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Six reservoirs in North Carolina, USA, discharge into the Pee Dee River, which flows 
260 kilometers through South Carolina to the coastal communities near Myrtle Beach. 
During the Southeast’s record-breaking drought from 1998 to 2002, salinity intrusions 
inundated a coastal municipal freshwater intake, limiting water supplies. The North 
Carolina reservoirs are currently (2006) undergoing a re-licensing process by the Federal 
Energy Regulatory Commission for a 50-year operating permit. Stakeholders along the 
Pee Dee River formed a coalition to determine the necessary flows to protect the 
freshwater intakes in the future. Salinity intrusion results from the interaction of three 
principal forces—streamflow, mean tidal water levels, and tidal range. To analyze, 
model, and simulate hydrodynamic behaviors at critical coastal gages, data mining 
techniques were applied to more than 15 years of hourly streamflow, coastal water-
quality, and water-level data. Artificial neural network (ANN) models were trained to 
learn the variable interactions that cause salinity intrusions. Streamflow data from the 
47,900-square-kilometer basin are used as input to the model as time-delayed variables 
and accumulated tributary inflows. Tidal inputs to the models were obtained by 
decomposing tidal water-level data into a “multiply periodic” signal of tidal range and a 
“chaotic” signal of mean water levels.  The ANN models were able to convincingly 
reproduce historical behaviors and generate alternative scenarios of interest. To make the 
models directly available to all stakeholders, a user-friendly decision support system was 
developed as a spreadsheet application that integrates the historical database, ANN 
models, user controls, streaming graphics, and simulation output.  
 
INTRODUCTION 
 
The Pee Dee Basin, with approximately 47,900 square kilometers of drainage area in 
eastern North and South Carolina, USA, supplies freshwater to the Grand Strand along 
the South Carolina coast from Little River Inlet to the north and Winyah Bay to the south 
[1] (fig. 1). Six reservoirs in North Carolina discharge into the Pee Dee River, which 
flows 260 kilometers through South Carolina to the coastal communities near Myrtle 
Beach. During the drought between 1998 and 2002, salinity intrusion forced a municipal 



Figure 1. Location of study area and 
continuous gaging stations (triangles). 

intake to close until increased streamflow 
moved the freshwater/saltwater interface 
downstream from the intake.  

The North Carolina reservoirs are 
currently being re-licensed by the Federal 
Energy Regulatory Commission (FERC) 
for a 50-year operating permit. The water 
has important commercial value for 
generation of electric power, waterfront 
property development, water supply, 
assimilative capacity, navigation, and 
recreation. A coalition of stakeholders 
including Alcoa Power, Progress Energy, 
the Pee Dee River Coalition, and the South 
Carolina Department of Natural Resources 
sought to model the system’s 
hydrodynamics and determine the 
minimum flow needed to protect coastal 
intakes. 

Water-resource managers and stakeholders face difficult challenges when managing 
the interactions between natural and man-made systems. Complex mathematical 
(mechanistic) models based on first principles physical equations are often developed and 
operated by scientists or engineers to evaluate options for using a resource while 
minimizing damage: however, the interests and computer skills of the actual decision 
makers and other stakeholders can be quite varied. To meet the needs of the technically 
diverse group of stakeholders, a decision support system (DSS) was developed in a 
spreadsheet application that integrates historical databases, simulation models, simulation 
controls, streaming graphics, and model outputs. The DSS met the need for equal access 
by all to the body of scientific knowledge needed to make the best possible decisions.  

 
METHODS 

 
The authors had previously developed ANN-based models of estuaries in Georgia and 
South Carolina.  The type of ANN used was the multi-layered perceptron (MLP) 
described by Jensen [2], which is a multivariate, non-linear regression method based on 
machine learning. In a side-by-side comparison, Conrads and Roehl [3] found that ANN 
models had prediction errors 60-82% lower than those of a state-of-the-practice 
mechanistic model when predicting water temperature, specific conductance (SC), and 
dissolved oxygen on the Cooper River in South Carolina. In a regulatory application, 
Conrads and others [4] describe an ANN-based model for the permitting of three 
wastewater treatment plants that discharge into the Beaufort River estuary. In general, 
high-quality predictive ANN models can be obtained when: 



• The data are well distributed throughout the state space (historical range of 
conditions) of interest, 

• The input variables selected by the modeler share a lot of “mutual information” 
about the output variables, and 

• The form “prescribed” or “synthesized” for the model used to “map” (correlate) 
input variables to output variables is a good one. Machine learning techniques like 
ANNs synthesize a best fit to the data. 
 

Data Sets 
The U.S. Geological Survey (USGS) maintains a real-time stream-gaging network of 
water level (WL) and SC recorders on the Pee Dee and Waccamaw River Basins. For the 
streamflow stations, there is greater than 50 years of record at the majority of the stations. 
For the coastal water-quality stations, there is greater than 15 years of WL and SC data. 
(Specific conductance is a field measurement that is commonly used to compute salinity 
concentration.) Data from the Grand Strand network are a valuable resource for 
addressing the critical conditions for salinity encroachment on the Pee Dee and 
Waccamaw Rivers. During the past 15 years of data collection, the estuarine system has 
experienced various extreme conditions including large rainfalls in a 24-hour period, the 
passing of major hurricanes offshore, and drought conditions.  

For this study, a subset of the USGS data was used including nine coastal gaging 
stations that provided WL and SC data and five upland gaging stations that provided 
streamflow data sets. The data spanned 17½ years, but not all of the gaging stations were 
operating concurrently. The database for the study was augmented with rainfall data from 
six regional meteorological stations, and coastal wind speed and direction data from one 
additional meteorological station.  The resulting database comprises 17½ years of hourly 
data (150,000+ time stamps) for 27 measured variables.  
 
Data Preparation 
Tidal systems are dynamic and exhibit complex behaviors that evolve over multiple time 
scales. The hydrodynamic and water-quality behaviors observed in estuaries are 
superpositions of behaviors forced by periodic planetary motions and chaotic 
meteorological disturbances. Theoretically, periodic behaviors are perfectly predictable, 
and chaotic behaviors are only somewhat so; therefore, the real problem with modeling 
estuaries is empirically synthesizing chaotic output signals from multiple chaotic input 
signals. Signals are easily decomposed into periodic and chaotic components using 
filtering techniques. The primary chaotic inputs to this system are the flows and the 
chaotic oceanic disturbances represented in the chaotic component of water level in Little 
River Inlet and Winyah Bay. The primary periodic input to the system is the tide. 

 The semi-diurnal tide is dominated by the lunar cycle, which is more influential 
than the 24-hour solar cycle; thus, a 24-hour average is inappropriate to use to reduce 
tidal data to daily values. For analysis and model development, the USGS data were 
digitally filtered to remove semi-diurnal and diurnal variability. To filter the semi-diurnal 



Figure 3. Diagram showing simplified conceptual model of the location of the 
freshwater/saltwater interface in estuarine rivers. 

Figure 2.  Tidal water-level signal (A), decomposition 
into a periodic signal of tide range (B), and a chaotic 
signal of mean water level (C).

tidal signal, nested 24- and 
25-hour moving window 
averages (MWA) were 
applied to the WL and SC 
time series. The resulting 
time series represents the 
daily change in the tidal 
signal for SC and WL on a 
60-minute time increment. 
Digital filtering also can 
diminish the effect of 
noise in a signal to 
improve the amount of 
useful information that it 
contains. Working from 
filtered signals makes the 
modeling process more 

efficient, precise, and accurate. 
Tidal dynamics are a dominant force for estuarine systems, and tidal range (XWL) is 

an important variable for determining the lunar phase of the tide. Tidal range is calculated 
from WL and is defined as the WL at high tide minus the WL at low tide for each semi-
diurnal tidal cycle. As shown in Figure 2, the measured water level at Little River Inlet 
(Station 02110777) (fig. 2a) was decomposed into its periodic signal of XWL time series 
(fig. 2b) and its chaotic signal of mean WL time series (fig. 2c).  
 
Conceptual Model and Data Analysis 

The estuarine portions of the Pee Dee and Waccamaw Rivers are constantly 
integrating the changing streamflow, changing tidal conditions of the Atlantic Ocean, and 
changing meteorological conditions including wind direction and speed, rainfall, low and 
high pressure systems, and hurricanes. The location of the saltwater/freshwater interface 
is a balance between upstream river flows and downstream tidal forcing (fig. 3).  During 
periods of high streamflow, it is difficult for salinity to intrude upstream and the 
saltwater/freshwater interface moves downstream towards the ocean. During periods of 
low streamflow, salinity is able to intrude upstream and the saltwater/freshwater interface 



Figure 4. Graph showing Pee Dee River flow at 
Station 02131000 and specific conductance response 
at Hagley Landing (Station 02110815) for the period 
1995 to 2003. 

moves upstream.   
Historically, streamflow in the Pee Dee River varies between 20 and 6,000 cubic 

meters per second (m3/s) [5].  Salinity in the lower Pee Dee River is constantly 
responding to changing streamflow and tidal conditions. Figure 4 shows the daily mean 
SC values for the Hagley Landing gaging station (Station 02110815, fig. 1) and daily 

mean streamflow for Pee 
Dee River at Pee Dee 
(Station 02131000, fig. 1) 
for the 1995 to 2003 water 
years1.  The period includes 
a full range of flows for the 
system from high flows of 
the El Niño in 1998 and 
2003 (approximately, 1,500 
and 3,500 m3/s, respectively) 
to the low flows of the 
extended drought in the 
Southeast from 1998 to 
2002. During periods of 
medium and high flows 
(streamflow greater than 200 
m3/s), the SC values are low. 
During periods of low flow 
(streamflow less than 80 

m3/s), values of SC values increase with increased salinity intrusion. During the low-flow 
periods prior to the high-flow El Niño of 1998, salinity intrusion with SC values ranging 
from 10,000 to 15,000 microsiemens per centimeter (µS/cm) were not uncommon.  After 
the high flow of 1998 and during the extended drought, flows were even lower and 
remained lower for extended periods, which resulted in greater salinity at Hagley 
Landing with daily mean SC values greater than 15,000 µS/cm. 
 
Model Approach 
Subdividing a complex modeling problem into sub-problems and then addressing each is 
a means to achieving the best possible result. For the Pee Dee study, individual ANN 
models for SC were developed for nine continuous coast stream gages.  The models were 
developed in two stages. The first stage modeled the chaotic, lower-frequency, portion of 
the signal, as represented by the filtered SC signals. The second stage modeled the 
periodic, higher frequency, hourly SC, using the predicted SC as a carrier signal. Each 
model uses three general types of signals, or time series: streamflow signal(s), WL 

                                                            
1 Water year is the 12-month period October 1 through September 30. The water year is 
designated by the calendar year in which it ends. 



Figure 5. Graphs showing measured (black trace) and predicted (gray trace) specific 
conductance for Hagley Landing (Station 02110815). Results for the daily model are 
shown on the left (A) and the hourly model on the right (B). 

signal(s), and XWL signal(s). The signals may be of the measured series values, filtered 
values, and/or a time derivative of the signals.  The available dataset for developing the 
models were randomly bifurcated into training and testing datasets. Some small datasets 
were not bifurcated to maximize the information content in a signal. All ANN models 
were carefully evaluated to ensure the models did not “overfit” the data. 

Eighteen models were developed: nine daily models and nine hourly models. 
Generally, the daily models used from one to four hidden-layer neurons and had 
coefficients of determination (R2) ranging from 0.62 to 0.96. The hourly model used from 
two to six hidden-layer neurons and had R2 values ranging from 0.69 to 0.92. An example 
of the measured and predicted daily and hourly SC response models are shown in Figure 
5. The daily model is able to simulate the sharp SC spikes (fig. 5a) and the hourly model 
is able to simulate the high-frequency SC response (fig 5b). 

 
Development of Decision Support System 
Commonly, a DSS is a software package built around a model, making the model the 
DSS’s most important component because ostensibly, it can correctly predict, “What will 
happen if we do A instead of B?” Models often are developed at considerable expense; 
therefore, the packaging is done only to maximize its usefulness to the broadest possible 
community of users. The DSS for the Pee Dee River was developed as Microsoft® 
Excel/Visual Basic for Applications2  (VBA) programs. This allowed the DSS to be 
prototyped and easily modified, and also allowed the DSS to be distributed in a familiar 
form. The DSS operates through a graphical user interface (GUI) composed of point-and-

                                                            
2 Any use of trade, product, or firm names is for descriptive purposes only and does not 

imply endorsement by the U.S. Government. 
 



click menus and controls (fig. 6). This makes the DSS easy to use and eliminates the need 
to trap user errors. The GUI also provides graphical outputs that depict measured and 
predicted hydrologic behaviors.  

The model in the DSS is a “super model” that represents the whole system. The 
super model is composed of the 18 “sub-models” of the daily and hourly models for each 
gaging station. These sub-models are then incorporated into a “super-model” application 
that integrates the model controls, model database, and model outputs. This produces 
predictive models that are customized to the unique circumstances and data of a 
particular system. The DSS has at least two executions of the super-model. One generates 
predictions using actual historical input conditions, which are used to compute prediction 
errors and graphically depict accuracy. The second execution generates “What if?” 
predictions using user-established controllable inputs.  

The Pee Dee DSS provides for simulations corresponding to the most recent and 6½ 
years of higher-quality data, at daily or hourly time steps. Streamflow inputs can be set 
by the user to be a constant or a percentage of the historical measurements. User-defined 
hydrographs can also be run. The Pee Dee DSS also provides a constrained optimizer that 
automatically modulates streamflow to match user-established maximum-SC setpoints. 
The setpoints can be applied on a daily or hourly basis. The Pee Dee DSS also provides 
built-in documentation that describes the variables and user controls. Documentation 
appears in pop-ups as the mouse is moved in the GUI. 

Ultimately, stakeholders wanted to understand what causes the large salinity 
intrusions and what are the minimum flows that should be require in the FERC license to 
protect coastal intakes.  Using the DSS, stakeholders were able to analyze the historical 
data and run model scenarios to determine that extreme salinity intrusions occur when 
there is a convergence of high mean WLs, usually the result of tropical storms, and low 
flow in the river. During these periods, large unrealistic flows from the reservoirs would 
be required to protect the intakes. The 14-day tidal cycle had insignificant impact during 
periods of extreme salinity intrusion. 
 
SUMMARY 
 
Effective environmental management of water resources relies on the information 
available from various sources including monitoring data, data analysis, and predictive 
models. Stakeholders of various technical backgrounds and ability need to be able to 
transform data into usable information to enhance understanding and decision making. To 
facilitate the technical transfer of historical data and predictive models for the Pee Dee 
Basin, a DSS was developed that would allow stakeholders to have equal access to the 
analytical tools. Stakeholders were able to determine a minimum flow to protect the 
intakes for a large range of hydrologic conditions. Stakeholders also realized that during 
extreme hydrologic conditions, the municipalities should have contingency plans rather 
than required excessive flows from the reservoirs to protect their intakes. 
 



Figure 6. Graphical User Control Panel from Pee Dee River DSS - (1) simulation 
start/end/step; (2) input streamflow values and 1- to 7-day time delays; (3) user 
option for modified flows and their inputs; and (4) specific conductance values – 
measured, predicted, user defined, and impact. 
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