	3.4	3.6	10.9	74.4	97.5	119.8			
78 79	4.5 3.7	5.1 4	5.5 4.2	5.8 4.4	12.7 4.7	63.4 14.5	109.8 96.4	143.2 151.3			
80	3.8	4.5	5	5.4	6	15.3	61.6	103.7			
81	3.0	3.6	4.1	4.4	4.9	12.9	50.2	78.7			
82	1.1	1.2	1.1	1.2	1.3	4.0	22.4	34.1			
83	1.1	1.2	1.1		ıd Bridge		22.7	34.1			
84	0.1		0.1	0.1	0.1	0.5	1.4	1.8			
85	3	3.3	3.4	3.5	3.8	15.3	54.6	70.0			
86	3.2	3.3	3.3	3.4	3.5	11.8	38.7	46.2			
87	5	5.1	5.3	5.3	5.5	44.8	70.4	78.2			
88	2.5	2.6	2.7	2.8	2.8	47.1	60.2	63.1			
89	3.9	4.6	5	5.3	6	90.8	118.1	127.9			
90	3.5	4.2	4.8	5.1	9.5	74.9	103.0	110.0			
91	1.5	2	2.1	2.4	8.2	62.3	75.3	79.6			
92	2.9	3.6	4.2	4.8	8.4	73.7	85.5	94.1			
93	3.8	4.1	4.5	4.7	5.2	33.6	39.1	43.3			
94				SR 39	Bridge						
95	0.6	0.6	0.7	0.7	0.8	2.3	2.5	2.8			
96	3.7	4.4	6.2	7.5	9.4	27.5	33.4	40.2			
Total	53	60	67 No.	72	105 g Alafia l	682	1,151	1,445			
1			1101	rui Fron	g Alama i	Kiver					
2	1.2	1.3	1.3	1.4	5.9	26.9	37.5	39.9			
3	3.3	3.6	4.0	5.8	14.4	51.8	59.9	63.6			
4	2.0	2.3	2.6	4.9	10.5	38.5	52.5	55.9			
5	1.4	1.6	1.7	2.6	5.8	12.8	22.6	24.5			
6				Railroa	d Bridge						
7	0.1	0.1	0.2	0.2	0.4	0.5	0.6	0.7			
7.5	0.2	0.2	0.2	0.2	0.3	0.5	0.7	1.1			
8	2.5	2.7	2.8	2.9	3.2	13.2	32.6	38.1			
9	2.8	2.9	3.1	3.2	3.6	24.0	63.6	76.2			
10	1.6	1.8	1.8	1.9	2.0	17.0	38.7	46.1			
11					d Bridge						
12	0.1	0.1	0.1	0.1	0.1	1.4	2.4	2.6			
13	0.3	0.3	0.4	0.4	0.4	5.3	8.7	9.6			
14	1.9	1.9	1.9	2.0	2.0	9.9	14.8	19.8			
15 16	0.6	0.6		_	_	g Station		2.1			
16 16.5	0.6 2.2	0.6	0.6 2.3	0.6 2.3	0.6 2.3	1.1 6.0	1.5 10.4	2.1 15.2			
16.5	7.3	2.3 7.5	2.3 7.7	7.8	8.1	22.6	47.0	64.9			
18	3.6	4.3	4.8	5.1	5.9	13.9	31.1	43.2			
19	2.0	2.4	4.7	5.7	8.1	15.7	27.1	34.7			
20	2.1	2.3	5.4	18.5	32.5	43.1	49.2	54.6			
21	3.4	3.7	5.9	22.7	42.1	58.5	68.2	74.2			
22	5.5	6.1	15.2	36.7	68.0	93.5	108	116			
23	4.2	4.7	16.6	33.9	54.2	62.4	66.5	71.5			
Total	48.2	52.5	83.1	159	270	518	743	854			

Appendix S. Acreage of areal inundation between adjacent cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges (Continued)

	<u>Percentiles</u>									
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}		
section				A	cres					
		South Prong Alafia River								
1				•	_					
2	1.1	1.2	1.8	2.8	6.3	32.2	34.5	36.1		
3	3.1	5.3	7.6	10.1	22.6	79.6	86.2	91.5		
4	1.3	2.5	3.5	4.6	12.7	35.7	38.1	39.3		
5	2.0	5.6	8.8	10.6	20.1	33.9	40.9	45.2		
6	1.8	4.9	7.7	9.0	12.6	15.5	28.6	40.6		
6.5	0.8	0.8	0.9	1.4	1.5	2.3	7.0	10.1		
7	0.5	0.9	1.0	1.3	1.5	2.1	5.8	8.2		
8				SR 64	0 Bridge					
9	0.1	0.2	0.3	0.3	0.3	0.4	0.6	0.8		
9.5	0.5	0.7	0.8	0.9	1.0	1.6	2.7	3.7		
10	2.4	2.8	3.0	3.2	4.1	10.4	13.0	15.8		
11	1.4	1.7	2.3	3.0	4.0	16.3	24.5	32.4		
12	2.8	3.4	7.4	10.7	17.3	40.9	58.3	68.4		
13	1.0	1.4	3.8	5.5	9.9	31.7	39.2	43.0		
14	1.1	2.3	4.8	7.2	13.2	29.4	33.4	37.2		
15	2.0	3.5	6.5	9.1	15.5	28.2	37.3	44.8		
16	2.2	2.7	3.4	4.2	7.2	31.4	42.1	51.0		
17	1.3	1.5	2.7	5.3	9.7	28.1	32.9	37.6		
18	1.0	1.4	3.6	6.4	9.5	28.1	34.1	38.5		
19	1.0	1.4	4.1	5.2	6.6	30.9	36.2	39.1		
20	1.4	1.7	4.4	5.6	7.1	60.7	72.6	76.2		
21	0.7	0.8	0.9	0.9	3.1	38.9	43.8	44.9		
21.5	0.2	0.2	0.3	0.3	1.1	8.2	8.4	8.7		
22	0.2	0.2	0.2	0.2	0.5	5.2	6.3	7.3		
23			Jameso	n Road a	nd Gagin	g Station				
24	0.0	0.1	0.0	0.0	0.0	0.6	0.8	0.9		
24.5	0.2	0.2	0.2	0.3	0.5	6.1	7.3	8.5		
25	0.9	1.1	1.2	1.3	2.6	26.6	31.6	38.0		
26	1.1	1.2	1.3	1.3	1.4	24.8	30.5	37.6		
27	1.7	1.9	2.1	2.2	9.0	36.9	42.6	47.6		
28	0.8	1.0	1.2	1.3	6.4	28.7	39.8	45.7		
29	1.8	2.3	2.7	3.0	3.4	33.5	47.7	56.3		
Total	36.6	54.9	88.4	117	211	749	927	1,055		

Appendix T. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges

	<u>Percentiles</u>									
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}		
section _					res					
	Alafia River									
73	Sl	R 640 Br	idge and	Alafia Ri		ithia Gag	ging Statio	on		
74										
75							0.3	0.1		
76					0.1	0.7	2.8	1.6		
77		0.1	0.1	0.1	6.6	2	6.7	2.4		
78	0.1	0.1	0.1	0.1	6.6	4.4	7.7	2.7		
79	0.1	0.1	0.1	0.1	0.1	5.6	7.3	13.1		
80 81	0.1	0.1 0.1	0.1 0.1	0.1 0.2	0.2 0.1	6.1 5.6	6.8 6.9	12.8 5		
82	0.1	0.1	0.1	0.2	0.1	1.2	3	2.1		
83	0.1			Railroad	d Bridge	1.2	3	2.1		
84				144111041	0.1		0.2			
85		0.1			0.1	2.2	2.4	26		
86	0.1	0.1				0.8	1.2	17.4		
87			0.1			5.2	2.3	0.4		
88				0.1		6.2	1.4	0.4		
89	0.1	0.2	0.1	0.1	0.2	14.7	3.7	1		
90			0.2	0.1	2.4	12.7	2.7	0.7		
91		0.2		0.1	2.5	4.9	0.8	1		
92	0.1		0.1	0.3	0.9	1.1	1.7	1.3		
93			0.1		0.1	0.3	0.9	0.4		
94				SR 39	Bridge					
95	0.1		0.1		0.1			0.1		
96	0.7	0.2	0.4	0.5	0.5	1.7	1.1	1		
Total	0.7	1.2	1.6	1.8 th Prong	20.6	75.4	59.9	89.5		
1			1101	thiring	/Mana I	avei				
2			0.5	0.6	3.9	1.2	0.9	0.8		
3	0.1		0.2	1.1	6.2	7.7	1	0.9		
4			0.2	1.7	1.3	8.5	0.7	0.7		
4 5			0.2 0.1	1.7 0.9		8.5 2.4	0.7 0.4			
				0.9	1.3			0.7		
5	0.1			0.9	1.3 0.7			0.7		
5 6	0.1			0.9	1.3 0.7 d Bridge 0.1 0			0.7		
5 6 7 7.5 8	0.1			0.9 Railroad 0.1	1.3 0.7 d Bridge 0.1 0 0.1	0.3	0.4	0.7 0.5 0.2 0.9		
5 6 7 7.5 8 9	0.1		0.1	0.9 Railroad 0.1 0.1	1.3 0.7 d Bridge 0.1 0 0.1 0.1	0.3 1.3	0.4 0.5 5.8	0.7 0.5 0.2 0.9 1.6		
5 6 7 7.5 8 9	0.1			0.9 Railroad 0.1 0.1 0.1	1.3 0.7 d Bridge 0.1 0 0.1 0.1	0.3	0.4	0.7 0.5 0.2 0.9		
5 6 7 7.5 8 9 10	0.1		0.1	0.9 Railroad 0.1 0.1 0.1	1.3 0.7 d Bridge 0.1 0 0.1 0.1	0.3 1.3 5.1	0.4 0.5 5.8	0.7 0.5 0.2 0.9 1.6		
5 6 7 7.5 8 9 10 11	0.1		0.1	0.9 Railroad 0.1 0.1 0.1	1.3 0.7 d Bridge 0.1 0 0.1 0.1	0.3 1.3 5.1	0.4 0.5 5.8 4.2	0.7 0.5 0.2 0.9 1.6 0.9		
5 6 7 7.5 8 9 10 11 12 13	0.1		0.1	0.9 Railroad 0.1 0.1 0.1	1.3 0.7 d Bridge 0.1 0 0.1 0.1 0.1 d Bridge	0.3 1.3 5.1 0.4 1.3	0.4 0.5 5.8 4.2	0.7 0.5 0.2 0.9 1.6 0.9		
5 6 7 7.5 8 9 10 11 12 13 14	0.1		0.1	0.9 Railroad 0.1 0.1 0.1 Railroad	1.3 0.7 d Bridge 0.1 0 0.1 0.1 0.1 d Bridge	0.3 1.3 5.1 0.4 1.3 1	0.4 0.5 5.8 4.2	0.7 0.5 0.2 0.9 1.6 0.9		
5 6 7 7.5 8 9 10 11 12 13 14 15	0.1		0.1	0.9 Railroad 0.1 0.1 0.1	1.3 0.7 d Bridge 0.1 0 0.1 0.1 0.1 d Bridge	0.3 1.3 5.1 0.4 1.3 1	0.4 0.5 5.8 4.2	0.7 0.5 0.2 0.9 1.6 0.9		
5 6 7 7.5 8 9 10 11 12 13 14 15 16	0.1		0.1	0.9 Railroad 0.1 0.1 0.1 Railroad	1.3 0.7 d Bridge 0.1 0 0.1 0.1 0.1 d Bridge	0.3 1.3 5.1 0.4 1.3 1	0.4 0.5 5.8 4.2 0.3 2	0.7 0.5 0.2 0.9 1.6 0.9 0.2		
5 6 7 7.5 8 9 10 11 12 13 14 15 16 16.5	0.1		0.1	0.9 Railroad 0.1 0.1 0.1 Railroad	1.3 0.7 d Bridge 0.1 0 0.1 0.1 0.1 d Bridge 0.1 nd Gaging	2.4 0.3 1.3 5.1 0.4 1.3 1 g Station 0.4	0.4 0.5 5.8 4.2 0.3 2 0.2 1.8	0.7 0.5 0.2 0.9 1.6 0.9 0.2 0.8		
5 6 7 7.5 8 9 10 11 12 13 14 15 16		0.1	0.1 0.1 0.1 SR 676	0.9 Railroad 0.1 0.1 0.1 Railroad	1.3 0.7 d Bridge 0.1 0 0.1 0.1 0.1 d Bridge	0.3 1.3 5.1 0.4 1.3 1 g Station 0.4 4.9	0.4 0.5 5.8 4.2 0.3 2	0.7 0.5 0.2 0.9 1.6 0.9 0.2 0.8 0.2 0.8 3.4		
5 6 7 7.5 8 9 10 11 12 13 14 15 16 16.5 17	0.1	0.1	0.1	0.9 Railroad 0.1 0.1 0.1 Railroad Bridge an	1.3 0.7 d Bridge 0.1 0 0.1 0.1 0.1 d Bridge 0.1 and Gaging	2.4 0.3 1.3 5.1 0.4 1.3 1 g Station 0.4	0.4 0.5 5.8 4.2 0.3 2 0.2 1.8 5.1	0.7 0.5 0.2 0.9 1.6 0.9 0.2 0.8		
5 6 7 7.5 8 9 10 11 12 13 14 15 16 16.5 17		0.1	0.1 0.1 0.1 SR 676	0.9 Railroad 0.1 0.1 0.1 Railroad Bridge an	1.3 0.7 d Bridge 0.1 0 0.1 0.1 d Bridge 0.1 d Gaging	0.3 1.3 5.1 0.4 1.3 1 g Station 0.4 4.9 3.1	0.4 0.5 5.8 4.2 0.3 2 0.2 1.8 5.1 3.8	0.7 0.5 0.2 0.9 1.6 0.9 0.2 0.8 0.2 0.8 3.4 1.8		
5 6 7 7.5 8 9 10 11 12 13 14 15 16 16.5 17 18		0.1	0.1 0.1 SR 676	0.9 Railroad 0.1 0.1 0.1 Railroad Bridge an	1.3 0.7 d Bridge 0.1 0 0.1 0.1 d Bridge 0.1 d Gaging	0.3 1.3 5.1 0.4 1.3 1 g Station 0.4 4.9 3.1 0.8	0.4 0.5 5.8 4.2 0.3 2 0.2 1.8 5.1 3.8 3 1.2	0.7 0.5 0.2 0.9 1.6 0.9 0.2 0.8 3.4 1.8 1.1		
5 6 7 7.5 8 9 10 11 12 13 14 15 16 16.5 17 18 19 20	0.1		0.1 0.1 SR 676 0.2 0.8 0.9	0.9 Railroad 0.1 0.1 0.1 Railroad Bridge an 0.2 0.5 6.1	1.3 0.7 d Bridge 0.1 0 0.1 0.1 d Bridge 0.1 d Gaging 0.1 0.3 1 3.5	0.3 1.3 5.1 0.4 1.3 1 g Station 0.4 4.9 3.1 0.8 1	0.4 0.5 5.8 4.2 0.3 2 0.2 1.8 5.1 3.8 3 1.2	0.7 0.5 0.2 0.9 1.6 0.9 0.2 0.8 3.4 1.8 1.1		
5 6 7 7.5 8 9 10 11 12 13 14 15 16 16.5 17 18 19 20 21	0.1	0.1	0.1 0.1 SR 676 0.2 0.8 0.9 1.7	0.9 Railroad 0.1 0.1 Railroad Bridge an 0.2 0.5 6.1 7.8	1.3 0.7 d Bridge 0.1 0 0.1 0.1 d Bridge 0.1 d Gaging 0.1 0.3 1 3.5 4.5	0.3 1.3 5.1 0.4 1.3 1 g Station 0.4 4.9 3.1 0.8 1 2.1	0.4 0.5 5.8 4.2 0.3 2 0.2 1.8 5.1 3.8 3 1.2	0.7 0.5 0.2 0.9 1.6 0.9 0.2 0.8 3.4 1.8 1.1 1.2		

Appendix T. Decrease of inundated acreage resulting from a potential 10-percent discharge withdrawal at cross sections along the Alafia, North Prong Alafia, and South Prong Alafia Rivers for selected percentile discharges (Continued)

	<u>Percentiles</u>									
Cross section	P ₁₀	P ₅₀	P ₇₀	P ₈₀	P ₉₀	P ₉₈	P _{99.5}	P _{99.9}		
section .				Ac	res					
	South Prong Alafia River									
1										
2			0.3	0.5	1.8	0.6	0.3	0.4		
3	0.1	0.2	0.6	1.1	3.8	28.7	0.9	1.2		
4		0.2	0.2	0.4	3.5	13.2	0.2	0.3		
5		0.7	0.5	0.6	4.3	0.9	1.4	0.5		
6		0.6	0.4	0.4	0.3	0.4	3.7	0.6		
6.5						0.2	0.9	0.2		
7		0.1				0.1	0.3	0.9		
8				SR 640	Bridge					
9								0.1		
9.5					0.1	0.1	0.1	0.4		
10	0.1	0.1		0.1	0.6	0.5	0.5	0.5		
11			0.3	0.2	0.3	1.1	2.0	0.9		
12			1.1	1.0	1.2	2.3	6.2	1.2		
13		0.1	0.4	0.7	0.7	1.1	3.2	0.8		
14		0.2	0.6	1.3	1.4	0.8	0.8	0.8		
15		0.3	0.7	1.2	1.5	2.0	1.4	1.7		
16		0.1	0.3	0.3	0.8	2.3	1.8	1.9		
17			1.0	0.9	1.1	1.2	1.0	1.1		
18			1.1	0.9	0.7	2.5	0.8	1.0		
19			0.4	0.3	0.3	3.4	0.6	0.4		
20			0.4	0.4	0.4	3.5	6.0	0.5		
21					0.8	0.7	3.1	0.3		
21.5					0.3	0.1	0.1	0.1		
22					0.1	0.2	0.3	0.1		
23			Jameson	n Road ar	nd Gaging	g Station				
24										
24.5					0.2	0.2	0.3	0.1		
25					0.9	1.0	1.2	1.4		
26						1.2	1.3	1.6		
27					1.8	1.4	1.0	0.8		
28					1.3	2.4	2.3	0.8		
29		0.1	0.1	0.1	0.1	2.9	3.1	1.4		
Total	0.2	2.7	8.4	10.4	28.3	75.0	44.8	22.0		