ARM 2001

Tom Ackerman Chief Scientist

Pacific Northwest National Laboratory

Outline

- Last year's goals
- Progress on some other fronts
- A Science Vision for ARM

What are our immediate priorities (1999)?

- Data quality
- Data continuity
- Value-added products
- IOP planning
- ARM focussed science
- Science team involvement

How have we addressed these priorities (2000)?

- Reorganization of infrastructure
- Reorganization of science team
- Creation of data quality office
- New management of value-added product (VAP) process

Reorganization -- 1-Year Expectations

- Implementation of reconstituted STEC
- Implementation of Data Quality Office
- Implementation of new VAP structure
- Better tracking system for science team publications based on annual progress reports
- New system for programmatic evaluation of proposals

STEC Reorganization

- Science Team Representation
 - Ellingson (IRF)
 - Ferrare (Aerosol)
 - Mace (Clouds)
 - Randall (CPM)
 - Zhang (CRM Data Integration)
- Working Group steering committees appointed
- Need to decide on term rotations

STEC Reorganization (continued)

- Working Group Vision Statements compiled in August; available on ARM web site
- ARM Science Vision not yet completed (more later)

Data Quality Office

- Up and running as of July 2000 with Randy Peppler in charge
- Focus on
 - Providing data quality (DQ) assessments to users
 - Providing DQ assessments to Site Operations
 - Improving documentation
 - Updating and improving SGP DQ checking

Value-Added Products (VAPs)

- Under management of Jimmy Voyles
- Appointed 4 "Translators" as interface between science working groups and computer developers
 - Chuck Long (IRF)
 - Mark Miller (Clouds)
 - Ric Cederwall (CPM)
 - Connor Flynn (Aerosol)

Value-Added Products (VAPs)

- Have developers in place to work with each translator
- Organized and restructured VAPs by
 - Priority
 - Working groups
 - Tracking system

Reporting Scientific Progress

- Requiring Principal Investigators to include publication information in yearly Progress Reports worked well
 - This will continue!

Getting timely information to me worked poorly

Reporting Scientific Progress

- I have to report on ARM scientific progress to
 - DOE management
 - Advisory and review committees (WAG, Jasons)
 - National and international committees (GEWEX SSG)
 - Scientific conferences (AMS, IUGG, AGU)
 - Seminars
- I need current results in clear figures

Programmatic Issues

- Significant programmatic changes are on hold due to Pat Crowley's retirement
- Wanda is filling in for Pat, but is really stretched by taking on this additional responsibility
- We have a huge task over the next few months due to the proposal cycle
- Bear with us!

New Direction for TWP

Contracting Nauru and PNG site maintenance to the Australian Bureau of Meteorology.

Benefits:

- Improved response time and decreased travel costs
- Installation of 3rd ARCS at Darwin will provide an operational training facility and a new data stream
- New research partners in BOM and CSIRO. Principal BOM contact is Peter May

Credit to TWP Program Office (Bill Clements and his crew) and Doug Sisterson

New Direction for ARM Deployable Facility

- New initiative to create an ARM facility for short term (months to a year) deployments
- Workshop report available on web
- Open discussion took place at the Science Team Meeting in Atlanta

"Reanalysis" of ARM Data

- New phase in ARM data processing
- Example: SGP CF solar radiation data
 - Resolved the issue of diffuse radiation measurements
 - Have an agreed-upon approach to processing past data
 - Are processing the data from present back
 - Will issue a CD of uniformly processed radiation data
 (+ IR and cloud fraction data) by this summer

A Science Vision for ARM

- Based on working group reports and STEC discussions last summer
- My interpretation at the moment
- Will be written up and available for discussion
- Will be discussed and refined at summer STEC meeting

- 3D radiative transfer in cloudy atmospheres
 - Can we do it?
 - How important are the effects in climate models?
- Heating rates
 - How well do model heating rate profiles agree with actual heating rate profiles?
 - How important are profile details to cloud models and cloud parameterizations?

Aerosols

- Can we close the aerosol direct forcing problem? With what accuracy?
- Can we relate aerosol chemistry to aerosol optical properties? At what level of chemical detail?
- Can we quantify the indirect aerosol effect at the process level?

Cloud properties

- Can we retrieve cloud properties from ground-based remote sensing? At what accuracy?
- What are the statistics of cloud properties? How do we describe them?
- What is the connection between cloud properties and the large scale forcing? Can we describe this at the climate scale in physical process terms? Statistically?

Cloud modeling

- How well do CRM simulations match observations?
- Can we use CRM simulations to "extend" our observational database? To what extent?
- How do we translate our improved understanding of cloud processes into new, improved parameterizations?
- What framework do we use to test parameterizations?
- What are the criteria we use to decide "improvement"?

How do we answer these questions?

- Continue the basic proposal-driven ARM science and ARM data collection
- Develop links with other observational programs and sites to extend our database
- Carry out focused IOPs in conjunction with other agencies to explore problems that are beyond our own resources

How do we answer these questions?

- Develop strong links to cloud modeling programs and centers to increase ARM program leverage and data use
- Develop new research methodologies
 - For data analysis and cloud properties
 - For parameterization testing and development

Some Specific Thoughts

- New proposal cycle this year
 - Letters of intent due in mid-April and proposals in May
 - Looking for new ideas and approaches
- Exploring new data collection approaches
 - Expanded aerosol sampling at the SGP
 - Improved Aerosonde in the Arctic
 - Improved SWS at the SGP

Observational Links

- Joint experiments
 - SGP aerosol experiment with DOE TAP
 - NASA CRYSTAL
- GEWEX Cloud Profiling Working Group
 - Establish data standards and user access for ground based remote sensing sites
- NASA satellite programs
 - Terra instruments and science teams
 - CloudSat and Picasso-Cena

Modeling Linkages

- Continue strong ties to GCSS
- Increased emphasis on use of CRMs and SCM paradigm
- Shift primary focus from model comparison and technique development to cloud and parameterization issues
 - Fewer but focused SCM IOPs
- Get ARM Fellow program moving

New Methodologies

- Integrated cloud product
 - Produce continuous column description of cloud properties
 - Blend principal investigator science with integrated working group activity and distributed product generation
- Cloud parameterization testbeds?

(Draft V 2.1)

Summary

- ARM is alive and healthy after a decade
 - Stable funding and solid management support
- We need tighter focus on our primary goal of improving cloud and radiation parameterization
- We need to expand our links to other programs to leverage our resources
- We need innovative ideas and approaches

Southern Great Plains

