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Introduction 
 
The effects of clouds on radiative forcing are topics of intense interest and of direct relevance to climate 
change.  They remain the greatest source of uncertainty in global climate models.  There are many cloud 
properties that can alter the effect of clouds on the climate system.  One such key parameter is the cloud 
thickness that affects the distribution of radiative cooling within an atmospheric column.  Algorithms 
and models that explicitly include cloud base and cloud thickness to compute the radiative parameters 
typically rely on crude assumptions such as constant cloud thickness.  Cloud top heights are routinely 
derived from satellite data; however, obtaining cloud base is not as straightforward.  Minnis et al. (1990) 
and Smith et al. (1992) developed methods for inferring the physical thickness of cirrus clouds by 
correlating it with cloud optical depth and cloud effective temperature.  Minnis et al. (1992) found a 
strong correlation between the square root of cloud optical depth and thickness for marine stratocumulus 
clouds.  These earlier techniques were combined and used for cloud thickness retrieval for Atmospheric 
Radiation Measurement (ARM) Program (Minnis et al. 1995).  Because these methods are based on very 
limited datasets taken during field experiments, their accuracy and applicability are highly uncertain.  
With the availability of continuous lidar, radar, ceilometer, and satellite retrievals over the ARM 
Southern Great Plains (SGP) Central Facility (CF), it is possible to develop and test cloud thickness 
retrieval methods using a wider variety and better sampling of cloud conditions than heretofore possible.  
In this study, empirical models for four single- layer cloud types are developed by correlating satellite-
derived microphysical properties with cloud thickness data derived from active instruments at the ARM 
CF between March and December 2000.  The resulting empirical model performance is then compared 
to that of the earlier parameterization. 
 
Data and Methodology 
 
Visible (0.65 µm, VIS), solar-infrared (3.9 µm, SIR), infrared (10.8 µm, IR), and split-window channel 
(12.0 µm, SWC) data taken half hourly from the eighth Geostationary Operational Environmental 
Satellite (GOES-8) at a nominal 4-km resolution were analyzed and averaged on a 0.5° equal angle grid, 
centered over the ARM SGP site (Minnis et al. 2002).  Vertical profiles of temperature and humidity 
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were obtained by interpolating the 60-km resolution ARM-Rapid Update Cycle (RUC; Benjamin et al. 
1994) products to match the current analysis grid and image times.  The RUC surface air temperature 
was used to estimate the surface skin temperature (Ts).  Daytime pixel- level cloud properties of optical 
depth (τ), IR emissivity (ε), cloud radiating temperature (Tc), phase (ice or water), particle size in terms 
of effective radii for water (re) or effective diameter for ice (De), and ice water path (IWP) or liquid 
water path  (LWP) are computed using the Visible- infrared Solar-infrared Split-window Technique 
(VISST) described in Minnis et al. (2002).  The cloud effective height (Zc) is determined by matching Tc 
with the corresponding RUC temperature profile.  The cloud emissivity has been taken into account in 
the derivation of Tc from the IR channel.  Zc is often close to the actual cloud-top height when the cloud 
is optically thick.  Days when the ground was covered with snow were eliminated from the analysis, 
since the optical depth may be enhanced by the brighter-than-normal surface.  Surface observations from 
nearby Ponca City and Enid Automated Surface Observing System (ASOS) stations along with GOES-8 
satellite visible images were used to identify days with snow cover.  Only data with a solar zenith angle 
of 77° or less were used in this analysis.  Only cases with satellite cloud coverage greater than 95% are 
used to insure that broken clouds were eliminated from the analysis.  In addition, mixed-phase cloud 
cases were not considered in this study.  The standard deviations of the cloud properties are computed 
from the ~169 pixels in the 0.5° region. 
 
The sgparscl1clothC1 product over the ARM SGP CART site for the same time period March -
December 2000 was extracted from ARM archive.  The CloudBaseBestEstimate (best estimate) is used 
for cloud-base height, and is a composite of ceilometer, Micropulse Lidar (MPL), and Millimeter Cloud 
Radar (MMCR) data.  If the best estimate was not available, because both the ceilometer and MPL data 
was missing, the CloudLayerBottomHeightMPLCloth (E. E. Clothiaux, personal communication) was 
used.  The latter algorithm combines both the MMCR and MPL data, but in this situation, only the radar 
is used for cloud base determination.  In either case, no cloud base is given if the cloud is precipitating 
enough to cause suspect base heights.  In-house validation of the cloud base heights, during 
precipitation, showed good agreement between the nearby ASOS stations, best estimate, and the 
Clothiaux cloud base heights.  On rare occasion, when the Clothiaux cloud base was used, the Clothiaux 
“insect clutter algorithm” detected insects instead of the low clouds, for example on May 22, 2002.  If 
visual satellite imagery inspection and nearby ASOS stations confirm low clouds on those days, they 
were removed.  The CloudLayerTopHeigthMplCloth is used for the cloud top height, and cloud 
thickness (∆z) is the difference between the cloud top and base.  The ∆z was averaged over 20-minute 
intervals centered at the GOES-8 satellite image times.  The radar data used for the analysis were 
required to have continuous cloud coverage for 20 minutes and only single layer homogeneous clouds, 
as identified by the number of layers in the Clothiaux algorithm. 
 
The merged cloud property and thickness data set was first divided into ice and water clouds.  
Correlation coefficients (r) were then computed for all the cloud properties and their standard deviations 
(σ) with cloud thickness.  Overall, the natural logarithm of τ had the greatest correlation with thickness.  
Plots of ln(τ) and thickness were examined for each phase.  Figure 1 indicates that water clouds have a 
bimodal distribution.  The water clouds are classified as (optically) thick and thin stratus and are 
separated by τ<10 and σ(ε) >0.1 for thin stratus.  Note, σ(ε) is very small for τ >10.  For optically thin 
ice clouds there is a slightly better correlation with τ rather than ln(τ).  Ice clouds were classified into 
cirrus (optically thin and low emissivity) by τ<10 and ε<0.95 and the remaining cases are cumulus or 
cumulonimbus.  After the data were classified into cirrus, cumulus, thick and thin stratus, the correlation  
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Figure 1.  Scatter plot of ln(τ) and ∆z for water clouds.  Points are color coded, with respect to σ(ε). 
 
coefficients of various cloud properties were computed for each cloud type to determine their 
significance and are shown in Table 1.  Statistically significant parameters are then used for constructing 
the empirical model. 
 

Table 1.  The correlation coefficients of various GOES-8 retrieved cloud properties 
with surface-based cloud thickness (∆z) for the cloud categories used in this study.  
The cloud property standard deviations are shown in red. 

 τ 
LWP or 

IWP Zc re or De Tc ε  ln(τ) # 
Cirrus 0.72 0.72 

0.45 
0.25 

-0.36 
0.13 

-0.39 
-0.43 
-0.38 

0.66 
-0.27 

0.68 65 

Cumulus 0.70 0.68 
0.55 

0.40 
0.03 

0.18 
0.13 

-0.27 
0.03 

0.57 
-0.44 

0.81 141 

Thick 
stratus 

0.65 0.62 
0.49 

0.39 
0.01 

0.23 
0.18 

-0.33 
0.20 

-0.21 
-0.35 

0.66 209 

Thin stratus 0.16 0.08 
0.05 

0.07 
-0.07 

-0.19 
-0.12 

-0.20 
-0.07 

0.21 
-0.07 

0.20 208 

 
Results 
 
For each cloud type, a stepwise multiple regression approach is taken.  Each of the cloud properties is 
evaluated until there is no significant improvement in r2 with thickness.  An example of cirrus-cloud 
radar reflectivity over the SCF is shown in Figure 2a.  The best estimate and Clothiaux cloud base and 
top heights are superimposed on the radar images.  For the cirrus category the cloud properties of τ and 
IWP have a similar r = 0.72, an expected similarity because IWP depends on τ and De.  Although σ(Tc) 
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is nearly uncorrelated with ∆z directly, in conjunction with τ, it is statistically significant.  Figure 2b 
illustrates that smaller values of σ(Tc) are mostly associated with cases having actual values of ∆z 
greater than would it be obtained from the linear regression with τ.  For the cirrus case the final equation 
is given by, 
 
 ∆z = 1.038 + 0.779·τ - 0.146·σ(Tc) + 0.014·De. 
 
The root mean square (rms) error is 0.84 km with r2 = 0.66.  The individual cloud property contributions 
are 78.5%, 17.8% and 3.6% for τ, σ(Tc) and De respectively. 
 

  
 
Figure 2.  (a) Radar reflectivity in dbz of a cirrus cloud on August 30, 2000.  Yellow triangles represent 
the cloud base best estimate and magenta lines the Clothiaux cloud base and top.  (b) Scatter plot and 
regression line of τ and ∆z for cirrus.  Points are color coded with respect to σ(Tc). 
 
Similar analyses were carried out for the cumulus data.  Figure 3a shows a radar image of a typical deep 
convective cloud.  For cumulus clouds, ln(τ) has the best correlation with ∆z.  The greatest value of r 
given in Table 1 is probably due to the fact that cumulus clouds have the greatest dynamic range of ∆z.  
No other cloud properties added any significance to the linear regression equation.  Thus, for the 
cumulus type, 
 
 ∆z = 1.7061 + 1.8834·ln(τ). 
 
The rms error is 1.26 km and r2=0.662 and the regression is shown in Figure 3b.  Precipitating cumulus 
clouds have a mean thickness of 9.32 km compared with 6.92 km for non-precipitating cumuli 
(Figure 3b).  It is likely that the additional thickness was required to initiate the precipitation.  The mean 
cloud base height was 1.13 and 4.23 km for precipitating and non-precipitating respectively. 

(a) (b) 
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Figure 3.  (a) Same as Figure 2a, except for a cumulus cloud on November 7, 2000.  (b) Scatter plot 
and regression line of ln(τ) and ∆z for cumulus.  The green points are precipitating clouds, whereas the 
magenta points are not. 
 
For thick stratus clouds, Figure 4a shows a typical radar image for March 18, 2000 over SGP site.  Note 
the position of the cloud base.  Generally, the cloud base of stratus clouds in this study are nearly at 
ground level at 0.61 km, indicating that cloud top height and thickness tend to be correlated.  Although 
Tc and Zc are correlated with ∆z, Zc is not used in the formulation because it is estimated from Tc using 
an atmospheric temperature profile.  The dataset is limited to a few days and may not represent all 
stratus clouds during an annual cycle at the CART site.  The multiple regression equation for thick 
stratus is  
 
 ∆z =  0.97·ln(τ) + 0.16·σ(Tc) – 2.33. 
 
The rms error is 0.61 km and r2=0.49 for the regression shown in Figure4b.  The σ(Tc) is greater for 
greater values of ∆z.  The individual cloud property contributions are 89.5% and 10.5% for ln(τ) and 
σ(Tc) respectively. 
 
For the thin stratus category, there seems to be no significant correlation with τ (Figure1) or any other 
cloud property in Table 1 with ∆z.  The greatest values of r do not exceed 0.2.  Thin stratus cloud 
properties have high spatial variation, as typified by σ(ε) displayed in Figure 1.  Hence, for thin stratus, 
the mean cloud thickness value of all thin stratus cases of 0.52 km is given, regardless of any cloud 
property.  The rms error is 0.35 km. 
 
The current cloud product algorithm (Minnis et al. 1995) estimates cloud thickness as follows, ∆z = 7.2 
– 0.024·Tc  + 0.95·ln(τ) for Tc <245 K° and ∆z = 0.85·vτ for Tc >275 K° and is linearly interpolated in Tc 
in between.  Each of the cloud categories in this study was compared with the current algorithm.  For 
cirrus the rms error for this study was 0.84 km and for the current algorithm 1.35 km.  Similarly, for 
cumulus the rms error was 1.26 km compared with 3.5 km for the current algorithm, a definite  

(a) (b) 
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Figure 4.  (a) Same as Figure2a, except for a thick stratus cloud on March 18, 2000.  (b) Scatter plot 
and regression lines of ln(τ) and ∆z for thick stratus.  The regression lines are for differing σ (Tc).  
Points are also color coded with respect to σ (Tc). 
 
improvement.  For thick stratus the rms error was 0.61 km and 0.89 km for this study and the current 
algorithm, respectively.  Even for thin stratus the rms error was 0.35 km and 0.48 km, respectively.  As 
expected, the empirical relationships obtained in this study clearly show considerable improvement over 
the current formulation. 
 
Summary and Future Work 
 
In this study, GOES-8 cloud property retrievals and cloud thicknesses derived from a combination of 
radar, lidar and ceilometer data taken over the SCF were analyzed to formulate empirical models for 
estimating the cloud thickness from cloud property retrievals.  The derived parameterizations produce 
cloud thicknesses that are more accurate than those from previous algorithms.  The parameterizations 
were only applied to the single- layer cloud types considered: thin stratus, thick stratus, deep cumulus, 
and cirrus.  Additional research is needed to ensure that they perform as accurately for independent 
datasets taken over the SCF as well as over other locations.  In addition, they need to be tested for other 
cloud types like shallow cumulus and altostratus.  The current thin stratus formulation with thickness as 
a constant value is not satisfactory.  As more data become available, the thin stratus formulation will be 
improved to account for variability in the thickness.  Nevertheless, the initial results are very encourag-
ing.  Thus, the new models will likely be used in future processing of the NASA-Langley cloud property 
product to estimate cloud thickness. 
 

(a) (b) 



Twelfth ARM Science Team Meeting Proceedings, St. Petersburg, Florida, April 8-12, 2002 

7 

Acknowledgments 
 
This research was supported by the Environmental Sciences Division of the U.S. Department of Energy 
Interagency Agreement DE-AI02-97ER62341 under the ARM program.  We thank Eugene Clothiaux 
for useful discussion on estimating the bases of precipitating clouds. 
 
Corresponding Author 
 
Venkatesan, Chakrapani, v.chakrapani@larc.nasa.gov, (757) 827-4691 
 
References 
 
Benjamin, S. G., K. J. Brundage, and L. L. Morone, 1994:  The Rapid Update Cycle.  Part I:  
Analysis/Model Description.  Technical Procedures Bulletin No. 416, NOAA/NWS, 16 pp. 
 
Minnis, P., P. W. Heck, and E. F. Harrison, 1990:  The 27-28 October 1986 FIRE IFO Case Study:  
Cloud parameter fields derived from satellite data.  Mon. Wea. Rev., 118, 2426-2446. 
 
Minnis, P., P. W. Heck, D. F. Young, C. W. Fairall, and J. B. Snider, 1992:  Stratocumulus cloud 
properties derived from simultaneous satellite and island-based instrumentation during FIRE.  J. Appl. 
Meteorol., 31, 317-339. 
 
Minnis, P., W. L. Smith, Jr., D. P. Garber, J. K. Ayers, and D. R. Doelling, 1995:  “Cloud properties 
derived from GOES-7 for Spring 1984 ARM Intensive Observing Period using Version 1.0.0 of ARM 
satellite data analysis program,” NASA RP 1366, p.58. 
 
Minnis, P., W. L. Smith, Jr., D. F. Young, L. Nguyen, A. D. Rapp, P. Heck, and M. M. Khaiyer, 2002:  
Near-real time retrieval of cloud properties over the ARM CART area from GOES data.  This 
Proceedings. 
 
Smith, W. L., Jr., P. Minnis, J. M. Alvarez, P. W. Heck, and T. Uttal, 1992:  Estimation of cloud 
thickness and cloud base from satellite data.  Proceedings of the 11th International Conference on 
Clouds and Precipitation, Montreal, Canada, pp.1091-1093. 
 
 
 


