THE MINERAL INDUSTRY OF

NEW ZEALAND

By Travis Q. Lyday

New Zealand is an island nation in the South Pacific Ocean that is located about 2,250 kilometers (km) east of Australia. The country comprises two major islands, North Island and South Island, and a third smaller one, Stewart Island, that is off the southern coast of South Island. Additionally, numerous small islands and islets surround the country (Resource Information Unit, 2002, p. 16). The Cook Strait divides North Island from South Island, and the Foveaux Strait separates South Island from Stewart Island (New Zealand's Information Network, 2002§). The population was 3.8 million, which made New Zealand one of the least populated countries in the world. New Zealand is the southernmost of the Polynesian Islands (Solid Energy New Zealand Ltd., [undated]§¹). The total area of New Zealand is 268,680 square kilometers (U.S. Central Intelligence Agency, 2001§).

The economy of the country was based on extensive manufacturing and service sectors that complement an exportoriented agricultural sector that accounts for about one-half of all goods exported (Far Eastern Economic Review, 2002b). Its largest export markets, ranked in decreasing order, were Australia, the United States, Japan, and the United Kingdom (Resource Information Unit, 2002, p. 16). Owing to a diverse geology and dynamic tectonic history, New Zealand has a wide variety of economic mineral deposits. Gold, however, continued to dominate the mining sector in 2001 (Resource Information Unit, 2002, p. 14).

Although gold may have been the first metal discovered in New Zealand in the early 19th century by early European visitors, it was not until European settlement began in earnest in midcentury that hard-rock gold discoveries were made in the Coromandel region of North Island. By the end of the 1860s, copper, iron, lead, and silver deposits, in addition to gold, had all been discovered and worked, and occurrences of antimony, arsenic, chromium, zinc, and other minerals had been located. The potential of the Buller and the Greymouth Coalfields on South Island and the Waikato Coalfield on North Island also had been identified, and coal mines were operational throughout the country. Shortly following World War II, industrial minerals, aggregate, and stone production grew steadily, coal mining fluctuated, and gold output declined. Extensive exploration involving the public and private sectors during the late 1950s to the early 1960s was successful for natural gas and gas condensate, iron ore (in the form of ironsand), and geothermal energy (Ministry of Economic Development, 2001b, p. 36-41).

New Zealand's mining industry contributed about 1% to the country's gross domestic product (GDP) of about \$48.7 billion in 2001 (Resource Information Unit, 2002, p. 16). The real

annual GDP growth rate was 2.6% in 2001 (Far Eastern Economic Review, 2002a). Mining provided about 4,000 direct jobs to the country's workforce and another 8,000 indirectly as suppliers of goods and services (Australia's Paydirt, 2002; New Zealand Mineral Association, [undated]§). In 2001, mining activities in New Zealand included the mining of gold, often with silver as a byproduct; the production of iron ore from titanomagnetite sands; the quarrying of industrial raw materials, such as clays, sand and gravel, dimension stone, dolomite, limestone, and serpentinite for use primarily in the construction and agricultural industries; production of salt by solar evaporation of seawater; and the extraction of coal by open cast and underground methods. Natural gas, natural gas liquids, and petroleum also were produced offshore and onshore.

The mineral-processing sector consisted chiefly of the production of primary aluminum, manufacturing concrete and fertilizers, refining petroleum, and producing crude steel. These and other products, many of which were produced from imported raw materials, provided an estimated 2% to 3% to the GDP, thus increasing the value of the minerals industry to the country to about 3% to 4% of the GDP.

Government Policies and Programs

State-owned "Crown minerals," which are based on the British legal system, are owned and regulated by legislation passed by Parliament, namely the New Zealand Crown Minerals Act 1991 and the Crown Minerals Amendment Act (No. 2), which was passed in 1997. Crown-owned minerals include all naturally occurring gold, silver, and uranium; substantial amounts of coal; other metallic and nonmetallic minerals and aggregates; and all petroleum. Minerals not designated as Crown owned are privately owned. A company or individual wanting to undertake prospecting, exploration, or mining of Crown-owned minerals must first have a permit granted under the Crown Minerals Act or a license granted under earlier legislation.

Unlike Australia, New Zealand has not enacted native title legislation to gain access to Maori lands. Maori land claims were handled through the Treaty of Waitangi Tribunal, which is altogether separate from the Crown Minerals Act, although permit holders must consult with local Maori under the Crown Minerals Act usually for the purpose of identifying cultural areas or archaeological sites.

Environmental matters relating to prospecting, exploration, and mining of Crown or privately owned minerals are governed under the Resource Management Act 1991. The purpose of this act is to promote sustainable management of natural and physical resources. This means that people and communities can provide for their own well being within a sustainable environment. The regional and local councils who administer

 $^{{}^{1}}References$ that include a section twist (§) are found in the Internet References Cited section.

this act grant resource consents for all activities that have an effect on the environment. Mining is treated no differently than other activities that have the same impact.

Commodity Review

Metals

Aluminum.—New Zealand Aluminum Smelters Ltd. operated the Tiwai Point Smelter at Bluff on the South Island. The smelter was owned by Rio Tinto Plc of the United Kingdom (79.36%) and Sumitomo Chemical Co. of Japan (20.64%) and operated by Comalco Ltd. (a Rio Tinto subsidiary). The smelter ran four potlines with a capacity of 320,000 metric tons per year (t/yr) of primary aluminum. The alumina used in the smelting process was imported from Australia. More than 90% of production was exported, chiefly to Japan, Korea, and other Asian markets (Ministry of Economic Development, 2001a, p. 72).

Gold.—New Zealand's long history of gold production dates back to the early 19th century when European sealers and whalers were first exploring the country. In 2001, gold was mined at two large hard-rock mines—the Martha Hill Mine at the base of the Coromandel Peninsula at Waihi, which is located 120 km southeast of Auckland on North Island, and the Macraes Mine, which located is 55 km north of Dunedin on South Island. Alluvial gold also was produced from three dredging operations on South Island—Grey River, Quinns Terrace, and Waikaka Valley.

In July, L & M Mining Ltd. received resource consents for its proposed small-scale [600 kilograms per year (kg/yr)], 8-year hydraulic excavation mining of high-grade gold-bearing gravels that feed a floating gold recovery plant in the Clutha River, which is located 60 km southeast of Queenstown on South Island. Mining was planned to begin in 2002; about 40 people would be employed. Since beginning operations in 1980, L & M has operated 20 alluvial mines in the Otago, the Southland, and the West Coast regions of New Zealand as well as a mine in Bolivia (Gold Mining Journal, 2001).

In December, Perth, Australia-based Gold and Resource Developments NL (GRD) approved the development of its Globe-Progress Mine in the Reefton Goldfield, which is located 6 km south of Reefton on the western coast of South Island, by GRD Macraes Ltd. (its wholly owned subsidiary). New Zealand's Department of Conservation had given its approval to develop the mine in November. Development was to begin in January 2002 (Mining Journal, 2001c). The Government initially denied licensing for the mining operation in August for unspecified reasons but reversed itself following severe public criticism, which included that from some conservation consulting groups (Australia's Paydirt, 2001). The mine was expected to produce about 2,200 kg/yr of gold (Mining Journal, 2001b). Normandy Mining Ltd. announced that it was planning a new underground mine at Waihi to develop the high-grade 15,550-kilogram Favona gold-silver deposit that is positioned almost directly beneath the present gold-silver processing plant of the Martha Hill open pit mine. Initial indications suggest that the Favona operation could produce an average gold content of

about 10 grams per metric ton of ore mined and have a life of 5 to 10 years (Gold Gazette, 2002). The mine would be accessed through a decline from a portal near the existing processing plant, and the underground operation could mesh with the projected closure of the Martha Hill Mine in 2007 (Mining Journal, 2001a).

GRD Macraes' Macraes Mine, which is located 55 km north of Dunedin at Macraes Flat on South Island, was New Zealand's largest gold mining operation and accounted for more than 50% of the country's production. In March, following the successful commissioning of the pressure oxidation autoclaves for treating refractory ores, an expansion of throughput to 4.5 million metric tons per year (Mt/yr) was approved; completion was expected by midvear 2002, with a portion of the expansion expected to accommodate additional feed from the new Globe-Progress Mine (Resource Information Unit, 2002, p. 97-98). The plan was for Globe-Progress to mill up to 1 Mt/yr and send about 65,000 t/yr of concentrate to the Macraes Mine's pressure oxidation plant for treatment. The first gold pour from the revived Reefton Goldfield, which had closed in 1951, was expected to occur in December 2002 (Australia's Paydirt, 2001/2002b).

Iron and Steel.—Iron ore in the form of titanomagnetite-rich sand derived from the coastal erosion of the Mount Taranaki volcanics was mined from beach and dune sands and concentrated at two sites along the western coast of North Island. Mining was by BHP New Zealand Steel Ltd. (NZ Steel) (a wholly owned subsidiary of Australia's BHP Billiton Ltd.). The Taharoa operation is located 150 km south of Auckland, and the Waikato North Head operation is located 30 km south of Auckland.

The Taharoa ironsand site was leased by its Maori owners to NZ Steel beginning in 1968 until 2038. The ironsand was mined by a conventional cutter-suction dredge in dredge ponds. The heavy minerals were concentrated at the pond site by magnetic and gravity separation to produce a titaniferous ironsand concentrate of 57% iron. The product was pumped through twin 3-km-long slurry pipelines onto stockpiles near the ship-loading facility at the port of Taharoa where it was exported to steel mills in China and Japan (Resource Information Unit, 2002, p. 141).

NZ Steel had an exclusive license with the Government to mine the ironsand at its Waikato North Head site beginning in 1996 until 2096. Mining was done by two bucket-wheel excavators supported by a track-shiftable conveyor system. Processing of the ore was by the same methods used at Taharoa, but the resulting concentrate was about 59% iron. All Waikato North Head's production was piped to NZ Steel's 450,000-t/yr integrated steel plant at Glenbrook by an 18-km-long highpressure slurry pipeline (Resource Information Unit, 2002, p. 141).

The Glenbrook Steelworks, which specialized in flat and coated products, produced hot-rolled coils, sheet and plate for pipemaking, heavy and light engineering, and barge construction; cold-rolled steel for tubing; hollow sections for agricultural products, commercial construction, and reticulation; and coated steels for construction (Ministry of Economic Development, 2001a, p. 71). **Platinum-Group Metals.**—Considerable potential for platinum and platinum-group metals (PGMs) from hard-rock deposits and alluvial concentrations exists in New Zealand. The Longwood Range in western Southland was considered to be the most prospective hard-rock area, and alluvial deposits in Nelson, Otago, Southland, and Westland are known to contain PGMs. New exploration, however, was not the only way to achieve a PGM industry in New Zealand. With greater improvement of the gravity and flotation recovery methods, increased recovery of PGMs and gold from alluvial deposits were becoming increasingly more attractive (Ministry of Economic Development, 2001a, p. 17).

Industrial Minerals

New Zealand has a diverse range of industrial minerals, and some of the commodities have abundant estimated resources. Mining these commodities continued to contribute significantly to the country's economy. New Zealand's industrial minerals production included clays (bentonite, kaolinite, and halloysite), dolomite, ironsand, limestone, marble, perlite, pumice, salt, serpentinite, silica sand and amorphous silica, quartzite, sulfur, and zeolite. Perlite, serpentinite, and sulfur were produced intermittently (Industrial Minerals, 2000).

Although New Zealand continued to have substantial export commerce in its industrial minerals sector, most output was for domestic use because the distances to overseas markets limit most exports to the high-value commodities (for example, metals and fuels) or products with unique applications or specifications (for example, amorphous silica sand for pozzolan cement and ferrosilicon manufacture) (Industrial Minerals, 2000). The main exports were, in descending quantity, ironsand, halloysite clay, limestone, cement, salt, sulfur, and pumice (Ministry of Economic Development, 2001a, p. 20).

Cement.—New Zealand had two cement manufacturing plants—at Cape Foulwind on South Island's western coast near Westport operated by Milburn New Zealand Ltd. (a wholly owned subsidiary of Switzerland-based Holderbank Group), and the other at Portland on North Island's eastern coast near Whangarei operated by Golden Bay Cement Co. Ltd. (a wholly owned subsidiary of Fletcher Challenge Ltd.) (Industrial Minerals, 2000). The Cape Foulwind plant produced about 470,000 t/y, whereas the Portland plant produced about 470,000 t/yr. Both plants used domestic high-grade crystalline limestone mixed with argillaceous marl for their feed (Ministry of Economic Development, 2001a, p. 20).

Clays.—Halloysite clay was produced by New Zealand China Clays Ltd. from two deposits at Matauri Bay, which is located about 100 km north of Whangarei. The halloysite was exported to more than 20 countries for the manufacture of high-quality ceramics, which were principally porcelain but also fine bone china and technical ceramics (Ministry of Economic Development, 2001a, p. 64). About 80,000 t/yr of raw clay was mined collectively from both pits, or about one-half of the total from each one (Industrial Minerals, 2000).

Kaolinite clays were used for domestic brick, ceramics, pipe, pottery, and tile manufacture. Some kaolinite was used as a

filler in adhesives, bitumen, and rubber. Higher purity kaolinite was used by the paper industry for paper coating and filling (Industrial Minerals, 2000).

Stone.—Limestone deposits are widespread throughout New Zealand. Limestone that contains more than 70% calcium carbonate is used for agricultural fertilizer and for road aggregate. Higher grade limestones are used to manufacture industrial grade lime and hydrated lime and in cement manufacturing plants in addition to road aggregate and agriculture use (Industrial Minerals, 2000).

Large deposits of marble are in Fiordland, which is located on the southwestern coast of South Island, and at northwest Nelson at Takaka Hill, which is located on the northwestern coast of South Island. Main production has been from quarries on Takaka Hill in northwest Nelson for use as building stone and in industry and agriculture.

Pumice was quarried from very large pyroclastic deposits in the Taupo volcanic zone and dredged along with sand from alluvium in the lower reaches of the Waikato River on North Island. The main uses for pumice were as fill for road construction, sand in concrete block manufacture, and foundations and drainage (Ministry of Economic Development, 2001a, p. 20).

Salt.—Dominion Salt Ltd. produced about 60,000 t/yr of premium salt products for a variety of domestic industries, which included markets in agriculture, chlorine manufacture, dairy, edible salt, pharmaceutical, tanning, and water treatment. The salt is produced by solar evaporation of seawater pumped into Lake Grassmere near Blenheim, North Island (Ministry of Economic Development, 2001a, p. 74). The evaporation ponds were constructed in low-lying areas and separated into paddocks with gates to admit and retain seawater. Low rainfall, many hours of sunshine, and adequate wind facilitated the process (Resource Information Unit, 2001, p. 95, 106).

Mineral Fuels

In 2001, about 45 coal mines were operating in New Zealand; of those, 20 produced at least 10,000 t/yr. New Zealand coalfields are grouped under regions (Ministry of Economic Development, 2001a, p. 52). Coal production in New Zealand increased by 9.1% in 2001, thus reaching a record-level of almost 4 million metric tons (Mt). Production increased owing to substantial increases in production in the coalfields of the Waikato coal region of North Island and the continuing growth in demand for export coals from the west coast region coalfields of South Island (Ministry of Economic Development, 2002). The Waikato region comprises 13 coalfields that extended from Drury, which is located 30 km south of Auckland, to Mangapehi in the west-central part of North Island. The west coast region comprises 13 large and small coalfields in the range and basin topography of South Island's west coast (Ministry of Economic Development, 2001a, p 58-59).

All New Zealand's bituminous coal production was mined from the west coast region, and its high quality has been the principal factor in the success of operations on the west coast region coals, most of which was exported. Production was dominated by state-owned Solid Energy New Zealand Ltd., which operated on a competitive, commercial basis and produced about 70% of the country's coal. Solid Energy also was New Zealand's only significant coal exporter (Asian Mining Yearbook, 2000, p. 131).

Exports by Solid Energy reached a record high of 1.65 Mt for the fiscal year ending June 30, 2001; this was a 16% increase compared with 1.42 Mt during the corresponding 2000 period. The previous record export year was that of 1996-1997 when 1.46 Mt was exported. The majority of export coals come from the company's Stockton open cast mine and the Strongman No. 2 underground mine, which are in the coalfields of the west coast region (Solid Energy New Zealand Ltd., 2001). Solid Energy predicted near yearend 2001 that export coal would increase by about an additional 10% to 1.8 Mt for the 2001-2002 sales year (Mining Journal, 2001d).

Solid Energy exported specialized coals to 15 countries and sent trial shipments to Kawasaki Heavy Industries Ltd., which was Japan's third largest steel manufacturer, and to South Africa's Iscor Ltd., which was that country's largest steel producer. Another trial shipment went to Rotterdam, Netherlands, for distribution to three European silicon metal manufacturers. Domestic consumption of Solid Energy's coal was dominated by NZ Steel's Glenbrook steelworks (55%, or 700,000 t/yr), and 16% (200,000 t/yr) was consumed by stateowned Genesis Power Ltd. at its Huntly electricity generating plant on the Waikato River (Australia's Paydirt, 2001/2002a).

Although New Zealand's first petroleum well was drilled in 1865, with successful oil discovered in 1866 and continuous production from about 1900, domestic hydrocarbons have been of significance to the country's economy and fuel needs only since the 1960s. The modern era of exploration and production began in 1959 with the discovery of the onshore gas condensate field at Kapuni on the Taranaki Peninsula. The huge offshore Maui gas condensate field was discovered in 1969 by the third offshore well ever drilled in New Zealand. In 2001, oil and gas was produced from nine fields on and offshore; all were in the Taranaki Basin (Ministry of Economic Development, 2001c8). Domestic production of oil and gas condensate was from Maui (76%), McKee (10%), Kapuni (5.4%), and the Tariki/Ahuroa, Waihapa/Ngaere, Ngatoro, and Kaimiro (8.6% combined) fields (Ministry of Economic Development, 2001a§). The majority of oil produced in New Zealand was exported mostly to the Australasian region as crude and refined product (Oil & Gas Journal, 2001).

About 68% of condensate, crude, and naphtha production was exported with the balance used as partial feedstock for the Marsden Point Refinery near Whangarei (Ministry of Economic Development, 2001a§). The dominant crude oil for the refinery feed is of Middle and Far Eastern origin. Although the refinery began operating in 1964, a 1986 modernization and expansion made New Zealand self-sufficient in all refined products. About two-thirds of the refinery's product, which included exports and domestic disbursements, was distributed by sea. The remaining production traveled 170 km by pipeline to the Wiri terminal in Auckland for further distribution by tanker trucks to Auckland and nearby regions. A pipeline to distribute jet fuel ran from the Wiri terminal to Auckland International Airport (New Zealand Refining Co. Ltd., 2001). The other seven recognized petroleum basins in New Zealand are, from north to south, Northland, Wanganui, East Coast, West Coast, Canterbury, West Southland, and Great South Basins (Ministry of Economic Development, 2001e§). All have been explored to some degree with most having an exploration history that began in the early 20th century. Many feature oil seeps, and exploration has revealed structural traps suitable for possible hydrocarbon reservoirs. Petroleum exploration was at a record high level during 2001 with 24 wells drilled. About 60 exploration permits were valid in 7 of the country's petroleum basins (Ministry of Economic Development, 2001c§).

The Taranaki Basin had onshore production stations at Kapuni, McKee, Oanui, and Waihap; gas treatment and methanol plants; oil and gas pipeline networks; and a port city with petroleum production, storage, and transportation facilities, which included a liquid and gas pipeline network (Ministry of Economic Development, 2001f§). The Northland Basin had an oil refinery at Whangarei, which has well-developed port facilities (Ministry of Economic Development, 2001d§). The Wanganui and East Coast Basins have gas pipeline systems in place (Ministry of Economic Development, 2001b, g§). The infrastructure available to the remaining basins consisted only of port facilities.

Four international companies dominated petroleum distribution and retailing in New Zealand-Great Britain's BP Plc, Caltex New Zealand Ltd. (originally a 50-50 joint venture with Chevron Corp. and Texaco Inc. of the United States that became a wholly owned part of the Chevron Texaco Corp. formed by an October 9, 2001, merger of Chevron and Texaco), Mobile Exploration and Producing Australia Pty. Ltd. (a wholly owned subsidiary of Exxon Mobil Corp. of the United States), and Shell Petroleum Mining Co. Ltd. (a subsidiary of Shell New Zealand Ltd.). These companies have stakes in New Zealand Refining Co. Ltd., which operated the Marsden Point Refinery at Whangarei, which was New Zealand's only refinery, and between them they own the bulk storage facilities and most of the retail gas stations (Ministry of Economic Development, 2001a§). Four companies also dominate oil and gas exploration in New Zealand-Australia's Bligh Oil and Minerals NL, Canada's Indo-Pacific Energy Ltd., and New Zealand's Shell Petroleum Mining Co. Ltd. and Todd Petroleum Mining Co. Ltd.

Fletcher Challenge Energy Ltd. commissioned its small Mangahewa Gasfield production facility in early September. The gas was piped to the nearby Methanex Motunui methanol complex in north Taranaki (New Zealand Petroleum News, 2001a).

In December, Swift Energy New Zealand Ltd. paid Shell New Zealand \$55 million for a 96.76% stake in the Tariki, Ahuroa, Waihapa, and Ngaere fields (locally known as the TAWN fields) in onshore Taranaki Basin. The payment was the first of the divestments that Shell committed to when it purchased the New Zealand assets of Fletcher Challenge Energy Ltd. in March 2001 (New Zealand Petroleum News, 2001b).

The transportation infrastructure of New Zealand was well developed. International shipping ports included Auckland, Christchurch, Dunedin, Tauranga, and Wellington. The merchant marine fleet of nine ships included two petroleum-oillubricant tankers. Pipelines included 1,000 km for natural gas, 160 km for refined petroleum products, and 150 km for liquefied petroleum gas (U.S. Central Intelligence Agency, 2001§).

References Cited

- Asian Mining Yearbook, 2000, Australasia—New Zealand: Asian Mining Yearbook, 144 p.
- Australia's Paydirt, 2001/2002a, New Zealand—Solid Energy's purple patch: Australia's Paydirt, v. 1, no. 80, December/January, p. 69.
- Australia's Paydirt, 2001/2002b, News—Finally the stamp of approval for Reefton: Australia's Paydirt, v. 1, no. 80, December/January, p. 6.
- Australia's Paydirt, 2001, New Zealand—NZ mining gets the limelight for the wrong reasons: Australia's Paydirt, v. 1, no. 78, October, p. 57.
- Australia's Paydirt, 2002, Editor's note—The political Kiwi is still an ostrich: Australia's Paydirt, v. 1, no. 82, March, p. 4.
- Far Eastern Economic Review, 2002a, Money—New Zealand safe haven: Far Eastern Economic Review, v. 165, no. 1, January 10, p. 60.
- Far Eastern Economic Review, 2002b, New Zealand, *in* Asia 2002 yearbook: Far Eastern Economic Review, p. 168.
- Gold Gazette, 2002, Industry news—New projects give New Zealand explorers a shot in the arm: Gold Gazette, v. 5, no. 43, December/January, p. 5.
- Gold Mining Journal, 2001, New Zealand—Earnscleugh reaches the final hurdle: Gold Mining Journal, v. 1, no. 64, July, p. 55.
- Industrial Minerals, 2000, New Zealand's industrial mineral potential: Industrial Minerals, no. 394, July, p. 66-77.
- Mining Journal, 2001a, Industry in action—Normandy plans new underground gold mine in NZ: Mining Journal, v. 337, no. 8664, December 14, p. 455.
- Mining Journal, 2001b, Industry in action—GRD Macraes given Reefton approval: Mining Journal, v. 337, no. 8662, November 30, p. 414.
- Mining Journal, 2001c, Industry in action—GRD's Reefton commitment: Mining Journal, v. 337, no. 8665, December 21-28, p. 474.
- Mining Journal, 2001d, Mining week—New Zealand's coal producer sees further growth: Mining Journal, v. 337, no. 8664, December 14, p. 447-448.
- Ministry of Economic Development, 2001a, Explore New Zealand minerals: Wellington, New Zealand, Crown Minerals, Ministry of Economic Development, 92 p.
- Ministry of Economic Development, 2001b, New Zealand mining: Wellington, New Zealand, Crown Minerals, Ministry of Economic Development, v. 28, 44 p.
- Ministry of Economic Development, 2002, Coal production increases 9% in 2001: Wellington, New Zealand, Crown Minerals, Ministry of Economic Development press release, May 17, 1 p.
- New Zealand Petroleum News, 2001a, Mangahewa gas field commissioned: New Zealand Petroleum News, no. 40, September, p. 6-7.
- New Zealand Petroleum News, 2001b, Shell sells TAWN fields to Swift and may take Rimu stake: New Zealand Petroleum News, no. 43, December, p. 1.
- New Zealand Refining Co. Ltd., 2001, Introducing the Marsden Point oil refinery: Whangarei, New Zealand, New Zealand Refining Co. Ltd. press release, 2 p.
- Oil & Gas Journal, 2001, Exploration and development—Taranaki Basin yielding large oil and gas discoveries: Oil & Gas Journal, v. 99, no. 29, July 16, p. 38-44.

Resource Information Unit, 2002, Register of Indo-Pacific Mining 2002: Subiaco, Australia, Resource Information Unit, 260 p.

Solid Energy New Zealand Ltd., 2001), Record year for coal exporter: Christchurch, New Zealand, Solid Energy New Zealand Ltd. press release, August 10, 1 p.

Internet References Cited

Ministry of Economic Development, 2001a (October 18), Downstream markets—Oil and condensate, New Zealand Petroleum, accessed June 14, 2002, at URL http://www.med.govt.nz/crown_minerals/petroleum/ markets/index.html.

Ministry of Economic Development, 2001b (October 18), East Coast Basin, New Zealand Petroleum, accessed June 14, 2002, at URL http://www.med.govt.nz/crown minerals/petroleum/basins/eastcoast.html.

Ministry of Economic Development, 2001c (October 18), Industry overview, New Zealand Petroleum, accessed June 14, 2002, at URL http://www.med.govt.nz/crown minerals/petroleum/overview.html.

- Ministry of Economic Development, 2001d (October 18), Northland Basin, New Zealand Petroleum, accessed June 14, 2002, at URL http://www.med.govt.nz/ crown minerals/petroleum/basins/nthlnd.html.
- Ministry of Economic Development, 2001e (October 18), Petroleum basins, New Zealand Petroleum, accessed June 14, 2002, at URL
- http://www.med.govt.nz/crown_minerals/petroleum/basins/index.html. Ministry of Economic Development, 2001f (October 18), Taranaki Basin, New Zealand Petroleum, accessed June 14, 2002, at URL http://www.med.govt.nz/ crown minerals/petroleum/basins/taranaki.html.
- Ministry of Economic Development, 2001g (October 18), Wanganui Basin, New Zealand Petroleum, accessed June 14, 2002, at URL http://www.med.govt.nz/ crown_minerals/petroleum/basins/wanganui.html.

New Zealand Mineral Industry Association, [undated], Key facts of New Zealand mining, accessed May 29, 2002, at URL http://www.mineral.co.nz/ html/main_topics/overview/introduction/key_facts_of_nz_mining.html.

- New Zealand's Information Network, 2002, About New Zealand (Aotearoa), accessed June 12, 2002, at URL http://www.newzealands.co.nz/aotearoa.
- Solid Energy New Zealand Ltd., [undated], About New Zealand, accessed June 12, 2002, at URL http://www.coalnz.com/aboutnz.htm.
- U.S. Central Intelligence Agency, 2001, New Zealand, World Factbook, accessed July 19, 2002, at URL http://www.cia.gov/cia/publications/factbook/ geos/nz.html.

Major Source of Information

Ministry of Economic Development, Crown Minerals 33 Bowen St., Commerce Building P.O. Box 1473 Wellington, New Zealand Telephone: +64 4 472 0030 Fax: +64 4 499 0968 E-mail: crown.minerals@med.govt.nz URL: http://www.crownminerals.govt.nz

TABLE 1 NEW ZEALAND: PRODUCTION OF MINERAL COMMODITIES 1/

(Metric tons unless otherwise specified)

Commodity METALS	1997	1998 e/	1999	2000	2001 e/
Aluminum metal, smelter:					
Primary	310,324	317,540 r/ 2/	326,738 r/	328,400 r/	322,300 2/
Secondary	12,400	21,400 2/	21,400	21,500 e/	21,500 2/
Total	322,724	338,940 2/	348,138 r/	349,900 r/	343,800 2/
Gold, mine output, Au content kilograms	11,359	7,544 2/	8,900 r/	9,880 r/	10,000
Iron and steel:	11,557	7,544 2/	0,000 1/	9,000 1/	10,000
Iron sand (titaniferous magnetite), gross weight thousand tons	2,478	2,120 2/	2,303	2,692 r/	2,700
Pig iron do.	534	609 2/	620	600 e/	600
Steel, crude do.	758 r/	756 2/	744	765	750
Lead, refinery output, secondary e/	6,000	6,000	6,000	10,000	10,000
Silver, mine output, Ag content kilograms	31,684	22,642 2/	24,308	22,890 r/	23,000
INDUSTRIAL MINERALS	51,001		21,000		20,000
Cement, hydraulic e/ thousand tons	976 2/	950	960	950	950
Clays:					
Bentonite	12,802	14,000	12,300 r/	9,800 r/	10,000
Kaolin (pottery)	21,874	26,000	16,700 r/	16,300 r/	15,000
For brick and tile	33,396	27,000	50,700 r/	69,800 r/	70,000
Diatomaceous earth 3/	20 e/	20	25 r/	15 r/	15
Lime e/	20,916 2/	20,000	20,000	20,000	20,000
Marble e/	15,000	15,000	15,000	15,000	15,000
Nitrogen, N content of ammonia	79,600	93,700 2/	110,100	105,300	105,000
Perlite 3/	4,960	5,000	1,900 r/	2,200 r/	2,200
Pumice	196,687	190,000	124,300 r/	68,000 r/	68,000
Salt e/	67,000	65,000	65,000	60,000	60,000
Sand and gravel:	07,000	05,000	05,000	00,000	00,000
Silica sand (glass sand)	25,931	25,000	41,200 r/	47,400 r/	47,500
Other industrial sand	463,438	500,000	816,100 r/	660,300 r/	660,000
For roads and ballast thousand tons	15,000 e/	15,000	16,377 r/	18,336 r/	18,000
For building aggregate do.	8,000 e/	8,000	6,547 r/	7,499 r/	7,500
Stone:	0,000 0/	0,000	0,547 17	7,477 1/	7,500
Dolomite	20,000 e/	20,000	57,920 r/	47,800 r/	47,500
Limestone and marl:	20,000 0/	20,000	0,,,201	1,,000 1	17,000
For agriculture thousand tons	1,316	1,500	1,993 r/	2,029 r/	2,000
For cement do.	1,623	1,500	1,582 r/	1,603 r/	1,600
For other industrial uses do.	460 e/	450	482 r/	527 r/	500
For roads e/ 4/ do.	550	550	550	550	550
Serpentine	15,000 e/	15,000	91,400 r/	51,500 r/	51,500
Dimension	28,000 e/	15,000	20,600 r/	28,700 r/	29,000
Rock for harbor work e/ thousand tons	1,500	1,500	1,500	1,500	1,500
MINERAL FUELS AND RELATED MATERIALS	1,000	1,000	1,000	1,000	1,000
Carbon dioxide, liquefied e/	10,000	10,000	10,000	10,000	10,000
Coal, all grades thousand tons	3,138	3,035 2/	3,505 r/	3,586 r/	3,950
Gas: e/	-,	-,	-,	-,	-,
Manufactured (from gasworks) thousand cubic meters	11,500	11,000	11,000	11,000	11,000
Natural:	11,000	11,000	11,000	11,000	11,000
Gross production million cubic meters	5,721 2/	5.013 2/	5,559 r/2/	5,870 r/	5,000
Marketed production do.	5,664 2/	4,596 2/	4,050	4,100 r/	4,500
Natural gas liquids: e/		.,• > • _	.,	.,	.,
Liquefied petroleum gas thousand 42-gallon barrels	1,500	1,500	2,000	2,000	2,000
Natural gasoline do.	500	500	700	700	700
Total do.	2,000	2,000	2,700	2,700	2,700
Peat cubic meters	107,041	90,000 r/	89,500 r/	97,200 r/	95,000
Petroleum:			,	,	
Crude thousand 42-gallon barrels	21,490 r/	17,160 r/2/	14,960 r/	13,160 r/	12,000
Refinery products:					,000
Gasoline do.	13,219	8,395 2/	8,500	8,500 e/	8,500
Distillate fuel oil do.	12,038	13,140 2/	13,000	13,000 e/	13,000
Residual fuel oil do.	3,250	3,285 2/	3,500	3,500 e/	3,500
Other do.	7,380	3,650 2/	3,500	3,500 e/	3,500
Refinery fuel and losses e/ do.	2,000	2,190 2/	2,000	2,000 e/	2,000
Total do.	37,887	30,660 2/	30,500	30,500 e/	30,500
See footnotes at end of table.	51,001	50,000 2/	50,500	50,500 0/	50,500

See footnotes at end of table.

e/ Estimated. r/ Revised.

1/ Table includes data available through July 18, 2002.

2/ Reported figure.3/ Includes zeolite.

4/ Includes dolomite.