An Assessment of Sediment Injury in the Grand Calumet River, Indiana Harbor Canal, Indiana Harbor, and the Nearshore Areas of Lake Michigan

Volume II - Tables

Prepared for:

U.S. Fish and Wildlife Service Bloomington Field Office 620 South Walker Street Bloomington, Indiana 47403

Prepared – October 2000 – by:

Donald D. MacDonald MacDonald Environmental Sciences Ltd.

2376 Yellow Point Road Nanaimo, British Columbia V9X 1W5 Christopher G. Ingersoll Columbia Environmental Research Center

United States Geological Survey 4200 New Haven Road Columbia, Missouri 65201 In Association with:

Industrial Economics, Incorporated

2067 Massachusetts Avenue Cambridge, Massachusetts 02140

An Assessment of Sediment Injury in the Grand Calumet River, Indiana Harbor Canal, Indiana Harbor, and the Nearshore Areas of Lake Michigan

Volume II - Tables

Prepared for:

U.S. Fish and Wildlife Service Bloomington Field Office 620 South Walker Street Bloomington, Indiana 47403

 $Prepared - October\ 2000 - by$:

Donald D. MacDonald MacDonald Environmental Sciences Ltd.

2376 Yellow Point Road Nanaimo, British Columbia V9X 1W5

Christopher G. Ingersoll Columbia Environmental Research Center

> United States Geological Survey 4200 New Haven Road Columbia, Missouri 65201

> > *In Association with:*

Industrial Economics, Incorporated

2067 Massachusetts Avenue Cambridge, Massachusetts 02140

Volume II - Tables (under this cover)

Volume I - ' Volume III	Other Volumes in this Report Volume I - Text Volume III - Figures Volume IV - Appendices						
	nts						
Chapter 3							
Table 3.1.	Summary of the consensus-based SECs for the chemicals of concern in the Assessment Area (from MacDonald <i>et al.</i> 2000a)						
Table 3.2	Toxicity thresholds for chemicals of concern in pore water in the Assessment Area						
Table 3.3	Bioaccumulation-based SQGs for the chemicals of concern in the Assessment Area (from NYSDEC 1994)						
Table 3.4	Tissue residue guidelines for the protection of piscivorus wildlife (from Newell <i>et al.</i> 1987)						
Table 3.5	Maximum background concentration of metals in Indiana and Illinois stream and lake sediments						
Chapter 5							
Table 5.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in GCRL sediments						
Table 5.2	Proportion of sediment samples with various chemical characteristics in the GCRL						
Table 5.3	Concentrations of chemicals of concern in pore water from GCRL sediments						
Table 5.4	Summary of the available information on the toxicity of sediments and elutriates from the GCRL						
Table 5.5	Levels of TOC in GCRL sediments						
Table 5.6	Levels of oil and grease in GCRL sediments						
Table 5.7	Summary of the available information on the toxicity of sediments from the GCRL to fish						
Table 5.8	Frequency of exceedance of TRGs in the GCRL						
Table 5.9	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the GCRL						

Chapter 6		
Table 6.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in EBGCR-I sediments	17
Table 6.2	Proportion of sediment samples with various chemical characteristics in the EBGCR-I	19
Table 6.3	Concentrations of chemicals of concern in pore water from EBGCR-I sediments	21
Table 6.4	Summary of the available information on the toxicity of sediments and pore water from the EBGCR-I	24
Table 6.5	Status of benthic invertebrate communities in the EBGCR-I	25
Table 6.6	Levels of TOC in EBGCR-I sediments	26
Table 6.7	Levels of oil and grease in EBGCR-I sediments	27
Table 6.8	Summary of the available information on the toxicity of sediments and elutriates from the EBGCR-I to fish	28
Table 6.9	Frequency of exceedance of TRGs in the EBGCR-I	29
Table 6.10	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the EBGCR-I	30
Chapter 7		
Table 7.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in EBGCR-II sediments	31
Table 7.2	Proportion of sediment samples with various chemical characteristics in the EBGCR-II	33
Table 7.3	Concentrations of chemicals of concern in pore water from EBGCR-II sediments	35
Table 7.4	Summary of the available information on the toxicity of sediments and pore water from the EBGCR-II	36
Table 7.5	Status of benthic invertebrate communities in the EBGCR-II	
Table 7.6	Levels of TOC in EBGCR-II sediments	38
Table 7.7	Summary of the available information on the toxicity of sediments from the EBGCR-II to fish	
Table 7.8	Frequency of exceedance of TRGs in the EBGCR-II	40
Table 7.9	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the EBGCR-II	
Chapter 8		
Table 8.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in WBGCR-I sediments	42
Table 8.2	Proportion of sediment samples with various chemical characteristics in the WBGCR-I	44

Table 8.3	Concentrations of chemicals of concern in pore water from WBGCR-I sediments
Table 8.4	Summary of the available information on the toxicity of sediments and pore water from the WBGCR-I
Table 8.5	Status of benthic invertebrate communities in the WBGCR-I
Table 8.6	Levels of TOC in WBGCR-I sediments
Table 8.7	Levels of oil and grease in WBGCR-I sediments
Table 8.8	Frequency of exceedance of TRGs in the WBGCR-I
Table 8.9	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the WBGCR-I
Chapter 9	
Table 9.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in WBGCR-II sediments
Table 9.2	Proportion of sediment samples with various chemical characteristics in the WBGCR-II
Table 9.3	Concentrations of chemicals of concern in pore water from WBGCR-II sediments
Table 9.4	Summary of the available information on the toxicity of sediments and pore water from the WBGCR-II
Table 9.5	Status of benthic invertebrate communities in the WBGCR-II
Table 9.6	Levels of TOC in WBGCR-II sediments
Table 9.7	Summary of the available information on the toxicity of elutriates from the WBGCR-II to fish
Table 9.8	Frequency of exceedance of TRGs in the WBGCR-II
Table 9.9	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the WBGCR-II
Chapter 10	
Table 10.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in IHC sediments
Table 10.2	Proportion of sediment samples with various chemical characteristics in the IHC
Table 10.3	Concentrations of chemicals of concern in pore water from IHC sediments
Table 10.4	Summary of the available information on the toxicity of sediments and pore water from the IHC
Table 10.5	Status of benthic invertebrate communities in the IHC
Table 10.6	Levels of TOC in IHC sediments

Table 10.7	Levels of oil and grease in IHC sediments	71
Table 10.8	Frequency of exceedance of TRGs in the IHC	72
Table 10.9	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the IHC	73
Chapter 11		
Table 11.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in LGB sediments	74
Table 11.2	Proportion of sediment samples with various chemical characteristics in the LGB	76
Table 11.3	Concentrations of chemicals of concern in pore water from LGB sediments	77
Table 11.4	Summary of the available information on the toxicity of sediments and elutriates from the LGB	78
Table 11.5	Status of benthic invertebrate communities in the LGB	79
Table 11.6	Levels of TOC in LGB sediments	80
Table 11.7	Levels of oil and grease in LGB sediments	81
Table 11.8	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the LGB	82
Chapter 12		
Table 12.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in USC sediments	83
Table 12.2	Proportion of sediment samples with various chemical characteristics in the USC	85
Table 12.3	Concentrations of chemicals of concern in pore water from USC sediments	86
Table 12.4	Summary of the available information on the toxicity of sediments, pore water and elutriates from the USC	87
Table 12.5	Status of benthic invertebrate communities in the USC	88
Table 12.6	Levels of TOC in USC sediments	89
Table 12.7	Levels of oil and grease in USC sediments	90
Table 12.8	Frequency of exceedance of TRGs in the USC	91
Table 12.9	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the USC	92

Chapter 13	
Table 13.1	Frequency of exceedances of the PECs and bioaccumulation-based SQGs in IH and nearshore areas of Lake Michigan sediments
Table 13.2	Proportion of sediment samples with various chemical characteristics in the IH and nearshore areas of Lake Michigan
Table 13.3	Concentrations of chemicals of concern in porewater from IH sediments
Table 13.4	Summary of the available information on the toxicity of sediments, pore water and elutriates from the IH and nearshore areas of Lake Michigan 97
Table 13.5	Status of benthic invertebrate communities in the IH and nearshore areas of Lake Michigan
Table 13.6	Levels of TOC in IH and nearshore areas of Lake Michigan sediments 101
Table 13.7	Levels of oil and grease in IH and nearshore areas of Lake Michigan sediments
Table 13.8	Frequency of exceedance of TRGs in IH and nearshore areas of Lake Michigan
Table 13.9	Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the IH and nearshore areas of Lake Michigan
Chapter 14	
Table 14.1	Summary of assessment of sediment injury to sediment-dwelling organisms
Table 14.2	Summary of the distribution of mean PEC-Qs in surficial sediments in the Assessment Area
Table 14.3	Summary of the distribution of mean PEC-Qs in sub-surface sediments in the Assessment Area
Table 14.4	Summary of the available information on SEM-AVS in the Assessment Area
Table 14.5	Summary of mIBI scores for the various reaches in the Assessment Area, 1993-1998
Table 14.6	Summary of QHEI scores for the various reaches in the Assessment Area, 1993-1998
Table 14.7	Summary of assessment of sediment injury to fish and wildlife resources
Table 14.8	Summary of DELT scores for the various reaches in the Assessment Area, 1993-1998
Table 14.9	Summary of IBI scores for the various reaches in the Assessment Area, 1985-1998

List of Acronyms

% percent
10-d 10 days
12-d 12 days
14-d 14 days
15-min 15 minutes
20-d 20 days

2,3,7,8-TCDD tetrachlorodibenzo-*p*-dioxin

28-d 28 days 30-min 30 minutes 48-h 48 hours 7-d 7 days 8-d 8 days 96-h 96 hours

AOC Area of Concern

ARCS Program Assessment and Remediation of Contaminated Sediments in the Great

Lakes Program

ASTM American Society for Testing and Materials

AVS acid volatile sulfides

BSAF biota-sediment bioaccumulation factor

CCBP Central Corn Belt Plain

CCME Canadian Council of Ministers of the Environment

CCREM Canadian Council of Resource and Environment Ministers

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act of 1980, 42 U.S.C. 9601 et seq.

CERCLIS Comprehensive Environmental Response, Compensation, and Liability

Information System

CI confidence interval

CSO combined sewer overflow

DDTs p,p'-DDT, o,p'-DDT, p,p'-DDE, o,p'-DDD, o,p'-DDD, and

any metabolite or degradation product

DELT deformities, fin erosion, lesions, and tumors

DL detection limit
DO dissolved oxygen
DQO data quality objective
DuPont E.I. du Pont de Nemours

DW dry weight EB east branch

EBGCR East Branch of the Grand Calumet River
EBGCR-I East Branch of the Grand Calumet River I
EBGCR-II East Branch of the Grand Calumet River II

EC Environment Canada

EC₅₀ median effective concentration

ECBP Eastern Corn Belt Plain

EPT Ephemeroptera, Plecoptera, Trichoptera

FIELDS Fully Integrated Environmental Location Decision Support

gamma-BHC gamma-hexachlorocyclohexane (lindane)

GCRL Grand Calumet River Lagoons
GIS geographic information system

HC Health Canada

HNTB Howard, Needles, Tammen and Bergendoff Architects, Engineers, and

Planners

IBI Index of biotic integrity

ID insufficient data

IDEM Indiana Department of Environmental Management

IEC Industrial Economics, Inc.

IH Indiana Harbor
IHC Indiana Harbor Canal

IJC International Joint Commission

IL Illinois IN Indiana

LC₅₀ median lethal concentration

LEP Little East Pond
LGB Lake George Branch
LM Lake Michigan
LTI Limno-Tech, Inc.
LWP Little West Pond

mean PEC-Q mean probable effect concentration quotient MESL MacDonald Environmental Sciences Ltd.

mg milligrams

mg/kg milligrams per kilogram mg/L milligrams per liter

mIBI macroinvertebrate index of biotic integrity

mm millimeters MS Microsoft

n number of samples

NA not applicable (i.e., all <DL values were >PEC; therefore total was not

calculated)

NA' not applicable (i.e., toxicity test or chemical analyses not performed).

ND not determined; compounds were measured as less than the detection

limit, but the detection limit is unknown

ND' not determined; toxicity not determined because mortality was > 40% ND" not determined; the lab considered sample to be a hazard to personnel

NE northeast

NG no guideline available

NH₃ unionized ammonia NH₄⁺ ionized ammonia

NIPSCO Northern Indiana Public Service Company

NOAA National Oceanic and Atmospheric Administration
NPDES National Pollutant Discharge and Elimination System

NR not reported

NRDA Natural Resource Damage Assessment

NT not toxic NW northwest

NYSDEC New York State Department of Environmental Conservation

OC organic carbon

OEPA Ohio Environmental Protection Agency

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PEC probable effect concentration (consensus-based)

PEC-Q probable effect concentration quotient QA/QC quality assurance/quality control qualitative habitat evaluation index

RCRA Resource Conservation and Recovery Act

RETEC Remediation Technologies, Inc.

S.U. standard unit

SAB Science Advisory Board

SE southeast

SEC sediment effect concentration (consensus-based)

SEM simultaneously extracted metals

SEM-AVS simultaneously extracted metal minus acid volatile sulfides SETAC Society of Environmental Toxicology and Chemistry

SODsediment oxygen demandSQGsediment quality guidelineSTPsewage treatment plantsum DDDp,p'-DDD + o,p'-DDDsum DDEp,p'-DDE + o,p'-DDEsum DDTp,p'-DDT + o,p'-DDT

SVOC semi-volatile organic chemical

SW southwest T toxic

TEC threshold effect concentration (consensus-based)

ThermoRetec Consulting Corporation

TOC total organic carbon

Total DDT p,p'-DDT, o,p'-DDT, p,p'-DDE, o,p'-DDD, and o,p'-DDD

TRG tissue residue guideline

U.S. Steel United States Steel (Division of USX Corporation)

USACE United States Army Corps of Engineers

USC United States Canal

USDOI United States Department of the Interior

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey

USS Lead USS Lead Refinery, Inc. VOC volatile organic compound

WB west branch

WBGCR West Branch of the Grand Calumet River
WBGCR-I West Branch of the Grand Calumet River I
WBGCR-II West Branch of the Grand Calumet River II

WW wet weight

 $\begin{array}{ll} WWTP & wastewater treatment plant \\ \mu g/kg & micrograms per kilogram \\ \mu g/L & micrograms per liter \\ \mu mol/g & micromoles per gram \end{array}$

Tables

Chapter 3 - Study Approach

Table 3.1. Summary of the consensus-based SECs for the chemicals of concern in the Assessment Area (from MacDonald *et al.* 2000a).

Chemicals of Concern	Units	Consensus-Based TEC	Consensus-Based PEC
Metals			
Arsenic	mg/kg (DW)	9.79	33.0
Cadmium	mg/kg (DW)	0.99	4.98
Chromium	mg/kg (DW)	43.4	111
Copper	mg/kg (DW)	31.6	149
Lead	mg/kg (DW)	35.8	128
Mercury	mg/kg (DW)	0.18	1.06
Nickel	mg/kg (DW)	22.7	48.6
Zinc	mg/kg (DW)	121	459
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	μg/kg (DW)	6.711	88.9^{2}
Acenaphthylene	μg/kg (DW)	5.87^{1}	128^{2}
Anthracene	μg/kg (DW)	57.2	845
Fluorene	μg/kg (DW)	77.4	536
2-Methylnaphthalene	μg/kg (DW)	20.2^{1}	201 ²
Naphthalene	μg/kg (DW)	176	561
Phenanthrene	μg/kg (DW)	204	1170
Benz(a)anthracene	μg/kg (DW)	108	1050
Dibenz(a,h)anthracene	μg/kg (DW)	33.0	135^{2}
Benzo(a)pyrene	μg/kg (DW)	150	1450
Chrysene	μg/kg (DW)	166	1290
Fluoranthene	μg/kg (DW)	423	2230
Pyrene	μg/kg (DW)	195	1520
Total PAHs	$\mu g/kg$ (DW)	1610	22800
Polychlorinated Biphenyls			
Total PCBs	$\mu g/kg$ (DW)	59.8	676
Pesticides			
Chlordane	μg/kg (DW)	3.24	17.6
Dieldrin	μg/kg (DW)	1.90	61.8
sum DDD	μg/kg (DW)	4.88	28.0
sum DDE	μg/kg (DW)	3.16	31.3
sum DDT	μg/kg (DW)	4.16	62.9
Total DDT	$\mu g/kg$ (DW)	5.28	572
Endrin	$\mu g/kg$ (DW)	2.22	207
Heptachlor epoxide	μg/kg (DW)	2.47	16.0
Lindane (gamma-BHC)	$\mu g/kg$ (DW)	2.37	4.99

¹TEL from CCME (1999).

²PEL from CCME (1999).

DW = dry weight.

Table 3.2. Toxicity thresholds for chemicals of concern in pore water in the Assessment Area.

Character of Communication	T I•4	Aquatic Plants 10-d LC ₅₀ for	Other Aquatic Invertebrates		Fish			
Chemicals of Concern	Units	Acute	Chronic	Hyalella azteca	Acute	Chronic	Acute	Chronic
Metals								
Cadmium	μg/L	30^{6}	1 6	2.94	3.6 6	0.17 6	< 0.5 6	$0.47^{\ 6}$
Chromium	μg/L	2500^{7}	NR	NR	15 ²	2.5^{2}	265 ²	73 ²
Copper	μg/L	NR	1 1	35 ⁴	20 1	8 1	21 1	3.9^{2}
Lead	μg/L	4140^{7}	450 ⁷	< 16 4	124^{7}	1 7	448 2	3.5 7
Nickel	μg/L	300 ⁵	50 ⁵	780 ⁴	102 5	15 ²	50 ⁵	25 ⁵
Zinc	μg/L	20^{7}	2 7	73 ⁴	51 7	10 7	$280^{\ 7}$	10 7
Phenolics								
o-Chlorophenol	μg/L	NR	NR	NR	5600 ³	NR	NR	NR
p-Chlorophenol	μg/L	NR	NR	NR	5600 ³	NR	NR	NR
o-Cresol	μg/L	NR	NR	NR	100^{3}	NR	NR	NR
p-Cresol	μg/L	NR	NR	NR	100^{-3}	NR	NR	NR
2,4-Dichlorophenol	μg/L	NR	NR	NR	520 ³	NR	NR	NR
2,4-Dinitrophenol	μg/L	NR	NR	NR	NR	NR	NR	NR
Phenol	$\mu g/L$	NR	NR	NR	45 ³	NR	NR	NR
Other Substances								
Unionized ammonia	mg/L	NR	NR	NR	0.53^{2}	NR	$0.083^{\ 2}$	$0.002^{\ 2}$

¹ Spear and Pierce (1979).

² CCREM (1987).

³ USEPA (1992a).

⁴ USEPA (1994).

⁵ EC and HC (1994).

⁶ Outridge *et al.* (1994).

⁷ USGS (1998).

NR = not reported.

Table 3.3. Bioaccumulation-based SQGs for the chemicals of concern in the Assessment Area (from NYSDEC 1994).

Chemicals of Concern	Units	Wildlife-Based SQGs	Human Health-Based SQGs
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene	μg/kg (DW; OC)	NG	1300
Polychlorinated Biphenyls			
Total PCBs	μg/kg (DW; OC)	1400	0.8
Pesticides			
Chlordane	μg/kg (DW; OC)	6	1
Dieldrin	μg/kg (DW; OC)	NG	100
Total DDT	μg/kg (DW; OC)	1000	10
Endrin	μg/kg (DW; OC)	800	800
Heptachlor	μg/kg (DW; OC)	30	0.8
Heptachlor epoxide	μg/kg (DW; OC)	30	0.8
Lindane (gamma-BHC)	μg/kg (DW; OC)	1500	60
Mirex	μg/kg (DW; OC)	3700	70
Toxaphene	μg/kg (DW; OC)	NG	20
Dioxins			
2,3,7,8-TCDD	μg/kg (DW; OC)	0.2	10

NG = no guideline; DW = dry weight; OC = organic carbon.

Table 3.4. Tissue residue guidelines for the protection of piscivorus wildlife (from Newell et al. 1987).

)				
Chemical of Concern	Units	Carcinogenic Criteria	Non-Carcinogenic Criteria		TRGs used in this Assessment	
		1 in 100 Cancer Risk Criteria	Birds Mammals			
PCBs						
Total PCBs	$\mu g/kg \ (WW)$	110	110	130	110	
Pesticides						
Chlordane	μg/kg (WW)	370	NG	500	370	
Dieldrin + Aldrin	μg/kg (WW)	22	200	120	22	
Endrin	μg/kg (WW)	NG	25	430	25	
Heptachlor + Heptachlor epoxide	μg/kg (WW)	210	25	200	25	
Lindane	μg/kg (WW)	510	100	2000	100	
Mirex	μg/kg (WW)	370	2000	330	330	
Total DDT	μg/kg (WW)	270	200	500	200	
Dioxins						
2,3,7,8-TCDD	μg/kg (WW)	0.0023	NG	0.003	0.0023	

NG = no guideline; WW = wet weight.

Table 3.5. Maximum background concentration of metals in Indiana and Illinois stream and lake sediments.

Chemicals of Concern	Units	Illinois ^a	Indiana ^b
Metals			
Cadmium	mg/kg (DW)	1.0	1.0
Chromium	mg/kg (DW)	23.0	50.0
Copper	mg/kg (DW)	60.0	20.0
Nickel	mg/kg (DW)	NR	21.0
Lead	mg/kg (DW)	38.0	150.0
Zinc	mg/kg (DW)	100.0	130.0

^a Maximum background concentrations of metals in Illinois stream and lake sediments (Adams 1995). Values reported represent the mean plus four standard deviations.

NR = not reported; DW = dry weight.

^b Maximum background concentrations of metals in Indiana stream and lake sediments (IDEM 1992).

Tables

Chapter 5 - Grand Calumet River Lagoons

Table 5.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in GCRL sediments.

Character Land Character	Sediment-Dwo	elling Organisms	Wildlife		
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments	
Metals					
Arsenic	84 of 178 (47%)	1 of 13 (7.7%)	NG	NG	
Cadmium	4 of 201 (2.0%)	0 of 9 (0%)	NG	NG	
Chromium	33 of 201 (16%)	0 of 13 (0%)	NG	NG	
Copper	4 of 201 (2.0%)	0 of 13 (0%)	NG	NG	
Lead	35 of 201 (17%)	0 of 13 (0%)	NG	NG	
Mercury	3 of 201 (1.5%)	0 of 13 (0%)	NG	NG	
Nickel	2 of 198 (1.0%)	0 of 13 (0%)	NG	NG	
Zinc	18 of 196 (9.2%)	0 of 13 (0%)	NG	NG	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	37 of 37 (100%)	1 of 1 (100%)	NG	NG	
Acenaphthylene	18 of 18 (100%)	1 of 1 (100%)	NG	NG	
Anthracene	27 of 87 (31%)	1 of 3 (33%)	NG	NG	
Benz(a)anthracene	52 of 155 (34%)	1 of 4 (25%)	NG	NG	
Benzo(a)pyrene	51 of 167 (31%)	1 of 4 (25%)	NG	NG	
Chrysene	55 of 163 (34%)	1 of 4 (25%)	NG	NG	
Dibenz(a,h)anthracene	27 of 29 (93%)	0 of 0 (0%)	NG	NG	
Fluoranthene	47 of 181 (26%)	1 of 4 (25%)	NG	NG	
Fluorene	26 of 40 (65%)	1 of 1 (100%)	NG	NG	
2-Methylnaphthalene	22 of 31 (71%)	1 of 1 (100%)	NG	NG	
Naphthalene	39 of 80 (49%)	1 of 1 (100%)	NG	NG	
Phenanthrene	51 of 163 (31%)	1 of 4 (25%)	NG	NG	
Pyrene	59 of 176 (34%)	1 of 4 (25%)	NG	NG	
Total PAHs	37 of 194 (19%)	1 of 4 (25%)	NG	NG	
PCBs					
Total PCBs	14 of 40 (35%)	0 of 0 (0%)	29 of 29 (100%)	0 of 0 (0%)	

Table 5.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in GCRL sediments.

Character Laf Communication	Sediment-Dwo	elling Organisms	Wildlife		
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments	
Pesticides					
Chlordane	7 of 18 (39%)	0 of 0 (0%)	14 of 14 (100%)	0 of 0 (0%)	
sum DDD	12 of 26 (46%)	0 of 1 (0%)	NG	NG	
sum DDE	18 of 32 (56%)	0 of 1 (0%)	NG	NG	
sum DDT	10 of 32 (31%)	0 of 1 (0%)	NG	NG	
Total DDTs	7 of 33 (21%)	0 of 1 (0%)	20 of 33 (61%)	0 of 1 (0%)	
Dieldrin	0 of 33 (0%)	0 of 1 (0%)	NG	NG	
Endrin	0 of 33 (0%)	0 of 1 (0%)	1 of 22 (4.5%)	0 of 1 (0%)	
Heptachlor	NG	NG	0 of 1 (0%)	0 of 0 (0%)	
Heptachlor epoxide	0 of 32 (0%)	0 of 1 (0%)	0 of 1 (0%)	0 of 0 (0%)	
Lindane (gamma-BHC)	0 of 17 (0%)	0 of 1 (0%)	0 of 33 (0%)	0 of 1 (0%)	
Toxaphene	NG	NG	NG	NG	
Dioxins					
2,3,7,8-TCDD	NG	NG	NM	NM	

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption. 0 of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no guideline (i.e., no PEC or bioaccumulative-based SQG available); NM = substance was not measured.

Table 5.2. Proportion of sediment samples with various chemical characteristics in the GCRL.

D 10	Number		Mean PEC-Qs					
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7		
Surficial Sediments								
West Lagoon								
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	58	4 of 58 (6.9%)	23 of 58 (40%)	15 of 58 (26%)	16 of 58 (28%)	31 of 58 (53%)		
Middle Lagoon								
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	49	4 of 49 (8.2%)	36 of 49 (73%)	7 of 49 (14%)	2 of 49 (4.1%)	9 of 49 (18%)		
East Lagoon								
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	47	4 of 47 (8.5%)	29 of 47 (62%)	14 of 47 (30%)	0 of 47 (0%)	14 of 47 (30%)		
Little West Pond			· · ·	, ,	, ,	, ,		
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	25	9 of 25 (36%)	14 of 25 (56%)	2 of 25 (8.0%)	0 of 25 (0%)	2 of 25 (8.0%)		
Little East Pond								
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	23	12 of 23 (52%)	11 of 23 (48%)	0 of 23 (0%)	0 of 23 (0%)	0 of 23 (0%)		
Total (all years and locations)	202	33 of 202 (16%)	113 of 202 (56%)	38 of 202 (19%)	18 of 202 (8.9%)	56 of 202 (28%)		

Table 5.2. Proportion of sediment samples with various chemical characteristics in the GCRL.

D 1.0	Number			Mean PEC-Qs		
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Sub-Surface Sediments						
West Lagoon						
Prior to 1996	5	3 of 5 (60%)	1 of 5 (20%)	0 of 5 (0%)	1 of 5 (20%)	1 of 5 (20%)
1996 and later	1	0 of 1 (0%)	1 of 1 (100%)	0 of 1 (0%)	0 of 1 (0%)	0 of 1 (0%)
Middle Lagoon						
Prior to 1996	3	3 of 3 (100%)	0 of 3 (0%)			
1996 and later	0	NA	NA	NA	NA	NA
East Lagoon						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	0	NA	NA	NA	NA	NA
Little West Pond						
Prior to 1996	2	1 of 2 (50%)	1 of 2 (50%)	0 of 2 (0%)	0 of 2 (0%)	0 of 2 (0%)
1996 and later	0	NA	NA	NA	NA	NA
Little East Pond						
Prior to 1996	2	2 of 2 (100%)	0 of 2 (0%)			
1996 and later	0	NA	NA	NA	NA	NA
Total (all years and locations)	13	9 of 13 (69%)	3 of 13 (23%)	0 of 13 (0%)	1 of 13 (7.7%)	1 of 13 (7.7%)

Table 5.3. Concentrations of chemicals of concern in pore water from GCRL sediments.

		Toxicity T	Threshold	Sample Site (USGS 1999)					
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	IH-20	IH-21	IH-22	IH-23	IH-24	
Metals									
Cadmium	μg/L	2.9	NG	< 0.11	< 0.11	< 0.11	< 0.11	0.16 (0.06)	
Chromium	μg/L	NG	NG	NM	NM	NM	NM	NM	
Copper	μg/L	35	NG	5.35 (0.15)	3.29 (0.09)	3.24 (0.09)	15.95 (0.46)	6.03 (0.17)	
Lead	μg/L	<16	NG	8.22	4.45	4.62	4.41	15.78	
Nickel	μg/L	780	NG	2.78 (0.004)	1.91 (0.002)	1.82 (0.002)	2.35 (0.003)	4.63 (0.01)	
Zinc	μg/L	73	NG	23.55 (0.32)	11.59 (0.16)	8.59 (0.12)	13.15 (0.18)	24.17 (0.33)	
Sum Toxic Units ³		NG	NG	0.474	0.252	0.212	0.643	0.57	
Phenolics									
o-Chlorophenol	μg/L	NG	5600	NM	NM	NM	NM	NM	
p-Chlorophenol	μg/L	NG	5600	NM	NM	NM	NM	NM	
2,4-Dichlorophenol	μg/L	NG	520	NM	NM	NM	NM	NM	
o-Cresol	μg/L	NG	100	NM	NM	NM	NM	NM	
p-Cresol	μg/L	NG	100	NM	NM	NM	NM	NM	
2,4-Dinitrophenol	μg/L	NG	NG	NM	NM	NM	NM	NM	
Phenol	μg/L	NG	45	NM	NM	NM	NM	NM	
Other Substances									
Unionized ammonia	mg/L	NG	0.53	NM	0.01	0.01	< 0.01	0.01	

¹ The 10-d LC₅₀s for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (1994; 2000b).

NG = no guideline; NM = not measured.

² Acute toxicity thresholds for unionized ammonia were obtained from CCREM (1987).

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC_{50}).

Table 5.4. Summary of the available information on the toxicity of sediments and elutriates from the GCRL.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity	
Overall Toxicity				
West Lagoon	8	5	63%	
Middle Lagoon	3	1	33%	
East Lagoon	1	0	0%	
Little West Pond	0	NA	NA	
Little East Pond	0	NA	NA	
Total	12	6	50%	

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of GCRL sediments included amphipod survival and growth in 10-d and 20-d tests with whole sediments; cladoceran survival in 7-d tests with whole sediments and 8-d tests with elutriate; and, fish survival and growth in 10-d tests with whole sediments and 12-d tests with elutriate.

Table 5.5. Levels of TOC in GCRL sediments.

Reach Segment	Number of Comples	TO	OC (%)
cn Segment	Number of Samples —	Mean	Range
Surficial Sediments			
West Lagoon	57	4.05	0.420 - 38.1
Middle Lagoon	49	1.36	0.320 - 10.4
East Lagoon	47	1.45	0.380 - 13.0
Little West Pond	25	1.32	0.0200 - 9.11
Little East Pond	23	0.941	0.140 - 1.00
All Segments	201	2.09	0.0200 - 38.1
Sub-Surface Sediments			
West Lagoon	6	8.19	0.100 - 34.1
Middle Lagoon	3	0.233	0.100 - 0.400
East Lagoon	0	NA	NA
Little West Pond	0	NA	NA
Little East Pond	0	NA	NA
All Segments	9	5.54	0.100 - 34.1

Table 5.6. Levels of oil and grease in GCRL sediments.

Decel Comment	Name of Community	Oil and Grease (mg/kg)			
Reach Segment	Number of Samples —	Mean	Range		
Surficial Sediments					
West Lagoon	3	2630	1000 - 3700		
Middle Lagoon	1	4000	NA		
East Lagoon	1	20000	NA		
Little West Pond	NA	NA	NA		
Little East Pond	NA	NA	NA		
All Segments	5	6380	1000 - 20000		
Sub-Surface Sediments					
West Lagoon	NA	NA	NA		
Middle Lagoon	NA	NA	NA		
East Lagoon	NA	NA	NA		
Little West Pond	NA	NA	NA		
Little East Pond	NA	NA	NA		
All Segments	NA	NA	NA		

Table 5.7. Summary of the available information on the toxicity of sediments from the GCRL to fish.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity	
Overall Toxicity				
West Lagoon	5	1	20%	
Middle Lagoon	2	0	0%	
East Lagoon	0	NA	NA	
Little West Pond	0	NA	NA	
Little East Pond	0	NA	NA	
Total	7	1	14%	

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of GCRL sediments included fish survival and growth in 10-d tests with whole sediments and 12-d tests with elutriate.

Table 5.8. Frequency of exceedance of TRGs in the GCRL.

		Fish		Invertebrates	Algae
Chemical of Concern	Fillets ¹	Whole Body ²	GI Tract ³	Composite Sample	Composite Sample
PCBs					
Total PCBs	17 of 18 (94%)	18 of 18 (100%)	18 of 18 (100%)	NM	NM
Pesticides					
Endrin	NM	NM	NM	NM	NM
Chlordane	0 of 6 (0%)	0 of 8 (0%)	0 of 8 (0%)	NM	NM
Dieldrin + Aldrin	NM	0 of 2 (0%)	NM	NM	NM
Heptachlor + Heptachlor epoxide	NM	0 of 1 (0%)	NM	NM	NM
Lindane	NM	NM	NM	NM	NM
Mirex	NM	NM	NM	NM	NM
Total DDTs	0 of 7 (0%)	4 of 10 (40%)	0 of 9 (0%)	NM	NM
Dioxins					
2,3,7,8-TCDD	NM	NM	NM	NM	NM

¹Fillets = skin-off fillets.

NM = not measured.

²Whole body = head, gills, skin, bones and attached flesh (i.e., without fillets or GI tract).

³GI tract = organs in body cavity post gills.

Table 5.9. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the GCRL.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Surficial Sediments							
West Lagoon	58	555	0.0556	23800	0.146	26.6	1.04
Middle Lagoon	49	0.941	0.0914	16.1	0.101	2.18	0.290
East Lagoon	47	0.558	0.0768	2.30	0.106	1.28	0.376
Little West Pond	25	0.326	0.0646	2.51	0.0937	0.425	0.178
Little East Pond	23	0.111	0.0639	0.220	0.0668	0.141	0.0995
Overall	202	160	0.0556	23800	0.0925	3.19	0.289
Sub-Surface Sediments							
West Lagoon	6	427	0.0185	2560	0.0185	0.317	0.0964
Middle Lagoon	3	0.0336	0.0147	0.06	0.0147	0.026	0.026
East Lagoon	0	NA	NA	NA	NA	NA	NA
Little West Pond	2	0.120	0.0675	0.172	NA	NA	NA
Little East Pond	2	0.0412	0.0334	0.049	NA	NA	NA
Overall	13	197	0.0147	2560	0.0185	0.172	0.049

Tables

Chapter 6 - East Branch of the Grand Calumet River - I

Table 6.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in EBGCR-I sediments.

Chemical of Concern	Sediment-Dwe	elling Organisms	Wi	ldlife
Cnemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments
Metals				
Arsenic	58 of 130 (45%)	53 of 94 (56%)	NG	NG
Cadmium	57 of 134 (43%)	33 of 94 (35%)	NG	NG
Chromium	92 of 134 (69%)	27 of 94 (29%)	NG	NG
Copper	71 of 128 (55%)	46 of 94 (49%)	NG	NG
Lead	122 of 142 (86%)	64 of 99 (65%)	NG	NG
Mercury	36 of 130 (28%)	38 of 94 (40%)	NG	NG
Nickel	73 of 128 (57%)	27 of 94 (29%)	NG	NG
Zinc	112 of 128 (88%)	57 of 94 (61%)	NG	NG
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	60 of 60 (100%)	28 of 30 (93%)	NG	NG
Acenaphthylene	48 of 48 (100%)	16 of 23 (70%)	NG	NG
Anthracene	68 of 80 (85%)	24 of 47 (51%)	NG	NG
Benz(a)anthracene	77 of 91 (85%)	29 of 55 (53%)	NG	NG
Benzo(a)pyrene	76 of 87 (87%)	29 of 55 (53%)	NG	NG
Chrysene	76 of 89 (85%)	28 of 55 (51%)	NG	NG
Dibenz(a,h)anthracene	52 of 58 (90%)	15 of 35 (43%)	NG	NG
Fluoranthene	76 of 93 (82%)	34 of 61 (56%)	NG	NG
Fluorene	64 of 74 (86%)	25 of 45 (56%)	NG	NG
2-Methylnaphthalene	21 of 22 (95%)	7 of 14 (50%)	NG	NG
Naphthalene	67 of 74 (91%)	31 of 53 (58%)	NG	NG
Phenanthrene	75 of 94 (80%)	35 of 61 (57%)	NG	NG
Pyrene	83 of 93 (89%)	37 of 61 (61%)	NG	NG
Total PAHs	79 of 98 (81%)	33 of 63 (52%)	NG	NG
PCBs				
Total PCBs	83 of 100 (83%)	22 of 39 (56%)	54 of 54 (100%)	16 of 16 (100%)

Table 6.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in EBGCR-I sediments.

Chemical of Concern	Sediment-Dwe	elling Organisms	Wildlife			
	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments		
Pesticides						
Chlordane	15 of 25 (60%)	13 of 38 (34%)	12 of 12 (100%)	9 of 9 (100%)		
sum DDD	4 of 26 (15%)	1 of 30 (3.3%)	NG	NG		
sum DDE	11 of 32 (34%)	9 of 38 (24%)	NG	NG		
sum DDT	9 of 65 (14%)	5 of 46 (11%)	NG	NG		
Total DDTs	8 of 66 (12%)	8 of 47 (17%)	10 of 30 (33%)	2 of 22 (9.1%)		
Dieldrin	8 of 66 (12%)	2 of 41 (4.9%)	NG	NG		
Endrin	0 of 77 (0%)	0 of 42 (0%)	2 of 26 (7.7%)	1 of 25 (4.0%)		
Heptachlor	NG	NG	5 of 5 (100%)	1 of 1 (100%)		
Heptachlor epoxide	4 of 23 (17%)	0 of 31 (0%)	5 of 5 (100%)	0 of 0 (0%)		
Lindane (gamma-BHC)	9 of 17 (53%)	6 of 25 (24%)	4 of 58 (6.9%)	1 of 39 (2.6%)		
Toxaphene	NG	NG	NG	NG		
Dioxins						
2,3,7,8-TCDD	NG	NG	NM	0 of 0 (0%)		

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption.

⁰ of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no guideline (i.e., no PEC or bioaccumulative-based SQG available); NM = substance was not measured.

Table 6.2. Proportion of sediment samples with various chemical characteristics in the EBGCR-I.

D 16	Number			Mean PEC-Qs		
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Surficial Sediments						
EB and WB Confluence to Kennedy Avenue						
Prior to 1996	6	0 of 6 (0%)	1 of 6 (17%)	2 of 6 (33%)	3 of 6 (50%)	5 of 6 (83%)
1996 and later	23	0 of 23 (0%)	6 of 23 (26%)	10 of 23 (43%)	7 of 23 (30%)	17 of 23 (74%)
USS Lead Canal		, ,	` ,	` '	` ,	, ,
Prior to 1996	17	0 of 17 (0%)	0 of 17 (0%)	1 of 17 (5.9%)	16 of 17 (94%)	17 of 17 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Kennedy Avenue to Cline Avenue						
Prior to 1996	6	0 of 6 (0%)	0 of 6 (0%)	0 of 6 (0%)	6 of 6 (100%)	6 of 6 (100%)
1996 and later	45	0 of 45 (0%)	3 of 45 (6.7%)	20 of 45 (44%)	22 of 45 (49%)	42 of 45 (93%)
Cline Avenue to Cline/I-90 Ramps				. ,	, , ,	· · ·
Prior to 1996	7	0 of 7 (0%)	0 of 7 (0%)	4 of 7 (57%)	3 of 7 (43%)	7 of 7 (100%)
1996 and later	8	0 of 8 (0%)	1 of 8 (13%)	3 of 8 (38%)	4 of 8 (50%)	7 of 8 (88%)
Cline/I-90 Ramps to Industrial Highway						
Prior to 1996	6	0 of 6 (0%)	0 of 6 (0%)	3 of 6 (50%)	3 of 6 (50%)	6 of 6 (100%)
1996 and later	15	0 of 15 (0%)	0 of 15 (0%)	4 of 15 (27%)	11 of 15 (73%)	15 of 15 (100%)
Industrial Highway to ConRail Bridge			, ,	. ,	, , ,	· · · · ·
Prior to 1996	3	0 of 3 (0%)	0 of 3 (0%)	3 of 3 (100%)	0 of 3 (0%)	3 of 3 (100%)
1996 and later	9	0 of 9 (0%)	0 of 9 (0%)	4 of 9 (44%)	5 of 9 (56%)	9 of 9 (100%)
EB Wetland		, ,	` ,	` '	` ,	`
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	17	1 of 17 (5.9%)	2 of 17 (12%)	6 of 17 (35%)	8 of 17 (47%)	14 of 17 (82%)
Total (all years and locations)	162	1 of 162 (0.6%)	13 of 162 (21%)	60 of 162 (37%)	88 of 162 (54%)	148 of 162 (91%)

Table 6.2. Proportion of sediment samples with various chemical characteristics in the EBGCR-I.

D 10	Number					
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	Mean PEC-Qs \$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Sub-Surface Sediments						
EB and WB Confluence to Kennedy Avenue						
Prior to 1996	3	0 of 3 (0%)	1 of 3 (33%)	2 of 3 (67%)	0 of 3 (0%)	2 of 3 (67%)
1996 and later	15	1 of 15 (7%)	3 of 15 (20%)	7 of 15 (47%)	4 of 15 (27%)	11 of 15 (73%)
USS Lead Canal		` ,	, ,	` ,	` '	` '
Prior to 1996	9	0 of 9 (0%)	0 of 9 (0%)	0 of 9 (0%)	9 of 9 (100%)	9 of 9 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Kennedy Avenue to Cline Avenue						
Prior to 1996	7	1 of 7 (14%)	1 of 7 (14%)	1 of 7 (14%)	4 of 7 (57%)	5 of 7 (71%)
1996 and later	47	6 of 47 (13%)	10 of 47 (21%)	12 of 47 (26%)	19 of 47 (40%)	31 of 47 (66%)
Cline Avenue to Cline/I-90 Ramps			, ,			, ,
Prior to 1996	4	0 of 4 (0%)	0 of 4 (0%)	3 of 4 (75%)	1 of 4 (25%)	4 of 4 (100%)
1996 and later	3	1 of 3 (33%)	2 of 3 (67%)	0 of 3 (0%)	0 of 3 (0%)	0 of 3 (0%)
Cline/I-90 Ramps to Industrial Highway						
Prior to 1996	5	0 of 5 (0%)	0 of 5 (0%)	2 of 5 (40%)	3 of 5 (60%)	5 of 5 (100%)
1996 and later	7	1 of 7 (14%)	3 of 7 (43%)	3 of 7 (43%)	0 of 7 (0%)	3 of 7 (43%)
Industrial Highway to ConRail Bridge						
Prior to 1996	2	0 of 2 (0%)	1 of 2 (50%)	0 of 2 (0%)	1 of 2 (50%)	1 of 2 (50%)
1996 and later	4	0 of 4 (0%)	0 of 4 (0%)	2 of 4 (50%)	2 of 4 (50%)	4 of 4 (100%)
EB Wetland						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	1	0 of 1 (0%)	1 of 1 (100%)	0 of 1 (0%)	0 of 1 (0%)	0 of 1 (0%)
Total (all years and locations)	107	10 of 107 (9.3%)	22 of 107 (21%)	32 of 107 (30%)	43 of 107 (40%)	75 of 107 (70%)

Table 6.3. Concentrations of chemicals of concern in pore water from EBGCR-I sediments.

Chemical of Concern	Units	Toxicity Threshold		Sample Site (USGS 1999)							
		10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	IH-02	IH-03	IH-04	IH-05	IH-06	IH-07	IH-08	
Metals											
Cadmium	$\mu g/L$	2.9	NR	< 0.12	< 0.12	< 0.12	< 0.12	20.42 (7.04)	< 0.12	0.58 (0.20)	
Chromium	μg/L	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Copper	μg/L	35	NR	6.98 (0.20)	3.19 (0.09)	1.4 (0.04)		755.5 (21.59)	5 (0.14)	28.68 (0.82)	
Lead	μg/L	<16	NR	1.58	8.30	7.37	1.56	2080.00	10.31	107.62	
Nickel	μg/L	780	NR	14.47 (0.02)	6.08 (0.01)			135.79 (0.17)		5.97 (0.01)	
Zinc	μg/L	73	NR	< 4.4	< 4.4	20.77 (0.28)	, ,	2480 (33.97)	< 4.4	81.44 (1.12)	
Sum Toxic Units ³	1.0	NR	NR	0.22	0.10	0.33	0.06	62.77	0.16	2.15	
Phenolics											
o-Chlorophenol	μg/L	NG	5600	NM	NM	NM	NM	NM	NM	NM	
p-Chlorophenol	μg/L	NG	5600	NM	NM	NM	NM	NM	NM	NM	
2,4-Dichlorophenol	μg/L	NG	520	NM	NM	NM	NM	NM	NM	NM	
o-Cresol	μg/L	NG	100	NM	NM	NM	NM	NM	NM	NM	
p-Cresol	μg/L	NG	100	NM	NM	NM	NM	NM	NM	NM	
2,4-Dinitrophenol	μg/L	NG	NR	NM	NM	NM	NM	NM	NM	NM	
Phenol	μg/L	NG	45	NM	NM	NM	NM	NM	NM	NM	
Other Substances											
Unionized ammonia	mg/L	NG	0.53	0.10	0.05	0.06	0.02	6.61	0.04	0.01	

Table 6.3. Concentrations of chemicals of concern in pore water from EBGCR-I sediments.

Chemical of Concern	Units	Toxicity Threshold		Sample Site (USGS 1999)							
		10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	IH-09	IH-10	IH-11	IH-12	IH-15	IH-15D	IH-16	
Metals											
Cadmium	μg/L	2.9	NR	0.69 (0.24)	1.29 (0.44)	< 0.12	< 0.12	< 0.12	2.73 (0.94)	< 0.11	
Chromium	μg/L	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Copper	μg/L	35	NR	21.77 (0.62)	37.73 (1.08)	< 0.65	10.65 (0.30)	2.77 (0.08)	141.63 (4.05)	< 0.51	
Lead	μg/L	<16	NR	9.08	257.95	0.28	30.23	5.15	470.95	< 0.4	
Nickel	μg/L	780	NR	13.88 (0.02)	29.75 (0.04)	< 0.69	5.24 (0.01)	6.3 (0.01)	75 (0.10)	3.72 (0.005)	
Zinc	μg/L	73	NR	31.07 (0.43)	390.87 (5.35)	< 4.4	49.55 (0.68)	< 4.4	1410 (19.32)	< 8.0	
Sum Toxic Units ³		NR	NR	1.31	6.91	ND	0.99	0.09	24.41	0.01	
Phenolics											
o-Chlorophenol	μg/L	NG	5600	NM	NM	NM	NM	NM	NM	NM	
p-Chlorophenol	μg/L	NG	5600	NM	NM	NM	NM	NM	NM	NM	
2,4-Dichlorophenol	μg/L	NG	520	NM	NM	NM	NM	NM	NM	NM	
o-Cresol	μg/L	NG	100	NM	NM	NM	NM	NM	NM	NM	
p-Cresol	μg/L	NG	100	NM	NM	NM	NM	NM	NM	NM	
2,4-Dinitrophenol	μg/L	NG	NR	NM	NM	NM	NM	NM	NM	NM	
Phenol	μg/L	NG	45	NM	NM	NM	NM	NM	NM	NM	
Other Substances											
Unionized ammonia	mg/L	NG	0.53	< 0.01	0.04	NM	0.01	NM	NM	0.01	

Table 6.3. Concentrations of chemicals of concern in pore water from EBGCR-I sediments.

	_	Toxicity T	Threshold	Sample Site	(USGS 1999)	San	nple Site (Ho	ke <i>et al</i> . 199	93)
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	IH-17	IH-18	UG-3	UG-4	UG-5	UG-6
Metals									
Cadmium	μg/L	2.9	NG	< 0.11	14.43 (4.98)	<10	<5	<10	<10
Chromium	μg/L	NG	NG	NM	NM	<10	<10	<10	<10
Copper	μg/L	35	NG	1.44 (0.04)	143.03 (4.09)	180 (5.14)	61 (1.74)	17 (0.49)	7 (0.20)
Lead	μg/L	<16	NG	0.59	< 0.4	23	<20	<20	<20
Nickel	μg/L	780	NG	8.41 (0.01)	99.54 (0.13)	<100	<100	<100	<100
Zinc	μg/L	73	NG	< 8.0	104.67 (1.43)	28 (0.38)	134 (1.84)	7 (0.10)	490 (6.71)
Sum Toxic Units ³		NG	NG	0.05	10.63	5.52	3.58	0.59	6.91
Phenolics									
o-Chlorophenol	μg/L	NG	5600	NM	NM	21.6	5.2	63.2	5.8
p-Chlorophenol	μg/L	NG	5600	NM	NM	0.9	0.2	5.9	1.3
2,4-Dichlorophenol	μg/L	NG	520	NM	NM	14.6	15.5	7.4	14.3
o-Cresol	μg/L	NG	100	NM	NM	4.8	3.7	12.6	0.8
p-Cresol	μg/L	NG	100	NM	NM	6.3	6.2	16.2	2.5
2,4-Dinitrophenol	μg/L	NG	NG	NM	NM	26.0	7.3	34.4	15.8
Phenol	μg/L	NG	45	NM	NM	189.9	27.8	256.6	207.1
Other Substances									
Unionized ammonia	mg/L	NG	0.53	0.03	< 0.01	1.4	5.3	0.5	0.8

¹ The 10-d LC₅₀ concentrations for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (1994; 2000b).

NG = no guideline; NM = not measured.

² Acute toxicity thresholds for phenols and unionized ammonia were obtained from USEPA (1992a) and in CCREM (1987), respectively.

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC_{50}).

Table 6.4. Summary of the available information on the toxicity of sediments and pore water from the EBGCR-I.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity
Overall Toxicity			
EB and WB Confluence to Kennedy Avenue	3	3	100%
USS Lead Canal	0	NA	NA
Kennedy Avenue to Cline Avenue	4	3	75%
Cline Avenue to Cline/I-90 Ramps	8	3	38%
Cline/I-90 Ramps to Industrial Highway	16	12	75%
Industrial Highway to ConRail Bridge	6	6	100%
EB Wetland	7	5	71%
Total	44	32	73%

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of EBGCR-I sediments included amphipod survival and growth in 10-d and 96-h with whole sediments; midge survival and growth in 10-d tests with whole sediments; cladoceran survival in 48-h tests with pore water; 30 min Microtox with pore water; and, fish survival in 96-h tests with whole sediments.

Table 6.5. Status of benthic invertebrate communities in the EBGCR-I.

Source	Sample	Annelida	a (%) ¹	Dipter	a (%) ¹	Molluso	ca (%) ¹	EPT	mIBI	Altered/
Source	Number	Oligochaetea	_ `	Chironomidae		Gastropoda		Taxa	ШБІ	Unaltered
Artificial Substrate										
Simon <i>et al.</i> (2000)	7	26.5	0.0	48.0	0.0	0.6	6.1	0.0	1.40	Altered
IDEM (2000a)	Kennedy Avenue	63.9	0.0	3.8	0.0	17.7	12.3	0.0	2.1	Altered
Simon et al. (2000)	5a	59.9	0.0	29.8	0.0	0.0	2.6	0.5	1.13	Altered
IDEM (2000a)	Cline Avenue	47.6	0.0	19.2	0.2	26.5	6.2	0.0	2.4	Altered
Simon et al. (2000)	4	57.9	0.0	19.5	0.1	1.6	19.0	0.0	1.67	Altered
Simon et al. (2000)	3	59.8	0.0	37.2	0.2	0.1	1.6	0.2	1.13	Altered
Simon et al. (2000)	2	32.9	0.0	57.1	0.1	8.1	1.2	0.0	0.87	Altered
Sobiech <i>et al.</i> (1994)	Transect 36	0.8	0.5	89.2	0.5	8.7	0.0	0.0	ND	Altered
Simon et al. (2000)	1	65.0	0.0	33.2	0.2	0.0	0.8	0.2	0.87	Altered
Simon et al. (2000)	8	77.1	0.0	8.6	0.2	5.0	5.1	0.0	0.53	Altered
Grab										
Polls et al. (1993)	2-82	98.2	0.2	0.3	0.0	0.1	1.2	0.0	ND	Altered
Polls et al. (1993)	2-86	99.2	0.3	0.2	0.0	0.0	0.3	0.0	ND	Altered
Polls et al. (1993)	3-86	78.0	1.1	1.5	0.0	14.9	4.2	0.0	ND	Altered
Polls et al. (1993)	3-82	97.2	1.3	0.9	0.0	0.4	0.0	0.0	ND	Altered
Percent Altered Sampl	es									100% (14 of 14)

¹ Reported values are percent of total abundance of invertebrates.

ND = not determined.

Table 6.6. Levels of TOC in EBGCR-I sediments.

D 16	N 1 60 1	TO	OC (%)
Reach Segment	Number of Samples —	Mean	Range
Surficial Sediments			
EB and WB Confluence to Kennedy Avenue	22	4.66	0.320 - 15.9
USS Lead Canal	0	NA	NA
Kennedy Avenue to Cline Avenue	44	2.87	0.340 - 14.3
Cline Avenue to Cline/I-90 Ramps	8	6.17	1.80 - 12.5
Cline/I-90 Ramps to Industrial Highway	15	8.43	3.10 - 13.0
Industrial Highway to ConRail Bridge	8	3.97	0.340 - 9.00
EB Wetland	16	8.44	0.170 - 14.0
All Segments	113	5.06	0.170 - 15.9
Sub-Surface Sediments			
EB and WB Confluence to Kennedy Avenue	16	2.89	0.550 - 8.50
USS Lead Canal	0	NA	NA
Kennedy Avenue to Cline Avenue	51	2.63	0.140 - 14.0
Cline Avenue to Cline/I-90 Ramps	5	3.05	0.230 - 4.85
Cline/I-90 Ramps to Industrial Highway	10	4.38	0.320 - 10.0
Industrial Highway to ConRail Bridge	6	7.88	1.50 - 13.0
EB Wetland	1	5.10	NA
All Segments	89	3.28	0.140 - 14.0

Table 6.7. Levels of oil and grease in EBGCR-I sediments.

Danah Carmant	Name have of Computer	Oil and G	rease (mg/kg)
Reach Segment	Number of Samples —	Mean	Range
Surficial Sediments			
EB and WB Confluence to Kennedy Avenue	18	25900	500 - 133000
USS Lead Canal	NA	NA	NA
Kennedy Avenue to Cline Avenue	39	31100	1300 - 147000
Cline Avenue to Cline/I-90 Ramps	5	24200	1400 - 66400
Cline/I-90 Ramps to Industrial Highway	10	3190	15500 - 63600
Industrial Highway to ConRail Bridge	5	34700	3000 - 64400
EB Wetland	15	26700	600 - 101000
All Segments	92	29300	500 - 147000
Sub-Surface Sediments			
included fish survival in 96-h tests with whole sedimen	15	19400	300 - 52200
USS Lead Canal	NA	NA	NA
Kennedy Avenue to Cline Avenue	46	20700	<730 - 93600
Cline Avenue to Cline/I-90 Ramps	3	800	200 - 1400
Cline/I-90 Ramps to Industrial Highway	7	11700	300 - 39100
Industrial Highway to ConRail Bridge	4	15200	3100 - 28900
EB Wetland	1	4200	NA
All Segments	76	18400	200 - 93600

Table 6.8. Summary of the available information on the toxicity of sediments and elutriates from the EBGCR-I to fish.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity
Overall Toxicity			
EB and WB Confluence to Kennedy Avenue	0	NA	NA
USS Lead Canal	0	NA	NA
Kennedy Avenue to Cline Avenue	2	1	50%
Cline Avenue to Cline/I-90 Ramps	6	1	17%
Cline/I-90 Ramps to Industrial Highway	11	7	64%
Industrial Highway to ConRail Bridge	4	4	100%
EB Wetland	0	NA	NA
Total	23	13	57%

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoint that was used to evaluate the toxicity of EBGCR-I sediments included fish survival in 96-h tests with whole sediments.

Table 6.9. Frequency of exceedance of TRGs in the EBGCR-I.

		Fish		Invertebrates	Algae
Chemical of Concern	Fillets ¹	Whole Body ²	GI Tract ³	Composite Sample	Composite Sample
PCBs					
Total PCBs	6 of 6 (100 %)	8 of 10 (80%)	NM	6 of 6 (100 %)	NM
Pesticides					
Chlordane	0 of 6 (0 %)	1 of 10 (10 %)	NM	0 of 6 (0 %)	NM
Dieldrin + Aldrin	1 of 6 (17 %)	3 of 8 (38 %)	NM	0 of 6 (0 %)	NM
Endrin	0 of 6 (0 %)	1 of 7 (14 %)	NM	0 of 6 (0 %)	NM
Heptachlor + Heptachlor epoxide	0 of 6 (0 %)	0 of 8 (0 %)	NM	0 of 6 (0 %)	NM
Lindane	0 of 5 (0%)	0 of 8 (0%)	NM	0 of 6 (0 %)	NM
Mirex	NM	NM	NM	0 of 6 (0 %)	NM
Total DDTs	2 of 6 (33 %)	5 of 10 (50%)	NM	0 of 6 (0 %)	NM
Dioxins					
2,3,7,8-TCDD	NM	NM	NM	NM	NM

¹Fillets = skin-off fillets.

NM = not measured.

²Whole body = head, gills, skin, bones and attached flesh (i.e., without fillets or GI tract).

³GI tract = organs in body cavity post gills.

Table 6.10. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the EBGCR-I.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Surficial Sediments							
EB and WB Confluence to Kennedy Avenue	29	8.34	0.112	77.4	0.255	25.9	2.88
USS Lead Canal	17	27.7	3.60	72.6	5.45	65.3	13.0
Kennedy Avenue to Cline Avenue	51	7.20	0.457	58.2	1.20	12.3	4.61
Cline Avenue to Cline/I-90 Ramps	15	4.59	0.104	12.1	1.31	7.29	3.73
Cline/I-90 Ramps to Industrial Highway	21	28.9	0.71	184	2.12	45.4	5.94
Industrial Highway to ConRail Bridge	12	36.8	1.92	357	2.24	18.9	3.58
EB Wetland	17	3.99	0.0655	15.7	0.208	6.88	3.23
Overall	162	14.0	0.0655	357	0.875	30.3	4.58
Sub-Surface Sediments							
EB and WB Confluence to Kennedy Avenue	18	3.51	0.0692	13.1	0.193	8.30	2.77
USS Lead Canal	9	24.2	5.64	80.8	5.64	54.4	12.1
Kennedy Avenue to Cline Avenue	54	16.9	0.0286	497	0.0887	16.9	3.06
Cline Avenue to Cline/I-90 Ramps	7	1.47	0.0555	4.20	0.0555	2.63	1.21
Cline/I-90 Ramps to Industrial Highway	12	3.55	0.0847	13.6	0.123	5.50	2.78
Industrial Highway to ConRail Bridge	6	18.6	0.593	99.1	0.593	5.15	2.98
EB Wetland	1	0.627	0.627	0.627	NA	NA	NA
Overall	107	12.7	0.0286	497	0.107	16.9	2.98

Tables

Chapter 7 - East Branch of the Grand Calumet River - II

Table 7.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in EBGCR-II sediments.

	Sediment-Dwe	elling Organisms	Wi	ildlife
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments
Metals				
Arsenic	20 of 85 (24%)	8 of 29 (28%)	NG	NG
Cadmium	21 of 95 (22%)	9 of 29 (31%)	NG	NG
Chromium	19 of 95 (20%)	5 of 29 (17%)	NG	NG
Copper	11 of 93 (12%)	7 of 29 (24%)	NG	NG
Lead	55 of 95 (58%)	21 of 29 (72%)	NG	NG
Mercury	9 of 93 (9.7%)	10 of 29 (34%)	NG	NG
Nickel	10 of 93 (11%)	2 of 29 (7%)	NG	NG
Zinc	52 of 91 (57%)	20 of 29 (69%)	NG	NG
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	49 of 49 (100%)	29 of 29 (100%)	NG	NG
Acenaphthylene	40 of 42 (95%)	28 of 28 (100%)	NG	NG
Anthracene	42 of 67 (63%)	29 of 29 (100%)	NG	NG
Benz(a)anthracene	55 of 91 (60%)	33 of 33 (100%)	NG	NG
Benzo(a)pyrene	55 of 93 (59%)	31 of 33 (94%)	NG	NG
Chrysene	54 of 92 (59%)	33 of 33 (100%)	NG	NG
Dibenz(a,h)anthracene	25 of 26 (96%)	9 of 9 (100%)	NG	NG
Fluoranthene	54 of 97 (56%)	31 of 33 (94%)	NG	NG
Fluorene	45 of 49 (92%)	29 of 29 (100%)	NG	NG
2-Methylnaphthalene	11 of 13 (85%)	NM	NG	NG
Naphthalene	54 of 66 (82%)	32 of 33 (97%)	NG	NG
Phenanthrene	57 of 97 (59%)	33 of 33 (100%)	NG	NG
Pyrene	59 of 97 (61%)	33 of 33 (100%)	NG	NG
Total PAHs	49 of 98 (50%)	33 of 33 (100%)	NG	NG
PCBs				
Total PCBs	51 of 53 (96%)	15 of 16 (94%)	46 of 46 (100%)	12 of 12 (100%)

Table 7.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in EBGCR-II sediments.

Charachael a C Carachae	Sediment-Dwe	elling Organisms	Wi	ildlife
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments
Pesticides				
Chlordane	4 of 4 (100%)	4 of 4 (100%)	2 of 2 (100%)	0 of 0 (0%)
sum DDD	2 of 12 (17%)	0 of 0 (0%)	NG	NG
sum DDE	6 of 10 (60%)	4 of 4 (100%)	NG	NG
sum DDT	4 of 16 (25%)	3 of 4 (75%)	NG	NG
Total DDTs	4 of 21 (19%)	4 of 4 (100%)	6 of 17 (35%)	0 of 0 (0%)
Dieldrin	4 of 51 (7.8%)	3 of 4 (75%)	NG	NG
Endrin	0 of 57 (0%)	NM	0 of 28 (0%)	NM
Heptachlor	NG	NG	2 of 2 (100%)	0 of 0 (0%)
Heptachlor epoxide	1 of 37 (2.7%)	NM	0 of 0 (0%)	NM
Lindane (gamma-BHC)	4 of 35 (11%)	4 of 4 (100%)	1 of 37 (2.7%)	0 of 0 (0%)
Toxaphene	NG	NG	NG	NG
Dioxins				
2,3,7,8-TCDD	NG	NG	NM	0 of 0 (0%)

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption. 0 of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no guideline (i.e., no PEC or bioaccumulative-based SQG available); NM = substance was not measured.

Table 7.2. Proportion of sediment samples with various chemical characteristics in the EBGCR-II.

	Number			Mean PEC-Qs		
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Surficial Sediments						
ConRail Bridge to Bridge Street						
Prior to 1996	6	0 of 6 (0%)	0 of 6 (0%)	0 of 6 (0%)	6 of 6 (100%)	6 of 6 (100%)
1996 and later	2	0 of 2 (0%)	0 of 2 (0%)	0 of 2 (0%)	2 of 2 (100%)	2 of 2 (100%)
Bridge Street to Grant Street		,			,	, ,
Prior to 1996	6	0 of 6 (0%)	0 of 6 (0%)	1 of 6 (17%)	5 of 6 (83%)	6 of 6 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Grant Street to I-90						
Prior to 1996	3	0 of 3 (0%)	0 of 3 (0%)	0 of 3 (0%)	3 of 3 (100%)	3 of 3 (100%)
1996 and later	0	NA	NA	NA	NA	NA
I-90 to Broadway						
Prior to 1996	9	0 of 9 (0%)	0 of 9 (0%)	3 of 9 (33%)	6 of 9 (67%)	9 of 9 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Broadway to Virginia Street						
Prior to 1996	4	0 of 4 (0%)	0 of 4 (0%)	1 of 4 (25%)	3 of 4 (75%)	4 of 4 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Virginia Street to Tennessee Street						
Prior to 1996	4	0 of 4 (0%)	0 of 4 (0%)	0 of 4 (0%)	4 of 4 (100%)	4 of 4 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Tennessee Street to GCRL Culvert						
Prior to 1996	9	0 of 9 (0%)	0 of 9 (0%)	3 of 9 (33%)	6 of 9 (67%)	9 of 9 (100%)
1996 and later	0	NA	NA	NA	NA	NA
EB Wetland						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	55	10 of 55 (18%)	27 of 55 (49%)	16 of 55 (29%)	2 of 55 (3.6%)	18 of 55 (33%)
Total (all years and locations)	98	10 of 98 (10%)	27 of 98 (28%)	24 of 98 (24%)	37 of 98 (38%)	61 of 98 (62%

Table 7.2. Proportion of sediment samples with various chemical characteristics in the EBGCR-II.

	Number			Mean PEC-Qs		
Reach Segment	of Samples	< 0.1	3.1 3.1	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Sub-Surface Sediments						
ConRail Bridge to Bridge Street						
Prior to 1996	9	0 of 9 (0%)	0 of 9 (0%)	3 of 9 (33%)	6 of 9 (67%)	9 of 9 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Bridge Street to Grant Street						
Prior to 1996	4	0 of 4 (0%)	0 of 4 (0%)	1 of 4 (25%)	3 of 4 (75%)	4 of 4 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Grant Street to I-90						
Prior to 1996	4	0 of 4 (0%)	0 of 4 (0%)	2 of 4 (50%)	2 of 4 (50%)	4 of 4 (100%)
1996 and later	0	NA	NA	NA	NA	NA
I-90 to Broadway						
Prior to 1996	6	0 of 6 (0%)	0 of 6 (0%)	1 of 6 (17%)	5 of 6 (83%)	6 of 6 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Broadway to Virginia Street						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	0	NA	NA	NA	NA	NA
Virginia Street to Tennessee Street						
Prior to 1996	3	0 of 3 (0%)	0 of 3 (0%)	0 of 3 (0%)	3 of 3 (100%)	3 of 3 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Tennessee Street to GCRL Culvert						
Prior to 1996	7	0 of 7 (0%)	0 of 7 (0%)	1 of 7 (14%)	6 of 7 (86%)	7 of 7 (100%)
1996 and later	0	NA	NA	NA	NA	NA
EB Wetland						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	0	NA	NA	NA	NA	NA
Total (all years and locations)	33	0 of 33 (0%)	0 of 33 (0%)	8 of 33 (24%)	25 of 33 (76%)	33 of 33 (100%

Table 7.3. Concentrations of chemicals of concern in pore water from EBGCR-II sediments.

		Toxicity	Threshold	Sample Site (H	loke <i>et al</i> . 1993)
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	UG-1	UG-2
Metals					
Cadmium	μ g/L	2.9	NG	<5	<5
Chromium	μg/L	NG	NG	<10	<10
Copper	μg/L	35	NG	<5	60 (1.71)
Lead	$\mu g/L$	<16	NG	<20	54
Nickel	μg/L	780	NG	<100	<100
Zinc	μ g/L	73	NG	19 (0.26)	106 (1.45)
Sum Toxic Units ³		NG	NG	0.26	3.16
Phenolics					
o-Chlorophenol	μ g/L	NG	5600	23.5	13.5
p-Chlorophenol	μg/L	NG	5600	1.4	0.7
2,4-Dichlorophenol	μg/L	NG	520	16.5	5.7
2,4-Dinitrophenol	μg/L	NG	NR	23.1	15.4
o-Cresol	μg/L	NG	100	4.7	4.0
p-Cresol	μg/L	NG	100	8.3	0.3
Phenol	μg/L	NG	45	226.1	50.3
Other Substances					
Unionized ammonia	mg/L	NG	0.53	8.1	0.2

¹ The 10-d LC₅₀s for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (1994; 2000b).

NG = no guideline

² Acute toxicity thresholds for phenols and unionized ammonia were obtained from USEPA (1992a) and in CCREM (1987), respectively.

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC_{50}).

Table 7.4. Summary of the available information on the toxicity of sediments and pore water from the EBGCR-II.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity
Overall Toxicity			
ConRail Bridge to Bridge Street	9	8	89%
Bridge Street to Grant Street	3	3	100%
Grant Street to I-90	3	2	67%
I-90 to Broadway	10	8	80%
Broadway to Virginia Street	6	5	83%
Virginia Street to Tennessee Street	3	3	100%
Tennessee Street to GCRL Culvert	18	17	94%
EB Wetland	0	NA	NA
Total	52	46	88%

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of EBGCR-II sediments included amphipod survival in 10-d and 96-h tests with whole sediments; midge growth in 10-d tests with whole sediments; cladoceran survival in 48-h tests with pore water; 30-min Microtox with pore water; and, fish survival in 96-h tests with whole sediments.

Table 7.5. Status of benthic invertebrate communities in the EBGCR-II.

Altered/
Unaltered
Altered
0

¹ Reported values are percent of total abundance of invertebrates.

ND = not determined.

Table 7.6. Levels of TOC in EBGCR-II sediments.

		TO	OC (%)
Reach Segment	Number of Samples —	Mean	Range
Surficial Sediments			
ConRail Bridge to Bridge Street	6	4.61	2.23 - 6.40
Bridge Street to Grant Street	4	3.99	1.60 - 6.45
Grant Street to I-90	3	3.73	3.30 - 4.40
I-90 to Broadway	8	4.34	2.10 - 11.0
Broadway to Virginia Street	4	1.97	1.20 - 2.70
Virginia Street to Tennessee Street	4	11.0	2.30 - 16.7
Tennessee Street to GCRL Culvert	8	10.4	2.20 - 28.1
EB Wetland	54	1.02	0.0400 - 1.70
All Segments	91	3.08	0.0400 - 28.1
Sub-Surface Sediments			
ConRail Bridge to Bridge Street	9	3.30	1.55 - 4.80
Bridge Street to Grant Street	4	3.61	1.60 - 4.85
Grant Street to I-90	4	2.38	1.20 - 3.70
I-90 to Broadway	4	2.90	1.60 - 5.10
Broadway to Virginia Street	0	NA	NA
Virginia Street to Tennessee Street	3	2.96	1.30 - 5.79
Tennessee Street to GCRL Culvert	5	5.86	1.20 - 12.0
EB Wetland	0	NA	NA
All Segments	29	3.57	1.20 - 12.0

Table 7.7. Summary of the available information on the toxicity of sediments from the EBGCR-II to fish.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity
Overall Toxicity			
ConRail Bridge to Bridge Street	6	5	83%
Bridge Street to Grant Street	2	2	100%
Grant Street to I-90	2	1	50%
I-90 to Broadway	7	5	71%
Broadway to Virginia Street	5	4	80%
Virginia Street to Tennessee Street	2	2	100%
Tennessee Street to GCRL Culvert	16	15	94%
EB Wetland	0	NA	NA
Total	40	34	85%

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of EBGCR-II sediments included fish survival in 96-h tests with whole sediments.

Table 7.8. Frequency of exceedance of TRGs in the EBGCR-II.

		Fish		Invertebrates	Algae
Chemical of Concern	Fillets ¹	Whole Body ²	GI Tract ³	Composite Sample	Composite Sample
PCBs					
Total PCBs	2 of 2 (100%)	3 of 3 (100%)	NM	NM	NM
Pesticides					
Chlordane	0 of 2 (0%)	0 of 3 (0%)	NM	NM	NM
Dieldrin + Aldrin	0 of 2 (0%)	1 of 3 (33%)	NM	NM	NM
Endrin	0 of 2 (0%)	1 of 3 (33%)	NM	NM	NM
Heptachlor + Heptachlor epoxide	0 of 2 (0%)	0 of 3 (0%)	NM	NM	NM
Lindane	0 of 2 (0%)	0 of 3 (0%)	NM	NM	NM
Mirex	NM	NM	NM	NM	NM
Total DDTs	0 of 2 (0%)	1 of 3 (33%)	NM	NM	NM
Dioxins					
2,3,7,8-TCDD	NM	NM	NM	NM	NM

¹Fillets = skin-off fillets.

NM = not measured.

²Whole body = head, gills, skin, bones and attached flesh (i.e., without fillets or GI tract).

³GI tract = organs in body cavity post gills.

Table 7.9. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the EBGCR-II.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Surficial Sediments							
ConRail Bridge to Bridge Street	8	25.3	13.1	51.9	13.1	38.3	22.5
Bridge Street to Grant Street	6	10.7	2.58	17.6	2.58	13.4	11.1
Grant Street to I-90	3	30.0	4.66	68.8	4.66	16.6	16.6
I-90 to Broadway	9	52.1	1.54	375	1.54	39.5	6.44
Broadway to Virginia Street	4	27.5	2.59	63.4	2.59	29.9	22.1
Virginia Street to Tennessee Street	4	473	87.2	821	87.2	705	492
Tennessee Street to GCRL Culvert	9	286	1.43	987	1.43	589	9.25
EB Wetland	55	1.12	0.000636	16.0	0.0901	2.75	0.230
Overall	98	55.7	0.000636	987	0.0986	63.4	2.42
Sub-Surface Sediments							
ConRail Bridge to Bridge Street	9	14.1	2.55	65.3	2.55	19.1	7.21
Bridge Street to Grant Street	4	4.94	2.47	6.58	2.47	5.89	5.36
Grant Street to I-90	4	4.43	2.09	7.19	2.09	6.28	4.21
I-90 to Broadway	6	29.1	2.13	116	2.13	36.2	7.84
Broadway to Virginia Street	0	NA	NA	NA	NA	NA	NA
Virginia Street to Tennessee Street	3	450	118	937	118	296	296
Tennessee Street to GCRL Culvert	7	218	2.80	765	2.80	458	66.3
EB Wetland	0	NA	NA	NA	NA	NA	NA
Overall	33	97.6	2.09	937	2.47	188	7.21

Tables

Chapter 8 - West Branch of the Grand Calumet River - I

Table 8.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in WBGCR-I sediments.

Character of Conservation	Sediment-Dwo	elling Organisms	\mathbf{W}	ildlife
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments
Metals				
Arsenic	13 of 15 (87%)	5 of 10 (50%)	NG	NG
Cadmium	14 of 16 (88%)	5 of 10 (50%)	NG	NG
Chromium	9 of 16 (56%)	0 of 10 (0%)	NG	NG
Copper	8 of 9 (89%)	5 of 10 (50%)	NG	NG
Lead	16 of 16 (100%)	7 of 10 (70%)	NG	NG
Mercury	12 of 15 (80%)	5 of 10 (50%)	NG	NG
Nickel	5 of 9 (56%)	0 of 10 (0%)	NG	NG
Zinc	9 of 9 (100%)	7 of 10 (70%)	NG	NG
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	8 of 8 (100%)	1 of 1 (100%)	NG	NG
Acenaphthylene	4 of 4 (100%)	2 of 2 (100%)	NG	NG
Anthracene	14 of 14 (100%)	5 of 6 (83%)	NG	NG
Benz(a)anthracene	16 of 17 (94%)	6 of 7 (86%)	NG	NG
Benzo(a)pyrene	15 of 16 (94%)	4 of 7 (57%)	NG	NG
Chrysene	16 of 16 (100%)	7 of 8 (88%)	NG	NG
Dibenz(a,h)anthracene	7 of 7 (100%)	2 of 3 (67%)	NG	NG
Fluoranthene	13 of 16 (81%)	5 of 8 (63%)	NG	NG
Fluorene	13 of 13 (100%)	4 of 4 (100%)	NG	NG
2-Methylnaphthalene	4 of 4 (100%)	NM	NG	NG
Naphthalene	11 of 11 (100%)	6 of 6 (100%)	NG	NG
Phenanthrene	16 of 16 (100%)	9 of 9 (100%)	NG	NG
Pyrene	14 of 15 (93%)	6 of 9 (67%)	NG	NG
Total PAHs	16 of 17 (94%)	7 of 9 (78%)	NG	NG
PCBs				
Total PCBs	11 of 11 (100%)	2 of 2 (100%)	2 of 2 (100%)	0 of 0 (0%)

Table 8.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in WBGCR-I sediments.

	Sediment-Dwo	elling Organisms	Wildlife		
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments	
Pesticides					
Chlordane	4 of 4 (100%)	2 of 4 (50%)	1 of 1 (100%)	0 of 0 (0%)	
sum DDD	3 of 3 (100%)	0 of 3 (0%)	NG	NG	
sum DDE	3 of 3 (100%)	2 of 4 (50%)	NG	NG	
sum DDT	4 of 6 (67%)	1 of 5 (20%)	NG	NG	
Total DDTs	4 of 7 (57%)	2 of 5 (40%)	1 of 1 (100%)	0 of 1 (0%)	
Dieldrin	0 of 5 (0%)	0 of 3 (0%)	NG	NG	
Endrin	0 of 10 (0%)	0 of 4 (0%)	0 of 0 (0%)	0 of 1 (0%)	
Heptachlor	NG	NG	1 of 1 (100%)	0 of 0 (0%)	
Heptachlor epoxide	0 of 0 (0%)	0 of 2 (0%)	0 of 0 (0%)	0 of 0 (0%)	
Lindane (gamma-BHC)	2 of 2 (100%)	1 of 3 (33%)	1 of 4 (25%)	0 of 3 (0%)	
Toxaphene	NG	NG	NG	NG	
Dioxins					
2,3,7,8-TCDD	NG	NG	NM	NM	

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption. 0 of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no guideline (i.e., no PEC or bioaccumulative-based SQG available); NM = substance was not measured.

Table 8.2. Proportion of sediment samples with various chemical characteristics in the WBGCR-I.

Doogh Cogmont	Number			Mean PEC-Qs			
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7	
Surficial Sediments							
EB and WB Confluence to Indianapolis Boulevard							
Prior to 1996	5	0 of 5 (0%)	0 of 5 (0%)	0 of 5 (0%)	5 of 5 (100%)	5 of 5 (100%)	
1996 and later	14	0 of 14 (0%)	0 of 14 (0%)	2 of 14 (14%)	12 of 14 (86%)	14 of 14 (100%)	
Total (all years and locations)	19	0 of 19 (0%)	0 of 19 (0%)	2 of 19 (11%)	17 of 19 (89%)	19 of 19 (100%)	
Sub-Surface Sediments							
EB and WB Confluence to Indianapolis Boulevard							
Prior to 1996	8	0 of 8 (0%)	2 of 8 (25%)	2 of 8 (25%)	4 of 8 (50%)	6 of 8 (75%)	
1996 and later	4	0 of 4 (0%)	1 of 4 (25%)	2 of 4 (50%)	1 of 4 (25%)	3 of 4 (75%)	
Total (all years and locations)	12	0 of 12 (0%)	3 of 12 (25%)	4 of 12 (33%)	5 of 12 (42%)	9 of 12 (75%)	

Table 8.3. Concentrations of chemicals of concern in pore water from WBGCR-I sediments.

		Toxicity	Threshold	Sample Site (USGS 1999)	Sample Site (Hoke et al. 1993)
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	IH-01	UG-8
Metals					
Cadmium	μg/L	2.9	NG	0.43 (0.15)	<16
Chromium	μg/L	NG	NG	NM	<10
Copper	μg/L	35	NG	11.64 (0.33)	8 (0.23)
Lead	μg/L	<16	NG	54.52	37
Nickel	μg/L	780	NG	16.02 (0.02)	<100
Zinc	μg/L	73	NG	66.80 (0.92)	74 (1.01)
Sum Toxic Units ³		NG	NG	1.42	1.24
Phenolics					
o-Chlorophenol	μg/L	NG	5600	NM	40.5
p-Chlorophenol	μg/L	NG	5600	NM	3.7
2,4-Dichlorophenol	μg/L	NG	520	NM	23.7
o-Cresol	μg/L	NG	100	NM	10.2
p-Cresol	μg/L	NG	100	NM	9.1
2,4-Dinitrophenol	μg/L	NG	NG	NM	54.1
Phenol	μg/L	NG	45	NM	225.3
Other Substances					
Unionized ammonia	mg/L	NG	0.53	0.07	6.4

¹ The 10-d LC₅₀s for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (1994; 2000b).

NG = no guideline; NM = not measured

² Acute toxicity thresholds for phenols and unionized ammonia were obtained from USEPA (1992a) and in CCREM (1987), respectively.

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC_{50}).

Table 8.4. Summary of the available information on the toxicity of sediments and pore water from the WBGCR-I.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity
Overall Toxicity EB and WB Confluence to Indianapolis Boulevard Total	2	2	100%
	2	2	100%

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of WBGCR-I sediments included amphipod survival in 10-d tests with whole sediments; midge growth in 10-d tests with whole sediments; cladoceran survival in 48-h tests with pore water; and, 30-min Microtox with pore water.

Table 8.5. Status of benthic invertebrate communities in the WBGCR-I.

Source	Sample Number	Annelio Oligochaetea		Dipter Chironomidae	Other Diptera	Mollusca Gastropoda		EPT Taxa	mIBI	Altered/ Unaltered
Artificial Substrate										
Simon <i>et al.</i> (2000)	8	77.1	0.0	8.6	0.2	5.0	5.1	0.0	0.53	Altered
Simon et al. (2000)		58.4	0.2	35.2	0.2	0.4	0.2	0.2	0.87	Altered
Rainbolt (1993)	ST 1	4.4	0.0	95.6	0.0	0.0	0.0	0.0	ND	Altered
Percent Altered Sam	ples									100% (3 of 3)

¹ Reported values are percent of total abundance of invertebrates.

ND = not determined.

Table 8.6. Levels of TOC in WBGCR-I sediments.

Reach Segment	Number of Samples —	Mean TO	PC (%) Range
Surficial Sediments EB and WB Confluence to Indianapolis Boulevard	9	11.0	1.30 - 40.0
Sub-Surface Sediments EB and WB Confluence to Indianapolis Boulevard	10	4.24	0.130- 8.60

Table 8.7. Levels of oil and grease in WBGCR-I sediments.

Decel Cogment	Number of Comples	Oil and G	rease (mg/kg)
Reach Segment	Number of Samples ——	Mean	Range
Surficial Sediments			
EB and WB Confluence to Indianapolis Boulevard	5	181000	15900 - 404000
Sub-Surface Sediments	4	(020	400 22200
EB and WB Confluence to Indianapolis Boulevard	4	6930	400 - 23300

Table 8.8. Frequency of exceedance of TRGs in the WBGCR-I.

		Fish		Invertebrates	Algae
Chemical of Concern	Fillets ¹	Whole Body ²	GI Tract ³	Composite Sample	Composite Sample
PCBs					
Total PCBs	3 of 3 (100%)	4 of 4 (100%)	NM	NM	NM
Pesticides					
Chlordane	0 of 3 (0%)	1 of 4 (25%)	NM	NM	NM
Dieldrin + Aldrin	0 of 3 (0%)	1 of 2 (50%)	NM	NM	NM
Endrin	0 of 3 (0%)	0 of 2 (0%)	NM	NM	NM
Heptachlor + Heptachlor epoxide	0 of 3 (0%)	0 of 2 (0%)	NM	NM	NM
Lindane	0 of 3 (0%)	0 of 2 (0%)	NM	NM	NM
Mirex	NM	NM	NM	NM	NM
Total DDTs	1 of 3 (33%)	3 of 4 (75%)	NM	NM	NM
Dioxins					
2,3,7,8-TCDD	NM	NM	NM	NM	NM

¹Fillets = skin-off fillets.

NM = not measured.

²Whole body = head, gills, skin, bones and attached flesh (i.e., without fillets or GI tract).

³GI tract = organs in body cavity post gills.

Table 8.9. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the WBGCR-I.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Surficial Sediment EB and WB Confluence to Indianapolis Boulevard	19	29.5	1.13	231	1.35	56.9	11.7
Sub-Surface Sediment EB and WB Confluence to Indianapolis Boulevard	12	4.80	0.139	13.7	0.368	8.80	3.77

Tables

Chapter 9 - West Branch of the Grand Calumet River - II

Table 9.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in WBGCR-II sediments.

	Sediment-Dwo	elling Organisms	Wildlife			
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments		
Metals						
Arsenic	19 of 60 (32%)	8 of 65 (12%)	NG	NG		
Cadmium	50 of 75 (67%)	20 of 84 (24%)	NG	NG		
Chromium	38 of 69 (55%)	8 of 69 (12%)	NG	NG		
Copper	44 of 71 (62%)	21 of 70 (30%)	NG	NG		
Lead	67 of 76 (88%)	36 of 84 (43%)	NG	NG		
Mercury	17 of 29 (59%)	7 of 36 (19%)	NG	NG		
Nickel	35 of 71 (49%)	8 of 70 (11%)	NG	NG		
Zinc	56 of 71 (79%)	26 of 70 (37%)	NG	NG		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	39 of 39 (100%)	39 of 39 (100%)	NG	NG		
Acenaphthylene	13 of 13 (100%)	5 of 5 (100%)	NG	NG		
Anthracene	46 of 53 (87%)	35 of 47 (74%)	NG	NG		
Benz(a)anthracene	54 of 66 (82%)	36 of 48 (75%)	NG	NG		
Benzo(a)pyrene	61 of 71 (86%)	31 of 44 (70%)	NG	NG		
Chrysene	59 of 67 (88%)	38 of 50 (76%)	NG	NG		
Dibenz(a,h)anthracene	13 of 13 (100%)	0 of 0 (0%)	NG	NG		
Fluoranthene	59 of 76 (78%)	42 of 59 (71%)	NG	NG		
Fluorene	46 of 49 (94%)	36 of 47 (77%)	NG	NG		
2-Methylnaphthalene	40 of 41 (98%)	38 of 39 (97%)	NG	NG		
Naphthalene	50 of 59 (85%)	43 of 55 (78%)	NG	NG		
Phenanthrene	66 of 75 (88%)	54 of 64 (84%)	NG	NG		
Pyrene	69 of 77 (90%)	49 of 58 (84%)	NG	NG		
Total PAHs	67 of 82 (82%)	50 of 67 (75%)	NG	NG		
PCBs						
Total PCBs	25 of 30 (83%)	6 of 14 (43%)	3 of 5 (60%)	0 of 0 (0%)		

Table 9.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in WBGCR-II sediments.

	Sediment-Dwo	elling Organisms	Wildlife			
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments		
Pesticides						
Chlordane	20 of 23 (87%)	8 of 13 (62%)	2 of 2 (100%)	0 of 0 (0%)		
sum DDD	11 of 21 (52%)	4 of 11 (36%)	NG	NG		
sum DDE	17 of 17 (100%)	8 of 13 (62%)	NG	NG		
sum DDT	17 of 19 (89%)	8 of 16 (50%)	NG	NG		
Total DDTs	18 of 27 (67%)	8 of 16 (50%)	3 of 4 (75%)	0 of 5 (0%)		
Dieldrin	17 of 25 (68%)	8 of 16 (50%)	NG	NG		
Endrin	0 of 6 (0%)	0 of 9 (0%)	0 of 2 (0%)	0 of 5 (0%)		
Heptachlor	NG	NG	2 of 2 (100%)	0 of 0 (0%)		
Heptachlor epoxide	0 of 0 (0%)	0 of 5 (0%)	0 of 0 (0%)	0 of 0 (0%)		
Lindane (gamma-BHC)	19 of 22 (86%)	8 of 10 (80%)	2 of 8 (25%)	0 of 9 (0%)		
Toxaphene	NG	NG	NG	NG		
Dioxins						
2,3,7,8-TCDD	NG	NG	NM	NM		

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption. 0 of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no PEC or bioaccumulative-based SQG available; NM = substance was not measured.

Table 9.2. Proportion of sediment samples with various chemical characteristics in the WBGCR-II.

D 16	Number			Mean PEC-Qs		
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Surficial Sediments						
Indianapolis Boulevard to I-90						
Prior to 1996	7	0 of 7 (0%)	3 of 7 (43%)	1 of 7 (14%)	3 of 7 (43%)	4 of 7 (57%)
1996 and later	7	0 of 7 (0%)	0 of 7 (0%)	1 of 7 (14%)	6 of 7 (86%)	7 of 7 (100%)
Roxana Marsh						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	5	0 of 5 (0%)	5 of 5 (100%)	0 of 5 (0%)	0 of 5 (0%)	0 of 5 (0%)
I-90 to Columbia Avenue						
Prior to 1996	22	1 of 22 (4.5%)	1 of 22 (4.5%)	5 of 22 (23%)	15 of 22 (68%)	20 of 22 (91%)
1996 and later	0	NA	NA	NA	NA	NA
Columbia Avenue to Calumet Avenue						
Prior to 1996	2	0 of 2 (0%)	1 of 2 (50%)	0 of 2 (0%)	1 of 2 (50%)	1 of 2 (50%)
1996 and later	0	NA	NA	NA	NA	NA
Calumet Avenue to Hohman Avenue						
Prior to 1996	7	0 of 7 (0%)	1 of 7 (14%)	2 of 7 (29%)	4 of 7 (57%)	6 of 7 (86%)
1996 and later	2	0 of 2 (0%)	0 of 2 (0%)	0 of 2 (0%)	2 of 2 (100%)	2 of 2 (100%)
Hohman Avenue to State Line Avenue						
Prior to 1996	8	0 of 8 (0%)	0 of 8 (0%)	1 of 8 (13%)	7 of 8 (88%)	8 of 8 (100%)
1996 and later	13	0 of 13 (0%)	0 of 13 (0%)	3 of 13 (23%)	10 of 13 (77%)	13 of 13 (100%)
Illinois Portion						
Prior to 1996	11	0 of 11 (0%)	0 of 11 (0%)	3 of 11 (27%)	8 of 11 (73%)	11 of 11 (100%)
1996 and later	0	NA	NA	NA	NA	NA
Total (all years and locations)	84	1 of 84 (1.2%)	11 of 84 (13%)	16 of 84 (19%)	56 of 84 (67%)	72 of 84 (86%)

Table 9.2. Proportion of sediment samples with various chemical characteristics in the WBGCR-II.

2 10	Number			Mean PEC-Qs		
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Sub-Surface Sediments						
Indianapolis Boulevard to I-90						
Prior to 1996	4	0 of 4 (0%)	4 of 4 (100%)	0 of 4 (0%)	0 of 4 (0%)	0 of 4 (0%)
1996 and later	6	1 of 6 (17%)	5 of 6 (83%)	0 of 6 (0%)	0 of 6 (0%)	0 of 6 (0%)
Roxana Marsh						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	5	3 of 5 (60%)	2 of 5 (40%)	0 of 5 (0%)	0 of 5 (0%)	0 of 5 (0%)
I-90 to Columbia Avenue						
Prior to 1996	25	2 of 25 (80%)	5 of 25 (20%)	6 of 25 (24%)	12 of 25 (48%)	18 of 25 (72%)
1996 and later	0	NA	NA	NA	NA	NA
Columbia Avenue to Calumet Avenue						
Prior to 1996	3	0 of 3 (0%)	1 of 3 (33%)	1 of 3 (33%)	1 of 3 (33%)	2 of 3 (67%)
1996 and later	0	NA	NA	NA	NA	NA
Calumet Avenue to Hohman Avenue						
Prior to 1996	9	0 of 9 (0%)	2 of 9 (22%)	2 of 9 (22%)	5 of 9 (56%)	7 of 9 (78%)
1996 and later	4	0 of 4 (0%)	0 of 4 (0%)	4 of 4 (100%)	0 of 4 (0%)	4 of 4 (100%)
Hohman Avenue to State Line Avenue						
Prior to 1996	4	0 of 4 (0%)	0 of 4 (0%)	1 of 4 (25%)	3 of 4 (75%)	4 of 4 (100%)
1996 and later	21	1 of 21 (4.8%)	1 of 21 (4.8%)	0 of 21 (0%)	19 of 21 (90%)	19 of 21 (90%)
Illinois Portion			. ,			,
Prior to 1996	7	0 of 7 (0%)	2 of 7 (29%)	2 of 7 (29%)	3 of 7 (43%)	5 of 7 (71%)
1996 and later	0	NA	NA	NA	NA	NA
Total (all years and locations)	88	7 of 88 (8.0%)	22 of 88 (25%)	16 of 88 (18%)	43 of 88 (49%)	59 of 88 (67%)

Table 9.3. Concentrations of chemicals of concern in pore water from WBGCR-II sediments.

		Toxicity T	Sample Site (Hoke <i>et al.</i> 1993)		Sample	Sample Site (URS Greiner Woodward Clyde 1999)			
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	UG-9	UG-10	01RA01SE00	01RA03SE00	01RB01SE00	01RC01SE02
Metals									
Cadmium	μg/L	2.9	NG	<10	<10	NM	NM	NM	NM
Chromium	μg/L	NG	NG	<10	<10	NM	NM	NM	NM
Copper	μg/L	35	NG	25 (0.71)	<5	NM	NM	NM	NM
Lead	μg/L	<16	NG	<20	<20	NM	NM	NM	NM
Nickel	μg/L	780	NG	<100	<100	NM	NM	NM	NM
Zinc	μg/L	73	NG	114 (1.56)	28 (0.38)	NM	NM	NM	NM
Sum Toxic Units ³		NG	NG	2.27	0.38	NM	NM	NM	NM
Phenolics									
o-Chlorophenol	μg/L	NG	5600	100.4	88.6	NM	NM	NM	NM
p-Chlorophenol	μg/L	NG	5600	15.2	17.5	NM	NM	NM	NM
2,4-Dichlorophenol	μg/L	NG	520	23.5	24.0	NM	NM	NM	NM
o-Cresol	μg/L	NG	100	23.6	20.9	NM	NM	NM	NM
p-Cresol	μg/L	NG	100	10.3	24.2	NM	NM	NM	NM
2,4-Dinitrophenol	μg/L	NG	NG	34.5	30.6	NM	NM	NM	NM
Phenol	μg/L	NG	45	326.2	255.5	NM	NM	NM	NM
Other Substances									
Unionized ammonia	mg/L	NG	0.53	3.4	3.3	4.59	1.83	4.37	2.41

Table 9.3. Concentrations of chemicals of concern in pore water from WBGCR-II sediments.

		Toxicity T	Threshold	Sample Site (URS Greine	er Woodward Clyde 1999)
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	01RC02SE00	01RC03SE00
Metals					
Cadmium	μg/L	2.9	NG	NM	NM
Chromium	μg/L	NG	NG	NM	NM
Copper	μg/L	35	NG	NM	NM
Lead	μg/L	<16	NG	NM	NM
Nickel	$\mu g/L$	780	NG	NM	NM
Zinc	$\mu g/L$	73	NG	NM	NM
Sum Toxic Units ³		NG	NG	NM	NM
Phenolics					
o-Chlorophenol	μg/L	NG	5600	NM	NM
p-Chlorophenol	$\mu g/L$	NG	5600	NM	NM
2,4-Dichlorophenol	$\mu g/L$	NG	520	NM	NM
o-Cresol	$\mu g/L$	NG	100	NM	NM
p-Cresol	$\mu g/L$	NG	100	NM	NM
2,4-Dinitrophenol	$\mu g/L$	NG	NG	NM	NM
Phenol	μg/L	NG	45	NM	NM
Other Substances					
Unionized ammonia	mg/L	NG	0.53	0.38	8.02

¹ The 10-d LC₅₀ concentrations for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (1994; 2000b).

NG = no guideline; NM = not measured.

² Acute toxicity thresholds for phenols and unionized ammonia were obtained from USEPA (1992a) and in CCREM (1987), respectively.

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC₅₀).

Table 9.4. Summary of the available information on the toxicity of sediments and pore water from the WBGCR-II.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity	
Overall Toxicity				
Indianapolis Boulevard to I-90	2	2	100%	
Roxana Marsh	4	1	25%	
I-90 to Columbia Avenue	5	5	100%	
Columbia Avenue to Calumet Avenue	0	NA	NA	
Calumet Avenue to Hohman Avenue	1	1	100%	
Hohman Avenue to State Line Avenue	5	5	100%	
Illinois Portion	1	1	100%	
Total	18	15	83%	

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of WBGCR-II sediments included amphipod survival and growth in 10-d tests with whole sediments; midge survival and growth in 10-d tests with whole sediments; cladoceran survival in 48-h tests with pore water; 30 min Microtox with pore water; and, fish survival in 10-d tests with elutriate.

Table 9.5. Status of benthic invertebrate communities in the WBGCR-II.

Sauras	Sample	Annelida	a (%) ¹	Dipter	a (%) ¹	Mollusc	ca (%) ¹	EPT mIBI	Altered/	
Source	Number	Oligochaetea	Hirudinea		Other Diptera	Gastropod		Taxa	xa	Unaltered
Artificial Substrate										
IDEM (2000a)	Indianapolis Boulevard	47.3	0.0	29.7	0.3	21.1	0.0	0.0	1.7	Altered
IDEM (2000a)	Sohl Avenue	61.5	0.0	18.4	0.0	0.7	0.0	0.0	1.1	Altered
Rainbolt (1993)	ST 2	77.8	0.0	14.7	7.5	0.0	0.0	0.0	ND	Altered
Rainbolt (1993)	ST 3	73.9	0.0	10.0	11.3	2.3	0.0	0.0	ND	Altered
Rainbolt (1993)	ST 4	87.8	0.0	4.7	2.9	0.0	0.0	0.0	ND	Altered
Rainbolt (1993)	ST 5	14.4	0.0	85.6	0.0	0.0	0.0	0.0	ND	Altered
Grab										
Polls et al. (1993)	1-82	97.9	0.0	2.1	0.0	0.0	0.0	0.0	ND	Altered
Polls et al. (1993)	1-86	99.8	0.1	0.1	0.0	0.0	0.0	0.0	ND	Altered
ThermoRetec (1999)	SD-98-24	60.0	0.0	20.0	0.0	20.0	0.0	0.0	ND	Unaltered
ThermoRetec (1999)	SD-98-17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	Unaltered
ThermoRetec (1999)	SD-98-20	63.0	0.0	31.5	0.0	5.5	0.0	0.0	ND	Unaltered
URS Greiner Woodward Clyde (1999)	C01	62.8	0.0	36.8	0.1	0.0	0.0	0.0	ND	Unaltered
URS Greiner Woodward Clyde (1999)	A03	97.6	0.0	1.9	0.0	0.0	0.0	0.0	ND	Altered
URS Greiner Woodward Clyde (1999)	C02	94.0	0.0	0.9	2.2	0.0	0.0	0.0	ND	Altered
Percent Altered Samples										71% (10 of 14)

¹ Reported values are percent of total abundance of invertebrates.

ND = not determined.

Table 9.6. Levels of TOC in WBGCR-II sediments.

D 10 4	N 1 66 1	TO	OC (%)
Reach Segment	Number of Samples ——	Mean	Range
Surficial Sediments			
Indianapolis Boulevard to I-90	8	11.6	5.80 - 18.6
Roxana Marsh	5	19.2	12.4 - 27.4
I-90 to Columbia Avenue	17	9.79	1.30 - 19.2
Columbia Avenue to Calumet Avenue	0	NA	NA
Calumet Avenue to Hohman Avenue	5	7.40	1.96 - 11.3
Hohman Avenue to State Line Avenue	13	11.2	4.44 - 15.0
Illinois Portion	2	11.7	11.7 - 11.7
All segments	50	11.2	1.30 - 27.4
Sub-Surface Sediments			
Indianapolis Boulevard to I-90	10	6.05	2.92 - 11.1
Roxana Marsh	5	4.14	2.39 - 5.33
I-90 to Columbia Avenue	21	7.76	0.470 - 15.2
Columbia Avenue to Calumet Avenue	3	17.4	8.47 - 24.9
Calumet Avenue to Hohman Avenue	10	8.12	0.420 - 25.3
Hohman Avenue to State Line Avenue	8	8.95	4.60 - 12.1
Illinois Portion	5	5.13	0.570 - 11.7
All segments	62	7.66	0.420 - 25.3

Table 9.7. Summary of the available information on the toxicity of elutriates from the WBGCR-II to fish.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity	
Overall Toxicity				
Indianapolis Boulevard to I-90	0	NA	NA	
Roxana Marsh	0	NA	NA	
I-90 to Columbia Avenue	4	4	100%	
Columbia Avenue to Calumet Avenue	0	NA	NA	
Calumet Avenue to Hohman Avenue	1	1	100%	
Hohman Avenue to State Line Avenue	1	1	100%	
Illinois Portion	1	1	100%	
Total	7	7	100%	

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of WBGCR-II sediments included fish survival in 10-d tests with elutriate.

Table 9.8. Frequency of exceedance of TRGs in the WBGCR-II.

		Fish		Invertebrates	Algae	
Chemical of Concern	Fillets ¹	Whole Body ²	GI Tract ³	Composite Sample	Composite Sample	
PCBs						
Total PCBs	3 of 3 (100%)	2 of 2 (100%)	NM	NM	NM	
Pesticides						
Chlordane	0 of 3 (0%)	0 of 2 (0%)	NM	NM	NM	
Dieldrin + Aldrin	0 of 3 (0%)	1 of 2 (50%)	NM	NM	NM	
Endrin	0 of 3 (0%)	0 of 2 (0%)	NM	NM	NM	
Heptachlor + Heptachlor epoxide	0 of 3 (0%)	0 of 2 (0%)	NM	NM	NM	
Lindane	0 of 3 (0%)	0 of 2 (0%)	NM	NM	NM	
Mirex	NM	NM	NM	NM	NM	
Total DDTs	1 of 3 (33%)	1 of 2 (50%)	NM	NM	NM	
Dioxins						
2,3,7,8-TCDD	NM	NM	NM	NM	NM	

¹Fillets = skin-off fillets.

NM = not measured.

²Whole sample = head, gills, skin, bones and attached flesh (i.e., without fillets or GI tract).

³GI tract = organs in body cavity post gills.

Table 9.9. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the WBGCR-II.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Mediar
Surficial Sediment							
Indianapolis Boulevard to I-90	14	15.5	0.149	75.3	0.243	35.3	6.22
Roxana Marsh	5	0.428	0.123	0.603	0.123	0.595	0.515
I-90 to Columbia Avenue	22	12.3	0.0395	76.0	1.01	16.2	6.53
Columbia Avenue to Calumet Avenue	2	3.71	0.259	7.17	NA	NA	NA
Calumet Avenue to Hohman Avenue	9	37.6	0.311	210	0.311	88.6	6.85
Hohman Avenue to State Line Avenue	21	47.5	0.875	304	2.51	94.9	28.7
Illinois Portion	11	6.00	2.71	10.1	2.97	9.65	4.89
Overall	84	22.6	0.0395	304	0.347	67.1	6.71
Sub-Surface Sediment							
Indianapolis Boulevard to I-90	10	0.191	0.0976	0.357	0.0976	0.278	0.205
Roxana Marsh	5	0.0905	0.0652	0.111	0.0652	0.101	0.0919
I-90 to Columbia Avenue	25	8.18	0.0658	30.2	0.128	16.9	3.34
Columbia Avenue to Calumet Avenue	3	3.21	0.215	5.89	0.215	3.53	3.53
Calumet Avenue to Hohman Avenue	13	13.1	0.109	97.3	0.325	17.9	3.78
Hohman Avenue to State Line Avenue	25	51.0	0.0712	193	2.47	129	33.4
Illinois Portion	7	4.69	0.148	13.3	0.148	8.45	3.74
Overall	88	19.3	0.0652	193	0.101	51.7	3.84

Tables

Chapter IO - Indiana Harbor Canal

Table 10.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in IHC sediments.

Character of Communication	Sediment-Dwo	elling Organisms	\mathbf{W}_{1}	ildlife
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments
Metals				
Arsenic	13 of 25 (52%)	1 of 4 (25%)	NG	NG
Cadmium	16 of 26 (62%)	3 of 4 (75%)	NG	NG
Chromium	11 of 26 (42%)	1 of 4 (25%)	NG	NG
Copper	6 of 20 (30%)	2 of 4 (50%)	NG	NG
Lead	20 of 26 (77%)	2 of 4 (50%)	NG	NG
Mercury	12 of 25 (48%)	1 of 4 (25%)	NG	NG
Nickel	2 of 20 (10%)	1 of 4 (25%)	NG	NG
Zinc	14 of 20 (70%)	2 of 4 (50%)	NG	NG
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	17 of 17 (100%)	3 of 3 (100%)	NG	NG
Acenaphthylene	12 of 12 (100%)	2 of 2 (100%)	NG	NG
Anthracene	15 of 19 (79%)	3 of 3 (100%)	NG	NG
Benz(a)anthracene	22 of 27 (81%)	3 of 4 (75%)	NG	NG
Benzo(a)pyrene	17 of 21 (81%)	1 of 3 (33%)	NG	NG
Chrysene	24 of 27 (89%)	5 of 5 (100%)	NG	NG
Dibenz(a,h)anthracene	4 of 7 (57%)	1 of 1 (100%)	NG	NG
Fluoranthene	20 of 26 (77%)	4 of 5 (80%)	NG	NG
Fluorene	14 of 18 (78%)	2 of 2 (100%)	NG	NG
2-Methylnaphthalene	3 of 3 (100%)	NM	NG	NG
Naphthalene	15 of 18 (83%)	5 of 5 (100%)	NG	NG
Phenanthrene	19 of 25 (76%)	6 of 6 (100%)	NG	NG
Pyrene	24 of 27 (89%)	6 of 6 (100%)	NG	NG
Total PAHs	20 of 27 (74%)	5 of 6 (83%)	NG	NG
PCBs				
Total PCBs	21 of 25 (84%)	3 of 3 (100%)	13 of 13 (100%)	1 of 1 (100%)

Table 10.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in IHC sediments.

Charles I of Commun	Sediment-Dwe	elling Organisms	Wildlife			
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments		
Pesticides						
Chlordane	3 of 7 (43%)	2 of 2 (100%)	1 of 1 (100%)	0 of 0 (0%)		
sum DDD	1 of 9 (11%)	NM	NG	NG		
sum DDE	2 of 10 (20%)	2 of 2 (100%)	NG	NG		
sum DDT	2 of 16 (13%)	0 of 2 (0%)	NG	NG		
Total DDTs	2 of 16 (13%)	2 of 2 (100%)	3 of 6 (50%)	0 of 0 (0%)		
Dieldrin	2 of 15 (13%)	2 of 2 (100%)	NG	NG		
Endrin	0 of 16 (0%)	NM	0 of 3 (0%)	NM		
Heptachlor	NG	NG	1 of 1 (100%)	0 of 0 (0%)		
Heptachlor epoxide	1 of 8 (13%)	NM	0 of 0 (0%)	NM		
Lindane (gamma-BHC)	2 of 5 (40%)	2 of 2 (100%)	1 of 12 (8%)	0 of 0 (0%)		
Toxaphene	NG	NG	NG	NG		
Dioxins						
2,3,7,8-TCDD	NG	NG	NM	0 of 0 (0%)		

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption. 0 of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no PEC or bioaccumulative-based SQG available; NM = substance was not measured.

Table 10.2. Proportion of sediment samples with various chemical characteristics in the IHC.

.	Number			Mean PEC-Qs		
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Surficial Sediments						
EB and WB Confluence to 151st Street						
Prior to 1996	5	0 of 5 (0%)	0 of 5 (0%)	2 of 5 (40%)	3 of 5 (60%)	5 of 5 (100%)
1996 and later	2	0 of 2 (0%)	0 of 2 (0%)	0 of 2 (0%)	2 of 2 (100%)	2 of 2 (100%)
151st Street to Chicago Avenue		, ,	` '	, ,	, ,	` '
Prior to 1996	2	0 of 2 (0%)	0 of 2 (0%)	1 of 2 (50%)	1 of 2 (50%)	2 of 2 (100%)
1996 and later	8	0 of 8 (0%)	3 of 8 (38%)	4 of 8 (50%)	1 of 8 (13%)	5 of 8 (63%)
Chicago Avenue to Columbus Drive		, ,	` ,	` ,	` ,	` ′
Prior to 1996	3	0 of 3 (0%)	0 of 3 (0%)	1 of 3 (33%)	2 of 3 (67%)	3 of 3 (100%)
1996 and later	9	0 of 9 (0%)	0 of 9 (0%)	3 of 9 (33%)	6 of 9 (67%)	9 of 9 (100%)
IHC Wetland		, ,	` ,	` ,	` ,	` '
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	1	0 of 1 (0%)	0 of 1 (0%)	1 of 1 (100%)	0 of 1 (0%)	1 of 1 (100%)
Total (all years and locations)	30	0 of 30 (0%)	3 of 30 (10%)	12 of 30 (40%)	15 of 30 (50%)	27 of 30 (90)%
Sub-Surface Sediments						
EB and WB Confluence to 151st Street						
Prior to 1996	4	0 of 4 (0%)	1 of 4 (25%)	1 of 4 (25%)	2 of 2 (100%)	3 of 4 (75%)
1996 and later	0	NA	NA	NA	NA	NA
151st Street to Chicago Avenue						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	0	NA	NA	NA	NA	NA
Chicago Avenue to Columbus Drive						
Prior to 1996	2	0 of 2 (0%)	0 of 2 (0%)	1 of 2 (50%)	1 of 2 (50%)	2 of 2 (100%)
1996 and later	0	NA	NA	NA	NA	NA
IHC Wetland						
Prior to 1996	0	NA	NA	NA	NA	NA
1996 and later	0	NA	NA	NA	NA	NA
Total (all years and locations)	6	0 of 6 (0%)	1 of 6 (17%)	2 of 6 (33%)	3 of 6 (50%)	5 of 6 (83%)

Table 10.3. Concentrations of chemicals of concern in pore water from IHC sediments.

	_		y Threshold	Sam	ple Site (USG	S 1999)	Sample Site (H	oke <i>et al</i> . 1993)
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	IH-13	IH-14	IH-19	UG-7	UG-11
Metals								
Cadmium	μg/L	2.9	NG	< 0.12	< 0.12	0.15 (0.05)	<10	<5
Chromium	μg/L	NG	NG	NM	NM	NM	<10	<10
Copper	μg/L	35	NG	< 0.65	< 0.65	8.10 (0.23)	73 (2.09)	<5
Lead	μg/L	<16	NG	0.42	3.23	8.95	29	< 20
Nickel	μg/L	780	NG	8.24 (0.01)	2.70 (0.004)	6.73 (0.009)	<100	<100
Zinc	μg/L	73	NG	< 4.4	< 4.4	105.37 (1.44)	81 (1.11)	35 (0.48)
Sum Toxic Units ³		NG	NG	0.01	0.004	1.73	3.20	0.48
Phenolics								
o-Chlorophenol	μg/L	NG	5600	NM	NM	NM	19.2	NM
p-Chlorophenol	μg/L	NG	5600	NM	NM	NM	2.0	NM
2,4-Dichlorophenol	μg/L	NG	520	NM	NM	NM	17.1	NM
o-Cresol	μg/L	NG	100	NM	NM	NM	4.8	NM
p-Cresol	μg/L	NG	100	NM	NM	NM	2.6	NM
2,4-Dinitrophenol	μg/L	NG	NG	NM	NM	NM	14.5	NM
Phenol	μg/L	NG	45	NM	NM	NM	107.6	NM
Other Substances								
Unionized ammonia	mg/L	NG	0.53	NM	0.01	< 0.01	1.6	1.0

¹ The 10-d LC₅₀s for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (1994; 2000b).

NG = no guideline; NM = not measured.

² Acute toxicity thresholds for phenols and unionized ammonia were obtained from USEPA (1992a) and in CCREM (1987), respectively.

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC_{50}).

Table 10.4. Summary of the available information on the toxicity of sediments and pore water from the IHC.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity
Overall Toxicity			
EB and WB Confluence to 151st Street	1	1	100%
151st Street to Chicago Avenue	1	1	100%
Chicago Avenue to Columbus Drive	2	2	100%
IHC Wetland	1	0	0%
Total	5	4	80%

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of IHC sediments included amphipod survival and growth in 10-d tests with whole sediments; midge growth in 10-d tests with whole sediments; cladoceran survival in 48-h tests with pore water; and, 30-min Microtox in pore water.

Table 10.5. Status of benthic invertebrate communities in the IHC.

Source	Sample Number	Annelida	ı (%) ¹	Dipter	ra (%) ¹	Mollusca	a (%) ¹	EPT	mIBI	Altered/
Source	Sample Pumber	Oligochaetea	Hirudinea	Chironomidae	Other Diptera	Gastropoda	Bivalvia	Taxa	ШЫ	Unaltered
Artificial Substrate										
Simon <i>et al.</i> (2000)	12	41.4	0.0	51.4	0.0	0.3	1.8	0.0	1.07	Altered
Simon et al. (2000)	11	44.4	0.0	48.6	0.0	0.0	2.0	0.2	1.07	Altered
Simon et al. (2000)	8	77.1	0.0	8.6	0.2	5.0	5.1	0.0	0.53	Altered
Simon et al. (2000)	10	37.1	0.0	39.9	0.2	2.6	3.8	0.0	1.13	Altered
Grab										
Polls et al. (1993)	4-82	99.8	0.1	0.0	0.0	0.1	0.0	0.0	ND	Altered
Polls et al. (1993)	4-86	99.9	0.0	0.0	0.0	0.1	0.0	0.0	ND	Altered
Percent Altered Sample	les									100% (6 of 6)

¹ Reported values are percent of total abundance of invertebrates.

ND = not determined.

Table 10.6. Levels of TOC in IHC sediments.

Oracle Communication	Name I and Community	TOC (%)				
Reach Segment	Number of Samples ———	Mean	Range			
Surficial Sediments						
EB and WB Confluence to 151st Street	3	5.49	0.860 - 14.7			
151st Street to Chicago Avenue	7	1.52	0.510 - 3.10			
Chicago Avenue to Columbus Drive	8	4.58	1.07 - 13.0			
IHC Wetland	1	13.0	NA			
All Segments	19	4.04	0.510 - 14.7			
Sub-Surface Sediments						
EB and WB Confluence to 151st Street	2	2.10	1.00 - 3.20			
151st Street to Chicago Avenue	0	NA	NA			
Chicago Avenue to Columbus Drive	2	6.20	0.950 - 11.5			
IHC Wetland	0	NA	NA			
All Segments	4	4.1	0.950 - 11.5			

Table 10.7. Levels of oil and grease in IHC sediments.

Reach Segment	Number of Comples	Oil and Grease (mg/kg)				
Reach Segment	Number of Samples ——	Mean	Range			
Surficial Sediments						
EB and WB Confluence to 151st Street	NA	NA	NA			
151st Street to Chicago Avenue	5	1940	200 - 7200			
Chicago Avenue to Columbus Drive	5	19800	3300 - 54800			
IHC Wetland	1	1100	NA			
All Segments	11	9980	200 - 54800			
Sub-Surface Sediments						
EB and WB Confluence to 151st Street	NA	NA	NA			
151st Street to Chicago Avenue	NA	NA	NA			
Chicago Avenue to Columbus Drive	NA	NA	NA			
IHC Wetland	NA	NA	NA			
All Segments	NA	NA	NA			

Table 10.8. Frequency of exceedance of TRGs in the IHC.

		Fish		Invertebrates	Algae	
Chemical of Concern —	Fillets ¹	Whole Body ²	GI Tract ³	Composite Sample	Composite Sample	
PCBs						
Total PCBs	NM	2 of 2 (100%)	NM	5 of 5 (100%)	NM	
Pesticides						
Chlordane	NM	1 of 2 (50%)	NM	0 of 5 (0%)	NM	
Dieldrin + Aldrin	NM	NM	NM	0 of 5 (0%)	NM	
Endrin	NM	NM	NM	0 of 5 (0%)	NM	
Heptachlor + Heptachlor epoxide	NM	NM	NM	0 of 5 (0%)	NM	
Lindane	NM	NM	NM	0 of 5 (0%)	NM	
Mirex	NM	NM	NM	0 of 5 (0%)	NM	
Total DDTs	NM	2 of 2 (100%)	NM	0 of 5 (0%)	NM	
Dioxins						
2,3,7,8-TCDD	NM	NM	NM	NM	NM	

¹Fillets = skin-off fillets.

NM = not measured.

²Whole sample = head, gills, skin, bones and attached flesh (i.e., without fillets or GI tract).

³GI tract = organs in body cavity post gills.

Table 10.9. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the IHC.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Surficial Sediment							
EB and WB Confluence to 151st Street	7	5.44	2.10	10.4	2.10	8.21	4.85
151st Street to Chicago Avenue	10	3.00	0.191	8.84	0.191	7.19	2.29
Chicago Avenue to Columbus Drive	12	7.29	1.09	25.9	1.69	11.5	5.34
IHC Wetland	1	0.718	0.718	0.718	NA	NA	NA
Overall	30	5.21	0.191	25.9	0.491	10.4	4.08
Sub-Surface Sediment							
EB and WB Confluence to 151st Street	4	2.90	0.434	4.36	0.434	4.12	3.41
151st Street to Chicago Avenue	0	NA	NA	NA	NA	NA	NA
Chicago Avenue to Columbus Drive	2	5.87	2.09	9.64	NA	NA	NA
IHC Wetland	0	NA	NA	NA	NA	NA	NA
Overall	6	3.89	0.434	9.64	0.434	4.36	3.41

Tables

Chapter II - Lake George Branch

Table 11.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in LGB sediments.

	Sediment-Dwo	elling Organisms	Wi	ildlife
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediment
Metals				
Arsenic	7 of 22 (32%)	4 of 10 (40%)	NG	NG
Cadmium	5 of 22 (23%)	4 of 10 (40%)	NG	NG
Chromium	9 of 23 (39%)	4 of 10 (40%)	NG	NG
Copper	5 of 22 (23%)	3 of 10 (30%)	NG	NG
Lead	21 of 23 (91%)	8 of 10 (80%)	NG	NG
Mercury	4 of 22 (18%)	3 of 10 (30%)	NG	NG
Nickel	8 of 23 (35%)	1 of 10 (10%)	NG	NG
Zinc	15 of 23 (65%)	6 of 10 (60%)	NG	NG
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	7 of 7 (100%)	5 of 5 (100%)	NG	NG
Acenaphthylene	0 of 0 (0%)	1 of 1 (100%)	NG	NG
Anthracene	6 of 10 (60%)	7 of 9 (78%)	NG	NG
Benz(a)anthracene	13 of 17 (76%)	7 of 9 (78%)	NG	NG
Benzo(a)pyrene	10 of 15 (67%)	7 of 10 (70%)	NG	NG
Chrysene	16 of 19 (84%)	8 of 10 (80%)	NG	NG
Dibenz(a,h)anthracene	4 of 4 (100%)	5 of 5 (100%)	NG	NG
Fluoranthene	9 of 18 (50%)	7 of 9 (78%)	NG	NG
Fluorene	10 of 11 (91%)	7 of 9 (78%)	NG	NG
2-Methylnaphthalene	NM	NM	NG	NG
Naphthalene	1 of 2 (50%)	0 of 3 (0%)	NG	NG
Phenanthrene	12 of 16 (75%)	8 of 10 (80%)	NG	NG
Pyrene	18 of 21 (86%)	8 of 10 (80%)	NG	NG
Total PAHs	9 of 22 (41%)	7 of 10 (70%)	NG	NG
PCBs				
Total PCBs	13 of 16 (81%)	5 of 7 (71%)	15 of 16 (94%)	7 of 7 (100%)

Table 11.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in LGB sediments.

	Sediment-Dwo	elling Organisms	Wildlife			
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments		
Pesticides						
Chlordane	0 of 3 (0%)	0 of 2 (0%)	0 of 0 (0%)	0 of 0 (0%)		
sum DDD	0 of 3 (0%)	0 of 3 (0%)	NG	NG		
sum DDE	2 of 7 (29%)	1 of 3 (33%)	NG	NG		
sum DDT	0 of 3 (0%)	0 of 2 (0%)	NG	NG		
Total DDTs	0 of 7 (0%)	0 of 4 (0%)	1 of 6 (17%)	1 of 4 (25%)		
Dieldrin	0 of 3 (0%)	0 of 2 (0%)	NG	NG		
Endrin	0 of 12 (0%)	0 of 5 (0%)	0 of 3 (0%)	0 of 2 (0%)		
Heptachlor	NG	NG	0 of 0 (0%)	0 of 0 (0%)		
Heptachlor epoxide	0 of 3 (0%)	0 of 2 (0%)	0 of 0 (0%)	0 of 0 (0%)		
Lindane (gamma-BHC)	0 of 3 (0%)	0 of 2 (0%)	0 of 6 (0%)	0 of 6 (0%)		
Toxaphene	NG	NG	NG	NG		
Dioxins						
2,3,7,8-TCDD	NG	NG	NM	NM		

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption. 0 of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no PEC or bioaccumulative-based SQG available; NM = substance was not measured.

Table 11.2. Proportion of sediment samples with various chemical characteristics in the LGB.

D 10	Number			Mean PEC-Qs				
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7		
Surficial Sediments								
Indianapolis Boulevard to B & O Railroad Bridge								
Prior to 1996	2	0 of 2 (0%)	0 of 2 (0%)	1 of 2 (50%)	1 of 2 (50%)	2 of 2 (100%)		
1996 and later	5	0 of 5 (0%)	0 of 5 (0%)	3 of 5 (60%)	2 of 5 (40%)	5 of 5 (100%)		
B & O Railroad Bridge to Fill Area		` '	` ,	` ,	, ,	,		
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	4	0 of 4 (0%)	0 of 4 (0%)	1 of 4 (25%)	3 of 4 (75%)	4 of 4 (100%)		
Lake George Wetlands		` '	` ,	` ,	, ,	,		
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	12	2 of 12 (17%)	2 of 12 (17%)	8 of 12 (67%)	0 of 12 (0%)	8 of 12 (67%)		
Total (all years and locations)	23	2 of 23 (8.7%)	2 of 23 (8.7%)	13 of 23 (57%)	6 of 23 (26%)	19 of 23 (83%)		
Sub-Surface Sediments								
Indianapolis Boulevard to B & O Railroad Bridge								
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	3	0 of 3 (0%)	0 of 3 (0%)	2 of 3 (67%)	1 of 3 (33%)	3 of 3 (100%)		
B & O Railroad Bridge to Fill Area		` '	` ,	` ,	, ,	,		
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	6	0 of 6 (0%)	1 of 6 (17%)	2 of 6 (33%)	3 of 6 (50%)	5 of 6 (83%)		
Lake George Wetlands		` '	, ,	` ,	, ,	, ,		
Prior to 1996	0	NA	NA	NA	NA	NA		
1996 and later	1	1 of 1 (100%)	0 of 1 (0%)	0 of 1 (0%)	0 of 1 (0%)	0 of 1 (0%)		
Total (all years and locations)	10	1 of 10 (10%)	1 of 10 (10%)	4 of 10 (40%)	4 of 10 (40%)	8 of 10 (80%)		

Table 11.3. Concentrations of chemicals of concern in pore water from LGB sediments.

	_	Toxicity T	Sample Site (USGS 1999)						
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	IH-25	IH-26	IH-27	IH-28	IH-29	IH-30
Metals									
Cadmium	μg/L	2.9	NG	< 0.11	0.24 (0.08)	0.28 (0.10)	0.13 (0.05)	0.39 (0.13)	< 0.11
Chromium	μg/L	NG	NG	NM	NM	NM	NM	NM	NM
Copper	μg/L	35	NG	3.39 (0.10)	7.78 (0.22)	17.91 (0.51)	7.97 (0.23)	26.20 (0.75)	2.58 (0.07)
Lead	μg/L	<16	NG	0.49	17.16	47.88	20.51	48.73	24.77
Nickel	μg/L	780	NG	123.37 (0.16)	4.41 (0.01)	4.08 (0.01)	3.40 (0.00)	7.04 (0.01)	5.89 (0.01)
Zinc	μg/L	73	NG	8.45 (0.12)	11.52 (0.16)	46.43 (0.64)	18.08 (0.25)	98.40 (1.35)	16.63 (0.23)
Sum Toxic Units ³		NG	NG	0.38	0.47	1.26	0.53	2.24	0.31
Phenolics									
o-Chlorophenol	μg/L	NG	5600	NM	NM	NM	NM	NM	NM
p-Chlorophenol	μg/L	NG	5600	NM	NM	NM	NM	NM	NM
2,4-Dichlorophenol	μg/L	NG	520	NM	NM	NM	NM	NM	NM
o-Cresol	μg/L	NG	100	NM	NM	NM	NM	NM	NM
p-Cresol	μg/L	NG	100	NM	NM	NM	NM	NM	NM
2,4-Dinitrophenol	μg/L	NG	NG	NM	NM	NM	NM	NM	NM
Phenol	$\mu g/L$	NG	45	NM	NM	NM	NM	NM	NM
Other Substances									
Unionized ammonia	mg/L	NG	0.53	< 0.01	0.01	0.01	0.02	0.03	0.01

¹ The 10-d LC₅₀s for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (1994; 2000b).

NG = no guideline; NM = not measured.

² Acute toxicity thresholds for phenols and unionized ammonia were obtained from USEPA (1992a) and in CCREM (1987), respectively.

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC₅₀).

Table 11.4. Summary of the available information on the toxicity of sediments and elutriates from the LGB.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity
Overall Toxicity			
Indianapolis Boulevard to B & O Railroad Bridge	2	2	100%
B & O Railroad Bridge to Fill Area	1	1	100%
Lake George Wetlands	4	1	25%
Total	7	4	57%

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of LGB sediments included amphipod survival and growth in 10-d tests with whole sediments; and, 15-min Microtox in elutriate.

Table 11.5. Status of benthic invertebrate communities in the LGB.

Source San	Sample Number	Annelida	Annelida (%) ¹		Diptera (%) ¹		Mollusca (%) ¹		mIBI	Altered/
Source	Sample Number	Oligochaetea	Hirudinea	Chironomidae	Other	Gastropod	Bivalvia	Taxa	IIIIDI	Unaltered
Artificial Substrate										
Simon <i>et al.</i> (2000)	15a	35.0	0.0	65.6	0.6	0.0	0.2	1.7	0.87	Altered
Simon et al. (2000)	15	75.8	0.0	20.7	0.2	0.0	0.0	0.9	0.40	Altered
Simon et al. (2000)	14	41.0	0.0	0.1	0.0	2.8	0.0	0.0	0.87	Altered
Grab										
Risatti and Ross (1989)	1	77.6	0.0	0.0	1.0	0.0	21.4	0.0	ND	Altered
Percent Altered Samples										100% (4 of 4)

¹ Reported values are percent of total abundance of invertebrates.

ND = not determined.

Table 11.6. Levels of TOC in LGB sediments.

		TO	OC (%)
Reach Segment	Number of Samples	Mean	Range
Surficial Sediments			
Indianapolis Boulevard to B & O Railroad Bridge	7	5.21	1.80 - 12.6
B & O Railroad Bridge to Fill Area	4	18.3	14.0 - 22.0
Lake George Wetlands	12	5.30	1.10 - 17.0
All Segments	23	7.52	1.10 - 22.0
Sub-Surface Sediments			
Indianapolis Boulevard to B & O Railroad Bridge	3	6.80	3.50- 12.0
B & O Railroad Bridge to Fill Area	6	9.61	1.70 - 16.0
Lake George Wetlands	1	0.750	NA
All Segments	10	7.88	0.750 - 16.0

Table 11.7. Levels of oil and grease in LGB sediments.

Doogh Commont	Number of Complet	Oil and C	Grease (mg/kg)	
Reach Segment	Number of Samples —	Mean	Range	
Surficial Sediments				
Indianapolis Boulevard to B & O Railroad Bridge	5	23300	7500 - 54200	
B & O Railroad Bridge to Fill Area	4	141000	62400 - 227000	
Lake George Wetlands	11	17700	1100 - 53700	
All Segments	20	43700	1100 - 227000	
Sub-Surface Sediments				
Indianapolis Boulevard to B & O Railroad Bridge	3	51300	21300 - 107000	
B & O Railroad Bridge to Fill Area	6	59500	1000 - 154000	
Lake George Wetlands	1	500	NA	
All Segments	10	51200	500 - 154000	

Table 11.8. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the LGB.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Surficial Sediments							
Indianapolis Boulevard to B & O Railroad Bridge	7	4.81	1.75	14.5	1.75	6.00	2.91
B & O Railroad Bridge to Fill Area	4	13.9	3.13	31.5	3.13	16.4	10.5
Lake George Wetlands	12	0.870	0.0786	1.67	0.0916	1.60	0.729
Overall	23	4.33	0.0786	31.5	0.484	6.00	1.67
Sub-Surface Sediments							
Indianapolis Boulevard to B & O Railroad Bridge	3	5.88	2.66	11.8	2.66	3.19	3.19
B & O Railroad Bridge to Fill Area	6	6.15	0.367	14.2	0.367	9.87	5.40
Lake George Wetlands	1	0.0457	0.0457	0.0457	NA	NA	0.0457
Overall	10	5.46	0.0457	14.2	0.0457	11.8	3.20

Tables

Chapter I2 - US Canal

Table 12.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in USC sediments.

	Sediment-Dwo	elling Organisms	\mathbf{W}^{i}	ildlife
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments
Metals				
Arsenic	24 of 56 (43%)	29 of 33 (88%)	NG	NG
Cadmium	66 of 90 (73%)	66 of 82 (80%)	NG	NG
Chromium	77 of 92 (84%)	64 of 83 (77%)	NG	NG
Copper	71 of 90 (79%)	63 of 83 (76%)	NG	NG
Lead	84 of 92 (91%)	70 of 83 (84%)	NG	NG
Mercury	16 of 25 (64%)	24 of 33 (73%)	NG	NG
Nickel	70 of 90 (78%)	60 of 83 (72%)	NG	NG
Zinc	86 of 92 (93%)	70 of 83 (84%)	NG	NG
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	36 of 36 (100%)	18 of 18 (100%)	NG	NG
Acenaphthylene	32 of 32 (100%)	18 of 18 (100%)	NG	NG
Anthracene	50 of 53 (94%)	18 of 18 (100%)	NG	NG
Benz(a)anthracene	54 of 55 (98%)	18 of 18 (100%)	NG	NG
Benzo(a)pyrene	46 of 47 (98%)	18 of 18 (100%)	NG	NG
Chrysene	54 of 56 (96%)	18 of 18 (100%)	NG	NG
Dibenz(a,h)anthracene	19 of 19 (100%)	18 of 18 (100%)	NG	NG
Fluoranthene	56 of 57 (98%)	18 of 18 (100%)	NG	NG
Fluorene	46 of 47 (98%)	18 of 18 (100%)	NG	NG
2-Methylnaphthalene	40 of 41 (98%)	NM	NG	NG
Naphthalene	48 of 49 (98%)	NM	NG	NG
Phenanthrene	54 of 56 (96%)	18 of 18 (100%)	NG	NG
Pyrene	54 of 56 (96%)	18 of 18 (100%)	NG	NG
Total PAHs	54 of 61 (89%)	18 of 18 (100%)	NG	NG
PCBs				
Total PCBs	30 of 38 (79%)	42 of 51 (82%)	15 of 19 (79%)	16 of 16 (100%)

Table 12.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in USC sediments.

	Sediment-Dwe	elling Organisms	Wildlife			
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments		
Pesticides						
Chlordane	9 of 9 (100%)	0 of 0 (0%)	9 of 9 (100%)	0 of 0 (0%)		
sum DDD	6 of 7 (86%)	17 of 18 (94%)	NG	NG		
sum DDE	7 of 8 (88%)	12 of 18 (67%)	NG	NG		
sum DDT	2 of 7 (29%)	0 of 18 (0%)	NG	NG		
Total DDTs	1 of 11 (9.1%)	0 of 18 (0%)	7 of 9 (78%)	11 of 18 (61%)		
Dieldrin	4 of 9 (44%)	0 of 18 (0%)	NG	NG		
Endrin	0 of 10 (0%)	0 of 18 (0%)	0 of 7 (0%)	0 of 18 (0%)		
Heptachlor	NG	NG	6 of 6 (100%)	0 of 11 (0%)		
Heptachlor epoxide	8 of 9 (89%)	0 of 18 (0%)	7 of 7 (100%)	4 of 14 (29%)		
Lindane (gamma-BHC)	1 of 3 (33%)	1 of 18 (5.6%)	0 of 10 (0%)	0 of 18 (0%)		
Toxaphene	NG	NG	NG	NG		
Dioxins						
2,3,7,8-TCDD	NG	NG	2 of 4 (50%)	NM		

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption. 0 of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no PEC or bioaccumulative-based SQG available; NM = substance was not measured.

Table 12.2. Proportion of sediment samples with various chemical characteristics in the USC.

Decale Comment	Number			Mean PEC-Qs		
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7
Surficial Sediments (all Prior to 1996)						
Columbus Drive to Forks	12	0 of 12 (0%)	0 of 12 (0%)	4 of 12 (33%)	8 of 12 (67%)	12 of 12 (100%)
Indianapolis Boulevard to Forks	11	0 of 11 (0%)	0 of 11 (0%)	1 of 11 (9.1%)	10 of 11 (91%)	11 of 11 (100%)
Forks to Highway 912	21	0 of 21 (0%)	1 of 21 (4.8%)	6 of 21 (29%)	14 of 21 (67%)	20 of 21 (95%)
Highway 912 to Dickey Road	18	1 of 18 (5.6%)	2 of 18 (11%)	7 of 18 (39%)	8 of 18 (44%)	15 of 18 (83%)
Dickey Road to B & O Railroad Bridge	36	1 of 36 (2.7%)	2 of 36 (5.6%)	12 of 36 (33%)	21 of 36 (58%)	33 of 36 (92%)
B & O Railroad to the Entrance to IH	16	0 of 16 (0%)	2 of 16 (13%)	5 of 16 (31%)	9 of 16 (56%)	14 of 16 (88%)
Total (all years and locations)	114	2 of 114 (1.8%)	7 of 114 (6.1%)	35 of 114 (31%)	70 of 114 (61%)	105 of 114 (92%)
Sub-Surface Sediments (all Prior to 1996)						
Columbus Drive to Forks	33	0 of 33 (0%)	0 of 33 (0%)	0 of 33 (0%)	33 of 33 (100%)	33 of 33 (100%)
Indianapolis Boulevard to Forks	18	0 of 18 (0%)	4 of 18 (22%)	2 of 18 (11%)	12 of 18 (67%)	14 of 18 (78%)
Forks to Highway 912	23	1 of 23 (4.3%)	3 of 23 (13%)	3 of 23 (13%)	16 of 23 (70%)	19 of 23 (83%)
Highway 912 to Dickey Road	6	2 of 6 (33%)	0 of 6 (0%)	2 of 6 (33%)	2 of 6 (33%)	4 of 6 (67%)
Dickey Road to B & O Railroad Bridge	12	0 of 12 (0%)	4 of 12 (33%)	0 of 12 (0%)	8 of 12 (67%)	8 of 12 (67%)
B & O Railroad to the Entrance to IH	9	0 of 9 (0%)	1 of 9 (11%)	5 of 9 (56%)	3 of 9 (33%)	8 of 9 (89%)
Total (all years and locations)	101	3 of 101 (3.0%)	12 of 101 (12%)	12 of 101 (12%)	74 of 101 (73%)	86 of 101 (85%)

Table 12.3. Concentrations of chemicals of concern in pore water from USC sediments.

	***	Toxicity	y Threshold	Sample Site (Hoke et al. 1993)	Sample Site (U SEPA 1996a)
Chemical of Concern Unit	Units —	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	UG-12	IH 01 06	IH 01 07
Metals						
Cadmium	μg/L	2.9	NG	<5	0.19 (0.07)	14.3 (4.93)
Chromium	μg/L	NG	NG	<10	2.46	350.0
Copper	μg/L	35	NG	<5	5.3 (0.15)	126.3 (3.61)
Lead	μg/L	<16	NG	<20	5.3	1284.0
Nickel	μg/L	780	NG	<100	5.9 (0.01)	171.4 (0.22)
Zinc	μg/L	73	NG	36 (0.49)	6.3 (0.09)	1081 (14.8)
Sum Toxic Units ³		NG	NG	0.49	0.32	23.6
Phenolics						
o-Chlorophenol	μg/L	NG	5600	NM	NM	NM
p-Chlorophenol	μg/L	NG	5600	NM	NM	NM
2,4-Dichlorophenol	μg/L	NG	520	NM	NM	NM
o-Cresol	μg/L	NG	100	NM	NM	NM
p-Cresol	μg/L	NG	100	NM	NM	NM
2,4-Dinitrophenol	μg/L	NG	NG	NM	NM	NM
Phenol	$\mu g/L$	NG	45	NM	NM	NM
Other Substances						
Unionized ammonia	mg/L	NG	0.53	6.2	NR	NR

¹ The 10-d LC₅₀s for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (1994; 2000b).

NG = no guideline; NM = not measured.

² Acute toxicity thresholds for phenols and unionized ammonia were obtained from USEPA (1992a) and in CCREM (1987), respectively.

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC₅₀).

Table 12.4. Summary of the available information on the toxicity of sediments, pore water and elutriates from the USC.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity		
Overall Toxicity					
Columbus Drive to Forks	21	20	95%		
Indianapolis Boulevard to Forks	17	15	88%		
Forks to Highway 912	20	16	80%		
Highway 912 to Dickey Road	12	7	58%		
Dickey Road to B & O Railroad Bridge	8	6	75%		
B & O Railroad Bridge to the Entrance to IH	12	8	67%		
Total	90	72	80%		

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of USC sediments included amphipod survival growth, number of antennal segments, and % mature in 14-d and 28-d tests with whole sediments; midge survival and growth in 10-d and 14-d tests with whole sediments; cladoceran survival in 48-h tests with pore water; cladoceran survival in 48-h tests with elutriate; 30-min Microtox with pore water; and, 15-min Microtox with elutriate.

Table 12.5. Status of benthic invertebrate communities in the USC.

Source	Sample Number	Sample Number Annelida (%) ¹ Diptera (%) ¹ Mollusca (%) ¹ Oligochaetea Hirudinea Chironomidae Other Gastropoda Bivalvia			EPT Taxa	mIBI	Altered/ Unaltered			
Artificial Substrate										
IDEM (2000a)	Dickey Road (1994)	90.7	0.0	0.0	0.0	2.1	0.0	1.0	2.2	Altered
Simon et al. (2000)	16	88.5	0.0	8.3	0.0	0.0	1.8	0.2	0.20	Altered
IDEM (2000a)	129th Street (1993)	98.4	0.0	0.0	0.0	0.0	0.0	0.0	2.8	Altered
IDEM (2000a)	Dickey Road (1996)	81.3	0.0	2.7	0.3	0.0	0.0	0.0	1.7	Altered
Simon et al. (2000)	13	85.7	0.1	5.8	0.1	0.0	0.0	0.0	0.33	Altered
Grab										
Polls <i>et al</i> . (1993)	6-82	97.7	0.3	0.0	0.0	0.0	1.9	0.0	ND	Altered
Polls and Dennison (1984)	C-2	99.0	0.3	0.0	0.0	0.1	0.6	0.0	ND	Altered
Polls <i>et al</i> . (1993)	6-86	98.8	0.1	0.0	0.0	0.3	0.3	0.0	ND	Altered
Polls and Dennison (1984)	C-1	95.1	0.9	0.0	0.0	0.0	3.9	0.0	ND	Altered
USEPA (1996a)	IH 01 05	98.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	Altered
Polls and Dennison (1984)	D-3	98.8	0.1	0.0	0.0	0.0	0.1	0.0	ND	Altered
Risatti and Ross (1989)	3	99.9	0.0	0.0	0.0	0.0	0.1	0.0	ND	Altered
Polls et al. (1993)	5-86	72.5	0.2	0.1	0.0	0.0	27.30	0.0	ND	Unaltered
USEPA (1996a)	IH 01 06	100.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	Altered
Polls et al. (1993)	5-82	98.3	0.0	0.0	0.0	0.0	1.7	0.0	ND	Altered
Polls and Dennison (1984)	D-4	93.7	1.2	0.0	0.0	0.1	0.0	0.0	ND	Altered
Risatti and Ross (1989)	12a	100.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	Altered
Risatti and Ross (1989)	2	99.7	0.3	0.0	0.0	0.0	0.0	0.0	ND	Altered
Polls and Dennison (1984)	F-1	99.9	0.1	0.0	0.0	0.0	0.0	0.0	ND	Altered
Polls and Dennison (1984)	F-2	99.9	0.0	0.0	0.0	0.0	0.0	0.0	ND	Altered
USEPA (1996a)	IH 01 10	100.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	Altered
USEPA (1996a)	IH 01 08	99.9	0.0	0.0	0.0	0.0	0.0	0.0	ND	Altered
Polls and Dennison (1984)	E-2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	Altered
Polls and Dennison (1984)	E-1	99.9	0.0	0.0	0.0	0.0	0.1	0.0	ND	Altered
USEPA (1996a)	IH 01 07	90.6	0.0	0.0	0.0	0.0	1.3	0.0	ND	Altered
Percent Altered Samples										96% (24 of 25)

¹ Reported values are percent of total abundance of invertebrates.

ND = not determined.

Table 12.6. Levels of TOC in USC sediments.

	N. 1. 60 1	TOC (%)				
Reach Segment	Number of Samples —	Mean	Range			
Surficial Sediments						
Columbus Drive to Forks	10	14.6	7.1 - 23.7			
Indianapolis Boulevard to Forks	8	10.4	5.6 - 14.8			
Forks to Highway 912	12	14.6	2.3 - 23.0			
Highway 912 to Dickey Road	11	13.2	2.3 - 38.0			
Dickey Road to B & O Railroad Bridge	17	13.4	2.1 - 37.0			
B & O Railroad Bridge to the Entrance of IH	5	10.4	0.8 - 17.7			
All Segments	63	13.2	0.8 - 38.0			
ub-Surface Sediments						
Columbus Drive to Forks	26	12.6	7.27 - 34.9			
Indianapolis Boulevard to Forks	13	7.38	0.5 - 12.8			
Forks to Highway 912	12	7.33	1.15 - 11.3			
Highway 912 to Dickey Road	6	4.34	1.32 - 10.8			
Dickey Road to B & O Railroad Bridge	4	9.87	1.07 - 21.0			
B & O Railroad Bridge to the Entrance to IH	7	9.14	1.41 - 19.6			
All Segments	68	9.41	0.5 - 34.9			

Table 12.7. Levels of oil and grease in USC sediments.

D 16	N I CC I	Oil and Grease (mg/kg)				
Reach Segment	Number of Samples —	Mean	Range			
Surficial Sediments						
Columbus Drive to Forks	1	65400	NA			
Indianapolis Boulevard to Forks	2	136000	96600 - 175000			
Forks to Highway 912	1	97500	NA			
Highway 912 to Dickey Road	NA	NA	NA			
Dickey Road to B & O Railroad Bridge	2	54500	43200 - 65700			
B & O Railroad Bridge to the Entrance to IH	2	25100	8600 - 41600			
All Segments	8	74200	8600 - 175000			
Sub-Surface Sediments						
Columbus Drive to Forks	4	54300	44600 - 66600			
Indianapolis Boulevard to Forks	5	81500	15800 - 119000			
Forks to Highway 912	2	101000	96000 - 106000			
Highway 912 to Dickey Road	NA	NA	NA			
Dickey Road to B & O Railroad Bridge	2	34100	550 - 67700			
B & O Railroad Bridge to the Entrance to IH	2	14300	2200 - 26400			
All Segments	15	61600	550 - 119000			

Table 12.8. Frequency of exceedance of TRGs in the USC.

		Fish		Invertebrates	Algae
Chemical of Concern	Fillets ¹	Whole Body ²	GI Tract ³	Composite Sample	Composite Sample
PCBs					
Total PCBs	3 of 3 (100%)	13 of 13 (100%)	NM	2 of 2 (100%)	1 of 1 (100%)
Pesticides					
Chlordane	0 of 3 (0%)	NM	NM	NM	NM
Dieldrin + Aldrin	2 of 3 (67%)	NM	NM	NM	NM
Endrin	0 of 3 (0%)	NM	NM	NM	NM
Heptachlor + Heptachlor epoxide	0 of 3 (0%)	NM	NM	NM	NM
Lindane	0 of 3 (0%)	NM	NM	NM	NM
Mirex	NM	NM	NM	NM	NM
Total DDTs	1 of 3 (33%)	NM	NM	NM	NM
Dioxins					
2,3,7,8-TCDD	NM	NM	NM	NM	NM

¹Fillets = skin-off fillets.

NM = not measured.

²Whole body = head, gills, skin, bones and attached flesh (i.e., without fillets or GI tract).

³GI tract = organs in body cavity post gills.

Table 12.9. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the USC.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Surficial Sediments							
Columbus Drive to Forks	12	5.99	2.25	22.0	2.25	7.98	4.41
Indianapolis Boulevard to Forks	11	13.2	3.51	35.2	4.10	24.9	8.18
Forks to Highway 912	21	10.5	0.610	61.3	3.07	23.7	5.21
Highway 912 to Dickey Road	18	5.72	0.0652	29.3	0.55	12.6	3.14
Dickey Road to B & O Railroad Bridge	36	18.8	0.0395	177	1.17	29.7	9.90
B & O Railroad Bridge to the Entrance to IH	16	7.04	0.233	25.2	0.691	10.8	6.33
Overall	114	11.7	0.0395	177	1.11	24.9	5.16
Sub-Surface Sediments							
Columbus Drive to Forks	33	20.9	4.35	57.9	4.90	43.0	13.8
Indianapolis Boulevard to Forks	18	12.8	0.178	37.8	0.207	34.4	6.72
Forks to Highway 912	23	14.9	0.0557	45.3	0.222	36.5	6.71
Highway 912 to Dickey Road	6	2.45	0.0522	5.28	0.0522	5.18	2.08
Dickey Road to B & O Railroad Bridge	12	34.2	0.222	170	0.256	67.9	8.21
B & O Railroad Bridge to the Entrance to IH	9	3.23	0.225	5.04	0.225	4.96	3.47
Overall	101	17.0	0.0522	170	0.245	38.8	7.25

Tables

Chapter I3 - Indiana Harbor

Table 13.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in IH and nearshore areas of Lake Michigan sediments.

	Sediment-Dw	elling Organisms	\mathbf{W}	ildlife
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediment
Metals				
Arsenic	13 of 59 (22%)	4 of 6 (67%)	NG	NG
Cadmium	19 of 44 (43%)	14 of 24 (58%)	NG	NG
Chromium	40 of 75 (53%)	14 of 24 (58%)	NG	NG
Copper	25 of 50 (50%)	14 of 24 (58%)	NG	NG
Lead	36 of 77 (47%)	18 of 24 (75%)	NG	NG
Mercury	0 of 14 (0%)	0 of 7 (0%)	NG	NG
Nickel	28 of 77 (36%)	12 of 24 (50%)	NG	NG
Zinc	43 of 77 (56%)	18 of 24 (75%)	NG	NG
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	19 of 19 (100%)	NM	NG	NG
Acenaphthylene	26 of 26 (100%)	NM	NG	NG
Anthracene	30 of 31 (97%)	NM	NG	NG
Benz(a)anthracene	22 of 32 (69%)	NM	NG	NG
Benzo(a)pyrene	27 of 30 (90%)	NM	NG	NG
Chrysene	33 of 33 (100%)	NM	NG	NG
Dibenz(a,h)anthracene	9 of 9 (100%)	NM	NG	NG
Fluoranthene	35 of 36 (97%)	NM	NG	NG
Fluorene	28 of 30 (93%)	NM	NG	NG
2-Methylnaphthalene	25 of 26 (96%)	NM	NG	NG
Naphthalene	33 of 33 (100%)	NM	NG	NG
Phenanthrene	35 of 35 (100%)	NM	NG	NG
Pyrene	35 of 36 (97%)	NM	NG	NG
Total PAHs	33 of 44 (75%)	NM	NG	NG
PCBs				
Total PCBs	6 of 40 (15%)	2 of 7 (29%)	29 of 33 (88%)	0 of 0 (0%)

Table 13.1. Frequency of exceedances of the PECs and bioaccumulation-based SQGs in IH and nearshore areas of Lake Michigan sediments.

	Sediment-Dw	elling Organisms	Wildlife			
Chemical of Concern	Surficial Sediments	Sub-Surface Sediments	Surficial Sediments	Sub-Surface Sediments		
Pesticides						
Chlordane	1 of 1 (100%)	NM	1 of 1 (100%)	NM		
sum DDD	0 of 0 (0%)	NM	NG	NG		
sum DDE	1 of 1 (100%)	NM	NG	NG		
sum DDT	0 of 2 (0%)	NM	NG	NG		
Total DDTs	0 of 2 (0%)	NM	0 of 2 (0%)	NM		
Dieldrin	1 of 2 (50%)	NM	NG	NG		
Endrin	0 of 2 (0%)	NM	0 of 2 (0%)	NM		
Heptachlor	NG	NG	0 of 0 (0%)	NM		
Heptachlor epoxide	0 of 0 (0%)	NM	0 of 0 (0%)	NM		
Lindane (gamma-BHC)	0 of 0 (0%)	NM	0 of 2 (0%)	NM		
Toxaphene	NG	NG	NG	NG		
Dioxins						
2,3,7,8-TCDD	NG	NG	1 of 1 (100%)	NM		

Note: The absence of a chemical substance on this list does not necessarily mean that the substance does not pose a hazard to sediment dwelling organisms, wildlife, or fish consumption. 0 of 0 (0%) = the substance was measured but all values were excluded from analyses because they were less than a detection limit that exceeded a PEC or other SQG; or the substance was measured but cannot be compared to the TOC-normalized SQG because TOC was not reported for the station.

NG = no guideline (i.e., no PEC or bioaccumulative-based SQG available); NM = substance was not measured.

Table 13.2. Proportion of sediment samples with various chemical characteristics in the IH and nearshore areas of Lake Michigan.

Doogh Cogmont	Number	Mean PEC-Qs								
Reach Segment	of Samples	< 0.1	\$ 0.1 - < 0.7	\$ 0.7 - < 4.0	\$ 4.0	\$ 0.7				
Surficial Sediments (all Prior to 1996)										
Indiana Harbor	55	1 of 55 (1.8%)	5 of 55 (9.1%)	37 of 55 (67%)	12 of 55 (22%)	49 of 55 (89%)				
Nearshore Areas of Lake Michigan	32	7 of 32 (22%)	24 of 32 (75%)	1 of 32 (3.1%)	0 of 32 (0%)	1 of 32 (3.1%)				
Total (all years and locations)	87	8 of 87 (9.2%)	29 of 87 (33%)	38 of 87 (44%)	12 of 87 (14%)	50 of 87 (57%)				
Sub-Surface Sediments (all Prior to 1996)										
Indiana Harbor	23	3 of 23 (13%)	2 of 23 (8.7%)	14 of 23 (61%)	4 of 23 (17%)	18 of 23 (78%)				
Nearshore Areas of Lake Michigan	1	0 of 1 (0%)	1 of 1 (100%)	0 of 1 (0%)	0 of 1 (0%)	0 of 1 (0%)				
Total (all years and locations)	24	3 of 24 (13%)	3 of 24 (13%)	14 of 24 (58)%	4 of 24 (17%)	18 of 24 (75%)				

Table 13.3. Concentrations of chemicals of concern in pore water from IH sediments.

		Toxici	ty Threshold	Sample Site (Hoke et al. 1993)	Sample Site (USEPA 1996a)		
Chemical of Concern	Units	10-d LC ₅₀ for Hyalella azteca ¹	Acute Threshold for Aquatic Invertebrates ²	UG-13	IH 01 04	IH 01 03	
Metals							
Cadmium	μg/L	2.9	NG	<5	1.0 (0.34)	1.1 (0.38)	
Chromium	μg/L	NG	NG	<10	28.6	13.2	
Copper	μg/L	35	NG	<5	21.3 (0.61)	21.4 (0.61)	
Lead	μg/L	<16	NG	<20	92.8	96.8	
Nickel	μg/L	780	NG	<100	7.5 (0.01)	10.4 (0.01)	
Zinc	μg/L	73	NG	132 (1.81)	50.3 (0.69)	60.8 (0.83)	
Sum Toxic Units ³		NG	NG	1.81	1.65	1.83	
Phenolics							
o-Chlorophenol	μg/L	NG	5600	NM	NM	NM	
p-Chlorophenol	μg/L	NG	5600	NM	NM	NM	
2,4-Dichlorophenol	μg/L	NG	520	NM	NM	NM	
o-Cresol	μg/L	NG	100	NM	NM	NM	
p-Cresol	μg/L	NG	100	NM	NM	NM	
2,4-Dinitrophenol	μg/L	NG	NG	NM	NM	NM	
Phenol	μg/L	NG	45	NM	NM	NM	
Other Substances							
Unionized ammonia	mg/L	NG	0.53	0.3	NM	NM	

¹ The 10-d LC₅₀s for the amphipod *Hyalella azteca* for water-only exposures were obtained from USEPA (2000b).

NG = no guideline; NM = not measured.

² Acute toxicity thresholds for unionized ammonia were obtained from CCREM (1987).

³ Sum toxic units were calculated as the sum of the toxic units that were determined for each substance (i.e., as shown in parenthesis and calculated as the chemical concentration divided by the 10-d LC_{50}).

Table 13.4. Summary of the available information on the toxicity of sediments, pore water and elutriates from the IH and nearshore areas of Lake Michigan.

Reach Segment	Number of Samples	Number of Toxic Samples	% Toxicity
Overall Toxicity			
Indiana Harbor	32	26	81%
Nearshore Areas of Lake Michigan	6	2	33%
Total	38	28	74%

Overall toxicity was determined when the sample was toxic to one or more species. The species and endpoints that were used to evaluate the toxicity of IH and nearshore areas of Lake Michigan sediments included amphipod survival, growth, # antennal segments and % mature in 14-d and 28-d tests with whole sediments; midge survival and growth in 10-d and 14-d tests with whole sediments; cladoceran survival in 48-h tests with pore water; cladoceran survival in 48-h tests with elutriate; 30-min Microtox with pore water; and, 15-min Microtox with elutriate.

Table 13.5. Status of benthic invertebrate communities in the IH and nearshore areas of Lake Michigan.

0	6 13 1	Annelida	a (%) ¹	Dipter	a (%) ¹	Mollusc	a (%) ¹	EPT	TDT	Altered/
Source	Sample Number	Oligochaetea			Other Diptera	Gastropoda	` /	Taxa	mIBI	Unaltered
Artificial Substrate										
Simon et al. (2000)	17	69.4	0.0	1.9	0.0	0.0	9.2	0.2	0.80	Altered
Grab										
Polls <i>et al</i> . (1993)	15-86	46.3	0.0	30.5	0.0	3.2	2.7	0.5	ND	Unaltered
Polls <i>et al</i> . (1993)	18-86	61.7	1.6	22.9	0.0	1.5	10.4	0.1	ND	Unaltered
Polls <i>et al</i> . (1993)	17-86	20.0	0.0	50.0	0.0	2.9	8.6	0.0	ND	Unaltered
Polls <i>et al</i> . (1993)	14-86	26.1	1.9	37.9	0.0	5.0	11.5	0.0	ND	Unaltered
Polls et al. (1993)	16-86	29.9	0.8	22.4	0.0	7.8	6.9	0.0	ND	Unaltered
LTI (1984)	WS-1	60.8	0.0	26.0	0.0	0.0	4.4	0.0	ND	Unaltered
Polls et al. (1993)	13-86	20.0	5.6	25.6	0.0	26.7	20.0	0.0	ND	Unaltered
LTI (1984)	WS-2	76.2	0.0	5.3	0.5	3.7	9.0	0.0	ND	Altered
Polls et al. (1993)	17-82	36.2	0.1	57.8	0.3	0.0	0.4	0.0	ND	Unaltered
LTI (1984)	WS-3	74.9	0.0	9.1	2.3	0.0	6.8	0.0	ND	Altered
LTI (1984)	WS-4	84.9	0.0	12.6	0.0	0.0	2.5	0.0	ND	Altered
LTI (1984)	WS-5	78.2	0.0	8.9	1.6	0.8	8.1	0.0	ND	Altered
LTI (1984)	WS-6	51.2	0.0	9.7	4.9	19.5	12.2	0.0	ND	Unaltered
LTI (1984)	WS-7	58.2	0.0	25.0	0.0	0.0	8.4	0.0	ND	Unaltered
LTI (1984)	WS-8	79.5	0.7	4.9	1.4	0.0	9.2	0.0	ND	Altered
Risatti and Ross (1989)	6	66.7	0.0	0.0	0.0	0.0	0.0	0.0	ND	Unaltered
Risatti and Ross (1989)	11	66.7	0.0	7.0	0.0	7.0	7.0	0.0	ND	Unaltered
LTI (1984)	S8-7	96.6	0.0	3.4	0.0	0.0	0.0	0.0	ND	Altered
LTI (1984)	WS-9	75.0	0.0	13.1	2.4	1.2	0.0	0.0	ND	Altered
Polls et al. (1993)	10-82	72.7	0.2	16.9	0.0	0.9	4.9	0.3	ND	Unaltered
Polls et al. (1993)	12-82	74.5	1.5	19.3	0.0	2.7	0.3	0.2	ND	Altered
Polls et al. (1993)	13-82	32.7	0.6	29.4	0.0	10.8	14.4	0.0	ND	Unaltered
Polls et al. (1993)	14-82	57.4	1.5	25.7	0.0	2.8	9.5	0.9	ND	Unaltered
Risatti and Ross (1989)	9a	76.7	0.0	10.3	0.0	0.9	3.7	0.0	ND	Altered
Polls et al. (1993)	16-82	14.0	1.5	49.9	0.0	6.4	5.1	0.1	ND	Unaltered

Table 13.5. Status of benthic invertebrate communities in the IH and nearshore areas of Lake Michigan.

Source	Comple Number	Annelida	a (%) ¹	Dipter	a (%) ¹	Mollusca	a (%) ¹	EPT	mIBI	Altered/
Jour Ct	Sample Number	Oligochaetea			Other Diptera	Gastropoda		Taxa	mibi	Unaltered
Grab (cont.)										
Polls et al. (1993)	12-86	38.5	4.6	54.5	0.0	0.3	0.0	0.3	ND	Unaltered
Risatti and Ross (1989)	10a	73.1	0.0	0.0	0.0	4.5	0.0	0.0	ND	Unaltered
Polls et al. (1993)	18-82	53.1	0.9	36.9	0.3	0.0	0.6	0.0	ND	Unaltered
Risatti and Ross (1989)	8	95.5	1.9	0.6	0.0	0.6	0.0	0.0	ND	Altered
Risatti and Ross (1989)	7	20.7	0.0	0.0	0.0	3.4	13.8	0.0	ND	Unaltered
Polls et al. (1993)	10-86	62.5	0.0	14.9	0.0	2.7	19.9	0.0	ND	Unaltered
Polls et al. (1993)	11-86	67.0	0.9	18.9	0.0	5.7	7.6	0.0	ND	Unaltered
Polls et al. (1993)	15-82	43.4	0.6	36.4	0.0	1.1	11.2	0.0	ND	Unaltered
LTI (1984)	Indiana Hrb4	57.3	0.0	28.3	0.0	0.0	0.0	0.0	ND	Unaltered
Polls and Dennison (1984)	H-1	56.8	0.0	7.9	0.0	3.0	4.1	0.0	ND	Unaltered
LTI (1984)	S8-5	94.8	0.0	3.5	0.0	0.0	0.0	0.0	ND	Altered
LTI (1984)	WS-10	40.2	0.0	0.0	0.0	0.0	0.0	0.0	ND	Unaltered
Polls and Dennison (1984)	G-2	94.75	0.47	0.57	0.00	1.53	2.39	0.00	ND	Altered
Polls and Dennison (1984)	G-3	83.7	0.5	3.8	0.0	0.9	5.0	0.0	ND	Altered
Polls and Dennison (1984)	H-2	76.4	0.3	11.1	0.0	2.6	2.8	0.0	ND	Altered
Polls and Dennison (1984)	H-3	15.5	0.0	1.5	0.0	0.2	6.7	0.0	ND	Unaltered
Polls and Dennison (1984)	G-1	92.8	0.4	1.7	0.0	0.2	3.6	0.0	ND	Altered
LTI (1984)	Indiana Hrb3	93.8	0.0	0.0	0.0	0.0	6.3	0.0	ND	Altered
LTI (1984)	Indiana Hrb2	50.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	Unaltered
LTI (1984)	S8-12	66.7	0.0	0.0	0.0	33.3	0.0	0.0	ND	Unaltered
LTI (1984)	S8-10	88.8	5.6	0.0	0.0	0.0	0.0	0.0	ND	Altered
LTI (1984)	S8-2	74.3	0.0	11.4	5.7	0.0	0.0	0.0	ND	Altered
LTI (1984)	S8-9	85.2	2.9	5.9	3.0	1.5	0.0	0.0	ND	Altered
LTI (1984)	S8-8	76.8	7.7	0.0	0.0	7.7	7.8	0.0	ND	Altered
LTI (1984)	S8-6	95.8	0.0	1.4	2.8	0.0	0.0	0.0	ND	Altered
LTI (1984)	WS-11	74.2	0.0	7.0	3.0	0.0	7.9	0.0	ND	Altered
LTI (1984)	S8-4	100.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	Altered
LTI (1984)	S8-3	54.6	0.0	15.2	6.0	0.0	12.1	0.0	ND	Unaltered

Table 13.5. Status of benthic invertebrate communities in the IH and nearshore areas of Lake Michigan.

Source	Sample Number	Annelida	ı (%) ¹	Dipter	ra (%) ¹	Mollusca	a (%) ¹	EPT	mIBI	Altered/
	Sample Number	Oligochaetea	Hirudinea	Chironomidae	Other Diptera	Gastropoda	Bivalvia	Taxa		Unaltered
Grab (cont.)										
LTI (1984)	S8-1	97.5	0.0	1.2	1.2	0.0	0.0	0.0	ND	Altered
LTI (1984)	S8-11	60.3	0.0	39.7	0.0	0.0	0.0	0.0	ND	Unaltered
LTI (1984)	WS-12	72.7	0.0	3.7	3.6	3.7	10.9	0.0	ND	Unaltered
Polls et al. (1993)	9-82	97.5	0.1	1.0	0.0	0.0	1.2	0.0	ND	Altered
Polls et al. (1993)	8-82	96.2	0.2	0.0	0.0	0.2	3.3	0.0	ND	Altered
Polls et al. (1993)	7-82	95.4	0.1	0.0	0.0	0.1	4.5	0.0	ND	Altered
Risatti and Ross (1989)	4	60.0	0.0	0.0	0.0	20.0	0.0	0.0	ND	Unaltered
USEPA (1996a)	IH 01 04	98.5	0.0	0.0	0.0	0.0	0.1	0.0	ND	Altered
Risatti and Ross (1989)	5	71.4	0.0	0.0	0.0	0.0	19.1	0.0	ND	Unaltered
LTI (1984)	Indiana Hrb1	98.2	0.0	0.3	0.0	0.0	1.5	0.0	ND	Altered
Polls and Dennison (1984)	B-2	90.7	1.0	0.0	0.0	1.0	3.9	0.0	ND	Altered
Polls and Dennison (1984)	B-1	88.6	1.7	0.0	0.0	0.0	5.3	0.0	ND	Altered
USEPA (1996a)	IH 01 03	99.3	0.0	0.0	0.0	0.0	0.2	0.0	ND	Altered
Polls et al. (1993)	7-86	96.4	0.2	0.0	0.0	0.5	2.8	0.0	ND	Altered
Polls and Dennison (1984)	A-1	93.2	0.0	1.0	0.0	0.7	1.5	0.0	ND	Altered
Polls et al. (1993)	9-86	86.4	0.0	9.7	0.0	0.6	0.6	0.0	ND	Altered
Polls and Dennison (1984)	A-2	60.3	0.0	0.0	0.0	0.0	2.7	0.0	ND	Unaltered
Polls et al. (1993)	8-86	81.4	1.6	0.8	0.0	1.9	14.0	0.0	ND	Altered
Percent Altered Samples										51% (37 of 72

¹ Report values are percent of total abundance of invertebrates.

ND = not determined.

Table 13.6. Levels of TOC in IH and nearshore areas of Lake Michigan sediments.

Doods Comment	Number of Commiss	TO	OC (%)
Reach Segment	Number of Samples —	Mean	Range
Surficial Sediments			
Indiana Harbor	24	11.8	0.13 - 32.0
Nearshore Areas of Lake Michigan	31	0.511	0.00240 - 7.64
All Segments	55	5.45	0.00240 - 32.0
Sub-Surface Sediments			
Indiana Harbor	17	13.4	0.080 - 60.2
Nearshore Areas of Lake Michigan	0	NA	NA
All Segments	17	13.4	0.080 - 60.2

Table 13.7. Levels of oil and grease in IH and nearshore areas of Lake Michigan sediments.

Doodh Cogmont	Number of Complex	Oil and Grease (mg/kg)			
Reach Segment	Number of Samples ———	Mean	Range		
Surficial Sediments					
Indiana Harbor	3	42600	510 - 100000		
Nearshore Areas of Lake Michigan	1	310	NA		
All Segments	4	32000	310 - 100000		
Sub-Surface Sediments					
Indiana Harbor	6	43800	680 - 76000		
Nearshore Areas of Lake Michigan	1	520	NA		
All Segments	7	37600	520 - 76000		

Table 13.8. Frequency of exceedance of TRGs in IH and nearshore areas of Lake Michigan.

		Fish		Invertebrates	Algae
Chemical of Concern -	Fillets ¹	Whole Body ²	GI Tract ³	Composite Sample	Composite Sample
PCBs					
Total PCBs	NM	15 of 17 (88%)	NM	3 of 4 (75%)	3 of 5 (60%)
Pesticides					
Chlordane	NM	NM	NM	NM	NM
Dieldrin + Aldrin	NM	NM	NM	NM	NM
Endrin	NM	NM	NM	NM	NM
Heptachlor + Heptachlor epoxide	NM	NM	NM	NM	NM
Lindane	NM	NM	NM	NM	NM
Mirex	NM	NM	NM	NM	NM
Total DDTs	NM	NM	NM	NM	NM
Dioxins					
2,3,7,8-TCDD	NM	NM	NM	NM	NM

¹Fillets = skin-off fillets.

NM = not measured.

²Whole body = head, gills, skin, bones and attached flesh (i.e., without fillets or GI tract).

³GI tract = organs in body cavity post gills.

Table 13.9. Summary of the distribution of mean PEC-Qs in surficial and sub-surface sediments in the IH and nearshore areas of Lake Michigan.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Surficial Sediments							
Indiana Harbor	55	6.81	0.0699	90.1	0.652	6.84	2.35
Nearshore Areas of Lake Michigan	32	0.215	0.0447	1.31	0.0523	0.379	0.142
Overall	87	4.38	0.0447	90.1	0.104	4.92	1.27
Sub-Surface Sediments							
Indiana Harbor	23	2.45	0.0412	7.19	0.0607	5.90	1.81
Nearshore Areas of Lake Michigan	1	0.136	0.136	0.136	NA	NA	NA
Overall	24	2.35	0.0412	7.19	0.0607	5.9	1.75

Tables

Chapter 14 - Summary of Sediment Injury for the Assessment Area

Table 14.1. Summary of assessment of sediment injury to sediment-dwelling organisms.

	Indic	ator of Injury to Sedi	ment-Dwelling Organ	isms ¹	Number of Lines of Evidence for Demonstrating
Reach/Segment	Sediment Chemistry ²	Pore Water Chemistry ³	Sediment Toxicity ⁴	Benthic Community ⁵	Injury to Sediment- Dwelling Organisms
Grand Calumet River Lagoons	27% (n=215)*	0% (n=5)	50% (n=12)*	ID (n=0)	2
East Branch Grand Calumet River-I	83% (n=269)*	55% (n=20)*	73% (n=44)*	100% (n=14)*	4
East Branch Grand Calumet River-II	72% (n=131)*	100% (n=2)*	88% (n=52)*	100% (n=5)*	4
West Branch Grand Calumet River-I	90% (n=31)*	100% (n=2)*	100% (n=2)*	100% (n=3)*	4
West Branch Grand Calumet River-II	76% (n=172)*	88% (n=8)*	83% (n=18)*	71% (n=14)*	4
Indiana Harbor Canal	89% (n=36)*	60% (n=5)*	80% (n=5)*	100% (n=6)*	4
Lake George Branch	82% (n=33)*	83% (n=6)*	57% (n=7)*	100% (n=4)*	4
US Canal	89% (n=215)*	67% (n=3)*	80% (n=90)*	96% (n=25)*	4
Indiana Harbor / Lake Michigan	61% (n=111)*	100% (n=3)*	74% (n=38)*	51% (n=72)*	4
Overall	70% (n=1213)*	65% (n=54)*	78% (n=268)*	72% (n=143)*	4

¹ For each line of evidence, sediment injury is indicated if two or more samples have conditions sufficient to cause or substantially contribute to sediment injury. Evidence of sediment injury is denoted with an asterisk (*).

² Percent of sediment samples with mean PEC-Qs of \geq 0.7.

³ Percent of pore water samples with chemical concentrations > published toxicity thresholds.

⁴ Percent of sediment samples that are toxic to aquatic organisms in laboratory tests.

⁵ Percent of samples with altered benthic invertebrate community structure.

ID = insufficient data; n = number of samples.

Table 14.2. Summary of the distribution of mean PEC-Qs in surficial sediments in the Assessment Area.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Grand Calumet River Lagoons							
West Lagoon	58	555	0.0556	23800	0.146	26.6	1.04
Middle Lagoon	49	0.941	0.0914	16.1	0.101	2.18	0.290
East Lagoon	47	0.558	0.0768	2.30	0.106	1.28	0.376
Little West Pond	25	0.326	0.0646	2.51	0.0937	0.425	0.178
Little East Pond	23	0.111	0.0639	0.220	0.0668	0.141	0.0995
Overall	202	160	0.0556	23800	0.0925	3.19	0.289
East Branch Grand Calumet River-I							
EB and WB Confluence to Kennedy Avenue	29	8.34	0.112	77.4	0.255	25.9	2.88
USS Lead Canal	17	27.7	3.60	72.6	5.45	65.3	13.0
Kennedy Avenue to Cline Avenue	51	7.20	0.457	58.2	1.20	12.3	4.61
Cline Avenue to Cline/I-90 Ramps	15	4.59	0.104	12.1	1.31	7.29	3.73
Cline/I-90 Ramps to Industrial Highway	21	28.9	0.71	184	2.12	45.4	5.94
Industrial Highway to ConRail Bridge	12	36.8	1.92	357	2.24	18.9	3.58
EB Wetland	17	3.99	0.0655	15.7	0.208	6.88	3.23
Overall	162	14.0	0.0655	357	0.875	30.3	4.58
East Branch Grand Calumet River-II							
EB II Wetland	55	1.12	0.000636	16.0	0.0901	2.75	0.230
ConRail Bridge to Bridge Street	8	25.3	13.1	51.9	13.1	38.3	22.5
Bridge Street to Grant Street	6	10.7	2.58	17.6	2.58	13.4	11.1
Grant Street to I-90	3	30.0	4.66	68.8	4.66	16.6	16.6
I-90 to Broadway	9	52.1	1.54	375	1.54	39.5	6.44
Broadway to Virginia Street	4	27.5	2.59	63.4	2.59	29.9	22.1
Virginia Street to Tennessee Street	4	473	87.2	821	87.2	705	492
Tennessee Street to Lagoon Culvert	9	286	1.43	987	1.43	589	9.25
Overall	98	55.7	0.000636	987	0.0986	63.4	2.42
West Branch Grand Calumet River-I							
EB and WB Confluence to Indianapolis Boulevard	19	29.5	1.13	231	1.35	56.9	11.7

Table 14.2. Summary of the distribution of mean PEC-Qs in surficial sediments in the Assessment Area.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
West Branch Grand Calumet River-II							
Indianapolis Boulevard to I-90	14	15.5	0.149	75.3	0.243	35.3	6.22
Roxana Marsh	5	0.428	0.123	0.603	0.123	0.595	0.515
I-90 to Columbia Avenue	22	12.3	0.0395	76.0	1.01	16.2	6.53
Columbia Avenue to Calumet Avenue	2	3.71	0.259	7.17	NA	NA	NA
Calumet Avenue to Hohman Avenue	9	37.6	0.311	210	0.311	88.6	6.85
Hohman Avenue to State Line Avenue	21	47.5	0.875	304	2.51	94.9	28.7
Illinois Portion	11	6.00	2.71	10.1	2.97	9.65	4.89
Overall	84	22.6	0.0395	304	0.347	67.1	6.71
Indiana Harbor Canal							
EB and WB Confluence to 151st Street	7	5.44	2.10	10.4	2.10	8.21	4.85
151st Street to Chicago Avenue	10	3.00	0.191	8.84	0.191	7.19	2.29
Chicago Avenue to Columbus Drive	12	7.29	1.09	25.9	1.69	11.5	5.34
IHC Wetland	1	0.718	0.718	0.718	NA	NA	NA
Overall	30	5.21	0.191	25.9	0.491	10.4	4.08
Lake George Branch							
Indianapolis Boulevard to B & O Railroad Bridge	7	4.81	1.75	14.5	1.75	6.00	2.91
B & O Railroad Bridge to Fill Area	4	13.9	3.13	31.5	3.13	16.4	10.5
Lake George Wetlands	12	0.870	0.0786	1.67	0.0916	1.60	0.729
Overall	23	4.33	0.0786	31.5	0.484	6.00	1.67
US Canal							
Columbus Drive to Forks	12	5.99	2.25	22.0	2.25	7.98	4.41
Indianapolis Boulevard to Forks	11	13.2	3.51	35.2	4.10	24.9	8.18
Forks to Highway 912	21	10.5	0.61	61.3	3.07	23.7	5.21
Highway 912 to Dickey Road	18	5.72	0.0652	29.3	0.55	12.6	3.14
Dickey Road to B & O Railroad Bridge	36	18.8	0.0395	177	1.17	29.7	9.90
B & O Railroad Bridge to IH	16	7.04	0.233	25.2	0.691	10.8	6.33
Overall	114	11.7	0.0395	177	1.11	24.9	5.16

Table 14.2. Summary of the distribution of mean PEC-Qs in surficial sediments in the Assessment Area.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
IH and Nearshore Areas of Lake Michigan							
Indiana Harbor	55	6.81	0.0699	90.1	0.652	6.84	2.35
Nearshore areas of Lake Michigan	32	0.215	0.0447	1.31	0.0523	0.379	0.142
Overall	87	4.4	0.0447	90.1	0.104	4.92	1.27

Table 14.3. Summary of the distribution of mean PEC-Qs in sub-surface sediments in the Assessment Area.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
Grand Calumet River Lagoons							
West Lagoon	6	427	0.0185	2560	0.0185	0.317	0.0964
Middle Lagoon	3	0.0336	0.0147	0.0600	0.0147	0.0260	0.0260
East Lagoon	0	NA	NA	NA	NA	NA	NA
Little West Pond	2	0.120	0.0675	0.172	NA	NA	NA
Little East Pond	2	0.0412	0.0334	0.0490	NA	NA	NA
Overall	13	197	0.0147	2560	0.0185	0.172	0.0490
East Branch Grand Calumet River-I							
EB and WB Confluence to Kennedy Avenue	18	3.51	0.0692	13.1	0.193	8.30	2.77
USS Lead Canal	9	24.2	5.64	80.8	5.64	54.4	12.1
Kennedy Avenue to Cline Avenue	54	16.9	0.0286	497	0.0887	16.9	3.06
Cline Avenue to Cline/I-90 Ramps	7	1.47	0.0555	4.20	0.0555	2.63	1.21
Cline/I-90 Ramps to Industrial Highway	12	3.55	0.0847	13.6	0.123	5.50	2.78
Industrial Highway to ConRail Bridge	6	18.6	0.593	99.1	0.593	5.15	2.98
EB Wetland	1	0.627	0.627	0.627	NA	NA	NA
Overall	107	12.7	0.0286	497	0.107	16.9	2.98
East Branch Grand Calumet River-II							
EB II Wetland	0	NA	NA	NA	NA	NA	NA
ConRail Bridge to Bridge Street	9	14.1	2.55	65.3	2.55	19.1	7.21
Bridge Street to Grant Street	4	4.94	2.47	6.58	2.47	5.89	5.36
Grant Street to I-90	4	4.43	2.09	7.19	2.09	6.28	4.21
I-90 to Broadway	6	29.1	2.13	116	2.13	36.2	7.84
Broadway to Virginia Street	0	NA	NA	NA	NA	NA	NA
Virginia Street to Tennessee Street	3	450	118	937	118	296	296
Tennessee Street to Lagoon Culvert	7	218	2.80	765	2.80	458	66.3
Overall	33	97.6	2.09	937	2.47	188	7.21
West Branch Grand Calumet River-I							
EB and WB Confluence to Indianapolis Boulevard	12	4.80	0.139	13.7	0.368	8.80	3.77

Table 14.3. Summary of the distribution of mean PEC-Qs in sub-surface sediments in the Assessment Area.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
West Branch Grand Calumet River-II							
Indianapolis Boulevard to I-90	10	0.191	0.0976	0.357	0.0976	0.278	0.205
Roxana Marsh	5	0.0905	0.0652	0.111	0.0652	0.101	0.0919
I-90 to Columbia Avenue	25	8.18	0.0658	30.2	0.128	16.9	3.34
Columbia Avenue to Calumet Avenue	3	3.21	0.215	5.89	0.215	3.53	3.53
Calumet Avenue to Hohman Avenue	13	13.1	0.109	97.3	0.325	17.9	3.78
Hohman Avenue to State Line Avenue	25	51.0	0.0712	193	2.47	129	33.4
Illinois Portion	7	4.69	0.148	13.3	0.148	8.45	3.74
Overall	88	19.3	0.0652	193	0.101	51.7	3.84
Indiana Harbor Canal							
EB and WB Confluence to 151st Street	4	2.90	0.434	4.36	0.434	4.12	3.41
151st Street to Chicago Avenue	0	NA	NA	NA	NA	NA	NA
Chicago Avenue to Columbus Drive	2	5.87	2.09	9.64	NA	NA	NA
IHC Wetland	0	NA	NA	NA	NA	NA	NA
Overall	6	3.89	0.434	9.64	0.434	4.36	3.41
Lake George Branch							
Indianapolis Boulevard to B & O Railroad Bridge	3	5.88	2.66	11.8	2.66	3.19	3.19
B & O Railroad Bridge to Fill Area	6	6.15	0.367	14.2	0.367	9.87	5.40
Lake George Wetlands	1	0.0457	0.0457	0.0457	NA	NA	0.0457
Overall	10	5.46	0.0457	14.2	0.0457	11.8	3.20
US Canal							
Columbus Drive to Forks	33	20.9	4.35	57.9	4.90	43.0	13.8
Indianapolis Boulevard to Forks	18	12.8	0.178	37.8	0.207	34.4	6.72
Forks to Highway 912	23	14.9	0.0557	45.3	0.222	36.5	6.71
Highway 912 to Dickey Road	6	2.45	0.0522	5.28	0.0522	5.18	2.08
Dickey Road to B & O Railroad Bridge	12	34.2	0.222	170	0.256	67.9	8.21
B & O Railroad Bridge to IH	9	3.23	0.225	5.04	0.225	4.96	3.47
Overall	101	17.0	0.0522	170	0.245	38.8	7.25

Table 14.3. Summary of the distribution of mean PEC-Qs in sub-surface sediments in the Assessment Area.

Reach Segment	Number of Samples	Average of Mean PEC-Q	Minimum Mean PEC-Q	Maximum Mean PEC-Q	10th Percentile	90th Percentile	Median
IH and nearshore areas of Lake Michigan							
Indiana Harbor	23	2.45	0.0412	7.19	0.0607	5.90	1.81
Nearshore areas of Lake Michigan	1	0.136	0.136	0.136	NA	NA	NA
Overall	24	2.35	0.0412	7.19	0.0607	5.90	1.75

Table 14.4. Summary of the available information on SEM-AVS in the Assessment Area.

Reach/Segment	n	Number of Samples with SEM > AVS ¹	Percent Samples with SEM > AVS	
Grand Calumet River Lagoons	5	0	0%	
East Branch Grand Calumet River-I	105	51	49%	
East Branch Grand Calumet River-II	0	NA	NA	
West Branch Grand Calumet River-I	9	5	56%	
West Branch Grand Calumet River-II	0	NA	NA	
Indiana Harbor Canal	11	10	91%	
Lake George Branch	30	4	13%	
US Canal	5	0	0%	
Indiana Harbor / Lake Michigan	2	0	0%	
Overall	169	70	41%	

 $^{^{1}}$ As determined using the molar concentrations of simultaneously extracted metals (SEM) and acid volatile sulfides (AVS). n = number of samples.

NA = not applicable.

Table 14.5. Summary of mIBI scores for the various reaches in the Assessment Area, 1993-1998.

		Reach												
Date	Sample	Grand Calumet River Lagoons	East Branch Grand Calumet River-I	East Branch Grand Calumet River-II	West Branch Grand Calumet River-I	West Branch Grand Calumet River-II	Indiana Harbor Canal	Lake George Branch	US Canal	Indiana Harbor/ Lake Michigan				
October, 1993	1								2.8					
September, 1994	1								2.2					
October, 1996	1 2		2.1 2.4	1.3		1.1 1.7			1.7					
August, 1998	1 2 3 4 5 6		1.40 1.13 1.67 1.13 0.87 0.87		0.87 0.53		1.13 1.07 1.07	0.87 0.40 0.87	0.33 0.20	0.8				
Average mIBI Score Standard Deviation Number of Samples		NA NA 0	1.4 0.57 8	1.3 NA 1	0.7 0.24 2	1.4 0.42 2	1.1 0.03 3	0.7 0.27 3	1.4 1.15 5	0.8 NA 1				

Sources: Sobiech et al. (1994); Simon and Stewart (1998); Simon et al. (2000).

Table 14.6. Summary of QHEI scores for the various reaches in the Assessment Area, 1993-1998.

Date	Sample	Grand Calumet River Lagoons	East Branch Grand Calumet River-I	East Branch Grand Calumet River-II	West Branch Grand Calumet River-I	West Branch Grand Calumet River-II	Indiana Harbor Canal	Lake George Branch	US Canal	Indiana Harbor/ Lake Michigan
September, 1992	1				65.5	57.9				
1 ,	2					50.7				
	3					54.7				
	4					51.8				
	5					56.9				
	6					46.0				
June-July 1994	1		48	22						
	2			41						
	3			46						
	4			51						
1998	1		47.4		48.6	49.7	16	16	18	17
	2		41.3		49.7		24	45.2	21	
	3		45.2				24			
	4		42.8							
	5		48.8							
	6		43.0							
	7		39.5							
	8		42.5							
	9		48.6							
Average QHEI Score		NA	44.7	40	54.6	52.5	21.3	30.6	19.5	17
Standard Deviation		NA NA	3.34	12.68	9.46	4.23	4.62	20.65	2.12	NA
Number of Samples		0	3.34 10	4	3	4.23 7	3	20.03	2.12	1 1

Sources: Sobiech et al. (1994); Simon and Stewart (1988); Simon et al. (2000).

Table 14.7. Summary of assessment of effects on fish and wildlife resources.

		Number of Lines of Evidence for				
Reach/Segment	Toxicity to Fish ²	Fish Health ³	fects on Fish and Wi Fish Community ⁴	Whole Sediment Chemistry ⁵	Tissue Chemistry ⁶	Demonstrating Ecosystem Impacts
Grand Calumet River Lagoons	14% (n=7)	0% (n=12)	38% (n=13)*	84% (n=58)*	100% (n=18)*	3
East Branch Grand Calumet River-I	57% (n=23)*	40% (n=10)*	100% (n=29)*	74% (n=110)*	100% (n=22)*	5
East Branch Grand Calumet River-II	85% (n=40)*	75% (n=4)*	100% (n=22)*	66% (n=90)*	100% (n=5)*	5
West Branch Grand Calumet River-I	ID (n=0)	100% (n=3)*	100% (n=12)*	29% (n=7)*	100% (n=7)*	4
West Branch Grand Calumet River-II	100% (n=7)*	100% (n=1)	100% (n=17)*	18% (n=17)*	100% (n=5)*	4
Indiana Harbor Canal	ID (n=0)	33% (n=3)	100% (n=4)*	93% (n=15)*	100% (n=7)*	3
Lake George Branch	ID (n=0)	50% (n=2)	50% (n=2)	83% (n=29)*	ID (n=0)	1
US Canal	ID (n=0)	50% (n=2)	100% (n=8)*	84% (n=37)*	100% (n=18)*	3
Indiana Harbor / Lake Michigan	ID (n=0)	100% (n=1)	100% (n=1)	88% (n=33)*	86% (n=21)*	2
Overall	71% (n=77)*	39% (n=38)*	92% (n=108)*	74% (n=396)*	97% (n=103)*	5

¹ For each line of evidence, sediment injury is indicated if two or more samples have conditions sufficient to cause or substantially contribute to sediment injury. Evidence of sediment injury is denoted with an asterisk (*).

² Percent of sediment samples that were toxic to fish in laboratory tests.

³ Percent of fish samples with > 1.3% DELT abnormalities.

⁴ Percent of fish samples with IBI scores of ≤34 (i.e., poor, very poor, or no fish).

⁵ Percent of sediment samples with one or more chemical concentrations in excess of the bioaccumulation SQGs for wildlife.

 $^{^{6}}$ Percent of fish and invertebrate tissue samples with one or more chemical concentrations in excess of the TRGs for wildlife. ID = insufficient data; n = number of samples.

Table 14.8. Summary of DELT scores for the various reaches in the Assessment Area, 1993-1998.

Branch rand India lumet Cans ver-II
) 8 6 14
2.8 6.15
0
0

Table 14.8. Summary of DELT scores for the various reaches in the Assessment Area, 1993-1998.

	Reach												
Date	Sample	Grand Calumet River Lagoons	East Branch Grand Calumet River-I	East Branch Grand Calumet River-II	West Branch Grand Calumet River-I	West Branch Grand Calumet River-II	Indiana Harbor Canal	Lake George Branch	Canai	Indiana Harbor/ Lake Michigan			
1998 (cont.)	7		0.15										
	8		2.4										
	9		6.15										
Average DELT Score	-	0	1.5	7.8	6.6	2.8	2.2	0.8	1.6	12.8			
Standard Deviation		NA	1.89	7.25	4.02	NA	3.45	1.19	2.32	NA			
Number of Samples		12	10	4	3	1	3	2	2	1			

Sources: Sobiech et al. (1994); Simon and Stewart (1998); Simon et al. (2000); Simon (1993)

NA = not applicable.

DELT score = % incidence of deformities, fin erosion, lesions, and tumors.

Table 14.9. Summary of IBI scores for the various reaches in the Assessment Area, 1985-1998.

Date	Sample	Grand Calumet River Lagoons	East Branch Grand Calumet River-I	East Branch Grand Calumet River-II	West Branch Grand Calumet River-I	Reach West Branch Grand Calumet River-II	Indiana Harbor Canal	Lake George Branch	US Canal	Indiana Harbor/ Lake Michigan
October, 1985	1 2		24 24	24		24 0				
	2		2 4			U				
June, 1986	1	32	24	26	22	22			24	
	2		24	24						
October, 1986	1		30	28	20	20			26	
,	2		28	28						
April, 1987	1		22	30	24	24	22			
Aprii, 1907	2		22	32	22	24	22			
	3		22	24						
April, 1987	1		24	24	22	22			28	
1 /	2		26	26						
November, 1987	1		30	32	0	0			34	
riovemoer, 1907	2		30	30	v	v			3.	
May, 1988	1		22	26	0	0				
) ,	2		24	24	-	•				
July, 1988	1		32	28	0	0			24	
	2		26	26	-	•				
July, 1990	1		20	24	21	21			16	
varj, 1770	2		32	32	21	21			10	

Table 14.9. Summary of IBI scores for the various reaches in the Assessment Area, 1985-1998.

Date	Sample	Grand Calumet River Lagoons	East Branch Grand Calumet River-I	East Branch Grand Calumet River-II	West Branch Grand Calumet River-I	Reach West Branch Grand Calumet River-II	Indiana Harbor Canal	Lake George Branch	US Canal	Indiana Harbor/ Lake Michigan
September, 1992	1 2 3 4 5				29	24 24 12 12				
June, 1994	1 2 3 4		22	12 18 22 22						
1994	1 2 3 4 5 6 7 8 9 10 11 12	42 42 42 34 32 31 38 32 43 43 42 42								
1998	1 2 3		16 22 16		16 22	22	16 12 20	14 38	12 18	14

Table 14.9. Summary of IBI scores for the various reaches in the Assessment Area, 1985-1998.

						Reach				
Date	Sample	Grand Calumet River Lagoons	East Branch Grand Calumet River-I	East Branch Grand Calumet River-II	West Branch Grand Calumet River-I	West Branch Grand Calumet River-II	Indiana Harbor Canal	Lake George Branch	US Canal	Indiana Harbor/ Lake Michigan
1998 (cont.)	4		18							
	5		20							
	6		24							
	7		24							
	8		26							
	9		18							
Average IBI Score		38.1	23.9	25.5	16.5	15.9	17.5	26.0	22.8	14.0
Standard Deviation		5.0	4.3	4.7	10.4	9.8	4.4	17.0	7.1	NA
Number of Samples		13	29	22	12	17	4	2	8	1
Percent Altered		38%	100%	100%	100%	100%	100%	50%	100%	100%
			poor-	poor-				poor-	poor-	
Classification for Avera	ge Score	fair-poor	very poor	very poor	very poor	very poor	very poor	very poor	very poor	very poor

Sources: Sobiech et al. (1994); Simon and Stewart (1988); Simon (1993); Stewart et al. (1999); Simon et al. (2000).