Clean Screening Methodologies

Sandeep Kishan Meredith Weatherby Cindy Palacios Radian International

Rob Klausmeier de la Torre Klausmeier Consulting, Inc.

14th Annual Mobile Sources/Clean Air Conference September 15-18, 1998 Breckenridge, Colorado

Benefits/Drawbacks of Clean Screen

- * Improve effectiveness of I/M program by focusing on high-emitting vehicles
- * Can use existing RSD program

Drawbacks:

- * Some high emitters can be falsely identified as clean
- * Evaporative and NOx highemitters may be missed

Goal: Develop RSD criteria to maximize clean vehicle exemptions while minimizing falsely identified high-emitters.

Clean Screen Approaches

- * Use of RSD
- * Low Emitter Profiling (LEP)
- * Model Year Exemptions

Arizona Clean Screen Model

- ** Conducted pilot RSD study to relate RSD measurements and IM240 results
- * Developed Clean Screen Models

Pilot Program Description

- * One month data gathering in Phoenix, Arizona
- * Two RSD units set up in proximity to two I/M stations
- * Paired IM240 and RSD readings within tight time window (~2,000 pairs)
- * "Controlled" test conditions

Failure Probability (Fprob)

- * A statistical measure of failure history for a certain category of vehicle defined by the following parameters:
 - Vehicle Type
 - Model Year
 - Make
 - Engine Displacement
 - _ Air
 - Catalyst
 - _ EGR
 - 02 Sensor
 - Carb/FI

Graphical Representation of Clean Screen Model

Graphical Representation of Model 4

Using LDVs w/ Clean Vehicle Std = 0.4

Screening Probability

Clean Screen Models

Model	RSDCO	Fprob	Model Year
A	✓	V	
В		V	
C			✓

Percent of Screened Vehicles Which Are Clean Clean: Vehicle Emissions Less Than 50% of Vehicle Standard

MODEL PERFORMANCE

Clean: Vehicle Emissions Less Than 50% of Vehicle Standard

Screening Percentage	Percent Excess NOx		
	RSD	Fprob	Model Year
	Model A	Model B	Model C
10	0.29	0.33	1.12
20	1.29	1.14	2.38
30	2.60	2.60	4.84
40	5.49	5.43	8.40
50	10.73	11.95	18.38

Percent Excess HC			
RSD	Fprob	Model Year	
Model A	Model B	Model C	
0.00	0.00	0.18	
0.05	0.24	0.64	
0.66	0.66	1.60	
1.15	1.72	2.60	
2.78	3.13	9.25	

Excess NOx Emissions Predicted By Model Year, Fprob, and RSD Clean: Vehicles Emissions Less Than 50% of Vehicle Standard

Excess HC Emissions Predicted By Model Year, Fprob, and RSD Clean: Vehicle Emissions Less Than 50% of Vehicle Standard

Percent of Screened Vehicles Which Are Clean Clean: Vehicle Emissions Less Than 100% of Vehicle Standard

MODEL PERFORMANCE

Clean: Vehicle Emissions Less Than 100% of Vehicle Standard

CIUMIT , CITCUIT ZIMI, DI GIA ZI			
Screening	Percent Excess NOx		
Percentage			
	RSD	Fprob	Model Year
	Model A	Model B	Model C
10	0.00	0.00	0.59
20	0.00	0.89	0.89
30	0.89	1.22	1.25
40	1.71	2.32	3.27
50	2.82	2.87	10.80

Percent Excess HC			
RSD	Fprob	Model Year	
Model A	Model B	Model C	
0.00	0.00	0.06	
0.00	0.06	0.06	
0.22	1.15	1.02	
0.28	2.40	1.42	
0.28	2.40	9.92	

Excess NOx Emissions Predicted By Model Year, Fprob, and RSD Clean: Vehicle Emissions Less Than 100% of Vehicle Standard

Excess HC Emissions Predicted By Model Year, Fprob, and RSD Clean: Vehicle Emissions Less Than 100% of Vehicle Standard

Results and Conclusions

- Clean screening can be used to exempt a fairly large percentage of vehicles with minimal impact of emission reductions
- * RSD, LEP, and model year exemptions are all useful approaches.
- * LEP and model year may be favored due to simplicity.
- * Cost-effectiveness analysis may be needed to assess cost and emission tradeoffs.

