REFERENCE COPY Do Not Remove from the Library U. S. Fish and Wildlife Service Lafayette, Louisiana 70506 Biological Report 82(11.71) National Wetlands Research Center March 1987 700 Cajun Dome Boulevard TR EL-82-4 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico) # **PIGFISH** Fish and Wildlife Service Coastal Ecology Group Waterways Experiment Station U.S. Department of the Interior **U.S. Army Corps of Engineers** Biological Report 82(11.71) TR EL-82-4 March 1987 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico) **PIGFISH** by Frederick C. Sutter and Thomas D. McIlwain Gulf Coast Research Laboratory Fisheries Research and Development East Beach Boulevard Ocean Springs, MS 39564 > Project Manager Carroll Cordes Project Officer David Moran National Wetlands Research Center U.S. Fish and Wildlife Service 1010 Gause Boulevard Slidell, LA 70458 Performed for Coastal Ecology Group Waterways Experiment Station U.S. Army Corps of Engineers Vicksburg, MS 39180 and National Wetlands Research Center Research and Development Fish and Wildlife Service U.S. Department of Interior Washington, DC 20240 This series may be referenced as follows: U.S. Fish and Wildlife Service. 1983-19_. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates. U.S. Fish Wildl. Serv. Biol. Rep. 82(11). U.S. Army Corps of Engineers, TR EL-82-4. This profile may be cited as follows: Sutter, F. C., and T. D. McIlwain. 1987. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico)--pigfish. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.71). U.S. Army Corps of Engineers, TR EL-82-4. 11 pp. #### **PREFACE** This species profile is one of a series on coastal aquatic organisms, principally fish, of sport, commercial, or ecological importance. The profiles are designed to provide coastal managers, engineers, and biologists with a brief comprehensive sketch of the biological characteristics and environmental requirements of the species and to describe how populations of the species may be expected to react to environmental changes caused by coastal development. Each profile has sections on taxonomy, life history, ecological role, environmental requirements, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. This project is jointly planned and financed by the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service. Suggestions or questions regarding this report should be directed to one of the following addresses. Information Transfer Specialist National Wetlands Research Center U.S. Fish and Wildlife Service NASA-Slidell Computer Complex 1010 Gause Boulevard Slidell, LA 70458 or U.S. Army Engineer Waterways Experiment Station Attention: WESER-C Post Office Box 631 Vicksburg, MS 39180 ## CONVERSION TABLE ### Metric to U.S. Customary | <u>Multiply</u> | <u>By</u> | <u>To Obtain</u> | |---|--|--| | millimeters (mm) centimeters (cm) meters (m) meters (m) kilometers (km) kilometers (km) | 0.03937
0.3937
3.281
0.5468
0.6214
0.5396 | inches
inches
feet
fathoms
statute miles
nautical miles | | square meters (m²) | 10.76 | square feet | | square kilometers (km²) | 0.3861 | square miles | | hectares (ha) | 2.471 | acres | | liters (1) | 0.2642 | gallons | | cubic meters (m³) | 35.31 | cubic feet | | cubic meters (m³) | 0.0008110 | acre-feet | | milligrams (mg) | 0.00003527 | ounces | | grams (g) | 0.03527 | ounces | | kilograms (kg) | 2.205 | pounds | | metric tons (t) | 2205.0 | pounds | | metric tons (t) | 1.102 | short tons | | kilocalories (kcal) | 3.968 | British thermal units | | Celsius degrees (°C) | 1.8(°C) + 32 | Fahrenheit degrees | | | U.S. Customary to Metric | į | | <pre>inches inches feet (ft) fathoms statute miles (mi) nautical miles (nmi)</pre> | 25.40
2.54
0.3048
1.829
1.609
1.852 | millimeters centimeters meters meters kilometers kilometers | | square feet (ft ²) | 0.0929 | square meters | | square miles (mi ²) | 2.590 | square kilometers | | acres | 0.4047 | hectares | | gallons (gal) | 3.785 | liters | | cubic feet (ft³) | 0.02831 | cubic meters | | acre-feet | 1233.0 | cubic meters | | ounces (oz) ounces (oz) pounds (1b) pounds (1b) short tons (ton) | 283.5
28.35
0.4536
.00045 | milligrams
grams
kilograms
metric tons | | | 0.9072 | metric tons | # CONTENTS | | | | | | | | | | | | | | | | | | | Page | |-----------------|------|------|-----|-----|----|--|--|--|---|--|--|--|--|--|--|--|--|--------| | PREFACE | | | | | | | | | | | | | | | | | | iii | | CONVERSION TAB | LE | | | | | | | | | | | | | | | | | i۷ | | ACKNOWLEDGMENT | | | • | | | | | | | | | | | | | | | vi | | NOMENCLATURE/T | AXON | IOMY | //R | ANG | ΞE | | | | | | | | | | | | | 1 | | MORPHOLOGY/IDE | | | | | | | | | | | | | | | | | | 1 | | REASON FOR INC | | | | | | | | | | | | | | | | | | 3 | | LIFE HISTORY | | | | | | | | | • | | | | | | | | | | | Spawning . | | | | | | | | | | | | | | | | | | 3 | | Eggs | | | | | | | | | | | | | | | | | | 3 | | Larvae | | | | | | | | | | | | | | | | | | 3 | | Juveniles | | | | | | | | | | | | | | | | | | 4 | | Adults | | | | | | | | | | | | | | | | | | 5
5 | | GROWTH CHARACT | ERIS | TIC | CS | | | | | | | | | | | | | | | 5 | | THE FISHERY . | | | | | | | | | | | | | | | | | | 5 | | ECOLOGICAL ROL | | | | | | | | | | | | | | | | | | 5 | | Food Habits | | | | | | | | | | | | | | | | | | 5 | | Predators | | | | | | | | | | | | | | | | | | 6 | | Parasites a | nd D | ise | eas | es | | | | | | | | | | | | | | 6 | | ENVIRONMENTAL | | | | | | | | | | | | | | | | | | 6 | | Temperature | | | | | | | | | | | | | | | | | | 6 | | Dissolved O | | | | | | | | | | | | | | | | | | 8 | | Substrate | | | | | | | | | | | | | | | | | | 8 | | I TTERATURE CIT | FΩ | | | | | | | | | | | | | | | | | ٥ | #### **ACKNOWLEDGMENTS** We gratefully acknowledge peer reviews by R.L. Shipp, University of South Alabama, Mobile, and H.D. Hoese, University of Southwestern Louisiana, Lafayette. Figure 1. Pigfish (adult). #### **PIGFISH** #### NOMENCLATURE/TAXONOMY/RANGE | | name <u>Orthopristis</u> | |-----------|--------------------------| | chrysopi | tera (Linnaeus) | | Preferred | common name Pigfish | | (Figure | 1) | | Class | Osteichthyes | | Order | Perciformes | | Family . | Haemulidae | Geographical range: Pigfish are distributed along the Atlantic coast from Massachusetts (Hoese and Moore 1977) to the tip of Florida, but are uncommon north of Virginia (Breder 1948). They are found throughout the Gulf of Mexico (Figure 2; Briggs 1958) and in coastal waters around Bermuda. #### MORPHOLOGY/IDENTIFICATION AIDS The following descriptive characteristics for pigfish were taken from Courtenay and Sahlman (1978): Body ovate-elliptical, considerably compressed, its depth contained 2.6 to 3.0 times in standard length (SL). Posterior edge of upper jaw not reaching to below eye; two pores and a median groove on chin; jaws with a narrow band of slender teeth; preopercular margin very slightly gill serrate; rakers short slender, about 12 on lower limb of first arch. Dorsal fin with 12 or 13 spines and 15 or 16 soft rays; anal fin with 3 spines and 12 or 13 soft rays; dorsal and anal fin spines enclosed in a deep scaly sheath, the soft rays naked. Scales ctenoid; pored lateral-line scales 55 to 58; 10 longitudinal rows of scales above the lateral line and 19 rows below. Color of body: light blue-gray above, shading gradually into silver below; each scale of body with a blue center, the edge with a bronze spot; these spots form distinct orange-brown stripes extending obliquely upward Figure 2. Distribution of the pigfish. and backward on back and sides, those below being nearly horizontal; head with bronze spots; fins yellow-bronze with dusky margins. #### REASON FOR INCLUSION IN THE SERIES Pigfish are common inhabitants of warm gulf waters (Reid 1954). are frequently taken by sport anglers, especially in Florida waters, and are considered to be a good quality food fish (Darcy 1983); however, they have only limited economic importance Piafish (Joseph and Yerger 1956). are often trapped and used for live bait (Carr 1976). They are also used as a source of food by other predatory species (Smith 1907). #### LIFE HISTORY #### Spawning Pigfish mature by their second year of life (Taylor 1916; Hildebrand and Cable 1930). Reid (1954) concluded that spawning in gulf waters near Florida, was probably Key, Cedar in spring, since small young-of-theyear (23 to 28 mm SL) first appeared in May. He also noted a bimodal length-frequency curve for that month, suggesting that pigfish in this area of the gulf may have two breeding peaks or "growth spurts." Adult females taken during July from the Cedar Key area showed some signs of maturing gonads; however, they were from ripe. After comparing average monthly lengths and seasonality of fish in other areas. Grimes and Mountain (1971) concluded pigfish apparently spawn in that March in gulf waters near about Crystal River, Florida. Gunter (1945) found ripe males in Texas gulf waters in March and April and suggested that the fish probably spawn there before June. Other studies from the Gulf of Mexico also indicate that spawning occurs in the late winter or spring: Bay, Tampa Florida, March-May Woodburn 1960): (Springer and Alligator Harbor, Florida, March eastern (Joseph and Yerger 1956); Gulf of Mexico, January-May (Darcy 1983); and Horn Island, Mississippi, 1970). March-April (Franks Hoese (1965) reported that pigfish larvae were found off Port Aransas from late through February June. Hastings (1972) noted that spawning may occur water prior inshore open to during March-April migrations St. Andrew Bay, Florida. Pigfish spawn during March to June along the inside shores of Bogue and Shackleford Banks, North Carolina, and within the harbor and estuaries on the outer shores of these banks (Hildebrand and Cable 1930). Spawning apparently takes place during the early evening hours (Towers 1928; Hildebrand and Cable 1930). #### Eggs Johnson (1978) reported that pigfish eggs are buoyant, highly transparent, and spherical (0.7 to 0.8 mm in diameter). The eggs have a single oil globule (rarely two or three) that averages 0.16 mm in diameter. Pigfish eggs are easily confused with those of silver perch (Bairdiella chrysoura). This problem is magnified by the fact that the two species spawn at nearly the same time and in similar areas. #### Larvae Hildebrand and Cable (1930) provided descriptions of larval piafish collected from North Carolina waters. Watson (1983) updated their descriptions using a series of larval pigfish specimens from lower Cape Estuary, North Carolina, and from the off gulf waters Texas. larvae can be separated from those of other haemulids (grunts) by the presence of 11 soft rays in the anal fin (Watson 1983). Darcy (1983) cited a study by Houde et al. (1979) describing the distribution and abundance of pigfish larvae in the eastern gulf. They found one peak of abundance in late winter and spring, mainly inside a depth of 50 m. #### Juveniles Juvenile pigfish are fully scaled by 25 mm SL and achieve adult form by 70 mm SL (Figure 3; Hildebrand and Cable 1930). At 25 mm, they have a prominent dark midlateral band with an additional dark band from the nape to the base of the second dorsal fin. The mid-lateral bands often disappear at a length of approximately 40 mm SL, but the anterior position of the lower band may remain longer (Johnson 1978). Juvenile pigfish have yellow and green horizontal lines along their sides that are most prominent on the cheeks and opercles. Grimes and Mountain (1971), working in an area of thermal effluent near Crystal River, Florida, first noted young-of-the-year pigfish in trawl samples taken during June. Juvenile pigfish (smallest, 12.5 mm SL) were first taken in April from Tampa Bay (Springer and Woodburn 1960) and St. Andrew Bay, Florida (Hastings 1972). Juveniles were most abundant during May in Cedar Key, Florida (Reid 1954). In Alligator Harbor, Florida, Joseph and Yerger (1956) reported that juveniles (41 mm SL) were present by June. Gunter (1945) and Hildebrand (1954) collected smallest pigfish in shallow bays along the Texas gulf coast. Juvenile pigfish may associate with other species of fish. Darcy (1983) referenced a study by Wang and Raney (1971) from Charlotte Harbor, Florida, where young pigfish (16-25 mm SL) were found in mixed schools with small pinfish. Figure 3. Juvenile pigfish, 38 mm TL (from Hildebrand and Cable 1930, Figure 37). #### Adults Adult pigfish are common in the northern and more saline coastal areas of the Gulf of Mexico (Springer and Woodburn 1960; Moe and Martin 1965; Hoese and Moore 1977). (1954) reported that adult pigfish were found in Cedar Key, Florida, throughout the year (except January); however, pigfish were most abundant during summer months. Grimes and Mountain (1971) also noted that pigfish were more commonly taken during later summer and fall months in Crystal River, Florida. Along the coastal areas of north Florida, pigfish have been reported to be among the most abundant finfish collected (Joseph and Yerger 1956; Hastings et al. 1976; Ogren and Brusher 1977; Pristas and Trent 1978; Darcy 1983). Adult pigfish also occur in the offshore and open-shelf areas of the Gulf of Mexico. Darcy (1983) noted a study by Cody et al. (1978) stating that pigfish occurred in 40%-43% of all trawl catches on the white shrimp grounds off the Texas gulf coast. Pigfish have also been taken from offshore reefs and platalong the northern gulf (Hastings 1972; Hastings et al. 1976; Darcy 1983). Moe and Martin (1965) reported that pigfish may be more abundant in offshore waters than inshore in the southern regions of the Gulf of Mexico. Hildebrand (1954) noted that pigfish were abundant on the shell banks off Campeche, Mexico. #### **GROWTH CHARACTERISTICS** Pigfish reach a maximum length of 46 cm SL (Courtenay and Sahlman 1978) and a weight of 0.9 kg (2 lb) (Hildebrand and Cable 1930; Konchina 1977; Darcy 1983). Few pigfish older than 3 years old and very few age 4 fish have been taken along the Atlantic coast (Taylor 1916; Hildebrand and Cable 1930). Information on growth of pigfish in gulf waters is limited to age 0 and age 1 fish (Table 1). Growth rates based on these data range from 7 mm SL/mo (Reid 1954) to 9.3 mm SL/mo from June to October. Growth during October to April slows to 3.1 mm SL/mo (Grimes and Mountain 1971) to 5.5 mm SL/mo (Reid 1954). #### THE FISHERY statistics Commercial are specifically reported for pigfish, but have been combined with those for the other grunts by the Bureau of and National Commercial Fisheries Marine Fisheries Service. Pigfish are taken in seines, traps, trawls, and by handlines (Courtenay and Sahlman 1978). Most are marketed as live bait (especially in Texas); they are also considered a good quality food fish (Darcy 1983) but have little economic Marine recreational landing value. statistics for pigfish in the Gulf of 1979 and 1981-85 are Mexico for summarized in Table 2; most are taken along Florida (gulf and Atlantic) and the Texas gulf coast waters. #### **ECOLOGICAL ROLE** #### <u>Food Habits</u> Feeding habits of pigfish vary with growth stage; they are primarily benthic carnivores as adults, possibly feeding nocturnally (Hastings et al. 1976), while you'ng fish are planktivorous (Carr and Adams 1973; Darcy Reid (1954) found a shift in diet relative to increasing length for pigfish taken from Crystal River, Florida (Table 3). Small fish (25-50 mm TL) ate mostly copepods, while larger fish shifted to a diet of amphipods, shrimps, and other benthic Carr and Adams (1973), organisms. who also studied juvenile pigfish (16-80 mm SL) in the Crystal River. found two distinct feeding phases. Smaller pigfish (16-30 mm) were planktivorous (eating copepods, mysids, and Table 1. Comparative monthly mean standard lengths (mm) for age 0 pigfish (from Grimes and Mountain 1971). | Study | Year
collected | June | Aug. | Oct. | Dec. | Feb. | April | |---|-------------------|--------------|--------------|--------------|--------------|------|----------------| | Springer and
Woodburn 1960
(Tampa Bay) | 1957 | 40.0 | 62.1 | | | | 17.5 | | Reid 1954
(Cedar Keys) ^a | 1951 | 49.0 | 66.0 | 77.0 | | 84.0 | 110.0 | | Grimes 1971 ^b
Crystal River-Affected
Crystal River-Nonaffected | 1969 | 44.0
51.0 | 66.0
75.0 | 70.0 | 79.0 | | 98.0
111.0 | | Grimes and
Mountain 1971 ^b
Crystal River-Affected
Crystal River-Nonaffected | 1970 | 50.0 | 78.9
68.9 | 94.0
87.2 | 88.2
90.8 | | 102.9
105.8 | a Lengths estimated from graph. Statistical comparison of annual growth (monthly mean standard length vs. time) of fish from thermally affected (warmed by the effluent from a steam electric station) vs. nonaffected areas revealed no significant difference. postlarval shrimp), followed by a two-phase carnivorous stage in which benthic invertebrates were the major food items. The transition from planktivore to carnivore was gradual, beginning at about 26 mm SL, and was complete by 41-45 mm SL. Polychaetes were important in the diet of pigfish longer than 30 mm, but as fish grew larger than 55 mm, caridean and penaeid shrimp were consumed more frequently (Darcy 1983). #### Predators Pigfish are prey of Atlantic sharpnose sharks, spotted seatrout, and weakfish (Radcliffe 1916; Hastings 1972; Darcy 1983). Other large piscivores, such as snapper and grouper, probably also prey on pigfish (Darcy 1983). #### Parasites and Diseases Pigfish have been reported to be parasitized by a monogenetic trematode that infests the gill filaments (Suydam 1971). Springer and Woodburn (1960) report that pigfish were killed by red tides in Tampa Bay, Florida. #### **ENVIRONMENTAL REQUIREMENTS** #### Temperature and Salinity Reid (1954) found mean water temperature and salinity values of 25.2 °C and 25.1 ppt in Crystal River, Florida, when pigfish were most abundant. During December to April, when pigfish were taken less frequently, values of 15.9 °C and Table 2. Summary of recreational fishing statistics for pigfish in the Gulf of Mexico. | | Total U.S.
catch
(thousands | Percent of catch taken in | | Catch
(thou | by Gulf
sands of | States
fish) | | |------------------------------|-----------------------------------|---------------------------|-------|----------------|---------------------|-----------------|-----| | Time period | of fish) | Gulf of Mexico | FL | ÀL | MS | LA | TX | | Jan-Dec ^a
1979 | 1,992 | 76.4 | 700 | | 34 | | 770 | | Mar-Dec ^b
1981 | 2,281 | 67.0 | 1,071 | | | , | 428 | | Jan-Dec ^b
1982 | 2,643 | 76.2 | 1,769 | | | 72 | 169 | | Jan-Dec ^C
1983 | 2,386 | 49.2 | 1,001 | 39 | * | | 115 | | Jan-Dec ^C
1984 | 1,731 | 66.8 | 741 | | | * | 413 | | Jan-Dec ^d
1985 | 2,770 | 47.4 | 587 | * | * | * | 726 | a_hU.S. National Marine Fisheries Service (1980). 26.5 ppt were recorded. Roessler (1970) collected pigfish from Florida waters at temperatures of 19.5 to 30.6 °C and salinities of 17.2 to 44.1 ppt. A temperature range of 13.7 to 36 °C and a salinity range of 0 to 38 ppt was also provided by Roessler (1970) on the basis of published values for pigfish throughout the gulf. Springer and Woodburn (1960) reported a tolerance range of 19.1 to 35 ppt (mean = 28.9 ppt) and 17.5 to 32.5 °C for pigfish collected in Tampa Bay, Florida. In Barataria Bay, Louisiana, pigfish were taken between 6.2 and 24.3 ppt and between 17.3 and 30.0 °C (Dunham 1972). apparently Piafish avoid lowtemperature water, migrating deeper water during the winter (Hildebrand and Cable 1930; Gunter 1945; Reid 1954; Wang and Raney 1971; Grimes 1971; Hastings 1972; and Brusher 1977; Naughton and Saloman 1978; Darcy 1983). Hastings (1972) noted that pigfish were absent collections made at temperatures of 12 to 14 °C; however adults were abundant when waters of St. Andrew Bay, Florida, warmed to 16.5 to 31.0 °C. Moe and Martin (1965) also noted that pigfish were not collected when water temperatures in Pinellas County, Florida, dropped U.S. National Marine Fisheries Service (1985a). LU.S. National Marine Fisheries Service (1985b). dU.S. National Marine Fisheries Service (1986). ^{*}means none reported. ⁻⁻means less than 30,000 reported; however, the figure is included in removed column totals. Table 3. Food of pigfish (percentage frequency of occurrence) from Crystal River, Florida (from Reid 1954). | | | Size of fish (| (mm) | |-------------|-------|----------------|---------| | Food item | 25-50 | 51-150 | 151-170 | | Copepods | 83 | 38 | | | Ostracods | 50 | | | | Amphipods | | 54 | 10 | | Shrimps | 17 | 56 | 40 | | Crabs | | 5 | 20 | | Mollusks | | | 20 | | Polychaetes | 17 | 8 | 60 | | Fishes | | 5 | | | Insects | | | 10 | below 12.5 °C. Moore (1976) reported that pigfish were killed during a cold wave that caused water temperatures to drop to 4.5 °C (Darcy 1983). Low salinity areas also appear to be avoided by pigfish. In Charlotte Florida, Wang Harbor, and Raney (1971) reported that pigfish were not taken in waters with salinity values less than 15 ppt. Gunter (1945) found all pigfish less than 50 mm TL and greater than 200 mm TL in Texas gulf waters in salinities greater than 25 ppt; no specimens were taken in less than 10 ppt. Reid (1954) noted a mass mortality of pigfish, as well as other species, after a hurricane caused salinities to drop from 23.5 ppt to 9.7 ppt over a 4-day period in Goose Cove, Florida. However, it was probably the rapid drop rather than the low salinity that caused the mortality (Darcy 1983). #### Dissolved Oxygen Schwartz et al. (1982) collected pigfish from waters with dissolved oxygen concentrations of 2.1 to 11.8 ppm in Cape Fear Estuary, North Carolina. #### <u>Substrate</u> Juvenile pigfish in Crystal River were found on shallow flats with considerable plant growth during spring and early summer (Reid 1954). As the summer and fall progressed, juvenile pigfish moved to deep flats and the edges of channels. Adults were taken from deeper flats and channels with sparse vegetation. Adult pigfish occurred most frequently over mud bottoms and occasionally sandy, over vegetated (Hildebrand Schroeder 1928: and 1961), and Manning hard substrates such as reefs and jetties (Hastings 1972), and offshore platforms (Hastings et al. 1976). #### LITERATURE CITED - Breder, C. M. Jr. 1948. Field book of marine fishes of the Atlantic coast from Labrador to Texas. G. P. Putnam's Sons, New York. 332 pp. - Briggs, J. C. 1958. A list of Florida fishes and their distribution. Bull. Fla. State Mus. Biol. Ser. 2(8):223-318. - Carr, W. E. S. 1976. Chemoreception and feeding behavior in the pigfish, Orthopristis chrysopterus: characterization and identification of stimulatory substances in a shrimp extract. Comp. Biochem. Physiol. 55(A):153-157. - Carr, W. E. S., and C. A. Adams. 1973. Food habits of juvenile marine fishes occupying seagrass beds in the estuarine zone near Crystal River, Florida. Trans. Am. Fish. Soc. 102:511-540. - Cody, T. J., K. W. Rice, and C. E. Bryan. 1978. Commercial fish and penaeid shrimp studies northwestern Gulf of Mexico. Pt. 5. Abundance and distribution of fauna on the white shrimp, Penaeus setiferus (Linnaeus), grounds off the central Texas coast. Coastal Fish. Branch, Tex. Parks Wildl. Dep., P.L.88-309, Proj. 2-276-R. 39 pp. - Courtenay, W. R., Jr., and H. F. Sahlman. 1978. Pomadasyidae. Vol. 4, Unpaginated in W. Fischer, ed. FAO species identification sheets for fishery purposes, western central Atlantic (Fishing area 31). Food and Agriculture Organization of the United Nations, Rome. - Darcy, G. H. 1983. Synopsis of biological data on the pigfish, Orthopristis chrysoptera. (Pisces: Haemulidae). FAO Fish. Synop. No. 134. 23 pp. - Dunham, F. 1972. A study of commercially important estuarine-dependent industrial fishes. La. Wildl. Fish. Comm., Tech. Bull 4. 63 pp. - Franks, J. S. 1970. An investigation of the fish population within the inland waters of Horn Island, Mississippi, a barrier island in the northern Gulf of Mexico. Gulf Res. Rep. 3:3-104. - Grimes, C. B. 1971. Thermal addition studies of the Crystal River steam electric station. Fla. Dep. Nat. Resour. Mar. Res. Lab. Prof. Pap. Ser. 11. 53 pp. - Grimes, C. B., and J. A. Mountain. 1971. Effects of thermal effluent upon marine fishes near the Crystal River steam electric station. Fla. Dep. Nat. Resour. Mar. Res. Lab. Prof. Pap. Ser. 17. 64 pp. - Gunter, G. 1945. Studies on marine fishes of Texas. Publ. Inst. Mar. Sci. Univ. Tex. 1:1-90. - Hastings, R. W. 1972. The origin and seasonality of the fish fauna on a new jetty in the northeastern Gulf of Mexico. Ph.D. Thesis. Florida State University, Tallahassee. 555 pp. - Hastings, R. W., L. H. Ogren, and M. T. Mabry. 1976. Observations \$0272 -101 REPORT DOCUMENTATION | 1. REPORT NO. L. Recipient's Accession No. Biological Report 82(11.71)* PAGE 5. Report Date Species Profiles: Life Histories and Environmental Requirements of March 1987 Coastal Fishes and Invertebrates (Gulf of Mexico) -- Pigfish & Performing Organization Rept. No. F.C. Sutter and T.D. McIlwain 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No. (C) **(G)** 12. Sponsoring Organization Name and Address National Wetlands Research Center Fish and Wildlife Service U.S. Dept. of the Interior Washington, DC 20240 U.S. Army Corps of Engineers Waterways Experiment Station P.O. Box 631 Vicksburg, MS 39180 13. Type of Report & Period Covered 14. IS. Supplementary Notes *U.S. Army Corps of Engineers Report No. TR EL-82-4 #### 16. Abstract (Limit: 200 words) Species profiles are literature summaries of the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. They are designed to assist in environmental impact assessment. Piqfish are common inhabitants of warm gulf waters. Pigfish spawn during late winter and spring in open gulf waters. Young fish first appear in nearshore or estuarine environments in April to June. Juvenile pigfish may school with other species of fish (e.g. pinfish). Adult pigfish are found in higher salinity, coastal areas; they are also found in offshore, open shelf waters, as well as offshore reefs and platforms. Recreational fishermen frequently catch pigfish, especially in Florida gulf waters. Pigfish have little economic value; however, they are used for live bait and are considered to be a good quality food fish. Young pigfish are planktivorous, becoming carnivorous as they grow in length (first polychaetes, then shrimps). Pigfish have been taken in water temperatures ranging from 13.7 to 36 °C, and in salinities of 0 to 38 ppt; however, they have been found in warmer water with salinities greater than about 15 ppt. Pigfish are found over vegetated sandy substrates, muddy bottoms, or hard substrates, such as reefs, jetties, and offshore platforms. Pigfish are prey of spotted seatrout and weakfish. #### 17. Document Analysis e. Descriptors Estuaries Nearshore gulf water Growth Life cycles Food habits hidentifiers/Open-Ended Terms Pigfish Orthopristis chrysoptera Temperature Salinity Dissolved oxygen Fisheries Fishes e. COSATI Field/Grove | 18. Availability Statement | 19. Security Class (This Report) | 21. No. of Pages | |----------------------------|----------------------------------|------------------| | Unlimited availability | Unclassified | vi + 11 | | off fill cea availability | 20. Security Class (This Page) | 22. Price | | | Unclassified | 1 | # TAKE PRIDE in America U.S. DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.