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Abstract 
 
 In this paper we provide the exact formulas for the direct least squares estimation of 
statistical models that include both person and firm effects.  We also provide an algorithm for 
determining the estimable functions of the person and firm effects (the identifiable effects).  The 
computational techniques are also directly applicable to any linear two-factor analysis of 
covariance with two high-dimension non-orthogonal factors.  We show that the application of the 
exact solution does not change the substantive conclusions about the relative importance of 
person and firm effects in the explanation of log real compensation; however, the correlation 
between person and firm effects is negative, not weakly positive, in the exact solution.  We also 
provide guidance for using the methods developed in earlier work to obtain an accurate 
approximation. 
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1. Introduction 

Two related articles Abowd, Kramarz and Margolis (AKM, 1999) and Abowd, Finer and 
Kramarz (AFK, 1999) provided a basic statistical framework for decomposing wage rates into 
components due to individual heterogeneity (measured and unmeasured) and firm heterogeneity 
(measured and unmeasured). The first of these articles, AKM, analyzes French data.  The second 
of these articles, AFK, analyzes data from the State of Washington. 

Both AKM and AFK used statistical approximations to estimate the decomposition of 
wage differentials into individual and employer components.  In this article we show new 
methods that provide the exact solution to the estimation problem.  We analyze the same French 
data as AKM and the same American data as AFK.  The exact results fully confirm the 
approximate results for the State of Washington but slightly change the explanation for wage 
differentials for France.  The reason for the difference in the French results is that the 
computations for the approximation in AKM were limited by the capacity of the computers on 
which they were generated.  The approximation was not sufficiently accurate.  The same 
approximation, using more terms in the conditioning set, worked well for the analysis of the 
State of Washington.  

Section 2 summarizes the basic statistical model. Section 3 provides the details for 
identification and estimation by fixed-effect methods. Section 4 presents the data analysis 
comparing the original approximate results with the exact results. Section 5 concludes. 

2. Basic Statistical Model 

The dependent variable is the natural logarithm of the rate of compensation per unit of 
time, ity , observed for individual i at date t, expressed as a function of individual heterogeneity, 
firm heterogeneity, and measured time-varying characteristics:  

 itittiiit xy εβψθ +++= ),J( . (1) 

where Ni ,,1K= , { }
iiTi nnt ,,1 K∈ , and there is no intercept included in xit.1  The function J(i,t) 

indicates the employer j of i at date t where ( )tij ,J=  and Jj ,,1 K= .  There are Ti observations 
per individual and ∑=

i
iTN *  total observations.  The first component of equation (1) is the 

individual effect, iθ .  The second component is the firm effect, ),J( tiψ .  The third component is 
the effect of measured time-varying characteristics, βitx .  The fourth component is the statistical 
residual, itε , with the assumptions that [ ] 0,,E =xtiitε , [ ] ∞<xtiit ,,Var ε , and orthogonal to all 

                                                 
1 The dating is complicated by the fact that individuals may have incomplete work histories.  The time subscript 
ranges over all available dates for the individual with each nis being between the start date and the end date for the 
sample. The time subscripts are arranged in increasing order. See AKM (1999) for additional discussion of the 
notation. 
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other effects in the model.2  In the statistics literature equation (1) is known as a two-factor 
analysis of covariance with two high-dimensional factors and an unbalanced (non-orthogonal) 
design (see Searle et al., 1992, chapter 5).  Although we focus on the application of these 
methods to models developed for linked longitudinal employer-employee data, we note that 
models for doctor-patient and school-student outcomes have the same statistical structure.  Our 
methods would also be directly useful for these applications. 

In order to state the basic statistical relations more clearly we restate equation (1) in 
matrix format.  All vectors/matrices have row dimensionality equal to the total number of 
observations, *N .  The data are sorted by i and ordered chronologically for each person. This 
gives the following equation for the stacked system: 

 εβψθ +++= XFDy  (2) 

where D ( )NN ×*  is the design matrix for the person effect: columns equal to the number of 
unique person IDs; F ( )JN ×*  is the design matrix for the firm effect: columns equal to the 
number of unique firm IDs; and X ( )KN ×*  is the stacked matrix of time-varying characteristics: 
columns equal to the number of regressors in X. 

3. Identification and Estimation by Fixed-effect Methods 

The normal equations for least squares estimation of fixed person, firm, and characteristic 
effects are of very high dimension.  Estimation of the full model by fixed-effect methods requires 
special algorithms to deal with the high dimensionality of the problem.  After completing work 
on AFK and AKM, which use statistical approximations, we developed new algorithms that 
permit the exact least squares estimation of all the effects in equation (2). These algorithms, 
which are based on the iterative conjugate gradient method, deal with the high dimensionality of 
the data by using sparse matrices.  Our methods have some similarity to those used in the animal 
and plant breeding literature.3  Because of the way these algorithms work, conventional methods 
for assuring that the effects are identified (estimable) do not work. Thus, we also developed 
appropriate, new, methods for computing the estimable functions of interest based on equation 
(3) below. 

Least Squares Normal Equations 

The full least squares solution to the estimation problem for equation (2) solves the 
following normal equations for all estimable effects: 

                                                 
2 See Abowd and Kramarz (1999a and 1999b) for a more complete discussion of the exogeneity assumption for the 
residual. 
3 See Abowd and Kramarz (1999a) for a longer discussion of the relation of these models to those found in the 
breeding literature. The techniques are summarized in Robinson (1991) and the random-effects methods are 
thoroughly discussed in Neumaier and Groenveld (1998).  The programs developed for breeding applications cannot 
be used directly for the linked employer-employee data application because of the way the breeding effect that is 
equivalent to our employer effect is parameterized.  
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In both of our estimation samples, the cross-product matrix on the left-hand side of equation (3) 
is too high-dimensional to use conventional algorithms (e.g., those implemented in SAS, Stata, 
and other general purpose linear modeling software based on variations of the sweep algorithm 
for solving (3)).  AKM present a set of approximate solutions to (3) based on the use of different 
conditioning effects, Z. AFK applies the best of these approximations with a much higher-
dimension Z.  

Identification of Individual and Firm Effects 

Many interesting economic applications of equation (2) make use of the estimated person 
and firm effects.  Estimation requires a method for determining the identified effects.4  The usual 
technique of sweeping out singular row/column combinations from the normal equations (3) is 
not applicable to the method described in this paper because equation (3) is solved without the 
computation of a generalized inverse.  Hence, identification of the person and firm effects for 
estimation by direct least squares requires finding the conditions under which equation (3) can be 
solved exactly for some estimable functions of the person and firm effects.  In this sub-section 
we ignore the problem of identifying the coefficients β because in practice this is rarely difficult. 

The identification problem for the person and firm effects can be solved by applying 
methods from graph theory to determine groups of connected individuals and firms.  Within a 
connected group of persons/firms, identification can be determined using conventional methods 
from the analysis of covariance.  Connecting persons and firms requires that some of the 
individuals in the sample be employed at multiple employers.  When a group of persons and 
firms is connected, the group contains all the workers who ever worked for any of the firms in 
the group and all the firms at which any of the workers were ever employed.  In contrast, when a 
group of persons and firms is not connected to a second group, no firm in the first group has ever 
employed a person in the second group, nor has any person in the first group ever been employed 
by a firm in the second group.  From an economic perspective, connected groups of workers and 
firms show the realized mobility network in the economy.  From a statistical perspective, 
connected groups of workers and firms block-diagonalize the normal equations (see equation (4) 
below) and permit the precise statement of identification restrictions on the person and firm 
effects. 

The following algorithm constructs G mutually-exclusive groups of connected 
observations from the N workers in J firms observed over the sample period. 
 

                                                 
4 Standard statistical references, for example Searle et al. (1992), provide general methods for finding the estimable 
functions of the parameters of equation (3). These methods also require the solution of a very high dimension linear 
system and are, therefore, impractical for our purposes. 
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For g = 1, ..., repeat until no firms remain:5 
The first firm not assigned to a group is in group g. 
Repeat until no more firms or persons are added to group g: 

Add all persons employed by a firm in group g to group g. 
Add all firms that have employed a person in group g to group g. 

 End repeat. 
End for. 

At the conclusion of the algorithm, the persons and firms in the sample have been divided into G 
groups. The number of individuals in each group is Ng. The number of employers in each group 
is Jg. Some groups contain a single employer and, possibly, only one individual.  For groups that 
contain more than one employer, every employer in the group is connected (in the graph-theoretic 
sense) to at least one other employer in the group.  This algorithm finds all of the maximally 
connected sub-graphs of a graph. The relevant graph has a set of vertices that is the union of the 
set of persons and the set of firms and edges that are pairs of persons and firms.  An edge (i,j) is 
in the graph if person i has worked for firm j.  Figure 1 illustrates the graph that identifies person 
and firm effects for a simple example. 

Firm Person
Firm Person Group 1 1
1 1 1
1 2 1 2 2
2 1 1
2 3 1 3 3
3 3 1
3 4 1 4 4
4 5 2
5 5 2 5 5

 
Figure 1. The graph on the right corresponds to the table of firm-person pairs on the left. 
The grouping algorithm finds the two connected sub-graphs shown. 

Within each group g, the group mean of y and Ng � 1 + Jg � 1 person and firm effects are 
identified, where the number of individuals in each group is Ng and the number of employers in 
each group is Jg.  Some groups contain a single employer and, possibly, only one individual.  For 
groups that contain more than one employer, every employer in the group is connected (in the 
graph-theoretic sense) to at least one other employer in the group.  After the construction of the G 
groups, exactly N + J � G effects are estimable.  See the proof in Appendix 1.6 

                                                 
5 The implemented algorithm is equivalent to the one described here but is somewhat more complicated because of 
bookkeeping that tracks which firms and persons have already been added to groups in order to make it more 
efficient.  
6 The grouping algorithm that we use identifies the �main effect� contrasts due to persons and firms in our model 
within each group. In the linear models literature our �groups� are called �connected data.�  See Searle (1987), 
chapter 5, section 3, pp. 139-145 for a discussion of connected data.  See Weeks and Williams (1964) for the general 
algorithm in analysis of variance models. 
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Normal Equations after Group Blocking 

Our identification argument can be clarified by considering the normal equations after 
reordering the person and firm effects so that those associated with each group are placed in the 
design matrix in ascending order. For simplicity, let the arbitrary equation determining the 
unidentified effect simply set that effect equal to zero, i.e, set one person or firm effect equal to 
zero in each group.  Thus, the column associated with this effect can be removed from the 
reorganized design matrix and the column associated with the group mean is suppressed (recall 
that there is no constant in X).  The resulting normal equations are: 
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 (4) 

The normal equations have a sub-matrix with block diagonal components.  This matrix is of full 
rank and the solution for the parameter vector is unique.  We do not solve equation (4) directly. 
Rather, we apply the technique discussed below to estimate the identifiable effects. 

Characteristics of the Groups 

Table 1 shows the results of applying our grouping algorithm to the French and 
Washington State data.  Notice that the largest group in both data sets contains the overwhelming 
majority of all the identifiable person and firm effects.  We could apply our estimation methods 
directly to group 1 alone without much change in the statistical results.  We cannot, however, use 
conventional methods to estimate the person and firm effects group by group because the cross-
product matrix for group 1 is essentially the same size as the full set of normal equations (3) and 
because we are also interested in the β coefficients. 
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Largest 
group

Second 
largest 
group

Average of 
all other 
groups

Total of all 
groups

French Data
Observations 4,682,420 51 4.4 5,305,108
Persons 974,985 31 1.4 1,166,305
Firms 334,637 1 1.3 521,180
Groups 1 1 141,550 141,552
Estimable effects 1,309,621 31 1,545,933

State of Washington Data
Observations 3,999,598 276 15.0 4,036,171
Persons 292,945 33 1.6 296,801
Firms 81,107 3 2.0 85,864
Groups 1 1 2,426 2,428
Estimable effects 374,051 35 380,237
Notes: The ranking of the largest and second largest groups is based on the
number of persons in the group. Sources: Authors' calculations based on
INSEE and State of Washington UI data.  

Table 1 
Results of Applying the Grouping Algorithm to Both Data Sets 

Estimation by Direct Solution of the Least Squares Problem 

Appendix 2 shows the exact algorithm used to solve equation (3), a variant of the 
conjugate gradient algorithm for which we customized the sparse representation of equation (3) 
so that very large problems with many X variables would be practical.  In practice, we apply this 
algorithm to the full set of persons, firms and characteristics shown in the design matrices of 
equations (2) and (3).  Unlike equation (4), the design matrix in equation (3) is not of full rank. 
Although the algorithm we use converges to a least squares solution, the parameter estimates are 
not unique.  The output from the algorithm provides a non-unique set of effects to which we 
subsequently apply the identification procedure.  To make the effects unique for each group, we 
eliminate one person effect by setting the group mean person effect to zero.  We also set the 
overall mean person and firm effects equal to zero. This procedure identifies the grand mean of 
the dependent variable (or the overall regression constant if X and y have not been standardized 
to mean zero) and a set of 1−−+ GJN  person and firm effects measured as deviations from the 
grand mean of the dependent variable.7  

4. Some Results Comparing AKM, AFK, and Direct Least Squares 

Summary of Data Sources 

The French data are based on a collection of employer payroll reports called the 
Déclaration annuelles des données sociales.  These consist of a 1/25th sample of the French work 
                                                 
7 The computer software is available from the authors for both the direct least squares estimation of the two-factor 
analysis of covariance and the grouping algorithm.  Computer software that implements both the random and fixed 
effects versions of these models used in breeding applications can be found in Groeneveld (1998). The specific 
algorithm we use can be found in Dongarra et al. (1991) p. 146. 
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force with the individual and employing firm identified for the years 1976-1987 (1981 and 1983 
are not available).  There are approximately 1.2 million individuals, 500,000 firms and 5.3 
million observations.  The time varying characteristics consist of labor force experience (quartic), 
time period (annual), and region of France all fully interacted with sex.  See AKM for a full 
description of the methods used to create the data and for summary statistics. 

The State of Washington data are derived from unemployment insurance wage records, 
which are also employer reports.  We use a 1/10th sample of State of Washington employment 
with the individual and the taxable employing entity identified for the years 1984-1993 
(quarterly).  There are approximately 293,000 individuals, 80,000 firms and 4.3 million 
observations used.  The time-varying characteristics consist of labor force experience (quartic) 
and time period (annual and quarter) both fully interacted with sex and race.  See AFK for a full 
description of the methods used to create the data and for summary statistics. 

Standard 
Deviation lny x β θ ψ ε

x β 
(approx.)

θ 
(approx.)

ψ 
(approx.)

ε 
(approx.)

  French Data
Log real annual full-time compensation 0.519 1.000 0.141 0.704 0.201 0.169 0.261 0.840 0.213 0.459
Time-varying characteristics 0.135 0.141 1.000 -0.068 0.023 0.000 0.731 -0.051 0.016 -0.057
Person effect 0.455 0.704 -0.068 1.000 -0.283 0.000 -0.017 0.836 0.021 0.044
Firm effect 0.285 0.201 0.023 -0.283 1.000 0.000 0.036 0.217 0.184 -0.022
Residual 0.206 0.169 0.000 0.000 0.000 1.000 -0.005 0.000 0.048 0.359
Time-varying characteristics (approximate) 0.146 0.261 0.731 -0.017 0.036 -0.005 1.000 0.001 0.019 -0.052
Person effect (approximate) 0.425 0.840 -0.051 0.836 0.217 0.000 0.001 1.000 0.097 0.016
Firm effect (approximate) 0.065 0.213 0.016 0.021 0.184 0.048 0.019 0.097 1.000 0.007
Residual (approximate) 0.238 0.459 -0.057 0.044 -0.022 0.359 -0.052 0.016 0.007 1.000
  State of Washington Data
Log real hourly compensation 0.527 1.000 0.304 0.511 0.518 0.306 0.323 0.585 0.478 0.331
Time-varying characteristics 0.380 0.304 1.000 -0.530 0.143 0.000 0.998 -0.485 0.172 0.000
Person effect 0.476 0.511 -0.530 1.000 -0.025 0.000 -0.512 0.960 0.020 0.000
Firm effect 0.231 0.518 0.143 -0.025 1.000 0.000 0.153 0.155 0.769 0.114
Residual 0.161 0.306 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.922
Time-varying characteristics (approximate) 0.361 0.323 0.998 -0.512 0.153 0.000 1.000 -0.469 0.181 0.000
Person effect (approximate) 0.470 0.585 -0.485 0.960 0.155 0.000 -0.469 1.000 0.050 0.000
Firm effect (approximate) 0.163 0.478 0.172 0.020 0.769 0.000 0.181 0.050 1.000 0.000
Residual (approximate) 0.175 0.331 0.000 0.000 0.114 0.922 0.000 0.000 0.000 1.000
Notes: The column headers use the symbols from the text while the row headers provide short definitions. All approximations are
based on AKM (1999), persons first, formulas.
Sources: Authors' calculations based on the INSEE and State of Washington UI data.

Correlations

 
Table 2 

Correlations between Exact and Approximate Components of the Log Wage Rate 
Estimated from French and State of Washington Data 

Table 2 shows the correlation structure of the estimated components of the real rate of 
compensation for France and the State of Washington.  Two kinds of results are of interest.  First, 
note that the person effects account for a much larger percentage of the variation in the French 
data than in the State of Washington data, where the two components have nearly identical 
importance.  This was the substantive conclusion of the original research and it remains correct.  
In the French data, the exact solution for the person effect is correlated 0.836 with the 
approximate solution; whereas in the Washington data this correlation is 0.960.  The 
approximation clearly worked very well in the Washington data and acceptably well in the 
French data.  On the other hand, the exact firm effect is only correlated 0.184 with the 
approximate firm effect in the French data; whereas the two effects are correlated 0.769 in the 
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Washington data.  The approximation did not work well for the French firm effects�probably 
because AKM were not able to include nearly as many control variables, Z in their notation, in 
the French model.  The approximate method worked acceptably well for firm effects in 
Washington. 

One very important substantive difference between the approximate and exact solutions 
for the person and firm effects is seen in the correlation between the two effects.  In the 
approximate French and Washington solutions, this correlation is positive but very small.  In the 
exact solution for France, the correlation between the person and firm effects is substantially 
negative, -0.283.  In the exact solution for Washington this correlation is also negative, -0.025, 
but still of quite small magnitude. 

As regards standard errors of estimated person and firm effects, we note that the formula 
for the standard errors of the coefficients of the time-varying characteristics (AKM, section 3) is 
directly applicable to the estimated β coefficients from the direct solution of equation (3).  The 
approximate sampling variance formulas for the estimated person and firm effects are given here:  

 [ ] [ ] [ ] [ ]
j

it
j

i

it
i NT

εψεθ Var�Var,
Var�Var ≈≈  

where Nj is the number of observations in firm j. 

Finally, for those with access to standard linear modeling software, we provide the 
following recommendations for constructing the conditioning variables (Z in AKM) to get an 
accurate approximation of θ  and ψ from the persons-first formulas in AKM.  Order the firms by 
size.  Create a partial design, F, using as many of the large firms as feasible in the linear 
modeling package (the results shown above for the State of Washington include the largest 1,700 
firms in the partial F).  Include in Z a complete set of industry by firm size indicators for firms 
too small to be included in the partial F.  If additional estimation capacity exists, include 
interactions of the person-average characteristics with the industry by firm size indicators in Z. 

5. Conclusions 

As the availability of linked longitudinal labor market data becomes more widespread, as 
for example in the Longitudinal Employer-Household Dynamics program at the US Census 
Bureau (Abowd, Lane and Prevost, 2000), there is a clear need to develop computable solutions 
to statistical models like equation (1).  We have provided here two contributions to this effort. 
First, the identification and estimation procedures described in this article enhance the modeling 
techniques that were used in AKM and AFK.  All of the formulas in those papers that are based 
upon estimated person and firm effects (including firm-level analyses and all of the standard 
error formulas) can be used directly with the exact solution provided in this paper.  Second, for 
those with access to standard linear modeling software, we have provided instructions for 
obtaining an accurate approximation using the persons-first formulas from AKM. 
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Appendix 1: Proof of Necessity and Sufficiency of the Grouping Conditions 

Once the persons and firms have been divided into G groups, we want to show that 
exactly GJN −+  linear functions of the group means, person and firm effects are estimable 
(identified).  The grouping conditions imply that G group means are identified.  Then, within 
each group g, at most Ng � 1 linear functions of the person effects and Jg � 1 linear functions of 
the firm effects are estimable.  Thus, the maximum number of estimable linear functions of the 
effects is: 

 ( )∑ −+−+=−+
g

gg JNGGJN 11 . 

This establishes that the grouping conditions are necessary for identification (see Searle 1987, p. 
139).  The G group means have no obvious economic interpretation.  Hence, we use these G 
estimable effects to increase the number of estimable linear functions of the person and firm 
effects in our application. 

To establish that the grouping conditions are sufficient, consider a sample with J firms 
and N workers.  As above, denote by E[yit] the projection of worker i�s wage at date t on the 
column space generated by the person and firm identifiers. For simplicity, suppress the effects of 
observable variables X and write E[yit] as: 

 [ ] ),J(E tiiity ψθ +=  

With the persons and firms connected into G groups, sufficiency requires that we prove that the 
group mean of y is estimable and that the effects iθ  and ψj, in group g are estimable up to 
constraints of the form: 

 
{ }

0
 roup

=∑
∈ ggi

iiw θ  and 
{ }

0
 roup

=∑
∈ ggj

jjw ψ  

where the wj are arbitrary weights at least one of which is nonzero.8 

The proof is by induction. Suppose that there are 2 firms and N workers.  Assume that the 
two firms are connected; so, 1=G .  Then at least one worker, denoted as individual 1, is 
employed in both firms over the sample period.  Denote the projection of this worker�s wage as 

[ ] 111 1
E ψθ +=ty  at date 1 and [ ] 211 2

E ψθ +=ty  at date 2.  There must exist weights w1 and w2, at 
least one of which is non-zero, such that the equations  

 02211 =+ ψψ ww  and [ ] [ ] 2111 21
EE ψψ −=− tt yy  

                                                 
8 In the language of linear models, sufficiency requires that we show that the group mean of y, 1−gN  linearly 

independent contrasts of the iθ , and 1−gJ  linearly independent contrasts of the jψ  are estimable.  
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can be solved exactly.  Clearly 11 =w  and 02 =w  satisfy the conditions on the weights.  Thus, 
exactly one linear function of the firm effects is estimable. 

An exactly analogous argument applies to the person effects, implying that 1−N  person 
effects are estimable.  Since 1=G , the group mean and the grand mean are identical and clearly 
estimable.  Thus, the connectedness of the single group was sufficient to identify GJN −+  = 

12 −+N  linear functions of the grand mean, person, and firm effects. 

Next, suppose there is a connected group g with Jg firms, exactly Jg-1 linear functions of 
the firm effects identified, gN  persons, and exactly 1−gN  linear functions of the person effects 
identified.  Consider the addition of one more connected firm to such a group, adding exactly one 
person who was not in the original group.  Because the new firm is connected to the existing Jg 
firms in the group there exists at least one individual, say worker 1 who works for a firm in the 
identified group, say firm Jg, at date 1 and for the supplementary firm at date 2.  Then, there must 
exist a set of 1+gJ  weights { }jw that satisfy the relations  

 011 =+ ++
≤
∑ gg

g

JJ
Jj

jj ww ψψ  and [ ] [ ] 111 21
EE +−=−

gg JJtt yy ψψ  

to identify 1+gJψ  given the hypothesized identification of 1−gJ  linear functions of the firm 

effects in the original group g.  Clearly, 01 =+gJw  in combination with the original identification 

restrictions summarized by 
gJww ,,1 K , at least one of which was non-zero, allows the estimation 

of the one additional linear function of the jψ  involving 1+gJψ . 

Once again, an exactly analogous argument applies to the person effects.  If gN  persons 
are in the original connected group g, then 1−gN  linear functions of the person effects are 
estimable by hypothesis.  Let person 1 be one of the individuals who connects firm 1+gJ  to the 
original firms in group g (as above).  Let person 1+gN  be the individual in firm 1+gJ  who 
never worked for any of the original gJ  firms in group g.  (If such an individual does not exist 
then no new person effects are introduced by the addition of firm 1+gJ  to the connected group.)  
Let 1t  be the period in which these two individuals both work for firm 1+gJ .  It suffices to 
show that there exists a set of 1+gN  weights { }iw , at least one of which is not zero, that permit 
solution of the two relations 

 011 =+ ++
≤
∑ gg

g

NN
Ni

ii ww θθ  and [ ] [ ] 11,11 11
EE ++ −=−

gg NtNt yy θθ  

that identify an additional linear function of the iθ  involving 1+gNθ , given the hypothesized 

identification of 1−gN  linear functions of the person effects in the original group g.  Clearly, the 
original 

gNww ,,1 K  and 01 =+gNw  satisfy this condition. 
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The group mean of y is clearly estimable in group g.  Thus, if 1−+ gg JN  linear 
functions of the effects were estimable in the original group g, exactly two more linear functions 
of the effects are identifiable after the addition of firm 1+gJ  and individual 1+gN  to the group.   

Finally, consider the addition of group 1+g  with 1+gN  individuals and 1+gJ  firms. By 
construction none of the individuals or firms is contained in any of the existing g  groups; so, the 
identification of the effects in the existing g  groups is unaffected by the addition of group 1+g . 
This completes the induction argument.  The grouping conditions are, thus, both necessary and 
sufficient for the identification of GJN −+  linear functions of the group means and the 
individual and firm effects.  ■ 
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Appendix 2: Direct Least Squares Algorithm 

We solve the normal equations (3) using the standard conjugate gradient (CG) algorithm 
with preconditioning as described in Dongarra et al. (1991).  To map our problem into their 
notation, which solves the equation bAx =  for x, with a positive definite symmetric coefficient 
matrix A, we define: 

 















=

FFDFXF
FDDDXD
FXDXXX

A
'''
'''
'''

, 















=

ψ
θ
β

x , and 















=

yF
yD
yX

b
'
'
'

. 

We actually solve a preconditioned problem in order to speed convergence, with a 
preconditioning matrix: 

 UU
FF

DD
XX

K '
'00
0'0
00'

=















=  and 
















=

2
1

2
1

00
00
00

f
d

u
U  

where u is the upper triangular matrix obtained by the Cholesky decomposition of XX ' , 2
1

d  is 

the diagonal square root matrix of DD' , the person counts, and 2
1

f  is the diagonal square root 
matrix of FF ' , the firm counts.  The preconditioned problem we solve is bxA ~~~ = where 

 '1'~ AUUA −= , xUx 1'~ −= , and bUb 1'~ −=  

Upon completion of the CG algorithm, we obtain the parameter estimates by transforming back: 

 xUx ~'�
�

�
�

==
















ψ
θ
β

 

The matrix A~  now has a relatively simple form, with identity matrices on the diagonal:  

 



















=
−−−−

−−−−

−−−−

IDdFfXuFf
FfDdIXuDd
FfXuDdXuI

A
2

1
2

112
1

2
1

2
112

1

2
112

11

''
''
''''

~
 

and, by symmetry, only the three components 2
11 ''

−− DdXu , 2
11 ''

−− FfXu , and 2
1

2
1

'
−−

FfDd  

need to be stored.  The matrix 2
1

2
1

'
−−

FfDd  is potentially enormous, of dimension JN × , but by 
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using a sparse representation we can store it in a linear array of size ncells, which is the number 
of distinct person-firm pairs in the data set. 

The computation time for the CG algorithm is dominated by a matrix-vector product at 
each iteration.  By representing A~  as we have, we minimize the time needed to compute that 
matrix-vector product and we also reduce the number of iterations by effective preconditioning. 

Below is the CG algorithm reproduced from Dongarra et al. page 146, modified slightly 
to leave out the preconditioning matrix since the problem is already preconditioned. 

Algorithm CG 
00 =x  (or initial guess) 

00 Axbr −=  
01 =−p  
01 =−β  

00 rw =  
( )000 'wr=ρ  

for K,3,2,1,0=i  

11 −−+= iiii pwp β  

ii Apq =  
( )iiii qp 'ρα =  

iiii pxx α+=+1  

iiii qrr α−=+1  
if 1+ix  accurate enough, then stop 
else do 

11 ++ = ii rw  
( )111 ' +++ = iii wrρ  

pii ρρβ 1+=  
end 

end 

The algorithm works by generating a set of search directions ip  and improved 
minimizers ix with corresponding residuals bAxr ii −= .  At each iteration, the quantity iα  is 
found such that for iiii pxx α+=+1  the function ( )bAxx ii −++ 11 '  is minimized.  At the minimizer 
x� , the gradient bxA −�  is zero, which is the goal.  The algorithm terminates when the desired 
level of accuracy is reached.  For our application, termination occurs when the relative error of 
the residual is small, i.e., when 710−<br . 

Originally, we implemented a variant known as least squares conjugate gradient (LSCG), 
which is sometimes more numerically stable than the ordinary or preconditioned CG algorithm 
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for least squares problems. We discovered through experimentation that the preconditioned CG 
algorithm is both numerically stable and faster than LSCG for the problem analyzed in this paper. 

Fortran 90 code implementing the CG and grouping algorithms is available from the 
authors. 




