Driving Safely on Information Highway

April 2006

Agenda

- FIPS 201 and PK enabling
- Challenges of PK enabling
- Ways to meet the challenges
 - PKIF
 - Webcullis (demo)
 - TrustEnabler (demo)
- FIPS 201 unique PK enabling requirements
- FIPS 201 logical access solution (demo)

FIPS 201 and PK Enabling

- PKI is just one of the allowed FIPS 201 authentication mechanisms
- FIPS 201 doesn't add many new requirements
 - Majority of the requirements persist from Federal Bridge CA enablement
 - Certificate policy processing including mappings
 - Name constraints
 - Complex path building
 - Some considerations unique to FIPS 201 are later in the presentation

Problem: Detroit Does not Build Good Automobiles

- Bad Navigation System
 - PKI toolkits do not have good certification path building capability
- Bad Steering
 - PKI toolkits perform path validation poorly, accepting bad paths causing security holes
- Bad Options
 - Applications have additional nuances hindering security and/or interoperability
 - Outlook processing S/MIME payload with foreign trust anchor
 - IE not presenting certificates that terminate to local root that does not match roots provided by SSL Server

Problem: There are Issues with the Highway As Well

- Cross-certificate formats
 - Different CA products prefer to input and output cross-certificates in different ways
 - Requires some expertise to massage the data
- Key identifiers
 - Path building software often require key identifiers to match
 - X.509/RFC 3280 don't require it
 - CAs often generate their own key identifiers
 - Regardless of pre-existing key identifiers used in another PKI
 - RFC 4158 has guidance for CAs and path builders

Solution: TrustEnabler

- Commercial Product
- Uses CML to augment Web Server's path building and validation features
 - PKI Enabling applications which don't know anything about PKI
- Explores trust network to provide improved hint lists to SSL clients
 - Current browsers don't build complex paths
 - Browser presented with hint list containing "Agency A Root" won't let the user choose client certificate from Agency B

TrustEnabler Features

- Certificate path discovery passes NIST PDTS
- RFC 3280-compliant client certificate path validation
- Path validation passes NIST PKITS test suite
- Product has passed PD-VAL
- Product is JITC compliant (but not certified)
- Cached validations to reduce server load for multiple requests
- Easy Configuration

Additional TrustEnabler Benefits

- Produces improved hint lists for clients
- Provides authentication information to web applications
 - Client certificate DN, issuer DN, email address parsed and provided in session variables for use by web application
 - Web application doesn't require PKI intelligence to support PKI authentication

TrustEnabler Platforms

- Supports iPlanet / Sun ONE / Netscape web servers on Solaris, Windows, and Linux
 - HP-UX version under development
- Version with support for Apache web server on Linux is imminent

TrustEnabler Demonstration

Solution: A Few Good Men (USMC)

- PKIF Developed by Orion for US Marine Corps
- JITC Certified
- Close to completing CC EAL 4 validation against US Government PKE PP
- Platforms
 - Windows (2000 and beyond)
 - Unix (Unix, Linux, Solaris)

PKIF Major Features

- Cryptography
- Certificate and CRL storage and retrieval
- Certification path development in compliance with PDTS
- Certification path validation in compliance with RFC 3280 and PKITS
- Revocation status determination
- Cryptographic Message Syntax (CMS)
- RFC 3161 compliant time stamp
- RFC 2560 compliant OCSP client
- Sample GUI elements

Solution: Webcullis

- Funded by DoD
- Use PKIF to augment Web Server's path building and validation features
- Give server administrators control over which CAs should be trusted to identify users for their applications
 - Trust only Enterprise Root for path development and validation
 - Environment trust store can be used for other purposes such as providing them to IE

Why the name?

- When a bridge is in place, a portcullis is used to restrict entry to fortified structures.
- TLS-protected web sites have the same problem, especially in Bridge environment

Webcullis Features

- Certificate path discovery passes NIST PDTS
- RFC 3280-compliant client certificate path validation
- Path validation passes NIST PKITS test suite
- Product has passed PD-VAL
- Product is JITC compliant
- Underlying toolkit close to obtaining CC EAL 4 validation against the US Government PKE PP
- Cached validations to reduce server load for multiple requests
- Easy Configuration

Granular Control

- Access may be restricted based on
 - Distinguished Name
 - Name spaces at the agency level may be explicitly permitted or excluded
 - Even down to specific users
 - Certificate Policies
 - Client Key Size
 - Extended Key Usage
 - Other fields in the certificate (e.g., nationality)
- Different server resources can be configured with different restrictions

Additional Benefits

- Reliable source of authentication information
 - Facilitates integration of PKI and web applications (Portals, CMS, etc.)
 - This integration simplifies deployment of new web applications

Development Notes

- Can work around OS bugs
- Vast improvements in PKITS compliance for nearly free
- Vastly simplified validation logic
 - Core validation routine <150 physical LOC!

Webcullis Demonstration

PKITS Test Results

HSPD-12 Unique PK Enabling Requirements

- SHA 256 Support ASAP (NLT 12/31/2010)
- CHUID Processing
 - Signature verification not required but desired. Also verify the signer has the appropriate EKU, i.e., PIV content signing.
- PIV Authentication Key Certificate
 - Verify FASC-N in Subject Alternative Name field
 - Verify common authentication policy OID, if PIN is not required to use the private key
- Biometric Processing
 - Verify Signature
 - Also verify the signer has the appropriate EKU, i.e., PIV content signing.
- CA use specific policy (common hardware) and under Common Root. Legacy

FIPS 201 Logical Authentication Demonstration

Summary

- PK enabling is possible and is made easier with available products and toolkits
- PK enabling does not have to cost an arm and a leg
- PK enabling does not require multi-billion dollar software company or government contractor
- PK enabling effectively and with reasonable cost requires hiring knowledgeable people
- PK enabling for FIPS 201 can be easy and inexpensive
 - Took 10 staff hours to develop the logical authentication demo