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ObjectivesObjectives

Task 1a: Development of
Analysis Data Set

Task 1b: Development
of Binning Methodology

Task 1c: Character-
ization of Uncertainty

Task 1d: Applicability to
Bag Data

Task 1e: Applicability to
RSD Data

VSP Approach
NCSU Modal Approach
Averaging (1, 5, 10 seconds)
Units (g/sec or ratios)
Weighting (time, vehicle, trip)

Task 2: Validation

Task 3: Recommend
Methodology

Key QuestionsKey Questions

1. What dataset should be used for the conceptual model?
(Task 1a, Chapter 2)

2. Which binning approach should be used? (Task 1b,
Chapter 3)

3. How much detail should be included in the binning
approach, in terms of how many explanatory variables and
how many strata for each variable? (Task 1b, Chapter 3)

4. What averaging time is preferred as a basis for model
development? (Task 1b, Chapter 4)

5. What emission factor units should be used? (Task 1b,
Chapter 5)
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Key QuestionsKey Questions

6. What weighting approach should be used ? (Task 1b,
Chapter 6)

7. How should variability and uncertainty be characterized?
(Task 1c, Chapter 7)

8. How should aggregate bag data be analyzed to derive
estimates of modal emission rates? (Task 1d, Chapter 8)

9. What is the potential role and feasibility of incorporating
remote sensing data into the conceptual modeling
approach? (Task 1e, Chapter 5)

10.How should the conceptual model be validated and what
are the results of validation exercises? (Task 2, Chapter 9)

Answers to Key QuestionsAnswers to Key Questions

• What hot stabilized Tier 1 Vehicle tailpipe emissions datasets should
be used for development of the conceptual approach?

– EPA Dynamometer;

– EPA On-Board;

– NCHRP Dynamometer Datasets

• Which binning approach should be used (VSP, driving modes)?
– VSP-based approach for Second-by-Second data
– Driving modes gives comparable results

• How much detail should be included in the binning approach, in terms
of how many explanatory variables and how many strata for each
variable?
– Three explanatory variables, including 14 VSP bins with four strata

(e.g., Engine Displacement < 3.5 liter and Odometer < 50,000 miles)
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Answers to Key QuestionsAnswers to Key Questions

• What averaging time is preferred as a basis for model
development (1, 5, or 10 seconds)?
– 1 second

• What emission factor units should be used (g/sec or
ratios)?
– Grams/second

• What weighting approach should be used (time, vehicle,
or trip)?
– Time-weighted average

• How should variability and uncertainty be characterized?
– Parametric distributions were utilized to characterize variability.
– Uncertainty was characterized based upon normality

assumption in most of the cases, and upon bootstrap in others.

Answers to Key QuestionsAnswers to Key Questions

• How should aggregate bag data be analyzed to
derive estimates of modal emission rates?
– Modal emission rates were estimated using

Constrained Least-Squares method.
• What is the potential role and feasibility of

incorporating RSD into the conceptual modeling
approach?
– Inconsistencies between RSD and Modeling data

set
– Different activity patterns make comparison

difficult



H. Christopher Frey November 2002 North Carolina State University

5

Answers to Key QuestionsAnswers to Key Questions

• How should the conceptual model be validated
and what are the results of validation exercises?
– The conceptual model was validated against three

different datasets:
» Calibration dataset (verification: consistency check)
» Independent EPA dynamometer, EPA On-board,

and NCHRP dynamometer data
» CARB dataset

– Comparisons were made accounting for statistical
confidence intervals on predicted and observed
emissions

Summary of DatabasesSummary of Databases

• 17 on-board vehicles from the “shootout” analysis

• 36 vehicles tested at EPA’s lab for Mobile6

• 311 vehicles from Colorado IM program

• 74 vehicles for development of UC Riverside’s
Comprehensive Modal Emission Model

• RSD data on 200,966 Tier 1 LDGVs collected in

Missouri

• 150 vehicles tested by California Air Resources board
(CARB)
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Data Post-Processing

• Quality Assurance
Check for Tier 1 (i.e., Model Year ≥1996)
Check for zero or negative values

• Correction Factor
Humidity
Different HC Measurement Technique

(i.e., FID HC = 1.652 NDIR HC)

• Estimation of new Parameters
Acceleration, VSP, Power Demand

Organization of the Data for Analysis

• Modeling Dataset
– 71,699 seconds from 13 on-board vehicles
– 68,482 seconds from 33 vehicles tested at EPA’s lab

– 92,000 seconds from 49 vehicles tested at UC Riverside

• Validation Dataset 2
– 19,342 seconds from 3 on-board vehicles
– 16,967 seconds from 3 vehicles tested at EPA’s lab
– 45,598 seconds from 25 vehicles tested at UC, Riverside

• Validation Dataset 3
– 228,539 seconds from 17 vehicles tested by CARB
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Organization of the Data for Analysis

• IM240 data were used for comparisons

• The NCHRP bag data were used in developing modal
emission rates from aggregate bag data

• Remote sensing data for 200,966 vehicles in Missouri
were selected randomly from approximately 2 million

Development of a Modal EmissionsDevelopment of a Modal Emissions
Modeling ApproachModeling Approach

• Two promising approaches from “Shootout”

–EPA’s VSP-based approach

–NCSU’s driving mode-based approach

• Methodology: Supervised Hierarchical Tree-
Based Regression (HTBR)
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VSPVSP--Based Modal ApproachBased Modal Approach

• Utilized EPA’s VSP approach:

• Exploratory analysis:

–Graphical analysis

–HTBR

( )( )( )[ ] 3v000302.0132.0gradesintana81.9a1.1v(kW/ton)VSP +++=

VSPVSP--Based Modal ApproachBased Modal Approach
Exploratory AnalysisExploratory Analysis
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VSPVSP--Based Modal ApproachBased Modal Approach
Exploratory AnalysisExploratory Analysis

• Parameters used in HTBR:
– VSP
– Engine Displacement
– Odometer Reading

– Net Weight
– Speed
– Acceleration

– Vehicle Model Year
– Number of Cylinders
– Temperature

– Humidity
– A/C Usage

VSPVSP--Based Modal ApproachBased Modal Approach
Exploratory AnalysisExploratory Analysis

Example: HTBR Result for NOx (g/sec) Emissions
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VSPVSP--Based Modal ApproachBased Modal Approach
Mode DefinitionsMode Definitions

39<=VSP14

33<=VSP<3913

28<=VSP<3312
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16<=VSP<199

13<=VSP<168

10<=VSP<137

7<=VSP<106

4<=VSP<75

1<=VSP<44

0<=VSP<13

-2<=VSP<02

VSP<-21

DefinitionVSP Mode

VSPVSP--Based Modal ApproachBased Modal Approach
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VSPVSP--Based Modal ApproachBased Modal Approach

Percent of Emissions and Time Spent in VSP Modes

Percent of Emissions and Time Spent in VSP Modes
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VSPVSP--Based Modal ApproachBased Modal Approach
Improving Driving ModesImproving Driving Modes-- Vehicle CharacteristicsVehicle Characteristics

Odometer 60,000Engine Disp. 3.514

Odometer 23000Engine Disp. 3.513

Odometer 37000Engine Disp. 3.512

Odometer 46000Engine Disp. 3.511

Odometer 44000Engine Disp. 3.510

Odometer 46000Engine Disp. 3.59

Engine Disp. 3.5Engine Disp. 1.95Net Weight 3,7008

Engine Disp. 3.9Engine Disp. 1.95Net Weight 3,7007

No of Cylinders 7Engine Disp. 1.95Engine Disp. 2.36

Net Weight 3,700Net Weight 2,800Engine Disp. 2.35

Net Weight 3,600Net Weight 2,700No of Cylinders 54

Net Weight 3,200No of Cylinders 53

Net Weight 3,2002

Odometer 25,000No of Cylinders 5Net Weight 3,2001

3rd Cut point2nd Cut point1st Cut pointMode

Example: HTBR Result for CO2

VSPVSP--Based Modal ApproachBased Modal Approach
Improving Driving ModesImproving Driving Modes-- Engine Displacement OnlyEngine Displacement Only
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Improving VSPImproving VSP--Based Modal Approach basedBased Modal Approach based
upon Engine Displacement and Odometer Readingupon Engine Displacement and Odometer Reading
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• Empirical Modal Definitions
– Idle:

– Acceleration:

– Deceleration:
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NCSU Modal ApproachNCSU Modal Approach
(Shootout Project)(Shootout Project)
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NCSU Modal ApproachNCSU Modal Approach
Improving Driving ModesImproving Driving Modes

• Variables used:
– VSP
– Engine Displacement
– Odometer Reading

– Net Weight
– Speed
– Acceleration

– Vehicle Model Year
– Number of Cylinders
– Temperature

– Humidity
– A/C Usage
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NCSU Modal ApproachNCSU Modal Approach
Improving Driving Modes: CruiseImproving Driving Modes: Cruise

Example: HTBR Result for NCSU Cruise Mode for NOx

NCSU Modal Approach: Modal DefinitionsNCSU Modal Approach: Modal Definitions

NCSU Cruise & VSP>2246

NCSU Cruise & 16<VSP≤2245

NCSU Cruise & 12<VSP≤1644

NCSU Cruise & VSP≤12 and Speed>5543

NCSU Cruise & VSP≤12 and 30<Speed≤5542

NCSU Cruise & VSP≤12 and Speed≤3041

NCSU Acceleration & VSP≥4026

NCSU Acceleration & 33≤VSP<4025

NCSU Acceleration & 25≤VSP<3324

NCSU Acceleration & 15≤VSP<2523

NCSU Acceleration & 8≤VSP<1522

NCSU Acceleration & VSP<821

NCSU Deceleration3

NCSU Idle1

DefinitionID
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NCSU Modal ApproachNCSU Modal Approach
Improving Driving ModesImproving Driving Modes
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NCSU Modal ApproachNCSU Modal Approach
Improving Driving ModesImproving Driving Modes
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NCSU Modal ApproachNCSU Modal Approach
Improving Driving ModesImproving Driving Modes-- Vehicle CharacteristicsVehicle Characteristics

Odometer 61,024Odometer 83,49046

Odometer 83,491Engine Displacement 3Odometer 38,35345

Net weight 2,531Odometer 11,493Odometer 17,22044

Engine Displacement 3.05Odometer 17,22043

Engine Displacement 4.45Odometer 57,695Net weight 3,61142

Net weight 3,754Engine Displacement 0.75Odometer 71,96441 (Cruise)

Net weight 2,550Odometer 58,05726

Engine Displacement 2.3Net weight 2,813Odometer 58,05725

Net weight 3,486Odometer 12,800Odometer 58,56024

Odometer 43,433Odometer 22,195Odometer 63,34123

Odometer 45,900Odometer 38,353Odometer 66,16322

Engine Displacement 2.75Odometer 29,057Odometer 58,05721 (Acceleration)

Engine Displacement 3.45Odometer 8,7853 (Deceleration)

Engine Displacement 3.45Odometer 60,158Net weight 51 (Idle)

3rd Cut point2nd Cut point1st Cut pointMode

Example: HTBR Result for NOx
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NCSU Modal ApproachNCSU Modal Approach
Improving Driving ModesImproving Driving Modes-- Vehicle CharacteristicsVehicle Characteristics

Example: Average Rates for Improved Modes for CO

Mode 1: Idle
Mode 2: Deceleration
Modes 21-26: Acceleration
Modes 41-46: Cruise
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Comparison of NCSU and VSP ModalComparison of NCSU and VSP Modal
ApproachesApproaches
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Selection of an Averaging Time for
Model Development

Objective:

• To evaluate the potential benefits of working with

data that have been averaged over time when

developing bins/modes

Approach:

• 5 and 10 consecutive averaging times were

evaluated
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Selection of an Averaging Time for
Model Development

Explanatory Variables:
• Mean, Maximum and Standard Deviation of

–Speed
–Acceleration
–VSP
–Power demand

Selection of an Averaging Time for
Model Development

HTBR Result for 5 seconds Averaging NO

Maximum VSP was found to be most useful explanatory variable
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Mode Definitions Based Upon
5 Second-Averaged Data

Max VSP ≥ 4214
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12 ≤Max VSP < 156
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2 ≤ Max VSP < 63

0 ≤ Max VSP < 22

Max VSP <01

DefinitionID

Average Modal Emission Rates for Each Mode
Based Upon 5 Second-Averaged data
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Percent of Emissions and Time Spent for Each Mode
for 5 Second-Averaged data
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Average Modal Emission Rates for Each Mode
Based Upon 10 Second-Averaged data
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Comparison of 1, 5, and 10 Second
Averaging Times
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Comparison of Emission Ratios Based Upon the
VSP Modal Approach: Modeling vs. RSD Data
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Comparison of IM240 and RSD Data
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Comparison of Vehicle Activity for
Modeling and RSD Data

• Remote Sensing site selection typically emphasizes
positive road grades and/or positive accelerations

• RSD measurements are a snapshot at a specific
location

• Narrower ranges of speed, and higher accelerations,
on average, than for the modeling or IM240 database

• Comparisons between RSD and other types of data
should be appropriately stratified to correct for these
differences in activity

• Opportunities to improve VSP mode definitions by
stratifying with respect to speed and/or acceleration
are recommended and are described later

Summary of Findings

• NOx/CO2 sensitive to all modes
• RSD data produces much higher average ratio estimates

for both HC and NOx for the low VSP modes
• Differences could be because of

– Fuel
– vehicle characteristics
– odometer reading (which is unobservable with RSD

technology)
– Activity (i.e. RSD data has lower speeds and higher

accelerations)
– Proportion of high emitting vehicles
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Summary of Findings and Recommendations

• For NOx, need a similar number of modes for the
emission ratios and for mass per time units

• Need CO2 (or fuel use) on a mass per time basis anyway

• RSD data could be used as an aid in recruiting vehicles
for on-board measurements

Comparison, Evaluation, and Selection of
Weighting Approach

• Time Weighted (1 sec data)
• Vehicle Weighted
• Trip Weighted
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Comparison of Uncertainty in VSP Bins:
Time, Trip, and Vehicle Averages
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Recommendation of Time Weighted Approach
over Trip and Vehicle Weighted Approaches

• Compared to time-weighted approach, the means for the
trip and vehicle weighted approaches can be either higher
or lower.

• The standard deviation increases for the trip weighted
approach, and further for the vehicle weighted approach.

• Averaging time varies for both trip and vehicle weighted
approaches; there is no standard averaging time

• Uncertainty in the average typically increases with more
averaging, because of smaller sample size

• Trip and Vehicle weighted approaches disproportionately
give emphasis to trips or vehicles with little data
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Variability and Uncertainty

• Variability: differences in values for different
elements of a population over space and/or
time

• Uncertainty: lack of knowledge regarding the
true value of a quantity

• Examples: variability in emissions from one
second to another versus uncertainty in the
average emissions over all seconds.

Characterization of Variability

• Empirical distributions: flexible, can represent any
shape, but require a substantial number of estimates
of cumulative probability

• Parametric distributions: compact representation of
data, may facilitate software design and data storage,
may not always provide a good fit

• Lognormal and Weibull distributions were used
• With large sample sizes, statistical goodness-of-fit

tests are very sensitive and typically reject fits that are
adequate or very good. Thus, judgment must be
used.
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Typical Parametric Distributions for VSP
Bins Based on Different Stratus

L, WlLkL, WjW> 3.5> 50,000
L, WiWWhW< 3.5> 50,000

LgWfLeWd> 3.5< 50,000

LcWbLaW< 3.5< 50,000

COCO2HCNOEngine Size
(Liter)

Odometer
(miles)

L = Lognormal; W = Weibull
Exceptions:
a Weibull for Bin 11 and Bin 12; b Lognormal for Bin 4; c Weibull for Bin 5 to Bin 9; d Lognormal for Bin 13 and Bin 14; e Weibull for Bin 13 and Bin 14; f Lognormal
for Bin 4, Bin 12 and Bin 14; g Weibull for Bin 12 to Bin 14; h Lognormal for Bin 3 to Bin 5; i Weibull for Bin 1 and Bin 4 to Bin 8, Lognormal for Bin 2 to Bin 3 and
Bin 9 to Bin 14; j Lognormal for Bin 1 to Bin 8, Weibull for Bin 9 to Bin 14; k Weibull for Bin 1 to Bin 3; l Lognormal for Bin 1 to Bin 4 and Bin 10 to Bin 11, Weibull
for Bin 5 to Bin 9 and Bin 12 to Bin 14

Quantification of Variability

• Goodness-of-fit was evaluated by comparing
relative and absolute errors in the mean and
standard deviation of the fitted distribution
versus the data

• The results suggest that the fits are good for
most of the pollutant/VSP mode/strata
combinations

• When the fit is not good, it is typically because
the data are a mixture of distributions
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Quantification of Variability

• For situations in which the fits are not good, some
alternatives include:

– Use empirical distributions
– Use mixture distributions

• Lack of good fit when characterizing distributions for
variability may affect only a few modes for a given
pollutant/strata, and therefore may not contribute
substantial error to model predictions

• Estimates of uncertainty can be based directly upon
the data instead of upon fitted distributions

Example of Mixture Distribution for
Variability
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Quantification of Uncertainty

• If the standard error of the mean (SEM) is
small enough, and/or if the sample size is
large enough, a normality assumption is a very
reasonable approximation for the uncertainty
in the mean

• Since the variability in the data is influenced by
whatever random measurement errors exist,
the estimate of uncertainty in the mean
includes both random sampling error and
measurement error

Quantification of Uncertainty

• Normality is a good assumption for uncertainty in the mean when:
– Sample size is large enough (e.g., n > 40)
– Relative standard error of the mean < 0.20

• These criteria were met for 213 of the 224 mode/pollutant emission
rates

• Of the 11 cases that did not meet these criteria, there were only 5
cases where normality would not be an adequate approximation

• In situations where normality is not a good approximation, the
numerical method of bootstrap simulation was used to estimate a
sampling distribution for the mean

• As part of recent work for EPA/ORD, we have developed a
software tool, AuvTool, for quantifying uncertainty in statistics,
such as the mean for a data set or for a parametric distribution
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Selected Examples of Use of Numerical
Methods to Quantify Uncertainty in VSP Bins

• n < 40
• SEM/mean > 0.2

Bootstrap Simulation was used when:

+39%-33%0.0066HC14> 3.5< 50,000

+44%-36%0.935CO14> 3.5< 50,000

+49%-36%0.0272NOx14> 3.5< 50,000

+73%-48%0.0165NOx13> 3.5< 50,000

+46%-38%0.0122NOx12> 3.5< 50,000

Relative
Upper

Relative
Lower

Mean
(g/sec)

PollutantBinEngine Size
(Liter)

Odometer
(miles)

Examples:

Characterizing Uncertainty When
Normality is Not Applicable
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Quantified Uncertainty in VSP Bins: NOx
and HC
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Lowest and Highest Range of Quantified
Uncertainty in VSP Bins

-87 to +87-13 to +10-36 to +36-32 to +32High

-20 to +20-1 to +1-11 to +11-9 to +9Low> 3.5> 50,000

-19 to +19-3 to +3-13 to +13-10 to +10High

-8 to +8-1 to +1-5 to +5-4 to +4Low< 3.5> 50,000

-36 to +44-7 to +5-39 to +39-48 to +73High

-21 to +21-2 to +2-16 to +16-12 to +12Low> 3.5< 50,000

-18 to +18-6 to +6-24 to +24-16 to +16High

-8 to +8-1 to +1-4 to +4-4 to +4Low< 3.5< 50,000

CO (%)CO2 (%)HC (%)NOx (%)Range

Engine
Size

(liters)

Odometer

reading
(miles)

Uncertainty and Averaging Time

• Uncertainty is a function of averaging time
• 1 sec data - large sample size
• Based upon the 10-second database, it was

possible to stratify the data into 5- and 1-
second data to permit direct comparisons of
averaging times

• With longer averaging times, the sample size
decreases

• Typically, the range of uncertainty increases
when going from 1-sec to 10-sec averages
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Definition of Uncertainty Correction Factor
for Averaging Time

Define Correction Factor:

sec1

sec
sec

−

−
− =

SEM
SEM

CF t
t

where:
CFt-sec: correction factor for t-second time period, no unit
SEMt-sec: standard error of mean for t-second time period, g/sec
SEM1-sec: standard error of mean for 1-second time period, g/sec

y = -0.0154x2 + 0.3326x + 0.6829
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Proposed Uncertainty Correction Factor
for Averaging Time

< 10 seconds

y = -0.0191x2 +
0.3619x + 0.6572

y = -0.0266x2 +
0.398x + 0.6286

y = -0.0168x2 +
0.3687x + 0.6481

y = -0.017x2 +
0.3496x + 0.6674

> 3.5> 50,000

> 10 seconds

2.532.402.622.47< 3.5< 50,000

2.901.992.502.14> 3.5< 50,000

2.352.432.702.52< 3.5> 50,000

COCO2HCNO
Engine

Size
(Liter)

Odometer
(miles)

2.371.952.652.46> 3.5> 50,000

y = -0.017x2 +
0.3371x + 0.6799

y = -0.019x2 +
0.3682x + 0.6508

y = -0.0157x2 +
0.3607x + 0.6549

y = -0.0163x2 +
0.3479x + 0.6684

< 3.5> 50,000

y = -0.0167x2 +
0.3948x + 0.6219

y = -0.0246x2 +
0.3802x + 0.6443

y = -0.0181x2 +
0.3654x + 0.6527

y = -0.0152x2 +
0.2935x + 0.7217

> 3.5< 50,000

y = -0.0158x2 +
0.3441x + 0.6717

y = -0.0186x2 +
0.3608x + 0.6578

y = -0.0167x2 +
0.3638x + 0.653

y = -0.0154x2 +
0.3326x + 0.6829

< 3.5< 50,000



H. Christopher Frey November 2002 North Carolina State University

37

Uncertainty and Averaging Time

• The range of uncertainty in the average
emission estimate increases by a factor of
1.95 to 2.90 when comparing 1-second
averages to 10-second averages

• Implications:
–It is important to adjust for averaging time when

making predictions of uncertainty
–There is consistency in the values of these

adjustments

Proposed Uncertainty Bin Adjustment
Factor

y = -0.0084x+ 1.0634
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The uncertainty correction factor is different for different bins
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Propagation of Uncertainty

• Monte Carlo (numerical simulation) methods
– Flexible: wide variety of distributions can be assumed

for any input to the calculation
– Sensitivity analysis can be applied to identify key

sources of uncertainty
– Potentially but not necessarily computationally

intensive (depends on model run time)

• Analytical methods and approximations
– Okay if normality assumption is reasonable
– Less flexible
– Simpler to compute

Example: Estimating Uncertainty in Total
Emissions for the IM240 Cycle

VSP Mode Seconds
Number in Mode

1 41
2 24
3 16
4 37
5 47
6 19
7 29
8 17
9 4
10 3
11 3
12 0
13 0
14 0
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Total Emissions for a Driving Cycle

TE = 41×EFmode1 + 24×EFmode2 +

16×EFmode3 + 37×EFmode4 +

47×EFmode5 + 19×EFmode6 +

29×EFmode7 + 17×EFmode8 +

4×EFmode9 + 3×EFmode10 +

3×EFmode11

Each Emission Factor is Assigned an Uncertainty Distribution

Inputs for Uncertainty Analysis Calculation

Mean Bin
Emission Std. Dev. Correction Adjustment

Mode Distribution Rate (g/sec) (g/sec) Factor Factor
1 Normal 0.00090 2.0x10-5 2.47 1.03
2 Normal 0.00063 2.0x10-5 2.47 1.03

3 Normal 0.00035 9.3x10-6 2.47 1.03
4 Normal 0.0012 2.5x10-5 2.47 1.03

5 Normal 0.0017 3.6x10-5 2.47 1.03
6 Normal 0.0024 5.1x10-5 2.47 1.03
7 Normal 0.0031 6.9x10-5 2.47 1.02

8 Normal 0.0042 9.4x10-5 2.47 1.01
9 Normal 0.0051 1.4x10-4 1.77 n/a
10 Normal 0.0059 1.7x10-4 1.54 n/a

11 Normal 0.0076 3.0x10-4 1.54 n/a
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Example Results: Monte Carlo Simulation

Cumulative Chart

Certainty is 95.00%from 0.43 to 0.47 gram

.000

.250

.500

.750

1.000

0

10000

0.43 0.44 0.45 0.46 0.48

10,000 Trials 56 Outliers

Forecast: NO, IM240

Mean Total Emissions: 0.45 g NOx
Absolute Uncertainty: ±0.02 g
Relative Uncertainty: ±4.2%

Example Results: Analytical Calculation

• Where Utotal = total uncertainty, Ui =
uncertainty for mode i, and Wi = fraction of
time in mode i.

• Results: ±0.018g or ±4%
• Similar to results from Monte Carlo simulation

• No uncertainty in weights

∑ ×=
n

i
iitotal WUU 2)(
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Summary of Uncertainty Ranges in Total
Emissions for Selected Driving Cycles

262430251.31.41.61.32627312617101011> 50,000 mi
> 3.5 liters

158881.01.01.00.966765444> 50,000 mi
< 3.5 liters

282426241.81.51.71.62423232527111212< 50,000 mi
> 3.5 liters

161110111.20.80.90.8136667444< 50,000 mi
< 3.5 liters

U
S

06

F
T

P

A
R

T
-E

F

IM
240

U
S

06

F
T

P

A
R

T
-E

F

IM
240

U
S

06

F
T

P

A
R

T
-E

F

IM
240

U
S

06

F
T

P

A
R

T
-E

F

IM
240

COCO2HCNOx
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Category

Uncertainty tends to be greater for:
- smaller sample sizes
- CO and HC

Numbers in table represent ± percent ranges in mean total emissions

Recommendations: Quantification of
Variability

• Parametric distributions are feasible and preferred over empirical
distributions because they are a more compact summary of
variability.

• The Method of Matching Moments is preferred
– The mean and standard deviation of the fitted distribution will be

the same as that of the data
– distributions fitted using MoMM appear to provide a better fit to the

upper tail of the distribution, compared to MLE.
• Single component distributions such as lognormal and Weibull

distributions will typically be adequately for most modes.
• Two component lognormal mixture distributions are recommended

when single component distributions are not adequate.
• Uncertainty analysis can be based directly upon the data and need

not be based upon fitted distributions
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Recommendations: Quantification of
Uncertainty in Emission Factors

• Uncertainty estimates for mean emissions should be based directly
upon the data; however, if fits are good, uncertainty analysis can
be based either upon the data or upon the fitted distributions for
variability;

• A normality assumption will typically be adequate for most modal
emission rates;

• The assumption of normality should be tested;
• For cases in which a normality assumption is not valid, bootstrap

simulation can be used, and a parametric distribution can be fit to
the distribution of the means;

• The range of uncertainty in modal emission rates must be adjusted
for different averaging times using an approach such as the
correction factor and bin adjustment factor approach demonstrated
here.

Recommendations: Quantification of
Uncertainty in Total Emissions

• A simple analytical approach for estimating uncertainty in
total emissions is adequate if:

– uncertainty in modal emission estimates are
approximately normal

– no need to include uncertainty in vehicle activity in the
estimate;

• The analytical method could be used as a quality
assurance check on Monte Carlo simulation results;

• Monte Carlo simulation-based methods are recommended
if the objective is to include uncertainty in activity;

• Monte Carlo can accommodate situations for normality
assumptions are not be valid.

• The range of uncertainty is sufficiently large in many cases
that a quantitative uncertainty analysis is well-justified.
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Verification and Validation of the
Conceptual Model

• Case 1: Consistency Check
• Case 2: Comparison to Withheld Data
• Case 3: Comparison to CARB Data

Case 1: Consistency Check
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Case 2: Comparison to Withheld Data

• Comparisons for Driving Cycles and On-Board
Data for sufficiently large sample sizes:
–FTP
–US06
–On-Board

• Different vehicles than those in the modeling
database

Case 2: Validation DatasetCase 2: Validation Dataset

19,243183On-BoardOn-Board Data

12,6482121US06NCHRP

32,9502424FTP75NCHRP

52922RampEPA Dynamometer

1,79533NYCCEPA Dynamometer

2,69322NONFWYEPA Dynamometer

1,04722LOCALEPA Dynamometer

1,82533FWY-HIEPA Dynamometer

77722FWY-GEPA Dynamometer

1,32133FWY-FEPA Dynamometer

90922FWY-EEPA Dynamometer

80922FWY-DEPA Dynamometer

1,02922FWY-ACEPA Dynamometer

1,50733ART-EFEPA Dynamometer

1,25522ART-CDEPA Dynamometer

1,47122ART-ABEPA Dynamometer

Total SecondsNo. of TripsNO. of VehiclesCycleData Source
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Case 2: Comparison of Predicted and
Observed Emissions
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Case 2: Findings

• Good concordance in terms of the ordinal ranking of which cycles have
the highest and lowest emissions.

• The predictions for CO, HC, and NOx tend to be better when the
prediction for CO2 is also reasonably close.

• A comparison of CO2 predicted and observed values may be a good
diagnostic tool for identifying systematic differences between data sets.

• Validation Data Set 2 is more heavily weighted toward vehicles with
smaller engines compared to the calibration data set.

• The systematic differences observed here for CO2 suggest that additional
refinement may be warranted for the engine displacement criteria when
binning data

• It may have been better to withhold trips for the same vehicles, rather
than validate with different vehicles.
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Case 3: Validation DatasetCase 3: Validation Dataset

11,24042UCC60ARB data

8,76842UCC50ARB data

46,760204MUCARB data

34,6631515OLD UCC50ARB data

23,4721717UCC45ARB data

24,0121717UCC40ARB data

24,3181717UCC35ARB data

17,7121717UCC30ARB data

15,3721717UCC25ARB data

15,0481717UCC20ARB data

7,1741717UCC17ARB data

Total SecondsNo. of TripsNO. of VehiclesCycleData Source

Case 3: Comparison of Predicted and
Observed Emissions
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Case 3: Findings

• There was excellent agreement between the
predicted and observed CO2, CO, and NOx
emissions.

• There appears to be excellent concordance between
the predicted and observed HC emissions.

• Possibility of TLEVs rather than Tier 1 was
considered; however, suspected TLEVs had emission
rates similar to known Tier 1 vehicles

• HC emissions may differ because of fuel,
measurement method, or reporting (e.g., THC vs.
NMHC)

Potential Refinements to the VSP-Based Approach: More
Engine Displacement Categories
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Potential Refinements to the VSP-Based Approach:
Speed Categories
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Summary of Key Findings from Validation
Case Studies

• The modal modeling approach is internally consistent.
• The model generally performs well for cycles or

conditions that are represented by a large portion of
the data in the modeling data set.

• The model is highly responsive, predicting a wide
range of variability in average emissions.

• A promising approach for refining the modal modeling
method is to consider speed as an additional
explanatory variable.

• Comparisons of CO2 emissions appear to be a good
method for determining the comparability of two
datasets.
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Findings/Recommendations

• Modal binning approach, based upon VSP, engine displacement and
odometer reading

• Speed should be considered as an additional binning criterion
• Road grade is accounted for in VSP
• Approach works for all four pollutants studied
• Supervised hierarchical tree-based regression is a useful modal

development technique
• One second average data is useful for predicting total emissions
• Averaging time should be considered in uncertainty analysis
• Time-weighted approach is flexible and simpler; could structure model

and data to enable vehicle or trip weighted calculations
• Mass per time emission factors needed for CO2. Comparable number of

modes needed for NOx as for CO2.
• For consistency, mass per time emission factors should be used for all

pollutants.

Findings/Recommendations

• Parametric representations of variability are feasible and recommended
• Uncertainty in average modal emission rates can be treated as normal in

most cases
• Bootstrap methods can be used to estimate uncertainty when normality is

not valid
• Monte Carlo simulation offers a more flexible framework for incorporating

uncertainty in activity and emissions inputs; analytical approach works
well if only uncertainty in emissions rates are included

• The range of uncertainty in total emissions is sufficiently large to justify
the need for uncertainty analysis

• It is important to have a representative data set, including high emitters.
IM240 data may be critical for this purpose.

• Remote sensing data have a different activity pattern than other data
considered, thus confounding any comparisons

• Statistical significance must be considered when making comparisons,
such as for model development and validation.


