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The Savannah Harbor is one of the busiest ports on the East Coast of the USA. The 
harbor is located downstream from the Savannah National Wildlife Refuge (SNWR), 
which is one of the nation’s largest freshwater tidal marshes. The Lower Savannah River 
estuary has been studied for years by governmental agencies, water users, universities, 
and consultants having an interest in maintaining water quality and predicting the 
potential impacts of a proposed harbor deepening.  Consequently, many different 
databases have been created that describe the natural system’s complexity and behaviors. 
Variables having particular relevance include those describing bathymetry, meteorology, 
water level, and specific conductance. A three-dimensional hydrodynamic model (3DM) 
and a “marsh succession model” (MSM) were developed by different scientific teams to 
evaluate the environmental impacts of the harbor deepening. The 3DM predicts changes 
in riverine water levels and salinity in the system in response to potential harbor 
geometry changes. The MSM predicts plant distribution in the tidal marshes in response 
to changes in the water-level and salinity conditions in the marsh.  To link the riverine 
predictions of the 3DM to the MSM, a “model to marsh” (M2M) model was developed 
using data mining techniques that included artificial neural networks (ANN). The ANNs 
simulated riverine and marsh water levels and salinity in the vicinity of the SNWR for the 
full range of 11½ years of data from riverine and marsh gaging networks. The 3DM, 
MSM, and M2M were integrated in a decision support system (DSS) for use by various 
regulatory and scientific stakeholders. 
 



INTRODUCTION 
 
Under sponsorship from the U.S. Army Corps of Engineers (USCOE) and the Georgia 
Ports Authority (GPA), the Lower Savannah River Estuary and the surrounding 
freshwater tidal marshes of the Savannah National Wildlife Refuge (SNWR) have been 
studied for years by a variety of governmental agencies, water users, universities, and 
consultants. Their interests are in maintaining water quality and predicting the potential 
impacts of a proposed harbor deepening on the estuary and tidal wetlands. Two major 
initiatives were the development of a three-dimensional hydrodynamic model (3DM) by 
a team of hydrologists, and the development of a marsh succession model (MSM) by a 
team of plant ecologists. The 3DM predicted changes in riverine water levels and salinity 
in the system in response to potential harbor changes. The MSM predicted plant 
distribution in the tidal marshes in response to changes in the water-level and salinity 
conditions in the marsh. A mechanism for linking riverine and marsh behaviors was 
needed.  

To support 3DM and MSM development, many disparate databases had been created 
that described the natural system’s complexity and behaviors, but these databases had not 
been compiled into a usable form. Variables having particular relevance include those 
describing bathymetry, meteorology, discharge (Q), water level (WL), specific 
conductance (SC), water temperature (WT), and dissolved oxygen concentration (DO). 
Most of the databases were composed of time series that varied by variable type, periods 
of record, measurement frequency, location, and reliability. Scientists recognized that 
data mining techniques, which include artificial neural networks (ANN), could be used to 
link riverine and marsh behaviors. 

The authors had previously developed ANN-based models of estuaries in Charleston 
and Beaufort, South Carolina, USA.  The type of ANN used in these cases was the multi-
layered perceptron (MLP) described by Jensen [5], which is a multivariate, non-linear 
regression method based on machine learning. In a side-by-side comparison, Conrads and 
Roehl [2] found that ANN models had prediction errors 60-82% lower than those of a 
state-of-the-practice mechanistic model when predicting the effect of WT, SC, and DO 
on Charleston’s Cooper River. In a regulatory application, Conrads and others [3] 
describe an ANN-based model for the permitting of three wastewater treatment plants 
that discharge into the Beaufort River estuary.. Permits were issued only 35 months after 
the program’s development began, as compared to 10 or more years for similar modeling 
projects in Myrtle Beach and Charleston. The shortened time was due to demonstrably 
better prediction accuracy, and packaging of the model and databases as a decision 
support system (DSS), which made it easy for decision makers to use the models directly 

 
MODELING  
 
A  modeling approach similar to the one developed for the Beaufort River study was used 
for the Savannah River Estuary. The Beaufort model incorporated 118 separate ANN 



sub-models that predicted both point and non-point source impacts on water quality 
throughout the natural system. Sub-models were used for different purposes: 
decorrelating input variables, which is an endemic problem in tidally forced systems 
where all hydrodynamic and water-quality variables tend to move together; predicting 
point-source impacts at each of seven real-time stream gages over several time delays; 
and predicting non-point source impacts at each gaging site. Sub-models were cascaded 
together to assemble a complete prediction for each gaging site. The completed 
application constituted a super-model composed of sub-models. When combined with the 
multivariate, non-linear regression capability of ANNs, this ‘divide-and-conquer’ 
problem-solving approach produces models that optimize the use of all available data. 

For the Savannah River Estuary Study, linking the riverine predictions of the 3DM to 
the MSM required the development of another super-model, called the “model-to-marsh” 
or M2M model. The M2M needed to simulate riverine and marsh water levels and 
salinity in the vicinity of the SNWR for the full range of historical conditions using data 
from the riverine and marsh gaging networks. Similar to the Beaufort River super-model, 
cascading sub-models in the M2M are used for decorrelating variables, predicting river 
impacts, and predicting tidal marsh impacts.  

Linking the 3DM to the MSM is accomplished by using predicted differences in WL 
and SC values for the river generated by the 3DM as input to the M2M. Using the 
predicted difference for the river, the M2M predicts the change in WL and SC in the tidal 
marshes.  These predictions are then used by the MSM to predict changes in the plant 
communities in the tidal marshes. 

 

 
Figure 1. Gaging sites of the U.S. Geological Survey (USGS) and Georgia Ports 
Authority (GPA) in the Savannah River Estuary. 
 
Historical Databases 
The locations of the real-time gaging sites are shown in Figure 1. The available data 
required extensive clean up for problems such as erroneous and missing values and phase 



shifts. The resulting database was composed of 11½ years of half-hourly data (200,000+ 
time stamps) for 110 variables. The original sources of data were: 
• QClyo and WLHarbor – 11½ years of half-hourly WL signals in Savannah Harbor and 

river flows measured 50 miles inland at Clyo by the U.S. Geological Survey 
(USGS).   

• USGS riverine WL and SC – 11½ years of half-hourly signals collected from four 
stations in the Lower Savannah River by the USGS. 

• GPA riverine WL and SC - half-hourly signals collected on behalf of the GPA from 
14 stations over 3 months each in 1997 and 1999. Some stations recorded both 
surface and bottom SC measurements (SCtop, SCbottom). 

• USGS marsh WL and SC – 4½ years of half-hourly signals collected from seven 
stations (2000-2005). 

• GPA marsh WL and SC – 19 months of half hourly SC and WL data collected from 
10 stations. 
Much of the field data was collected during a record-setting 4½-year drought, raising 

concerns that the data was not representative of “normal” hydrodynamic conditions. 
Figure 2 shows that the record-low river flows during the drought led to unprecedented 
seawater intrusions far inland, even without a deepened harbor. It was expected that the 
ANNs could reasonably extrapolate from the field data by “learning” the full range of 
behaviors exhibited over 11½ years, which also included two El Niño events when flows 
were substantially above average, and presumably periods of normal conditions. 

 
Figure 2. 11½ years of hourly QClyo and SC at USGS 02198840, which was the farthest 
inland riverine gage. The SC spikes at center right occur at 28-day intervals, and are 
coincident with peaking of the tidal range during the lowest flows of the drought. 

 
Signal Decomposition 
 The hydrodynamic and water-quality behaviors observed in estuaries are superpositions 
of behaviors forced by periodic planetary motions and chaotic meteorological 
disturbances. Theoretically, periodic behaviors are perfectly predictable, and chaotic 
behaviors are only somewhat so; therefore, the real problem with modeling estuaries is to 
empirically synthesize chaotic output signals from multiple chaotic input signals. Signals 
are easily decomposed into periodic and chaotic components using spectral filtering. The 
primary chaotic inputs to the Lower Savannah River are the flows released from the dam 



at Clyo and the chaotic oceanic disturbances represented in the chaotic component of 
WLHarbor.  

The empirical representations of the dynamic behaviors that underlie periodic and 
chaotic signals are different. Multiple periodic signals are superpositions of individual 
periodic signals that are represented by three constants — phase, amplitude, and 
frequency. Abarbanel [1] describes how chaotic univariate systems can be optimally 
represented by dynamical invariants — characteristic time delays and dimensions. Roehl 
and othersl [6] describe an ANN model that predicted the salt-front location in the 
Cooper River, which incorporated signal decomposition and extended the univariate 
representation of chaotic behaviors to a multivariate system.  

As shown in Figure 3, chaotic components were extracted from raw signals by 
applying a low-pass spectral filter to remove high-frequency (HF) diurnal and semi-
diurnal variability. The important, multiply periodic tidal range XWL was computed 
from WLHarbor. The chaotic component of QClyo was further processed with moving 
window averages (MWA) of up to 2 weeks, so that when input to an ANN with multiple 
time delays, flow histories of up to 44 days were represented. 

 
Figure 3. Signal processing and decomposition. 

 

 
Figure 4. Data flow through the super-model decomposition. Separate sub-models were 
used for each WL and SC prediction. 

 
M2M 
The M2M super-model was composed of 127 sub-models. Figure 4 shows that cascading 
sub-models predicted chaotic WL and SC signal components at riverine and marsh 
gaging sites. Using low-pass filtered QClyo, WLHarbor, and XWL signal components for 
inputs, “chaotic sub-models” predicted chaotic WL and SC behaviors at four USGS 
gaging sites in the main channel. These outputs were input to “HF sub-models” that also 



used HF WLHarbor and XWL component inputs to obtain HF WL and SC predictions at 
the four gaging sites. 

The chaotic predictions at the main channel sites were then transformed into 
calculated signals to decorrelate them and to represent dynamic behaviors that evolve 
over weeks. The calculated signals were used as inputs to model the historically shorter 
signals at the many remaining riverine and marsh stations. This provided one set of 
ANNs that linked the river’s main channel behaviors to tidal forcing and freshwater 
flows, and a second set that linked main channel behaviors to those in backwaters and the 
marsh. Figures 5, 6, and 7 show SC predictions at a riverine site and at a nearby marsh 
site. The R2 of the SC predictions at most of the gaging sites reanged between 0.8 and 
0.9. The R2 of the WL predictions generally were greater than 0.9. 

Roehl and others [7] describe the use of 3D response surfaces to visualize the 
functional forms of multivariate interactions as learned by ANNs. A surface is generated 
by selecting and stepping two inputs across their historical ranges, while “unshown” 
inputs are set to values of interest, e.g., minimums, maximums, or means. Figures 8 and 9 
show surfaces that represent the behaviors at a riverine site and a nearby marsh site. 
While the behavior at the riverine gaging site is highly non-linear with respect to 
freshwater flows and tides, the marsh response to the riverine SC is relatively linear. This 
indicates the reasonableness of using ANNs trained with backwater and marsh data 
collected only during the drought, but driven by riverine predictions from ANNs trained 
over widely ranging conditions, to extrapolate to non-drought conditions. 

Figure 5.  Measured and predicted chaotic   Figure 6.  Measured and predicted HF  
riverine SC.  Increased SC at center right      riverine SC with 16.6 days shown during  
occurred during the drought.                          the drought. 

 
Figure 7. Measured and predicted marsh SC. Gaps mark missing input data. Marsh 
parameters are difficult to monitor for extended periods because of the physical 
instability of gaging sites. 



 
Figure 8.  3D response-surface generated     Figure 9.  3D response-surface generated  
with a chaotic model of SC.  The spikes in      with  a model of marsh SC at  USGS B2M  
Figure 5 occur at low QClyo and high                The response at B2M to long-term (4-week 
WLHarbor .                                                                                             MWA) SC at nearby Riverine 021989791 
                                                                           is nearly linear.  Not surprisingly, marsh  
                                                                           SC increases if riverine SC has been high 
                                                                           for some time, as indicated by the 4-week 
                                                                           change(∆) in the 4-week MWA of the 
                                                                           riverine SC. 
Simulation and Decision Support 
Daamen and Roehl [4] describe how the execution of the large number of Savannah area 
sub-models was orchestrated by a custom decision support system (DSS). The DSS 
integrates the super-model with an 11½-year database, comprising more that 200,000 
records of half-hourly measurements, for running long-term simulations. The DSS also 
provides a graphical user interface, streaming graphics, several freshwater flow input 
options, and output file generation to allow stakeholders of varying technical 
backgrounds to evaluate alternative scenarios under the widely ranging conditions that 
manifest in such a long historical record. 
 
3DM Integration 
Figure 4 shows that the 3DM is linked to the M2M super-model through an output file. 
The file contains WL and SC biases for the main gaging sites. The biases are calculated 
by subtracting 3DM predictions representing proposed channel geometries from 
predictions generated using the actual historical conditions.  
 
MSM Integration 
Figure 4 shows that riverine and marsh predictions at gaged sites are interpolated to 
generate a 2D contour map of SC on a grid of the study area. The interpolation is 
performed using rules written for each grid cell. The rules accommodate the different 
transport mechanisms of channels and marshes. The interpolation and visualization are 
performed in a custom post-processor that imports output from the DSS and writes 
interpolated values to an output file. The post-processor converts SCs to salinities, and 
provides different options for time-averaging the predictions. Output from the post-



processor can be imported into the MSM so that plant ecologists can evaluate the impacts 
of predicted salinity changes. 

 
CONCLUSIONS 
 
The M2M leverages and integrates millions of dollars of field data collection and 
modeling performed over more than a decade by several scientific organizations. A 
divide-and-conquer super-model solution, enabled by signal decomposition and accurate 
ANN sub-models, allowed a large amount of disparate data and intermediate works to be 
optimally used in their entirety. The packaging of the super-model and data in a DSS 
makes the scientific products immediately accessible and useful to all stakeholders. 
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