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State space reconstruction is an important tool used by dynamicists for characterizing 
and modeling dynamic processes. State space reconstruction indicates that the behavior 
of a dynamic process can be reconstructed from time series (signals) that describe a 
process’s state at each point in time. Optimal reconstruction requires that states be 
represented by an optimal number of measurements spaced by an optimal time delay. 
Treatments of state space reconstruction typically deal with processes described by a 
single signal. State space reconstruction can be used to model dynamic, hydrologic 
systems that are usually described by multivariate data. This paper presents a 
multivariate form of state space reconstruction with an example hydrologic modeling 
problem of some complexity. Additional details are given on complementary techniques 
such as signal decomposition to differentiate spectral and chaotic behavioral components 
that evolve on different time scales, artificial neural networks to synthesize non-linear 
fits of multivariate data, and multidimensional visualization of data and models to reveal 
complex process physics. 
 
INTRODUCTION  
 
Natural resource managers face difficult challenges when managing the interactions 
between natural and man-made systems. Mechanistic models based on deterministic 
physical equations are often developed at considerable expense to evaluate options for 
using a resource while minimizing damage. The alternative modeling approach is 
empirical modeling, most often empirical least squares regression. Calibrating an 
empirical model is a process of fitting a function, such as a line or surface, through data 
from two or more variables. This can be difficult when the data are noisy or incomplete, 
and the variables for which data are available may only be able to provide a partial 
explanation of the causes of variability.  

Functions are either prescribed or synthesized. The functions prescribed by 
mechanistic models are physical equations, which incorporate adjustable coefficients that 
are used to tune a model’s predictions to match calibration data as closely as possible. 
Linear least squares regression prescribes straight lines, planes, or hyper-planes to fit 
calibration data. The potential problem with prescriptive modeling is that if the applied  
function is inherently unable to fit the variable relations manifest in the data, a 
representative model is unobtainable. There are many examples of mechanistic modeling 



 

 

projects that have consumed millions of dollars and many years of effort, yet the models 
were never accepted by the regulatory agencies and/or stakeholders. 

The growing abundance of real-time data (signals) is creating new methods for 
understanding, monitoring, and controlling dynamic hydrologic processes. Data mining 
converts massive databases into valuable knowledge. When applied to real-time (or 
continuous) data, data mining uses special methods to represent complex behaviors that 
evolve in time, including signal processing, machine learning, multivariate visualization, 
and chaotic system analysis (Chaos) as described by Abarbanel [1]. This paper describes 
a multivariate form of the classical univariate state space reconstruction (SSR) from 
Chaos. Multivariate state space reconstruction (MSSR) provides a conceptual framework 
for synthesizing empirical models that optimally exploit multivariate data. MSSR is 
explained through the development of a predictive model at a gaging station on an upper 
reach of the lower Savannah River estuary. 

 
Figure 1: Decomposition of Savannah Harbor water level (WL) at U.S. Geological 
Survey (USGS) gaging station 02198980.  

 
Periodicity, Noise, Chaos, and Signal Decomposition 
Processes exhibit three types of behavior — periodic, chaotic, and noise. Process signals 
are a combination of behaviors that are superimposed upon each other. For example, the 
coastal water levels exhibit multiply periodic behaviors caused by the gravitational forces 
applied by the earth, moon, and sun. Coastal water levels are also affected by chaotic and 
random influences, such as wind and storms. Theoretically, periodic behaviors are 
perfectly predictable. Chaos describes physical processes that are highly sensitive to 
small changes in boundary conditions. They can change between different behaviors for 
little apparent reason. The weather is both multiply periodic and chaotic. The weather 
affects nearly everything, and apart from seasonal and diurnal behaviors is impossible to 
predict beyond a week or so. Chaotic processes are somewhat predictable and SSR has 
been developed to describe them. Noise is random behavior and is by definition 
unpredictable. Random behavior may be a consequence of simply not having the 



 

 

information to make it predictable. If so, unmeasured disturbance variables are at play, 
and identifying and measuring them would make the process more predictable.  

Figure 1 illustrates signal decomposition, which uses filtering and other methods to 
decompose signals into components that manifest different behaviors. Periodic 
components are separated by spectral filters, leaving chaotic and random components 
behind. Chaotic components are removed using more complex filters based on empirical 
forecast models. Removing all of the predictable components leaves behind the noise. 
Signal decomposition provides a quantitative accounting of the predictable and 
unpredictable components. Referring to Figure 1, the power spectrum (upper right) of the 
raw water level (WL) signal (upper left) shows peaks at ½, 1, and 2 times the 12.4-hour 
tidal cycle, which are caused by the earth’s rotation and the moon’s orbit. A spectral filter 
decomposed the raw WL into high (lower left) and low (upper left) frequency (ƒ) 
component signals, WLh and WLl respectively. The tidal range (XWL, lower right) is 
calculated from the raw WL and is multiply periodic, exhibiting 14-day, 28-day, semi-
annual, and annual cycles caused by the motions of the earth, moon, and sun. WLl 
contains periodicity on semi-annual and longer time scales and manifests chaotic 
meteorological forcing on shorter time scales. 

 
Figure 2. Tracks of estuary specific conductance (SCl) with freshwater flow (Ql) and tide 
range (XWLl, left), and Ql and water level (WLl, right). Subscript “l” denotes low ƒ 
signal components of measured times series after filtering to remove high ƒ components 
> 1/day. 
 
States, Vectors, Points, and Space 
Typically, a variable x(t) is measured at constant time intervals, allowing its evolution to 
be observed over time. A future value of x can be forecast using a function to fit recent 
measurements and extrapolating forward in time. A problem with this approach is that it 
accommodates only one variable at a time, making it inadequate for reproducing the 
behaviors of multivariate processes. Like trending, Chaos generally uses multiple 
measurements to characterize process behavior. Some useful concepts from Chaos 
described: 



 

 

• Chaotic processes transit from one unique state to another in time.  This is unlike 
periodic processes, which revisit the same states at constant time intervals. 

• Each state is characterized by a collection of measurements called a state vector. The 
vector’s elements can represent one or more variables, such that the vector is either 
univariate or multivariate. Multiple measurements from the same signal can be 
assigned to elements to represent inertial effects.  

• Each vector element represents a different dimension in a Euclidian state space. For 
example, a vector having five elements is said to be 5-dimensional and lies in a 5-
dimensional state space. The coordinates given by the element values of a vector 
represents a point in state space.  

• Figure 2 shows that as a process changes in time, it leaves a track of points in state 
space, representing a state history. A process’s recent state history can be used to 
forecast near-term future states by curve fitting.  

• A new process state is derived largely, but not entirely, from previous states. 
Unknown disturbance variables influence state transitions, so that process behavior 
can never be completely characterized or predictable. 

 
MULTIVARIATE STATE SPACE RECONSTRUCTION 
 
SSR is the means by which complex dynamic processes can be represented in 
straightforward geometric terms for analysis, visualization, and modeling. Abarbanel [1] 
describes how a process’s behavior can be reconstructed “in a space of vectors” Y(t). 
Y(t) is described by Eq. (1), where d is the number of vector elements equal to the state 
space dimension, and τd is a time delay that equally spaces measurements x(t) in time. 
The variables d and τd are called dynamical invariants, and are analogous to the 
amplitude, frequency, and phase of a periodic signal.  

Y(t)=[x(t),x(t-τd),…,x(t–(d–1)τd)] (1)  

Note that the choice of τd affects the interdependence of vector elements x(t,τd), and that 
a poor choice of d would over- or under-specify the reconstruction. Abarbanel suggests 
estimating τd using the “first minima of the average mutual information function.” The 
authors advocate using the “first zero crossing of the autocorrelation function,” hereafter 
autocorrelation, for each component derived from decomposing a more complex signal. 
The decomposition is necessary for multivariate modeling anyway, and both techniques 
will give similar estimates of τd for suitably simple components.  

Abarbanel suggests the “local false nearest neighbors test” to estimate d, which uses 
an empirical function, such as a linear or quadratic, to map prior measurements to the 
next measurement. Thus, d is determined experimentally and equals the number of prior 
measurements that parsimoniously gives the best prediction. This applies equally well on 
a variable-by-variable basis to multivariate processes.  

Eq. (2) describes the state vectors for a multivariate process of k independent 
variables xk having dk and τdk, and each element xk(t,τdi) represents a state space 
dimension. 

Y(t)={[x1(t),x1(t-τd1),…,x1(t–(d1–1)τd1)], ....,[xk(t),xk(t-τdk),…,xk(t–(dk–1)τdk)]} (2) 
 



 

 

Eq. (3) adapts Eq. (2) to predict yp(t) of a measured dependent variable of interest y(t) 
from prior measurements (also known as forecasting) of k independent variables, where F 
is an empirical function. The authors suggest that F be a multi-layer perceptron artificial 
neural network (ANN) model of the type described by Jensen [2]. 

yp(t)=F{[x1(t-τp1),x1(t-τp1-τd1),…,x1(t-τp1–(dM1–1)τd1)], (3) 
....,[xk(t-τpk),xk(t-τpk-τdk),…,xk(t-τpk–(dMk–1)τdk)]} 

Each xk(t,τpi,τdi) is a different input to F, and τpi is yet another time delay. For each 
variable xk, τpi is either: constrained to the time delay at which an input variable becomes 
uncorrelated to all other inputs, but can still provide useful information about y(t); 
constrained to the time delay of the most recent available measurement of xi; or the time 
delay at which an input variable is most highly correlated to y(t). Here, the state space 
dimension d of Eq. (2) is replaced with a model input variable dimension dM. Generally, 
dM ≤ d, and tends to decrease with increasing k. The variable y(t) can be a superposition 
of disparate behaviors yj(t) originating from different forcing functions, such that  

yp(t) = Σypj(t) = ΣFj  (4) 

A study by Conrads and Roehl [3] found that ANN models offered a number of 
advantages over mechanistic models in reproducing the dynamic flow and water-quality 
behaviors in an estuary. Most importantly, the ANNs gave much better prediction 
accuracy when using the same input and output variables and data. ANNs are a curve-
fitting technique that synthesizes continuously differentiable, multivariate non-linear 
functions to near-optimally fit measurements that represent complex process behavior. 
Roehl and others [4] state that the perceived shortcomings of ANNs generally result from 
misapplication, for example, failure to decorrelate input variables. Conrads and others [5] 
describe a method for non-linearly decorrelating variables for estuary ANN models. 
 
EXAMPLE APPLICATION 
 
Figure 3 shows historical salinity and flow to illustrate maximum salinity intrusions at an 
inland gaging station on the lower Savannah River estuary. Specific conductance (SC) is 
a field measurement that is often used to compute salinity concentration. The intrusions 
were manifest as SC spikes that coincided with record low freshwater flows during a 4½-
year drought. The spikes are also apparent in the three-dimensional (3D) tracks shown in 
Figure 2, and are an example of chaotic behavior — a gradual reduction in freshwater 
flow (Q) eventually elicits a sudden and dramatically different behavior. Note that even 
though the spikes occurred at 28-day intervals as XWL was peaking, Figure 2 shows that 
they occurred near the midrange of XWL rather than at the historical maximum. 

Two separate 3D mechanistic flow models of the lower Savannah River estuary were 
developed to predict this and other hydrodynamic behaviors [6] [7]. Both had difficulty in 
capturing the on/off nature of these SC spikes in the upper reaches of the estuary. 
Therefore, these data provide an excellent test of the MSSR and ANN approach 
advocated here.  



 

 

 
Figure 3. Hourly SC at USGS gaging station 02198840 and Q. 

 

 
Figure 4. Measured (gray) and predicted (black) SCl. 

 
The modeling approach uses two ANN sub-models (F1 and F2) that together compose a 
super-model. F1 and F2 will generate SClp and SChp, which are the predicted values of the 
low and high frequency SC (SCl and SCh, respectively). Total prediction SCp = SClp + 
SChp. The sub-models are described below. The WL and XWL inputs are shown in 
Figure 1. The streamflow Q was measured at an upstream gaging station near Clyo, 
Georgia. The τp and τd values below are in units of hours. 

The F1 input configuration is: WLl at τp=0, τd=190, dM=3; XWLl at τp=0, τd=120, 
dM=2; and Ql at τp=48, dM=1. The τd of WLl was determined by autocorrelation after 
removal of components having periods > 3 months. The τd of XWLl was determined by 
autocorrelation. The τp of Ql was determined by cross correlation with SCl. For all inputs 
to F1 and F2, values of dM were determined experimentally. Figure 4 shows measured and 
predicted SCl, and an R2=0.88.  

Note that the prediction accuracy is generally better after hour 40,000, indicating that 
the general quality of the field measurements improved over time with better equipment 
and maintenance practices. Consider that statistical measures of accuracy are commonly 
cited in ways that assume that measurements are more accurate than model predictions; 
however, also consider the value of averaging measurements to improve accuracy of 
noisy data. The fitting of empirical models tends to ignore the noise in data; therefore, 
model predictions can in some cases be more accurate at representing behavior than noisy 
measurements.  



 

 

Figure 5 shows a 3D response surface generated by F1. When compared to the 3D track 
at right in Figure 2, it is apparent that the functional form of F1 does match the data. 
Response surfaces are generated by ranging two of a model’s inputs and calculating the 
output response. Unshown inputs are set to a constant value. Here, the delayed WLl and 
the XWLl inputs were set to their historical means. 

F2 required the calculated variables: the high ƒ SC component SCh = SC – SClp; and 
the normalized tidal range XWLn = XWL – XWLl. The F2 input configuration is: WL at 
τp=1, τd=3, dM=3; XWLn at τp=0, dM=1; and Ql at τp=48, dM=1. The τp of WL was 
determined by cross correlation with SCh, and τd was determined by autocorrelation. The 
R2 for F2 is 0.72. The R2 of the combined predictions SCp shown in Figure 6 is 0.77. The 
prediction does not quite match the single SC measurement greater than 8,000 
microsiemens/cm. The next highest SC value is 4,800 microsiemens/cm. The F2 response 
surface is shown at right in Figure 5. The SC spikes are predicted at peaking SCp and 
WL.  

 
Figure 5. 3D response surfaces of F1 and F2. WL (right) τp=4. 

 

 
Figure 6. Measured (gray) and predicted (black) SC. Detail of maximum SC intrusion 
shown on the right. 



 

 

CONCLUSIONS 
 
The example model was developed from only two measured input signals, Q(t) and 
WL(t), yet the model actually fits 11½ years of data with a certain statistical measure of 
accuracy. The example model is the product of:  
• Signal Decomposition – that transforms a complex signal into simpler components 

that represent different forcing functions evolving on different time scales. 
• Multivariate State Space Reconstruction – represents dynamic multivariate behaviors 

using an optimal number of measurements, dM, for each input variable, which are 
optimally spaced in time by a time day τd, and are input to a model at another 
optimal time delay τp. 

• Artificial Neural Network Models – that synthesize multivariate non-linear functions 
to fit multivariate non-linear data. 

• Super-Model Architecture – allows output behaviors evolving on different time 
scales to optimally modeled independently by sub-models, and have their predictions 
superposed. 

• Visualization – of data and model responses to reveal a system’s process physics. 
 
The example model outperforms recent mechanistic models that predict the same output 
signal by a substantial margin. While the mechanistic models represent an entire spatially 
expansive system, individual ANN models for multiple gaging sites can provide 
expanded coverage, and give insights into process data and behavior that are useful in 
any modeling endeavor.  
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