August 1994 Wetland Status and Trends in Calvert County, Maryland (1981-82 to 1988-89) U.S. Department of the Interior Fish and Wildlife Service Region 5 mapping conventions (National Wetlands Inventory, 1990). These interpretations served as the basis for evaluating recent wetland trends. The two sets of photographs were compared using a Bausch and Lomb SIS-95 zoom stereoscope. Changes were delineated on mylar overlays attached to the NAPP photographs. Cause of change was recorded for each polygon. The minimum mapping unit for wetlands was generally 0.5 acre, except for ponds, which were mapped when 0.1 acre or larger in size. Changes as small as 0.1 acre were detected. Wetland boundaries were improved and previously undetected wetlands were added to the original maps because the larger scale and more apparent signs of wetland hydrology of the NAPP photos improved our ability to detect and classify wetlands. Delineated changes and map refinements were then transferred to an NWI map using an Ottico Meccanica Italiana stereo facet plotter. Quality control of all photointerpretation was performed by a second photointerpreter. Tables were then prepared to present the study's findings. # RESULTS #### **Current Status** In 1988-89, Calvert County contained about 10,734 acres of wetlands (roughly 7.8% of the County's land surface), excluding linear fringing wetlands along narrow streams. Table 1 summarizes the acreage of the different wetland types found in the County. Palustrine wetlands predominated with 7,102 acres, representing 66% of the County's total wetland acreage. Nontidal deciduous forested wetlands accounted for 73% (5,159 acres) of all palustrine wetlands, and about 48% of the County's wetland total. Tidal palustrine wetlands totaled 1,179 acres, representing 17% of the County's freshwater wetlands. Estuarine wetlands comprised about 33.8% (3,632 acres) of the County's wetlands. Emergent wetlands (e.g., salt and brackish marshes) were the predominant type, accounting for almost 82% (2,973 acres) of the County's estuarine wetlands. These wetlands are located along tidal rivers and creeks emptying into Chesapeake Bay. Slightly brackish marshes (oligohaline) are most common along the Patuxent River, and its tributaries north of Buzzard Island Creek. #### Recent Wetland Trends Wetland trends results are presented in Tables 2 through 9. The following discussion highlights the more significant or interesting findings. ## Vegetated Wetlands Between 1981-82 and 1988-89, approximately 29 acres of vegetated wetlands were converted to upland (Table 2). Most of these losses affected palustrine emergent wetlands, and to a lesser extent, palustrine forested and estuarine emergent wetlands. Agriculture and road and highway construction were the most significant causes of vegetated wetland loss, with recreational facilities development also significant (Table 3). About 127 acres of vegetated wetland changed from one type to another. Upland conversion impacted the temporarily flooded palustrine wetland type more than others (Table 4). Approximately 141 acres of palustrine forested wetlands were converted to upland or changed to other wetland types (Table 5). Vegetated wetland gain from upland was limited to approximately 0.4 acres (Table 6). Most gains in particular types of vegetated wetlands came from other vegetated wetland types (Table 6). Beaver activity affected 57 acres of vegetated wetlands (Table 7). # Nonvegetated Wetlands About 28 acres of new ponds were created from upland, and over 42 acres were constructed in vegetated wetlands (Table 8). Less than 1 acre of ponds were converted to upland, while roughly 12 acres changed to vegetated wetlands. Approximately 43% of the new ponds built in uplands were the result of farm pond construction (Table 9). ## **CONCLUSION** The County had approximately 7.8% of its land mass covered by wetlands. Wetlands totaling 10,734 acres (in 1988-89) were identified in the County by the Service's National Wetlands Inventory. Palustrine wetland was the dominant type, representing 66.2% of the wetlands in the County. Between 1981-82 and 1988-89, the County lost about 74 acres of vegetated wetlands, with roughly 29 acres converted to upland. Temporarily flooded wetland was the type most frequently converted to upland. Pond construction added about 70 acres of palustrine nonvegetated wetlands, but this gain was reduced to about 58 acres by pond losses to upland and vegetated wetlands. The overall trend for the County 's wetlands was losses of vegetated wetlands and gains in nonvegetated wetlands (mostly ponds). The significance of the increase in ponds to fish and wildlife species has not been assessed and remains a point for discussion. The losses of vegetated wetlands, however, represent known losses of valuable fish and wildlife habitats and areas providing other valued functions, including flood water storage, water quality enhancement, and local water supply. While this report documents recent trends in the County's wetlands, it does not address changes in the quality of the remaining wetlands. As development increases, the quality of wetlands can be expected to deteriorate due to agricultural runoff, increased sedimentation, groundwater withdrawals, increased water pollution, and other factors, unless adequate safeguards are taken to protect not only the existence of wetlands, but their quality. ## ACKNOWLEDGMENTS Funding for this project was provided by the Maryland Department of Natural Resources, Water Resources Administration through an existing cooperative agreement with the Service. David G. Burke was the project coordinator, and we appreciate his interest in monitoring wetland trends in Maryland. Wetland maps and digital data were compiled by the U.S. Fish and Wildlife Service's National Wetlands Inventory Office at St. Petersburg, Florida. Special appreciation is extended to Becky Stanley and Linda Shaffer for their assistance. Photointerpretation was performed by the senior author and quality controlled by Glenn Smith. John Eaton compiled trend statistics, tables, and graphics for this report. Todd Nuerminger tabulated raw data. # REFERENCES - Cowardin, L.M., V. Carter, F.C. Golet, and T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service, Washington, DC. FWS/OBS-79/31. 103 pp. - Hoffman, M.S. (editor). 1992. The World Almanac and Book of Facts. Newspaper Enterprise Association, Inc., New York, NY. 960 pp. - National Wetlands Inventory. 1990. Photointerpretation Conventions for the National Wetlands Inventory. U.S. Fish and Wildlife Service, St. Petersburg, FL. 45 pp. plus appendices. Table 1. Acreage of wetland types in Calvert County, Maryland (1988-89). | Wetland Type | Acres | % of
<u>Total</u> | |------------------------------------|-----------|----------------------| | PALUSTRINE WETLANDS | | | | Tidal Emergent | 166.8 | | | Nontidal Emergent | | | | Semipermanently Flooded | 32.9 | | | Seasonally Flooded/Saturated | 72.0 | | | Seasonally Flooded | 28.0 | | | Saturated | 4.9 | | | Temporarily Flooded | 28.0 | | | (Subtotal Nontidal) | (186.6) | 1.7 | | Total Palustrine Emergent Wetlands | 353.4 | 3.3 | | Tidal Forested | | | | Deciduous, Broad-leaved | 901.0 | | | Evergreen, Needle-leaved | 5.1 | | | (Subtotal Tidal) | (906.1) | 8.4 | | Nontidal Forested | | | | Evergreen, Needle-leaved | | | | Temporarily Flooded | 54.3 | | | Deciduous, Broad-leaved | | | | Seasonally Flooded/Saturated | 417.7 | | | Seasonally Flooded | 1,057.6 | | | Temporarily Flooded | 3,501.3 | | | Semipermanently Flooded | 21.2 | | | Dead | 106.3 | • | | (Subtotal Nontidal) | (5,159.0) | 48.1 | | Total Palustrine Forested Wetlands | 6,065.1 | 56.5 | | Tidal Scrub-Shrub | 106.4 | | # Table 1, continued | Wetland Type | Acres | % of
<u>Total</u> | |--|--------------|----------------------| | Nontidal Scrub-Shrub | | | | Deciduous, Broad-leaved | 22.0 | | | Seasonally Flooded/Saturated | 33.8
34.5 | | | Seasonally Flooded Temporarily Flooded | 92.6 | | | Semipermanently Flooded | 17.5 | | | Permanently Flooded | 5.8 | | | (Subtotal Nontidal) | (184.2) | 1.7 | | Total Palustrine Scrub-Shrub Wetlands | 290.6 | 2.7 | | Aquatic Bed | 12.4 | | | Total Palustrine Vegetated Wetlands | 6,721.5 | 62.6 | | Unconsolidated Bottom (Ponds) | 373.3 | | | Unconsolidated Shore | 6.8 | | | Total Palustrine Nonvegetated Wetlands | 380.1 | 3.5 | | GRAND TOTAL PALUSTRINE WETLANDS | 7,101.6 | 66.2 | | ESTUARINE WETLANDS | | | | Emergent | | | | Irregularly Flooded | 1,145.6 | | | Regularly Flooded, Oligonaline | 7.4 | | | Irregularly Flooded, Oligohaline | 1,820.4 | | | Total Estuarine Emergent Wetlands | 2,973.4 | 27.7 | | Scrub-Shrub | | | | Irregularly Flooded | 3.1 | | | Irregularly Flooded, Oligohaline | 8.3 | | | Total Estuarine Scrub-Shrub Wetlands | 11.4 | 0.1 | Table 1, continued | Wetland Type | Acres | % of
Total | |--------------------------------------|----------|---------------| | Forested, Irregularly Flooded | 13.9 | | | Total Estuarine Forested Wetlands | 13.9 | 0.1 | | Total Estuarine Vegetated Wetlands | 2,998.7 | 27.9 | | Total Estuarine Unconsolidated Shore | 633.3 | 5.9 | | GRAND TOTAL ESTUARINE WEILANDS | 3,632.0 | 33.8 | | TOTAL WEILANDS | 10,733.6 | 100.0 | Table 2. Changes of vegetated wetlands in Calvert County, Maryland (1981-82 to 1988-89). | Wetland Type | Converted to Upland (acres) | Changed to Other Vegetated Wetlands* (acres) | Changed to Nonvegetated Wetlands (acres) | Converted to
Deepwater
Habitat (acres) | |------------------------|-----------------------------|--|--|--| | Palustrine Emergent | 10.2 | 23.8 | 9.8 | 0.0 | | Palustrine Scrub-Shrub | 0.4 | 22.6 | 3.8 | 0.0 | | Palustrine Forested | 9.6 | 68.7 | 28.2 | 0.0 | | Palustrine Aquatic Bed | 0.0 | 1.2 | 0.0 | 0.0 | | Estuarine Emergent | 8.4 | 7.4 | 0.9 | 2.6 | | Estuarine Scrub-Shrub | 0.0 | _3.5 | 0.0 | 0.0 | | Total | 28.6 | 127.2 | 42.7 | 2.6 | ^{*}Represents changes in wetland class (e.g., emergent to scrub-shrub) but not changes in water regime within a given wetland class. Table 3. Causes of vegetated wetland loss to upland in Calvert County, Maryland (1981-82 to 1988-89). | Cause of Loss | Acres | |--------------------------------------|-------| | Agriculture | 8.7 | | Road/Highway Construction | 8.6 | | Recreational Facilities Construction | 8.4 | | Public Facilities Construction | 2.5 | | Unknown Cause | 0.3 | | Total | 28.6 | Table 4. Conversion of hydrologically similar palustrine vegetated wetlands to upland in Calvert County, Maryland (1981-82 to 1988-89). | Palustrine Wetland Type | <u>Acres</u> | % Total Loss | |------------------------------|--------------|--------------| | Temporarily Flooded | 13.3 | 66.0 | | Seasonally Flooded | 5.8 | 29.0 | | Seasonally Flooded/Saturated | 0.4 | 2.0 | | Seasonally Flooded-Tidal | 0.6 | _3.0 | | Total | 20.1 | 100.0% | Table 5. Changes in palustrine forested wetlands in Calvert County, Maryland (1981-82 to 1988-89). | Forested Wetland Type | Converted to
Upland (acres) | Changed to Other Wetland Types* (acres) | Total Loss
(acres) | |------------------------------|--------------------------------|---|-----------------------| | Seasonally Flooded/Saturated | 0.0 | 24.3 | 24.3 | | Seasonally Flooded | 3.3 | 17.1 | 20.4 | | Temporarily Flooded | 5.7 | 4.5 | 10.2 | | Semipermanently Flooded** | 0.0 | 63.7 | 63.7 | | Seasonally Flooded-Tidal | 0.6 | 22.2 | _22.8 | | Total | 9.6 | 131.8 | 141.4 | ^{*}Includes both changes in wetland class (e.g., forested to emergent) and changes in water regime within a given wetland class. ^{**}Represents dead forested wetlands. Table 6. Gains in vegetated wetlands in Calvert County, Maryland (1981-82 to 1988-89). | Wetland Type | Gain from Nonvegetated Wetlands (acres) | Gain from Upland (acres) | Gain from Other Vegetated Wetlands (acres)* | |------------------------|---|--------------------------|---| | Palustrine Emergent | 10.2 | 0.4 | 80.6 | | Palustrine Scrub-Shrub | 0.7 | 0.0 | 28.2 | | Palustrine Aquatic Bed | 0.5 | 0.0 | 7.4 | | Estuarine Scrub-Shrub | 0.0 | 0.0 | 10.9 | | Total | 11.4 | 0.4 | 127.1 | ^{*}Represents changes in wetland class (e.g., emergent to scrub-shrub) but not changes in water regime within a given wetland class. Table 7. Changes of wetlands in Calvert County, Maryland due to beaver activity (1981-82 to 1988-89). | Wetland Type | Change in Water Regime Only (acres) | Change in Vegetated Class (acres) | |------------------------|-------------------------------------|-----------------------------------| | Palustrine Emergent | 0.0 | 0.6 | | Palustrine Scrub-Shrub | 0.0 | 3.8 | | Palustrine Forested | 32.0 | 20.2 | | Total | 32.0 | 24.6 | Gains and losses in nonvegetated wetlands in Calvert County, Maryland (1981-82 to 1988-89). Table 8. | | | GAINS | NINS | | LOSSES | | |-----|-------------------------------------|--------------------------------|---|--------------------------------|---|--| | | Wetland Type | Created from
Upland (acres) | Created in
Vegetated
Wetlands (acres) | Converted
to Upland (acres) | Changed to
Vegetated
Wetlands (acres) | Changed to Other
Nonvegetated
Wetlands (acres) | | | Palustrine
Unconsolidated Bottom | 27.6 | 42.8 | 8.0 | 10.2 | 0.2 | | | Palustrine
Unconsolidated Shore | 0.0 | 0:0 | 0.0 | 1.3 | 0.0 | | 4.5 | Estuarine
Unconsolidated Bottom | 0.0 | 0:0 | 0.0 | . 0.0 | 3.2 | | | Estuarine
Unconsolidated Shore | 0.0 | 00 | 0.0 | 0.0 | 3.9 | | | Total | 27.6 | 42.8 | 0.8 | 11.5 | 7.3 | Table 9. Causes of recently constructed upland ponds in Calvert County, Maryland (1981-82 to 1988-89). | Causes | Pond Acreage | |-----------------------------|--------------| | Farm Ponds | 11.8 | | Urban Ponds | 8.6 | | Ponds in Undeveloped Areas | 6.7 | | Stormwater Detention Basins | 0.3 | | Ponds of Unkown Purpose | 0.2 | | Total | 27.6 |