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Abstract

One approach to limiting disclosure risk in public-use microdata is to release multiply-imputed,

partially synthetic data sets. These are data on actual respondents, but with con�dential data

replaced by multiply-imputed synthetic values. A mis-speci�ed imputation model can invalidate

inferences because the distribution of synthetic data is completely determined by the model used

to generate them. We present two practical methods of generating synthetic values when the im-

puter has only limited information about the true data generating process. One is applicable when

the true likelihood is known up to a monotone transformation. The second requires only limited

knowledge of the true likelihood, but nevertheless preserves the conditional distribution of the con-

�dential data, up to sampling error, on arbitrary subdomains. Our method maximizes data utility

and minimizes incremental disclosure risk up to posterior uncertainty in the imputation model and

sampling error in the estimated transformation. We validate the approach with a simulation and

application to a large linked employer-employee database.

Keywords: statistical disclosure limitation, con�dentiality, privacy, multiple imputation,

partially synthetic data



1 Introduction

Statistical agencies face two competing objectives when preparing data for public release.

On the one hand, they endeavor to provide their users with high quality data. On the other

hand, they must maintain the privacy of respondents. The trade-o¤between these objectives

is very real because protecting privacy usually entails information loss (Duncan et al., 2001).

Unless care is taken, measures to protect privacy can invalidate statistical inferences.

We present a practical method for protecting privacy in statistical databases that permits

valid inferences about the population of interest. Our approach draws upon the established

literature for multiple-imputation of missing data, and builds on recent research that ap-

plies multiple-imputation to the problem of statistical disclosure limitation. Our approach

is to replace con�dential data with synthetic values sampled from the posterior predictive

distribution of an imputation model. This substantially limits the risk of identity disclo-

sure. At the same time, it admits valid inferences using standard statistical methods and

software. Furthermore, and this is the primary contribution of this paper, our method does

not require complete knowledge of the joint distribution of the data, but nevertheless pre-

serves the conditional distribution of the con�dential data, up to sampling error, on arbitrary

subdomains.

Traditional approaches to disclosure limitation include suppressing con�dential data, ag-

gregation, topcoding, adding noise, and swapping values between records (see e.g., Willen-

borg and de Waal (1996) or the appendix to Abowd and Woodcock (2001) for surveys). All

of these have the potential to distort the joint distribution of the data, and may therefore

invalidate inference. At best, valid inferences can be obtained using specialized software and

methods, and/or when users are provided with detailed information about the methods used

to limit disclosure risk. In practice, however, such detailed information cannot be released

without compromising privacy.

An alternative that permits valid statistical inferences using standard software and meth-

ods is to release multiple synthetic data sets with the same joint distribution as the con�-

dential database. Rubin (1993) suggests generating synthetic data through multiple impu-

tation;1 Fienberg (1994) suggests generating synthetic data by bootstrap methods.2 Under

either approach, the released data pose little or no disclosure risk because they are com-

pletely synthetic, i.e., contain no actual data on actual respondents. However, this approach

requires knowledge, or a good estimate, of the joint distribution of the data. This is imprac-

1This proposal is developed more fully in Raghunathan et al. (2003). Reiter (2002) provides a simulation
study, Reiter (2005c) discusses inference, and Reiter (2005b) provides an application.

2Fienberg et al. (1998) apply this method to categorical data; Fienberg and Makov (1998) use related
concepts to develop a measure of disclosure risk

1



tical in many instances. A tractable alternative is to release data on actual respondents,

but replace con�dential data with synthetic values sampled from an estimate of the joint

distribution of the con�dential data conditional on disclosable data. Such data, which have

become known as partially synthetic data, are the focus of this paper.

Kennickell (1997) pioneered the use of multiply-imputed, partially synthetic data in the

Survey of Consumer Finances. Since that early work, several approaches have been suggested

to generate the synthetic values. Abowd and Woodcock (2001) present a computationally

tractable approximation to the joint distribution of the con�dential data given disclosable

data based on a sequence of regression models. They use this approximation to multiply-

impute con�dential values in linked employer-employee data. Little and Liu (2003) develop

a parametric method, called SMIKe, to selectively multiply-impute discrete �key�variables

that pose high disclosure risk. Reiter (2005d) presents a nonparametric method to multiply-

impute synthetic values using classi�cation and regression trees (CART).

Each of these approaches makes an important contribution, but all have limitations.

SMIKe is only applicable to categorical key variables. CART, though data-driven and re-

quiring little modeling input from the imputer, presents a su¢ cient computational burden to

preclude applications involving many variables. And though Abowd and Woodcock (2001)

demonstrate that regression-based methods perform well in practice, the regression models

are subject to mis-speci�cation when the true data generating process is unknown. This is

the case considered here.

We present two methods to multiply-impute con�dential data when the true likelihood

is unknown. Both are predicated on the assumption that the data provider prefers to use

simple, or otherwise convenient, imputation models to generate the synthetic values (e.g.,

regression models). We believe this assumption re�ects reality at many statistical agencies.

Our approach, therefore, is to apply a simple transformation to the con�dential data that

maps between their distribution and a distribution compatible with the imputation model,

and apply an inverse transformation to the synthetic values. As we demonstrate through sim-

ulation and a large-scale application, this approach preserves important statistical properties

of the con�dential data, including higher moments, with low disclosure risk. Furthermore,

it is easily applied in practical situations involving many variables and observations.

Our �rst method applies in the simplest possible case: when the likelihood is known

up to a monotone transformation. In this case, generating synthetic values subject to a

transformation (either known or estimated) is logically equivalent to direct synthesis, up

to any uncertainty in an estimated transformation. This result is elementary and serves

primarily to motivate our second method, which is more generally applicable. Here we apply

a density-based transformation to the variable under imputation on an arbitrary collection of
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subdomains. The synthesis is performed using a convenient model on the transformed data,

and then the synthetic values are returned to their natural scale via an inverse transformation.

This preserves the distribution of the con�dential data, up to uncertainty in the estimated

transformation, on those subdomains. The density-based transformation is similar in spirit

to the nonlinear data-�tting methods of Lin and Vonesh (1989) and Nusser et al. (1996),

and the copula-based additive noise perturbation of Sarathy et al. (2002).

The remainder of the paper is organized as follows. To �x ideas, we introduce key con-

cepts and a novel measure of data utility and disclosure risk for multiply-imputed, partially

synthetic data in Section 2. Section 3 develops the transformation-based synthesis methods.

Section 4 presents a simulation study, and in Section 5 we apply our method to a large

longitudinal database on employers and employees. Section 6 concludes.

2 Background and Concepts

2.1 The Data Provider�s Problem

Suppose the data provider has a database that consists of con�dential microdata Y and

disclosable microdata X. Both X and Y may contain discrete and continuous elements. Let

D = (X;Y) represent the database in question, and F (D) its probability distribution.

The data provider wishes to release public microdata ~D. The provider�s competing

objectives are to maximize data utility and minimize disclosure risk. Unfortunately, there is

no universally agreed upon de�nition of data utility or disclosure risk. We follow Muralidhar

and Sarathy (2003), and de�ne data utility as the extent to which the released data ~D

share the statistical properties of the con�dential data D. By this de�nition, data utility

is maximized when F (~D) = F (D). In this case, any statistical analysis performed on the

released data gives exactly the same results as would have been obtained on the underlying

con�dential data. This de�nition is consistent with usual practice for assessing data utility,

which is to compare the extent to which the released data and the con�dential data yield

similar inferences about quantities of substantive interest, e.g., moments (typically the �rst

two), regression coe¢ cients, and the like.

Following Muralidhar and Sarathy (2003) again, we de�ne disclosure risk as the ability of

a malicious data user (i.e., an intruder or snooper) to infer the value of a con�dential datum.

This includes both identity disclosure (i.e., inferring the identity of a respondent, when this

is con�dential), and attribute disclosure (i.e., inferring the value of a con�dential variable).

Muralidhar and Sarathy (2003), Duncan and Lambert (1986), and others argue that the

relevant measure of disclosure risk is the incremental risk arising from data release. There
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is incremental disclosure risk if the data release provides information about the distribution

of con�dential microdata that cannot be inferred from the disclosable data alone. Hence

incremental disclosure risk is minimized when F (Yj~D) = F (YjX). In practice, it can be
di¢ cult to determine whether this equality holds, however, and there remain few practical

alternatives to measure disclosure risk.

Elliot (2001), Domingo-Ferrer and Torra (2003), Winkler (2004), Reiter (2005a), and

others argue in favor of assessing disclosure risk through simulations that mimic the be-

havior of a malicious data user that seeks to compromise con�dentiality. Such simulations,

usually called re-identi�cation experiments, use sophisticated record-linkage techniques to

match records in the public microdata to a secondary data source �often the con�dential

data themselves. If a record in the public microdata is successfully matched to the same

respondent�s record in a secondary data source containing unique identi�ers such as names

or SSNs, the respondent is deemed �re-identi�ed.� This is usually considered an identity

disclosure. Thus a useful measure of disclosure risk is given by the re-identi�cation rate, i.e.,

the proportion of records in the public data that are re-identi�ed via simulation.

2.2 Multiply-Imputed, Partially Synthetic Data

Partially synthetic data replaces con�dential values Y with synthetic values ~Y. A partially
synthetic data release is ~D = (X; ~Y). Data utility is maximized when F (X; ~Y) = F (X;Y).

There is no incremental disclosure risk when F (YjX; ~Y) = F (YjX). Muralidhar and

Sarathy (2003) show that incremental disclosure risk is minimized when ~Y is generated

by sampling from F (YjX). The synthetic values can be generated by various methods,
including sampling from a smoothed estimate of F (YjX) ; as proposed by Fienberg (1994);
or multiple-imputation, as proposed by Rubin (1993). We adopt the latter approach.

Multiply-imputed, partially synthetic (MIPS) data are based on a parametric imputation

model for the con�dential data conditional on disclosable data. This is de�ned by a likelihood

p (YjX;�) and prior p (�), where � are unknown parameters. Synthetic values are sampled
from the posterior predictive distribution of the imputation model:

p
�
~YjX;Y

�
=

Z
p
�
~YjX;�

�
p (�jX;Y) d�: (1)

Relating MIPS data to the Muralidhar and Sarathy (2003) de�nitions of data utility and

disclosure risk is somewhat awkward because their de�nitions do not acknowledge uncertainty

about the joint distribution of the data.3 However, it is possible to make some progress. We

3They implicitly assume that the likelihood is known and there is no posterior uncertainty.
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see from equation (1) that the distribution of synthetic values p(~YjY;X) depends on Y only

via the posterior distribution of �. It follows that when there is no posterior uncertainty,

i.e., when the distribution of � is known, MIPS data maximize data utility and minimize

disclosure risk. That is, if there was no posterior uncertainty we could sample from the

predictive distribution4

p
�
~YjX

�
=

Z
p
�
~YjX;�

�
p (�) d� = p (YjX) : (2)

This equality implies that when there is no posterior uncertainty, MIPS data maximize

data utility and minimize disclosure risk. This motivates a new notion of data utility and

disclosure risk applicable to multiply-imputed, partially synthetic data. We say that MIPS

data maximize data utility and minimize disclosure risk up to posterior uncertainty.

2.3 Inference

The main virtue of multiple-imputation is that it yields valid statistical inferences. It is well

known that this requires multiple draws from the posterior predictive distribution. We refer

to a particular draw from the posterior predictive distribution as a partially synthetic data

implicate, ~Ym. Valid statistical inferences require that the data provider release multiple

implicates: ~Dm =
�
X; ~Ym

�
for m = 1; 2; :::;M .

Suppose that with access to the con�dential data D; users would base inference about a

scalar population quantity Q on a sample statistic q with asymptotic distribution (Q� q) a�
N (0; V ). Obtaining valid inferences from MIPS data is straightforward. The user computes

the sample statistic qm on each partially synthetic data implicate. Let vm denote the sampling

variance of qm. Estimates from the M implicates are combined using the statistics:

�q =
1

M

MX
m=1

qm; b =
1

M � 1

MX
m=1

(qm � �q)2 ; �v =
1

M

MX
m=1

vm: (3)

Reiter (2003) shows that inferences based on �q are valid forQ, and that an unbiased estimator

of the variance of �q is T = M�1b + �v: These combining rules di¤er slightly from those for

multiply-imputed missing data (e.g., Rubin, 1987) because in MIPS data the �non-response�

mechanism (i.e., the decision to impute a con�dential value) is non-stochastic.5

4If the distribution of � were degenerate and its value known, we could sample synthetic values from

p
�
~YjX;�

�
, which achieves the same result.

5Reiter (2004) presents combining rules for the case where multiple imputation is used both for missing
data imputation and disclosure limitation.
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2.4 Specifying the Likelihood

In practice, the most challenging aspect of generating MIPS data is specifying the joint

likelihood p (YjX;�). This is particularly true when there are many con�dential variables,
when some are continuous and others are discrete, and when relationships among variables

are complex. This is the usual situation in practical applications. It is therefore advantageous

to specify the joint likelihood as a sequence of univariate conditional likelihoods.

If we writeY = [y1 y2 � � � yK ] and � = [�1 �2 � � � �K ], we can use the factorization

p (YjX;�) = p1 (y1jX;�1) p2 (y2jX;y1;�2) � � � pK (yK jX;y1;y2; :::;yK�1;�K) (4)

and specify a univariate likelihood for each yk.6 This allows us to sequentially generate

synthetic values ~Y = [~y1 ~y2 � � � ~yK ] using univariate conditional models. That is, sample
~y1 from the posterior predictive distribution of y1 given X; then ~y2 from the posterior

predictive distribution of y2 given X and ~y1; and so on. The joint posterior predictive

density from which the synthetic values are sampled is:

p
�
~YjX;Y

�
=

Z
p1 (~y1jX;�1) p2 (~y2jX; ~y1;�2) � � � pK (~yK jX; ~y1; ~y2; :::; ~yK�1;�K)

�p1 (�1jX;y1) p2 (�2jX;y1;y2) � � � pK (�K jX;y1;y2; :::;yK�1;yK) d�:(5)

The sequential approach is very �exible. It is straightforward to accommodate continu-

ous and discrete variables by specifying an appropriate likelihood for each yk. Likewise, it

is possible to preserve complex relationships between variables through conditional depen-

dence. Furthermore, as we saw in Section 2.2, the synthetic values maximize data utility

and minimize disclosure risk, up to posterior uncertainty, when the true likelihood is known.

A simple example serves to illustrate.

Example 1 (Normal linear regression) Suppose the data provider wishes to generate
synthetic values of con�dential variable yk conditional on a subset of variables in the data-

base,W � D. Suppose further that

yk
���W;�k; �

2
k

�
� N

�
W�k; �

2
kI
�
: (6)

6An alternative, proposed by Abowd and Woodcock (2001) and based on the Sequential Regression
Multivariate Imputation (SRMI) algorithm of Raghunathan et al. (2001), is to approximate p (YjX;�) by
a sequence of regression models. This is an iterative procedure, consisting of L rounds of synthesis. In
each round, synthetic values are drawn sequentially for each yk; conditional on X and the most recently-
drawn synthetic values for all other con�dential variables. They de�ne each univariate likelihoods using an
appropriate generalized linear model.
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The corresponding likelihood is that of the normal linear regression model. Synthetic values

are easy to generate under the usual uninformative prior for �k and �
2
k. For each posterior

draw
�
�̂k; �̂

2
k

�
, sample ~yk from the normal distribution with conditional mean W�̂k and

variance �̂2k. The synthetic data have the same conditional distribution as the con�dential

data, up to posterior uncertainty about parameters (�k; �
2
k).

3 Data Utility When the Likelihood is Unknown

In most practical applications, the true likelihood of the con�dential data given disclosable

data is unknown. Mis-specifying p (YjX;�) necessarily compromises data utility.7 To see
this, note that the distribution of the synthetic values is completely determined by the pos-

terior predictive distribution of the imputation model. If this di¤ers from the distribution

of the con�dential data, data utility is compromised because F (Y;X) 6= F
�
~Y;X

�
. Con-

sider Example 1 and suppose the true conditional distribution of yk is not given by (6). If

the regression model de�ned by (6) is used to generate the synthetic values, the synthetic

values will have a normal distribution conditional onW, regardless of the true conditional

distribution of yk. Thus any departure from normality in the conditional distribution of yk
induces mis-speci�cation of the form F (~yk;Wj�k; �2k) 6= F (yk;Wj�k).
This example demonstrates the important trade-o¤ between data utility and simplicity

of the imputation model. All else equal, the data provider will prefer to use simple models

to generate the synthetic values, e.g., regression models or alternatives that impose little

computational burden and are easy to interpret. However any mis-speci�cation that arises

from simpli�cation of the likelihood compromises data utility. In this section, we develop

two practical solutions. The �rst is applicable when the true likelihood is known up to a

monotone transformation. The second is more generally applicable and preserves the condi-

tional distribution of the con�dential data, up to sampling error, on an arbitrary collection

of subdomains.

3.1 Likelihood Known Up To a Monotone Transformation

In some practical applications, the likelihood is known up to a monotone transformation. For

instance, many economic variables have highly skewed distributions. Subject to a monotone

transformation (such as the natural logarithm) the conditional distribution is often well

approximated by a normal distribution.

7Mis-specifying the likelihood may also a¤ect disclosure risk, but there is no particular reason to expect
it will increase.
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Suppose the data provider seeks to generate synthetic values of a continuous variable yk.

We assume there exists a zk = g (yk) such that

zk j(W;�k) � pzjW (zkjW;�k) (7)

for some subsetW of the database D, and where it is convenient to sample synthetic values

from the posterior predictive distribution de�ned by the likelihood pzjW . Assume further

that g is monotone and bijective, so that g�1 exists, and is di¤erentiable. Then we have the

elementary result

pyjW (ykjW;�k) = pzjW (g (yk) jW;�k)

���� ddyk g (yk)
���� (8)

for those yk = g�1 (zk) such that pzjW (zkjW;�k) > 0. This result is useful when it is di¢ cult

to sample directly from the posterior predictive distribution de�ned by the likelihood pyjW ,

but easy to sample from the predictive distribution de�ned by pzjW . This case is frequently

encountered in practice, for instance the log-normal example given previously.

Typically the transformation g will be unknown. In principle, it can be estimated, e.g., the

Box-Cox transformation. Of course any estimate ĝ contains sampling error. Valid inferences

based on (3) require that the imputation method is proper in the sense of Rubin (1987),

i.e., propagates model uncertainty across the implicates. Hence it is critical to introduce

between-implicate variation in the estimated transformation. This is easily accomplished,

for instance by estimating g on an approximate Bayesian bootstrap sample of observations

in each implicate.

Whether g is known or estimated, we can proceed by sampling synthetic values of zk
from the posterior predictive distribution

p~zjW (~zkjW; zk) =

Z
pzjW (~zkjW;�k) p (�kjW; zk) d�k (9)

and de�ne the synthetic values ~yk = g�1 (~zk) or ~yk = ĝ�1 (~zk) ; as appropriate. For known
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g; the synthetic values are distributed according to

p~yjW (~ykjW; zk) = p~zjW (g (~yk) jW; zk)

���� dd~yk g (~yk)
����

=

Z
pzjW (g (~yk) jW;�k) p (�kjW; zk) d�k

���� dd~yk g (~yk)
����

=

Z
pyjW (~ykjW;�k)

���� dd~zk g�1 (~zk)
���� p (�kjW; zk) d�k

���� dd~yk g (~yk)
����

=

Z
pyjW (~ykjW;�k) p (�kjW; zk) d�k (10)

which is equivalent to the distribution we would have obtained had we synthesized yk directly.

When g is estimated, this equivalence only holds up to sampling error in ĝ. Equality (10)

implies that partially synthetic data generated this way maximize data utility and minimize

disclosure risk, up to posterior uncertainty in the imputation model and sampling error in

the estimated transformation.

3.2 A Density-Based Transformation

In many situations, it is unlikely that a simple parametric transformation like the Box-Cox

will satisfactorily map the distribution of yk into a distribution from which it is convenient

to sample synthetic values, e.g., that de�ned by a regression model. The leading example is

when the conditional distribution of yk is multi-modal. In this section, we develop a �exible

method to generate synthetic values using simple imputation models that preserves the

conditional distribution of the con�dential variable on an arbitrary collection of subdomains.

Suppose the data provider wishes to generate synthetic values of a continuous variable yk
conditional on W. De�ne an arbitrary partition of the conditioning data W = [W1 W2].

In principle, eitherW1 orW2 may be empty. The data provider seeks to generate synthetic

values using a convenient model based on

zk j(W1;W2 = w2;�k) � pzjW (zkjW1;W2 = w2;�k) (11)

where zk is some transformation of yk de�ned on the subdomainW2 = w2. We now de�ne

this transformation.

Let K̂ denote a smoothed estimate of the cumulative distribution of yk on the subdomain

W2 = w2. For instance, the integrated kernel density K̂ (ykjW2 = w2) � FyjW2=w2 (ykjW2 = w2),

where FyjW2=w2 is the marginal cdf of yk on the subdomainW2 = w2. Let PzjW2=w2 denote

the cumulative distribution function associated with the likelihood pzjW obtained by averag-
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ing overW1. Now de�ne the transformation

zk � P�1zjW2=w2

�
K̂ (ykjW2 = w2)

�
: (12)

We see that zk � PzjW2=w2 by construction. Let ~zk denote synthetic values sampled from

the posterior predictive distribution:

p~zjW (~zkjW1;W2 = w2; zk) =

Z
pzjW (~zkjW1;W2 = w2;�k) p (�kjW1;W2 = w2; zk) d�k:

(13)

The synthetic values ~yk are de�ned by the inverse transformation

~yk = K̂
�1 �P~zjW2=w2 (~zk)

�
(14)

where P~zjW2=w2 is the cumulative distribution function associated with the predictive distri-

bution p~zjW , again obtained by averaging over W1.8 By construction, the synthetic values

are distributed according to ~yk � K̂ (ykjW2 = w2). Hence the synthetic values preserve the

distribution of the true con�dential values, up to sampling error in K̂, on the subdomain

W2 = w2. This procedure can be repeated for each subdomain de�ned byW2, preserving

the distribution of ykjW2 up to sampling error in K̂. This procedure maximizes data util-

ity and minimizes disclosure risk, up to posterior uncertainty in the imputation model and

sampling error in the estimated transformation, on these subdomains.

Because the transformation (12) and inverse transformation (14) are monotone, they

preserve monotone and rank-order relationships between yk and W1. As demonstrated

by the simulation and empirical application that follow, many other features of the joint

distribution of yk andW1 are also preserved in the synthetic data.

As in Section 3.1, the transformation de�ned here is estimated and therefore contains

sampling error. Once again, care must be taken to introduce between-implicate variation in

the estimated transformation if valid inferences are to be obtained using equation (3). This

is easily accomplished, for instance by estimating K̂ on an approximate Bayesian bootstrap

sample of observations on each subdomain ofW2 in each implicate.

In principle, the partition ofW intoW1 andW2 is arbitrary. There is a trade-o¤, how-

ever. Increasing the number of variables inW2 preserves more dimensions of the distribution

of yjW. However, it also reduces the number of observations in each subdomain,9 thereby

8In the case where P ~ZjW2=w2
is unknown, it can be estimated, for instance the integrated kernel density

of the synthetic values ~zk on the subdomainW2 = w2:
9E.g., the subdomains de�ned by the cross-classi�cation of race by sex will contain more observations

than the subdomains de�ned by the cross-classi�cation of race by sex by age.
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reducing the precision of the estimated distribution K̂ and of the synthesis model. It also

increases computational burden, since the density and synthesis model are estimated on each

subdomain.

Example 2 (Normal linear regression) Suppose the data provider wishes to use a nor-
mal linear regression model to generate synthetic values of yk conditional on W; but the

distribution of ykjW is not normal. Let W1 be the set of continuous variables in W; and

W2 the set of categorical variables. De�ne the subdomains w2 according to the cells of the

cross-classi�cation of variables in W2. On each subdomain, estimate the integrated ker-

nel density K̂ (ykjW2 = w2) on an approximate Bayesian bootstrap sample of observations.

De�ne the transformed values zk = ��1
�
K̂ (ykjW2 = w2)

�
, where � denotes the standard

normal CDF. Then zk � N (0; 1) on each subdomain, by construction. Synthetic values ~zk
are sampled from the posterior predictive distribution de�ned by the normal linear regres-

sion of zk onW1 under an uninformative prior. Averaged overW1; the synthetic values ~zk
have an approximately standard normal distribution. De�ne the inverse transformation ~yk =

K̂�1 (� (~zk)). The synthetic and con�dential values are identically distributed (up to sampling

error) on the subdomainW2 = w2; i.e., ~yk � K̂ (ykjW2 = w2) � FyjW2=w2 (ykjW2 = w2).

3.2.1 Extension: Longitudinal Data

In longitudinal data, we frequently have repeated measurements on con�dential variables.

Preserving time series properties in the synthetic data necessitates conditioning the synthesis

on multiple elements of the time series. For instance, if we denote the period t measurement

of yk by yk;t; we typically need to condition its synthesis on yk;t�1; yk;t+1; etc. to preserve

the time series properties of yk. If we apply the density-based transformation to yk;t; we

must treat other elements of the time series likewise. That is, apply the density-based

transformation to yk;t and other elements of the time series that will be used to condition

the imputation. The transformed values zk;t�1; zk;t+1, etc. can be included in W1 and the

synthesis proceeds as before.

4 Simulation

We illustrate and evaluate the synthesis methods described above with a brief simulation. We

simulate 5,000 con�dential databases, each comprising 10,000 observations on six variables.

Of the six variables, we treat three as disclosable and three as con�dential. We generate

three partially synthetic implicates of each simulated database, as described below, to assess

the quality and disclosure risk of the partially synthetic data.
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The disclosable variables are de�ned as follows. The �rst, denoted g; takes value one or

two with equal probability. We refer to g as an observation�s group. The other disclosable

variables are x1 and x2; independently distributedN (0; 1) and rounded to the nearest integer

on [�2; 2] :
The con�dential variables are de�ned as follows. We begin by de�ning

z1 = 3g +
�
g1=2=3

�
x1 +

�
g1=2=3

�
x2 + "1 (15)

z2 = 3g +
�
g1=2=4

�
x1 +

�
g1=2=4

�
x2 +

�
g1=2=4

�
z1 + "2 (16)

z3 = x1 � (g=2)1=2 x2 + "3 (17)

where the �errors� are independently distributed "1 � N (0; g=9) ; "2 � N (0; g=16), and

"3 � N (0; g=2) :We de�ne the con�dential variables as y1 = exp (z1) ; y2 = exp (z2) ; and y3 =
F�1y3jg

�
Fz3jg (z3)

�
where Fy3jg is the cdf of a 70 : 30 mixture of a N (g; g

2) and a N (3g; g2=4) ;

and Fz3jg is the cdf of z3 conditional on g.
10 Conditional on the observation�s group g;

the distributions of y1 and y2 are highly skewed and that of y3 is bimodal. Subject to the

monotone transformations z1 = ln (y1) ; z2 = ln (y2) ; and z3 = F�1z3jg

�
Fy3jg (y3)

�
, however,

they have normal conditional distributions in each group.

Because equation (17) implies that the distribution of y3 depends only on x1; x2; and

g, we synthesize this variable independently of y1 and y2: Equations (15) and (16) imply

dependence between y1 and y2; so we synthesize these variables sequentially. We synthesize

y1 �rst, conditional on g; x1; and x2; and then synthesize y2; conditional on g; x1; x2; and y1:

To synthesize y3; we follow the procedure outlined in Example 2 exactly, with W1 =

fx1; x2g andW2 = g: We synthesize y1 and y2 under two scenarios. In each scenario, we let

W2 = g for both variables, and let W1 = fx1; x2g for y1; and W1 = fx1; x2; y1g for y2: In
the �rst scenario, we presume the transformation that maps between (y1; y2) and (z1; z2) is

known and synthesize these variables as described in Section 3.1. That is, we sequentially

generate synthetic values following Example 1, after applying the exact (logarithmic) trans-

formation to y1 and y2. In the second scenario, we presume the transformation is unknown

and sequentially generate the synthetic values using the density-based transformation, fol-

lowing Example 2 for each variable. Under both scenarios, when synthesizing y2 we apply

the relevant transformation to y1 on the right-hand side of the regression model (like the

extension to longitudinal data in Section 3.2.1). Generating synthetic values under these two

scenarios allows us to assess the information loss due to ignorance of the transformation.

We present several measures of synthetic data quality for group g = 1 in Tables 1 through

10Note that z3jg � N (0; 1 + g). Likewise, z1jg � N (3g; g=3) and z2jg �
N
�
3g
�
1 + g1=2=4

�
; [g=4]

�
1 + g1=2=3

��
:
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3. Results for group g = 2 are qualitatively similar, and are appendicized for brevity. The

synthetic data replicate the statistical properties of the con�dential data with considerable

accuracy. The exact transformation does a better job of preserving the distribution of the

con�dential data than the density-based transformation does, but on net, the gains to know-

ing the transformation are rather small.

Table 1 reports the �rst four moments and selected percentiles of the univariate distribu-

tion of each con�dential variable in the simulated true and synthetic data. By all measures,

the distribution of synthetic data based on the exact (logarithmic) transformation is virtu-

ally identical to that of the true data. This is also true of synthetic values of y3 generated

using the density-based transformation. The distribution of synthetic values of y1 and y2
generated using the density-based transformation match the �rst two moments of the true

data very closely, but are slightly less skewed and have somewhat thinner tails. For the most

part, however, these discrepancies are small and are accompanied by larger standard errors

than in the true data.

Table 2 presents product-moment and rank-order correlations. Correlations based on

synthetic values computed using the exact transformation are indistinguishable from the

true correlations to three decimal places. Rank-order correlations in the partially synthetic

data computed using the density-based transformation are likewise indistinguishable from

the true data. This is to be expected, since the density-based transformation preserves rank-

order relationships. Product-moment correlations in these synthetic data are also very close

to those in the true data, typically matching them to at least two decimal places.

To further assess the quality of the partially synthetic data, Table 3 presents estimated

coe¢ cients from the regression of ln (y2) on x1; x2; ln (y1) and an intercept. The estimated

coe¢ cients in the synthetic data correspond very closely to those obtained on the true data,

with only minor discrepancies arising in the third decimal place. Model �t, as measured by

root-MSE, is slightly worse in the synthetic data, which is to be expected.

We undertake a very conservative analysis of disclosure risk. In each simulation, we

begin by averaging the synthetic values of each con�dential variable across the three im-

plicates. Then, in each of the 50 cells of the cross-classi�cation of the disclosable variables

(g � x1 � x2), we compute the Mahalanobis distance between each synthetic record and
each con�dential record. The closest con�dential record to each synthetic record constitutes

a match. If a synthetic record is matched to its con�dential source record, the record is

deemed re-identi�ed. If the synthetic record is matched to any other con�dential record,

the record is deemed not to have been re-identi�ed. Our measure of disclosure risk is the

re-identi�cation rate in each cell: the proportion of records that are re-identi�ed.

We argue that this provides a conservative measure of disclosure risk for two reasons.
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First, it presumes that a malicious user knows which synthetic records in each implicate

correspond to the same respondent. This is necessary for the intruder to average the syn-

thetic values across implicates. Second, it presumes that the intruder has the maximum

possible information available to re-identify records in the synthetic data: the con�dential

data themselves.11

The overall re-identi�cation rate is very low, averaging 0.5 percent over the 5000 simu-

lations with a standard deviation of 0.1 percent. Table 4 presents re-identi�cation rates by

cell of the cross-classi�cation of disclosable variables. There is considerable variation in the

re-identi�cation rate across cells. This corresponds closely to the inverse of cell size. Re-

identi�cation is most common in the smallest cells. The four smallest cells average slightly

more than 22 observations, and here the re-identi�cation rate is about 4.75 percent. This is

only slightly larger than the inverse of the cell size. That is, on average about 1.05 records

in 22 are re-identi�ed in the smallest cells. Re-identi�cation is least common in the largest

cell: 0.14 percent in the cell averaging 733 observations. Again, this is only slightly larger

than the inverse of the cell size. In fact, on average 1.02 records are re-identi�ed in each cell.

Note that if synthetic records were randomly matched to con�dential records, the expected

number of re-identi�cations per cell is one.12 Thus the partially synthetic data provide ex-

tremely good disclosure protection, with re-identi�cation rates approaching the lower bound

implied by purely random matching.

5 Application

We apply the density-based transformation of Section 3.2 to synthesize earnings and date of

birth in the Longitudinal Employer-Household Dynamics (LEHD) Program database. The

LEHD data are administrative. They are based on the universe of quarterly employment

records collected by state agencies to administer the Unemployment Insurance (UI) system.

The LEHD database integrates the UI employment reports with a variety of internal Census

Bureau data sources to attach individual and business characteristics to the administrative

records. See Abowd et al. (2006) for a detailed description of the LEHD data. We select a

simple random sample of individuals employed in one state (whose identity is con�dential)

between 1990 and 2001.13 The sample contains about 30 million quarterly employment

11Implicitly, we also assume that the intruder knows the disclosable variables are unperturbed. In at-
tempting to re-identify records, the intruder therefore requires exact agreement on the disclosable variables.
12Domingo-Ferrer and Torra (2003) show that if two �les contain n records on the same set of n respondents,

the probability of correctly re-identifying exactly r respondents using a random matching strategy is p (r) =
1
r!

Pn�r
v=0 (�1)

v
=v!: It follows that the expected value of r is 1 for any n; or equivalently, the probability that

a randomly selected record is re-identi�ed is 1=n:
13We cannot disclose the sampling rate for con�dentiality reasons.
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records on about 1 million individuals.

5.1 Synthesis Details

We synthesize date of birth and earnings sequentially, with earnings following date of birth.

For each variable, the synthesis procedure follows Example 2.

Date of birth is integer-valued and reported with daily detail. Earnings are reported

quarterly in dollars. We treat both distributions as continuous. We truncate the right tail

of the distribution of earnings at $1 million per quarter (the 99th percentile is less than

$40,000). This is primarily because the application is illustrative and we wish to facilitate

computation �the truncated observations likely require a distinct synthesis model.

To synthesize date of birth, the conditioning set W2 includes sex, race, county of resi-

dence, and several indicators for missing data. To synthesize earnings, we de�neW2 as sex,

race, full-time status, an indicator for foreign birth, major SIC division of the employer, and

several indicators for missing data.

We estimate the integrated kernel density of earnings and birth date on an approximate

Bayesian bootstrap sample of observations in each cell of the cross-classi�cation of variables

inW2 that contains su¢ cient data. We use an ad hoc rule to de�ne �su¢ cient data�: at least

ten times as many observations as conditioning variables in the imputation model (W1). We

collapse cells with insu¢ cient data, in which case we add main e¤ects for the collapsed cells

toW1.14 Following Example 2, we use the estimated distribution to transform the variable

under synthesis so it has a standard normal distribution in each cell. For synthesizing

earnings, we apply a similar transformation to up to two leads and lags of earnings at the

same employer (where these exist).

For synthesizing date of birth, W1 includes an indicator for foreign birth, a quartic in

years of education, annual summaries of earnings and quarters worked, the proportion of em-

ployment spells that were full-time, the proportion of employment spells in each major SIC

division and county, the mean and variance of (log) �rm size and payroll in the individual�s

employment history, and individual and �rm main e¤ects from an auxiliary regression of an-

nualized earnings on various observable characteristics of workers and �rms.15 To synthesize

earnings, we de�neW1 to include up to two transformed leads and lags of earnings at the

same employer (where these exist), a quartic in education, a quartic in labor force experience

14The cross-classi�cation of variables in W2 de�nes over 100,000 cells for each variable. Most of these
contain little or no data, which necessitates collapsing many cells. Although only about ten percent of
observations are in collapsed cells, the collapse reduces the number of cells below 1000 for date of birth,
and below 3000 for earnings. Cell sizes vary between approximately 1500 and 1.4 million observations. The
median cell size is approximately 3150 observations.
15See Abowd et al. (2003) for details on this auxiliary regression.
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(which is a function of age),16 main e¤ects for county of residence and county of employment,

main e¤ects for non-employment in each year of the sample, the employer�s (log) employ-

ment and payroll, main e¤ects for year and quarter, and individual and �rm main e¤ects

estimated in an auxiliary regression of annualized earnings on observable characteristics of

workers and �rms.

We use a normal linear regression model with uninformative prior to generate the syn-

thetic values of the transformed variables. We estimate a separate regression model for each

variable on each subdomain de�ned byW2. Since there are a large number of variables in

the conditioning set W1, and since many of these are highly colinear, we apply a simple

model selection subroutine to improve precision of the estimated posterior distribution of

regression coe¢ cients, as follows. On each subdomain, we estimate a candidate regression

on all elements of W1. Only those variables that meet the Schwarz (1978) criterion are

retained. We then estimate the �nal imputation model on the reduced set of conditioning

variables.

We sample synthetic values from the posterior predictive distribution of the synthesis

model subject to two restrictions. We restrict the parameter draw to lie within three standard

deviations of the posterior mode, and restrict the synthetic values to lie within one standard

deviation of the true value on the variable�s natural scale. We then invert the density-based

transformation, returning the synthetic values to their natural scale.

5.1.1 Results

We do not attempt to assess re-identi�cation rates in the partially synthetic data, be-

cause synthesizing only these two variables is almost certainly insu¢ cient to prevent re-

identi�cation.17 Our discussion therefore focuses on the quality of the synthetic data.

Table 5 reports moments and percentiles of the marginal distributions of true and syn-

thetic age and earnings. For both variables, the distribution of the synthetic variables match

the con�dential data very closely, though the synthetic distributions exhibit slightly lower

dispersion, are slightly more symmetric, and have slightly thinner tails. This suggests some

slight reversion to the mean. This tendency is also apparent on subdomains de�ned by the

cross-classi�cation of sex and race. For brevity, moments on these subdomains are appen-

dicized. Plots of the estimated marginal densities are more illustrative. Figure 1 plots the

estimated marginal density of age by race (additional plots by race and sex are also appen-

16In the �rst period that an individual appears in the data, her (initial) potential experience is calculated
as the maximum of age minus years of education minus 6, and zero. In each subsequent quarter that the
individual is employed, experience accumulates by 0.25.
17That is, the large number of unsynthesized variables on the �le will be su¢ cient to re-identify many

observations.
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dicized). In each cell, the densities match very closely and reproduce the multiple modes

of the age distribution. The synthetic densities are slightly more concentrated around the

mean, however, particularly in the smaller cells.18 Figure 2 plots the estimated marginal

density of true and synthetic earnings between $1 and $40,000 by race (recall the 99th per-

centile of the distribution is less than $40,000). Again, they are very similar in every case.

The only notable discrepancy occurs for values below $1000. These outcomes are slightly

under-represented in the synthetic data.

Table 6 presents product-moment correlations in the true and synthetic data. For the

synthesized variables, correlations between true and synthetic values are very high (0.82 for

age, 0.96 for earnings). Correlations between age/earnings and other items in the database

are replicated almost exactly in the synthetic data. Table 7 presents rank-order correlations.

Again, rank-order correlations between true and synthetic values are very high (0.81 for age,

0.88 for earnings). The rank-order correlations between synthetic values and other items in

the database closely re�ect those for the true data, although the correlation between age and

earnings is slightly attenuated (0.33 in the true data, 0.26 in the synthetic data).

Table 8 presents time series correlations of earnings in the true and synthetic data.

Rank-order correlations are considerably stronger than product-moment correlations for all

time periods. The rank-order correlations are slightly attenuated in the synthetic data, and

product-moment correlations are slightly ampli�ed. Overall, however, the synthetic data

faithfully reproduce the time series properties of earnings.

We close our analysis of the synthetic data by considering a regression model of sub-

stantive economic interest. The model predicts the natural logarithm of quarterly earnings

based on individual and employer characteristics for a sample of men employed full time.19

This is a very well-studied speci�cation. Coe¢ cient estimates from the true and synthetic

data are presented in Table 9. On the whole, the true and synthetic data yield very similar

inferences. In particular, the experience pro�le is virtually identical in the two databases.

The only notable discrepancies are in the education pro�le, which has the correct slope but is

shifted downward by approximately 0.02 log points, and several of the industry main e¤ects.

As in the simulation exercise, model �t (as measured by root-MSE) is slightly worse in the

synthetic data than the true data, as we would expect.

18This is due to cell collapsing. Observations in the smallest sex � race cells are more likely to be subject
to cell collapse along these dimensions.
19Note the estimated speci�cation di¤ers from the synthesis model for earnings. In particular, it is based

on log earnings, instead of the density-based transformation of earnings. Furthermore, the estimated spec-
i�cation includes main e¤ects for foreign birth and the employer�s industry, whereas the synthesis model
is fully in interacted with these variables, and excludes leads and lags of earnings, main e¤ects for county
of residence and employment, main e¤ects for non-employment in each year, and individual and �rm main
e¤ects.
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6 Conclusion

Statistical disclosure limitation methods promise high quality microdata with low disclosure

risk. Among existing disclosure limitation methods, multiply-imputed partially synthetic

data strike a compelling balance between these competing objectives. Indeed, the main

virtue of this approach is that it preserves the ability of users to obtain valid statistical infer-

ences about a population of interest. Furthermore, as we argue herein, MIPS data maximize

data quality and minimize disclosure risk, up to posterior uncertainty in the imputation

model. Our simulation supports this assertion, with simulated re-identi�cation rates ap-

proaching the lower bound implied by random matching, while preserving the conditional

distribution of con�dential variables on pre-speci�ed subdomains. Our application to LEHD

data demonstrates the feasibility of our approach in large scale applications, and further

illustrates the high quality of the partially synthetic data.

Like all model-based disclosure limitation methods, however, the quality of MIPS data

depends on correctly specifying the imputation model used to generate the partially syn-

thetic data. Our transformation-based methods address one form of mis-speci�cation that

arises when the joint distribution of the con�dential data conditional on disclosable data is

unknown. However, other forms of mis-speci�cation are possible. In particular, MIPS data

will only preserve multivariate relationships that are present in the imputation model. To

preserve all multivariate relationships in the partially synthetic data requires, in principle,

that the imputation model conditions on �everything.� Of course, this is not possible in

practice. We saw evidence of this in our application to LEHD data, where it was necessary

to collapse some subdomains on which we sought to preserve the conditional distribution of

age and earnings, and to reduce the number of conditioning variables in the imputation re-

gressions though model selection. Further research is required to determine optimal methods

for reducing the dimensionality of the synthesis problem.

It is important that data providers recognize and advertise the limitations of partially

synthetic data they release. In particular, the model used to generate the MIPS data will

make them well suited to some analyses and poorly suited to others. Data providers must

therefore accompany any release of MIPS data with su¢ cient information for users to deter-

mine whether the MIPS data are appropriate for their analysis.
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TABLE 1

True True True

Moments
Mean 23.8 23.8 23.7 49.3 49.4 49.2 1.60 1.60

(0.21) (0.26) (0.24) (0.21) (1.59) (0.46) (0.03) (0.03)
Standard Deviation 14.9 14.9 14.4 28.5 28.6 27.8 1.30 1.30

(0.31) (0.33) (0.35) (0.54) (1.08) (0.65) (0.01) (0.02)
Skewness 1.93 1.93 1.69 1.72 1.72 1.53 0.12 0.10

(0.16) (0.10) (0.16) (0.12) (0.08) (0.13) (0.03) (0.04)
Kurtosis 6.59 6.61 4.87 4.99 5.01 3.77 0.81 0.82

(1.91) (1.18) (1.58) (1.15) (0.75) (1.07) (0.04) (0.05)
Percentiles

5.28 5.28 4.62 12.2 12.3 11.2 1.21 1.18
(0.16) (0.13) (0.20) (0.32) (0.46) (0.42) (0.07) (0.08)
7.72 7.72 7.55 17.4 17.4 17.1 0.51 0.51

(0.13) (0.13) (0.16) (0.27) (0.59) (0.33) (0.04) (0.05)
20.1 20.1 20.3 42.5 42.7 42.9 1.57 1.58

(0.21) (0.22) (0.26) (0.42) (1.37) (0.50) (0.04) (0.05)
52.3 52.3 51.4 104 105 103 3.57 3.58

(0.90) (0.89) (1.09) (1.63) (3.66) (2.06) (0.03) (0.03)
76.5 76.5 73.2 148 149 143 4.01 4.03

(2.23) (1.89) (2.66) (3.92) (5.71) (4.96) (0.04) (0.04)

Marginal Distribution of Simulated True and Synthetic Values in Group g = 1

y1 y2 y3

Synthetic 
(Exact 

Transform)

Synthetic  
(Densitybased 

Transform)

Synthetic 
(Exact 

Transform)

Synthetic  
(Densitybased 

Transform)

Synthetic  
(Densitybased 

Transform)

1st

5th

50th

95th

99th

Notes: Main entry in each column is the sample mean of the statistic in 5000 simulations. Simulated standard errors are in parentheses. In each simulation, statistics based on synthetic data are 
computed in each synthetic implicate. Statistics are averaged over implicates before computing the mean and standard error over simulations.



TABLE 2

ProductMoment Correlations RankOrder Correlations

True Data

0.000 0.000

0.533 0.533 0.567 0.567

0.576 0.576 0.774 0.606 0.607 0.794

0.706 0.497 0.112 0.121 0.700 0.487 0.119 0.126

Synthetic Data, Exact Transform

0.533 0.533 0.567 0.567

0.576 0.576 0.774 0.606 0.607 0.794

Synthetic Data, DensityBased Transform

0.540 0.540 0.567 0.567

0.582 0.582 0.781 0.606 0.606 0.794

0.706 0.497 0.114 0.122 0.699 0.487 0.118 0.126

Correlations in Simulated True and Synthetic Data for Group g = 1

x1 x2 y1 y2 x1 x2 y1 y2

x2

y1

y2

y3

y1

y2

y1

y2

y3

Notes: Entry in each column is the sample mean of the statistic in 5000 simulations. Simulated standard errors are  
available on request. All standard errors are less than 0.016. In each simulation, statistics based on synthetic data are 
computed in each of three synthetic implicates. Statistics are averaged over implicates before computing the mean and 
standard error over simulations.



TABLE 3

True 

Intercept 3.00 3.00 3.00
(0.032) (0.048) (0.040)

0.250 0.250 0.252
(0.005) (0.007) (0.007)

0.250 0.250 0.252
(0.005) (0.007) (0.007)

0.250 0.250 0.249
(0.011) (0.012) (0.013)

RMSE 0.250 0.250 0.255
(0.003) (0.003) (0.004)

Number of Observations 5000 5000 5000

Estimated Regression Coefficients in Simulated True and Synthetic Data, Group g = 1

Synthetic 
(Exact Transform)

Synthetic 
(DensityBased 

Transform)

x1

x2

ln(y1)

Notes: Dependent variable is ln(y2).  Main entry  in each column is the sample mean of the statistic in 5000 simulations. 
Simulated standard errors are in parentheses. In each simulation, statistics based on synthetic data are computed in each 
of three synthetic implicates. Statistics are averaged over implicates before computing the mean and standard error over 
simulations.



TABLE 4

2 1 0 1 2

Synthetic Data, DensityBased Transform

2 0.047 0.013 0.008 0.013 0.048
(0.047) (0.012) (0.008) (0.012) (0.048)

N = 22.3 N = 80.7 N = 128 N = 80.5 N = 22.4

1 0.013 0.003 0.002 0.003 0.013
(0.013) (0.003) (0.002) (0.003) (0.013)

N = 80.7 N = 292 N = 463 N = 292 N = 80.7

0 0.008 0.002 0.001 0.002 0.008
(0.008) (0.002) (0.001) (0.002) (0.008)
N = 128 N = 463 N = 733 N = 463 N = 128

1 0.013 0.003 0.002 0.003 0.013
(0.013) (0.003) (0.002) (0.003) (0.013)

N = 81.0 N = 292 N = 463 N = 293 N = 80.7

2 0.048 0.012 0.008 0.012 0.047
(0.047) (0.012) (0.008) (0.012) (0.046)

N = 22.4 N = 80.7 N = 128 N = 80.8 N = 22.4

Synthetic Data, Exact Transform

2 0.046 0.013 0.008 0.013 0.049
(0.047) (0.013) (0.008) (0.012) (0.047)

1 0.013 0.003 0.002 0.003 0.013
(0.013) (0.003) (0.002) (0.003) (0.012)

0 0.008 0.002 0.001 0.002 0.008
(0.008) (0.002) (0.001) (0.002) (0.008)

1 0.012 0.003 0.002 0.003 0.013
(0.012) (0.004) (0.002) (0.003) (0.012)

2 0.048 0.012 0.008 0.012 0.047
(0.047) (0.012) (0.008) (0.013) (0.046)

Simulated Reidentification Rates by Cell in Group g = 1

Value of x1 Value of x2

Notes: First entry in each cell is the average reidentification rate in that cell in 5000 simulations. The second 
entry,  in parentheses,  is  the standard deviation of  the reidentification rate  in that cell  in 5000 simulations. 
The third entry in the top panel is the average number of observations in that cell in 5000 simulations. Both 
panels are based on the same simulated data.



TABLE 5
Marginal Distribution of True and Synthetic Values

Age on Jan. 1, 1990 Quarterly Employment Earnings

True Value True Value

Moments
Mean 29.7 29.7 (0.12) 6,731 6,715 (18.1)
Standard Deviation 16.3 15.8 (1.42) 14,024 13,291 (696)
Skewness  0.53 0.48 (0.02) 31.4 30.3 (0.11)
Kurtosis 0.10 0.05 (0.04) 1,722 1,678 (9.19)

Percentiles
1.43 1.10 (0.22) 39.0 1.00 (0.00)
6.78 6.86 (0.10) 160 185 (0.00)
28.0 28.3 (0.19) 4,546 4,523 (20.6)
59.8 58.1 (0.18) 18,218 18,354 (23.7)
72.1 71.0 (0.16) 38,200 37,304 (31.4)

Number of Observations 1,286,444 29,991,540

Source: Authors' calculations based on the LEHD database.

Synthetic 
Value

Between
Implicate 
Std. Dev

Synthetic 
Value

Between
Implicate 
Std. Dev

1st

5th

50th

95th

99th

Notes: Statistics in the columns labeled “Synthetic Value” are averaged over three synthetic data implicates. The distribution 
of true and synthetic earnings is truncated at one and one million dollars.



TABLE 6
ProductMoment Correlations in True and Synthetic Data

Age on Jan. 1, 1990 Quarterly Employment Earnings

True Value True Value

Individual Characteristics
True Age (years) 1 0.818 (0.000) 0.143 0.146 (0.000)
Synthetic Age 0.818 1 (0.000) 0.129 0.132 (0.003)
Education (years) 0.155 0.151 (0.004) 0.143 0.144 (0.001)
Male (0 or 1) 0.007 0.002 (0.016) 0.129 0.135 (0.001)
Foreign Born (0 or 1) 0.040 0.044 (0.002) 0.003 0.004 (0.001)
Race = Black (0 or 1) 0.027 0.028 (0.031) 0.053 0.056 (0.001)
Race = Hispanic (0 or 1) 0.104 0.108 (0.008) 0.046 0.048 (0.000)

Employment Characteristics
Earnings (Dollars) 0.143 0.129 (0.003) 1 0.960 (0.002)
Synthetic Earnings 0.146 0.132 (0.003) 0.960 1 (0.000)
Not Employed in 1990 (0 or 1) 0.356 0.382 (0.004) 0.118 0.124 (0.000)
Not Employed in 1991 (0 or 1) 0.326 0.350 (0.004) 0.111 0.118 (0.000)
Not Employed in 1992 (0 or 1) 0.302 0.320 (0.003) 0.115 0.122 (0.000)
Not Employed in 1993 (0 or 1) 0.265 0.278 (0.004) 0.108 0.115 (0.000)
Not Employed in 1994 (0 or 1) 0.229 0.239 (0.004) 0.105 0.112 (0.001)
Not Employed in 1995 (0 or 1) 0.184 0.190 (0.004) 0.099 0.106 (0.001)
Not Employed in 1996 (0 or 1) 0.140 0.143 (0.004) 0.095 0.102 (0.001)
Not Employed in 1997 (0 or 1) 0.092 0.093 (0.004) 0.090 0.096 (0.001)
Not Employed in 1998 (0 or 1) 0.040 0.039 (0.004) 0.081 0.087 (0.001)
Not Employed in 1999 (0 or 1) 0.005 0.007 (0.004) 0.073 0.079 (0.001)
Not Employed in 2000 (0 or 1) 0.044 0.048 (0.003) 0.063 0.069 (0.001)
Not Employed in 2001 (0 or 1) 0.066 0.072 (0.003) 0.057 0.062 (0.000)
Employed Full Time (0 or 1) 0.037 0.043 (0.002) 0.027 0.029 (0.001)
Full Time Missing (0 or 1) 0.029 0.023 (0.002) 0.051 0.054 (0.002)

Employer Characteristics
ln(Number of Employees) 0.058 0.059 (0.006) 0.065 0.069 (0.000)
ln(Total Payroll) 0.095 0.097 (0.005) 0.143 0.148 (0.000)
SIC Division = A (0 or 1) 0.031 0.033 (0.001) 0.019 0.019 (0.000)
SIC Division = B (0 or 1) 0.018 0.020 (0.003) 0.010 0.010 (0.001)
SIC Division = C (0 or 1) 0.014 0.012 (0.003) 0.011 0.012 (0.002)
SIC Division = E (0 or 1) 0.025 0.028 (0.001) 0.035 0.036 (0.002)
SIC Division = F (0 or 1) 0.020 0.024 (0.002) 0.046 0.049 (0.001)
SIC Division = G (0 or 1) 0.184 0.190 (0.003) 0.117 0.123 (0.000)
SIC Division = H (0 or 1) 0.009 0.012 (0.003) 0.073 0.076 (0.002)
SIC Division = I (0 or 1) 0.031 0.027 (0.006) 0.038 0.040 (0.001)
SIC Division = J (0 or 1) 0.073 0.072 (0.001) 0.011 0.011 (0.001)

Source: Authors' calculations based on the LEHD database.

Synthetic 
Value

Between
Implicate 
Std. Dev

Synthetic 
Value

Between
Implicate 
Std. Dev

Notes: To facilitate computation, all correlations are computed on a 2 percent random sample of observations. Statistics in the 
columns labeled “Synthetic Value” are averaged over three synthetic data implicates. The distribution of true and synthetic earnings 
is truncated at one and one million dollars.



TABLE 7
RankOrder Correlations in True and Synthetic Data

Age on Jan. 1, 1990 Quarterly Employment Earnings

True Value True Value

Individual Characteristics
True Age (years) 1 0.810 (0.000) 0.326 0.319 (0.002)
Synthetic Age 0.810 1 (0.000) 0.265 0.259 (0.004)
Education (years) 0.202 0.179 (0.005) 0.272 0.262 (0.002)
Male (0 or 1) 0.008 0.003 (0.016) 0.199 0.199 (0.001)
Foreign Born (0 or 1) 0.047 0.046 (0.002) 0.011 0.011 (0.002)
Race = Black (0 or 1) 0.024 0.026 (0.031) 0.084 0.086 (0.001)
Race = Hispanic (0 or 1) 0.105 0.110 (0.009) 0.070 0.069 (0.002)

Employment Characteristics
Earnings (Dollars) 0.326 0.265 (0.002) 1 0.879 (0.000)
Synthetic Earnings 0.319 0.259 (0.004) 0.879 1 (0.000)
Not Employed in 1990 (0 or 1) 0.380 0.398 (0.003) 0.311 0.308 (0.000)
Not Employed in 1991 (0 or 1) 0.339 0.354 (0.003) 0.287 0.286 (0.000)
Not Employed in 1992 (0 or 1) 0.322 0.329 (0.002) 0.300 0.300 (0.000)
Not Employed in 1993 (0 or 1) 0.282 0.283 (0.002) 0.280 0.280 (0.000)
Not Employed in 1994 (0 or 1) 0.268 0.264 (0.003) 0.307 0.307 (0.001)
Not Employed in 1995 (0 or 1) 0.227 0.218 (0.003) 0.294 0.294 (0.001)
Not Employed in 1996 (0 or 1) 0.186 0.174 (0.003) 0.283 0.284 (0.000)
Not Employed in 1997 (0 or 1) 0.143 0.128 (0.003) 0.268 0.270 (0.000)
Not Employed in 1998 (0 or 1) 0.095 0.078 (0.003) 0.246 0.248 (0.000)
Not Employed in 1999 (0 or 1) 0.049 0.033 (0.003) 0.224 0.226 (0.000)
Not Employed in 2000 (0 or 1) 0.008 0.010 (0.003) 0.199 0.200 (0.000)
Not Employed in 2001 (0 or 1) 0.019 0.037 (0.002) 0.181 0.182 (0.001)
Employed Full Time (0 or 1) 0.058 0.057 (0.001) 0.142 0.142 (0.003)
Full Time Missing (0 or 1) 0.029 0.022 (0.002) 0.068 0.069 (0.003)

Employer Characteristics
ln(Number of Employees) 0.071 0.063 (0.005) 0.199 0.195 (0.000)
ln(Total Payroll) 0.124 0.114 (0.005) 0.347 0.339 (0.000)
SIC Division = A (0 or 1) 0.034 0.034 (0.001) 0.044 0.042 (0.001)
SIC Division = B (0 or 1) 0.020 0.022 (0.002) 0.031 0.029 (0.003)
SIC Division = C (0 or 1) 0.018 0.015 (0.004) 0.043 0.043 (0.004)
SIC Division = E (0 or 1) 0.033 0.032 (0.001) 0.099 0.100 (0.002)
SIC Division = F (0 or 1) 0.023 0.026 (0.002) 0.096 0.097 (0.001)
SIC Division = G (0 or 1) 0.205 0.199 (0.002) 0.286 0.286 (0.001)
SIC Division = H (0 or 1) 0.011 0.013 (0.003) 0.101 0.101 (0.003)
SIC Division = I (0 or 1) 0.032 0.027 (0.006) 0.108 0.106 (0.002)
SIC Division = J (0 or 1) 0.074 0.071 (0.002) 0.073 0.070 (0.003)

Source: Authors' calculations based on the LEHD database.

Synthetic 
Value

Between
Implicate 
Std. Dev

Synthetic 
Value

Between
Implicate 
Std. Dev

Notes: To facilitate computation, all correlations are computed on a 2 percent random sample of observations. Statistics in the 
columns labeled “Synthetic Value” are averaged over three synthetic data implicates. The distribution of true and synthetic earnings 
is truncated at one and one million dollars.



TABLE 8
Time Series Correlation of Earnings in True and Synthetic Data

ProductMoment Correlations RankOrder Correlations

t2 t1 t t+1 t+2 t2 t1 t t+1 t+2

True Data
t2 1 1
t1 0.542 1 0.921 1
t  0.502 0.533 1 0.895 0.903 1
t+1 0.512 0.509 0.554 1 0.885 0.896 0.903 1
t+2 0.703 0.509 0.521 0.523 1 0.903 0.885 0.896 0.920 1

Synthetic Data
t2 1 1
t1 0.577 1 0.875 1
t  0.530 0.549 1 0.863 0.852 1
t+1 0.543 0.544 0.596 1 0.847 0.858 0.862 1
t+2 0.698 0.544 0.560 0.602 1 0.839 0.841 0.864 0.883 1

Source: Authors' calculations based on the LEHD database.

Notes: To facilitate computation, all correlations are computed on a 2 percent random sample of observations. Statistics labeled “Synthetic Data” 
are averaged over three synthetic data implicates. Betweenimplicate standard deviations are available on request; all are less than 0.005. The 
distribution of true and synthetic earnings is truncated at one and one million dollars.



TABLE 9
Estimated Regression Coefficients in True and Synthetic Data

True Data Synthetic Data

Coefficient Std. Error Coefficient Std. Error

Years of Experience 0.058 (0.000) 0.058 (0.001)
0.258 (0.005) 0.264 (0.006)
0.048 (0.002) 0.049 (0.002)
0.003 (0.000) 0.003 (0.000)

Initial Experience < 0 0.181 (0.005) 0.177 (0.002)

Years of Education 0.023 (0.010) 0.015 (0.005)
0.930 (0.111) 0.854 (0.095)
1.09 (0.120) 1.05 (0.070)

0.295 (0.041) 0.288 (0.018)
Race = Black 0.073 (0.002) 0.083 (0.007)
Race = Hispanic 0.132 (0.003) 0.146 (0.017)
Foreign Born = 1 0.031 (0.002) 0.025 (0.007)

ln(Number of Employees) 0.233 (0.001) 0.247 (0.001)
ln(Total Payroll) 0.275 (0.001) 0.291 (0.001)
SIC Division = A 0.261 (0.008) 0.203 (0.048)
SIC Division = B 0.068 (0.024) 0.023 (0.047)
SIC Division = C 0.008 (0.008) 0.041 (0.012)
SIC Division = E 0.044 (0.002) 0.076 (0.010)
SIC Division = F 0.040 (0.003) 0.066 (0.013)
SIC Division = G 0.323 (0.002) 0.278 (0.007)
SIC Division = H 0.050 (0.002) 0.073 (0.007)
SIC Division = I 0.159 (0.002) 0.131 (0.011)
SIC Division = J 0.119 (0.002) 0.101 (0.003)

Year = 1991 0.026 (0.002) 0.028 (0.002)
Year = 1992 0.072 (0.002) 0.070 (0.003)
Year = 1993 0.101 (0.001) 0.103 (0.002)
Year = 1994 0.132 (0.001) 0.134 (0.003)
Year = 1995 0.154 (0.001) 0.156 (0.002)
Year = 1996 0.179 (0.001) 0.183 (0.003)
Year = 1997 0.213 (0.001) 0.217 (0.003)
Year = 1998 0.245 (0.001) 0.250 (0.003)
Quarter = 2 0.048 (0.001) 0.048 (0.001)
Quarter = 3 0.011 (0.001) 0.015 (0.001)
Quarter = 4 0.084 (0.001) 0.092 (0.001)

Intercept 5.05 (0.036) 4.92 (0.021)

RMSE 0.741 0.787
Number of Observations 13,140,425 13,140,425

Experience2/100
Experience3/1000
Experience4/10000

Education2/100
Education3/1000
Education4/10000

Notes: Dependent variable is the natural logarithm of quarterly employment earnings. Sample is restricted to fullquarter 
observations on males employed full time. An individual is defined as working a fullquarter in period t if she was employed at the 
same firm in periods t1, t, and t+1. All calculations on synthetic data are based on three partially synthetic implicates.







APPENDIX TABLE 1

True True True

Moments
Mean 564 564 557 4772 4804 4722 3.20 3.20

(7.53) (8.98) (8.57) (65.4) (307) (73.0) (0.05) (0.06)
Standard Deviation 538 539 497 4632 4666 4344 2.59 2.59

(18.0) (16.9) (18.7) (145) (327) (168) (0.03) (0.03)
Skewness 3.21 3.22 2.69 3.12 3.13 2.70 0.12 0.10

(0.47) (0.30) (0.37) (0.37) (0.23) (0.34) (0.03) (0.04)
Kurtosis 19.5 19.7 13.2 17.6 17.6 12.7 0.79 (0.8)

(10.03) (7.23) (6.2) (7.29) (4.34) (5.2) (0.05) (0.1)
Percentiles

61.0 61.0 29.8 493 496 245 2.44 2.39
(2.46) (2.11) (4.22) (19.4) (34.5) (34.8) 0.15 0.15
104 104 96.9 845 851 783 1.02 1.01

(2.48) (2.54) (3.31) (20.7) (55.4) (27.7) (0.09) (0.10)
403 403 414 3366 3388 3435 3.15 3.15

(5.94) (6.09) (7.34) (51.6) (214) (61.1) (0.08) (0.09)
1562 1561 1501 13429 13516 13037 7.13 7.16
(37.2) (37.0) (44.5) (328) (902) (405) (0.06) (0.06)
2673 2673 2463 23039 23207 21538 8.03 8.08
(110) (91.8) (126) (940) (1665) (1152) (0.08) (0.09)

Marginal Distribution of Simulated True and Synthetic Values in Group g = 2

y1 y2 y3

Synthetic 
(Exact 

Transform)

Synthetic  
(Densitybased 

Transform)

Synthetic 
(Exact 

Transform)

Synthetic  
(Densitybased 

Transform)

Synthetic 
(Exact 

Transform)

1st

5th

50th

95th

99th

Notes: Main entry in each column is the sample mean of the statistic in 5000 simulations. Simulated standard errors are in parentheses. In each simulation, statistics based on synthetic data are 
computed in each synthetic implicate. Statistics are averaged over implicates before computing the mean and standard error over simulations.



APPENDIX TABLE 2

ProductMoment Correlations RankOrder Correlations

True Data

0.000 0.000

0.490 0.490 0.567 0.567

0.530 0.529 0.782 0.614 0.614 0.829

0.576 0.576 0.001 0.001 0.567 0.567 0.000 0.000

Synthetic Data, Exact Transform

0.490 0.490 0.567 0.566

0.529 0.529 0.782 0.614 0.613 0.829

Synthetic Data, DensityBased Transform

0.504 0.504 0.566 0.566

0.543 0.542 0.798 0.612 0.611 0.829

0.576 0.576 0.001 0.001 0.567 0.567 0.000 0.000

Correlations in Simulated True and Synthetic Data for Group g = 2

x1 x2 y1 y2 x1 x2 y1 y2

x2

y1

y2

y3

y1

y2

y1

y2

y3

Notes: Entry in each column is the sample mean of the statistic in 5000 simulations. Simulated standard errors are  
available on request. All standard errors are less than 0.016. In each simulation, statistics based on synthetic data are 
computed in each of three synthetic implicates. Statistics are averaged over implicates before computing the mean and 
standard error over simulations.



APPENDIX TABLE 3

True 

Intercept 6.00 6.00 6.03
(0.065) (0.096) (0.089)

0.354 0.354 0.360
(0.007) (0.009) (0.010)

0.353 0.353 0.360
(0.007) (0.009) (0.010)

0.354 0.354 0.349
(0.011) (0.012) (0.015)

RMSE 0.353 0.353 0.383
(0.004) (0.005) (0.008)

Number of Observations 5000 5000 5000

Estimated Regression Coefficients in Simulated True and Synthetic Data, Group g = 2

Synthetic 
(Exact Transform)

Synthetic 
(DensityBased 

Transform)

x1

x2

ln(y1)

Notes: Dependent variable is ln(y2).  Main entry  in each column is the sample mean of the statistic in 5000 simulations. 
Simulated standard errors are in parentheses. In each simulation, statistics based on synthetic data are computed in each 
of three synthetic implicates. Statistics are averaged over implicates before computing the mean and standard error over 
simulations.



APPENDIX TABLE 4

2 1 0 1 2

Synthetic Data, DensityBased Transform

2 0.046 0.013 0.008 0.013 0.047
(0.047) (0.013) (0.008) (0.013) (0.047)

N = 22.3 N = 80.8 N = 128 N = 80.5 N = 22.3

1 0.013 0.003 0.002 0.003 0.012
(0.013) (0.003) (0.002) (0.003) (0.012)

N = 80.4 N = 292 N = 463 N = 292 N = 80.9

0 0.008 0.002 0.001 0.002 0.008
(0.008) (0.002) (0.001) (0.002) (0.008)
N = 128 N = 463 N = 733 N = 463 N = 128

1 0.013 0.003 0.002 0.003 0.013
(0.013) (0.003) (0.002) (0.003) (0.013)

N = 80.7 N = 292 N = 463 N = 292 N = 80.8

2 0.048 0.013 0.008 0.012 0.047
(0.047) (0.013) (0.008) (0.012) (0.046)

N = 22.4 N = 80.8 N = 128 N = 81.0 N = 22.3

Synthetic Data, Exact Transform

2 0.047 0.013 0.008 0.013 0.047
(0.047) (0.012) (0.008) (0.012) (0.047)

1 0.013 0.003 0.002 0.003 0.012
(0.013) (0.003) (0.002) (0.003) (0.012)

0 0.008 0.002 0.001 0.002 0.008
(0.008) (0.002) (0.001) (0.002) (0.008)

1 0.013 0.003 0.002 0.003 0.012
(0.012) (0.003) (0.002) (0.003) (0.013)

2 0.047 0.013 0.008 0.013 0.048
(0.046) (0.013) (0.008) (0.012) (0.048)

Simulated Reidentification Rates by Cell in Group g = 2

Value of x1 Value of x2

Notes: First entry in each cell is the average reidentification rate in that cell in 5000 simulations. The second 
entry,  in parentheses,  is  the standard deviation of  the reidentification rate  in that cell  in 5000 simulations. 
The third entry in the top panel is the average number of observations in that cell in 5000 simulations. Both 
panels are based on the same simulated data.



APPENDIX TABLE 5
Moments of the Distribution of Age on Jan. 1, 1990 by Sex and Race 

White Black Asian Hispanic American Indian Other  Race Missing TOTAL

True Synthetic True Synthetic True Synthetic True Synthetic True Synthetic True Synthetic True Synthetic True Synthetic

Men
Mean 31.2 31.1 27.6 27.6 25.6 25.7 23.2 22.8 24.0 24.8 36.2 36.4 23.6 23.7 29.8 29.7
Std.Dev. 16.0 15.4 15.0 14.5 13.1 12.4 13.1 12.4 12.7 11.8 14.1 13.5 15.7 15.2 16.1 15.6
Skewness  0.40 0.34 0.56 0.47 0.78 0.65 0.65 0.56 0.61 0.44 0.20 0.04 0.04 0.09 0.50 0.46
Kurtosis 0.46 0.40 0.07 0.17 0.71 0.57 0.54 0.32 0.53 0.27 0.27 0.30 0.38 0.58 0.14 0.09
N 458,356 81,000 20,157 47,547 1,203 9,319 60,239 677,821

Women
Mean 30.9 31.0 28.1 28.0 25.6 25.8 22.6 22.7 24.6 23.9 36.3 36.4 21.4 21.1 29.7 29.7
Std.Dev. 16.3 15.9 16.3 15.1 13.3 12.7 13.2 12.7 13.1 12.1 14.9 14.2 17.3 16.8 16.5 16.1
Skewness  0.45 0.39 0.56 0.48 0.75 0.61 0.68 0.57 0.62 0.42 0.13 0.03 0.51 0.37 0.55 0.50
Kurtosis 0.35 0.31 0.12 0.13 0.65 0.43 0.48 0.24 0.60 0.29 0.32 0.35 0.07 0.22 0.06 0.02
N 414,169 84,863 17,835 36,135 1,118 6,276 48,226 608,622

TOTAL
Mean 31.1 31.1 27.9 27.8 25.6 25.7 23.0 22.8 24.3 24.3 36.2 36.4 22.7 22.7 29.7 29.7
Std.Dev. 16.1 15.6 15.3 14.9 13.2 14.9 13.1 12.5 12.9 12.0 14.4 13.8 16.4 15.9 16.3 15.8
Skewness  0.42 0.36 0.56 0.48 0.76 0.63 0.66 0.56 0.62 0.42 0.17 0.01 0.25 0.11 0.53 0.48
Kurtosis 0.40 0.35 0.09 0.15 0.68 0.50 0.51 0.28 0.57 0.28 0.28 0.31 0.20 0.45 0.10 0.05
N 872,525 165,864 37,992 83,682 2,321 15,595 108,465 1,286,444

Source: Authors' calculations based on the LEHD database.
Notes: Statistics in the columns labeled “Synthetic Value” are averaged over three synthetic data implicates.



APPENDIX TABLE 6
Moments of the Distribution of Quarterly Employment Earnings by Sex and Race 

White Black Asian Hispanic American Indian Other  Race Missing TOTAL

True Synthetic True Synthetic True Synthetic True Synthetic True Synthetic True Synthetic True Synthetic True Synthetic

Men
Mean 9,340 9,306 5,153 5,114 7,383 7,307 4,595 4,590 4,578 4,611 10,877 10,726 10,680 10,566 8,482 8,444
Std.Dev. 19,620 18,751 8,454 7,368 12,574 11,318 5,028 4,595 8,594 6,112 24,582 22,428 21,900 19,719 18,060 17,150
Skewness  24.4 24.0 48.6 37.3 23.1 18.1 55.7 40.6 41.9 7.74 18.8 17.6 18.1 15.3 25.9 25.2
Kurtosis 965 957 4,711 3,627 1,208 885 9,422 7,420 3,233 246 548 523 587 464 1,107 1,092
N 11,562,073 1,700,810 351,162 1,046,917 17,681 242,345 696,265 15,617,253

Women
Mean 4,990 4,995 4,397 4,399 5,398 5,393 3,625 3,660 3,830 3,867 6,654 6,662 5,109 5,121 4,829 4,836
Std.Dev. 7,498 6,953 7,498 4,492 6,893 6,423 3,301 3,310 3,995 3,945 8,361 7,898 8,899 7,573 7,002 6,499
Skewness  39.9 32.7 13.9 7.79 18.5 13.6 4.23 3.32 2.57 2.09 12.6 9.61 32.1 14.7 39.0 31.0
Kurtosis 3,969 3,177 1,284 531 1,097 762 79.7 44.5 18.0 8.87 453 267 2,566 641 4,085 3,145
N 10,543,615 2,036,955 355,368 760,836 20,366 164,341 492,806 14,374,287

TOTAL
Mean 7,265 7,250 4,741 4,724 6,385 6,344 4,187 4,199 4,178 4,212 9,169 9,082 8,568 8,501 6,731 6,715
Std.Dev. 15,260 14,547 6,674 5,985 10,172 5,985 4,411 4,130 6,558 5,082 19,814 18,132 18,306 16,435 14,024 13,291
Skewness  29.7 28.9 47.6 33.5 24.7 19.0 48.7 33.2 44.3 7.03 22.0 20.4 20.8 17.2 31.4 30.3
Kurtosis 1,504 1,477 5,698 3,889 1,526 1,089 9,240 6,596 4,444 261 788 741 810 617 1,722 1,678
N 22,105,688 3,737,765 706,530 1,807,753 38,047 406,686 1,189,071 29,991,540

Source: Authors' calculations based on the LEHD database.
Notes: Statistics in the columns labeled “Synthetic Value” are averaged over three synthetic data implicates. The distribution of quarterly employment earnings is truncated at one and one million dollars.












