

PKI IMPLEMENTATION WORKSHOP PD-VAL Implementation Recommendations NIST April 10-11,2006

Agenda

- Overview of Tumbleweed
- Business requirements for PDVAL
- Current Solution
- PDVAL Lessons Learned and Issues
- Deployment Checklist

Company Overview

- Founded in 1993
- Headquartered in Redwood City, CA
 - Global Presence
 - Global support policy
 - Currently over 300 employees worldwide
 - Publicly traded (NASDAQ:TMWD)
 - Tumbleweed and Valicert merged in June 2003
 - 1500+ Enterprise Customers with over 5 million users
 - Primary focus on Government, Financial and Healthcare
 - 5^{th &} 6th generation of products

Platform Approach

Key Federal Customers

Certificate Validation

Air Force

Army ISEC

Army PM SET-D

Army CERDEC

Coast Guard

DFAS

DIA

DISA

DISA eBusiness (WAWF)

DLA

DMS

DOJ

Joint Strike Force

National Geospatial

NAVAIR

NAVSUP

NMCI

OSD - DMDC

SPAWAR

USMC

WHCA

Email Security

Air Force:

Eglin AFB

Wright Patterson AFB

Kirtland AFB

Lackland AFB

Air Force Intelligence

Army:

Army Rock Island

Classified Sites (Raytheon)

Army in Iraq

Bureau Engraving & Printing

Department of Energy

FDA - CDER/CBER/CDRH

GSA

HHS

Intelligence Community

NRC

Naval Shipyard

SPAWAR

USDA

Secure File Transfer

Bureau of Public Debt

Dept of Energy

DFAS

EOP

Federal Reserve System

GSA

IRS

National Business Center

Naval Crane

NAVSEA

OMB

US Postal Service

US Treasury

USMC

USPTO

- **E-Gov applications** rely on their Public Key Infrastructure (PKI) and digital certificates to secure everything from network access to multi-million dollar electronic transactions.
 - Trusting an invalid or revoked digital certificate can expose an organization to potential fraud, theft, and compromise.
 - Digital certificate validation enables organizations to maximize their return on investment by ensuring their PKI safeguards all their secure applications.
 - Certificate Revocation Lists (CRL)
 - Over time CRLs grow large in size
 - The OCSP and SCVP protocols are always small
 - Increased complexity with CRL management/distribution across multiple PKIs.
 - Use of digital certificates in support of HSPD 12 PIV cards will increase this complexity
 - How does Agency A with trust anchor TA validate a certificate from Agency B with trust anchor TB

Revocation Status Checking Methods

- Certificate Revocation Lists (CRL)
 - Reliance on large CRLs creates many problems:
 - network bandwidth limitations issues with availability,
 - time it takes to download the CRL information from multiple sources
 - inflexibility of handling expired CRLs that are CA signed
 - Need to periodically update
- On-Line Certificate Status Protocol (OCSP)
 - Certificate trust built by client
 - Trusted roots known
 - Revocation check request sent
- Simple Certificate Validation Protocol (SCVP)
 - Off loads processing from client
 - Trusted root not known by client
 - Better fit for PDVAL requirements
 - Still a draft

- The government created the Federal Bridge Certificate Authority (FBCA) to
 - provide an environment in which Federal agencies can request and perform cross-certification with other PKIs
 - allow bridge participants to recognize and trust certificates from other participating organizations.
- Path Validation
 - determine the validity and status of these trust relationships
 - locating the correct certificate chains of trust
- NIST's Public Key Interoperability Test Suite (PKITS) and Path Discovery Test Suite
 - To ensure compatibility and interoperability of solutions within the FBCA
 - To evaluate and qualify certificate validation solutions

- Applications will have perform its own path discovery and validation locally.
 - Auditing is performed by each PKI-enabled application or by component that performs path discovery and validation.
- An application may offload these responsibilities to a trusted server.
 - Delegated Path Validation (DPV) server performs the path validation, path discovery, and most audit functions.
- The Federal PKI allows for two different approaches to certificate and CRL distribution.
 - A well-connected directory system
 - Certificate contains retrieval information

HSPD12 and PDVAL

Tumbleweed Solution – Validation Authority

- Validation Authority Server provides a Delegated Path Discovery functionality
 - Responsible for path discovery, validation, and revocation checking
 - PDVAL TWG Qualified Vendor's List
- Ability to look up CRLdp and AIA without needing the clients to do so.
 - Simplifies client
 - Improves performance
- Can return the entire chain to the client and cache discovered certs/CRLs
- Ability to require/ignore certificate extensions in path building gives users the ability to circumvent issues if certificates are minted incorrectly.
- Provides an advantage of centralized auditing

Tumbleweed Solution - Desktop Validator

- Desktop Validator (DV) is a lightweight PKI client for Windows
 - PDVAL TWG Qualified Vendor's List
- Designed to perform delegated path validation (DPV) in the Outlook email application.
- By enabling the DV Outlook Add-In, DV will enhance Outlook's default local path validation operation and perform a delegated path validation operation utilizing SCVP to communicate to a trusted VA Server.
- The trusted VA Server will return the validated discovered certificate path to DV which will add it to the local CAPI store.
- DV can be configured to optionally perform path validation

Client/Server/Distributed architecture <> Tumbleweed*

Today's typical OCSP based certificate validation architecture

PDVAL Challenges

- How to force Windows applications to use discovered paths
 - Updating CAPI store may not be enough.
 - CAPI only allows one root install at a time
 - Move to OCSP vs SCVP full discovery
- Some Windows applications require restart.
 - LSAS is a good example
- Windows CryptoAPI has its own path building procedure
- One PDVAL path test resulted in 1,000+ paths being created
- The tests brought out a couple of tests where Windows actually failed when the expected result was good.

PDVAL Challenges

Path Building in MS CAPI and Web Servers

- MS CAPI and Web Servers currently do not allow path building to be delegated to trust providers or web server APIs
- Adding trusted root requires user intervention
- Default path discovery must succeed before validation plugins are executed
- Default process differs among different Windows system (NT, 2000, XP, 2003)
- No certificate policy processing in Windows 2000

15

PDVAL Checklist

- Survey applications
- Determine Trust Anchors
- Consider application based vs. delegated PDVAL
- Review qualified vendors
 - http://www.cio.gov/fbca/validation_solutions.htm
- Consider outsourced vs. in-house managed services

Wrap-up

Questions & Answers

Contact Information

Ann Smith Vice President, Federal Sales

Phone # 703-248-6931

Email address: ann.smith@tumbleweed.com

Steve Ebbets

Sr. Systems Engineer

Phone # 703-918-4863

Email address: <u>steve.ebbets@tumbleweed.com</u>