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Abstract 

 
In this paper, we investigate the impact of environmental regulation on productivity using 
a Cobb-Douglas production function framework.  Estimating the effects of regulation on 
productivity can be done with a top-down approach using data for broad sectors of the 
economy, or a more disaggregated bottom-up approach.  Our study follows a bottom-up 
approach using data from the U.S. paper, steel, and oil industries.  We measure 
environmental regulation using plant-level information on pollution abatement 
expenditures, which allows us to distinguish between productive and abatement 
expenditures on each input.  We use annual Census Bureau information (1979-1990) on 
output, labor, capital, and material inputs, and pollution abatement operating costs and 
capital expenditures for 68 pulp and paper mills, 55 oil refineries, and 27 steel mills.   
 
We find that pollution abatement inputs generally contribute little or nothing to output, 
especially when compared to their ‘productive’ equivalents.  Adding an aggregate 
pollution abatement cost measure to a Cobb-Douglas production function, we find that a 
$1 increase in pollution abatement costs leads to an estimated productivity decline of 
$3.11, $1.80, and $5.98 in the paper, oil, and steel industries respectively.  These findings 
imply substantial differences across industries in their sensitivity to pollution abatement 
costs, arguing for a bottom-up approach that can capture these differences.  Further 
differentiating plants by their production technology, we find substantial differences in 
the impact of pollution abatement costs even within industries, with higher marginal 
costs at plants with more polluting technologies.  Finally, in all three industries, plants 
concentrating on change-in-production-process abatement techniques have higher 
productivity than plants doing predominantly end-of-line abatement, but also seem to be 
more affected by pollution abatement operating costs. Overall, our results point to the 
importance using detailed, disaggregated analyses, even below the industry level, when 
trying to model the costs of forcing plants to reduce their emissions. 
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1. Introduction 

 Environmental regulation has become increasingly stringent over time, driven by 

a concern that the unregulated process of economic growth was becoming unsustainable, 

causing too much damage to the environment and imposing too many costs on society in 

terms of air and water pollution.  Restrictions on business activity grew from primarily 

local regulations on smoke and fumes to state-level regulations, and finally expanded to 

national regulation in the 1970s in the U.S. and other developed countries.  In those cases 

where air or water pollution spilled across national borders there have also been 

international agreements to control pollution (e.g. dealing with acid rain concerns in 

Europe and between the U.S. and Canada). These regulations have been remarkably 

effective in improving the overall sustainability of the economy, achieving both 

continued economic growth and reductions in most forms of air and water pollution. 

 In recent years, sustainability issues have shifted to an even larger playing field, 

with concerns about global warming and climate change, where emissions of greenhouse 

gases from one country could affect all other countries.  There has been a continuing 

debate about the appropriate policy response (if any): the Kyoto Protocol, designed as an 

initial response to global warming, has not been universally accepted.  Uncertainty about 

the likelihood and costs of global warming has dominated the discussions, but there has 

also been considerable uncertainty about the costs of policies designed to reduce 

emissions.  The detailed examination of the costs of reducing emissions of traditional 

pollutants we present here may help identify important factors to consider in the broader 

global context. 

 A variety of methods have been used to measure pollution abatement costs.  The 



 
 

Pollution Abatement Cost and Expenditure Survey indicates that pollution abatement 

operating costs at U.S. manufacturing plants grew from $7 billion to over $18 billion 

(inflation-adjusted) between 1973 and 1993, though even the latter number represents 

less than one percent of total operating costs in manufacturing.  Not all consequences of 

environmental regulation need be negative for the affected firms, as pointed out by Porter 

(1991, 1995), since firms could discover more efficient methods of production in the 

search for cleaner ones.  Given the difficulties of appropriately measuring (or even 

defining) abatement costs when inputs can contribute to both abatement and production, 

other approaches have been tried, including econometric models focused on the 

productivity effects of regulation.  Estimating these productivity models can be done with 

a top-down approach, using data for broad sectors of the economy, or a more 

disaggregated bottom-up approach. 

 Over the past 25 years there have been a number of studies on the impact of 

environmental regulation on productivity, ranging from growth accounting studies like 

Denison (1979) that use abatement cost survey data to infer productivity effects to 

econometric studies with industry-level data like Gray (1986,1987), Barbera and 

McConnell (1986), and Shadbegian (1996).  Studies using plant-level data tend to find 

larger (more negative) effects of regulation on productivity: Gollop and Roberts (1983) 

for electric utilities, Joshi et. al. (2001) for steel mills, and Gray and Shadbegian (2003), 

Boyd and McClelland (1999), and Fare, Grosskopf, Lovell, and Pasurka (1989) for the 

pulp and paper industry, though Berman and Bui (2001) find smaller effects for oil 

refineries.  The earlier work most similar to the current paper, Gray and Shadbegian 

(2002), finds that pollution abatement costs are associated with lower productivity levels 



 
 

at plants in the steel, oil, and paper industries.   

 In this paper we follow a bottom-up approach to investigate the impact of 

environmental regulation on productivity, using confidential plant-level U.S. Census 

Bureau data on 68 paper mills, 55 oil refineries, and 27 steel mills from 1979-1990.  

Adding pollution abatement costs to a standard Cobb-Douglas production function, we 

find that a $1 increase in pollution abatement costs leads to an estimated productivity 

decline of $3.11, $1.80, and $5.98 in the paper, oil, and steel industries respectively.  

These findings imply substantial differences across industries in their sensitivity to 

pollution abatement costs, arguing for a bottom-up approach that can capture these 

differences.  The findings also suggest that reported abatement costs understate the true 

economic impact of environmental regulation. 

We then examine the connection between abatement costs and productivity in 

more disaggregated ways.  Detailed data on pollution abatement expenditures allow us to 

separate inputs (capital, labor, and materials) into abatement and production components, 

and we find little evidence that abatement inputs contribute to production (with the 

exception of abatement capital in the paper industry).  Even within an industry, plants 

differ in the impact of abatement costs on their productivity.  In each industry, plants 

using a more polluting production technology show a greater productivity impact per 

dollar of abatement cost – possibly suggesting non-linearities in marginal abatement 

costs.  Plants whose abatement investments focus on change-in-production-process 

techniques (e.g. closed loop processes) rather than end-of-line techniques (e.g. scrubbers 

and treatment plants) are more productive.  However, they also seem to face higher 

productivity impacts of abatement operating costs (perhaps because the PACE survey 



 
 

tends to understate operating costs for those plants).  Overall, our results point to the 

importance using detailed, disaggregated analyses, even below the industry level, when 

trying to model the costs of.shifting production processes to reduce emissions. 

 Section 2 describes how regulation might impact productivity, along with a model 

of the impact of regulation on productivity.  Section 3 describes the data used in the 

analyses.  In Section 4 we present the results, with concluding remarks in Section 5. 

 

2.  Environmental Regulation and Productivity 
 
 Standard Neoclassical microeconomic analysis concludes that government 

regulation will reduce productivity.  Neoclassical analysis begins with the assumption 

that firms are profit-maximizers.  Therefore, any government regulation that constrains 

the profit-maximizing behavior of firms will force firms away from their optimal 

production choices.  Higher levels of regulation should, therefore, push firms further 

away from their optimal production choices.  Also increases in regulation may lead firms 

to become less certain about future regulatory policies.  This in turn could lead firms 

them to delay investment (Viscusi [1983]), the development of new products (Hoerger, 

Beamer, and Hanson [1983]), or research on new production technologies.  We would 

expect similar effects to result if firms have limited budgets for research and 

development, and regulation requires them to invest in the development of new pollution 

abatement or cleaner technologies rather than more efficient ones. 

 Besides forcing firms away from their profit maximizing choices, most 

regulations require firms to use inputs directly for regulatory compliance: a scrubber on a 

smokestack to reduce SO2 emissions, a water treatment plant to reduce TSS or BOD, or 



 
 

extra employees to monitor pollution abatement equipment or simply to fill out 

government forms.  Current methods of measuring productivity do not distinguish 

between inputs used to produce ‘traditional’ output and inputs used to produce a cleaner 

environment, so inputs are overstated and productivity is understated.  This productivity 

‘mismeasurement’ effect combined with the constraints described above, motivate the 

prevailing belief that firms facing more stringent regulation will have lower productivity. 

 In recent years there have been some suggestions that regulation can have 

favorable impacts on the economy.  Most, if not all, of these suggestions are based on 

anecdotal evidence that some firms, required to modify their production processes for 

environmental reasons, later discovered that the new process was also preferred in strictly 

economic terms.1  In most cases, the savings come from process redesigns that eliminate 

waste and recycle production by-products (so-called 'closed loop' production 

technologies).  Of course, even in such cases there may be hidden costs of making these 

particular innovations: without any constraints on innovation the firm might have 

achieved even better growth in productivity.  The only way regulation will consistently 

improve a firm’s innovation is if the firm is currently making systematic errors.  One 

possible way for this to occur could be due to ‘X-inefficiency’ in technology choice, as 

described in Leibenstein (1966). If firms are content to accept current production 

technologies rather than aggressively pursuing new ones, innovation will only occur 

under regulatory pressure. A variation of this argument is put forth by Porter (1991, 

1995) who argues that the demand for ‘clean’ production technologies will greatly 

                     
1 Palmer, Oates, and Portney (1995) provide some counter-arguments for why these occasional economic 
benefits from pollution abatement efforts for a few firms are unlikely to outweigh the costs of those 
abatement efforts 
when averaged across all firms. 



 
 

expand in the future, and that firms (or countries) which develop the technology first will 

have competitive advantages in later years.2 

 

Productivity Analysis  

 To describe our analysis more formally we assume there is a production function 

relating output to factor inputs as follows:  

 

where Q is output, X is a vector of inputs (capital, labor, and materials), and O is a vector 

of other factors which may affect output, like pollution abatement operating costs or 

macroeconomic effects. The production function above assumes that all measured inputs 

are used to produce output.  However, when some inputs are used to comply with 

regulation (such as workers used to monitor pollution abatement equipment), the 

measured inputs will overstate the amounts of inputs actually used in production, thereby 

understating ‘true’ productivity. Since productivity is calculated as the ratio of measured 

output to measured inputs, if a plant uses 2 percent of its inputs for pollution abatement 

(not producing any measured output, as the social benefits of less pollution emissions do 

not produce any revenue for the plant) it will have 2 percent lower measured 

productivity.   

The productivity ‘mismeasurement’ effect is the basis for the analysis in Gray and 

Shadbegian (2002): a plant's total factor productivity is regressed on the share of its 

                                                             
 
2 Such advantages attributed to regulation would not show up for many years, and are unlikely to be 
captured in our data. 

O)F(X,  Q   (1) =



 
 

pollution abatement expenditures in its total inputs, and the ‘expected’ coefficient on 

pollution abatement is –1.0 (spending 2 percent of its inputs on pollution abatement 

should lower productivity by exactly 2 percent).  Thus, an estimated coefficient more 

negative than –1 would imply productivity affects over and above this ‘mismeasurement’ 

effect. In this study, we include an aggregate measure of  pollution abatement operating 

costs to test for productivity effects beyond the ‘mismeasurement’ effect.  In particular, 

we estimate the following log-linear Cobb-Douglas production function:   

 

(2)  lnQ = " +  $KlnK + $LlnL + $MlnM + $PAOCPAOC + YEARS + e, 
 
where: 
K   = real capital stock (productive + pollution abatement) 
L   = number of production worker hours (productive + pollution abatement) 
M   = real materials (productive + pollution abatement) 
PAOC  = pollution abatement operating costs/capacity 
YEARS =  year dummies (in some models we also include a set of plant dummies)  
 
 It is likely that there will be some degree of underreporting of pollution abatement 

expenditures as some costs associated with pollution abatement are not included on the 

Census Bureau’s Pollution Abatement Costs and Expenditures (PACE) Survey (e.g. 

foregone output from plant shutdown during installation of pollution control equipment). 

 Also it appears that respondents to the PACE survey tend to leave out costs that are hard 

to quantify (e.g. time spent by production workers performing pollution abatement 

related tasks).3  Potential under-reporting of pollution abatement expenditures 

complicates the interpretation of the β PAOC coefficient from this regression. As 

mentioned earlier, the ‘productivity mismeasurement’ effect of pollution abatement 

expenditures leads to an expected coefficient of –1.0 on β PAOC.  Proportional 



 
 

underreporting of pollution abatement costs would increase the magnitude of the 

estimated productivity impacts (i.e. result in β PAOC < –1), without affecting the predicted 

total impact of abatement on productivity.4  If there is variation in the degree of the 

underreporting across plants, then this would introduce an ‘errors in variables’ problem, 

biasing the estimated effects of abatement on productivity towards zero.  

 An alternative explanation for large β PAOC effects is that the productivity of other 

inputs (used for production) might be ‘sensitive’ to pollution abatement activities.  For 

example, if a plant is close to exceeding its monthly water pollution discharge limit it 

may have to limit its output for a few days.  Assuming fixed capital and quasi-fixed labor 

inputs this would tend to reduce the productivity of other inputs.  It is possible to argue 

that these types of output reductions should be counted as a pollution abatement cost 

(though it is not included in the PACE survey) – in which such ‘sensitivity’ effects could 

be classified as ‘underreporting’ (and the true β PAOC would always be -1.0, by 

definition).   Thus, the difference between productivity ‘sensitivity’ and abatement 

underreporting is an issue of semantics, irresolvable without some agreed-upon measure 

of true pollution abatement costs.  In any event, the reported pollution abatement costs 

from the PACE survey are the principal source of information for benefit-cost 

calculations, and our estimates of the predicted total impact of abatement expenditures on 

                                                             
3 Based on conversations with environmental managers at paper mills. 
4 For example, suppose true pollution abatement expenditures are 1% of total inputs for half the plants and 3% 
of inputs for the other half, and that the true value of β PAOC is –1.0. Then TFP levels would be 99% of the 
zero-abatement level in the low-abatement group and 97% in the high-abatement group.  If plants reported only 
one-half of their abatement expenditures, we would have 0.5% and 1.5% for the reported abatement values and 
a regression would give a β  PAOC value of –2.0.  However, the predicted total impact of abatement on 
productivity would be correct: the average reported abatement expenditures of 1.0% times the estimated β  

PAOC value of –2.0 would predict 2% lower productivity (the same as the actual average abatement expenditures 
of 2% times the true β  PAOC coefficient of –1.0). 



 
 

productivity provides evidence of the accuracy of this reporting. 

 In a separate analysis we divide our original inputs (X) into productive (XP) and 

pollution abatement (XA) inputs, yielding the following production function: 

(3)  Q = F(XP, XA, O) 

Since pollution abatement inputs are not used to produce measured output we expect the 

pollution abatement inputs to either have a zero effect on output or a negative effect, if 

pollution abatement efforts reduce the productivity of other inputs. The particular form of 

equation (3) we estimate is as follows: 

 
(4) lnQ = " +$KPlnKP + $KAlnKA + $LPlnLP + $LAlnLA + $MPlnMP + $MAlnMA +  
               YEARS + U, 
 
where:   
KP  = real productive capital stock 
KA    = real pollution abatement capital stock  
LP  = number of production worker hours for production 
LA     = number of production worker hours for pollution abatement 
MP  = real materials used for production  
MA    = real materials used for pollution abatement 
 
 In addition to estimating equations (2) and (4) for each of our three industries, we 

also estimate variations that allow for differences across plants within each industry.  One 

set of analyses identifies the plants in each industry that will face the most stringent 

regulatory pressure, based on the polluting nature of their production technology.  We 

interact TECH (a dummy variable for the more-polluting plants) with PAOC in equation 

(2), and also interact TECH with each of the inputs in equation (2). 

Our last set of analyses allows for differences between plants whose abatement 

capital investments are predominantly in “change-in- production-process” abatement 

techniques, rather than relying on “end-of-line” abatement techniques.  We create CIPP 



 
 

(a dummy variable for a plant with a large share of CIPP investment, relative to other 

plants in the industry), and interact it with the pollution abatement capital stock in 

equation (2).  Plants that are ‘progressive’ with respect to pollution abatement by 

investing in new less polluting production processes may be progressive in other ways 

(such as being more productive), and may also be less impacted by environmental 

regulation.  We do a similar analysis interacting the CIPP dummy variable with PAOC, 

expecting plants which invest greater amounts in CIPP capital to be less affected by 

pollution abatement operating costs. 

 

3. Data and Econometric Issues 

 The two sources of plant-level data for this study are the Longitudinal Research 

Database (LRD) and the Pollution Abatement Cost and Expenditure (PACE) survey both 

maintained by the Center for Economic Studies at the U.S. Census Bureau.5  The LRD 

contains annual data for U.S. manufacturing plants from the Annual Surveys of 

Manufacturers and the Censuses of Manufactures linked over time – we use LRD data 

from 1979 - 1990.  From the LRD we use the value of shipments adjusted for inventory 

changes and deflated by the industry price of shipments (using the appropriate industry 

deflator from Bartelsman and Gray [1996]) to measure a plant’s output.  We use three 

inputs: labor, capital, and materials (which includes energy).  Labor is the number of 

worker hours, summing production worker hours and non-production worker hours.6  The 

dollar expenditures on materials are divided by an industry specific price index to put 

                     
5 For a detailed description of the LRD data, see McGuckin and Pascoe (1988).  Several published studies 
have examined productivity issues using the LRD, including Lichtenberg and Siegel (1990,1991) and 
Nguyen and Kokkelenberg (1992). For a detailed description of the PACE survey see Streitwieser (1996). 
6 The LRD does not contain information on non-production worker hours so we assume each non-



 
 

them in real terms.  We measure each plant’s real capital stock based on a standard 

perpetual-inventory method, applied to the Census data on new investment in the plant.  

 We combine this productivity data with data from the PACE survey conducted by 

the Census Bureau, which provides annual data on pollution abatement operating costs 

for 1973-1994.7 We work with the PACE surveys beginning from 1979 (the first 

available year of  micro-data) through 1990. The PACE survey samples about 20,000 

plants each year, concentrating on large plants in heavily polluting manufacturing 

industries.  The plants are asked about both new capital expenditures and total annual 

operating costs for pollution abatement, which are disaggregated into labor, material, and 

depreciation. From the PACE survey we use a plant's aggregate pollution abatement 

operating costs divided by its peak shipments to summarize the plant’s pollution 

abatement expenditures (PAOC).8  We also use pollution abatement expenditures on 

labor and materials, deflated by industry specific price indices to put them in real terms, 

to divide measured labor and materials into production and pollution abatement labor and 

materials.  Finally, we also use information on pollution abatement depreciation and new 

capital expenditures (appropriately deflated) to calculate a real pollution abatement 

capital stock using a perpetual inventory method.9     

Using these data, we estimate production functions for our three industries (paper, 

                                                             
production worker works 2000 hours per year. 
7 No survey was done in 1987 for budget reasons, and we interpolate that year's data. 
8 We use the plant’s peak two years of shipments for the denominator of PAOC, rather than dividing by the 
same year’s shipments, to avoid building in endogeneity (since shipments are in the numerator of TFP and 
the denominator of PAOC).   
9 Much of these industries' investment in pollution abatement capital occurred before 1979 when our data 
begin.  To account for this we impute a pollution abatement capital stock back to 1973 (assuming it was 
zero in 1972).  We estimate each plant’s annual pollution abatement investment from 1973-1978 by 
multiplying its total new investment by the ratio of its industry’s pollution abatement investment to total 
investment, taken from published sources.  This becomes the 1979 base value for our perpetual inventory 
calculations with the annual PACE data. 



 
 

oil, and steel).  We selected plants with continuous LRD and PACE data through the 

period, and with adequate data to construct a capital stock measure, dropping a few plants 

with implausible values for key variables.  Our final sample contains 68 paper mills (816 

plant-year observations), 55 oil refineries (660 plant year observations), and 27 steel 

mills (324 plant-year observations).  

 We estimate both OLS and FE versions of equations (2) and (4).  However, we 

focus mainly on the OLS models, since most of the variation of our key “PACE” 

variables is cross-sectional, so moving to an FE model would greatly reduce the 

explanatory power of these variables.  Furthermore, if there is substantial measurement 

error over time, using fixed-effects estimators may also result in a considerable level of 

bias in the estimated coefficients, based Griliches and Hausman (1986).  Therefore, 

except for a short exploration of the effect of introducing fixed-effects into our OLS 

version of our Cobb-Douglas production function model, we do not pursue fixed-effects 

models in our analysis. 

   

4. Estimation Results 

 Table 1 presents summary statistics for all the variables used in the analysis, 

along with their definitions.  Plants in the paper industry spend the most on pollution 

abatement operating costs, 1.55% of their shipments (PAOC), while plants in the steel 

and oil industries spend 1.00% and 0.84% respectively. Plants in the paper and steel 

industries are similar in their cost shares for both regular and pollution abatement inputs, 

with about 70% materials, 20% labor, and 10% capital cost shares.  The oil industry is 

more materials-intensive, with materials costs making up 95% of total costs.  This is 



 
 

reflected in their pollution abatement spending, which has a relatively high share of 

materials costs, compared to paper and steel, where capital makes up over 60% of 

pollution abatement inputs. Another difference across industries is seen in the share of 

pollution abatement capital devoted to “change-in-production-process” (CIPP) 

investments: paper and oil plants devote about 35% of their pollution abatement capital 

to CIPP while steel mills devote only 5%. 

 Table 2 presents OLS and fixed-effect estimates of a simple log-linear Cobb-

Douglas production function for each industry – without differentiating between 

pollution abatement inputs and productive inputs.  All the OLS production functions 

exhibit approximately constant returns to scale: estimated returns to scale are 0.96, 0.95 

and 0.99 in the paper, oil, and steel industries respectively.  As expected, capital, labor, 

and materials always have a significant positive impact on output, except for labor in the 

oil industry, which has an insignificant positive effect on output (consistent with its tiny 

cost share).  The input coefficients are similar in magnitude to their cost shares from 

Table 1, although the estimated capital coefficients are somewhat larger, and the 

estimated materials coefficients are somewhat smaller than their cost shares.  These 

simple models explain nearly all of the variation in output across plants and over time, 

with R-squared values ranging from .92 to .98. 

 The results change when we move to a fixed effect estimator.  The most 

noticeable impact is on the capital coefficients, which move from being significantly 

positive to being negative (though insignificant) in the oil and steel industries.  This is 

not unexpected, giving the largely cross-sectional nature of the variation in output (large 

plants tend to remain large and small plants to remain small). What variation does occur 



 
 

on a year-to-year basis in capital indicates that new investment is being added to plants, 

which may take some time and effort before it is fully integrated in the production 

process.  Griliches and Mairesse (1995) note similar concerns with estimating capital’s 

contribution to output in earlier plant-level research.  The coefficients on materials also 

tend to drop in the fixed-effects runs, while the labor coefficients increase.    

 Table 3 shows what happens when we distinguish between productive and 

pollution abatement inputs in the production process.  In Model 1 for each industry we 

estimate a simple Cobb-Douglas model with 6 inputs, dividing each of capital, labor, and 

materials inputs into pollution abatement and productive inputs.  In general we find that 

pollution abatement inputs contribute much less to output than do their productive 

equivalents.  The only exception to this is the positive contribution that pollution 

abatement capital makes to output in the paper industry, which is similar in magnitude to 

that of productive capital.  

 In Model 2 for each industry we consider an alternative estimation method, where 

the pollution abatement inputs are aggregated into a single PAOC term added to the 

simple Cobb-Douglas production function above.  The coefficients on the productive 

inputs are very similar to those in Table 2, so the returns to scale still seem to be nearly 

constant.  As discussed earlier, we would expect the coefficient on PAOC to be –1 if the 

only effect of pollution abatement costs was the productivity ‘mismeasurement’ effect 

arising from overstating the amounts of inputs that directly contribute to production.  For 

all three industries the impact of PAOC exceeds unity – the difference is significant for 

plants in the paper industry (and nearly significant for plants in the steel industry).  A $1 

increase pollution abatement costs leads to an estimated $3.11, $1.80, and $5.09 decline 



 
 

in productivity in the paper, oil, and steel industries respectively.   

 Table 4 shows the fixed effects estimates of distinguishing between productive 

and abatement inputs.  Similar to what we saw in Table 2, the contribution of productive 

capital turns insignificant (and negative in the case of the paper industry), though 

surprisingly the coefficient on pollution abatement capital is positive for paper and steel 

(and significantly so for paper).  The coefficients for pollution abatement spending on 

labor and capital inputs are similar to those found in Table 3 (near zero and insignificant, 

except for paper industry labor).  The results when we aggregate the pollution abatement 

inputs into PAOC are noticeably different from those obtained in Table 3, with an 

insignificant positive coefficient for steel, an insignificant negative coefficient for paper, 

and a large and significant negative coefficient for oil (which had shown the smallest 

impact in the earlier regressions).  This may be related to the positive coefficients on the 

capital input.  We do not have a clear explanation of the fixed-effect results - perhaps 

plants with growing productivity are willing or able to invest more in pollution abatement 

capital or perhaps this just reflects the difficulties associated with estimating fixed effect 

models of production functions seen earlier in Table 2.   

 In Table 5 we further disaggregate the plants in each industry into high- and low-

pollution plants, based on the production technology in use at that plant.  The TECH 

variable always refers to plants using the high-pollution technology.  Here paper mills 

that use a pulping process, oil refineries that use catalytic cracking, and steel mills that 

use blast furnaces, have the TECH dummy turned on.  Model (1) shows the effect of 

interacting TECH with PAOC, while keeping the simpler Cobb-Douglas production 

function for the inputs.  The negative coefficients on the interaction terms indicate that 



 
 

the dirtier (TECH) plants show a greater (more negative) impact of abatement costs on 

production (the coefficients are large in all cases, though only statistically significant for 

paper mills).  Note that this is a greater impact per dollar of abatement costs: since the 

TECH plants, being dirtier, are expected to spend more dollars on pollution abatement, 

they are likely to be much more impacted overall by regulatory pressures.  The result 

suggests an increasing marginal cost of abatement (at least as measured across plants 

using different production technologies within the same industry).  Model (2) adds 

interactions between the TECH dummy and each of the inputs in the production function. 

 Although these show some differences in the input contributions for TECH plants, these 

do not greatly affect the interactions with PAOC, and now the results are at least 

marginally significant for both paper and oil. 

 Our final analyses, in Table 6, look at how the impact of pollution abatement 

capital and operating costs differs between plants that make large amounts of capital 

expenditures on “change-in- production-process”  (CIPP) abatement techniques, as 

compared to those plants that rely primarily on “end-of-line” abatement techniques. The 

results of these analyses are in Table 6.  We define a CIPP-intensive plant as one whose 

1979-90 CIPP investments are a larger share of their total pollution abatement 

investments than the median value for their industry.10  We find that CIPP-intensive 

plants in all three industries have higher productivity, perhaps reflecting a more 

innovative approach to the design of their production processes.  In particular, we find in 

Model 1 that productivity is 4.4%, 0.6%, and 5.4% higher for CIPP-intensive plants in 

the paper, oil, and steel industries respectively – though this effect is not significant for 

                     
10 Due to Census disclosure rules we cannot report the median CIPP shares used, but they range from 10-



 
 

plants in the oil industry.  In Model 2, we interact the CIPP dummy with the pollution 

abatement capital input and find (for the paper and oil industries) that the positive CIPP 

effect is concentrated in those plants which are doing substantial amounts of pollution 

abatement capital investment (seen in the now negative coefficient on the CIPP dummy, 

which here reflects the CIPP impact for a plant doing zero abatement investment). 

 Finally we examine whether accounting for CIPP-intensity influences the 

estimated impact of PAOC on productivity.  When we simply include the CIPP dummy 

in a PAOC regression (Model 3) we find a larger negative impact of PAOC, for the paper 

and oil industries, than those we found in Table 3.  The positive CIPP impacts are quite 

similar to those we found in Model 1.  In Model 4 we interact the CIPP dummy with 

PAOC, finding consistent results (though only significant for paper): CIPP-intensive 

plants show a larger impact of PAOC on their productivity.  This runs counter to our 

expectations, but may reflect a tendency for CIPP-intensive plants to understate their 

operating costs, since many of their abatement expenditures would be related to shifting 

their production processes.  Greater understatement of abatement costs would result in 

larger estimated PAOC coefficients.  In any event, this points out the difficulty of 

properly measuring the costs of changing production processes to reduce emissions, 

showing substantial heterogeneity in costs across plants, even within the same industry. 

  

5. Conclusions 

In this paper we follow a bottom-up approach to measuring the cost of forcing 

plants to adjust their production processes in order to reduce emissions. We examine the 

                                                             
30%. 



 
 

impact of traditional environmental regulation on productivity in U.S. paper mills, oil 

refineries, and steel mills.  Adding pollution abatement costs to a standard Cobb-Douglas 

production function, we find that a $1 increase in pollution abatement costs leads to an 

estimated productivity decline of $3.11, $1.80, and $5.98 in the paper, oil, and steel 

industries respectively.  These findings imply substantial differences across industries in 

their sensitivity to pollution abatement costs, arguing for a bottom-up modeling approach 

that is capable of identifying these differences.  The magnitudes of the coefficients 

(greater than $1.00) indicate either that pollution abatement costs are under-reported or 

that the productivity of other inputs (used for production) at a plant might be reduced by 

the plant’s pollution abatement activities.  In our study we cannot distinguish between the 

underreporting and sensitivity explanations, but in either case the findings suggest that 

reported abatement costs understate the true economic impact of environmental 

regulation. 

We also examine the connection between abatement costs and productivity in 

more disaggregated ways.  Detailed data on pollution abatement expenditures allow us to 

separate inputs (capital, labor, and materials) into abatement and production components, 

and we find little evidence that abatement inputs contribute to production (with the 

exception of abatement capital in the paper industry).  Even within an industry, plants 

differ in the impact of abatement costs on their productivity.  In each industry, plants 

using a more polluting production technology show a greater productivity impact per 

dollar of abatement cost – possibly suggesting non-linearities in marginal abatement 

costs across plants in these industries.  Plants whose abatement investments focus on 

change-in-production-process techniques (e.g. closed loop processes) rather than end-of-



 
 

line techniques (e.g. scrubbers and treatment plants) are more productive.  However, they 

also seem to face higher productivity impacts of abatement operating costs (perhaps 

explained by these plants being more likely to understate their operating costs).  Overall, 

our results point to the importance using detailed, disaggregated analyses, even below the 

industry level, when trying to model the costs of forcing plants to reduce their emissions. 

 These results, based on the regulation of traditional pollutants, may also be applicable to 

future regulations related to concerns with climate change and global warming, where 

regulatory pressures may also have very different impacts on different plants, even those 

within the same industry.
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TABLE 1 
Descriptive Statistics 

 
                   PAPER      OIL       STEEL 
 
VARIABLE           MEAN       MEAN       MEAN     DESCRIPTION 
                 (STD DEV)  (STD DEV)  (STD DEV) 
                   N=816      N=660      N=324 
 
PAOC*100           1.547      0.835      1.005    Pollution abatement operating costs/ 
                  (1.139)    (0.824)    (0.636)   capacity 
 
SHIPMENTS         10.295     12.069     11.910    Log(real shipments adjusted for 
                  (0.807)    (0.930)    (0.804)       inventories) 
 
CAPITAL           10.745     11.286     12.040    Log(real capital stock) 
                  (0.926)    (1.169)    (0.983) 
 
PRODUCTIVE        10.533     11.026     11.864    Log(real 'productive' capital stock) 
CAPITAL           (0.910)    (1.178)    (0.968) 
 
ABATEMENT          8.968      9.643     10.115    Log(real pollution abatement capital  
CAPITAL           (1.144)    (1.301)    (1.165)   stock      
 
LABOR              7.024      6.513      8.323    Log(production+non-production worker 
                  (0.640)    (0.944)    (0.815)   hours)   
 
PRODUCTIVE         6.992      6.379      8.306    Log('productive' worker hours) 
LABOR             (0.644)    (0.923)    (0.820) 
 
ABATEMENT          2.938      3.800      3.859    Log(pollution abatement worker hours) 
LABOR             (2.087)    (2.559)    (2.475) 
 
MATERIALS         10.249     11.762     11.444    Log(real materials+energy) 
                  (0.572)    (0.952)    (0.774) 
 
PRODUCTIVE        10.235     11.756     11.431    Log('productive' materials) 
MATERIALS         (0.570)    (0.950)    (0.774) 
 
ABATEMENT          4.914      5.558      6.425    Log(pollution abatement materials) 
MATERIALS         (3.075)    (2.488)    (1.826) 
 
PAOC              24.43%     14.63%     21.53%    Cost Share of PAOC Depreciation 
DEPRECIATION     (16.3)     (12.2)     (15.1) 
 
PAOC              33.50%     37.27%     33.26%    Cost Share of PAOC Materials 
MATERIALS        (18.4)     (22.9)     (18.8) 
 
PAOC              18.69%     21.65%     16.77%    Cost Share of PAOC Labor 
LABOR            (11.5)     (15.3)     (10.1) 
 
PAOC              23.44%     26.46%     28.44%    Cost Share of 'Other' PAOC Costs 
OTHER            (21.0)     (23.7)     (21.1) 
 
 
SH_PROD_LABOR     16.50%      1.44%     19.71%    Share of 'Productive' Labor in Total  

    Cost 
SH_PROD_MATERIALS 70.25%     95.10%     66.62%    Share of 'Productive' Mat. in Total Cost 
SH_PROD_CAPITAL    9.50%      2.06%     10.25%    Share of 'Productive' Capital in Total 

    Cost 
SH_PAOC_LABOR      0.48%      0.21%      0.41%    Share of Abatement Labor in Total Cost 
SH_PAOC_MATERIALS  1.04%      0.58%      0.88%    Share of Abatement Mat. in Total Cost 
SH_PAOC_CAPITAL    2.28%      0.61%      2.14%    Share of Abatement Capital in Total Cost



 
 

 
TABLE 2 

Traditional Cobb-Douglas Model 
(All Original Inputs) 

 
INDUSTRY  CAPITAL  LABOR  MATERIALS  R2   OBSERVATIONS ESTIMATOR 
 
PAPER 
 
(1)       0.153    0.208   0.600    0.93       816      OLS 
         (13.18)  (14.27) (26.60) 
 
 
(2)       0.007    0.272   0.517    0.97       816      FE 
         (0.24)   (7.36)  (17.45) 
 
 
OIL 
 
(1)       0.124    0.010   0.819    0.98       660      OLS 
         (8.04)   (0.60)  (50.40) 
 
 
(2)      -0.021    0.124   0.547    0.99       660      FE 
         (0.83)   (4.27)  (22.22) 
 
 
STEEL 
 
(1)       0.055    0.251   0.680    0.92       324      OLS 
         (2.33)   (7.09) (17.61) 
 
 
(2)      -0.038    0.283   0.627    0.95       324      FE 
         (0.36)   (5.94)  (12.54) 
 
 
 
 
All regressions include an intercept and year dummies 
(t-statistics) 



 
 

TABLE 3 
Extended Cobb-Douglas Model 
  (Including PAOC; OLS) 

 
 
INDUSTRY   CAPITAL          LABOR         MATERIALS      PAOC    R2 
          PROD ABATE     PROD  ABATE     PROD  ABATE 
 
 
PAPER 
 
(1)      0.083   0.062   0.206   0.012   0.595  -0.004           0.93 
        (5.40)  (5.75)  (14.60) (3.17)  (26.65) (1.82) 
 
 
(2)      0.169           0.203           0.600          -3.105   0.93 
        (14.42)         (14.18)         (27.10)         (5.75) 
 
 
OIL 
 
(1)      0.119  -0.007   0.013  -0.002   0.820   0.009           0.98 
        (8.16)  (0.66)  (0.87)  (0.60)  (51.43) (2.18) 
 
 
(2)      0.131           0.011           0.815          -1.797   0.98 
        (8.34)          (0.67)          (50.03)         (2.17) 
 
 
STEEL 
 
(1)      0.106  -0.028   0.232   0.004   0.679  -0.008           0.92 
        (2.35)  (0.91)  (6.52)  (0.68)  (17.93) (0.92) 
 
 
(2)      0.052           0.265           0.694          -5.085   0.92 
        (2.18)          (7.37)          (17.75)         (1.97) 
 
 
 
 
All regressions include an intercept and year dummies 
(t-statistics)  
 
 



 
 

 
TABLE 4 

Extended Cobb-Douglas Model 
(Including PAOC; Fixed Effects) 

 
 
INDUSTRY   CAPITAL          LABOR         MATERIALS      PAOC    R2 
          PROD ABATE     PROD  ABATE     PROD  ABATE 
 
 
PAPER  
 
(1)     -0.017   0.076   0.258   0.004   0.514  -0.001           0.97 
        (0.80)  (2.51)  (7.36)  (1.23)  (17.58) (0.30) 
 
 
(2)      0.007           0.271           0.518          -0.315   0.97 
        (0.26)          (7.34)          (17.30)         (0.39) 
 
 
 
OIL    
 
 
(1)      0.006  -0.021   0.051  -0.000   0.571   0.006           0.99 
        (0.25)  (1.21)  (1.91)  (0.12)  (23.95) (2.14) 
 
 
(2)     -0.012           0.136           0.545          -3.446   0.99  
        (0.47)          (4.65)          (22.28)         (2.89) 
 
 
STEEL    
 
(1)      0.021   0.066   0.225   0.001   0.644   0.008           0.95 
        (0.23)  (0.71)  (4.93)  (0.21)  (12.79) (1.01) 
 
 
(2)     -0.037           0.274           0.627           1.970   0.95 
        (0.35)          (5.57)          (12.53)         (0.65) 
 
 
 
All regressions include an intercept and year dummies 
(t-statistics) 
 



 
 

TABLE 5 
    Cobb-Douglas Models 
Disaggregated by Production Technology 
         (OLS) 

 
 
         CAPITAL  CAPITAL   LABOR  LABOR  MATERIALS  MAT   TECH   PAOC     PAOC    R2 
INDUSTRY           *TECH           *TECH            *TECH  dummy          *TECH 
 
 
PAPER 
 
(1)        0.159            0.201           0.610           ++   -0.945   -2.991  0.932 
         (11.194)         (13.764)        (25.357)              (-0.827) (-2.294) 
 
 
(2)        0.105   0.079   0.101   0.166    0.709   -0.161   -   -0.288   -3.449  0.936 
          (5.316) (2.837) (4.784) (5.836) (21.811) (-3.494)     (-0.254) (-2.663) 
 
 
OIL 
 
(1)        0.128           0.012            0.821            -    0.765   -3.550  0.976 
          (7.922)         (0.713)         (49.959)               (0.423) (-1.878) 
 
 
(2)        0.129   0.003   0.095  -0.096    0.731   0.099   --   -0.277   -2.545  0.976 
          (3.227) (0.058) (2.185)(-2.022) (13.977) (1.811)      (-0.128) (-1.106) 
 
 
STEEL 
 
(1)        0.055           0.266            0.693           ++   -3.204   -2.079  0.922 
          (1.885)         (7.287)         (17.606)              (-0.443) (-0.279) 
 
 
(2)       -0.010   0.078   0.324  -0.074    0.614   0.109   --    1.930   -8.359  0.923 
         (-0.101) (0.755) (4.325)(-0.880)  (6.371) (1.061)       (0.257) (-1.056) 
 
 
 
 
All regressions include an intercept and year dummies 
(t-statistics)  
 
 
 
TECH plant technology dummies 
 
Paper industry = pulping mills 
Oil industry   = catalytic cracking 
Steel industry = blast furnaces 
 
 
Exact coefficients on TECH dummy suppressed due to Census disclosure rules: 
 
+  = insignificant positive coefficient 
++ = significant positive coefficient 
-  = insignificant negative coefficient 
-- = significant negative coefficient 
 
 
 



 
 

TABLE 6 
Cobb-Douglas Models 

 Disaggregated by Change-in-Production-Process Investment 
(OLS) 

 
 
INDUSTRY   CAPITAL          LABOR         MATERIALS     CIPP     PAOC     CIPP     R2 
          PROD ABATE     PROD  ABATE     PROD  ABATE    Dummy           Interact 
 
PAPER     
 
(1)      0.079   0.068   0.198   0.009   0.598  -0.005   0.044                    0.93 
        (5.15)  (6.29)  (14.01) (2.58)  (26.97) (1.94)  (3.70) 
 
(2)      0.086   0.046   0.190   0.012   0.599  -0.005  -0.306            0.039   0.93 
        (5.57)  (3.70)  (13.36) (3.17)  (27.24) (2.01)  (3.32)           (3.83) 
 
(3)      0.171           0.195           0.601           0.043   -3.255           0.93 
        (14.71)         (13.56)         (27.37)         (3.78)   (0.521) 
 
(4)      0.170           0.196           0.600           0.066   -2.504  -1.512   0.93 
        (14.66)         (13.64)         (27.38)         (3.49)   (3.44)  (1.53) 
 
 
OIL 
 
(1)      0.119  -0.006   0.011  -0.002   0.822   0.009   0.006                    0.98 
        (8.16)  (0.61)  (0.68)  (0.67)  (49.92) (2.67)  (0.48) 
 
(2)      0.119  -0.010   0.012  -0.002   0.821   0.009  -0.066             0.007  0.98 
        (8.17)  (0.89)  (0.72)  (0.73)  (49.54) (2.64)  (0.76)            (0.83) 
 
(3)      0.133           0.004           0.819           0.014   -1.934           0.98 
        (8.41)          (0.25)          (48.88)         (1.10)   (2.31) 
 
(4)      0.073          -0.003           0.896           0.024   -1.196   -1.205  0.98 
        (0.014)         (0.017)         (0.017)         (1.37)   (0.98)   (0.83) 
 
 
STEEL 
 
(1)      0.095  -0.009   0.236   0.001   0.668  -0.006   0.054                    0.92 
        (2.09)  (0.28)  (6.65)  (0.13)  (17.52) (0.66)  (1.89) 
 
(2)      0.094  -0.008   0.236   0.001   0.668  -0.006   0.070            -0.002  0.92 
        (2.07)  (0.24)  (6.63)  (0.12)  (17.49) (0.65)  (0.29)            (0.07) 
 
(3)      0.064           0.263           0.680           0.056   -4.636           0.92 
        (2.64)          (7.34)          (17.27)         (2.12)   (1.80) 
 
(4)      0.063           0.292           0.637           0.086   -2.874   -3.037  0.92 
        (0.030)         (0.039)         (0.039)         (1.74)   (0.81)   (0.72) 
 
 
All regressions include an intercept and year dummies 
(t-statistics) 
 
 
CIPP = dummy indicating the plant’s share of Change-In-Production-Process (CIPP) 
investment in its total pollution abatement investment (1979-90) exceeds the median share 
for the other plants in that industry 
 
CIPP interactions in Model (2) refer to CIPP*(Abatement Capital) 
 
CIPP interactions in Model (4) refer to CIPP*PAOC 

 


