Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

2004 Progress Report: Speciation of chromium in environmental media using capillary electrophoresis with multiple wavlength UV/visible detection

EPA Grant Number: R828771C005
Subproject: this is subproject number 005 , established and managed by the Center Director under grant R828771
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: HSRC (2001) - Center for Hazardous Substances in Urban Environments
Center Director: Bouwer, Edward J.
Title: Speciation of chromium in environmental media using capillary electrophoresis with multiple wavlength UV/visible detection
Investigators: Stone, Alan T. , OMelia, Charles R.
Institution: Johns Hopkins University
EPA Project Officer: Lasat, Mitch
Project Period: October 1, 2001 through September 30, 2002
Project Period Covered by this Report: October 1, 2003 through September 30, 2004
Project Amount: Refer to main center abstract for funding details.
RFA: Hazardous Substance Research Centers - HSRC (2001)
Research Category: Hazardous Waste/Remediation

Description:

Objective:

Capillary electrophoresis (CE) is a new analytical method that offers more reliable information than existing methods and allows entirely new species to be discerned. In some instances, detection limits can also be lowered. Our overall objective is to use capillary electrophoresis with photodiode array to detect dissolved chromium in contaminated waters.

The scientific literature provides procedures for the synthesis and purification of a variety of CrIII complexes with commercial aminocarboxylic acid chelating agents such as IDA, NTA, and EDTA. Previous reports have focused on using these standardized complexes to explore CrIII speciation. Our previous findings have considerable relevance for sites where contaminant mixtures (chromium and synthetic chelating agents) have been introduced into environmental media.

Chromium contamination without the presence of synthetic chelating agents is possible. The chelating properties of natural organic matter (NOM) merits consideration. Prior literature has reported that NOM is rich in oxygen-donor Lewis Base groups (e.g. carboxylic acid, alcohol, and phenol functional groups) but deficient in nitrogen-donor Lewis Base groups. The objectives of this research are to: (1) explore CrIII speciation in the presence of surrogate organics that possess the functional groups dominant in NOM; and (2) explore CrIII speciation in the presence of actual NOM.

Progress Summary:

Our first submitted paper (Carbonaro and Stone, 2004), which focuses on CrIII complexes with synthetic aminocarboxylic chelating agents, has been favorably reviewed by Analytical Chemistry; a revised draft currently is being prepared. During the past 12 months, our focus has been on ways that NOM affects chromium speciation, and the extent to which this speciation can be discerned by CE.

Salicylic acid has been used for more than 20 years as a low molecular-weight surrogate for NOM. Carboxylic acid groups and phenolic groups are believed to be the principal Lewis Base groups of terrestrially-derived NOM. The placement of the phenol group ortho- to the carboxylic acid group enables the fully deprotonated form, the salicylate dianion, to coordinate metal ions through a six-membered chelate ring. Our research has focused on salicylic acid plus the six more complex structures. 5,5’Methylenedisalicylic acid (VI) and pamoic acid (VII) are especially interesting; multiple functional groups on two rings might capture some of the complexity of real NOM.

Free, uncomplexed species at pH 7 predominantly consist of deprotonated carboxylate groups and protonated phenol groups. Metal ion coordination encourages deprotonation of the phenol group. The molecular charges of some of the possible complexes with CrIII are listed in Table 1.

Table 1. Molecular Charge of Some Possible CrIII Complexes

Molecular Charge of Some Possible Cr<sup>III</sup> Complexes

Buerge (1999) had analyzed cationic CrIII complexes of salicylic acid using CE in cation mode (acetate buffer). To aid in the detection of 1:1 complexes, we have replicated his approach and explored modifications (e.g. pH 7.0 phosphate or MOPS buffers). In each case, the representative chelating agent and CrIII inorganic salt are brought together at elevated temperature for a pre-specified contact time. Although peaks can be discerned in both cation-mode and anion-mode CE, interpretation must contend with (1) the absence of authentic standards for particular complex stoichiometries, and (2) the unavailability of thermodynamic information (i.e., equilibrium constants) that would allow us to calculate expected equilibrium concentrations corresponding to the different possible CrIII.L stoichiometries.

In a more direct approach, we have spiked solutions prepared from freeze-dried Great Dismal Swamp NOM with chromate anion (CrO42-). During the first 24 hours, the peak corresponding to the chromate anion declines and is gradually replaced by three well-defined peaks. Over a period of several days, these peaks also decay. The transient nature of these peaks intrigues us and forces us to consider several new questions:

References:

Buerge I. Influence of pH, organic ligands, and mineral surfaces on the reduction of chromium(VI) by iron(II). Ph.D. Dissertation, ETH, Zurich, Switzerland, 1999.

Future Activities:

We will focus our future work on new chromium species created in the chromate plus NOM reaction. Spectral features recorded by the diode array detector may offer important clues regarding peak identity. Using other low molecular weight surrogates for NOM also may be informative, especially surrogates that represent possible reductant moieties (e.g. catechols and saccharides).


Journal Articles on this Report: 1 Displayed | Download in RIS Format

Other subproject views: All 5 publications 1 publications in selected types All 1 journal articles
Other center views: All 111 publications 24 publications in selected types All 22 journal articles

Type Citation Sub Project Document Sources
Journal Article Carbonaro RF, Stone AT. Speciation of chromium(III) and cobalt(III) (Amino)carboxylate complexes using capillary electrophoresis. Analytical Chemistry. 2005;77(1):155-164. R828771C005 (2004)
not available
Supplemental Keywords:

chromium, capillary electrophoresis, natural organic matter, toxics, exposure, hazardous substances, chemical detection technique, assessment, cleanup, risk communication, , Water, Scientific Discipline, Waste, Health, RFA, PHYSICAL ASPECTS, Engineering, Chemistry, & Physics, Risk Assessments, Chemical Engineering, Analytical Chemistry, Health Risk Assessment, Physical Processes, Ecological Risk Assessment, Hazardous Waste, Environmental Engineering, Hydrology, Environmental Chemistry, Chemistry and Materials Science, Hazardous, Ecology and Ecosystems, Geochemistry, aquatic ecosystem, fate and transport, chemical detection techniques, fate and transport , capillary elecrophoresis, chemical composition, capillary electrophoresis, groundwater, human health risk, hydrodynamics, adsorption, chemical kinetics, contaminant dynamics, contaminant transport, analytical measurement methods, environmental risks, groundwater contamination, chemical exposure, hazardous substance contamination, exposure, hazardous waste treatment, chromium speciation, chemical releases, human exposure, electrochemical technology
Relevant Websites:

http://www.jhu.edu/hsrc exit EPA

Progress and Final Reports:
2002 Progress Report
2003 Progress Report
Original Abstract


Main Center Abstract and Reports:
R828771    HSRC (2001) - Center for Hazardous Substances in Urban Environments

Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R828771C001 Co-Contaminant Effects on Risk Assessment and Remediation Activities Involving Urban Sediments and Soils: Phase II
R828771C002 The Fate and Potential Bioavailability of Airborne Urban Contaminants
R828771C003 Geochemistry, Biochemistry, and Surface/Groundwater Interactions for As, Cr, Ni, Zn, and Cd with Applications to Contaminated Waterfronts
R828771C004 Large Eddy Simulation of Dispersion in Urban Areas
R828771C005 Speciation of chromium in environmental media using capillary electrophoresis with multiple wavlength UV/visible detection
R828771C006 Zero-Valent Metal Treatment of Halogenated Vapor-Phase Contaminants in SVE Offgas
R828771C007 The Center for Hazardous Substances in Urban Environments (CHSUE) Outreach Program
R828771C008 New Jersey Institute of Technology Outreach Program for EPA Region II
R828771C009 Urban Environmental Issues: Hartford Technology Transfer and Outreach
R828771C010 University of Maryland Outreach Component
R828771C011 Environmental Assessment and GIS System Development of Brownfield Sites in Baltimore
R828771C012 Solubilization of Particulate-Bound Ni(II) and Zn(II)
R828771C013 Seasonal Controls of Arsenic Transport Across the Groundwater-Surface Water Interface at a Closed Landfill Site
R828771C014 Research Needs in the EPA Regions Covered by the Center for Hazardous Substances in Urban Environments
R828771C015 Transport of Hazardous Substances Between Brownfields and the Surrounding Urban Atmosphere

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.