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ABSTRACT 
 
Data mining is an emerging field that addresses the issue of converting large databases into 
knowledge. Data mining methods come from different technical fields such as signal processing, 
statistics, and artificial intelligence. Data mining employs methods for maximizing the 
information content of data, determining which variables have the strongest relationships to 
problems of interest, and developing models that predict future outcomes. Data mining is used 
extensively in financial services, banking, advertising, manufacturing, and e-commerce to 
classify the behaviors of organizations and individuals, and predict future outcomes. This paper 
describes the results of three case studies where data mining, including artificial neural network 
models, has been applied to large-scale environmental issues in South Carolina and Georgia. For 
the Beaufort River, South Carolina, dissolved-oxygen models were developed and used for 
determining Total Maximum Daily Load of allowable point-source effluent loading to the 
Beaufort River. For the Savannah River estuary, models were developed to simulated pore-water 
salinity and used to determine the potential impacts of deepening the Savannah Harbor on 
upstream freshwater tidal marshes. For the Pee Dee River in South Carolina, models were 
developed to determine the minimum streamflow required to protect municipal intakes from 
seawater inundation along the Grand Strand of South Carolina. In the three studies, the models 
were able to convincingly reproduce historical behaviors and generate alternative scenarios of 
interest. To make the results of the studies directly available to all stakeholders, user-friendly 
decision support systems were developed as a spreadsheet application that integrates the 
historical database, models, user controls, streaming graphics, and simulation output.  
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INTRODUCTION 
 

While environmental monitoring technologies have made it cost effective to acquire tremendous 
amounts of real-time hydrologic and water-quality data, there is greater demand to transform 
these data into the essential knowledge needed by State and local water-resource managers. It is 
imperative that new technologies be developed and adopted that facilitate faster and more 
accurate data analysis, modeling, and regulatory tool development. Data mining is an emerging 
field that addresses the issue of converting large databases into knowledge to solve complex 
problems due to the large numbers of variables. Data mining methods come from different 
technical fields such as signal processing, statistics, and artificial intelligence and are used 
extensively in financial services, banking, advertising, manufacturing, and e-commerce to 
classify the behaviors. Data mining employs methods for maximizing the information content of 
data, determining which variables have the strongest relationships to problems of interest, and 
developing models that predict future outcomes. This knowledge encompasses both 
understanding of cause-effect relations and predicting the consequences of alternative actions.  
 
There are many environmental systems where tremendous historical databases exist. Generally 
these databases are under interpreted and under utilized. Data mining offers an approach to 
transform these data into information and, ultimately, knowledge of functionality of the 
environmental systems. This paper describes the technical approach and results of three case 
studies where data mining was applied to large-scale environmental issues in South Carolina and 
Georgia to assist decision makers in the issuance of long-term permits. The three studies used 
existing databases for analysis and development of empirical models to understand how the 
system works and to address the salient concerns of decision makers. The large databases were 
transformed into information that provided new knowledge on how the systems function. The 
three case studies are (1) the determination of allowable point-source effluent loading to the 
Beaufort River for the design of a Regional Water Reclamation Facility; (2) the determination of 
the potential impacts of deepening the Savannah Harbor on upstream freshwater tidal marshes 
for the Environmental Impact Statement; and (3) the determination of minimum releases from 
North Carolina reservoirs required to protect municipal intakes from seawater inundation along 
the Grand Strand of South Carolina for a 50-year Federal Energy Regulatory Commission 
(FERC) license. The three case studies share several characteristics: 
 

• Utilized large existing historical databases; 
 
• Developed empirical models of complex tidal systems using Artificial Neural 

Network (ANN) models1;
 

• Developed Decision Support Systems (DSS’s) that integrated databases, models, 
model simulation controls, streaming graphics, and model outputs in a easily 
disseminated spreadsheet application; and, 

 
• Results from the studies were or are currently (2006) being used for water-resource 

management with large long-term environmental, economic, and societal 
consequences.  



 

CASE STUDY 1: SIMULATING POINT-SOURCE EFFLUENT LOADING IMPACTS 
TO THE BEAUFORT RIVER 
 
Beaufort and Jasper Counties are two rapidly 
growing coastal counties in South Carolina.  
According to the 2000 census, the region grew by 
40 percent during the preceding 10 years. The 
population growth has increased the quantity of 
wastewater in the area. The principle receiving 
stream for treated effluent is the Beaufort River. 
The river is a complex tidal river system that is 
home to shellfish grounds and fisheries nursery 
habitats in addition to receiving treated wastewater 
from four civilian and military water reclamation 
facilities (WRFs, fig.1). Although not uncommon 
for coastal areas, the river is on the South Carolina 
303(d) list of impaired waters for low dissolved 
oxygen (DO) (SCDHEC, 1998). The Clean Water 
Act stipulates that Total Maximum Daily Loads 
(TMDL) must be determined for all waters on the 
303(d) list. Critical to the development of a 
defensible TMDL is the linkage between the 
impairment and the source of the impairment. The 
linkage is typically performed using a prediction 
model. 
 
The Beaufort-Jasper Water and Sewer Authority 
(BJWSA) operate two WRFs on the Beaufort River. 
The facilities are operating at 70 percent of capacity and must be replaced in 2006 to handle 
increased wastewater flows for the growing coastal community.  The Director of BJWSA 
envisioned a plan to build a regional WRF and to consolidate the civilian and military 
wastewater discharges into a single, high-quality effluent at the location of one of the current 
outfalls. The ambitious plan required an expedited permitting effort that included developing a 
predictive DO model of the Beaufort River to evaluate the effect of existing and future WRFs.   
Two previous modeling and permitting efforts along the SC coast (Myrtle Beach and Charleston) 
were lengthy processes taking more than 10 years from the initiation of data collection to 
issuance of permits. To meet the schedule for a new permit and the construction of a new WRF, 
a new approach to developing a predictive DO model was required. BJWSA assembled a team 
consisting of the U.S. Geological Survey (USGS), Advanced Data Mining, LLC (ADM), and 
Jordan Jones and Goulding (JJ&G) to analyze existing data, build an empirical DO model, and 
coordinate the permitting process with the South Carolina Department of Environmental Control 
(SCDHEC). 
The team was successful in developing an accurate predictive DO model of the Beaufort River, 
disseminating the study results in a user-friendly DSS and obtaining the required permits to 
initiate construction of a new regional WRF. This study used the new modeling approach and 



 

was able to reduce the time from the initiation of data collection to the issuance of permits by 50 
percent.  
  
Approach 
 
The variability of DO in the Beaufort River is a result of many factors including the quality of 
the water from Port Royal Sound to the south and the Coosaw River to the north, the loading of 
oxygen-consuming constituents from tidal marshes and other non-point sources, effluent from 
four permitted point sources, and the physical characteristics of streamflow, tidal range, salinity, 
and temperature.  The following discussion is a brief summary of the data sets, data preparation, 
and ANN modeling. More detail descriptions of these technical aspects of the study can be found 
in Conrads and others (2003). 
 
Data Sets and Data Preparation. The data used for analysis and modeling consisted of 
continuous (1-hour interval) tidal and water-quality data, daily total precipitation data, and 
weekly effluent data. In 1999, BJWSA, in cooperation with the USGS, established a network of 
seven gaging stations (fig. 1) on the Beaufort River that monitor water level (WL), water 
temperature (WT), specific conductance (SC), and DO. Three of the stations also record tidal 
streamflow.  Precipitation data were obtained from the National Weather Service and two of the 
WRFs.  Effluent data (sampled once a week) consisting of 5-day biochemical oxygen demand 
(BOD5) and ammonia (NH3) also were obtained from the WRFs. 
 
Two calculated variables were derived  ⎯ tidal range (XWL) and DO deficit (DOD). Tidal range 
is an important variable for determining the flushing dynamics of the tidal rivers. Tidal range, 
calculated from water level, is defined as the water level at high tide minus the water level at low 
tide for each semi-diurnal tidal cycle. The DOD is the measure of the difference between actual 
DO measurement and DO for fully saturated conditions.  The DOD was computed using an 
algorithm that assumes a constant barometric pressure over the data collection period (USGS, 
1981). The DOD was adjusted for salinity. 
 
Tidal systems are highly dynamic and exhibit complex behaviors that occur over a range of time 
scales. The semi-diurnal tide is dominated by the lunar cycle, which is more influential than the 
24-hour solar cycle; thus, a 24-hour average is inappropriate to use to reduce tidal data to daily 
mean values. For analysis and model development, the USGS hourly data were digitally filtered 
using a low-pass filter (Press and others, 1993) to remove semi-diurnal and diurnal variability 
(filtered variables are denoted by an “F” prefix, for example, FDO). The resulting filtered time 
series were then averaged over a 24-hour period to represent the daily mean for each parameter.  
 
Explanatory variables for a particular response variable are often themselves correlated. It is 
difficult, if not impossible, to identify the individual effects of these variables (sometimes known 
as confounded or correlated variables), on a response variable. Empirical models have no notion 
of process physics or the nature of interrelations among input variables. To be able to clearly 
analyze the effects of confounded variables, the unique informational content of each variable 
must be determined by “de-correlating” the confounded variables. The precipitation, XWL, WL, 
and SC were systematically, non-linearly decorrelated using ANN models. 
 



 

Figure 3: One-day change in DO (EDO) and 
BOD5 (at a 1 day time delay).  
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Figure 2: Scatter plot of filtered DO (FDO) and 
filtered water temperature (FWT) and least-squares 
regression line (R2=0.88) for Station 02176611.  
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Because of the limited number of data points of the effluent data (BOD5 and NH3) as compared 
to the river gaging data, a subset of the dataset was excised that included only the daily digitally 
filtered data. In addition, time derivatives (the 1-day change in a variable) of the hydrodynamic 
(WL and XWL) and water-quality variables were computed and added to the dataset.   The 
derivatives of filtered variables are denoted by an E prefix, for example, ESC. 
 
Simulating Dissolved-Oxygen Deficit 
 
The goal of the model was to predict the impact 
of the point- and non-point sources on DO. Had 
the goal only been to predict DO and not the 
effects of the WRFs, this could have been done 
easily and accurately using only WT owing to 
their strong inverse relation. Linear regression 
produces a coefficient of determination (R2) of 
0.88, indicating that approximately 88 percent 
of the variability of FDO is explained by FWT 
alone (fig. 2), and that only approximately 12 
percent of the variability is caused by other 
factors.  
 
The real goal of a regulatory model is to predict 
how much of the variability in DO is 
attributable to point-source discharges. The use 
of DOD rather than DO as the response variable 
normalizes the DO signal with respect to WT to 
emphasize the effects of external loadings on 
DO. The response of DOD to BOD5, NH3, 
rainfall, and the other explanatory variables was 
predicted using ANN models that were trained 
using the back-propagation and conjugate-
gradient algorithms. 
 
Visual inspection of the BOD5 loading data 
from the WRF and the 1-day change in DOD 
(EDOD) at station 02176611 (fig. 3) suggests a 
potential relation (note that the EDOD scale has 
been inverted so decreases in daily DO rise on 
the scale). The number of coincident peaks, for 
example observations 6, 31, 35, 39, and 58, indicate that  BOD5 loading may account for a 
significant part of the remaining 12 percent of the variability in DO.  
 
For each station, an ANN model of the EDOD, having BOD5, rainfall, and decorrelated filtered 
WL, XWL, SC and WT as inputs was generated to provide a more comprehensive assessment of 
the relation between the BOD5 and the DO. Figure 4 show that the model fits most of the higher 
peaks in the EDOD. The R2

ANN = 0.57, indicating that approximately 57 percent of the variability 



 

Figure 4: Measured and predicted 1-day 
change in DO deficit (EDOD). ANN used 
BOD5 as an input at a time delay of 1 day. 
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in the EDOD is accounted for by variability in the 
input variables. A similar approach was used for 
modeling the impact of NH3 on DOD.  
 
The Beaufort River DO Model is a super-model 
composed of 118 cascaded sub-models. Separate 
sub-models were constructed for each combination 
of river gage location, discharge type (BOD5 or 
NH3), and relative time delay. The impacts of BOD5 
and NH3 were computed by sub-models for each 
river gage that used decorrelated XWL, WL, SC, 
and WT and their 2-day time derivatives as inputs. 
Also included are inputs for each WRFs BOD5 and 
NH3 at appropriate time delays. The output of each 
sub-model is a prediction of the 1-day EDOD. 
 
Development of the Decision Support System 

Commonly, a DSS is often a software package built around a model, making the model the 
DSS’s most important component because ostensibly it can correctly predict, “What will happen 
if we do A instead of B?” Models are often developed at considerable expense; therefore, the 
packaging is done only to maximize the usefulness of the model to the broadest possible 
community of users. Complex mathematical (mechanistic) models based on first principles 
physical equations are often developed and operated by senior scientists or engineers; however, 
the interests and computer skills of the actual decision makers and other stakeholders are quite 
varied. A DSS was developed to meet the needs of the technically diverse group of stakeholders 
for equal access by all to the body of scientific knowledge needed to make the best possible 
decisions.  
 
The DSS for the Beaufort River was developed as Microsoft®Excel/Visual Basic for 
Applications (VBA)2 programs. This allowed the DSS to be prototyped, easily modified and also 
allowed the DSS to be distributed in a familiar form. The DSS is operated through a graphical 
user interface (GUI) composed of menus and controls that require no typing. This makes the 
DSS easy to use and eliminates the need to trap user input errors. The DSS incorporates a 
database of measured and calculated time-series variables for running long-term simulations. 
Under user control, a VBA program loops through database records, assembles input vectors, 
executes super-model instructions, outputs model predictions, and drives graphics. The DSS 
incorporated the following in addition to the database and ANN sub-models: 
 
• Simulation Controls: Model controls, including start/stop dates, user-defined settings, and 
optimizations run (discussed below), are set with the point and click GUI. The DSS executes 
multiple model simulations simultaneously such as the no-discharge load, actual (historical) 
loading, user-defined, and optimized conditions.    
• Spatial Interpolation: The DO predictions are spatially interpolated by the modeling 
application using a “natural cubic spline” algorithm (Burden and others, 1981). The longitudinal 



 

DO response in the system for the no load, actual load, and optimized load is dynamically 
displayed during the model simulation. 
• Volumetric Averaging: Regulatory analysis of impacts to a system typically is done on 
river segments over a specified period rather than on an “any time and any place” basis. The DSS 
allows the user to subdivide the estuary into a maximum of four segments for volumetric 
averaging of historical and computed hydrodynamic and water-quality variables.  
• Constrained Optimization: A constrained optimizer was configured to represent South 
Carolina state law that governed the maximum allowable impact that nutrient loads from the 
WRFs could have on riverine DO. The optimizer modulates controllable inputs during 
simulations to obtain predictions that match user-set points. Users can allocate the TMDL load 
among the BOD and NH3 discharges from each WRF. At each time step, the optimizer iterates 
load inputs as assimilative capacity changes. Output from the optimizer is time series of 
allowable loadings for WRFs that meet the water-quality standard. 
  
Discussion of Case Study I 
 
Prior to this study, it was understood that the net streamflow of the Beaufort River was to the 
south through Port Royal Sound. Analysis of the tidal streamflow determined that the net 
streamflow of the system was to the north through Brickyard Creek (and other tidal creek 
connections) to the Coosaw River.  The tidal flow dynamics were confirmed by the long 
residence times seen in the SC data and the correlation analysis between the WRF effluents and 
DO response. The knowledge of the net streamflow of the system had far ranging consequences 
from determining critical DO conditions to calculating the assimilative capacity (the amount of 
effluent that can be discharged without violating the State water-quality standard) of the system. 
 
The Beaufort River DSS enabled stakeholders and regulators to use new approaches to analyzing 
critical conditions and allowable loading to coastal systems (Conrads and others, 2003). The 
assimilative capacity of a system is a dynamic phenomenon that changes with the changing 
hydrologic and water-quality conditions. For regulatory purposes, the assimilative capacity is a 
fixed quantity representing the allowable loading as determined by the critical conditions for the 
system. For the regulator, the question becomes one of selecting the steady-state load that the 
WRFs will be permitted.   
 
For the Beaufort River, the critical condition occurs during neap tides and has a recurrence 
interval of 14 days (Conrads and others, 2003). Rather than select one neap tide to use as a 
critical condition, the allowable loading was computed for the full 2½-year period of record 
(March 1999 to September 2001).  A frequency distribution of the allowable loading (ultimate-
oxygen demand, in pounds per day) was generated to better understand the range and 
occurrences of the predicted loads. Figure 5 shows the load frequency distribution and the 
cumulative percentile plot.  



 

Figure 5. Frequency distribution for allowable loading 
(pounds per day) for WRF near station 02176611 for 
March 1999 to September 2001. 

Using the percentile plots, regulators 
could select a constant allowable loading 
based on a frequency of occurrence.  
Once selected, the allowable load was 
simulated in the model as a constant 
load and the frequency of meeting the 
water-quality standard was evaluated. 
For the Beaufort River, a 90-percent 
reduction in loading was required to 
obtain the new permit for the regional 
WRF plant for the Beaufort River. 
 
The successful role played by the 
Beaufort River ANN model in 
developing a regional WRF 
demonstrates that an innovative 
modeling approach using data mining 
techniques can be undertaken if the river 
system is well characterized by 
continuous data and there is a 
cooperative relationship between the 
permitted dischargers and the regulatory agencies involved. Advances in environmental 
monitoring over the past 20 years have made it cost effective to acquire tremendous amounts of 
hydrologic and water-quality data and large databases exist for many riverine and estuarine 
systems. Empirical models of complex river systems can be developed directly from the data. 
These models often can be developed faster than traditional modeling methods and easily 
disseminated to meet the needs of a broad range of stakeholders.  
 
 
CASE STUDY 2: INTEGRATING THREE-DIMENSIONAL HYDRODYNAMIC 
TRANSPORT AND ECOLOGICAL PLANT MODELS OF THE SAVANNAH RIVER 
ESTUARY  
 
Under sponsorship from the U.S. Army Corps of Engineers (USCOE) and the Georgia Ports 
Authority (GPA), the Lower Savannah River estuary and the surrounding freshwater tidal 
marshes of the Savannah National Wildlife Refuge (SNWR) have been studied for years by a 
variety of governmental agencies, water users, universities, and consultants. Their interests are in 
controlling water quality and predicting the potential impacts on the estuary and tidal wetlands of 
a proposed harbor deepening. Two major initiatives for the development of the Environmental 
Impact Statement were the application of a three-dimensional hydrodynamic model (3DM) by a 
team of hydrologists, and the development of a marsh succession model (MSM) by a team of 
plant ecologists. The 3DM predicts changes in riverine water levels and salinity in the river 
system in response to potential harbor changes. The MSM predicts plant distribution in the tidal 
marshes in response to changes in the water-level and pore-water salinity conditions in the 
marsh. A mechanism for linking riverine and marsh behaviors was needed. This case study 
describes the integration of these models and their respective databases. 
 



 

Figure 6. Diagram showing simplified conceptual model 
of the location of the freshwater/saltwater interface in 
estuarine rivers. 

Figure 7. Gaging sites of multiple agencies in the 
study area. 

To support 3DM and MSM development, 
many disparate databases had been created 
that described the natural system’s 
complexity and behaviors, but they had 
not been compiled and integrated into a 
usable form. Variables having particular 
relevance include those describing 
bathymetry, meteorology, WL, SC, WT, 
and DO concentration (specific 
conductance is a field measurement that is 
commonly used to compute salinity 
concentration). Most of the databases were 
composed of time series that varied by variable type, periods of record, measurement frequency, 
location, and reliability. It was recognized that data mining techniques, which include ANN 
models, could be used to link riverine and marsh behaviors and integrate the 3DM and the MSM. 

 
Approach 
 

The estuarine portions of the Lower Saver River estuary are constantly integrating the 
changing streamflow, changing tidal conditions of the Atlantic Ocean, and changing 
meteorological conditions including wind direction and speed, rainfall, low and high pressure 
systems, and hurricanes. The location of the saltwater/freshwater interface is a balance between 
upstream river flows and downstream tidal forcing (fig. 6).  During periods of high streamflow, it 
is difficult for salinity to intrude upstream and the 
saltwater/freshwater interface moves downstream 
towards the ocean. During periods of low 
streamflow, salinity is able to intrude upstream and 
the saltwater/freshwater interface moves upstream.   
 
Linking the riverine predictions of the 3DM to the 
MSM required that another model be developed, 
called the M2M for “model-to-marsh”. The M2M 
simulates riverine and marsh water levels and 
salinity in the vicinity of the SNWR for the full 
range of historical conditions using data from the 
riverine and marsh gaging networks. 
 
 
Data Sets and Data Preparation. The locations of 
the real-time gages are shown in Figure 7. The 
available data required extensive clean up for 
problems such as erroneous and missing values and 
phase shifts. The resulting database was composed 
of 11½ years of half-hourly data (200,000+ time 
stamps) for 110 variables. The original sources of 
data were: 
 
• QClyo and WLHarbor : 11½ years of half-hourly WL signals in Savannah Harbor and river 

flows measured 30 miles upstream of the SNWR at Clyo, Georgia, by the USGS;   



 

 
• USGS riverine WL and SC: 11½ years of half-hourly signals collected from four stations in 

the Lower Savannah River by the USGS; 
 
• GPA riverine WL and SC: half-hourly signals collected on behalf of the GPA from 14 

stations over three months each in 1997 and 1999. Some stations recorded both surface and 
bottom SC measurements (SCtop, SCbottom);   

 
• USGS marsh WL and SC: 4½ years of half-hourly signals from 7 stations; and, 
 
• GPA marsh WL and SC: 19 months of half hourly SC and WL from 10 stations; 
 
Much of the field data were collected during a record setting 4½-year drought, raising concerns 
that it was not representative of “normal” hydrodynamic conditions. Figure 8 shows that the 
record low river flows during the drought led to unprecedented seawater intrusions far inland, 
even without a deepened harbor. It was expected that the ANNs could reasonably extrapolate 
from the field data by “learning” the full range of behaviors exhibited over 11½ years, which 
also included two El Niño events when flows were significantly above average, and presumably 
periods of normal conditions. 
 

Figure 8. 11½ years of hourly QClyo and SC at USGS 02198840, which was the farthest inland riverine gage. 
The SC spikes at center right occur at 28-day intervals, and are coincident peaking of the tidal range during 
the lowest flows of the drought. 



 

Figure 9. Signal processing and decomposition 

Figure 10. Data flow through the super-model decomposition. 
Separate sub-models were used for each WL and SC prediction. 

The hydrodynamic and water quality behaviors observed in estuaries are superpositions of 
behaviors forced by periodic planetary motions and chaotic meteorological disturbances. Similar 
to the data preparation done for the Beaufort River Study, tidal signals were filtered to separate 
out the periodic and chaotic signals. Time derivatives of the tidal and streamflow signals were 
also computed. The primary chaotic inputs to the Lower Savannah River are the streamflow and 
the chaotic oceanic disturbances represented in the chaotic component of WLHarbor.  
 
The empirical representations of the dynamic behaviors that underlie periodic and chaotic signals 
are different. Multiply periodic signals are superpositions of individual periodic signals that are 
represented by three constants: phase, amplitude, and frequency. Abarbanel (1996) describes 
how chaotic univariate systems can be optimally represented by dynamical invariants: 
characteristic time delays and dimensions. Roehl and others (2000) describe an ANN model that 
predicted the salt-front location in the Cooper River, which incorporated signal decomposition 
and extended the univariate representation of chaotic behaviors to a multivariate system.  
 
As shown in Figure 9, chaotic components 
were extracted from raw signals by applying a 
low pass spectral filter to remove high 
frequency (HF) diurnal and semi-diurnal 
variability. The important, multiply periodic 
tidal range XWL was computed from WLHarbor. 
The chaotic component of QClyo was further 
processed with moving window averages 
(MWA) of up to two weeks so that when input 
to an ANN with multiple time delays and time 
derivatives, flow histories of up to 44 days were represented. 
 
Simulation of Marsh Pore-Water Salinity 
 
The M2M super-model comprises 127 sub-models. Figure 10 shows that cascading sub-models 
predicted chaotic WL and SC signal components at riverine and marsh gaging sites. Using low 
pass filtered QClyo, WLHarbor, and XWL signal components for inputs, “chaotic sub-models” 
predicted chaotic WL and SC behaviors at four USGS gages in the main channel. These outputs 
were input to “HF sub-models” that also used HF WLHarbor and XWL component inputs to obtain 
HF WL and SC predictions at the four gages. 
 
The chaotic predictions at the 
main-channel gages were then 
transformed into calculated 
signals to decorrelate them and 
to represent dynamical 
behaviors that evolve over 
weeks. The calculated signals 
were used as inputs to model 
the historically shorter signals 
at the many remaining 



 

Figure 11.  Measured and predicted chaotic                  Figure 12.  Measured and predicted HF  
riverine SC.  Increased SC at center right                     riverine SC.  16.6 days are shown during  
occurred during the drought.                                          the drought. 
 

Figure 13. Measured (blue) and predicted (red) 
marsh SC. Gaps mark missing input data. Marsh 
parameters are very difficult to monitor for 
extended periods because of the physical 
instability of gaging sites. 

  
 

riverine and marsh stations. This provided one 
set of ANNs that linked the river’s main-
channel behaviors to tidal forcing and 
freshwater flows, and a second set that linked 
main-channel behaviors to those in 
backwaters and the marsh. Figures 11, 12, and 
13 show SC predictions at a riverine gage and 
a nearby marsh gage. The R2 values for the 
SC predictions at most of the gages were 
between 0.8 and 0.9. The R2 values for the 
WL predictions were generally above 0.9. 
 
Roehl and others (2003) describe the use of 3D 
response surfaces to visualize the functional 
forms of multivariate interactions as learned by 
ANNs. A surface is generated by selecting and 
stepping two inputs across their historical ranges, while “unshown” inputs are set to values of 
interest; for example, minimums, maximums, or means. Figures 14 and 15 show response 
surfaces representing the behaviors at a riverine gage and a nearby marsh gage. While the 
behavior at the riverine gage is highly non-linear with respect to freshwater flows and tides, the 
marsh response to the riverine SC is relatively linear. This suggests the reasonableness of using 
ANNs trained with backwater and marsh data collected only during the drought, but driven by 
riverine predictions from ANNs trained over widely ranging conditions, to extrapolate to non-
drought conditions. 
 



 

Figure 14.  3D response surface generated         Figure 15.  3D response surface generated  
with a chaotic model of SC.  The spikes in                     with a model of marsh SC at USGS B2M.  
Figure 11 occur at low QClyo and high                             The response at B2M to long-term (4-week 
WLHarbor                                                                                                                        MWA) SC at nearby riverine gage 021989791 
                                                                                             is nearly linear.  Not surprisingly, marsh  
                                                                                             SC increases if riverine SC has been high 
                                                                                             for some time, as indicated by the 4-week 
                                                                                             change(∆) in the 4-week MWA of the 
                                                                                             riverine SC. 
 

Development of the Decision Support System 
 
Daamen and Roehl (2005) describe how the execution of the large number of Savannah area sub-
models was orchestrated by a custom DSS. The DSS integrates the super-model with an 11½ 
year database, comprising more that 200,000 records of half-hourly measurements, for running 
long-term simulations. Similar to the Beaufort River DSS, the  M2M provides a graphical user 
interface, streaming graphics, several freshwater flow input options, and output file generation to 
allow stakeholders of varying technical backgrounds to evaluate alternative scenarios under the 
widely ranging conditions manifest in such a long historical record. 
 
The M2M provides the interface to integrate the output from the 3DM as input for the MSM. 
Figure 10 shows that the 3DM is linked to the M2M super-model through an output file. The file 
contains WL and SC biases for the main gaging sites. The biases are calculated by subtracting 
3DM predictions representing proposed channel geometries from predictions generated using the 
actual historical conditions. Figure 10 shows that riverine and marsh predictions at gaged sites 
are interpolated to generate a 2D contour map of SC on a grid of the study area. The 
interpolation is performed using rules written for each grid cell. The rules accommodate the 
area’s topological features and the different transport mechanisms of channels and marshes. The 
interpolation and visualization are performed in a custom post-processor that imports output 
from the DSS and writes interpolated values to an output file. The post-processor converts SCto 
salinity, and provides different options for time-averaging the predictions. Output from the post-
processor can be imported into the MSM so that plant ecologists can evaluate the impacts of 
predicted salinity changes. 



 

Figure 16. Location of study area and 
continuous gaging stations (triangles). 

 
Discussion of Case Study II 
 
The M2M leverages and integrates millions of dollars of field data collection and modeling 
performed over more than a decade by several scientific organizations and disciplines. A divide-
and-conquer super-model solution, enabled by signal decomposition and accurate ANN sub-
models, allowed a large amount of disparate data and intermediate works to be optimally used in 
their entirety. By integrating the databases and simulation models from different disciplines, the 
M2M integrated the knowledge of the different research groups. The packaging of the super-
model and data in a DSS makes the scientific products immediately accessible and useful to all 
stakeholders. 
 

 
CASE STUDY 3: PREDICTING SALINITY INTRUSION ALONG THE GRAND 
STRAND OF SOUTH CAROLINA 
 
 
The Pee Dee River Basin, with approximately 12,700 square miles of drainage area in eastern 
North and South Carolina supplies freshwater to 
the Grand Strand along the South Carolina coast 
from Little River Inlet to the north and Winyah 
Bay to the south (U.S. Geological Survey, 1986) 
(fig. 16). Six reservoirs in North Carolina 
discharge into the Pee Dee River, which flows 
160 miles through South Carolina to the coastal 
communities near Myrtle Beach. During the 
drought between 1998 and 2002, salinity intrusion 
forced a municipal intake to close until increased 
streamflow moved the freshwater-saltwater 
interface downstream from the intake.  
 
The North Carolina reservoirs are currently being 
re-licensed by the Federal Energy Regulatory 
Commission (FERC) for a 50-year operating 
permit. The water has important commercial 
value for generation of electric power, waterfront 
property development, water supply, assimilative 
capacity, navigation, and recreation. A coalition 
of stakeholders including Alcoa Power, Progress Energy, the Pee Dee River Coalition, and the 
South Carolina Department of Natural Resources sought to model the system’s hydrodynamics 
and determine the minimum flow needed to protect coastal intakes. 
 
Approach 
 
The problem of estimating the salinity intrusion of the Pee Dee River is very similar to the 
salinity issues addressed in the Savannah River estuary study. A similar approach to the 
Savannah River estuary study was used for the Pee Dee River study. A large difference in the 



 

Figure 17.  Tidal water-level signal (A), decomposition into a periodic signal of tide range (B), and a 
chaotic signal of mean water level (C). 

Pee Dee River study is the releases from the reservoirs are 160 miles upstream with several 
intervening large tributaries rather than streamflow 30 miles upstream of the area of interest, as 
with the Savannah River estuary study.  

 
Data Sets and Data Preparation. The USGS maintains a real-time stream-gaging network of 
WL and SC recorders in the Pee Dee and Waccamaw River Basins. For the streamflow stations, 
there is greater than 50 years of record at the majority of the stations. For the coastal water-
quality stations, there is greater than 15 years of WL and SC data. Data from the Grand Strand 
network are a valuable resource for addressing the critical conditions for salinity encroachment 
on the Pee Dee and Waccamaw Rivers. During the past 15 years of data collection, the estuarine 
system has experienced various extreme conditions including large 24-hour rainfalls, the passing 
of major offshore hurricanes, and drought conditions.  
 
For this study, a subset of the USGS data were used including nine coastal gaging stations that 
provided WL and SC data and five upland gaging stations that provided streamflow data. The 
data spanned 17½ years, but not all of the gaging stations were operating concurrently. The 
database for the study was augmented with rainfall data from six regional meteorological 
stations, and coastal wind speed and direction data from one additional meteorological station.  
The resulting database comprises 17½ years of hourly data (150,000+ time stamps) for 27 



 

measured variables. A similar approach to data preparation that was used in the Beaufort River 
and Lower Savannah River estuary studies were used for the Pee Dee River Study.  The periodic 
and chaotic components of the WL and SC signals were decomposed and the XWL signals 
computed. As shown in Figure 17, the measured water level at Little River Inlet (station 
02110777) (fig. 17A) was decomposed into its periodic signal of XWL time series (fig. 17B) and 
its chaotic signal of mean WL time series (fig. 17C).  
 
Historically, streamflow in the Pee Dee River varies between 700 and 215,000 cubic feet per 
second (ft3/s) (Cooney and others, 2003).  Salinity in the lower Pee Dee River is constantly 
responding to changing streamflow and tidal conditions. Figure 18A shows the daily mean SC 
values for the Hagley Landing gaging station (Station 02110815, fig. 16) and daily mean 
streamflow for Pee Dee River at Pee Dee (Station 02131000, fig. 16) for the 1983 to 2003 water 
years3.  The period includes a full range of flows for the system from high flows of the El Niño 
in 1998 and 2003 (approximately, 43,000 and 98,000 ft3/s, respectively) to the low flows of the 
extended drought in the Southeast from 1998 to 2002 (fig. 18B). During periods of medium and 
high flows (streamflow greater than 7,000 ft3/s), the SC values are low. During periods of low 
flow (streamflow less than 3,000 ft3/s), values of SC values increase with increased salinity 
intrusion. During the low-flow periods prior to the high-flow El Niño of 1998, salinity intrusion 
with SC values ranging from 10,000 to 15,000 microsiemens per centimeter (µs/cm) were not 
uncommon.  After the high flow of 1998 and during the extended drought, flows were even 
lower and remained lower for extended periods, which resulted in greater salinity at Hagley 
Landing with daily mean SC values greater than 15,000 µs/cm. 
 
Simulation of Salinity Intrusion 
 
Similar to the approach taken in the Beaufort River and Lower Savannah River estuary studies, 
subdividing a complex modeling problem into sub-problems and then addressing each one is a 
means to achieving the best possible result. For the Pee Dee study, individual ANN models for 
SC were developed for nine continuous coastal streamgages.  The models were developed in two 
stages. The first stage modeled the chaotic, lower-frequency portion of the signal, as represented 
by the filtered SC signals. The second stage modeled the periodic, higher-frequency, hourly SC, 
using the predicted SC as a carrier signal. Each model uses three general types of signals, or time 
series: streamflow signal(s), WL signal(s), and XWL signal(s). The signals may be of the 
measured series values, filtered values, and/or a time derivative of the signals.  The available 
datasets for developing the models were randomly bifurcated into training and testing datasets. 
Some small datasets were not bifurcated to maximize the information content in a signal. All 
ANN models were carefully evaluated to ensure the models did not “overfit” the data.  
 
Eighteen models were developed: nine daily models and nine hourly models. Generally, the daily 
models had R2 values ranging from 0.62 to 0.96. The hourly models had R2 values ranging from 
0.69 to 0.92. An example of the measured and predicted daily and hourly SC response models 
are shown in Figure 19. The daily model is able to simulate the sharp SC spikes (fig. 19A) and 
the hourly model is able to simulate the high-frequency SC response (fig 19B). 
 
 



 

Figure 18. Graphs showing Pee Dee River flow at Station 02131000 and specific conductance 
response at Hagley Landing (Station 02110815) for the period 1983 to 2003 (A) and April 1998 
to December 2002 (B). 



 

Figure 19. Graphs showing measured (black trace) and predicted (gray trace) specific conductance 
for Hagley Landing (Station 02110815). Results for the daily model are shown on the left (A) and 
the hourly model on the right (B). 

  
  

 

Development of Decision Support System 
 
The model in the DSS is a “super-model” that represents the whole system. The super model is 
composed of the 18 “sub-models” of the daily and hourly models for each gaging station. These 
sub-models are then incorporated into a “super-model” application that integrates the model 
controls, model database, and model outputs. This produces predictive models that are 
customized to the unique circumstances and data of a particular system. The DSS has at least two 
executions of the super-model. One generates predictions using actual historical input conditions, 
which are used to compute prediction errors and graphically depict accuracy. The second 
execution generates “What if?” predictions using user-established controllable inputs.  
 
The Pee Dee River DSS provides for simulations corresponding to the most recent and 6½ years 
of higher-quality data, at daily or hourly time steps. Streamflow inputs can be set by the user to 
be a constant or a percentage of the historical measurements. User-defined hydrographs can also 
be run. The Pee Dee River DSS also provides a constrained optimizer that automatically 
modulates streamflow to match user-established maximum SC setpoints. The setpoints can be 
applied on a daily or hourly basis. The Pee Dee River DSS also provides built-in documentation 
that describes the variables and user controls. Documentation appears in pop-up windows as the 
mouse is moved in the GUI. 
 
Discussion of Case Study III 
 
Effective environmental management of water resources relies on the information available from 
various sources including monitoring data, data analysis, and predictive models. Ultimately, Pee 
Dee River stakeholders wanted to understand the causes of the large salinity intrusions and to 



 

determine the minimum flows that should be required in the FERC license. To facilitate the 
technical transfer of historical data and predictive models for the Pee Dee Basin, a DSS was 
developed that would allow stakeholders to have equal access to the analytical tools. 
Stakeholders of various technical backgrounds were able to access results from the study to 
transform data into usable information to enhance understanding and decision making. 
Stakeholders were able to determine a minimum flow to protect the intakes for a large range of 
hydrologic conditions. Stakeholders also realized that during extreme hydrologic conditions, the 
municipalities should have contingency plans rather than required unrealistic flows from the 
reservoirs to protect their intakes. 
 
CONCLUSIONS 
 
The three case studies presented demonstrate how data-mining techniques can be applied to 
existing environmental databases to address concerns of long-term consequences.  In each case, 
data were transformed into information, and ultimately, into knowledge. In the Beaufort River 
study, knowledge of the net flow to the north changed the understanding of the system and had 
long-term consequences for water-resource management of the river. The construction of the 
multi-million dollar WRF will meet the wastewater needs of the community for the next few 
decades.  In the Lower Savannah River estuary study, data mining was used to address various 
aspects of the Savannah Harbor Deepening Project.  Data mining was used to develop models 
that estimate marsh pore-water salinity response to changing estuarine conditions, to integrate 
four databases, and to integrate a hydrodynamic river model and ecologic marsh-secession 
models.  By integrating the databases and models of various research groups, the M2M integrates 
the knowledge of river hydrologists and ecologists. The M2M will help guide decision makers in 
writing the Environmental Impact Statement for the proposed deepening of Savannah Harbor. In 
the Pee Dee River study, data mining was used to understand the interaction between 
streamflow, tidal range, and mean tidal water level on salinity intrusion. With this understanding, 
stakeholders determined minimum streamflow needed to protect the intakes for a large range of 
hydrologic conditions but also realized that during extreme hydrologic conditions, the 
municipalities should have contingency plans to protect their intakes rather than required 
unrealistic flows from the reservoirs. The minimum streamflow will be used in the issuance of a 
50-year permit by the Federal Energy Regulatory Commission for the operation of the North 
Carolina reservoirs. 
 
END NOTES 
 
1 An ANN model is a flexible mathematical structure capable of describing complex nonlinear 
relations between input and output datasets.  The architecture of ANN models is loosely based on 
the biological nervous system (Hinton, 1992).  Although there are numerous types of ANNs, the 
most commonly used type of ANN is the multi-layer perceptron (MLP) (Rosenblatt, 1958). 
 
2 Any use of trade, product, or firm names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government. 
 
3 Water year is the 12-month period October 1 through September 30. The water year is 
designated by the calendar year in which it ends. 
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