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Key Questions

1. What dataset should be used for the conceptual model?
(Task 1a, Chapter 2)

2. Which binning approach should be used? (Task 1b,
Chapter 3)

3. How much detail should be included in the binning
approach, in terms of how many explanatory variables and
how many strata for each variable? (Task 1b, Chapter 3)

4. What averaging time is preferred as a basis for model
development? (Task 1b, Chapter 4)

5. What emission factor units should be used? (Task 1b,
Chapter 5)
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Key Questions

6. What weighting approach should be used ? (Task 1b,
Chapter 6)

7. How should variability and uncertainty be characterized?
(Task 1c, Chapter 7)

8. How should aggregate bag data be analyzed to derive
estimates of modal emission rates? (Task 1d, Chapter 8)

9. What is the potential role and feasibility of incorporating
remote sensing data into the conceptual modeling
approach? (Task 1le, Chapter 5)

10.How should the conceptual model be validated and what
are the results of validation exercises? (Task 2, Chapter 9)

NC STATE UNIVERSITY

Answers to Key Questions

* What hot stabilized Tier 1 Vehicle tailpipe emissions datasets should

be used for development of the conceptual approach?

— EPA Dynamometer;

— EPA On-Board;

— NCHRP Dynamometer Datasets
e Which binning approach should be used (VSP, driving modes)?

— VSP-based approach for Second-by-Second data

— Driving modes gives comparable results
* How much detail should be included in the binning approach, in terms

of how many explanatory variables and how many strata for each

variable?

— Three explanatory variables, including 14 VSP bins with four strata

(e.g., Engine Displacement < 3.5 liter and Odometer < 50,000 miles)
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Answers to Key Questions

What averaging time is preferred as a basis for model
development (1, 5, or 10 seconds)?
— 1 second
* What emission factor units should be used (g/sec or
ratios)?
— Grams/second
* What weighting approach should be used (time, vehicle,
or trip)?
— Time-weighted average
* How should variability and uncertainty be characterized?
— Parametric distributions were utilized to characterize variability.

— Uncertainty was characterized based upon normality
assumption in most of the cases, and upon bootstrap in others.

NC STATE UNIVERSITY

Answers to Key Questions

 How should aggregate bag data be analyzed to
derive estimates of modal emission rates?

— Modal emission rates were estimated using
Constrained Least-Squares method.

« What is the potential role and feasibility of
incorporating RSD into the conceptual modeling
approach?

— Inconsistencies between RSD and Modeling data
set

— Different activity patterns make comparison
difficult
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Answers to Key Questions

* How should the conceptual model be validated
and what are the results of validation exercises?
— The conceptual model was validated against three
different datasets:
» Calibration dataset (verification: consistency check)
» Independent EPA dynamometer, EPA On-board,
and NCHRP dynamometer data

» CARB dataset

— Comparisons were made accounting for statistical
confidence intervals on predicted and observed
emissions

NC STATE UNIVERSITY

Summary of Databases

» 17 on-board vehicles from the “shootout” analysis
» 36 vehicles tested at EPA’s lab for Mobile6
» 311 vehicles from Colorado IM program

» 74 vehicles for development of UC Riverside’s
Comprehensive Modal Emission Model

* RSD data on 200,966 Tier 1 LDGVs collected in
Missouri

» 150 vehicles tested by California Air Resources board
(CARB)
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Data Post-Processing

» Quality Assurance
Check for Tier 1 (i.e., Model Year 21996)
Check for zero or negative values

» Correction Factor
Humidity
Different HC Measurement Technigue

(i.e., FID HC = 1.652 NDIR HC)

» Estimation of new Parameters

Acceleration, VSP, Power Demand

NC STATE UNIVERSITY

Organization of the Data for Analysis

* Modeling Dataset
— 71,699 seconds from 13 on-board vehicles
— 68,482 seconds from 33 vehicles tested at EPA’s lab

— 92,000 seconds from 49 vehicles tested at UC Riverside
» Validation Dataset 2
— 19,342 seconds from 3 on-board vehicles

— 16,967 seconds from 3 vehicles tested at EPA’s lab
— 45,598 seconds from 25 vehicles tested at UC, Riverside

* Validation Dataset 3
— 228,539 seconds from 17 vehicles tested by CARB
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Organization of the Data for Analysis

* IM240 data were used for comparisons

 The NCHRP bag data were used in developing modal
emission rates from aggregate bag data

* Remote sensing data for 200,966 vehicles in Missouri
were selected randomly from approximately 2 million

NC STATE UNIVERSITY

Development of a Modal Emissions
Modeling Approach

» Two promising approaches from “Shootout”

—EPA’s VSP-based approach

—NCSU'’s driving mode-based approach

» Methodology: Supervised Hierarchical Tree-
Based Regression (HTBR)
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VSP-Based Modal Approach

 Utilized EPA’s VSP approach:
V'SP (kW/ton) = v[1.1a+9.81(atan(sin(grade))) + 0.132]+ 0.000302v*
» Exploratory analysis:

—Graphical analysis

—HTBR

NC STATE UNIVERSITY
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VSP-Based Modal Approach
Exploratory Analysis

 Parameters used in HTBR:

- VSP

— Engine Displacement
— Odometer Reading
— Net Weight

— Speed

— Acceleration

— Vehicle Model Year
— Number of Cylinders
— Temperature

— Humidity

— A/C Usage

VSP-Based Modal Approach
Exploratory Analysis

P=121847

Net Welght<4375

0001429

0.060080

0006328 0.013790

Example: HTBR Result for NO, (g/sec) Emissions
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VSP-Based Modal Approach
Mode Definitions

VSP Mode Definition
1 VSP<-2
2 -2<=VSP<0
3 0<=VSP<1
4 1<=VSP<4
5 4<=\/SP<7
6 7<=V SP<10
7 10<=VSP<13
8 13<=VSP<16
9 16<=VSP<19
10 19<=VSP<23
11 23<=VSP<28
12 28<=VSP<33
13 33<=VSP<39
14 39<=VSP

NC STATE UNIVERSITY

VSP-Based Modal Approach
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VSP-Based Modal Approach
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VSP-Based Modal Approach
Improving Driving Modes- Vehicle Characteristics
Example: HTBR Result for CO,
Mode 1%t Cut point 2nd Cut point 3rd Cut point
1 Net Weight 3,200 No of Cylinders 5 Odometer 25,000
2 Net Weight 3,200
3 No of Cylinders 5 Net Weight 3,200
4 No of Cylinders5 Net Weight 2,700 Net Weight 3,600
5 Engine Disp. 2.3 Net Weight 2,800 Net Weight 3,700
6 Engine Disp. 2.3 Engine Disp. 1.95 No of Cylinders 7
7 Net Weight 3,700 Engine Disp. 1.95 Engine Disp. 3.9
8 Net Weight 3,700 Engine Disp. 1.95 Engine Disp. 3.5
9 Engine Disp. 3.5 Odometer 46000
10 Engine Disp. 3.5 Odometer 44000
11 Engine Disp. 3.5 Odometer 46000
12 Engine Disp. 3.5 Odometer 37000
13 Engine Disp. 3.5 Odometer 23000
14 Engine Disp. 3.5 Odometer 60,000

NC STATE UNIVERSITY

VSP-Based Modal Approach
Improving Driving Modes- Engine Displacement Only
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Improving VSP-Based Modal Approach based
upon Engine Displacement and Odometer Reading

CO2 Emissions Estimat:

HC Emissions Estimate

S1: Engine Disp. <3.5 | and Odom. < 50K mi;

S3: Engine Disp. <3.5 | and Odom. > 50K mi; S4: Engine Disp. >3.5 | and Odom. > 50K mi;
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NCSU Modal Approach

» Empirical Modal Definitions

Idle: v, =0mph a, =0mph/sec

— Acceleration:

v, >0mph & >2mph/sec

Deceleration:

v, <0mph & <-2mph/sec

Cruise: Else

>a

=8 51 mph/sec
t
>a
=8 < _1mph/sec

13
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NCSU Modal Approach
(Shootout Project)
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NCSU Modal Approach
Improving Driving Modes

» Variables used:

VSP

Engine Displacement
Odometer Reading
Net Weight

Speed

Acceleration
Vehicle Model Year
Number of Cylinders
Temperature
Humidity

A/C Usage

14
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NCSU Modal Approach

Improving Driving Modes: Cruise

P<11786

Speed.mph« 43 9951 ‘ o
0.0014750

Speedmph< 36,9932

0.0014010 0.0024210
0.0004543 0.0008228

Example: HTBR Result for NCSU Cruise Mode for NO,

NCSU Modal Approach: Modal Definitions
ID Definition
1 NCSU Idle
3 NCSU Deceleration
21 NCSU Acceleration & VSP<8
22 NCSU Acceleration & 8<VSP<15
23 NCSU Acceleration & 15<V SP<25
24 NCSU Accderation & 25<V SP<33
25 NCSU Acceleration & 33<V SP<40
26 NCSU Accderation & VSP>40
41 NCSU Cruise & VSP<12 and Speed<30
42 NCSU Cruise & VSP<12 and 30<Speed<55
43 NCSU Cruise & VSP<12 and Speed>55
44 NCSU Cruise & 12<VSP<16
45 NCSU Cruise & 16<VSP<22
46 NCSU Cruise & VSP>22

15



North Carolina State University

W Time
BECO
@ Co2
BHC

SNO

|[/777777777777777)
i

1 3 21 22 23 24 25 26 41 42 43 44 45 46
1 3 21 22 23 24 25 26 41 42 43 44 45 46

0.1

0.01

0.001
0.1
0.01

November 2002

NCSU Modal Approach
Improving Driving Modes
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Improving Driving Modes- Vehicle Characteristics

NCSU Modal Approach

Example: HTBR Result for NO,

Mode 1t Cut point 2nd Cut point 3rd Cut point

1(ldle) Net weight 5 Odometer 60,158 Engine Displacement 3.45
3 (Deceleration) Odometer 8,785 Engine Displacement 3.45
21 (Acceleration) Odometer 58,057 Odometer 29,057 Engine Displacement 2.75
22 Odometer 66,163 Odometer 38,353 Odometer 45,900

23 Odometer 63,341 Odometer 22,195 Odometer 43,433

24 Odometer 58,560 Odometer 12,800 Net weight 3,486

25 Odometer 58,057 Net weight 2,813 Engine Displacement 2.3
26 Odometer 58,057 Net weight 2,550

41 (Cruise) Odometer 71,964 Engine Displacement 0.75 | Net weight 3,754

a2 Net weight 3,611 Odometer 57,695 Engine Displacement 4.45
43 Odometer 17,220 Engine Displacement 3.05

44 Odometer 17,220 Odometer 11,493 Net weight 2,531

45 Odometer 38,353 Engine Displacement 3 Odometer 83,491

46 Odometer 83,490 Odometer 61,024

NC STATE UNIVERSITY

Improving Driving Modes- Vehicle Characteristics

NCSU Modal Approach
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Comparison of NCSU and VSP Modal
Approaches
E 10000 o g 100 an e
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NC STATE UNIVERSITY

Selection of an Averaging Time for
Model Development

Objective:

» To evaluate the potential benefits of working with
data that have been averaged over time when
developing bins/modes

Approach:

* 5 and 10 consecutive averaging times were
evaluated

18
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Selection of an Averaging Time for
Model Development

Explanatory Variables:
 Mean, Maximum and Standard Deviation of
—Speed
—Acceleration
-VSP
—Power demand

Selection of an Averaging Time for
Model Development

Maximum VSP was found to be most useful explanatory variable

MAXYSP=18 84

WMAXNGPIE 61575 WMEANYSH<22 0699

00007246 00032880

0.0065770 00143700

HTBR Result for 5 seconds Averaging NO

19
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Mode Definitions Based Upon
5 Second-Averaged Data
1D Definition
1 Max VSP <0
2 0<MaxVSP<2
3 2<MaxVSP <6
4 6<MaxVSP<9
5 9<Max VSP < 12
6 12<MaxVSP <15
7 15<MaxVSP <18
8 18<MaxVSP<21
9 21<MaxVSP<25
10 25<MaxVSP <29
11 29<MaxVSP<34
12 34<Max VSP < 38
13 38<Max VSP <42
14 Max VSP > 42

NC STATE UNIVERSITY

Average Modal Emission Rates for Each Mode
Based Upon 5 Second-Averaged data
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Percent of Emissions and Time Spent for Each Mode

for 5 Second-Averaged data
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Averaged Data
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Mode Definitions Based Upon
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Average Modal Emission Rates for Each Mode
Based Upon 10 Second-Averaged data

10
0.1
3 =
£ g
K El
T o 0.01
£ E
i
2 g
S 2
4 s
& 2 0.001
o~ E
S &
8 H 3
2
1 ﬂ ﬂ ﬂ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0.0001
1 2 3 4 5 6 7 8 9 10 11 12 13 14
10 0.1
001

CO2 Emissions Estimate (g/sec)
NO Emissions Estimate (g/sec)

Ll “ll

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

NC STATE UNIVERSITY

Comparison of 1, 5, and 10 Second
Averaging Times
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Comparison of Emission Ratios Based Upon the
VSP Modal Approach: Modeling vs. RSD Data
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Comparison of Vehicle Activity for
Modeling and RSD Data

* Remote Sensing site selection typically emphasizes
positive road grades and/or positive accelerations

* RSD measurements are a snapshot at a specific
location

» Narrower ranges of speed, and higher accelerations,
on average, than for the modeling or IM240 database

» Comparisons between RSD and other types of data
should be appropriately stratified to correct for these
differences in activity

» Opportunities to improve VSP mode definitions by
stratifying with respect to speed and/or acceleration
are recommended and are described later

NC STATE UNIVERSITY

Summary of Findings

* NO,/CO, sensitive to all modes

* RSD data produces much higher average ratio estimates
for both HC and NO, for the low VSP modes
 Differences could be because of
— Fuel
— vehicle characteristics

— odometer reading (which is unobservable with RSD
technology)

— Activity (i.e. RSD data has lower speeds and higher
accelerations)

— Proportion of high emitting vehicles

25



H. Christopher Frey November 2002 North Carolina State University

NC STATE UNIVERSITY

Summary of Findings and Recommendations

* For NO,, need a similar number of modes for the
emission ratios and for mass per time units

* Need CO, (or fuel use) on a mass per time basis anyway

* RSD data could be used as an aid in recruiting vehicles
for on-board measurements

NC STATE UNIVERSITY

Comparison, Evaluation, and Selection of
Weighting Approach

» Time Weighted (1 sec data)
* Vehicle Weighted
* Trip Weighted
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Comparison of Uncertainty in VSP Bins:

Time, Trip, and Vehicle Averages
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NC STATE UNIVERSITY

Recommendation of Time Weighted Approach
over Trip and Vehicle Weighted Approaches

» Compared to time-weighted approach, the means for the
trip and vehicle weighted approaches can be either higher
or lower.

» The standard deviation increases for the trip weighted
approach, and further for the vehicle weighted approach.

» Averaging time varies for both trip and vehicle weighted
approaches; there is no standard averaging time

» Uncertainty in the average typically increases with more
averaging, because of smaller sample size

» Trip and Vehicle weighted approaches disproportionately
give emphasis to trips or vehicles with little data
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Variability and Uncertainty

 Variability: differences in values for different
elements of a population over space and/or
time

» Uncertainty: lack of knowledge regarding the
true value of a quantity

« Examples: variability in emissions from one
second to another versus uncertainty in the
average emissions over all seconds.

NC STATE UNIVERSITY

Characterization of Variability

» Empirical distributions: flexible, can represent any
shape, but require a substantial number of estimates
of cumulative probability

» Parametric distributions: compact representation of
data, may facilitate software design and data storage,
may not always provide a good fit

» Lognormal and Weibull distributions were used

» With large sample sizes, statistical goodness-of-fit
tests are very sensitive and typically reject fits that are

adequate or very good. Thus, judgment must be
used.
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Example Graph of Fitting Parametric
Distributions for Variability in VSP Bins

el c 7 VSP Bin 8, Time Average,
m / m | Odometer > 50,000 miles,
3 / Pl Engine Size < 3.5 liter
Ll ol
o | o | N
0.00 0.02 .04 0.06 0.08 000 002 004 005 008 _,_ Emplrlcal CDF
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aod ,/ aod Pollutant | NO | HC | CO, | CO
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Y= Yo e 1o iz 2L =lognormal; W = Weibull

NC STATE UNIVERSITY
Example Graph of Fitting Parametric
Distributions for Variability in VSP Bins (1V)
c | |e T VSP Bin 12, Time Average,
m f m ,.fr Odometer > 50,000 miles,
v [ v {,f Engine Size > 3.5 liter
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I I I — Distribution
u / u /_//_'_/
" / m
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Typical Parametric Distributions for VSP
Bins Based on Different Stratus

Odometer | Engine Size| NO | HC | CO, | CO
(miles) (Liter)

< 50,000 <35 w La | Wb | L¢

< 50,000 >3.5 W Le | Wi Lo

> 50,000 <35 w wh | wo| LW

> 50,000 > 3.5 W |LW| Lk |L W

L = Lognormal; W = Weibull

Exceptions:

#Weibull for Bin 11 and Bin 12; ® Lognormal for Bin 4; ¢ Weibull for Bin 5 to Bin 9; ¢ Lognormal for Bin 13 and Bin 14; ¢ Weibull for Bin 13 and Bin 14; ' Lognormal
for Bin 4, Bin 12 and Bin 14; ? Weibull for Bin 12 to Bin 14; " Lognormal for Bin 3 to Bin 5; ' Weibull for Bin 1 and Bin 4 to Bin 8, Lognormal for Bin 2 to Bin 3 and
Bin 9 to Bin 14;’ Lognormal for Bin 1 to Bin 8, Weibull for Bin 9 to Bin 14; “Weibull for Bin 1 to Bin 3; ' Lognormal for Bin 1 to Bin 4 and Bin 10 to Bin 11, Weibull
for Bin 5 to Bin 9 and Bin 12 to Bin 14

NC STATE UNIVERSITY

Quantification of Variability

» Goodness-of-fit was evaluated by comparing
relative and absolute errors in the mean and
standard deviation of the fitted distribution
versus the data

» The results suggest that the fits are good for
most of the pollutant/VSP mode/strata
combinations

* When the fit is not good, it is typically because
the data are a mixture of distributions
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Quantification of Variability

 For situations in which the fits are not good, some

alternatives include:
— Use empirical distributions
— Use mixture distributions

» Lack of good fit when characterizing distributions for

variability may affect only a few modes for a given
pollutant/strata, and therefore may not contribute
substantial error to model predictions

» Estimates of uncertainty can be based directly upon

the data instead of upon fitted distributions

Example of Mixture Distribution for
Variability
1.0 iaipiniintyl 1.0
= T >
Z 08 £
E : 0.8
£06 206
(O] i (O]
2041 —Epd 2
3 | - = Mol 8 04
Eo2| oLl €02
(@) (@)
0.0 —_— 0.0 — —
0o 2 4 6 8 10 0 2 4 6 8 10
CO (g/sec) CO (g/sec)

Mode 14 CO Emissions, < 3.5 L, < 50,000 miles
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Quantification of Uncertainty

* If the standard error of the mean (SEM) is
small enough, and/or if the sample size is
large enough, a normality assumption is a very
reasonable approximation for the uncertainty
in the mean

« Since the variability in the data is influenced by
whatever random measurement errors exist,
the estimate of uncertainty in the mean
includes both random sampling error and
measurement error

NC STATE UNIVERSITY

Quantification of Uncertainty

» Normality is a good assumption for uncertainty in the mean when:
— Sample size is large enough (e.g., n > 40)
— Relative standard error of the mean < 0.20
* These criteria were met for 213 of the 224 mode/pollutant emission
rates
» Of the 11 cases that did not meet these criteria, there were only 5
cases where normality would not be an adequate approximation
* In situations where normality is not a good approximation, the
numerical method of bootstrap simulation was used to estimate a
sampling distribution for the mean
» As part of recent work for EPA/ORD, we have developed a

software tool, AuvTool, for quantifying uncertainty in statistics,
such as the mean for a data set or for a parametric distribution
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Selected Examples of Use of Numerical
Methods to Quantify Uncertainty in VSP Bins
Bootstrap Simulation was used when:

* N<40

« SEM/mean > 0.2

Examples:
Odometer | Engine Size | Bin Pollutant Mean Relative | Relative
(miles) (Liter) (g/sec) Lower Upper

< 50,000 >3.5 12 NO, 0.0122 -38% +46%
< 50,000 >3.5 13 NO, 0.0165 -48% +73%
< 50,000 >3.5 14 NO, 0.0272 -36% +49%
< 50,000 >35 14 HC 0.0066 -33% +39%
< 50,000 >3.5 14 CcO 0.935 -36% +44%

Characterizing Uncertainty When
Normality is Not Applicable

1 n " —
0.8 - a Empiricd
— Beta
0.6

0.4 -

Cumulative Probability

0 0.005 0.01 0.015 0.02 0.025
Mean NO, Emissions (g/sec)

Parametric distributions can be fit to the results of bootstrap simulation
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Quantified Uncertainty in VSP Bins: NO,
and HC
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Quantified Uncertainty in VSP Bins: CO,
and CO
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Lowest and Highest Range of Quantified
Uncertainty in VSP Bins

Odometer | Engine
reading Size | Range | NO, (%) | HC (%) | CO,(%) | CO (%)
(miles) | (liters)

< 50,000 <35 Low -4 to +4 -4 to +4 -1to+1 -8to +8

High | -16to +16 |-24to+24| -6to+6 | -18to +18
< 50,000 >3.5 Low | -12to+12 |[-16to+16| -2to+2 | -21to+21
High | -48to+73 |-39to+39| -7to+5 | -36to+44
> 50,000 <35 Low -4 t0 +4 -5to +5 -1to+1 -8 to +8

High | -10to +10 |-13to +13| -3to+3 | -19to+19
> 50,000 >3.5 Low 9to+9 |-11to+11| -l1to+1 | -20to +20
High | -32to+32 |-36to +36 | -13 to +10 | -87 to +87

NC STATE UNIVERSITY

Uncertainty and Averaging Time

« Uncertainty is a function of averaging time
» 1 sec data - large sample size

» Based upon the 10-second database, it was
possible to stratify the data into 5- and 1-
second data to permit direct comparisons of
averaging times

« With longer averaging times, the sample size
decreases

» Typically, the range of uncertainty increases
when going from 1-sec to 10-sec averages
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Definition of Uncertainty Correction Factor
for Averaging Time

Define Correction Factor:

NO
Odometer <50,000 miles
Engine size <35

CE = SEM
SEM

t-sec
t-sec

Correction Factor
=
8
L

1-sec
y =-0.0154% + 0.3326x + 0.6829
0.00 T T T T T

0 2 4 6 8 10 12

Averaging Time (seconds)
where:
CF,.c: CoOrrection factor for t-second time period, no unit
SEM, .. Standard error of mean for t-second time period, g/sec
SEM, ..: standard error of mean for 1-second time period, g/sec

NC STATE UNIVERSITY
for Averaging Time
Odometer Engine
(miles) Size NO HC Co, CcO
(Liter)
< 10 seconds
<50.000 <35 y =-0.0154x% + y =-0.0167x% + y =-0.0186x2 + y =-0.0158x2 +
' ' 0.3326x + 0.6829 | 0.3638x + 0.653 | 0.3608x +0.6578 | 0.3441x + 0.6717
<50.000 >35 y =-0.0152x% + y =-0.0181x% + y =-0.0246x2 + y =-0.0167x% +
' ’ 0.2935x + 0.7217 | 0.3654x + 0.6527 | 0.3802x + 0.6443 | 0.3948x + 0.6219
> 50.000 <35 y =-0.0163x2 + y =-0.0157x2 + y =-0.019x2 + y =-0.017x2 +
' ’ 0.3479x + 0.6684 | 0.3607x +0.6549 | 0.3682x + 0.6508 | 0.3371x + 0.6799
> 50.000 >35 y =-0.017x2 + y =-0.0168x2 + y =-0.0266x2 + y =-0.0191x% +
' ' 0.3496x + 0.6674 | 0.3687x +0.6481 | 0.398x + 0.6286 | 0.3619x + 0.6572
> 10 seconds
< 50,000 <35 2.47 2.62 2.40 2.53
< 50,000 >35 2.14 2.50 1.99 2.90
> 50,000 <35 2.52 2.70 2.43 2.35
> 50,000 >35 2.46 2.65 1.95 2.37
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Uncertainty and Averaging Time

* The range of uncertainty in the average
emission estimate increases by a factor of
1.95 to 2.90 when comparing 1-second
averages to 10-second averages

 Implications:

—It is important to adjust for averaging time when
making predictions of uncertainty

—There is consistency in the values of these
adjustments

NC STATE UNIVERSITY

Proposed Uncertainty Bin Adjustment
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5 1061 _ . . .
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= ometer < 50, = s
& 0% 7 Enginesize<35 Z 040 Endnesize<3s
£ 094 = _,
B o2 y=-00084x+ 10634 & 0201 y = -00121x+ 10907
0.90 0.00

1 2 3 4 5 6 7 8 9 101 12 13 14 1 2 3 45 6 7 8 9 101 12 13 14
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115 1.40

= COZ P
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Lﬁi Enginesize< 35 E 1004 .
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< M < 040 - Enginesze< 35
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 45 6 7 8 9 10 11 12 13 14
Bin Bin

The uncertainty correction factor is different for different bins
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Propagation of Uncertainty

* Monte Carlo (numerical simulation) methods

— Flexible: wide variety of distributions can be assumed
for any input to the calculation

— Sensitivity analysis can be applied to identify key
sources of uncertainty

— Potentially but not necessarily computationally
intensive (depends on model run time)

» Analytical methods and approximations
— Okay if normality assumption is reasonable
— Less flexible
— Simpler to compute

Example: Estimating Uncertainty in Total
Emissions for the IM240 Cycle

VSP Mode Seconds
Number in Mode

1 41

2 24

3 16

4 37

5 47

6 19

7 29

8 17

9 4

10 3

11 3

12 0

13 0

14 0
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Total Emissions for a Driving Cycle

TE =

41xEF
16xEF
47xEF
29%xEF
4xEF

model

mode3

modeb

mode7

mode9

3>(EFmodell

+ 24xEF
+ 37xEF
+ 19xEF
+ 17xEF
+ 3><EI:modelo +

mode2

mode4

mode6

+ + + +

mode8

Each Emission Factor is Assigned an Uncertainty Distribution

NC STATE UNIVERSITY

Inputs for Uncertainty Analysis Calculation

Mean Bin
Emission Std. Dev. | Correction | Adjustment

Mode | Distribution Rate (g/sec) | (g/sec) Factor Factor

1 Normal 0.00090 2.0x10° 2.47 1.03

2 Normal 0.00063 2.0x10° 2.47 1.03

3 Normal 0.00035 9.3x10¢ 2.47 1.03

4 Normal 0.0012 2.5x10° 2.47 1.03

5 Normal 0.0017 3.6x10° 2.47 1.03

6 Normal 0.0024 5.1x10° 2.47 1.03

7 Normal 0.0031 6.9x10° 2.47 1.02

8 Normal 0.0042 9.4x10° 2.47 1.01

9 Normal 0.0051 1.4x104 1.77 n/a

10 Normal 0.0059 1.7x104 1.54 n/a

11 Normal 0.0076 3.0x10* 1.54 n/a
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Example Results: Monte Carlo Simulation

Forecast: NO, IM240
10,000 Trials Cumulative Chart 56 Outliers
1.000 A - 10000
750
= -
— -
= o
L8 500 E=|
[} =
=] o
=} =
o 20 // 2
3 (]
043 0.44 045 0.46 0.48
Certainty is 95.00% from 0.43 to 0.47 gram

Mean Total Emissions: 0.45g NO,
Absolute Uncertainty:  +0.02 g
Relative Uncertainty: +4.2%

Example Results: Analytical Calculation

U e z\/zn:(ui X\Ni)2

« Where U, = total uncertainty, U; =
uncertainty for mode i, and W, = fraction of
time in mode i.

» Results: +0.018g or +4%
» Similar to results from Monte Carlo simulation
* No uncertainty in weights
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Summary of Uncertainty Ranges in Total
Emissions for Selected Driving Cycles

Numbers in table represent + percent ranges in mean total emissions

NO, HC Cco, co
= | 2 = | = - | = = | =
SIS IZIR2I0IGIZEIRINIGSIZEIRIOG
Vehicl O e T e B BT B I e B B I 20 T e I O I B N e B B O
enicle ~ |'Ir| o o ~ |'II'| o o ~ |'I|'| o o ~ I'II'I o o
Category | © | T @ | o | o © | o | q © o |5 ©
<50000mi | 4 | 4| 4|7 | 6|6 |6 |13|08|09(08(12|11 10|11 |16
< 3.5 liters
<50000mi | 12 | 12 | 11 | 27 |25 |23 |23 |24 |16|1.7[15(18 |24 |26 | 24 | 28

> 3.5 liters

>50000mi | 4 | 4 | 4 | 5

< 3.5 liters

(o))

7 6 6 |0.9

=
o

10|10 8 8 8 |15

>50000mi | 11 | 10 | 10 |17 | 26 | 31 |27 | 26 {1316 |14 (13|25 |30 |24 |26
> 3.5 liters

Uncertainty tends to be greater for:
- smaller sample sizes
-CO and HC

Recommendations: Quantification of

Variability

» Parametric distributions are feasible and preferred over empirical
distributions because they are a more compact summary of
variability.

* The Method of Matching Moments is preferred

— The mean and standard deviation of the fitted distribution will be
the same as that of the data

— distributions fitted using MoMM appear to provide a better fit to the
upper tail of the distribution, compared to MLE.

» Single component distributions such as lognormal and Weibull
distributions will typically be adequately for most modes.

» Two component lognormal mixture distributions are recommended
when single component distributions are not adequate.

» Uncertainty analysis can be based directly upon the data and need
not be based upon fitted distributions
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Recommendations: Quantification of
Uncertainty in Emission Factors

» Uncertainty estimates for mean emissions should be based directly
upon the data; however, if fits are good, uncertainty analysis can
be based either upon the data or upon the fitted distributions for
variability;

* A normality assumption will typically be adequate for most modal
emission rates;

* The assumption of normality should be tested;

» For cases in which a normality assumption is not valid, bootstrap
simulation can be used, and a parametric distribution can be fit to
the distribution of the means;

* The range of uncertainty in modal emission rates must be adjusted
for different averaging times using an approach such as the
correction factor and bin adjustment factor approach demonstrated
here.

NC STATE UNIVERSITY

Recommendations: Quantification of
Uncertainty in Total Emissions
» A simple analytical approach for estimating uncertainty in
total emissions is adequate if:

— uncertainty in modal emission estimates are
approximately normal

— no need to include uncertainty in vehicle activity in the
estimate;
» The analytical method could be used as a quality
assurance check on Monte Carlo simulation results;

* Monte Carlo simulation-based methods are recommended
if the objective is to include uncertainty in activity;

* Monte Carlo can accommodate situations for normality
assumptions are not be valid.

* The range of uncertainty is sufficiently large in many cases
that a quantitative uncertainty analysis is well-justified.
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Verification and Validation of the
Conceptual Model

» Case 1. Consistency Check
» Case 2: Comparison to Withheld Data
» Case 3: Comparison to CARB Data

NC STATE UNIVERSITY

Case 1: Consistency Check
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Case 2: Comparison to Withheld Data

» Comparisons for Driving Cycles and On-Board
Data for sufficiently large sample sizes:

—FTP
—-US06
—On-Board

« Different vehicles than those in the modeling
database

Case 2: Validation Dataset

Data Source Cycle NO. of Vehicles | No. of Trips Total Seconds
EPA Dynamometer | ART-AB 2 2 1,471
EPA Dynamometer | ART-CD 2 2 1,255
EPA Dynamometer | ART-EF 3 3 1,507
EPA Dynamometer | FWY-AC 2 2 1,029
EPA Dynamometer | FWY-D 2 2 809
EPA Dynamometer | FWY-E 2 2 909
EPA Dynamometer | FWY-F 3 3 1,321
EPA Dynamometer | FWY-G 2 2 777
EPA Dynamometer | FWY-HI 3 3 1,825
EPA Dynamometer | LOCAL 2 2 1,047
EPA Dynamometer | NONFWY 2 2 2,693
EPA Dynamometer | NYCC 3 3 1,795
EPA Dynamometer | Ramp 2 2 529
NCHRP FTP75 24 24 32,950
NCHRP Uso06 21 21 12,648
On-Board Data On-Board 3 18 19,243
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Case 2: Comparison of Predicted and

Observed Emissions

100000 1000

O Observed O Observed
10000 { [ Predicted M Predicted
100
“ m |—’I “
1
01
FTP75

FTP75 uso6 On-Board Uso06 On-Board

. 15
8 8
Average CO Emissions (g)

Average CO2 Emissions (g)
5

100 100
O Observed O Observed
W Predicted W Predicted

ﬂ 1 “m ﬂﬂ

FTP75 uso06 On-Board FTP75 uso06 On-Board

Average HC Emissions (g)
Average NOx Emissions (g)

Case 2: Findings

» Good concordance in terms of the ordinal ranking of which cycles have
the highest and lowest emissions.

» The predictions for CO, HC, and NO, tend to be better when the
prediction for CO, is also reasonably close.

» A comparison of CO, predicted and observed values may be a good
diagnostic tool for identifying systematic differences between data sets.

» Validation Data Set 2 is more heavily weighted toward vehicles with
smaller engines compared to the calibration data set.

» The systematic differences observed here for CO, suggest that additional
refinement may be warranted for the engine displacement criteria when
binning data

* It may have been better to withhold trips for the same vehicles, rather
than validate with different vehicles.
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Case 3: Validation Dataset
Data Source Cycle NO. of Vehicles No. of Trips Total Seconds
ARB data UCC17 17 17 7,174
ARB data UCC20 17 17 15,048
ARB data UCCc25 17 17 15,372
ARB data UCC30 17 17 17,712
ARB data UCC35 17 17 24,318
ARB data UCC40 17 17 24,012
ARB data UCC45 17 17 23,472
ARB data OLD UCC50 15 15 34,663
ARB data MUC 4 20 46,760
ARB data UCC50 2 4 8,768
ARB data UCC60 2 4 11,240

NC STATE UNIVERSITY

Case 3: Comparison of Predicted and

Observed Emissions

O Observed
B Predicted

coz Emissio

ueelr - uec2o

UCC28 UCC30 UCC35  UCCAD

OObserved
B Predicted

uccas Ol LCCso ucelr - uec2o
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W Predicted

ucelr - uec2o

Ucc28 UCC30  UCC3s  UCCAO

ucc28 Ucc3  UCe3s

UCcC40  UCCd5  Old UCCS0

O 0bserved
B Predicted

NO Emissiol

o1
UCC45  Old UCCS0 el ueezo

ucc28  Ucc3  Ueess

UCcc40  UCCd5  Old UCCs0
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Case 3. Findings

There was excellent agreement between the
predicted and observed CO,, CO, and NO,
emissions.
There appears to be excellent concordance between
the predicted and observed HC emissions.
Possibility of TLEVSs rather than Tier 1 was
considered; however, suspected TLEVs had emission
rates similar to known Tier 1 vehicles

HC emissions may differ because of fuel,
measurement method, or reporting (e.g., THC vs.
NMHC)

NC STATE UNIVERSITY

More
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Potential Refinements to the VSP-Based Approach:
Speed Categories
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Summary of Key Findings from Validation
Case Studies

* The modal modeling approach is internally consistent.

* The model generally performs well for cycles or
conditions that are represented by a large portion of
the data in the modeling data set.

* The model is highly responsive, predicting a wide
range of variability in average emissions.

» A promising approach for refining the modal modeling
method is to consider speed as an additional
explanatory variable.

« Comparisons of CO, emissions appear to be a good
method for determining the comparability of two
datasets.

48



H. Christopher Frey November 2002 North Carolina State University

NC STATE UNIVERSITY

Findings/Recommendations

* Modal binning approach, based upon VSP, engine displacement and
odometer reading

» Speed should be considered as an additional binning criterion

* Road grade is accounted for in VSP

» Approach works for all four pollutants studied

» Supervised hierarchical tree-based regression is a useful modal
development technique

» One second average data is useful for predicting total emissions

» Averaging time should be considered in uncertainty analysis

» Time-weighted approach is flexible and simpler; could structure model
and data to enable vehicle or trip weighted calculations

» Mass per time emission factors needed for CO,. Comparable number of
modes needed for NO, as for CO.,.

» For consistency, mass per time emission factors should be used for all
pollutants.
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Findings/Recommendations

» Parametric representations of variability are feasible and recommended

* Uncertainty in average modal emission rates can be treated as normal in
most cases

» Bootstrap methods can be used to estimate uncertainty when normality is
not valid

* Monte Carlo simulation offers a more flexible framework for incorporating
uncertainty in activity and emissions inputs; analytical approach works
well if only uncertainty in emissions rates are included

» The range of uncertainty in total emissions is sufficiently large to justify
the need for uncertainty analysis

» Itis important to have a representative data set, including high emitters.
IM240 data may be critical for this purpose.

* Remote sensing data have a different activity pattern than other data
considered, thus confounding any comparisons

» Statistical significance must be considered when making comparisons,
such as for model development and validation.
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