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Abstract

We investigate the relationship between productivity growth and investment spikes using
Census Bureau’s plant-level data set for the U.S. food manufacturing industry. We find that
productivity growth increases after investment spikes suggesting an efficiency gain or plants’
learning effect. However, efficiency and the learning period associated with investment spikes
differ among plants’ productivity quartile ranks implying the differences in the plants’
investment types such as expansionary, replacement or retooling. We find evidence of both
convex and non-convex types of adjustment costs where lumpy plant-level investments suggest
the possibility of non-convex adjustment costs and hazard estimation results suggest the
possibility of convex adjustment costs. The downward sloping hazard can be due to the
unobserved heterogeneity across plants such as plants’ idiosyncratic obsolescence caused by
different R&D capabilities and implies the existence of convex adjustment costs. Food plants
frequently invest during their first few years of operation and high productivity plants postpone
investing due to high fixed costs.
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status researcher of the U.S. Census Bureau at the Michigan Census Research Data Center.
Research results and conclusions expressed herein are solely the authors’, and do not necessarily
reflect the views of the Census Bureau. We greatly appreciate comments on earlier draft from
seminar participants at the National Taiwan University, Ohio State University, Pennsylvania
State University, University of Copenhagen, University of Nebraska, and Wageningen
University. This paper has been screened to ensure that no confidential data has been revealed. 
Support for this research from USDA/NRI (award no. 03-35400-12949) is gratefully
acknowledged. 
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LINKING INVESTMENT SPIKES AND PRODUCTIVITY GROWTH: U.S. FOOD 
MANUFACTURING INDUSTRY  

 
The role of investment in stimulating economic growth is a central issue of economic analysis.  

Understanding the implications and relationship of investment to productivity is an important task 

and it plays a crucial role for the evaluation (or initiation) of government policies, such as investment 

tax credits, which is based on the assumption that investment creates higher productivity.     

Economic growth refers to an increase in the capacity (or potential) to produce output, not 

an increase in production itself, while a business cycle refers to fluctuations in actual output around a 

the trend of potential output.  Oftentimes, discussion of economic growth typically centers on the 

notion of steady state.  Solow (1993) notes that such characterizations in the long run ignored 

patterns and economic growth stimuli.  One-shot productivity gains are important achievements that 

can lead to bursts of growth.  The extent to which achievements spill over to many economic 

sectors (domestic and international) may lead us to experience longer periods of growth.  

Conceptually, this is like jumping to a new plateau and leveling off. It is important to differentiate 

clearly between measurement and the policies that lift the potential trend or tilt the curve.  Lifting 

refers to a burst of growth, while tilting refers to a change in the rate of growth.  Some polices can 

lift the trend but not tilt it (e.g., policies seeking to increase the rate of capital – both human and 

physical).  Other policies can tilt the curve (e.g., promoting R&D).  

 This study specifically identifies investment spikes as embodying the potential to lift the 

plateau, models the occurrence of investment spikes which picks up the adaptation of an 

instantaneous technical change, and investigates the link between investment spikes and productivity 

at the plant level. 1   Identifying the relationship between productivity and investment is a challenging 

task and previous research has been only partially successful.  The major complication arises from 

the causality between investment and productivity.  
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In this study, we provide micro-evidence on the question of the link between investment and 

productivity by analyzing confidential U.S. food manufacturing plant-level data.  Focusing on the 

U.S. food manufacturing industry is a good empirical application to test this relationship for two 

reasons.  First, the U.S. food processing and kindred products industry has been responsive to new 

technologies in processing, packaging and marketing of food product and has become increasingly 

high-tech over the past few decades (Morrison, 1997).  The industry is a significant sector 

accounting for about one-sixth of the U.S. manufacturing sector’s activity and it has experienced 

significant reorganization.  Harris (2002) reports that from 1993 to the first half of 1998, meat 

processors accounted for 60 mergers and acquisitions, dairy processors accounted for 69, soft drink 

bottlers for 53, snack food processors for 44 and poultry processors for 32.  This follows over three 

decades of vigorous merger activity.  Manufacturers attempt to increase sales, profits and market 

share through consolidation, industrialization, expanding exports, foreign growth and new value-

added product development (ERS, Harris, 2002).   The food and kindred product industry has the 

sixth largest number of plants among twenty operating manufacturing industries in U.S. and produce 

nearly 14 percent of the total value of output in the manufacturing sector.  Second, the plants in the 

industry present a lumpy nature of investments which makes this industry a good candidate to 

investigate the link between these spikes and productivity.  The nature of lumpy investments in the 

industry provides insight into the timing of capital investments and to assess if plant productivity 

falls after a large investment project. With this analysis, we also are able to characterize capital 

adjustment patterns in the US food industry to shed lights on models that i) only assume convex 

costs to adjust capital, ii) only stress the presences of irreversibility and fixed adjustment costs (non-

convex capital adjustment) or iii) acknowledge the presence of both types of adjustment costs. 

 Recent studies in the investment and productivity literature focus on the theoretical 

development of investment, technology and productivity through endogenous technological 
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adoption models.  Cooley, Greenwood and Yorukoglu (1997) argues that new machinery embodies 

the latest technology, while Campbell (1998) assumes barriers to technological adoption emerge 

through sunk costs, which leads to newer producers having a relative advantage over existing 

producers in adapting to a new technology.  Plant dynamics models, such as Jovanovic (1982) and 

Pakes and Erickson (1998), focus on plant-level heterogeneity to explain the micro-dynamics of 

growth.  Jovanovic and Nyarko (1996) construct a learning-by-doing model where productivity after 

a new technological introduction can be lower than under the old technology but productivity then 

increases as the firm learns how to use the new technology.   According to the learning-by-doing 

theory, we can expect that an investment spike can involve new technology installed through plant 

equipment.  Therefore, the installation of a new technology in a plant’s production process may 

create operational inefficiency in the early stages of a new technology, since new skills and 

experience need to be developed.  This may lead to a drop in total factor productivity (TFP) 

immediately after the introduction of new technology, but in later periods, plants and firms can 

expect a gradual recovery.  There is empirical support of this hypothesis.  Sakellaris (2004) shows 

that lumpy investment episodes results in the costly adoption of new technologies that came with 

the new equipment, TFP falls after the investment spike and starts to recover slowly.  He uses a 

descriptive and non-parametric empirical approach to investigate this process in large U.S. 

manufacturing plants.  Hugget and Ospina (2001) analyze plant-level data from the Columbian 

manufacturing sector and find that productivity growth falls when a plant undertakes a large 

equipment purchase using the least absolute deviation as a measure of productivity change.   Bessen 

(1999) shows that new plant productivity improves as a result of learning-by-doing and indicates that 

new plant adjustment is not entirely the same as mature plant adjustment after an investment spike; 

in particular, the large new plant lowers its workforce as it grows older.   
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 Another line of theoretical studies involves modeling plant dynamics that analyze the link 

between a range of economic variables and observable plant characteristics by looking at the 

implications of plant heterogeneity [Jovanovic (1982), Pakes and Erickson (1998), Cooper, 

Haltiwanger and Power (1999)].  Ericson and Pakes (1995) build a model to illustrate how total 

factor productivity (TFP) growth rates relate to investment rates.  In particular, both low and high 

TFP growth rates suggest periods of low investment.  The high mortality rate of new firms is 

associated with an initial learning period where most perform poorly and have low levels of 

investment after the initial startup costs.  There is a threshold of TFP growth rates where firms 

decrease their investment after passing the threshold.  Power (1998) empirically examines the link 

between investment and productivity at the plant level in U.S. manufacturing industries.  The results 

show that no observable relationship exists between investment and productivity or productivity 

growth when focusing on the link between investment and labor productivity in all U.S. 

manufacturing industries. 

 Along lines of plant dynamics models, our focus is to analyze empirically the relationship 

between investment, productivity and plant characteristics.  There are two main objectives in this 

paper. The first is to provide a basic description and explanation of TFP growth based on the 

industry average and quartile grouping of plants.  The second is to investigate the link between 

productivity growth and large investments without imposing any causal relationship between 

productivity and investment.  For these purposes, we first estimate reduced form regressions.  The 

productivity growth variable is regressed on relevant plant characteristics such as plant age, 

investment age, plant size, and 4-digit SIC industry group.  The regressions are estimated separately 

by industries and by quartile groups.  To address cross-plant and within-plant variations in 

productivity growth, we estimate these regressions both with and without plant fixed effects.   Then, 

we estimate a logit regression where the probability of having an investment spike is based on the 
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time elapsed since the last plant investment, predicted productivity growth and other relevant plant 

variables.  We test if the hazard is upward sloping to address its implications for the shape of the 

adjustment cost function, and if plants with higher productivity are more likely to invest.    

 The absence of plant-level R&D data in this study precludes the empirical identification of 

the direct relationship between R&D and investment spikes.  However, R&D activity is associated 

with changes in how a firm undertakes its production activities.  These changes can involve 

significant additions and reorganizing of production processing and capacity which involves large 

changes in capital stock.  Initiatives to install additional capital may arise from a need to enhance 

productivity growth.   We determine if there are strong systematic differences across plants in the 

food manufacturing industry using the 1972-1995 Census Bureau’s Longitudinal Research Database. 

We offer an in-depth analysis for the industry at the most disaggregated level and analyze its plants 

based on productivity quartile groups.  This reveals an interesting relationship between investment 

spikes and productivity which is masked in studies using a general pooled-industry base.    

This study presents four main findings.  The first set of results presents a significant 

variation in productivity growth among plants in the same industry.  Industry-level productivity 

growth presents a different picture than growth based on a quartile plant group.  The second set of 

results finds productivity growth increases after investment spikes over time even after controlling 

for plant characteristics, suggesting a plant-level efficiency gain or learning effect.  However, this 

pattern is different based on the plant’s productivity quartile rank which indicates the differences in 

plant investment types.  These plants can make expansionary (reflecting the acquisition of more 

capital of a technology known to the plant), or replacement (restoring depreciated capital with new 

capital) or retooling investments (equipment purchases reflecting technology adoption). Third, there 

is a decreasing probability of observing an investment spike as time passes (i.e., downward sloping 

hazard function). The downward sloping hazard might be as a result of the unobserved 
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heterogeneity across plants such as plants’ idiosyncratic obsolescence due to different R&D 

capabilities, and it implies the existence of convex adjustment costs.   We find evidence of both 

convex and non-convex types of adjustment costs in the industry.  Finally, the probability of 

investing across plants decreases as productivity growth increases which suggests a high fixed cost 

which causes plants with high productivity to postpone investing. 

 This paper is organized as follows.  The next section presents the data sources and a 

description of the dataset followed by an introduction of the methodology, empirical specification 

and results.  The final section offers concluding comments.   

 

Data Sources and Lumpiness in Capital 

Data Sources 

We use annual plant-level data from the Census Bureau’s Longitudinal Research Database (LRD).  

The LRD is a panel that contains detailed plant-level information from the Annual Survey of 

Manufacturers (ASM) and Census of Manufacturers (CM) of all U.S. manufacturing industries.2   

 The balanced panel of plants in the Food and Kindred Products Industry (SIC=20) focuses 

mostly on the large manufacturing plants over the time period 1972-1995.  The balanced nature of 

the data set ensures that the capital stocks are constructed using the perpetual inventory method and 

the lumpiness of investment is measured through time3.  The balanced panel is not a random sample 

of plants and includes a higher proportion of large plants due to the ASM sampling strategy.  

Approximately one-third of ASM sample is rotated in and out of the sample every five years to 

minimize the reporting burden on small plants.  We also analyze two of the major sub-industries in 

the food industry (meat and dairy products) to investigate the differences in results due to the 

aggregate versus disaggregate nature of the samples.  Table 1 presents a general industry overview 

based on the panel data used in the analysis. 
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Lumpiness in Capital in the Food Industry 

The studies analyzing the nature of investments at plant and firm level document irreversibility (zero 

investment episodes mixed with periods of investment) and lumpiness (bursts of investments are 

surrounded by periods of low level of investment activity) (Doms and Dunne (1998), Power (1998), 

Cooper, Haltiwanger and Power (1999), and Nilsen and Schiantarelli (2003)). The evidence of lumpy 

investment can be explained by the presence of fixed costs which can be a result of the differences 

in capital vintages across firms and plants.  The intermittent and lumpy nature of investments creates 

a non-smooth adjustment path for the capital stock which contrasts the standard neoclassical 

investment model with convex adjustment costs.  Since understanding the nature of capital 

adjustment cost is important due to its influences on firm’s investment decision, studies search for 

evidence about the shape of the adjustment cost instead of assuming a conventional shape.  One of 

the most recent studies which uses structural model of capital adjustment costs finds that both 

convex and non-convex elements should be present in modelling adjustment costs (Cooper and 

Haltiwanger (2006)).   

To assess the nature of investment patterns, we present main characteristics of the 

investment rate distribution in our data series.  Throughout this study, the ratio of plant’s 

investments on capital to its real capital stock (I/K) is used as the definition of the investment rate. 

Capacity-improving investment activity is measured by lumpy investments.  The lumpy investments 

which are defined by the relative measure occurring in a given year if the plant’s investment rate is 

greater than 2.5 times the plant’s median investment rate4. The detailed study by Power (1994) 

describes a relative spike as being where the plant’s investment is considered lumpy if it is large 

relative to that plant’s other investments.5   
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 Table 2 presents the number of spike observations and their contribution to total plant-level 

investment for machinery, buildings and their sum.  In the food industry, only 17% of the 

observations present machinery investment spikes, but these account for 83% of the total 

investment.  A similar pattern is revealed across other industries. Even though the lumpy investment 

percentage is lower than the non-spike investment percentage across investment types, the 

percentage of total sample investment accounted for by lumpy investments are significantly higher 

than those that are not.  This suggests that plant-level investment is quite lumpy, since a relatively 

small percentage of observations account for a disproportionate share of overall investments.  Table 

3 provides additional interesting information on investment spike concentration and documents the 

lumpiness of plant-level investment in the sector.  It shows the number of investment spikes over a 

24-year period and the percentage of the plants in each spike across three different food industries.6   

In the food manufacturing industry, 97% of the plants experience between 1 to 6 machinery 

investment spikes over the sample period, suggesting that, at most, only 3% never have lumpy 

investments.  Of those plants engaged in lumpy investments between 1 to 9 times over the sample 

period, the median number of investment spikes is two.   

 

Linking TFP growth to Capacity-Improving Investment 

An investigation into the relationship between lumpy investment and TFP growth can draw on the 

results of Ericson and Pakes (1995) and Pakes and McGuire (1994) which suggest that both low and 

high TFP growth rates imply periods of low investment.   Baumol and Wolfe (1983) achieve results 

similar to those found by Ericson and Pakes (1995) as they explore R&D investment feedback 

effects and productivity growth rates.  Productivity growth implies resource use decisions affecting 

the quantity of resources available for new production activities and planning, in particular.  

Investment spikes soon stimulate rapid productivity growth in a sector where spikes are associated 
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with new technologies.  But that, in turn, raises the price of investment in production capacity that 

increases the productivity growth rate (i.e., a retooling investment) and reduces the quantity of 

productive capacity demanded.  In subsequent periods, productivity growth is impeded, permitting a 

reduction in the productive capacity price stimulating demand for capacity-improving investment yet 

again.  While this conceptual model is highly simplified, it does pinpoint some dynamic disincentives 

of productive capacity investment.  When productive capacity investment successfully increases 

productivity growth, it automatically increases its own relative costs compared to production costs 

leading to a reduced investment incentive.  Thus, the success of capacity-improving investment 

serves to undermine its own demand.  Unfortunately, the more impressive the past success the more 

strongly it tends to constrain private demand for productive capacity.  Given both arguments 

regarding demand and supply side investment spikes and TFP growth rates, we investigate both 

investment spikes and TFP growth impacts.  The following sections focus on the estimation of TFP 

growth using production function specification and investigate the relationship between TFP growth 

and lumpy investments for all dairy, meat and food plants.   

 

Production Function Estimation and TFP Growth Findings  

In estimating the production function, we control for simultaneity between unobservable 

productivity and observable input choices as a result of the profit-maximizing firms’ response to 

positive productivity shock by expanding output, in turn, and using more inputs.  Marschak and 

Andrews (1944) raised this problem initially and suggested that the transmitted productivity shock 

would be positively correlated with variable inputs and the estimated coefficients on variable inputs 

from least squares are likely to be biased upward (Levinsohn and Petrin (2003)).   Under this 

condition, least squares estimates of production functions are biased which leads biased productivity 

estimates.  Olley and Pakes (1996) address the simultaneity problem by using investment as a proxy 
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to control for the part of the error correlated with inputs and thus eliminate the variation which is 

related with the productivity contribution.  However, an investment proxy is only valid for plants 

reporting non-zero investment.  A difficulty arises with the Olley-Pakes approach when adjustment 

costs are non-convex, which leads the non-responses in investment to some productivity shocks.  

This is specifically a concern at the plant-level sample where one can come across many zero 

investments.  Levinsohn and Petrin (2003) address the simultaneity problem by using an 

intermediate input (e.g., materials, fuel, electricity) as a proxy controlling for the error associated 

with simultaneity.  They argue that these inputs respond more smoothly to productivity shocks and 

are useful proxies for plant-level studies since they are generally not equal to zero.   From the 

perspective of adjustment costs, it is less costly to adjust the intermediate input implying this input 

may respond more fully than investment to the entire productivity term.   Consequently, the 

Levinsohn-Petrin approach presents a compelling remedy to the simultaneity problem in the 

presence of frequent zero investment observations.  

 We estimate a Cobb-Douglas production function using this approach with intermediate 

inputs to address the simultaneity problem.  The estimated Cobb-Douglas production function 

specified in logs as  

(1)   itittiteitlitmitkit telmky ηωββββββ +++++++= 0     

where ity  is the log of the output (the total value of shipments is adjusted for inventory changes) for 

plants i and time t.  The log of materials, labor, energy and capital are represented by itm , itl , ite , 

and itk , respectively.  Capital is constructed using the perpetual inventory measure, which is 

appropriate in a balanced panel.  The inventory measure of capital is accomplished by accumulating 

investment over time and requires continuous observations for each plant.7 The productivity impact 

is represented by the error term, itit ηω + , where itω  is a transmitted error term and impacts the 
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firm’s decision rules, and itη  is an i.i.d. shock not known to the analyst and does not have an impact 

on the firm’s decisions.  We use the energy variable as the proxy and proceed with the estimation by 

rewriting equation (1) as8  

 

(2)    itititittitlitmit ketlmy ηφβββ ++++= ),(               

 where 

),(),( 0 ititititkiteititit kekeke ωβββφ +++=  

The demand for the intermediate input, ite , is assumed to depend on the firm’s state variables, 

),( itititit kee ω= .  Using the Levinsohn-Petrin condition where the energy function is monotonic 

function with respect to the productivity shock, itω , the unobservable productivity term can be 

written as a function of two observed inputs, ),( ititit ke=ω .  The first stage estimator is linear in 

variable inputs and non-parametric in itφ where we can obtain consistent estimates of freely variable 

inputs.  We employ Levinsohn-Petrin’s locally weighted quadratic least squares approximation (least 

squares with a polynomial approximation approach) to obtain the coefficients of freely variable 

inputs.  In the second stage, since capital and energy variables enter (.)itφ twice, Levinsohn-Petrin 

propose two moment conditions to identify kβ  and eβ .  To identify kβ , they assume that 

productivity shock is governed by a first-order Markov process, tttt E ξωωω += − ]|[ 1  where tξ is 

an innovation to productivity that is uncorrelated with tk , 0][])[( ==+ ttttt kEkE ξηξ  and to 

identify eβ , they assume that last period’s energy choice should be uncorrelated with the 

innovation in productivity this period, 0][])[( 11 ==+ −− ttttt eEeE ξηξ .   

Table 4 reports coefficient estimates from least squares and Levinsohn-Petrin approaches.  

We find that parameter estimate on freely variable inputs from the least squares procedure exceed 
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the ones from the Levinsohn-Petrin method which confirms the theoretical and empirical results 

discussed in their article9.    

We use coefficients from the production function estimation by Levinsohn and Petrin 

(2003) method to generate productivity growth for each plant and each year, across both meat and 

dairy products as well as all food manufacturing industries.  Dhrymes (1991) and Bartelsman and 

Dhrymes (1998) present TFP growth results by deciles and their conclusions argue against 

characterizing the economy in terms of the representative plant or firm.  These studies suggest that 

evaluating TFP growth patterns by quartiles can potentially reveal differing TFP growth impacts 

from investment spikes.  Thus, after calculating a given plant’s TFP growth, we rank all plants 

according to the magnitudes of their TFP in each year (Dhrymes, 1991).  The plants are then 

grouped by a quartile sampling procedure ranging from I to IV (lowest to highest).  This ranking 

allows us to classify plants exhibiting varying levels of TFP, as well as to detect if productivity is 

growing over time.    

Table 5 provides overall and quartile group specific average TFP growth across industries.  

This shows that the average productivity growth over the years is 0.05% in meat products, -1.4% in 

dairy products and 0.4% in all food manufacturing industries.  However, classifying plants based on 

their productivity quartiles reveals significant variation in productivity growth. An analysis of the 3-

digit sub-industry level presents very different productivity growth rates even when each sub-group 

belongs to the same 2-digit-level aggregate industry.   The meat product plants in the lowest quartile 

have an average growth of -18%, while the highest quartile plants are at 19%.  A similar pattern is 

seen in the dairy products sub-industry and the entire food industry with the average growth in the 

lowest quartile ranked plants is -18% for dairy products and -21% for the food industry, while the 

average growth in the highest quartile is 15% and 22%, respectively.   
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These results present several interesting observation about the industry, such that there are 

large differentials in the rates of productivity growth across plants within the same industry.  The 

industry-level productivity growth presents a different picture than growth based on a quartile plant 

group.   Most interestingly, one expects poorly performing plants to disappear in such a longer time 

frame in a competitive environment; however, in reality we observe low productivity plants coexist 

with the high productive ones.   It seems high likely that differences in the quality of capital 

equipment, or in worker’s skills, or in the development and installation of new technology and the 

managerial abilities of firms explain the wide variation in productivity.  

 

The Impact of Investment Spikes on Productivity Growth  

We describe an econometric model to investigate the link between investment spikes and TFP 

growth. For this analysis, we use the reduced form regression model as follows,  

(2)    ititit XQ εγα ++=       

where the dependent variable itQ  is the productivity growth rate, and the independent variables itX  

(vector) are relevant plant characteristics [e.g. plant investment age (lagged), plant size, plant age, and 

4-digit SIC industry dummies].10  The investment age variable measures the time since the plant’s 

most recent investment spike.  The range of investment age dummies is 0 to 9+, where 0 denotes 

consecutive spikes, 1 represents a one-year investment spike interval, and so on, up to the nine-or-

greater category.  The size variable is a set of dummy variables defined as the number of employees 

at each plant.   Plant size dummies are assigned based on their average, size-weighted employment 

over the sample period to account for each plant’s average employment in the long term and to 

avoid size fluctuation through time.  After finding the average size weighted employment, plant size 

dummy variables are created based on quartile groups.11  Table 6 reports the number of observations 

and plants, average size and employment based on plant size quartiles.  Plant age dummy variables 
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are defined in detail in the Appendix and Table 7 presents the number of plants and observations by 

plant age.   

 Our empirical estimation only focuses on machinery investment spikes, which are the type 

of investment that usually incorporates the latest technology.   Using equation (2), we estimate a set 

of least-squares regressions with and without fixed effects to exploit both cross-plant and within-

plant productivity variations.12  We also run these models with and without quartile groupings to 

assess the possible differences in the impact of investment spikes on TFP growth. Tables 8 through 

10 list the estimation results from equation (2) for each industry and quartile group.   Figures 1a, 1b 

and 1c plot the plant investment age coefficients from columns 5 through 8 in Tables 8-10.13    

 A major finding from this analysis is the relationship between productivity growth and 

investment age contrary to the findings of Power (1998), which holds even when controlling for 

plant fixed effects.  In general, the magnitude and significance of the investment age coefficients is 

robust to the presence or absence of plant fixed effects.  Therefore, further discussions are based on 

these results, which control for the unobservable heterogeneity across plants.   

 The impact of investment age on productivity growth exhibits a positive trend for the meat 

products industry.  This indicates productivity growth increases as a result of an investment spike, 

which may suggest an efficiency gain or learning effect.14  For example, the impact of that 

investment for all plants (Figure 1a) is a 4% productivity increase one year after the investment 

spike, and 5% four years after the spike.  The impact of investment age on growth is the largest for 

the lowest quartile plants.  For example, one year after the investment was executed, the investment 

spike impact is a productivity growth increase approaching 7%, compared to a 4% increase for all 

plants. The pattern is an inverted U-shape, suggesting that productivity growth initially increases and 

then trails off.  When we take a look at the same impact for the middle quartile plants, the impact 

graph becomes relatively flat after one year suggesting a rapid efficiency gain and/or learning effect.  
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For the highest productivity plants, all the investment age coefficients are insignificant, suggesting 

existing production processes of these plants serve them well.  This may indicate that their 

investment spikes are mostly an expansionary type of investment to increase their capacity.  The 

effect of investment age on productivity growth is the highest for the least productive plants. Since 

they are the worst-performing plants, these plants may be introducing new technologies to boost 

their productivity. Thus, these investments may be a replacement or retooling type of investment.   

 The idea that different types of investments have an effect on productivity shows up in 

previous research, but this has never been tested since there were no data available distinguishing 

investment types precisely enough [Power (1998), Huggett and Ospina (2001) and Sakellaris (2004)].  

The Power (1998) study could not find a relationship between productivity and investment.  This 

was attributed to the expansionary investment type, which need not be associated with productivity 

increases.  An increase in productivity is expected when there is replacement or retooling type of 

investment.  While our data does not distinguish between investment types, our results can be used 

to suggest different types of investments in the food manufacturing industry.  We may have an 

expansionary type of investment for the highest ranked plants, whereas the lowest ranked plants may 

have a replacement or retooling type of investment in the meat products industry.   

 For dairy product plants in general, the impact of large investments on productivity growth 

is positive and is realized after four years.  However, when we separate the dairy plants into quartile 

groups, most of the lowest quartile ranked plant estimated coefficients are insignificant.  There is no 

significant relationship between investment age and productivity growth for these plants.  However, 

all investment age coefficients are significant for the middle quartile group indicating that after the 

second year, the impact of investment age on productivity growth becomes relatively flat, leading to 

a relatively quick efficiency gain and/or learning effect.  While this pattern is very similar to meat 

product plants, the investment age impact in dairy product plants is about half the rate found in  
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meat plants.  For the highest ranked plants, the trend is generally positive, even though some 

coefficients are insignificant. For these plants, the probability of an investment spike increases five 

years after an investment spike.  In contrast to the highest ranked meat industry plants, the dairy 

plants seem to depend on large investments to boost their productivity.15   

For the food industry, in aggregate, the most pronounced impact of investment age on 

productivity growth (2.8%) occurs during the fifth year after an investment spike.  Among the 

quartile groups, the most pronounced effect of investment age on productivity growth can be seen 

in the lowest ranked plants. For these plants, the investment age-productivity pattern is similar to 

that seen in meat product plants (almost an inverted U-shape suggesting productivity growth initially 

increases and then trails off); however, here the impact is much lower and starts from a lower base.   

All investment age coefficients for the middle quartile ranked plants are significant.  The 

impact of an investment spike on productivity in these plants follows a stable trend, suggesting that 

once an investment spike is initiated, the impact remains constant throughout the years (figure 1c).  

Once the plants adopt the new capacity, it either increases efficiency right away, or the technology 

learning period is not long, so plants see the positive effect of this technology on productivity right 

away.   

For the highest ranked plants, the investment age productivity growth impact declines after 

the large investment is made.  Large spikes generally require significant plant-level learning, and as a 

result, the investment spike’s impact appears in later periods, and the productivity benefits from 

investment are realized more slowly.  The learning period is longer for these highest-ranked plants 

compared to some plants observed in the meat and dairy products industries.  We see this pattern 

for the highest ranked plants in figure 1c; i.e., productivity falls up to investment age 3, and a 

positive impact of investment age on productivity occurs during investment ages 3 and 4.  
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The Impact of Productivity Growth on Investment Spikes 

Studies addressing the cost of capital adjustments (Cooper, Haltiwanger and Power(1999), Cooper 

and Haltiwanger (2006), Nilsen and Schintarelli (2003)) postulate that increasing investment hazard 

(positive duration dependence) is an indication of non-convex forms of adjustment costs.   Our first 

objective for this section is to investigate the shape of the capital adjustment cost by estimating the 

hazard function to see if the probability of an investment spike increases as the time since the last 

investment spike increases (i.e., increasing investment hazard).  The second objective is to determine 

if an increase in productivity raises the probability of an investment spike.   To achieve these 

objectives, we specify a logit regression and assess the change in the probability of an investment 

spike based on the productivity. 16  We characterize the probability of having an investment spike as 

a function of investment age, productivity growth and other determinants of investment spikes 

(some plant control variables) as follows,   

 

(3)    )()1Pr( ,2,10, τβββ −++Λ== tititi TFPXI     

  

where 1, =tiI  if a plant has an investment spike in that year and 0, =tiI  otherwise.  tiX ,  is a vector 

set of relevant plant-level characteristics such as dummies for a plant’s lagged investment age, size, 

age, and 4-digit SIC industry. The last argument is a productivity growth variable τ−tiTFP ,  lagged τ  

periods.  When deciding the number of periods to lag TFP, various options were explored, such as 

the lagged value of predicted TFP (first, second and third lags) and moving averages [2-year MA, 3-

year MA centered on (t-2), and 4-year MA]. 
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  Tables 11-13 list the coefficients, marginal effects, and robust standard errors from logit 

regressions in equation (3) across industries and quartile groups. Figures 2a-2c plot the investment 

age dummy variable coefficients from these tables.17    

 For all meat industry plants, as well as the middle quartile plants, the investment age dummy 

coefficient estimates are all positive and significant (Table 11), except for the “4+ years” collapsed 

investment age group.18  Plants with a negative estimated investment age coefficient are most likely 

to have an investment spike at age 9+ (the omitted category).  Figure 2a shows that the probability 

of having an investment spike decreases with respect to investment age in both middle quartile and 

“all plants” categories.  This probability decreases sharply after the current and two consecutive 

investments, and then declines gradually for the other investment ages. Investment age coefficients 

for the middle quartile ranked plants are significant.  Our results differ from the upward sloping 

hazard function where the probability of an investment spike increases as the time since the last 

investment spike increases due to depreciation and technical change.  The plants of this industry are 

early investors since we observe high frequency investment in early investment ages.  These plants 

appear to use the new technology investments (lumpy investments) until it depreciates out. 

One possible explanation of a downward sloping hazard function can be the existence of 

unobserved heterogeneity across plants, for example, Power (1994) finds that idiosyncratic 

obsolescence of plants due to different R&D capabilities may lead to downward sloping hazard.19  

Another implication of downward sloping hazard is, when a spike is not occurring, the plant is likely 

to still be making small investments.  This supports the presence of both convex and non-convex 

components of adjustment costs in the industry.  If there is a convex component of adjustment 

costs, we can observe small investments episodes even in the presence of fixed components.  Nilsen 

and Schiantarelli (2003) find that small investment rates are fairly frequent and quantitatively 

important in the Norwegian plant-level data.  Most recently, the presence of a mixed form of 
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adjustment costs (convex and non-convex) is explored in a structural model of adjustment by 

Cooper and Haltiwanger (2006) and their results suggest that a model incorporating both types of 

adjustment costs fit the data best.     

 Test results to address if plants with higher productivity are more likely to invest show that 

the probability of investing across plants decreases as productivity growth increases.  This suggests 

that there is a high fixed cost for the lumpy investments in the industry.  The first lag of productivity 

coefficient is negative and significant, which implies that the fixed cost of investment causes plants 

with high productivity to postpone investing. 

In the dairy products industry, investment age dummy coefficient estimates are all positive 

and significant for both middle quartile ranked and all plants (Table 12), with the exception of an 

insignificant “6+ investment age”.  Figure 2b shows that the probability of an investment spike 

decreases with investment age in both middle quartile ranked and “all plants” categories.  After the 

current and two consecutive investments, this probability decreases sharply, and then declines 

gradually for the later investment ages.  In the “all plants” category, this pattern does fluctuate and is 

not as smooth as that for the middle quartile plants.    

 Analysis of the dairy products sub-industry shows similarities to the meat products industry 

with the presentation of a downward sloping hazard function. Similarly, logit results show that the 

probability of investing across plants decreases as productivity growth increases, since the fixed cost 

of lumpy investment encourages plants to delay their investments.  For the middle quartile and “all 

plants” categories, the productivity coefficient is negative and significant at 1% and 10%, 

respectively (Table 12). 

 For all food manufacturing plants, enough observations exist to include the lowest and 

highest quartile plants in our investigation.  For the lowest and highest ranked plants, the investment 

age dummy’s coefficient estimates are all positive and significant for the first four years.  Similarly, 
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for the middle-ranked and “all plants” categories, these estimates are positive and significant for the 

first five years (Table 13).   

 Figure 2c shows that the probability of having an investment spike decreases with 

investment age for all ranked groups, as well as pooled plants.  The general trend indicates that the 

likelihood of having an investment spike decreases sharply after the current investment is made and 

for two consecutive investments, and then declines gradually for the subsequent ages.  However, 

there are some fluctuations in the likelihood of investment spikes for the highest ranked plants.  

Except for the middle quartile-ranked plants, the likelihood of having an investment spike increases 

during investment ages 1 and 2.  This is still early during the investment age periods so, in general, 

plants in the food industry have a high frequency of investments in early years as compared to later 

years.  In line with Power’s findings in some industries, this may indicate that plants in the food 

industry may have a rapid obsolescence rate; therefore, they invest more frequently than plants with 

a slower obsolescence rate.  

  Not surprisingly, as with the other sub-industries, the logit results suggest that the fixed cost 

of investment leads to a declining probability of investing across plants as productivity growth 

increases.  This fixed cost of lumpy investments causes plants with high productivity to delay their 

investments since the productivity coefficients from Table 13 are negative and significant at 5% for 

the smallest quartile, middle quartile, and “all plants” categories, and significant at 1% for the highest 

quartile plants. 

 

Concluding Comments 

The main goal of this study is to examine the widely assumed relationship between productivity and 

investment spikes by using a rich plant-level data set for the food manufacturing industry and two 

important sub-industries (meat and dairy products industries) from 1972 to 1995.  We investigate the 
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link between productivity growth and large investments without imposing any causal relationship 

between productivity and investment.  To achieve this, we first estimated reduced form regressions 

where productivity growth variable is regressed on plant age, investment age, plant size, and 4-digit 

SIC industry group.  The regressions are estimated separately by industry and by quartile groups of 

plants.  Then, we estimate a logit regression where the probability of having an investment spike 

based on the time elapsed since the last investment episode at plants, productivity growth and other 

relevant plant variables.  We test for if the hazard is upward sloping and to test for if plants with 

higher productivity are more likely to invest. 

    This study offers several key results.  First, there is a significant variation in productivity 

growth among plants in the same industry.  Productivity growth at the industry level is different 

from growth measurement based on a quartile group of plants.  Second, we find strong evidence of 

a link between productivity growth and investment age in existing plants.  Our results show that 

productivity growth increases after investment spikes over time and then trails off, even after 

controlling for plant fixed effects in most of the plants, suggesting a plant-level efficiency gain or 

learning effect. However, we find that there are differences in productivity growth and investment 

spike patterns when we categorize plants based on productivity quartile ranks.  Our results imply 

that there are differences in the investment types plants make in a particular industry, such as 

expansionary, replacement or retooling investments.   

 We also find that efficiency and the learning period associated with investment spikes differs 

among quartile groups.  Middle-ranked plants in the meat industry see the positive effects right away 

once the new technology is adopted.  This suggests that these plants experience an immediate 

increase in efficiency, or the new technology learning period is relatively short.  However, for the 

food industry’s highest productivity quartile plants, productivity growth declines after an investment 

spike, which suggests that the learning period is longer and productivity benefits from these 
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investments are realized more slowly.  By focusing on existing plants, this study reveals that lumpy 

investments not only occur at new plants as most of the existing studies emphasize but also at 

surviving plants.  This result coincides with the Huggett and Ospina (2001) investigation of 

Columbian plants.   

Third, there is a decreasing probability of an investment spike as the time since the last spike 

increases, which may be attributed to idiosyncratic plant obsolescence due to different R&D 

capabilities and may imply the existence of convex adjustment costs in the industry.  It is also 

possible that not all investment spikes are supporting growth directly.  For example, investment 

spikes can be associated with improvements in food safety and quality assurance processes that are 

mandated by regulatory acts and new product development that is intended to maintain competitive 

positions in markets.  Our results show that plants in the food industry are early investors since we 

observe a high frequency of such investments in the early years.  Our findings support the presence 

of both types of adjustment costs in the industry such a way that the evidence of lumpy investments 

suggests the possibility of non-convex adjustment costs, and the hazard estimation results suggest 

the possibility of convex adjustment costs.   

 Finally, the probability of investing across plants decreases as productivity growth increases.  

This suggests that high fixed costs associated with lumpy investments cause plants with high 

productivity to postpone investing.  The natural next step would be a structural estimation model in 

a dynamic context that would link plant-level investment spikes and productivity.  Even though our 

data does not differentiate between the different types of investments, our results imply that plants 

in the industry could have different types of investment (e.g. expansionary, replacement or 

retooling).  Another direction for future research is to analyze datasets to show the distinction 

among different types of investment and their effects on productivity growth.  
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Appendix: Variable Construction 

Total Value of Shipments:  This study uses the total value of shipment as the output measure.  The 

gross shipment is defined as the total value of shipment plus inventory change deflated by the 4-digit 

Bartelsman-Gray’s shipment deflator (Bartelsman and Gray, 1996). In this method, which is 

different from the value added approach, material and energy inputs are included as a separate 

variable in the production function estimation.20  The real total value of shipments (real value of 

sales as output) of a plant is found as     

 

PISHIP
FIBFIEWIBWIETVSRETVS )]()[( −+−+

=  

The variables are defined as follows: TVS is the total value of shipments; WIE (WIB) refers to work 

in process inventories end of year (beginning of year); FIE (FIB) refers to finished products 

inventories end of year (beginning of year); PISHIP is the 4-digit Bartelsman-Gray’s shipment 

deflator.  

 

Material Variable: The LRD contains information on the cost of materials as CM = CP + CR + CF + 

EE + CW where CP is cost of materials, parts, etc., CR is cost of resale, CF is cost of fuel, EE is 

cost of purchased electricity and CW is cost of contract work.  Since material and energy variables 

are considered as separate inputs in this study, CP + CR + CW is considered a material variable 

which is deflated with the 4-digit Bartelsman-Gray’s materials deflator.  

 

Energy Variable: The LRD contains information on the cost of fuels and electricity usage.  CF is the 

cost of fuel (expenditures on fuel for heating, electricity generation, and production), and EE is the 

cost of purchased electricity (does not include electricity produced by the plant for its own use).  In 
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this study, the energy variable is taken to be CF + EE and deflated by the 4-digit Bartelsman-Gray’s 

energy deflator. 

 

Labor Variable: The labor variable holds production worker hours as in the Olley and Pakes (1996) 

study, and is defined as   

PH
WW

LCSWLH += , 

where total compensation of labor is divided by the average production worker wage rate.  In this 

equation, SW is total salaries and wages (the sum of production workers wages and non-production 

worker salaries); LC is total supplementary cost; WW is the plant’s total production worker wages; 

PH is the total production work hours.   

 

Capital Stock Variable:  The real capital stock variable is constructed using the perpetual inventory 

method for the dataset.  The LRD contains information on buildings and machinery.  This way each 

stock can be calculated separately and then added together to find the plant’s total capital stock.   

The perpetual inventory method requires finding the capital value during the panel time period 

based on 1972 as a benchmark year.  To find the real capital stock, investment is calculated over the 

1972-1995 time period.  The nominal gross investment is deflated using 4-digit SIC investment 

deflators (Bartelsman-Gray’s investment deflator).  The capital stock benchmark value for each plant 

in 1972 is initialized by multiplying the machinery and equipment book value by the ratio of real to 

book value of the machinery and equipment for the 2-digit industry in which the plant operates in 

1972.21  The perpetual inventory method, )1(,)1( −−+= tiiitit KIK δ , is then used to obtain the 

panel’s real capital stock. In this equation, itK  is the real stock at time t, itI  is the real investment 
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occurring during year t, and iδ  is the rate of replacement.  Depreciation is 5% and 15% for buildings 

and machinery, respectively.  

 

Plant Size Measurement: The size variable is a set of dummy variables defined as the number of 

employees at each plant.   Using the method in Power (1998), we find size classes based on their 

average.  Size-weighted employment over the entire sample period is defined as 

∑
=

=
23

1

21
i

TE
TEMean

S  

where =iTE total employment in year i and 
n

TE
TEMean i

i∑
==

23

1 .  

 

Plant Age Measurement: Using a dummy variable, the age of a plant is determined by comparing the 

age when the plant first appears in the Census (1963, 1967 or 1972) with the first year of our sample 

(1972).  Using this approach to capture the plant age differences, only an approximate age variable 

can be assigned by comparing the plants in existence earlier (1963 or 1967) with the plants existed in 

1972.  For example, since LRD does not contain ASM panels prior to 1969, if a plant was not 

included in 1963 Census but was included in 1967, the plant could be anywhere from five to nine 

years old in 1972.  Therefore, exact age cannot be constructed for the plants already existing in 1972.  

Then, the plants’ age dummies are assigned as follows:   

Age0: Plants that appear for the first time in 1972 Census. Age0 plants are considered the youngest 

in our sample period, are considered to be new and are assumed to be 23 years old in 1995.   

Age1: Plants listed in 1967 are considered to be approximately 5 years old in 1972 and 28 years old 

in 1995. 
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Age2: These plants are the oldest, as they were listed in the 1995 Census.  They are considered to be 

approximately 9 years old in 1972 and 32 years old in 1995. 

 

Investment Age Variable: After identifying investment spikes for each plant over the years, the 

investment age variable is constructed by measuring the time since the plant’s most recent 

investment spike.  Based on our panel from 1972 to 1995, we constructed the investment age 

dummies.  The range of investment age dummies is 0-9+ where 0 denotes consecutive spikes, 

investment age 1 represents a one year interval between investment spikes, and so on up to the nine-

or-greater category. The time since the plant’s most recent investment spike can also be viewed as an 

indicator of the plant’s capital vintage.
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Table 1.  Number of Observations and Plants by Sub-industries and All Food Industry 
Plants Together 

 

Three Digit Sub-Industries* 
 

Meat 
Products 
(SIC=201) 

Dairy 
Products 
(SIC=202) 

Number of Plants 204 163 
Number of  Observations 4722 3775 
Percent of Total Plants 16 13 
Machinery Investments of the Total Industry’s Machinery Investments (%) 10.4 6.1 
Building Investments of the Total Industry’s Buildings Investments (%) 15.6 7.2 
Combined Machinery and Building Investments of the Total Industry’s 
Combined Machinery and Building Investments (%) 11.4 6.3 
Material Expenditure of the Total Industry’s Material Expenditures (%) 28.6 11.2 
Energy Expenditure of the Total Industry’s Energy Expenditures (%) 13.3 7.3 
Labor Expenditure of the Total Industry’s Labor Expenditures (%) 25.2 6.1 
Total Value of Shipments of the Industry’s Total Value of Shipments (%) 21.1 9.3 
Average Employment of the Total Industry’s Employment (%) 19 5.5 
* Number of plants in all Food Industries (SIC = 20) 1233 and with 29592 observations 
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Table 2. Investment Spike Characteristics in Industries across Investment Types 
 
Industries Meat Products Industry Dairy Products Industry Food Manufacturing Industry
Investment 
Rate* 

% of Obs. in 
Data set 
which are 
spikes and 
non-spikes 

% of Total 
Sample 
Investment 
Accounted 
for by spikes 
and non-
spikes** 

% of Obs. in 
Data set 
which are 
spikes and 
non-spikes 

% of Total 
Sample 
Investment 
Accounted 
for by spikes 
and non-
spikes 

% of Obs. in 
Data set 
which are 
spikes and 
non-spikes 

% of Total 
Sample 
Investment 
Accounted 
for by spikes 
and non-
spikes 

Machinery 17 spike  
 
83 non-spike 

84 spike 
 
16 non-spike 

20 spike  
 
80 non-spike 

88 spike  
 
12 non-spike 

17 spike  
83 non-spike 

83 spike 
17 non-spike 

Buildings 35 spike 
 
65 non-spike 

97 spike 
 
3 non-spike 

37 spike 
63 non-spike 

99 spike 
1 non-spike 

35 spike 
65 non-spike 

97 spike 
3 non-spike 

Combined 
Machinery 
and 
Buildings 

20 spike 
 
80 non-spike 

87 spike 
 
13 non-spike 

21 spike 
 
79 non-spike 

88 spike 
12 non-spike 

19 spike 
81 non-spike 

84 spike 
16 non-spike 

 
*Relative spike defined as investment rate that exceeds [(2.5*median investment rate)].   
** Percent of total sample investment accounted for by spikes is found by the ratio of investment spikes to 
total investment. 
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Table 3. Number of Investment Spikes and the Percentage of Plants in each Spike across 
Industries 
 
 Meat Products Industry Dairy Products Industry Food Manufacturing Industry 

 Mach.  Build.  Mach.& 
Build.  

Mach.  Build.  Mach.& 
Build.  

Mach.  Build.  Mach.& 
Build.  

Spikes % of 
Plants 

% of 
Plants 

% of 
Plants 

% of 
Plants 

% of 
Plants 

% of 
Plants 

% of 
Plants 

% of 
Plants 

% of 
Plants 

1 3.92 1.47 3.43 1.227 0.613 0.613 0.406 0.162 0.162 
2 4.9 0.98 3.92 4.908 0.613 6.135 7.299 1.217 5.677 
3 22.06 2.45 12.26 14.11 3.067 7.362 24.412 2.758 15.896 
4 32.84 4.9 25.98 28.834 3.067 20.245 30.495 4.785 28.467 
5 23.04 4.9 24.02 28.221 4.908 25.153 24.006 8.921 24.655 
6 8.33 12.26 16.67 17.791 12.883 27.607 10.138 9.895 15.491 
7  11.77 8.33  10.429 11.043  11.273 7.461 
8  12.75   15.951   14.355  
9  18.14   12.883   12.247  
10  10.78   9.202   11.192  
11  7.35   9.816   7.38  
12        5.515  
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Table 4. Coefficient Estimates from Least Squares and Levinsohn and Petrin (LP) 
Approaches across Industries 
 
 Meat Products 

Industry 
Dairy Products 
Industry 

All Food Industry 

 OLS LP OLS LP OLS LP 
Capital 0.0231 

(0.0061) 
0.0700 
(0.0324) 

0.0455 
(0.0112) 

0.0800 
(0.0321) 

0.0735 
(0.0050) 

0.0100 
(0.0050) 

Labor 0.0741 
(0.0205) 

0.0654 
(0.0197) 

0.1286 
(0.0158) 

0.1123 
(0.0133) 

0.1840 
(0.0080) 

0.1784 
(0.0081) 

Material 0.7621 
(0.0208) 

0.7563 
(0.0228) 

0.7687 
(0.0230) 

0.7649 
(0.0219) 

0.6532 
(0.0097) 

0.6441 
(0.0091) 

Energy 0.1259 
(0.0217) 

0.1100 
(0.1268) 

0.0687 
(0.0225) 

0.0900 
(0.1046) 

0.0705 
(0.0089) 

0.1000 
(0.0173) 

Note: Standard errors are in parentheses.  The Wald tests of constant returns to scale from Levinsohn and 
Petrin (2003) method are as follows; for meat product industry Chi-squared=0.02 (p=0.8949), for dairy 
products industry Chi-squared=0.27 (p=0.6024), and for all food industry Chi-squared=18.71 (p=0.0000). 
These results show that meat and dairy product industries have CRTS and all food industry have DRTS.  
 
 
 
 
Table 5. TFP Growth across Industries and Quartile Groups 
 

Quartile Mean TFP Growth 
in Meat 

Mean TFP Growth 
in Dairy 

Mean TFP Growth 
in All Food 

Lowest (I) -0.1826 -0.1836 -0.2056 
Lower Middle (II) -0.0291 -0.0383 -0.0272 
Upper Middle (III) 0.0228 0.0094 0.0345 
Highest (IV) 0.1905 0.1547 0.2149 
ALL 0.0005 -0.0142 0.0042 
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Table 6. Number of Observations and Plants, Organized by Plant Size Quartile, in the 
Entire Food Industry 
 

Average 
Size 
Quartiles 

Number of 
Observations 

Number of 
Plants 

Average Size 
by 
Employment 
Index 
(Size variable) 

Average Size 
by 
Employment 
Index as % of 
Total Average 
Employment 
Index 

Average 
Employment 

0-25% 
Quartile  
Group (A) 

7392 308 1754.75 4.4% 68.08 

25-50% 
Quartile 
Group (B) 

7392 308 5468.52 13.6% 212.39 

50-75 % 
Quartile 
Group (C) 

7416 309 9806.55 24.3% 379.68 

75-100% 
Quartile 
Group (D)  

7392 308 23255.97 57.7% 885.18 

  



 35

 
Table 7. Number of Observations and Plants, Organized by Plant Ages, in the Entire Food 
Industry 
 

Plant Age* Number of 
Observations 

Number of 
Plants 

Fraction in the 
Data set 

Average 
Employment 

Age 0 
(Newborn Plants 
in1972) 

4224 176 14 % 291.53 

Age 1  
(5-year-old plants in 
1972) 

2808 117 9.5 % 360.10 

Age 2 
(9-year-old plants in 
1972) 

22464 936 76.2 % 407.57 

 
*The first year of panel data, 1972, is taken as a benchmark to find plant age.  
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Table 8. Regression Results of Investment Spike Effects on TFP Growth in the Meat Products Industry 
  Productivity Growth Regression without plant fixed effects Productivity Growth Regression with plant fixed effects 
 Smallest 

Quartile Ranked 
Plants 
(1) 

Medium Quartile 
Ranked Plants 
 
(2) 

The Highest Quartile 
Ranked Plants 
 
(3) 

All Plants 
Together 
 
(4) 

Smallest 
Quartile Ranked 
Plants 
(5) 

Medium Quartile 
Ranked Plants 
 
(6) 

Highest Quartile 
Ranked Plants 
 
(7) 

All Plants 
Together 
 
(8) 

Investment Age         
0 years old 0.02626 

(0.02462) 
0.00496 
(0.00455) 

-0.00089 
(0.02316) 

0.01174 
(0.01014) 

0.05158* 
(0.02745) 

0.01025** 
(0.00479) 

-0.00550 
(0.03307) 

0.02059 
(0.01332) 

1 year old 0.04479* 
(0.02382) 

0.03339*** 
(0.00425) 

-0.04203** 
(0.02125) 

0.02924*** 
(0.00986) 

0.06646*** 
(0.02569) 

0.03818*** 
(0.00441) 

-0.04497 
(0.02909) 

0.03760*** 
(0.01213) 

2 years old 0.06794*** 
(0.01850) 

0.03137*** 
(0.00412) 

-0.01628 
(0.02492) 

0.03046*** 
(0.00875) 

0.08482*** 
(0.02464) 

0.03796*** 
(0.00439) 

-0.03625 
(0.03039) 

0.03875*** 
(0.01215) 

3 years old 0.07504*** 
(0.02225) 

0.02787*** 
(0.00360) 

-0.03373 
(0.02537) 

0.02991*** 
(0.00856) 

0.08720*** 
(0.02643) 

0.03498*** 
(0.00478) 

-0.03593 
(0.03215) 

0.03851*** 
(0.01309) 

4 years old 0.07850*** 
(0.02149) 

0.03804*** 
(0.00392) 

-0.03542 
(0.02832) 

0.04188*** 
(0.01045) 

0.07667*** 
(0.02773) 

0.04305*** 
(0.00519) 

-0.05286 
(0.03338) 

0.04895*** 
(0.01395) 

5 years old 0.08456*** 
(0.02108) 

0.03734*** 
(0.00408) 

-0.02396 
(0.02568) 

0.04583*** 
(0.01006) 

0.11152*** 
(0.03058) 

0.04343*** 
(0.00536) 

-0.03775 
(0.03469) 

0.05320*** 
(0.01462) 

6 years old 0.04071 
(0.02868) 

0.03037*** 
(0.00399) 

-0.02916 
(0.02409) 

0.02966** 
(0.01266) 

0.05918* 
(0.03068) 

0.03405*** 
(0.00564) 

-0.03258 
(0.03656) 

0.03536** 
(0.01526) 

7 years old 0.07214*** 
(0.02163) 

0.02947*** 
(0.00394) 

0.00635 
(0.04035) 

0.03077** 
(0.01324) 

0.07992** 
(0.03167) 

0.03379*** 
(0.00547) 

-0.01217 
(0.04105) 

0.03628** 
(0.01559) 

8 years old 0.06331*** 
(0.01937) 

0.02941*** 
(0.00425) 

-0.01344 
(0.02870) 

0.03843*** 
(0.01244) 

0.06296** 
(0.03203) 

0.03471*** 
(0.00578) 

-0.03456 
(0.03814) 

0.04371*** 
(0.01577) 

Plant Age         
Age0 0.00009 

(0.01294) 
0.00057 
(0.00209) 

0.00422 
(0.01680) 

-0.00094 
(0.00382) 

X X X X 
 

Age1 -0.01258 
(0.02194) 

-0.00067 
(0.00369) 

0.04624 
(0.04239) 

0.00887 
(0.00894) 

X X X X 
 

Plant Size         
Medium 0.02971 

(0.01931) 
0.00128 
(0.00282) 

-0.07170*** 
(0.02575) 

-0.00337 
(0.00513) 

-0.09445 
(0.24651) 

0.02441 
(0.02513) 

X 0.03945 
(0.08746) 

Medium-Large 0.01219 
(0.02195) 

0.00064 
(0.00265) 

-0.02521 
(0.03064) 

0.00591 
(0.00617) 

-0.00481 
(0.28306) 

0.05298 
(0.03648) 

0.26828 
(0.22166) 

0.10542 
(0.11406) 

Largest 0.01745 
(0.01963) 

0.00583** 
(0.00256) 

-0.03371 
(0.02947) 

0.01032* 
(0.00541) 

0.10174 
(0.31533) 

X 0.27279 
(0.34076) 

0.10313 
(0.15239) 

N 1113 2255 1116 4484 1113 2255 1116 4484 
 
Note: Coefficients from fixed effect and without fixed effect regressions are reported. Robust standard errors are in parenthesis. Each regression includes 4-digit SIC industry 
controls.  The omitted categories are as follows: investment age 9+, the oldest plant age category, the smallest size category, SIC=2017 (Poultry and Egg Processing). ***, **, 
and * represent 1, 5, and 10% significance, respectively.  X represents variables that are dropped from the fixed effect regression since these regressions measure within-plant 
productivity variation (here, the plant age and some size categories are dropped from the fixed effect regressions).  



 37

Table 9. Regression Results of Investment Spike Effects on TFP Growth in the Dairy Products Industry 
  Productivity Growth Regression without plant fixed effects Productivity Growth Regression with plant fixed effects 
 Smallest Quartile 

Ranked Plants 
(1) 

Medium Quartile 
Ranked Plants 
(2) 

Highest Quartile 
Ranked Plants 
(3) 

All Plants 
Together 
(4) 

Smallest Quartile 
Ranked Plants 
(5) 

Medium Quartile 
Ranked Plants 
(6) 

Highest Quartile 
Ranked Plants 
(7) 

All Plants 
Together 
(8) 

Investment Age         
0 years old -0.01804 

(0.02132) 
0.00834** 
(0.00381) 

0.00905 
(0.01636) 

0.00411 
(0.00964) 

-0.01264 
(0.02317) 

0.01055** 
(0.00416) 

0.02956 
(0.02411) 

0.00714 
(0.01147) 

1 year old 0.01939 
(0.02020) 

0.01703*** 
(0.00295) 

0.02197 
(0.01802) 

0.02603*** 
(0.00963) 

0.03234 
(0.02201) 

0.01944*** 
(0.00384) 

0.03717* 
(0.02231) 

0.02942*** 
(0.01072) 

2 years old 0.03315** 
(0.01617) 

0.02361*** 
(0.00305) 

-0.00120 
(0.01523) 

0.03095*** 
(0.00793) 

0.02349 
(0.02285) 

0.02636*** 
(0.00387) 

0.00132 
(0.02149) 

0.03378*** 
(0.01079) 

3 years old -0.00026 
(0.02312) 

0.01992*** 
(0.00335) 

-0.01237 
(0.01449) 

0.00414 
(0.00959) 

-0.00232 
(0.02315) 

0.02088*** 
(0.00410) 

0.02305 
(0.02513) 

0.00820 
(0.01153) 

4 years old 0.05711*** 
(0.01547) 

0.02277*** 
(0.00327) 

0.05227** 
(0.02597) 

0.03809*** 
(0.01073) 

0.06285*** 
(0.02305) 

0.02487*** 
(0.00449) 

0.08291*** 
(0.02569) 

0.04115*** 
(0.01215) 

5 years old 0.04754** 
(0.02066) 

0.02323*** 
(0.00357) 

0.02748 
(0.03648) 

0.03770*** 
(0.01192) 

0.04815* 
(0.02697) 

0.02295*** 
(0.00446) 

0.04102 
(0.02657) 

0.04001*** 
(0.01272) 

6 years old -0.02944 
(0.03665) 

0.0256*** 
(0.00328) 

0.03915 
(0.03189) 

-0.00344 
(0.01666) 

-0.02046 
(0.02478) 

0.02675*** 
(0.00484) 

0.07287** 
(0.03241) 

-0.00138 
(0.01353) 

7 years old 0.00451 
(0.02647) 

0.02206*** 
(0.00429) 

0.06244* 
(0.03436) 

0.04217*** 
(0.01506) 

-0.00479 
(0.03009) 

0.02159*** 
(0.00505) 

0.06401** 
(0.02793) 

0.04406*** 
(0.01415) 

8 years old -0.01761 
(0.03249) 

0.02525*** 
(0.00405) 

0.07477* 
(0.04141) 

0.02194 
(0.01947) 

-0.01736 
(0.02843) 

0.02598*** 
(0.00544) 

0.08875*** 
(0.03172) 

0.02301 
(0.01482) 

Plant Age         
Age0 0.00043 

(0.01721) 
0.00109 
(0.00238) 

0.00508 
(0.02055) 

-0.00176 
(0.00292) 

X X X X 

Age1 -0.00701 
(0.01524) 

-0.00290 
(0.00288) 

0.00563 
(0.03057) 

-0.00262 
(0.00464) 

X X X X 

Plant Size         
Medium 0.00433 

(0.01606) 
0.00004 
(0.00240) 

-0.00349 
(0.01947) 

-0.00389 
(0.00308) 

-0.07025 
(0.19845) 

-0.13372*** 
(0.04607) 

-0.13830 
(0.11643) 

-0.10798 
(0.08327) 

Medium-Large -0.00477 
(0.01742) 

0.00237 
(0.00262) 

-0.02238 
(0.01872) 

-0.00587* 
(0.00355) 

-0.03628 
(0.30315) 

-0.11672** 
(0.04960) 

-0.21734 
(0.23927) 

-0.08844 
(0.10637) 

Largest -0.00489 
(0.01786) 

0.00389 
(0.00239) 

0.00742 
(0.02065) 

0.00203 
(0.00341) 

0.10755 
(0.33194) 

-0.04808 
(0.05382) 

-0.01447 
(0.27555) 

-0.02672 
(0.12148) 

N 887 1804 890 3581 887 1804 890 3581 
 
Note: Coefficients from fixed effect and without fixed effect regressions are reported. Robust standard errors are in parenthesis. Each regression includes 4-digit SIC 
industry controls.  The omitted categories are as follows: investment age 9+, the oldest plant age category, the smallest size category, SIC=2021 (Creamery Butter). ***, 
**, and * represent 1, 5, and 10% significance, respectively.  X represents variables that are dropped from the fixed effect regression since these regressions measure 
within-plant productivity variation (here, the plant age categories are dropped from the fixed effect regressions).  
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Table 10. Regression Results of Investment Spike Effects on TFP Growth in the Food Manufacturing Industry 
  Productivity Growth Regression without plant fixed effects Productivity Growth Regression with plant fixed effects 
 Smallest Quartile 

Ranked Plants 
(1) 

Medium Quartile 
Ranked Plants 
(2) 

Highest Quartile 
Ranked Plants 
(3) 

All Plants 
Together 
(4) 

Smallest Quartile 
Ranked Plants 
(5) 

Medium Quartile 
Ranked Plants 
(6) 

Highest Quartile 
Ranked Plants 
(7) 

All Plants 
Together 
(8) 

Investment Age         
0 years old 0.00259 

(0.00875) 
0.00464*** 
(0.00145) 

0.02094** 
(0.00964) 

0.00922** 
(0.00427) 

0.01055 
(0.01017) 

0.00545*** 
(0.00137) 

0.02499** 
(0.01132) 

0.01078** 
(0.00519) 

1 year old 0.00715 
(0.00819) 

0.00576*** 
(0.00128) 

-0.00727 
(0.01286) 

0.00821* 
(0.00489) 

0.02097** 
(0.00972) 

0.00710*** 
(0.00128) 

-0.01726* 
(0.01054) 

0.00962** 
(0.00489) 

2 years old 0.02226*** 
(0.00855) 

0.00743*** 
(0.00118) 

-0.01502* 
(0.00784) 

0.00714* 
(0.00389) 

0.03863*** 
(0.00977) 

0.00836*** 
(0.00128) 

-0.02405** 
(0.01060) 

0.00836* 
(0.00492) 

3 years old 0.00178 
(0.01251) 

0.00777*** 
(0.00122) 

-0.02901*** 
(0.00786) 

0.00068 
(0.00459) 

0.01527 
(0.01056) 

0.00866*** 
(0.00136) 

-0.03208*** 
(0.01142) 

0.00223 
(0.00526) 

4 years old 0.02451** 
(0.00974) 

0.01111*** 
(0.00125) 

-0.01379 
(0.00879) 

0.00447 
(0.00459) 

0.03014*** 
(0.01047) 

0.01255*** 
(0.00147) 

-0.02218* 
(0.01207) 

0.00575 
(0.00554) 

5 years old 0.04655*** 
(0.00827) 

0.01042*** 
(0.00134) 

0.00239 
(0.01283) 

0.02683*** 
(0.00513) 

0.0648*** 
(0.01159) 

0.01115*** 
(0.00153) 

0.00384 
(0.01193) 

0.02812*** 
(0.00576) 

6 years old 0.01216 
(0.01473) 

0.00754*** 
(0.00147) 

-0.01638* 
(0.01003) 

0.00496 
(0.00585) 

0.02542** 
(0.01184) 

0.00823*** 
(0.00158) 

-0.01627 
(0.01288) 

0.00632 
(0.00601) 

7 years old 0.02251** 
(0.01085) 

0.00882*** 
(0.00154) 

0.00559 
(0.01172) 

0.01475** 
(0.00595) 

0.02623** 
(0.01207) 

0.00959*** 
(0.00166) 

0.00471 
(0.01301) 

0.01583** 
(0.00621) 

8 years old 0.01374 
(0.01203) 

0.00941*** 
(0.00158) 

0.01181 
(0.01167) 

0.01192* 
(0.00614) 

0.01012 
(0.01268) 

0.00953*** 
(0.00167) 

0.00427 
(0.01402) 

0.01256** 
(0.00642) 

Plant Age         
Age0 -0.00905 

(0.00843) 
-0.00141 
(0.00097) 

0.01345 
(0.00932) 

0.00203 
(0.00173) 

X X X X 

Age1 -0.02956** 
(0.01157) 

-0.00112 
(0.00112) 

0.02228* 
(0.01294) 

-0.00321 
(0.00228) 

X X X X 

Plant Size         
Medium 0.00586 

(0.00876) 
0.00216* 
(0.00121) 

-0.02406** 
(0.01008) 

-0.00225 
(0.00162) 

X X X X 

Medium-Large 0.00679 
(0.01066) 

0.00087 
(0.00123) 

-0.03127*** 
(0.01198) 

-0.00386** 
(0.00182) 

X X X X 

Largest 0.01823* 
(0.01088) 

0.00413*** 
(0.00133) 

-0.03464*** 
(0.01273) 

0.00199 
(0.00202) 

X X X X 

N 7040 14106 7044 28190 7040 14106 7044 28190 
 
Note: Coefficients from fixed effect and without fixed effect regressions are reported. Robust standard errors are in parenthesis. Each regression includes 4-digit SIC 
industry controls.  The omitted categories are as follows: investment age 9+, the oldest plant age category, the smallest size category, SIC=2011(Meat Packing). ***, **, 
and * represent 1, 5, and 10% significance, respectively.  X represents variables that are dropped from the fixed effect regression since these regressions measure 
within-plant productivity variation.  
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Table 11. Logit Results: The Probability of Having an Investment Spike in the Meat Products Industry.  
 Medium Quartile Ranked Plants 

(1) 
All Plants Together 
(2) 

 Coefficients Marginal Effect Coefficients Marginal Effect 
Investment Age     
0 years old 3.13145*** 

(0.25907) 
0.45788*** 
(0.05283) 

2.56954*** 
(0.15763) 

0.40849*** 
(0.03399) 

1 year old 1.62768*** 
(0.28705) 

0.15104*** 
(0.03902) 

1.32679*** 
(0.17038) 

0.14937*** 
(0.02599) 

2 years old 1.55627*** 
(0.29035) 

0.14036*** 
(0.03797) 

1.09005*** 
(0.17971) 

0.11389*** 
(0.02467) 

3 years old 1.26645*** 
(0.32776) 

0.10492*** 
(0.03857) 

0.70623*** 
(0.21144) 

0.06555*** 
(0.02418) 

4  years old and more  -0.10142 
(0.34735) 

-0.00502 
(0.01678) 

-0.11052 
(0.18881) 

-0.00779 
(0.01298) 

Plant Age     
Age 0 -0.03697 

(0.32544) 
-0.00186 
(0.01617) 

0.11412 
(0.20453) 

0.00849 
(0.01568) 

Age2 -0.05752 
(0.28156) 

-0.00295 
(0.0146) 

0.04011 
(0.17709) 

0.00288 
(0.01262) 

Plant Size     
Medium -0.10103 

(0.24234) 
-0.00501 
(0.01174) 

-0.05214 
(0.15269) 

-0.00373 
(0.01079) 

Medium-Large -0.28799 
(0.24773) 

-0.01375 
(0.01113) 

-0.10066 
(0.15403) 

-0.00712 
(0.01067) 

The Largest -0.22068 
(0.24838) 

-0.01068 
(0.01147) 

-0.31314* 
(0.16266) 

-0.02122* 
(0.01032) 

Productivity -1.32531** 
(0.53132) 

-0.06724** 
(0.0271) 

-0.80977*** 
(0.25924) 

-0.05849*** 
(0.01868) 

N 2152  4285  
 
Note: Coefficients from logit regression are reported. Robust standard errors are in parenthesis. Each regression includes 4-digit SIC industry controls.  Due to 
confidentiality, some variables are combined (collapsed together). A one period lag productivity measurement is used here.  The omitted categories are as follows: 
investment age 9+, the medium plant age category, the smallest size category, SIC=2017 (Poultry and Egg Processing).  ***, **, and * represent 1, 5, and 10% 
significance, respectively.   
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Table 12. Logit Results: The Probability of Having an Investment Spike in the Dairy Products Industry.  
 Medium Quartile Ranked Plants 

(1) 
All Plants Together 
(2) 

 Coefficients Marginal Effect Coefficients Marginal Effect 
Investment Age     
0 years old 2.68687*** 

(0.29713) 
0.43916*** 
(0.06336) 

2.53666*** 
(0.19385) 

0.44955*** 
(0.04188) 

1 year old 1.58129*** 
(0.30938) 

0.19529*** 
(0.05211) 

1.27597*** 
(0.20715) 

0.17085*** 
(0.03563) 

2 years old 1.24220*** 
(0.32734) 

0.13909*** 
(0.04858) 

1.32163*** 
(0.20688) 

0.17952*** 
(0.03629) 

3 years old 0.95810*** 
(0.36037) 

0.09916** 
(0.04787) 

0.73096*** 
(0.24326) 

0.08486** 
(0.03412) 

4 & 5 years old  0.70743** 
(0.33725) 

0.06532* 
(0.03698) 

0.72883*** 
(0.21367) 

0.08194*** 
(0.02821) 

6 years old and more 0.14789 
(0.37571) 

0.01155 
(0.03054) 

0.42498* 
(0.22353) 

0.04378* 
(0.02546) 

Plant Age     
Age0 -0.02013 

(0.23445) 
-0.00149 
(0.01736) 

0.03743 
(0.14773) 

0.00347 
(0.01385) 

Age1 -0.15293 
(0.28948) 

-0.01088 
(0.01955) 

-0.05693 
(0.18695) 

-0.00514 
(0.01657) 

Plant Size     
Medium 0.26202 

(0.24333) 
0.02084 
(0.0205) 

0.02402 
(0.15463) 

0.00222 
(0.01435) 

Medium-Large 0.12938 
(0.23979) 

0.00994 
(0.0189) 

-0.00861 
(0.15605) 

-0.00079 
(0.01429) 

Largest 0.19048 
(0.24495) 

0.01483 
(0.01982) 

-0.12021 
(0.16012) 

-0.01079 
(0.01403) 

Productivity -1.45948*** 
(0.54372) 

-0.10926*** 
(0.04056) 

-0.61373* 
(0.31883) 

-0.05641* 
(0.02925) 

N 1723  3424  
     

 
Note: Coefficients from the logit regression are reported. Robust standard errors are in parenthesis. Each regression includes 4-digit SIC industry controls.  Due to 
confidentiality, some variables are combined (collapsed together). A one period lag productivity measurement is used here. The omitted categories are as follows: 
investment age 9+, the oldest plant age category, the smallest size category, SIC=2021 (Creamery Butter). ***, **, and * represent 1, 5, and 10% significance, 
respectively.   
  



 41

Table 13. Logit Results: The Probability of Having an Investment Spike in the Food Manufacturing Industry.  
 Smallest Quartile Ranked Plants 

(1) 
Medium Quartile Ranked Plants 
(2) 

Highest Quartile Ranked Plants 
(3) 

All Plants Together 
 
(4) 

 Coefficients Marginal Effect Coefficients Marginal Effect Coefficients Marginal 
Effect 

Coefficients Marginal Effect 

Investment Age         
0 years old 1.21209*** 

(0.28737) 
0.12131*** 
(0.04254) 

1.88303*** 
(0.13308) 

0.22141*** 
(0.02438) 

1.66235*** 
(0.22984) 

0.19355*** 
(0.04198) 

1.45631*** 
(0.12522) 

0.15332*** 
(0.02026) 

1 year old 0.50097** 
(0.20247) 

0.03645** 
(0.01751) 

1.34515*** 
(0.11824) 

0.12275*** 
(0.01513) 

0.60850*** 
(0.18006) 

0.04487*** 
(0.01607) 

0.86477*** 
(0.08919) 

0.06827*** 
(0.00912) 

2 year old 0.69181*** 
(0.16889) 

0.05337*** 
(0.01618) 

1.19689*** 
(0.12074) 

0.10330*** 
(0.01424) 

0.76718*** 
(0.16740) 

0.05948*** 
(0.01626) 

0.98203*** 
(0.08226) 

0.07990*** 
(0.00883) 

3 year old 0.63429*** 
(0.17574) 

0.04799*** 
(0.01625) 

1.02103*** 
(0.13101) 

0.08374*** 
(0.01437) 

0.38414** 
(0.19496) 

0.02614* 
(0.01508) 

0.76293*** 
(0.09115) 

0.05791*** 
(0.00873) 

4 year old  0.42333** 
(0.18377) 

0.02962** 
(0.01478) 

0.73259*** 
(0.15104) 

0.05451*** 
(0.01422) 

0.62932*** 
(0.19081) 

0.04715*** 
(0.01754) 

0.63707*** 
(0.09892) 

0.04643*** 
(0.00886) 

5 year old 0.18100 
(0.21819) 

0.01163 
(0.01497) 

0.43391** 
(0.17262) 

0.02882** 
(0.01334) 

0.32746 
(0.21063) 

0.02189 
(0.01577) 

0.32573*** 
(0.11323) 

0.02114*** 
(0.00824) 

6 year old 0.03819 
(0.23786) 

0.00233 
(0.0147) 

0.26186 
(0.18902) 

0.01628 
(0.01294) 

-0.13279 
(0.26504) 

-0.00747 
(0.01417) 

0.09466 
(0.12856) 

0.00563 
(0.00792) 

7 year old -0.13615 
(0.25674) 

-0.00776 
(0.01389) 

0.08337 
(0.21424) 

0.00484 
(0.01284) 

-0.06427 
(0.26440) 

-0.00371 
(0.01489) 

-0.01473 
(0.13916) 

-0.00084 
(0.00789) 

8 year old  -0.07089 
(0.26261) 

-0.00414 
(0.01493) 

0.10289 
(0.21434) 

0.00602 
(0.01304) 

0.09620 
(0.26563) 

0.00591 
(0.01693) 

0.07482 
(0.14016) 

0.00442 
(0.00852) 

Plant Age         
Age0 0.14137 

(0.14863) 
0.00888 
(0.00976) 

-0.01956 
(0.10334) 

-0.00109 
(0.00573) 

0.27838* 
(0.14433) 

0.01799* 
(0.01014) 

0.13044* 
(0.07393) 

0.00779* 
(0.0046) 

Age1 0.00269 
(0.17915) 

0.00016 
(0.01078) 

0.03991 
(0.12085) 

0.00227 
(0.00698) 

0.33462** 
(0.16833) 

0.02233* 
(0.01256) 

0.13704 
(0.08622) 

0.00825 
(0.00545) 

Plant Size         
Medium -0.18471 

(0.17236) 
-0.01069 
(0.00963) 

-0.29960** 
(0.12381) 

-0.01573*** 
(0.00607) 

0.09464 
(0.16423) 

0.00571 
(0.01011) 

-0.15380* 
(0.08644) 

-0.00853* 
(0.00464) 

Medium-Large -0.17156 
(0.18932) 

-0.00993 
(0.01057) 

-0.09006 
(0.13309) 

-0.00496 
(0.00718) 

0.04702 
(0.18629) 

0.00281 
(0.01125) 

-0.13312 
(0.09537) 

-0.00741 
(0.00516) 

Largest -0.29188 
(0.20362) 

-0.01640 
(0.0107) 

-0.43950*** 
(0.14828) 

-0.02264*** 
(0.00701) 

-0.06010 
(0.20797) 

-0.00351 
(0.01198) 

-0.28621*** 
(0.10504 

-0.01544*** 
(0.00533) 

Productivity -1.69693** 
(0.71877) 

-0.10189** 
(0.04302) 

-0.66817** 
(0.30300) 

-0.03751** 
(0.01701) 

-1.32799*** 
(0.49753) 

-0.07856*** 
(0.02931) 

-0.55028** 
(0.27791) 

-0.03155** 
(0.01592) 

 5728  12609  5989  24372  
Note: Coefficients from the logit regression are reported. Robust standard errors are in parenthesis. Each regression includes 4-digit SIC industry controls.  For the 
productivity measure, a four year moving average was used for the smallest, a two year moving average for the medium, a three year moving average for the highest 
and all food plants. The omitted categories are as follows: investment age 9+, the oldest plant age category, the smallest size category, SIC=2011 (Meat Packing). ***, 
**, and * represent 1, 5, and 10% significance, respectively.  
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Figure 1a.  Investment Age and Productivity in Meat Products 
Industry, w ith Fixed Efects 
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Figure 1b.  Investment Age and Productivity in Dairy 
Products Industry, w ith Fixed Efects 
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Figure 1c.  Investment Age and Productivity in Food 
Manufacturing Industry, w ith Fixed Efects 
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Figure 2a.  Probability of Having an Investment Spike in Meat 
Products Industry, without Plant Fixed Effects 
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Figure 2b.  Probability of Having an Investment Spike in 
Dairy Products Industry, w ithout Plant Fixed Effects
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Figure 2c.  Probability of Having an Investment Spike in 
Food Manufacturing Industry, w ithout Plant Fixed Effects
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ENDNOTES 

 
1 Investment spikes are defined typically as an absolute spike when the investment rate exceed 20% 

and as a relative spike when the investment rate exceeds the median investment rate by a factor 

which is typically set between 1.5 and 3.75 [see Power (1998), Cooper, Haltiwanger and Power 

(1999)] of each plant. 

2 The CM, which is conducted every five years, samples every U.S. manufacturing plant.  The ASM 

continuously samples plants with more than 250 employees.  Continuous data exist for large plants 

and for small plants that are selected to be part of the ASM panel.  Small plants have missing 

information for all years except CM, and ASM panel years if the plant is selected to be part of an 

ASM; therefore, comprehensive time series information on small plants is not available.   

3 Use of balanced panel precludes us to model the entry/exit process which may create a selection 

bias.  However, our decision to use balanced panel based on the difficult measurement issues for 

capital variable in the unbalanced panel setting.  Other studies which face similar capital 

measurement difficulties use balanced panel (Caballero, Engel, and Haltiwanger (1995), Cooper, 

Haltiwanger and Power (1999), Cooper and Haltiwanger (2006).  

4 We also tried absolute spike definition. Our results were not strikingly different across definitions.    

5 Power (1994) defines spikes as abnormally high investment episodes relative to the typical 

investment rate experienced within a plant and considers various hurdles over the median 

investment rates (such as 1.75, 2.5, 3.5 times of median investment rate) to reflect abnormally high 

investment episodes.  An excellent extensive investigation of these alternative specifications of 

investment spikes and their comparisons can be found in this paper.   

6 Confidentiality restrictions preclude us to report information for plants which present greater spike 

episodes than the ones that are reported in this table. 
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7 The variable construction is described in more detail in the Appendix.   

8 We tried material and energy inputs as possible proxy variables in specifying the Leveinsohn-Petrin 

estimation.  Based on the characteristics of the data (less nonzero values in energy) and the results 

from least squares/Leveinsohn-Petrin coefficients on variable inputs, we have chosen energy input 

as a proxy.  

9 To see if the least squares coefficient on capital will be biased upward or downward depends on 

the degree of correlation among inputs and the productivity shocks (Levinsohn and Petrin (2003)).  

They suggest that if capital also respond to the productivity shock, we also see upwardly biased 

capital coefficient, however, there might be situation as capital is not correlated with the period’s 

transmitted shock (but variable inputs are) or capital is much less weakly correlated with the 

productivity shock than the variable inputs are, then, the least squares estimate on capital is likely to 

be biased downward (Levinsohn and Petrin (2003)). Our results show that, in meat and dairy 

industries the least squares estimate is less than the Levinsohn-Petrin estimate which indicates the 

least squares coefficient on capital is biased downward and in all food industry the least squares 

estimate is higher than the LP estimate which indicates the least squares coefficient on capital is 

biased upward.   

10 Our industry dummies are at the 4-digit SIC level, which shows a 4-digit output composition.  We 

have five such industries for Meat and Dairy products, and 51 for the entire food industry. 

11 See Appendix for variable construction. 

12 In plant level estimation, if there is an unobserved heterogeneity across plants, the estimated 

coefficient using least squares without controlling for the fixed effects yields biased results. 

Therefore, we run a least squares regression with plant-level fixed effects to eliminate this potential 

bias.  
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13 When we draw our figures, we use 0 for insignificant coefficients to see trends in how investment 

age affects productivity. 

14 Investment age coefficients illustrate the relationship between productivity growth and investment 

age for the average plant relative to the omitted investment age group 9+.   

15 These two sub-industries differ in two important aspects.  The first is by the role of government 

pricing regulation.  Where meat products are free from direct government pricing influence, the 

dairy products sector has the price of raw material (milk) regulated and regulation influencing the 

pricing of fluid milk prices in some regions through marketing orders.  The second aspect is in terms 

of technology differences between the two sub-industries. The meat products sub-industry prepares 

a range of products that flow off a common line of production as products are further processed 

(e.g., cuts of meat processed into lunch meats, sausages).  Milk products tend to involve a wide range 

of different technologies (e.g., cheese-making, yogurt, ice cream) that have specialized equipment 

with milk entering in these specific sub-product processes at a less processes state in a fairly 

unprocessed form.) 

16 The TFP level used is the value generated accounting for the productivity shocks. 

17 The patterns from these figures show the variation in the probability of investment spikes with 

respect to investment age across plants.  The coefficients here are relative to the omitted investment 

age group 9+.   

18 Due to the confidentially reasons, some dummy variables were collapsed into broader categories.  

Further, Census disclosures guidelines prevent revealing the estimates of the meat product highest 

and lowest ranked plants. 

19 We still find a decreasing hazard function even though we control for unobserved plant fixed 

effects in the meat industry.   
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20 The obvious drawback of the value added approach is the assumption that material inputs are 

separable from other inputs, and cannot be a source of productivity growth.  Most of the food 

industries are characterized as being materials intensive.  The ratio of material cost to value of 

shipments in the U.S. food manufacturing sector exceeds 60%.  In some food-manufacturing 

industries such as meat products and the fats and oils industries, this ratio is even reaching 80%.  

Therefore, considering materials as a component of the production function specification impacts 

the productivity measurement results.   

21 This method is used by researchers who use the Census Bureau’s LRD to generate the real capital 

stock series such as Cooper, Haltiwanger and Power (1999), and Dwyer (1996).  




