
Value Added Procedures at the ARM Experiment Center

T. R. Shippert, T. D. Halter, D. D. Turner, and R. C. Perez Pacific Northwest National Laboratory Richland, Washington

Introduction

Unlike many other scientific projects, the Atmospheric Radiation Measurement (ARM) Program collects data in an ongoing, continuous manner. Because of the volume of these perpetual data streams, traditional case study methods for analyzing these data are not very effective. The concept of Value Added Procedures (VAPs) was developed to fit the need for an automatic analytical approach to ARM data streams. A VAP creates a "second generation" data stream by using existing ARM data streams as inputs and applying algorithms or models to them. A VAP is run continuously in the ARM Experiment Center, and the output generated is treated as a new ARM data stream (Figure 1).

Figure 1. VAP data flow. Note that VAPs output new data streams, which can in turn be used as input for other VAPs.

Many of the scientific needs of the ARM Program are met through VAPs. Physical models that use ARM instrument data as inputs are implemented as VAPs and can help fill some of the unmet measurement needs of the program. A special class of VAPs called Quality Measurement Experiments (QMEs) compare different data streams, allowing continuous assessment of the quality of ARM data or comparisons between instruments and models (Miller et al. 1995). Therefore, VAPs are the tools by which the ARM Program can validate and enhance both instrument and model performance.

New VAPs or suggestions for improvements or modifications to existing VAPs come from all parts of the ARM Program (e.g., science team members, instrument mentors, data and science integration team members, site scientists). A primary function of the ARM Science Applications Group (SAG) is to oversee the development of VAPs for each Geophysical Focus Area (GFA) within ARM. Each focus area has been assigned a member of SAG to work with the lead scientist to facilitate collaborations within the GFA and to coordinate intensive observation periods (IOPs), in addition to overseeing the VAP development for the GFA. Table 1 lists the lead scientists and the infrastructure liaison for each GFA. Tables 2 through 5 list the VAPs currently in production, active development, or near-term development. The symbols on the left of each VAP indicate the primary GFA(s) customers. The listed points of contact can provide more information on each VAP.

Table 1. VAP contacts for each GFA.					
GFA	Infrastructure	Science Team			
🔅 Shortwave Radiation	Don Slater	Warren Wiscombe			
Longwave Radiation	Tim Shippert	Bob Ellingson			
🚓 Cloud Characterization	Dan Rodriguez	Steve Krueger			
🛆 Water Vapor	Dave Turner	Hank Revercomb			
la Aerosols	Meng-Dawn Cheng	Steve Schwartz			
Surface Energy Exchange	Ric Cederwall	Chris Doran			
Single-Column Models	Ric Cederwall	Dave Randall			

Example Flow Diagram: Raman Lidar Best-Estimate

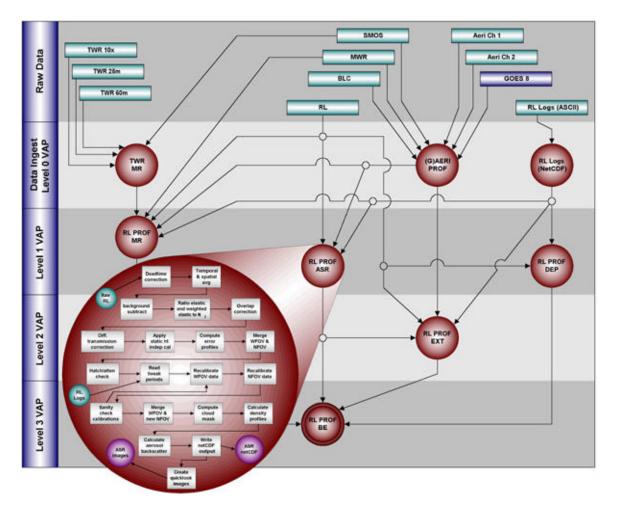
The data flow in the ARM Experiment Center can quickly become very complicated. For example, Figure 2 illustrates the complexity of the input processing required in order to run the Raman Lidar bestestimate (RL PROF BE) VAP. Many VAPs require input from multiple sources, including data directly from the instrument as well as other VAPs, and thus changes in a data stream can have large impacts on the downstream processing.

Conclusion

As the ARM Cloud and Radiation Testbed (CART) sites transition from development to operational states, the level of importance of VAPs is going to increase. The science applications group through interactions with the geophysical focus area working groups and lead scientists, are working to develop new ideas for VAPs, prioritize them, and implement them in the operational ARM environment. The process would not be possible without the feedback from the science team via the GFA working groups. More information on Value Added Producers can be found on the ARM web site at *http://www.arm.gov/docs/research/vap_homepage/vap.html*.

Table 2. VAPs curre	ently in production at the ARM	Experiment Center.	
In Production	BE SW	Contacts: Shippert	Wiscombe
		products: total, diffuse, direct, etc.	Wiscombe
※		Contacts: Shippert culations at Absolute Solar Transmittance from the Line-By-Line Radiative Transfer	Clough/Brown
L	LBL CLOUD E Effective longwave cloud emissivit Radiance Interferometer (AERI) a	Contacts: Shippert ty derived from Atmospheric Emitted nd LBLRTM measurements.	Clough/Brown
	LBL MWR Clear-sky brightness temperature (MWR) frequencies from LBLRTM	Contacts: Shippert calculations at Microwave Radiometer I.	Clough/Brown
L .	LBL RTM Longwave clear-sky radiance calc	Contacts: Shippert ulations at AERI resolution from the LBLR?	Clough/Brown IM.
	LS SONDE Radiosonde profiles where the rela MWR's precipitable water vapor (Contacts: Turner ative humidity (RH) profile is scaled to mate PWV).	Clough/Brown ch
		Contacts: Halter files retrieved from MWR, Radio Acoustic ce Meteorological Observing Station (SMO	Westwater S)
L.	QME AERI/LBL Statistical analysis of AERI - LBL	Contacts: Turner RTM residuals by process, bin, etc.	Clough/Brown
🖌 🔝	QME AERI/LBL CLOUDS State of the atmosphere information	Contacts: Turner on to facilitate QME AERI/LBLRTM analysi	Clough/Brown
	QME AERI PROF Statistical comparisons of the AEF	Contacts: Halter RI PROF retrievals to radiosondes.	Feltz/Smith
※	QME ASTI LBL Comparison of ASTI instrument an	Contacts: Shippert <i>ad LBL model radiances.</i>	Clough/Brown
	QME MWR COL Comparison of MWR brightness to	Contacts: Halter emperatures to an instrument model.	Liljegren
	QME MWR PROF Statistical comparisons of the MW	Contacts: Halter R PROF retrievals to radiosondes.	Westwater
	RWP TEMP Merged virtual temperature profile	Contacts: Christy/Shippert es from the 915-MHz RASS and 50-MHz RA	Coulter SS.
	TWR MR Water vapor mixing ratio at surfac	Contacts: Turner ce, 25-m, and 60-m tower heights.	Turner
	WRE SONDE Processed wind data from radioso	Contacts: Yio ondes.	Cederwall

und		urther de		•	M Experiment Center, but w t cycle for a VAP typically	
In P	roduction	and Deve	lopm	ent		
				(G)AERI PROF Temperature and water vapor profile	Contacts: Halter/Feltz s physically retrieved from AERI radiance	Feltz/Smith e.
		3		LANGLEY Total optical depths from Multifilter I (MFRSRs) using Langley plots.	Contacts: Shippert/Halter Rotating Shadowband Radiometers	Barnard
\				LBL RSS Shortwave radiance calculations at R (RSS) filter wavelengths from LBLRT	Contacts: Shippert Rotating Shadowband Spectroradiometer M.	Clough/Brown
	ඣ	3		MPL NOR Micropulse Lidar (MPL) backscatter routine applied.	Contacts: Turner profiles normalized and cloud detection	Campbell/Hlavka
\				QME RSS LBL Comparison of RSS instrument and L	Contacts: Shippert BL model radiances.	Clough/Brown


Table 4. VAPs currently in development at the ARM Experiment Center.

n Developme	nt			
£		ARSCLContacts:Clothiaux/TurnerClothiauxBest-estimate cloud location from active remote sensors & Millimeter- Wavelength Cloud Radar (MMCR) moments data.Clothiaux		
		BA EBBR Bulk aerodynamic estimates of sensible Energy Balance Bowen Ratio (EBBR).	Contacts: Christy/Shippert & latent heat fluxes to complement the	Coulter
		RL PROF MR Mixing ratio profiles, RH profiles, and	Contacts: Turner <i>PWV from the Raman Lidar</i> .	Ferrare/Turner
	3	RL PROF ASR Aerosol scattering ratio and backscatte Lidar.	Contacts: Heilman/Turner ering coefficient profiles from the Raman	Ferrare/Turner
ණි	5	RL PROF DEP Depolarization profiles from the Rama	Contacts: Turner <i>n lidar</i> .	Ferrare/Turner
	5	RL PROF EXT Aerosol extinction profiles and aerosol	Contacts: Turner optical thickness from the Raman Lidar	Ferrare/Turner
۵۵ 🦱	5	RL PROF BE Best-estimate state of the atmosphere p AERI+Geostationary Observational Er	5	Ferrare/Turner

ARM Experime	s that are planned for future devents that are planned for future devents this is not an exhausti	ive list, but is a represe	•			
kinds of products we hope to produce in the following year.						
Future Work						
<i>4</i> 23	CLD MICRO ICE 1(2)MACE <i>Ice cloud microphysics derived fre</i> <i>radiances</i>	Contacts: Halter om MMCR reflectivities (moments)	Mace and AERI			
යයි	CLD MICRO LIQ 1MACE <i>Liquid water cloud microphysics o</i>		Mace			
æ		CLD MICRO LIQ 1DONG Contacts: Halter Dong Liquid water cloud microphysics derived from MMCR, radiosondes, and pyranometer Dong				
	S MFRSR AOD 1CHENG Aerosol optical depth retrievals fr	Contacts: Shippert <i>com the MFRSR.</i>	Cheng			
ණි	MWR LIQ 1LILJ Cloud liquid water path retrievals	Contacts: Halter	Liljegren			
ي 💭	SW F ANALYSIS Shortwave analysis: clear-sky flux QC.	Contacts: Shippert and cloud fraction estimates, albe	Long do, and			

Reference

Miller, N. E., J. C. Liljegren, T. R. Shippert, S. A. Clough, and P. D. Brown, 1995: Quality measurement experiments within the Atmospheric Radiation Measurement Program. In *Proceedings of the Fourth Atmospheric Radiation Measurement (ARM) Science Team Meeting*, CONF-940277. U.S. Department of Energy, Washington, D.C.

Figure 2. Raman Lidar best-estimate flow diagram. Green boxes are ARM instrument data streams; the purple box (GOES-8) is an external data stream. Red circles are VAPs. The blow-up of the RLPROF ASR VAP shows the level of complexity that can exist inside each VAP.