Further Estimates of the Error in the Retrieval of Cloud Radar Effective Radius

A. S. Frisch National Oceanic and Atmospheric Administration Environmental Technology Laboratory Colorado State University Boulder, Colorado

> M. D. Shupe and I. Djalalova Science Technology Corporation Boulder, Colorado

M. R. Poellot Department of Atmospheric Sciences University of North Dakota Grand Forks, North Dakota

Introduction

We use aircraft Forward Scattering Spectrometer Probe (FSSP) data taken near the Southern Great Plains (SGP) site and during the ISCCP (First International Satellite Cloud Climatology Project) Regional Experiment-Arctic Cloud Experiment (FIRE-ACE) program in the Arctic to estimate a radar reflectivity retrieval of a stratus cloud effective radius (r_e) in the non-drizzling part of the cloud.

Method

The retrieval uses a lognormal distribution for the representation of the cloud droplet distribution. For this distribution, the moments of the droplet radius can be written as

$$< r^k >= r_0^k \exp\left(\frac{k2}{2}\sigma_x^2\right)$$

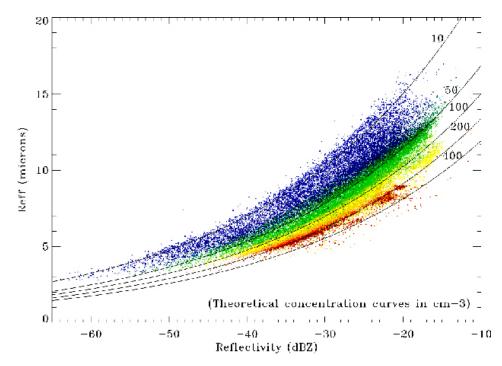
where r_0 is the median radius, and σ_x is the logarithmic spread of the distribution (Frisch et al. 1995).

The r_e is defined as

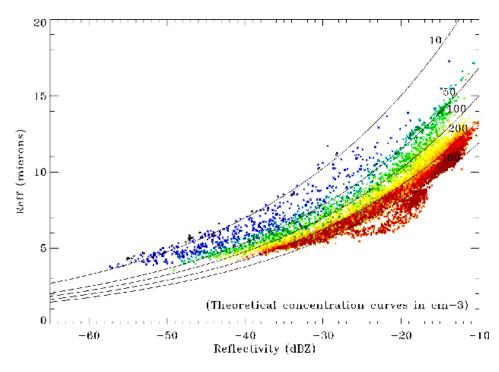
$$\mathbf{r}_{\mathrm{e}} \equiv \frac{\langle \mathbf{r}^3 \rangle}{\langle \mathbf{r}^2 \rangle} = \mathbf{r}_0 \, \exp\left(-\frac{5}{2}\sigma_{\mathrm{x}}^2\right)$$

The radar reflectivity is given as

$$Z = 2^{6} N < r^{6} >= 2^{6} Nr_{e}^{6} exp18\sigma_{x}^{2}$$


Solving for re

$$r_{e} = \frac{1}{2} \left(\frac{Z}{N}\right)^{1/6} \exp\left(-0.5\sigma_{x}^{2}\right).$$


Notice that even if N and σ_x vary by a large amount, since N enters in as the one-sixth power and σ_x varies as exp (-0.5 σ_x^2), the effect of these variations on r_e will be much smaller than the variations themselves. If we have approximate values of N and σ_x , we can do a reasonable retrieval of r_e with this equation.

Results

We used the measured cloud droplet size distributions to compute both radar reflectivity and particle r_e size. We plotted the r_e versus the calculated radar reflectivity for the FIRE-ACE Arctic measurements (Figure 1a), and for the SGP intensive operational period (IOP) measurements (Figure 1b). The curves represent (5) for different values of N with a value of $\sigma_x = 0.32$. The measurements from FIRE-ACE show that most of the droplets fall between 10 and 200 cm⁻³, while results from the ARM SGP IOP show higher droplet concentrations, with most values between 100 and 400 cm⁻³.

Figure 1a. FSSP-derived r_e versus FSSP-derived reflectivity for the SGP-IOP data. Color scale indicates droplet concentration range from 10 cm⁻³ (blue) to about 400 cm⁻³ (red).

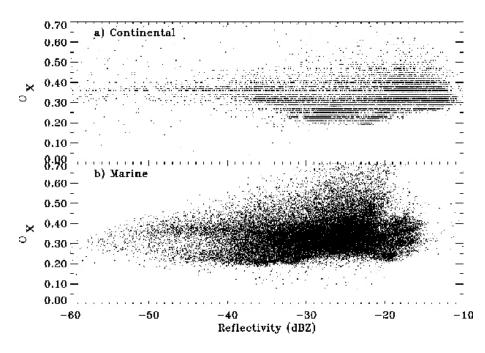
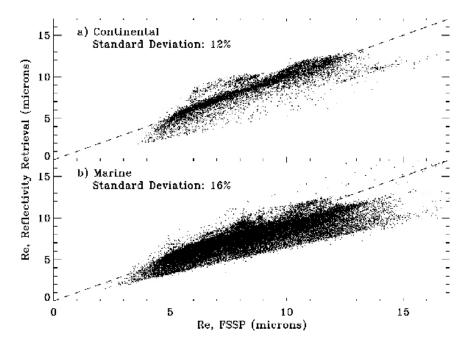


Figure 1b. FSSP-derived r_e versus FSSP-derived reflectivity for the FIRE-ACE data. Color scale indicates droplet concentration range from 10 cm⁻³ (blue) to about 400 cm⁻³ (red).


Figure 2 shows the measured values of σ_x for both continental and marine stratus clouds verses calculated values of radar reflectivity. There is a spread in σ_x from about 0.1 to 0.7, similar to the results of Miles et al. (2000); however, most of the values lie in a much smaller band. To test the retrieval, we used the marine and continental aircraft FSSP data to compute reflectivities for use in the retrieval. The plot of retrieved cloud droplet r_e versus FSSP measured r_e is shown in Figure 3. We used a droplet concentration of N=200 for the continental retrievals and N=100 for the marine droplet retrievals. Values of $\sigma_x = 0.32$ and $\sigma_x = 0.34$ were used for the continental and marine stratus retrievals, respectively. The standard deviation between retrieved cloud droplet r_e is about 12% for continental stratus, while the marine standard deviation is about 16%.

Acknowledgements

Contributions by S. Frisch were supported by interagency agreement #DE-A103-97ER62342/A002 with the U.S. Department of Energy (DOE). Contributions from M. Shupe were supported by the NSF SHEBA program under agreement #OPP-9701730. Aircraft data were obtained from the University of Washington Cloud and Aerosol Research Group's (CARG) Convair-580 research aircraft under the scientific direction of Peter Hobgbs, and the NCAR Research Aviation Facility's C-130 research aircraft. The CARG's participation in this study was supported by NSF Grant OPP-9808163 and NASA Grants NAG-1 and NCC5-326.

Figure 2. Logarithmic standard deviation (F_x) of stratus cloud droplets versus calculated radar reflectivity from aircraft measurements with an FSSP. Top is for continental cloud droplets; bottom is for marine stratus cloud droplets. The blank horizontal stripes in the bottom are due to roundoff in the calculations of F_x , which isn't present in the top F_x calculation.

Figure 3. Retrieved cloud droplet r_e values versus calculated radar reflectivity from equation 5 using Aircraft FSSP measurements. Top is from continental stratus; bottom is from marine stratus. We used $F_x = 0.32$ and an N = 200 cm⁻³ for the continental and $F_x = 0.34$ and N = 100 cm⁻³ for the marine stratus clouds.

Corresponding Author

Shelby Frisch, Shelby.Frisch@noaa.gov, (303) 497-6209

References

Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with Ka-band Doppler radar and a microwave radiometer. *J. Atmos. Sci.*, **52**, 2788-2799.

Miles, L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. *J. Atmos. Sci.*, **57**, 295-311.