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ABSTRACT 
The U.S. Geological Survey (USGS) participated in comparing artificial neural 
networks (ANN’s) to deterministic models of transport and water quality 
phenomena of an estuary in Charleston, SC. The models were developed from 
real-time data from a gauging network operated by the USGS. The results 
favored the ANN’s accuracy and reduced development time. They could 
spatially interpolate between gauging stations to predict the location of the 
freshwater/saltwater interface, called the ”salt front”. The salt front location 
depends on the interaction of freshwater flowing downstream from a 
hydroelectric dam and tidal forcing of saltwater upstream. Government 
regulations conservatively control dam releases to prevent saltwater migrating 
into a freshwater reservoir, but sub-optimizes the commercial operation of the 
dam. This paper describes an alternative control approach using an ANN model 
of the “gain” between the freshwater releases and the specific conductivity, 
used to estimate salinity, near the reservoir. A scheme for implementing the 
model in a real-time control system is also described. 

INTRODUCTION 
A problem of great social and environmental importance is determining 

how to best use natural resources while preserving the quality of surrounding 
natural systems, such as surface water, groundwater, and atmospheric systems. 
Environmental regulatory agencies attempt to control exploitation using 
scientific means such as deterministic (physics-based) models that predict how a 
natural system will behave under scenarios of interest. In practice it is 
commonly found that the statistical accuracy of the models is poor because 
natural systems can be too complex for state-of-the-art deterministic modeling 
methods. This results in important decisions being made in the absence of 
unambiguous scientific findings. 

The U.S. Geological Survey (USGS) participated in comparing artificial 
neural network (ANN’s) models to deterministic finite-difference models of the 
Cooper River, a complex estuarine system shown in Fig. 1 (Conrads and Roehl, 
1999). Both models were developed from three years of real-time measurements 
of water level (WL), dissolved-oxygen concentration, water temperature, and 
specific conductivity (SC, used to compute salinity) that had been collected by a 
network of gauging stations. The models predicted the river’s hydrodynamic, 
mass transport, and water-quality behaviors. The ANN’s were found to be 
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 dam 

significantly more accurate and quickly developed. Their compactness and fast 
execution allowed their use in a prototype control system that was used to 
investigate regulating wastewater 
discharges according to the river’s 
assimilative capacity (Roehl and 
Conrads, 1999). 
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Government regulations require minimum total weekly flows from the dam 
meet water supply demands, however, the timing of the releases is at the 
discretion of hydroelectric dam operators. The power utility has  implemented a 
number of “action alert thresholds”, which when exceeded, require that flows be 
increased above minimum levels. The SC threshold at s50, which is nearest to 
the canal, is 1,500 micro-siemens per centimeter (µs/cm), however, it rarely 
comes into play because thresholds for stations further downstream are exceeded 
some 20 to 30 times per year. The optimum user of power generation from the 
dam is to meet peak power demands. When water is released to control the salt 
front it  significantly undermines the commercial operation of the dam. 
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Figure 3. Detail of actual SC at s53 and s50 (30 and 45 km upstream of s710 respectively). 
 
Below is an alternative to the above regulatory control approach. It fully 

utilizes the data from the gauging stations to optimize the control of the 
freshwater releases, bringing significant benefit to the utility. The scheme uses 
ANN-based models to predict and control the location of the salt front in real-
time.  

 
DATA PREPARATION 

The data used for analysis and modeling was comprised of hourly 
measurements of the SC and WL at s011 at the base of the dam, at s50 10 km 
below the entrance to the canal, and at s710 at the mouth of the Cooper River. 
s50 and s011 are approximately 45 and 75 km upriver from s710, respectively. 
These data were reduced to remove missing or unreliable measurements to 
arrive at 16,384 (214) hourly time stamps suitable for filtering by methods using 
the Fast Fourier Transform (Press et al, 1993). The 30 km separating s011 and 
s50 made it apparent that the response time between control actions taken at the 
dam and subsequent changes in the salt front could be several days. Therefore, 
variables were filtered to remove frequencies at or greater than the 24-hour 
diurnal cycle. The data were bifurcated into a 20/80 ratio of training and test 
data for synthesizing feed-forward ANN models.  
 
MODELING THE GAIN 

The “gain” describes the relationship between a controlled variable (CV) 
and a variable that is manipulated (MV) to control the CV. For the salt front 
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problem, the CV is the SC at s50 and the MV is the WL at s011, which is a 
surrogate for volumetric releases from the dam. Figure 4 shows that the WL at 
s011 exhibits the same 12.4-hour tidal cycle, delayed by 10 hours, as the WL at 
the river’s mouth 75 km downstream. Differences in the filtered signals 
suggested that the WL is additionally influenced by freshwater releases. These 
observations indicated that the WL signal at the dam should be separated into 
two components, one corresponding to the tidal cycle and the other to the dam 
releases, the latter to be used to determine the gain. 
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Figure 4. Detail of actual and filtered WL at s011 and s710. 

 
Separating the signal involves the construction of a function that correlates 

the WL at the dam to the WL at the river’s mouth. For the function’s input, the 
WL at s710 was selected over WL’s from upriver stations because it is the least 
likely to be influenced by the dam releases. Linear correlation (Press et al, 1993) 
can relate the time series of one variable to that of another. It can also relate a 
current measurement of a variable to past measurements of the same variable. 
Successive shifting of one time series relative to another (or to itself) by a delay 
τd, while computing the correlation for each shift, provides information 
indicating when the correlation reaches maximum, minimum, and zero values. 
The first delay at which the correlation equals (or nears) zero is the delay τz at 
which the times series are “decorrelated”.  

The bivariate function that was used to correlate the WL’s at s011 and s710 
is derived from an approach applied to univariate chaotic time series (Abarbanel, 
1996). Equation (1) suggests that at time t, a predicted value xp for variable x 
can be computed from previous, actual measurements xa by a function F. The 
“local dimension” dL specifies the number of measurements required to 
optimally predict xp. Note that xp(t) = xa(t) at τd = 0, and the predictive accuracy 
of F declines towards zero as τd approaches τz. 
 

xp(t) = F [xa(t–τd),xa(t–(τd+τz)),,,xa(t-(τd+kτz)),,,xa(t-(τd+(dL–1)τz))], 0<τd<τz (1) 
 

 

The bivariate form of Eq. 1 is given by Eq. (2), which relates y and x, the 
WL’s at s011 and s710 respectively. Predictions yp are computed from actual 
measurements xa by the function F1. Comparing Eqs. (1) and (2), τd is replaced 
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by the delay τ'd at which y is maximally correlated to x, while dL and τz remain 
characteristics of only x. The residual yr given by Eq. (3) is the difference 
between the actual and predicted measurements, ya and yp. 

 

yp(t) = F1[xa(t–τ'd),xa(t–(τ'd+τz)),,,xa(t-(τ'd+kτz)),,,xa(t-(τ'd+(dL–1)τz))]; τ'd>0 (2) 
 

yr(t) = ya(t)-yp(t) (3) 
 

Within the accuracy limits of F1 and ya, yr contains information about the 
behavior of y that is unrelated to the tidal effects seen at the river’s mouth. This 
information includes but is not limited to freshwater releases from the dam, 
therefore, yr can be used to estimate the gain that relates changes in the WL at 
the dam to the SC at s50, denoted by y and y2 respectively. Equation (4) was 
used to compute predictions y2p. It was expected that the gain would also depend 
on tidal conditions, so that F2 includes information from both yr and yp. Note 
that F2 uses different delays and local dimensions in relating yr and yp to y2. 
 

y2p(t) = F2{ [yp(t-τ'pd),yp(t-(τ'pd+τpz)),,,yp(t-(τ'pd+mτpz)),,,yp(t-(τ'pd+(dpL–1)τpz))],  (4) 
 [yr(t-τ'rd),yr(t-(τ'rd+τrz)),,yr(t-(τ'rd+nτrz)),,,yr(t-(τ'rd+(drL–1)τrz))]}; τ'pd,τ'rd>0 
 
 

The application of Eq. 2 was as follows. τ'd and τz were determined to be 10 
and 30 hours respectively. F1 was synthesized from time series of xa and ya by a 
feed-forward ANN. The ANN was trained using back-propagation and 
conjugate gradient methods. A dL≈8 was determined experimentally by adding 
and removing inputs at delays spaced by τz and tracking the predictive 
performance of F1. It was also determined that up to two inputs with delays less 
than dLτz could be omitted without significantly degrading F1. A plot of the 
predictions made by F1 and the actual WL are shown in Fig. (5). 
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Figure 5: Detail of actual and predicted filtered WL at s011. 
 

The application of Eq. 4 was as follows. The peak correlation τ'pd between yp 
and y2 occurred at 0 hours, indicating that the SC at s50 and the WL at s011 
move in phase. A high pass filter with a lower limit of 28 days was applied to yp 
to remove apparent annual periodicity, whereupon τpz was calculated to be 30 
hours (the same as τz). The delay τ'rd of the peak correlation between yr and y2a 
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was 47 hours, indicating a transport delay of about two days between dam 
releases and a subsequent effect on the SC. τrz was computed to be 69 hours. A 
second ANN was developed to synthesize F2. The rationale for using a single 
ANN, which combined inputs for both yr and yp, was that they were decorrelated 
by means of their derivation (also verified by correlation analysis). Local 
dimensions drL≈6 and dpL≈8 were estimated as described above for dL. A plot of 
the prediction made by F2 and the actual SC is shown in Fig. 6. 
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Figure 6. Detail of actual and predicted filtered SC at s50. 
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Figure 7. Predicted SC at s50 on dam releases during low and high tidal levels. 

 
The gain of F2 is better understood by viewing the function's response 

surface under different tidal conditions. Figure 7 shows that the gain’s 
sensitivity to the first two residual inputs yr(t–τ'rd) and yr(t–(τ'rd+τrz)), indicated 
by the difference between the surface’s high and low points, varies from 100 to 
1,000 µs/cm at low and high tidal levels. Note that F2 was developed from 
hourly data which filtering effectively averaged over two tidal cycles. Thus, the 
1,000 µs/cm gain corresponds to an unfiltered range of about 1,900 µs/cm (see 
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Fig. 3). Therefore, the 1,500 µs/cm threshold at s50 is well within the 
interpolative range of F2.  
 
PREDICTION AND CONTROL 

The primary intent of this study was to determine the potential of using an 
ANN-based real-time control scheme to modulate dam releases to control the 
salt front. The development of a usable model F2 of the gain between dam 
releases and their effect on the salt front was a necessary first step. The 
remaining steps for completing the control scheme are outlined below. 

Effective control requires predicting ahead of time if salt front migration 
will pose a problem to allow time for corrective action. A model that predicts 
SC at s50 47 hours into the future (equal to τ'rd) is needed. F2 is unsuitable 
because it includes τ'pd=0; however, another model F3, identical to F2 but with 
τ'pd= τ'rd, was synthesized to show feasibility. The predictions of F3, shown in 
Fig. 8, were poorer than those of F2, but it was able to predict some of the events 
corresponding to the largest values of y2a. F3 could be easily improved by using 
additional gauging station variables. 
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Figure 8. Actual and predicted filtered SC at s50. 

 
Figure 9 shows an idealized model-based 

control scheme for controlling the salt front, 
which has been borrowed from the field of 
industrial process control. Three types of 
variables are indicated. The variable to be 
controlled (CV) is the output of the model. 
Variables that are manipulated (MV) to take 
corrective action are inputs to the model. 
Additional inputs are the disturbance variables 
(DV) that describe the state of the process but 
cannot be manipulated. Finding values for the 
MV’s so that an undesirable outcome can be 
avoided requires an optimization program. As 
DV’s change with time, the optimization program 
avoid letting the model predict an undesirable 
program adheres to “constraints” that limit the allo
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it fails to obtain an acceptable outcome within a specified number of iterations, 
the program returns values that minimize the deviation from a desirable 
outcome. 

For this application, F2 is the process model, the CV is y2p, the MV is yr(t-
τ'rd), and the DV’s are the remaining values specified by Eq. (4). A minor 
problem is that because τ'pd=0 and t=+47 hours into the future, the DV yp(t-τ'pd) 
is unknown. However, a good estimate can be synthesized from Eq. 2 using 
τ'd=47 hours. As new values for the DV’s are input with each time step, the 
optimization program’s is to compute values for the MV that causes the model 
to predict a CV that is at or below the 1,500 µs/cm threshold at s50. 
 
DISCUSSION AND CONCLUSIONS 

A source of error in the ANN-based functions is the inherent quality of the 
field data used for their derivation. This is somewhat mitigated by the large 
number of measurements over widely ranging conditions used for this study. A 
second problem may lie in the approach used to synthesize F1 and F2. ANN’s are 
an excellent method for regressing data, however, they are subject to a strong 
tendency for overfitting when correlated inputs are used. Separating inputs by 
integer multiples of τz insures that they are at least linearly decorrelated, but may 
also sub-optimize F1 and F2 which use non-linear ANN’s. 

Possible improvements could come from several directions. One would be 
to use actual flow measurements from the dam instead of the surrogate WL at 
s011. Including additional information from the plethora of variables available 
from throughout the gauging network might lead to dramatic improvements in 
prediction accuracy. The investigation of alternative non-linear calculation 
methods for τz, such as average mutual information (Abarbanel, 1996) or single-
input-single-output ANN’s, may also be beneficial.  

Leaving ample room for refinement, the above approach has revealed 
relationships between measured variables that match a qualitative understanding 
of this very complex estuarial system. The straightforward mechanics of 
constructing the various components of the application point to a reliable 
solution to controlling the location of the salt front. Earlier work in applying 
these methods to water quality, which is also affected by saltwater migration, 
suggest combining these problems because of their commonality in serving the 
public interest.  
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